
SQL Anywhere® Server
SQL Usage

February 2009

Version 11.0.1

Copyright and trademarks
Copyright © 2009 iAnywhere Solutions, Inc. Portions copyright © 2009 Sybase, Inc. All rights reserved.

This documentation is provided AS IS, without warranty or liability of any kind (unless provided by a separate written agreement between
you and iAnywhere).

You may use, print, reproduce, and distribute this documentation (in whole or in part) subject to the following conditions: 1) you must retain
this and all other proprietary notices, on all copies of the documentation or portions thereof, 2) you may not modify the documentation, 3) you
may not do anything to indicate that you or anyone other than iAnywhere is the author or source of the documentation.

iAnywhere®, Sybase®, and the marks listed at http://www.sybase.com/detail?id=1011207 are trademarks of Sybase, Inc. or its subsidiaries.
® indicates registration in the United States of America.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.sybase.com/detail?id=1011207

Contents

About this book ... xi

About the SQL Anywhere documentation .. xii

Creating Databases .. 1

Creating databases in SQL Anywhere .. 3
Design considerations ... 4
Tutorial: Creating a SQL Anywhere database ... 8

Working with database objects .. 15
Set properties for database objects ... 16
View system objects in a database .. 17
Working with tables .. 18
Managing primary keys .. 24
Managing foreign keys ... 26
Working with computed columns ... 30
Working with temporary tables .. 33
Working with views .. 36
Working with regular views .. 40
Working with materialized views .. 49
Working with indexes ... 71

Ensuring data integrity .. 79
How your data can become invalid .. 80
Building integrity constraints into your database ... 81
How the contents of your database change .. 82
Tools for maintaining data integrity .. 83
SQL statements for implementing integrity constraints 85
Using column defaults ... 86
Using table and column constraints ... 92
Using domains ... 96
Enforcing entity and referential integrity .. 99
Integrity rules in the system tables .. 106

Using transactions and isolation levels ... 107
Using transactions ... 109

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 iii

Introduction to concurrency ... 111
Savepoints within transactions .. 112
Isolation levels and consistency .. 113
Transaction blocking and deadlock ... 128
How locking works ... 132
Choosing isolation levels ... 146
Isolation level tutorials ... 150
Primary key generation and concurrency .. 169
Data definition statements and concurrency .. 170
Summary ... 171

Monitoring and Improving Database Performance 173

Improving database performance ... 175
Application profiling .. 177
Index Consultant .. 183
Advanced application profiling using diagnostic tracing 188
Other diagnostic tools and techniques ... 206
Monitoring database performance ... 212
Performance Monitor statistics .. 217
Performance improvement tips .. 229

Application profiling tutorials .. 253
Tutorial: Diagnosing deadlocks .. 254
Tutorial: Diagnosing slow statements .. 260
Tutorial: Diagnosing index fragmentation .. 265
Tutorial: Diagnosing table fragmentation ... 268
Tutorial: Baselining with procedure profiling .. 271

Querying and Modifying Data .. 277

Querying data ... 279
Querying and the SELECT statement ... 280
SQL queries ... 281
The select list: Specifying columns .. 283
The FROM clause: Specifying tables .. 291
The WHERE clause: Specifying rows .. 293

SQL Anywhere® Server - SQL Usage

iv Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The ORDER BY clause: Ordering results .. 304
Aggregate functions ... 307
Full text searching .. 311
Text configuration objects .. 312
Text indexes .. 326
Types of full text searches ... 332

Summarizing, grouping, and sorting query results ... 367
Summarizing query results using aggregate functions 368
The GROUP BY clause: Organizing query results into groups 373
The HAVING clause: selecting groups of data .. 378
The ORDER BY clause: sorting query results ... 380
Performing set operations on query results with UNION, INTERSECT, and
EXCEPT .. 383

Joins: Retrieving data from several tables .. 389
Displaying a list of tables ... 390
Sample database schema ... 391
How joins work ... 392
Explicit join conditions (the ON clause) ... 397
Cross joins ... 401
Inner and outer joins .. 402
Specialized joins .. 409
Natural joins ... 417
Key joins .. 421

Common table expressions ... 433
Using common table expressions .. 434
Specifying multiple correlation names ... 435
Using multiple table expressions ... 436
Where common table expressions are permitted .. 437
Typical applications of common table expressions .. 438
Recursive common table expressions ... 441
Parts explosion problems .. 444
Data type declarations in recursive common table expressions 447
Least distance problem .. 448
Using multiple recursive common table expressions ... 451

OLAP support ... 453
Improving OLAP performance ... 455

SQL Anywhere® Server - SQL Usage

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 v

GROUP BY clause extensions .. 456
Using ROLLUP and CUBE as a shortcut to GROUPING SETS 460
Window functions ... 466
Window functions in SQL Anywhere .. 473

Using subqueries .. 503
Single-row and multiple-row subqueries .. 504
Correlated and uncorrelated subqueries ... 507
Nested subqueries ... 508
Using subqueries instead of joins .. 509
Subqueries in the WHERE clause ... 511
Subqueries in the HAVING clause ... 512
Testing subqueries .. 514
Optimizer automatic conversion of subqueries to joins 521

Adding, changing, and deleting data .. 529
Data modification statements .. 530
Adding data using INSERT .. 533
Changing data using UPDATE .. 537
Changing data using INSERT .. 539
Deleting data using DELETE ... 540

Query Processing ... 543

Query optimization and execution .. 545
Query processing phases .. 546
Semantic query transformations .. 549
How the optimizer works .. 562
Improving performance with materialized views .. 574
Query execution algorithms ... 586
Reading execution plans ... 610
Improving query performance .. 638

SQL Dialects and Compatibility .. 649

SQL dialects ... 651
Introduction to SQL Anywhere compliance .. 652
Testing SQL compliance using the SQL Flagger ... 653
Features not found in other SQL implementations .. 655

SQL Anywhere® Server - SQL Usage

vi Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Watcom-SQL ... 657
Transact-SQL Compatibility ... 658
Adaptive Server Enterprise architectures .. 661
Configuring databases for Transact-SQL compatibility 666
Writing compatible SQL statements .. 672
Transact-SQL procedure language overview .. 677
Automatic translation of stored procedures ... 679
Returning result sets from Transact-SQL procedures 680
Variables in Transact-SQL procedures .. 681
Error handling in Transact-SQL procedures .. 682

XML in the Database .. 685

Using XML in the database .. 687
Storing XML documents in relational databases ... 688
Exporting relational data as XML ... 689
Importing XML documents as relational data .. 690
Obtaining query results as XML ... 697
Using SQL/XML to obtain query results as XML ... 715

Remote Data and Bulk Operations ... 723

Importing and exporting data ... 725
Performance aspects of bulk operations ... 726
Data recovery issues for bulk operations ... 727
Importing data .. 728
Exporting data .. 745
Accessing data on client computers .. 755
Rebuilding databases .. 758
Extracting databases ... 766
Migrating databases to SQL Anywhere ... 767
Using SQL command files ... 771
Adaptive Server Enterprise compatibility ... 773

Accessing remote data .. 775
Remote table mappings ... 777
Server classes ... 778

SQL Anywhere® Server - SQL Usage

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 vii

Accessing remote data from PowerBuilder DataWindows 779
Working with remote servers ... 780
Using directory access servers .. 785
Working with external logins .. 788
Working with proxy tables .. 790
Join remote tables ... 794
Join tables from multiple local databases .. 796
Send native statements to remote servers .. 797
Using remote procedure calls (RPCs) ... 798
Transaction management and remote data ... 801
Internal operations ... 802
Troubleshooting remote data access ... 805

Server classes for remote data access ... 809
ODBC-based server classes ... 810
JDBC-based server classes .. 824

Stored Procedures and Triggers .. 827

Using procedures, triggers, and batches .. 829
Procedure and trigger overview ... 830
Benefits of procedures and triggers ... 831
Introduction to procedures ... 832
Introduction to user-defined functions .. 838
Introduction to triggers ... 842
Introduction to batches .. 851
Control statements ... 854
The structure of procedures and triggers ... 857
Returning results from procedures .. 860
Using cursors in procedures and triggers .. 865
Errors and warnings in procedures and triggers .. 868
Using the EXECUTE IMMEDIATE statement in procedures 875
Transactions and savepoints in procedures and triggers 876
Tips for writing procedures .. 877
Statements allowed in procedures, triggers, events, and batches 879
Hiding the contents of procedures, functions, triggers and views 880

Debugging procedures, functions, triggers, and events .. 881

SQL Anywhere® Server - SQL Usage

viii Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Introduction to the SQL Anywhere debugger ... 882
Tutorial: Getting started with the debugger .. 883
Working with breakpoints ... 887
Working with variables ... 890
Working with connections .. 892

Glossary .. 893

Glossary .. 895

Index .. 925

SQL Anywhere® Server - SQL Usage

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 ix

x

About this book
Subject

This book describes how to design and create databases; how to import, export, and modify data; how to
retrieve data; and how to build stored procedures and triggers.

Audience
This book is for all users of SQL Anywhere.

Before you begin
This book assumes that you have an elementary familiarity with database management systems and SQL
Anywhere in particular. If you do not have such a familiarity, you should consider reading SQL Anywhere
11 - Introduction before reading this book.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 xi

About the SQL Anywhere documentation
The complete SQL Anywhere documentation is available in four formats that contain identical information.

● HTML Help The online Help contains the complete SQL Anywhere documentation, including the
books and the context-sensitive help for SQL Anywhere tools.

If you are using a Microsoft Windows operating system, the online Help is provided in HTML Help
(CHM) format. To access the documentation, choose Start » Programs » SQL Anywhere 11 »
Documentation » Online Books.

The administration tools use the same online documentation for their Help features.

● Eclipse On Unix platforms, the complete online Help is provided in Eclipse format. To access the
documentation, run sadoc from the bin32 or bin64 directory of your SQL Anywhere 11 installation.

● DocCommentXchange DocCommentXchange is a community for accessing and discussing SQL
Anywhere documentation.

Use DocCommentXchange to:

○ View documentation

○ Check for clarifications users have made to sections of documentation

○ Provide suggestions and corrections to improve documentation for all users in future releases

Visit http://dcx.sybase.com.

● PDF The complete set of SQL Anywhere books is provided as a set of Portable Document Format
(PDF) files. You must have a PDF reader to view information. To download Adobe Reader, visit http://
get.adobe.com/reader/.

To access the PDF documentation on Microsoft Windows operating systems, choose Start »
Programs » SQL Anywhere 11 » Documentation » Online Books - PDF Format.

To access the PDF documentation on Unix operating systems, use a web browser to open install-dir/
documentation/en/pdf/index.html.

About the books in the documentation set
The SQL Anywhere documentation consists of the following books:

● SQL Anywhere 11 - Introduction This book introduces SQL Anywhere 11, a comprehensive
package that provides data management and data exchange, enabling the rapid development of database-
powered applications for server, desktop, mobile, and remote office environments.

● SQL Anywhere 11 - Changes and Upgrading This book describes new features in SQL Anywhere
11 and in previous versions of the software.

● SQL Anywhere Server - Database Administration This book describes how to run, manage, and
configure SQL Anywhere databases. It describes database connections, the database server, database

About this book

xii Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://dcx.sybase.com/
http://get.adobe.com/reader/
http://get.adobe.com/reader/

files, backup procedures, security, high availability, replication with the Replication Server, and
administration utilities and options.

● SQL Anywhere Server - Programming This book describes how to build and deploy database
applications using the C, C++, Java, PHP, Perl, Python, and .NET programming languages such as Visual
Basic and Visual C#. A variety of programming interfaces such as ADO.NET and ODBC are described.

● SQL Anywhere Server - SQL Reference This book provides reference information for system
procedures, and the catalog (system tables and views). It also provides an explanation of the SQL
Anywhere implementation of the SQL language (search conditions, syntax, data types, and functions).

● SQL Anywhere Server - SQL Usage This book describes how to design and create databases; how
to import, export, and modify data; how to retrieve data; and how to build stored procedures and triggers.

● MobiLink - Getting Started This book introduces MobiLink, a session-based relational-database
synchronization system. MobiLink technology allows two-way replication and is well suited to mobile
computing environments.

● MobiLink - Client Administration This book describes how to set up, configure, and synchronize
MobiLink clients. MobiLink clients can be SQL Anywhere or UltraLite databases. This book also
describes the Dbmlsync API, which allows you to integrate synchronization seamlessly into your C++
or .NET client applications.

● MobiLink - Server Administration This book describes how to set up and administer MobiLink
applications.

● MobiLink - Server-Initiated Synchronization This book describes MobiLink server-initiated
synchronization, a feature that allows the MobiLink server to initiate synchronization or perform actions
on remote devices.

● QAnywhere This book describes QAnywhere, which is a messaging platform for mobile, wireless,
desktop, and laptop clients.

● SQL Remote This book describes the SQL Remote data replication system for mobile computing,
which enables sharing of data between a SQL Anywhere consolidated database and many SQL Anywhere
remote databases using an indirect link such as email or file transfer.

● UltraLite - Database Management and Reference This book introduces the UltraLite database
system for small devices.

● UltraLite - C and C++ Programming This book describes UltraLite C and C++ programming
interfaces. With UltraLite, you can develop and deploy database applications to handheld, mobile, or
embedded devices.

● UltraLite - M-Business Anywhere Programming This book describes UltraLite for M-Business
Anywhere. With UltraLite for M-Business Anywhere you can develop and deploy web-based database
applications to handheld, mobile, or embedded devices, running Palm OS, Windows Mobile, or
Windows.

● UltraLite - .NET Programming This book describes UltraLite.NET. With UltraLite.NET you can
develop and deploy database applications to computers, or handheld, mobile, or embedded devices.

● UltraLiteJ This book describes UltraLiteJ. With UltraLiteJ, you can develop and deploy database
applications in environments that support Java. UltraLiteJ supports BlackBerry smartphones and Java
SE environments. UltraLiteJ is based on the iAnywhere UltraLite database product.

About the SQL Anywhere documentation

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 xiii

● Error Messages This book provides a complete listing of SQL Anywhere error messages together
with diagnostic information.

Documentation conventions
This section lists the conventions used in this documentation.

Operating systems
SQL Anywhere runs on a variety of platforms. In most cases, the software behaves the same on all platforms,
but there are variations or limitations. These are commonly based on the underlying operating system
(Windows, Unix), and seldom on the particular variant (AIX, Windows Mobile) or version.

To simplify references to operating systems, the documentation groups the supported operating systems as
follows:

● Windows The Microsoft Windows family includes Windows Vista and Windows XP, used primarily
on server, desktop, and laptop computers, and Windows Mobile used on mobile devices.

Unless otherwise specified, when the documentation refers to Windows, it refers to all Windows-based
platforms, including Windows Mobile.

● Unix Unless otherwise specified, when the documentation refers to Unix, it refers to all Unix-based
platforms, including Linux and Mac OS X.

Directory and file names

In most cases, references to directory and file names are similar on all supported platforms, with simple
transformations between the various forms. In these cases, Windows conventions are used. Where the details
are more complex, the documentation shows all relevant forms.

These are the conventions used to simplify the documentation of directory and file names:

● Uppercase and lowercase directory names On Windows and Unix, directory and file names
may contain uppercase and lowercase letters. When directories and files are created, the file system
preserves letter case.

On Windows, references to directories and files are not case sensitive. Mixed case directory and file
names are common, but it is common to refer to them using all lowercase letters. The SQL Anywhere
installation contains directories such as Bin32 and Documentation.

On Unix, references to directories and files are case sensitive. Mixed case directory and file names are
not common. Most use all lowercase letters. The SQL Anywhere installation contains directories such
as bin32 and documentation.

The documentation uses the Windows forms of directory names. In most cases, you can convert a mixed
case directory name to lowercase for the equivalent directory name on Unix.

● Slashes separating directory and file names The documentation uses backslashes as the directory
separator. For example, the PDF form of the documentation is found in install-dir\Documentation\en
\PDF (Windows form).

About this book

xiv Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

On Unix, replace the backslash with the forward slash. The PDF documentation is found in install-dir/
documentation/en/pdf.

● Executable files The documentation shows executable file names using Windows conventions, with
a suffix such as .exe or .bat. On Unix, executable file names have no suffix.

For example, on Windows, the network database server is dbsrv11.exe. On Unix, it is dbsrv11.

● install-dir During the installation process, you choose where to install SQL Anywhere. The
environment variable SQLANY11 is created and refers to this location. The documentation refers to this
location as install-dir.

For example, the documentation may refer to the file install-dir\readme.txt. On Windows, this is
equivalent to %SQLANY11%\readme.txt. On Unix, this is equivalent to $SQLANY11/readme.txt or $
{SQLANY11}/readme.txt.

For more information about the default location of install-dir, see “SQLANY11 environment variable”
[SQL Anywhere Server - Database Administration].

● samples-dir During the installation process, you choose where to install the samples included with
SQL Anywhere. The environment variable SQLANYSAMP11 is created and refers to this location. The
documentation refers to this location as samples-dir.

To open a Windows Explorer window in samples-dir, from the Start menu, choose Programs » SQL
Anywhere 11 » Sample Applications And Projects.

For more information about the default location of samples-dir, see “SQLANYSAMP11 environment
variable” [SQL Anywhere Server - Database Administration].

Command prompts and command shell syntax

Most operating systems provide one or more methods of entering commands and parameters using a
command shell or command prompt. Windows command prompts include Command Prompt (DOS prompt)
and 4NT. Unix command shells include Korn shell and bash. Each shell has features that extend its
capabilities beyond simple commands. These features are driven by special characters. The special characters
and features vary from one shell to another. Incorrect use of these special characters often results in syntax
errors or unexpected behavior.

The documentation provides command line examples in a generic form. If these examples contain characters
that the shell considers special, the command may require modification for the specific shell. The
modifications are beyond the scope of this documentation, but generally, use quotes around the parameters
containing those characters or use an escape character before the special characters.

These are some examples of command line syntax that may vary between platforms:

● Parentheses and curly braces Some command line options require a parameter that accepts
detailed value specifications in a list. The list is usually enclosed with parentheses or curly braces. The
documentation uses parentheses. For example:

-x tcpip(host=127.0.0.1)

Where parentheses cause syntax problems, substitute curly braces:

-x tcpip{host=127.0.0.1}

About the SQL Anywhere documentation

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 xv

If both forms result in syntax problems, the entire parameter should be enclosed in quotes as required
by the shell:

-x "tcpip(host=127.0.0.1)"
● Quotes If you must specify quotes in a parameter value, the quotes may conflict with the traditional

use of quotes to enclose the parameter. For example, to specify an encryption key whose value contains
double-quotes, you might have to enclose the key in quotes and then escape the embedded quote:

-ek "my \"secret\" key"

In many shells, the value of the key would be my "secret" key.

● Environment variables The documentation refers to setting environment variables. In Windows
shells, environment variables are specified using the syntax %ENVVAR%. In Unix shells, environment
variables are specified using the syntax $ENVVAR or ${ENVVAR}.

Graphic icons
The following icons are used in this documentation.

● A client application.

● A database server, such as Sybase SQL Anywhere.

● A database. In some high-level diagrams, the icon may be used to represent both the database and the
database server that manages it.

● Replication or synchronization middleware. These assist in sharing data among databases. Examples are
the MobiLink server and the SQL Remote Message Agent.

About this book

xvi Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● A programming interface.

Contacting the documentation team
We would like to receive your opinions, suggestions, and feedback on this Help.

To submit your comments and suggestions, send an email to the SQL Anywhere documentation team at
iasdoc@sybase.com. Although we do not reply to emails, your feedback helps us to improve our
documentation, so your input is welcome.

DocCommentXchange
You can also leave comments directly on help topics using DocCommentXchange. DocCommentXchange
(DCX) is a community for accessing and discussing SQL Anywhere documentation. Use
DocCommentXchange to:

● View documentation

● Check for clarifications users have made to sections of documentation

● Provide suggestions and corrections to improve documentation for all users in future releases

Visit http://dcx.sybase.com.

Finding out more and requesting technical support
Additional information and resources are available at the Sybase iAnywhere Developer Community at http://
www.sybase.com/developer/library/sql-anywhere-techcorner.

If you have questions or need help, you can post messages to the Sybase iAnywhere newsgroups listed below.

When you write to one of these newsgroups, always provide details about your problem, including the build
number of your version of SQL Anywhere. You can find this information by running the following command:
dbeng11 -v.

The newsgroups are located on the forums.sybase.com news server.

About the SQL Anywhere documentation

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 xvii

mailto:iasdoc@sybase.com
http://dcx.sybase.com/
http://www.sybase.com/developer/library/sql-anywhere-techcorner
http://www.sybase.com/developer/library/sql-anywhere-techcorner

The newsgroups include the following:

● sybase.public.sqlanywhere.general
● sybase.public.sqlanywhere.linux
● sybase.public.sqlanywhere.mobilink
● sybase.public.sqlanywhere.product_futures_discussion
● sybase.public.sqlanywhere.replication
● sybase.public.sqlanywhere.ultralite
● ianywhere.public.sqlanywhere.qanywhere

For web development issues, see http://groups.google.com/group/sql-anywhere-web-development.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information, or ideas on its newsgroups, nor is
iAnywhere Solutions obliged to provide anything other than a systems operator to monitor the service and
ensure its operation and availability.

iAnywhere Technical Advisors, and other staff, assist on the newsgroup service when they have time. They
offer their help on a volunteer basis and may not be available regularly to provide solutions and information.
Their ability to help is based on their workload.

About this book

xviii Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
http://groups.google.com/group/sql-anywhere-web-development

Creating Databases

This section describes how to create a SQL Anywhere database. It explains how to work with database objects
such as tables, views, materialized views, indexes, and so on. It provides information on how to maintain referential
integrity in your data using keys and constraints, and explains how transactions are handled at different isolation
levels.

Creating databases in SQL Anywhere .. 3
Working with database objects .. 15
Ensuring data integrity .. 79
Using transactions and isolation levels ... 107

Creating databases in SQL Anywhere

Contents
Design considerations ... 4
Tutorial: Creating a SQL Anywhere database ... 8

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 3

Design considerations
Before creating a database in SQL Anywhere, prepare by defining all the tables it will have (entities), the
columns you want in each table (attributes), and the relationship each table has with the other tables (keys
and constraints).

Consider constructing a Conceptual Database Model (CDM) for the database. A CDM helps you visualize
your database as a map. You can construct the CDM on paper, or use software such as Sybase PowerDesigner.
CDM tools help you validate your design as you construct it, and can also help you create the database.

For more information on designing databases, including how to construct a Conceptual Database Model,
visit the PowerDesigner documentation at http://infocenter.sybase.com/help/index.jsp.

For more information about database objects such as tables and views, see “Working with database
objects” on page 15.

Choosing object names
Avoid naming database objects after reserved words. For the list of SQL Anywhere reserved words, see
“Reserved words” [SQL Anywhere Server - SQL Reference].

Column names must be enclosed in double quotes if they contain characters other than letters, numbers, or
underscores, if they do not begin with a letter, or if the name is the same as a keyword.

Choosing column data types
The following data types are available in SQL Anywhere:

● Integer data types
● Decimal data types
● Floating-point data types
● Character data types
● Binary data types
● Date/time data types
● Domains (user-defined data types)

For more information about data types, see “SQL data types” [SQL Anywhere Server - SQL Reference].

Any of the character or binary string data types such as CHAR, VARCHAR, LONG VARCHAR, NCHAR,
BINARY, VARBINARY, and so on, can be used to store large objects such as images, word-processing
documents, and sound files.

For more information about BLOB storage, see “Storing BLOBs” on page 5.

Creating databases in SQL Anywhere

4 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://infocenter.sybase.com/help/index.jsp

Deciding between NULL and NOT NULL
If the column value is mandatory for a row, you define the column as being NOT NULL. Otherwise, the
column is allowed to contain the NULL value, which represents no value. The default in SQL Anywhere is
to allow NULL values, but you should explicitly declare columns NOT NULL unless there is a good reason
to allow NULL values.

The SQL Anywhere sample database has a table called Departments, which has columns named
DepartmentID, DepartmentName, and DepartmentHeadID. Its definition is as follows:

Column Data type Size Null/not null Constraint

DepartmentID integer — NOT NULL None

DepartmentName char 40 NOT NULL None

DepartmentHeadID integer — NULL None

If you specify NOT NULL, a column value must be supplied for every row in the table.

For more information about the NULL value, see “NULL value” [SQL Anywhere Server - SQL Reference].
For information about its use in comparisons, see “Search conditions” [SQL Anywhere Server - SQL
Reference].

Storing BLOBs
A BLOB is an uninterpreted string of bytes or characters, stored as a value in a column. Common examples
of a BLOB are picture or sound files. While BLOBs are typically large, you can store them in any character
string or binary string data type such as CHAR, VARCHAR, NCHAR, BINARY, VARBINARY, and so
on. Choose your data type and length depending on the content and length of BLOBs you expect to store.

Note
While a character large object is commonly called a CLOB, a binary large object is called a BLOB, and the
combination of both is called a LOB. Only the acronym BLOB is used in this documentation.

When you create a column for storing BLOB values, you can control aspects of their storage. For example,
you can specify that BLOBs up to a specified size be stored in the row (inline), while larger BLOBs are
stored outside the row in table extension pages. Additionally, you can specify that for BLOBs stored outside
the row, the first n bytes of the BLOB, also referred to as the prefix, are duplicated in the row. These storage
aspects are controlled by the INLINE and PREFIX settings specified in the CREATE TABLE and ALTER
TABLE statements. The values you specify for these settings can have unanticipated impacts on performance
or disk storage requirements.

If neither INLINE nor PREFIX is specified, or if INLINE USE DEFAULT or PREFIX USE DEFAULT is
specified, default values are applied as follows:

● For character data type columns, such as CHAR, NCHAR, LONG VARCHAR, and XML, the default
value of INLINE is 256, and the default value of PREFIX is 8.

Design considerations

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 5

● For binary data type columns, such as BINARY, LONG BINARY, VARBINARY, BIT, VARBIT,
LONG VARBIT, BIT VARYING, and UUID, the default value of INLINE is 256, and the default value
of PREFIX is 0.

It is recommended that you do not set INLINE and PREFIX values unless there are specific requirements
for which the default values are insufficient. The default values have been chosen to balance performance
and disk space requirements. For example, row processing performance may degrade if you set INLINE to
a large value, and all the BLOBs are stored inline. If you set PREFIX too high, you increase the amount of
disk space required to store BLOBs since the prefix data duplicates a portion of the BLOB.

If you do decide to set INLINE or PREFIX values, the INLINE length must not exceed the length of the
column. Likewise, the PREFIX length, must not exceed the INLINE length.

The prefix data for a compressed column is stored uncompressed, so if all the data required to satisfy a
request is stored in the prefix, no decompression is necessary.

For information about the defaults for the INLINE and PREFIX clauses, see “CREATE TABLE statement”
[SQL Anywhere Server - SQL Reference].

BLOB sharing
If a BLOB exceeds the inline size, and requires more than one database page for storage, the database server
stores it so that it can be referenced by other rows in the same table, when possible. This is known as BLOB
sharing. BLOB sharing is handled internally and is intended to reduce unnecessary duplication of BLOBs
in the database.

BLOB sharing only occurs when you set values of one column to be equal to those of another column. For
example, UPDATE t column1=column2;. In this example, if column2 contains BLOBs, instead of
duplicating them in column1, pointers to the values in column2 are used instead.

When a BLOB is shared, the database server keeps track of how many other references there are to the
BLOB. Once the database server determines that a BLOB is no longer referenced within a table, the BLOB
is removed.

If a BLOB is shared between two uncompressed columns and one of those columns is then compressed, the
BLOB will no longer be shared.

Choosing whether to compress columns
CHAR, VARCHAR, and BINARY columns can be compressed to save disk space. For example, you can
compress a column in which large BLOB files such as BMPs and TIFFs are stored. Compression is achieved
using the deflate compression algorithm. This is the same algorithm used by the COMPRESS function, and
is also the same algorithm used for Windows ZIP files.

Compressed columns can reside inside of encrypted tables. In this case, data is first compressed, and then
encrypted.

Do not use column compression on columns containing values under 130 bytes, or values that are already
in a compressed format, such as JPG files. Attempting to compress columns that contain values that are
already compressed may actually increase the amount of storage required for the column.

To compress columns, use the COMPRESS clause of the CREATE TABLE and ALTER TABLE statements.

Creating databases in SQL Anywhere

6 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

You can determine the benefits you are getting by compressing columns using the sa_column_stats system
procedure.

See also
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]
● “sa_column_stats system procedure” [SQL Anywhere Server - SQL Reference]
● “Table encryption” [SQL Anywhere Server - Database Administration]

Choosing constraints
Although the data type of a column restricts the values that are allowed in that column (for example, only
numbers or only dates), you may want to further restrict the allowed values.

You can restrict the values of any column by specifying a CHECK constraint. You can use any valid condition
that could appear in a WHERE clause to restrict the allowed values. Most CHECK constraints use either the
BETWEEN or IN condition.

For more information about valid conditions, see “Search conditions” [SQL Anywhere Server - SQL
Reference]. For more information about assigning constraints to tables and columns, see “Ensuring data
integrity” on page 79.

Design considerations

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 7

Tutorial: Creating a SQL Anywhere database
This tutorial describes how to use Sybase Central to create a simple database, modeled on the Products,
SalesOrderItems, SalesOrders, and Customers tables of the SQL Anywhere sample database.

For information about the SQL Anywhere sample database, see “SQL Anywhere sample database” [SQL
Anywhere 11 - Introduction].

For information on database design considerations, see “Design considerations” on page 4.

Lesson 1: Create a database file
In this lesson, you create a database file to hold your database. The database file contains system tables and
other system objects that are common to all databases; later you will add tables.

To create a new database file

1. Start Sybase Central.

2. Choose Tools » SQL Anywhere 11 » Create Database.

3. Read the information on the Welcome page, and then click Next.

4. Select Create A Database On This Computer, and then click Next.

5. In the Save The Main Database File To The Following File field, type c:\temp\mysample.db.

If your temporary directory is somewhere other than c:\temp, specify the appropriate path.

6. Click Finish.

7. Click Close.

See also
● “Design considerations” on page 4
● “Lesson 2: Connect to the database” on page 8
● “Lesson 3: Add tables to the database” on page 10
● “Lesson 4: Set a NOT NULL constraint on a column” on page 11
● “Lesson 5: Create a foreign key” on page 12

Lesson 2: Connect to the database
In this lesson, you use Sybase Central to connect to the database file you created. However, if you just
finished creating the database, you are already connected to it, and you can skip directly to the next lesson,
where you learn to create tables. See “Lesson 3: Add tables to the database” on page 10.

To connect to your database

1. Start Sybase Central.

Creating databases in SQL Anywhere

8 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

2. Choose Connections » Connect With SQL Anywhere 11.

3. In the User ID field, type DBA. This is the default user ID for a new database.

4. In the Password field, type sql. This is the default password for a new database.

5. Select None in the default connections area.

6. Click the Database tab and in the Database File field type the full path of your database file. For example,
type:

c:\temp\mysample.db
7. Click OK.

The database starts, and information about the database and the database server it is running on, appear
in Sybase Central.

Tutorial: Creating a SQL Anywhere database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 9

See also
● “Design considerations” on page 4
● “Lesson 1: Create a database file” on page 8
● “Lesson 3: Add tables to the database” on page 10
● “Lesson 4: Set a NOT NULL constraint on a column” on page 11
● “Lesson 5: Create a foreign key” on page 12

Lesson 3: Add tables to the database
In this lesson, you create a table named Products.

For information table design considerations, see “Design considerations” on page 4.

To create a table

1. In the right pane of Sybase Central, double-click Tables.

2. Right-click Tables and choose New » Table.

3. In the What Do You Want To Name The New Table field, type Products.

4. Click Finish.

The database server creates the table using defaults, and then displays the Columns tab in the right pane.
The Name field for the new column is selected and a prompt waits for you to specify a name for the new
column.

5. Type ProductID as the name for the new column.

Since this is the first column in the table, PKey is selected, indicating that the column is the primary key
for the table.

When creating a table, you can create a primary key that is made up of more than one columns by creating
the columns and placing a checkmark in the PKey column. See “Primary keys” [SQL Anywhere 11 -
Introduction].

6. In the Data Type list, select Integer.

7. Click the ellipsis (three dots) button.

8. Click the Value tab and choose Default Value » System-Defined » Autoincrement.

An autoincrement value increments for each row added to the table. This ensures that values in the column
are unique—a requirement for primary keys. See “Primary keys” [SQL Anywhere 11 - Introduction].

9. Click OK.

10. From the File menu, choose New » Column.

11. Complete the following fields:

● In the Name field, type ProductName.
● In the Data Type list, select Char.
● In the Size list, select 15.

Creating databases in SQL Anywhere

10 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

12. Add the following tables to your database.

● Customers table Add a table named Customers with the following columns:

○ CustomersID An identification number for each customer. Make sure PKey is selected, set
the Data Type to Integer, and set the Default Value to Autoincrement.

○ CompanyName The name of each company. Set the DataType to Char with a maximum
length of 35 characters.

● SalesOrders table Add a table named SalesOrders with the following columns:

○ SalesOrdersID An identification number for each sales order. Set the DataType to Integer,
and make sure PKey is selected. Set the Default Value to Autoincrement.

○ OrderDate The date on which the order was placed. Set the DataType to Date.

○ CustomerID The identification number of the customer who placed the sales order. Set the
DataType to Integer.

● SalesOrderItems table Add a table named SalesOrderItems with the following columns:

○ SalesOrderItemsID The identification number of the sales order of which the item is a part.
Set the DataType to Integer, and make sure PKey is selected.

○ LineID An identification number for each sales order. Set the DataType to Integer, and make
sure PKey is selected.

Note
Since PKey is set for both SalesOrderItemsID and LineID, this means the primary key for the
table comprises the concatenated values of these two columns.

○ ProductID The identification number for the product being ordered. Set the DataType to
Integer.

13. From the File menu, choose Save.

See also
● “Design considerations” on page 4
● “Lesson 1: Create a database file” on page 8
● “Lesson 2: Connect to the database” on page 8
● “Lesson 4: Set a NOT NULL constraint on a column” on page 11
● “Lesson 5: Create a foreign key” on page 12

Lesson 4: Set a NOT NULL constraint on a column
In this lesson, you learn how to add a NOT NULL constraint on a column.

To add and remove a constraint on a column

1. In the left pane of Sybase Central, double-click Tables.

2. Click MyProducts, and then click the Columns tab in the right pane.

Tutorial: Creating a SQL Anywhere database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 11

3. Select the ProductName column.

4. From the File menu, choose Properties.

5. Click the Constraints tab and select Values Cannot Be NULL.

By default, columns allow NULLs, but it is good practice to declare columns NOT NULL unless there
is a good reason to allow NULLs. See “NULL value” [SQL Anywhere Server - SQL Reference].

6. Click OK.

This constraint means that for each row added to the Products table, the ProductName column must
have a value.

7. From the File menu, choose Save.

See also
● “Design considerations” on page 4
● “Lesson 1: Create a database file” on page 8
● “Lesson 2: Connect to the database” on page 8
● “Lesson 3: Add tables to the database” on page 10
● “Lesson 5: Create a foreign key” on page 12

Lesson 5: Create a foreign key
In this lesson, you learn about creating relationships between tables using foreign keys. You use the tables
you created in the previous lessons.

To create a foreign key

1. In the left pane of Sybase Central, double-click Tables.

2. In the left pane, click the SalesOrdersItems table to select it.

3. In the right pane, select the Constraints tab.

4. Choose File » New » Foreign Key.

5. In the To Which Table Do You Want This Foreign Key To Refer list, select the Products table.

6. In the What Do You Want To Name The New Foreign Key field, type ProductIDkey.

7. Click Next and for Do You Want This Foreign Key To Reference The Primary Key Or A Unique
Constraint choose Primary Key.

8. In the Foreign Column list, click SalesOrdersItemsID.

9. Click Finish.

This completes this introductory section on creating relational databases.

Creating databases in SQL Anywhere

12 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Design considerations” on page 4
● “Lesson 1: Create a database file” on page 8
● “Lesson 2: Connect to the database” on page 8
● “Lesson 3: Add tables to the database” on page 10
● “Lesson 4: Set a NOT NULL constraint on a column” on page 11

Tutorial: Creating a SQL Anywhere database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 13

14

Working with database objects

Contents
Set properties for database objects ... 16
View system objects in a database ... 17
Working with tables ... 18
Managing primary keys ... 24
Managing foreign keys .. 26
Working with computed columns ... 30
Working with temporary tables .. 33
Working with views .. 36
Working with regular views .. 40
Working with materialized views .. 49
Working with indexes ... 71

This section provides procedures for adding database objects and setting database properties.

The SQL statements for creating, changing, and dropping database objects are called the data definition
language (DDL). The definitions of the database objects form the database schema. A schema is the logical
framework of the database.

To view information about procedures and triggers, see “Using procedures, triggers, and
batches” on page 829.

To view conceptual information about database creation and design, see:

● “Creating databases in SQL Anywhere” on page 3
● “Ensuring data integrity” on page 79
● “Using Sybase Central” [SQL Anywhere Server - Database Administration]
● “Using Interactive SQL” [SQL Anywhere Server - Database Administration]

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 15

Set properties for database objects
You can view or set the properties of a database and most database objects. Some of the properties selected
when the database was created are non-configurable.

Use the properties windows in Sybase Central to view and set properties. If do not use Sybase Central, specify
the properties when you create the object with a CREATE statement. If the object already exists, use an
ALTER statement to modify the properties.

To view and edit the properties of a database object (Sybase Central)

1. In Sybase Central, open the folder in which the object resides.

2. Select the object. The object's properties appear in the right pane of Sybase Central.

3. In the right pane, click the appropriate tabs to edit the properties.

You can also view and edit properties on the object's properties window. To view the properties window,
right-click the object, and then choose Properties.

See also
● “Connection, database, and database server properties” [SQL Anywhere Server - Database

Administration]

Working with database objects

16 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

View system objects in a database
System objects such as system tables, system views, stored procedures, and domains hold information about
database objects, and how they are related to each other. System views, procedures, and domains largely
support Sybase Transact-SQL compatibility.

To display system objects in a database (Sybase Central)

1. Start the database server.

2. Connect to a database as a user with DBA authority.

3. Choose File » Configure Owner Filter.

4. Select SYS, and dbo, and then click OK.

To browse system objects (SQL)

1. Connect to a database.

2. Execute a SELECT statement, querying the SYSOBJECT system view for a list of objects.

Example

The following SELECT statement queries the SYSOBJECT system view, and returns the list of all tables
and views owned by SYS and dbo. A join is made to the SYSTAB system view to return the object name,
and SYSUSER system view to return the owner name.

SELECT b.table_name "Object Name",
 c.user_name "Owner",
 b.object_id "ID",
 a.object_type "Type",
 a.status "Status"
 FROM (SYSOBJECT a JOIN SYSTAB b
 ON a.object_id = b.object_id)
 JOIN SYSUSER c
WHERE c.user_name = 'SYS'
 OR c.user_name = 'dbo'
ORDER BY c.user_name, b.table_name;

See also
● “SYSOBJECT system view” [SQL Anywhere Server - SQL Reference]
● “SYSTAB system view” [SQL Anywhere Server - SQL Reference]
● “SYSUSER system view” [SQL Anywhere Server - SQL Reference]

View system objects in a database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 17

Working with tables
When a database is first created, the only tables in the database are the system tables. System tables hold the
database schema.

This section describes how to create, alter, and drop tables. You can execute the examples in Interactive
SQL, but the SQL statements are independent of the administration tool you use. See “Editing result sets in
Interactive SQL” [SQL Anywhere Server - Database Administration].

To make it easier for you to re-create the database schema when necessary, create command files to define
the tables in your database. The command files should contain the CREATE TABLE and ALTER TABLE
statements.

For more information about groups, tables, and connecting as another user, see “Referring to tables owned
by groups” [SQL Anywhere Server - Database Administration], and “Database object names and prefixes”
[SQL Anywhere Server - Database Administration].

Create tables
When a database is first created, the only tables in the database are the system tables, which hold the database
schema. You can use SQL statements in Interactive SQL or Sybase Central to create new tables to hold your
data.

There are two types of tables that you can create:

● Base table A table that holds persistent data. The table and its data continue to exist until you explicitly
delete the data or drop the table. It is called a base table to distinguish it from temporary tables and views.

● Temporary table Data in a temporary table is held for a single connection only. Global temporary
table definitions (but not data) are kept in the database until dropped. Local temporary table definitions
and data exist for the duration of a single connection only. See “Working with temporary
tables” on page 33.

Tables consist of rows and columns. Each column carries a particular kind of information, such as a phone
number or a name, while each row specifies a particular entry.

To create a table (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, right-click Tables and choose New » Table.

3. Follow the instructions in the Create Table Wizard.

4. In the right pane, click the Columns tab and configure your table.

5. Choose File » Save.

To create a table (SQL)

1. Connect to the database as a user with DBA authority.

Working with database objects

18 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

2. Execute a CREATE TABLE statement.

Example
The following statement creates a new table to describe qualifications of employees within a company. The
table has columns to hold an identifying number, a name, and a type (technical or administrative) for each
skill.

CREATE TABLE Skills (
 SkillID INTEGER NOT NULL,
 SkillName CHAR(20) NOT NULL,
 SkillType CHAR(20) NOT NULL
);

See “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference].

Altering tables
This section describes how to alter the structure or column definitions of a table. For example, you can add
columns, change various column attributes, or drop columns entirely.

You can perform table alteration tasks on the SQL tab in the right pane of Sybase Central. In Interactive
SQL, you can perform them using the ALTER TABLE statement.

For information about altering database object properties, see “Set properties for database
objects” on page 16.

For information about granting and revoking table permissions, see “Granting permissions on tables” [SQL
Anywhere Server - Database Administration], and “Revoking user permissions and authorities” [SQL
Anywhere Server - Database Administration].

Table alterations and view dependencies
Before altering a table, you may want to determine whether there are views dependent on a table, using the
sa_dependent_views system procedure. See “sa_dependent_views system procedure” [SQL Anywhere
Server - SQL Reference].

If you are altering the schema of a table with dependent views, there may be additional steps to make, as
noted in the following sections.

● Dependent regular views When you alter the schema of a table, the definition for the table in the
database is updated. If there are dependent regular views, the database server automatically recompiles
them after you perform the table alteration. If the database server cannot recompile a dependent regular
view after making a schema change to a table, it is likely because the change you made invalidated the
view definition. In this case, you must correct the view definition. See “Alter regular
views” on page 43.

● Dependent materialized views If there are dependent materialized views, you must disable them
before making the table alteration, and then re-enable them after making the table alteration. If you cannot
re-enable a dependent materialized view after making a schema change to a table, it is likely because the
change you made invalidated the materialized view definition. In this case, you must drop the
materialized view and then create it again with a valid definition, or make suitable alterations to the

Working with tables

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 19

underlying table before trying to re-enable the materialized view. See “Create materialized
views” on page 57.

For an overview of how altering database objects affects view dependencies, see “View
dependencies” on page 37.

Alter tables (Sybase Central)
You can alter tables in Sybase Central on the Columns tab in the right pane. For example, you can add or
drop columns, change column definitions, or change table or column properties. Altering tables fails if there
are any dependent materialized views; you must first disable dependent materialized views. Once your table
alterations are complete, you must re-enable the dependent materialized views. See “View
dependencies” on page 37.

Use the sa_dependent_views system procedure to determine if there are dependent materialized views. See
“sa_dependent_views system procedure” [SQL Anywhere Server - SQL Reference].

To alter an existing table (Sybase Central)

1. Connect to the database as a user with DBA authority, or as owner of the table.

2. If you are making a schema change and there are materialized views dependent on the table, disable each
one as follows:

a. In the left pane, double-click Views.

b. Right-click the materialized view and choose Disable.

3. Double-click Tables and select the table you want to alter.

4. In the right pane, click the Columns tab and alter the table settings.

5. Choose File » Save.

6. If you disabled materialized views, re-enable and initialize each one. See “Enable and disable
materialized views” on page 65.

Tips
You can add columns by selecting a table's Columns tab and choosing File » New Column.

You can drop columns by selecting the column on the Columns tab and choosing Edit » Delete.

You can copy a column to a table by selecting the column on the Columns tab in the right pane and then
clicking Copy. Select the table, click the Columns tab in the right pane, and then click Paste.

It is also necessary to click Save or choose File » Save. Changes are not made to the table until then.

See also
● “Enable and disable materialized views” on page 65
● “Ensuring data integrity” on page 79
● “View dependencies” on page 37

Working with database objects

20 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Alter tables (SQL)
You can alter tables in Interactive SQL using the ALTER TABLE statement. If you use a clause other than
ADD FOREIGN KEY with the ALTER TABLE statement on a table with dependent materialized views,
the ALTER TABLE statement fails. For all other clauses, you must disable the dependent materialized views
and then re-enable them when your changes are complete. See “View dependencies” on page 37.

Use the sa_dependent_views system procedure to determine if there are dependent materialized views. See
“sa_dependent_views system procedure” [SQL Anywhere Server - SQL Reference].

To alter an existing table (SQL)

1. Connect to the database as a user with DBA authority.

2. If you are performing a schema-altering operation on tables with dependent materialized views, and use
a clause other than ADD FOREIGN KEY with the ALTER TABLE statement, use the ALTER
MATERIALIZED VIEW ... DISABLE statement to disable each dependent materialized view. You do
not need to disable dependent regular views.

3. Execute an ALTER TABLE statement to perform the table alteration.

The definition for the table in the database is updated.

4. If you disabled any materialized views, use the ALTER MATERIALIZED VIEW ... ENABLE statement
to re-enable them.

Examples
These examples show how to change the structure of the database. The ALTER TABLE statement can change
just about anything pertaining to a table—you can use it to add or drop foreign keys, change columns from
one type to another, and so on. In all these cases, once you make the change, stored procedures, views, and
any other items referring to this table may no longer work.

The following command adds a column to the Skills table to allow space for an optional description of the
skill:

ALTER TABLE Skills
ADD SkillDescription CHAR(254);

You can also alter column attributes with the ALTER TABLE statement. The following statement shortens
the SkillDescription column from a maximum of 254 characters to a maximum of 80:

ALTER TABLE Skills
ALTER SkillDescription CHAR(80);

By default, an error occurs if there are entries that are longer than 80 characters. The string_rtruncation
option can be used to change this behavior. See “string_rtruncation option [compatibility]” [SQL Anywhere
Server - Database Administration].

The following statement changes the name of the SkillType column to Classification:

ALTER TABLE Skills
RENAME SkillType TO Classification;

The following statement drops the Classification column.

Working with tables

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 21

ALTER TABLE Skills
DROP Classification;

The following statement changes the name of the entire table:

ALTER TABLE Skills
RENAME Qualification;

See also
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]
● “ALTER VIEW statement” [SQL Anywhere Server - SQL Reference]
● “Alter regular views” on page 43
● “Enable and disable materialized views” on page 65
● “ALTER MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “Ensuring data integrity” on page 79
● “View dependencies” on page 37

Drop tables
This section describes how to drop tables from a database. You can use either Sybase Central or Interactive
SQL to perform this task. In Interactive SQL, deleting a table is also called dropping it.

You cannot drop a table that is being used as an article in a SQL Remote publication. If you try to do this in
Sybase Central, an error appears. Also, if you are dropping a table that has dependent views, there may be
additional steps to make, as noted in the following sections.

Table deletions and view dependencies

When you drop a table, its definition is removed from the database. If there are dependent regular views,
the database server attempts to recompile and re-enable them after you perform the table alteration. If it
cannot, it is likely because the table deletion invalidated the definition for the view. In this case, you must
correct the view definition. See “Alter regular views” on page 43.

If there are dependent materialized views, subsequent refreshing will fail because its definition is no longer
valid. In this case, you must drop the materialized view and then create it again with a valid definition. See
“Create materialized views” on page 57.

Before altering a table, you may want to determine whether there are views dependent on a table, using the
sa_dependent_views system procedure. See “sa_dependent_views system procedure” [SQL Anywhere
Server - SQL Reference].

For an overview of how table deletions affect view dependencies, see “View dependencies” on page 37.

To drop a table (Sybase Central)

1. Connect to the database as a user with DBA authority, or as the owner of the table.

2. If you are dropping a table on which materialized views depend, disable each materialized view:

a. In the left pane, double-click Views.

Working with database objects

22 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

b. Right-click the materialized view and choose Disable.

3. Double-click Tables.

4. Right-click the table and choose Delete.

5. Click Yes.

To drop a table (SQL)

1. Connect to the database as a user with DBA authority, or as the owner of the table.

2. If you are dropping a table on which materialized views depend, disable each materialized view using
the ALTER MATERIALIZED VIEW ... DISABLE statement.

3. Execute a DROP TABLE statement.

Example
The following DROP TABLE command deletes all the records in the Skills table and then removes the
definition of the Skills table from the database

DROP TABLE Skills;

Like the CREATE statement, the DROP statement automatically executes a COMMIT statement before and
after dropping the table. This makes all changes to the database since the last COMMIT or ROLLBACK
permanent. The DROP statement also drops all indexes on the table. See “DROP TABLE statement” [SQL
Anywhere Server - SQL Reference].

Browsing the data held in tables
You can use Sybase Central or Interactive SQL to browse and the data held within the tables of a database.

If you are working in Sybase Central, view the data in a table by selecting the table and clicking the Data
tab in the right pane.

If you are working in Interactive SQL, execute the following statement:

SELECT * FROM table-name;

You can edit the data in the table from the Interactive SQL Results tab or from the table's Data tab in Sybase
Central.

See also
● “Using Interactive SQL” [SQL Anywhere Server - Database Administration]

Working with tables

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 23

Managing primary keys
A primary key comprises a single column, or a set of columns combined together, whose values identify
unique rows in a table. Primary key values do not change over the life of the data in the row. Because
uniqueness is essential to good database design, it is best to specify a primary key when you define the table.

It is recommended that you do not use approximate data types such as FLOAT and DOUBLE for primary
keys or for columns with unique constraints. Approximate numeric data types are subject to rounding errors
after arithmetic operations.

This section describes how to create and edit primary keys in your database. You can use either Sybase
Central or Interactive SQL to perform these tasks.

Column order in multi-column primary keys
Primary key column order is determined by the primary key and foreign key clauses in the CREATE TABLE
statement. It is not based on the order of the columns as specified in the primary key declaration of the
CREATE TABLE statement.

Manage primary keys (Sybase Central)
A primary key is a column, or set of columns, that is used to identify unique rows in a table. Primary keys
are typically created at table creation time; however, they can be modified at a later time. In Sybase Central,
you access the primary key for a table in one of two ways:

● right-clicking the table and choosing Set Primary Key, which starts the Set Primary Key Wizard. The
Set Primary Key Wizard also allows you to change the order of columns of an existing primary key.

● selecting the table in the left pane, and then choosing the Constraints tab in the right pane.

To configure a primary key (Sybase Central)

1. Connect to the database as a user with DBA authority, or as the owner of the table.

2. In the left pane, double-click Tables.

3. Right-click the table and choose Set Primary Key.

4. Follow the instructions in the Set Primary Key Wizard.

Manage primary keys (SQL)
You can create and alter the primary key in Interactive SQL using the CREATE TABLE and ALTER TABLE
statements. These statements let you set many table attributes, including column constraints and checks.

Columns in the primary key cannot contain NULL values. You must specify NOT NULL on columns in the
primary key.

Working with database objects

24 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To add a primary key (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a ALTER TABLE statement for the table on which you want to configure the primary key.

To modify a primary key (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute an ALTER TABLE statement to drop the existing primary key.

3. Execute an ALTER TABLE statement to add a primary key.

To delete a primary key (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute an ALTER TABLE statement using the DELETE PRIMARY KEY clause.

Example 1
The following statement creates a table named Skills, and assigns the SkillID column as the primary key:

CREATE TABLE Skills (
 SkillID INTEGER NOT NULL,
 SkillName CHAR(20) NOT NULL,
 SkillType CHAR(20) NOT NULL,
 PRIMARY KEY(SkillID)
);

The primary key values must be unique for each row in the table, which in this case means that you cannot
have more than one row with a given SkillID. Each row in a table is uniquely identified by its primary key.

If you want to change the primary key to use SkillID and Skillname columns together for the primary key,
you must first delete the primary key that you created, and then add the new primary key:

ALTER TABLE Skills DELETE PRIMARY KEY
ALTER TABLE Skills ADD PRIMARY KEY (SkillID, SkillName);

See “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference], and “Manage primary keys
(Sybase Central)” on page 24.

Managing primary keys

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 25

Managing foreign keys
This section describes how to create and edit foreign keys in your database. You can use either Sybase Central
or Interactive SQL to perform these tasks.

Foreign keys are used to relate values in a child table (or foreign table) to those in a parent table (or primary
table). A table can have multiple foreign keys that refer to multiple parent tables linking various types of
information.

Example
The SQL Anywhere sample database has one table holding employee information and one table holding
department information. The Departments table has the following columns:

● DepartmentID An ID number for the department. This is the primary key for the table.

● DepartmentName The name of the department.

● DepartmentHeadID The employee ID for the department manager.

To find the name of a particular employee's department, there is no need to put the name of the employee's
department into the Employees table. Instead, the Employees table contains a column, DepartmentID,
holding a value that matches one of the DepartmentID values in the Departments table.

The DepartmentID column in the Employees table is a foreign key to the Departments table. A foreign key
references a particular row in the table containing the corresponding primary key.

The Employees table (which contains the foreign key in the relationship) is therefore called the foreign
table or referencing table. The Departments table (which contains the referenced primary key) is called the
primary table or the referenced table.

Manage foreign keys (Sybase Central)
In Sybase Central, the foreign key of a table appears on the Constraints tab, which is located on the right
pane when a table is selected.

You create a foreign key relationship when you create the child table (that is, prior to inserting data in the
child table). The foreign key relationship then acts as a constraint; for new rows inserted in the child table,
the database server checks to see if the value you are inserting into the foreign key column matches a value
in the primary table's primary key.

After you have created a foreign key, you can keep track of it on each table's Constraints tab in the right
pane; this tab displays any foreign tables that reference the currently selected table.

To create a new foreign key (Sybase Central)

1. Connect to the database as a user with DBA authority, or as the owner of the table.

2. In the left pane, double-click Tables.

3. Right-click the table and choose New » Foreign Key.

Working with database objects

26 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

4. Follow the instructions in the Create Foreign Key Wizard.

To delete a foreign key (Sybase Central)

1. Connect to the database as a user with DBA authority, or as the owner of the table.

2. In the left pane, double-click Tables.

3. Select the table for which you want to delete a foreign key.

4. In the right pane, click the Constraints tab.

5. Right-click the foreign key and choose Delete.

6. Click Yes.

For any given table, you can also view a list of tables that reference the table using a foreign key.

To display a list of tables that reference a given table (Sybase Central)

1. Connect to the database as a user with DBA authority, or as the owner of the table.

2. In the left pane, double-click Tables.

3. Click the table.

4. In the right pane, click the Referencing Constraints tab.

Tips
When you create a foreign key using the wizard, you can set properties for the foreign key. To view properties
after the foreign key is created, select the foreign key on the Constraints tab and then choose File »
Properties.

You can view the properties of a referencing foreign key by selecting the table on the Referencing
Constraints tab and then choosing File » Properties.

Manage foreign keys (SQL)
A table can only have one primary key defined, but it can have many foreign keys. You can create and alter
foreign keys in Interactive SQL using the CREATE TABLE and ALTER TABLE statements. These
statements let you set many table attributes, including column constraints and checks.

To create a foreign key (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute an ALTER TABLE statement.

Managing foreign keys

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 27

Omitting column names at foreign key creation (SQL)
Foreign key column names are paired with primary key column names according to position in the two lists
in a one-to-one manner. If the primary table column names are not specified when defining the foreign key,
then the primary key columns are used. For example, suppose you create two tables as follows:

CREATE TABLE Table1(a INT, b INT, c INT, PRIMARY KEY (a, b));
CREATE TABLE Table2(x INT, y INT, z INT, PRIMARY KEY (x, y));

Then, you create a foreign key fk1 as follows, specifying exactly how to pair the columns between the two
tables:

ALTER TABLE Table2 ADD FOREIGN KEY fk1(x,y) REFERENCES Table1(a, b);

Using the following statement, you create a second foreign key, fk2, by specifying only the foreign table
columns. The database server automatically pairs these two columns to the first two columns in the primary
key on the primary table.

ALTER TABLE Table2 ADD FOREIGN KEY fk2(x, y) REFERENCES Table1;

Using the following statement, you create a foreign key without specifying columns for either the primary
or foreign table:

ALTER TABLE Table2 ADD FOREIGN KEY fk3 REFERENCES Table1;

Since you did not specify referencing columns, the database server looks for columns in the foreign table
(Table2) with the same name as columns in the primary table (Table1). If they exist, it ensures that the data
types match and then creates the foreign key using those columns. If columns do not exist, they are created
in Table2. In this example, Table2 does NOT have columns called a and b so they are created with the same
data types as Table1.a and Table1.b. These automatically-created columns cannot become part of the primary
key of the foreign table.

Examples
In the following example, you create a table called Skills which contains a list of possible skills, and then
create a table called EmployeeSkills that has a foreign key relationship to the Skills table. Notice that
EmployeeSkills.SkillID has a foreign key relationship with the primary key column (Id) of the Skills table.

CREATE TABLE Skills (
 Id INTEGER PRIMARY KEY,
 SkillName CHAR(40),
 Description CHAR(100)
);
CREATE TABLE EmployeeSkills (
 EmployeeID INTEGER NOT NULL,
 SkillId INTEGER NOT NULL,
 SkillLevel INTEGER NOT NULL,
 PRIMARY KEY(EmployeeID),
 FOREIGN KEY (SkillID) REFERENCES Skills (Id)
);

You can also add a foreign key to a table after it has been created, using the ALTER TABLE statement. In
the following example, you create tables similar to those created in the previous example, except you add
the foreign key after creating the table.

CREATE TABLE Skills2 (
 Id INTEGER PRIMARY KEY,

Working with database objects

28 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 SkillName CHAR(40),
 Description CHAR(100)
);
CREATE TABLE EmployeeSkills2 (
 EmployeeID INTEGER NOT NULL,
 SkillId INTEGER NOT NULL,
 SkillLevel INTEGER NOT NULL,
 PRIMARY KEY(EmployeeID),
);
ALTER TABLE EmployeeSkills2
 ADD FOREIGN KEY SkillFK (SkillID)
 REFERENCES Skills2 (Id);

You can specify properties for the foreign key as you create it. For example, the following statement creates
the same foreign key as in Example 2, but it defines the foreign key as NOT NULL along with restrictions
for when you update or delete.

ALTER TABLE Skills2
ADD NOT NULL FOREIGN KEY SkillFK (SkillID)
REFERENCES Skills2 (ID)
ON UPDATE RESTRICT
ON DELETE RESTRICT;

See also
● “Manage foreign keys (Sybase Central)” on page 26
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]

Managing foreign keys

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 29

Working with computed columns
A computed column is a column whose value is an expression that can refer to the values of other columns,
called dependent columns, in the same row. Computed columns are especially useful in situations where
you want to index a complex expression that can include the values of one or more dependent columns. The
database server will use the computed column wherever it see an expression that matches the computed
column's COMPUTE expression; this includes the SELECT list and predicates. However, if the query
expression contains a special value, such as CURRENT TIMESTAMP, this matching does not occur. For a
list of special values that prevent matching, see “Special values” [SQL Anywhere Server - SQL Reference].

During query optimization, the SQL Anywhere optimizer automatically attempts to transform a predicate
involving a complex expression into one that simply refers to the computed column's definition. For example,
suppose that you want to query a table containing summary information about product shipments:

CREATE TABLE Shipments(
 ShipmentID INTEGER NOT NULL PRIMARY KEY,
 ShipmentDate TIMESTAMP,
 ProductCode CHAR(20) NOT NULL,
 Quantity INTEGER NOT NULL,
 TotalPrice DECIMAL(10,2) NOT NULL
);

In particular, the query is to return those shipments whose average cost is between two and four dollars. The
query could be written as follows:

SELECT *
 FROM Shipments
 WHERE (TotalPrice / Quantity) BETWEEN 2.00 AND 4.00;

However, in the query above, the predicate in the WHERE clause is not sargable since it does not refer to a
single base column. See “Using predicates in queries” on page 569. If the size of the Shipments table is
relatively large, an indexed retrieval might be appropriate rather than a sequential scan. To benefit from an
indexed retrieval, create a computed column named AverageCost for the Shipments table, and then create
an index on the column, as follows:

ALTER TABLE Shipments
 ADD AverageCost DECIMAL(21,13)
 COMPUTE(TotalPrice / Quantity);
 CREATE INDEX IDX_average_cost
 ON Shipments(AverageCost ASC);

Choosing the type of the computed column is important; the SQL Anywhere optimizer replaces only complex
expressions by a computed column if the data type of the expression in the query precisely matches the data
type of the computed column. To determine what the type of any expression is, you can use the EXPRTYPE
built-in function that returns the expression's type in ready-to-use SQL terms:

SELECT EXPRTYPE(
 'SELECT (TotalPrice/Quantity) AS X FROM Shipments', 1)
 FROM DUMMY;

For the Shipments table, the above query returns decimal(21,13). During optimization, the SQL Anywhere
optimizer rewrites the query above as follows:

SELECT *
 FROM Shipments

Working with database objects

30 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 WHERE AverageCost
 BETWEEN 2.00 AND 4.00;

In this case, the predicate in the WHERE clause is now a sargable one, making it possible for the optimizer
to choose an indexed scan, using the new IDX_average_cost index, for the query's access plan.

Altering computed column expressions
You can change the expression used in a computed column with the ALTER TABLE statement. The
following statement changes the expression that a computed column is based on.

ALTER TABLE table-name
ALTER column-name
SET COMPUTE (new-expression);

The column is recalculated when this statement is executed. If the new expression is invalid, the ALTER
TABLE statement fails.

The following statement stops a column from being a computed column.

ALTER TABLE
table-name
ALTER column-name
DROP COMPUTE;

Existing values in the column are not changed when this statement is executed, but they are no longer updated
automatically.

Inserting and updating computed columns
Considerations regarding inserting into, and updating, computed columns include the following:

● Direct inserts and updates You should not use INSERT or UPDATE statements to put values into
computed columns since the values may not reflect the intended computation. Also, manually inserted
or updated data in computed columns may be changed later when the column is recomputed.

● Column dependencies It is strongly recommended that you not use triggers to set the value of a
column referenced in the definition of a computed column (for example, to change a NULL value to a
not-NULL value), as this can result in the value of the computed column not reflecting its intended
computation.

● Listing column names You must always explicitly specify column names in INSERT statements
on tables with computed columns.

● Triggers If you define triggers on a computed column, any INSERT or UPDATE statement that
affects the column fires the triggers.

Although you can use INSERT, UPDATE, or LOAD TABLE statements to insert values in computed
columns, this is neither the recommended nor intended application of this feature.

The LOAD TABLE statement permits the optional computation of computed columns. Suppressing
computation during a load operation may make performing complex unload/reload sequences faster. It can

Working with computed columns

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 31

also be useful when the value of a computed column must stay constant, even though the COMPUTE
expression refers a non-deterministic value, such as CURRENT TIMESTAMP.

Avoid changing the values of dependent columns in triggers as it may cause the value of the computed
column to be inconsistent with the column definition.

If a computed column x depends on a column y that is declared not-NULL, then an attempt to set y to NULL
will be rejected with an error before triggers fire.

Recalculating computed columns
Values of computed columns are automatically maintained by the database server as rows are inserted and
updated. Most applications should never need to update or insert computed column values directly.

Computed columns are recalculated under the following circumstances:

● Any column is deleted, added, or renamed.

● The table is renamed.

● Any column's data type or COMPUTE clause is modified.

● A row is inserted.

● A row is updated.

Computed columns are not recalculated under the following circumstances:

● The computed column is queried.

● Values are changed in columns on which the computed column depends.

Copying tables or columns within or between databases
With Sybase Central, you can copy existing tables or columns and insert them into another location in the
same database or into a completely different database. See “Copying database objects in the SQL Anywhere
plug-in” [SQL Anywhere Server - Database Administration].

If you are not using Sybase Central:

● To insert SELECT statement results into a given location, see “SELECT statement” [SQL Anywhere
Server - SQL Reference].

● To insert a row or selection of rows from elsewhere in the database into a table, see “INSERT statement”
[SQL Anywhere Server - SQL Reference].

Working with database objects

32 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Working with temporary tables
Temporary tables are stored in the temporary file. Pages from the temporary file can be cached, just as pages
from any other dbspace can. Operations on temporary tables are never written to the transaction log. There
are two types of temporary tables: local temporary tables and global temporary tables.

See also
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “DECLARE LOCAL TEMPORARY TABLE statement” [SQL Anywhere Server - SQL Reference]

Local temporary tables

A local temporary table exists only for the duration of a connection or, if defined inside a compound
statement, for the duration of the compound statement.

A global temporary table remains in the database until explicitly removed using a DROP TABLE statement.
The term global is used to indicate that multiple connections from the same or different applications can use
the table at the same time. The characteristics of global temporary tables are as follows:

● The definition of the table is recorded in the catalog and persists until the table is explicitly dropped.

● Inserts, updates, and deletes on the table are not recorded in the transaction log.

● Column statistics for the table are maintained in memory by the database server.

Global temporary tables

There are two types of global temporary tables: non-shared and shared. Normally, a global temporary table
is non-shared; that is, each connection sees only its own rows in the table. When a connection ends, rows
for that connection are deleted from the table.

When a global temporary table is shared, all the table's data is shared across all connections. To create a
shared global temporary table, you specify the SHARE BY ALL clause at table creation. In addition to the
general characteristics for global temporary tables, the following characteristics apply to shared global
temporary tables:

● The content of the table persists until explicitly deleted or until the database is shut down.

● On database startup, the table is empty.

● Row locking behavior on the table is the same as for a base table.

Non-transactional temporary tables

Temporary tables can be declared as non-transactional using the NOT TRANSACTIONAL clause of the
CREATE TABLE statement. The NOT TRANSACTIONAL clause provides performance improvements
in some circumstances because operations on non-transactional temporary tables do not cause entries to be
made in the rollback log. For example, NOT TRANSACTIONAL may be useful if procedures that use the
temporary table are called repeatedly with no intervening COMMIT or ROLLBACK, or if the table contains
many rows. Changes to non-transactional temporary tables are not affected by COMMIT or ROLLBACK

Working with temporary tables

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 33

Create temporary tables
You can create temporary tables either with SQL statements or with Sybase Central.

To create a table (Sybase Central)

1. Connect to the database as a user with DBA authority, or as the owner of the table.

2. Right-click Tables and choose New » Global Temporary Table.

3. Follow the instructions in the Create Global Temporary Table Wizard.

4. In the right pane, click the Columns tab and configure the table.

5. Choose File » Save.

To create a table (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE TABLE statement or DECLARE LOCAL TEMPORARY TABLE statement.

See also
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “DECLARE LOCAL TEMPORARY TABLE statement” [SQL Anywhere Server - SQL Reference]

Referencing temporary tables within procedures
Sharing a temporary table between procedures can cause problems if the table definitions are inconsistent.
For example, suppose you have two procedures procA and procB, both of which define a temporary table,
temp_table, and call another procedure called sharedProc. Neither procA nor procB has been called yet, so
the temporary table does not yet exist.

Now, suppose that the procA definition for temp_table is slightly different than the definition in procB—
while both used the same column names and types, the column order is different.

When you call procA, it returns the expected result. However, when you call procB, it returns a different
result.

This is because when procA was called, it created temp_table, and then called sharedProc. When sharedProc
was called, the SELECT statement inside of it was parsed and validated, and then a parsed representation
of the statement was cached in case the SELECT statement is executed again. The cached version reflects
the column ordering from the table definition in procA.

Calling procB causes the temp_table to be recreated, but with different column ordering. When procB calls
sharedProc, the database server uses the cached representation of the SELECT statement. So, the results are
different.

You can avoid this from happening by doing one of the following:

Working with database objects

34 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● ensure that temporary tables used in this way are defined consistently

● consider using a global temporary table instead

Working with temporary tables

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 35

Working with views
A View is a computed tables defined by the result set of its view definition, which is expressed as a SQL
query. You can use views to show database users exactly the information you want to present, in a format
you can control. SQL Anywhere supports two types of views: regular views and materialized views.

The definition for each view in the database is stored in the ISYSVIEW system table. See “SYSVIEW system
view” [SQL Anywhere Server - SQL Reference].

Documentation conventions
In the SQL Anywhere documentation, the term regular view is used to describe a view that is recomputed
each time you reference the view, and the result set is not stored on disk. This is the most commonly used
type of view. Most of the documentation refers to regular views.

The term materialized view is used to describe a view whose result set is precomputed and materialized on
disk similar to the contents of a base table.

The meaning of the term view (by itself) in the documentation is context-based. When used in a section that
is talking about common aspects of regular and materialized views, it refers to both regular and materialized
views. If the term is used in documentation for materialized views, it refers to materialized views, and
likewise for regular views.

Comparing regular views, materialized views, and base
tables

The following table compares regular views, materialized views, and base tables:

Capability Regular views Materialized views Base tables

Allow access permissions Yes Yes Yes

Allow SELECT Yes Yes Yes

Allow UPDATE Some No Yes

Allow INSERT Some No Yes

Allow DELETE Some No Yes

Allow dependent views Yes Yes Yes

Allow indexes No Yes Yes

Allow integrity constraints No No Yes

Working with database objects

36 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Capability Regular views Materialized views Base tables

Allow keys No No Yes

Benefits of using views
Views let you tailor access to data in the database. Tailoring access serves several purposes:

● Efficient resource use Regular views do not require additional storage space for data; they are
recomputed each time you invoke them. Materialized views require disk space, but do not need to be
recomputed each time they are invoked. Materialized views can improve response time in environments
where the database is large, and the database server processes frequent, repetitive requests to join the
same tables.

● Improved security By allowing access to only the information that is relevant.

● Improved usability By presenting users and application developers with data in a more easily
understood form than in the base tables.

● Improved consistency By centralizing the definition of common queries in the database.

View dependencies
A view definition can refer to other objects including columns, tables, and other views. When a view makes
a reference to another object, the view is called a referencing object and the object to which it refers is
called a referenced object. Further, a referencing object is said to be dependent on the objects to which it
refers.

The set of referenced objects for a given view includes all the objects to which it refers either directly or
indirectly. For example, a view can indirectly refer to a table, by referring to another view that references
that table.

Consider the following set of tables and views:

CREATE TABLE t1 (c1 INT, c2 INT);
CREATE TABLE t2(c3 INT, c4 INT);
CREATE VIEW v1 AS SELECT * FROM t1;
CREATE VIEW v2 AS SELECT c3 FROM t2;
CREATE VIEW v3 AS SELECT c1, c3 FROM v1, v2;

The following view dependencies can be determined from the definitions above:

● View v1 is dependent on each individual column of t1, and on t1 itself.

● View v2 is dependent on t2.c3, and on t2 itself.

● View v3 is dependent on columns t1.c1 and t2.c3, tables t1 and t2, and views v1 and v2.

The database server keeps track of columns, tables, and views referenced by a given view. The database
server uses this dependency information to ensure that schema changes to referenced objects do not leave a

Working with views

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 37

referencing view in an unusable state. The following tables explains how view dependencies affects regular
and materialized views.

Dependencies and schema-altering changes
An attempt to alter the schema defined for a table or view requires that the database server consider if there
are dependent views impacted by the change. Examples of schema-altering operations include:

● Dropping a table, view, materialized view, or column

● Renaming a table, view, materialized view, or column

● Adding, dropping, or altering columns

● Altering a column's data type, size, or nullability

● Disabling views or table view dependencies

When you attempt a schema-altering operation, the following events occur:

1. The database server generates a list of views that depend directly or indirectly upon the table or view
being altered. Views with a DISABLED status are ignored.

If any of the dependent views are materialized views, the request fails, an error is returned, and the
remaining events do not occur. You must explicitly disable dependent materialized views before you
can proceed with the schema-altering operation. See “Enable and disable materialized
views” on page 65.

2. The database server obtains exclusive schema locks on the object being altered, and on all dependent
regular views.

3. The database server sets the status of all dependent regular views to INVALID.

4. The database server performs the schema-altering operation. If the operation fails, the locks are released,
the status of dependent regular views is reset to VALID, an error is returned, and the following step does
not occur.

5. The database server recompiles the dependent regular views, setting each view's status to VALID when
successful. If compilation fails for any regular view, the status of that view remains INVALID.
Subsequent requests for an INVALID regular view causes the database server to attempt to recompile
the view. If subsequent attempts fail, it is likely that an alteration is required on the INVALID view, or
on an object upon which it depends.

Dependencies and schema-altering changes (regular views)
● A regular view can reference tables or views, including materialized views.

● When you change the schema of a table or view, the database automatically attempts to recompile all
referencing regular views.

● When you disable or drop a view or table, all dependent regular views are automatically disabled.

● You can use the DISABLE VIEW DEPENDENCIES clause of the ALTER TABLE statement to disable
dependent regular views.

Working with database objects

38 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Dependencies and schema-altering changes (materialized views)
● A materialized view can only reference base tables.

● Schema changes to a base table is not permitted if it is referenced by any enabled materialized views.
You can add foreign keys to the table, however (for example, ALTER TABLE ADD FOREIGN KEY).

● Before you drop a table, you must disable or drop all dependent materialized views.

● The DISABLE VIEW DEPENDENCIES clause of the ALTER TABLE statement does not impact
materialized views. To disable a materialized view, you must use the ALTER MATERIALIZED
VIEW ... DISABLE statement.

● Once you disable a materialized view, you must explicitly re-enable it, for example using the ALTER
MATERIALIZED VIEW ... ENABLE statement.

View dependency information in the catalog
The database server keeps track of direct dependencies. A direct dependency is when one object directly
references another object in its definition. The database server uses direct dependency information to
determine indirect dependencies as well. For example, suppose View A references View B, which in turn
references Table C. In this case, View A is directly dependent on View B, and indirectly dependent on Table
C.

The SYSDEPENDENCY system view stores dependency information. Each row in the SYSDEPENDENCY
system view describes a dependency between two database objects. See “SYSDEPENDENCY system view”
[SQL Anywhere Server - SQL Reference].

You can also use the sa_dependent_views system procedure to return a list of views that are dependent on
a given table or view. See “sa_dependent_views system procedure” [SQL Anywhere Server - SQL
Reference].

Working with views

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 39

Working with regular views
When you browse data, a query operates on one or more database objects and produces a result set. Just like
a base table, a result set from a query has columns and rows. A view gives a name to a particular query, and
holds the definition in the database system tables.

Suppose you frequently need to list the number of employees in each department. You can get this list with
the following statement:

SELECT DepartmentID, COUNT(*)
FROM Employees
GROUP BY DepartmentID;

You can create a view containing the results of this statement using either Sybase Central or Interactive SQL.

Restrictions on SELECT statements for regular views

There are some restrictions on the SELECT statements you can use as regular views. In particular, you cannot
use an ORDER BY clause in the SELECT query. A characteristic of relational tables is that there is no
significance to the ordering of the rows or columns, and using an ORDER BY clause would impose an order
on the rows of the view. You can use the GROUP BY clause, subqueries, and joins in view definitions.

To develop a view, tune the SELECT query by itself until it provides exactly the results you need in the
format you want. Once you have the SELECT statement just right, you can add a phrase in front of the query
to create the view:

CREATE VIEW view-name AS query;

Updating regular views

Updates can be performed on a view using the UPDATE, INSERT, or DELETE statements if the query
specification defining the view is updatable. Views are considered inherently non-updatable if their
definition includes any one of the following in their query specification:

● UNION clause

● DISTINCT clause

● GROUP BY clause

● FIRST or TOP clause

● aggregate functions

● more than one table in the FROM clause, when ansi_update_constraints option is set to 'Strict' or Cursor'.
See “ansi_update_constraints option [compatibility]” [SQL Anywhere Server - Database
Administration].

● ORDER BY clause, when ansi_update_constraints option is set to 'Strict' or Cursor'. See
“ansi_update_constraints option [compatibility]” [SQL Anywhere Server - Database Administration].

● all select-list items are not base table columns

Working with database objects

40 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Copying regular views

In Sybase Central, you can copy views between databases. To do so, select the view in the right pane of
Sybase Central and drag it to the Views folder of another connected database. A new view is then created
and the original view's definition is copied to it. Note that only the view definition is copied to the new view.
Other view properties, such as permissions, are not copied.

Using the WITH CHECK OPTION option

The WITH CHECK OPTION clause is useful for controlling what data is changed when inserting into, or
updating, a base table through a view. The following example illustrates this.

Execute the following statement to create the SalesEmployees view with a WITH CHECK OPTION clause.

CREATE VIEW SalesEmployees AS
 SELECT EmployeeID, GivenName, Surname, DepartmentID
 FROM Employees
 WHERE DepartmentID = 200
 WITH CHECK OPTION;

Select to view the contents of this view, as follows:

SELECT * FROM SalesEmployees;

EmployeeID GivenName Surname DepartmentID

129 Philip Chin 200

195 Marc Dill 200

299 Rollin Overbey 200

467 James Klobucher 200

...

Next, attempt to update DepartmentID to 400 for Philip Chin:

UPDATE SalesEmployees
SET DepartmentID = 400
WHERE EmployeeID = 129;

Since the WITH CHECK OPTION was specified, the database server evaluates whether the update violates
anything in the view definition (in this case, the expression in the WHERE clause). The statement fails
(DepartmentID must be 200), and the database server returns the error, "WITH CHECK OPTION violated
for insert/update on base table 'Employees'."

If you had not specified the WITH CHECK OPTION in the view definition, the update operation would
proceed, causing the Employees table to be modified with the new value, and subsequently causing Philip
Chin to disappear from the view.

If a view (for example, View2) is created that references the SalesEmployees view, any updates or inserts
on View2 are rejected that would cause the WITH CHECK OPTION criteria on SalesEmployees to fail,
even if View2 is defined without a WITH CHECK OPTION clause.

Working with regular views

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 41

See also
● “SELECT statement” [SQL Anywhere Server - SQL Reference]
● “Summarizing, grouping, and sorting query results” on page 367
● “Working with materialized views” on page 49

Regular view statuses
Regular views have a status associated with them. The status reflects the availability of the view for use by
the database server. You can view the status of all views by selecting Views in the left pane of Sybase Central,
and examining the values in the Status column in the right pane. Or, to see the status of a single view, right-
click the view in Sybase Central and choose Properties to examine the Status value.

Following are descriptions of the possible statuses for regular views:

● VALID The view is valid and is guaranteed to be consistent with its definition. The database server
can make use of this view without any additional work. An enabled view has the status VALID.

In the SYSOBJECT system view, the value 1 indicates a status of VALID. See “SYSOBJECT system
view” [SQL Anywhere Server - SQL Reference].

● INVALID An INVALID status occurs after a schema change to a referenced object where the change
results in an unsuccessful attempt to enable the view. For example, suppose a view, v1, references a
column, c1, in table t. If you alter t to remove c1, the status of v1 is set to INVALID when the database
server tries to recompile the view as part of the ALTER operation that drops the column. In this case,
v1 can recompile only after c1 is added back to t, or v1 is changed to no longer refer to c1. Views can
also become INVALID if a table or view that they reference is dropped.

An INVALID view is different from a DISABLED view in that each time an INVALID view is
referenced, for example by a query, the database server tries to recompile the view. If the compilation
succeeds, the query proceeds. The view's status remains INVALID until it is explicitly enabled. If the
compilation fails, an error is returned.

When the database server internally enables an INVALID view, it issues a performance warning.

In the SYSOBJECT system view, the value 2 indicates a status of INVALID. See “SYSOBJECT system
view” [SQL Anywhere Server - SQL Reference].

● DISABLED Disabled views are not available for use by the database server for answering queries.
Any query that attempts to use a disabled view returns an error.

A regular view has this state if:

○ you explicitly disable the view, for example by executing an ALTER VIEW ... DISABLE statement.

○ you disable a view (materialized or not) upon which the view depends.

○ you disable view dependencies for a table, for example by executing an ALTER TABLE ... DISABLE
VIEW DEPENDENCIES statement.

For information about enabling and disabling regular views, see “Enable and disable regular
views” on page 45.

Working with database objects

42 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

In the SYSOBJECT system view, the value 4 indicates a status of DISABLED. See “SYSOBJECT
system view” [SQL Anywhere Server - SQL Reference].

Create regular views
When you create a regular view, the database server stores the view definition in the database; no data is
stored for the view. Instead, the view definition is executed only when it is referenced, and only for the
duration of time that the view is in use. This means that creating a view does not require storing duplicate
data in the database.

To create a new regular view (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, right-click Views and choose New » View.

3. Follow the instructions in the Create View Wizard.

4. In the right pane, click the SQL tab to edit the view definition. To save your changes, choose File »
Save.

To create a new regular view (SQL)

1. Connect to a database.

2. Execute a CREATE VIEW statement.

Example
Create a view called DepartmentSize that contains the results of the SELECT statement given earlier in this
section:

CREATE VIEW DepartmentSize AS
 SELECT DepartmentID, COUNT(*)
 FROM Employees
 GROUP BY DepartmentID;

See “CREATE VIEW statement” [SQL Anywhere Server - SQL Reference].

Alter regular views
You can alter a regular view using Sybase Central or Interactive SQL.

In Sybase Central, you can alter the definition of views, procedures, and functions on the object's SQL tab
in the right pane. You edit a view in a separate window by selecting the view and then choosing File » Edit
In New Window. In Interactive SQL, you can use the ALTER VIEW statement to alter a view. The ALTER
VIEW statement replaces a view definition with a new definition, but it maintains the permissions on the
view.

You cannot rename an existing view. Instead, you must create a new view with the new name, copy the
previous definition to it, and then drop the old view.

Working with regular views

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 43

If you use the ALTER VIEW statement to alter a view owned by another user, you must qualify the name
by including the owner (for example, GROUPO.EmployeeConfidential). If you don't qualify the name, the
database server looks for a view with that name owned by you and alters it. If there isn't one, it returns an
error.

View alterations and view dependencies

If you want to alter the definition for a regular view, and there are other views dependent on the view, there
may be additional steps to make after the alteration is complete. For example, after you alter a view, the
database server automatically recompiles it, enabling it for use by the database server. If there are dependent
regular views, the database server disables and re-enables them as well. If they cannot be enabled, they are
given the status INVALID and you must either make the definition of the regular view consistent with the
definitions of the dependent regular views, or vice versa.

To determine whether a regular view has dependent views, use the sa_dependent_views system procedure.
See “sa_dependent_views system procedure” [SQL Anywhere Server - SQL Reference].

For information about how views are impacted by schema alterations to underlying objects, see “View
dependencies” on page 37.

To alter a regular view (Sybase Central)

1. Connect to the database as a user with DBA authority, or as the owner of the regular view.

2. In the left pane, double-click Views.

3. Select the view.

4. In the right pane, click the SQL tab and edit the view's definition.

Tip
If you want to edit multiple views, you can open separate windows for each view rather than editing each
view on the SQL tab in the right pane. You can open a separate window by selecting a view and then
choosing File » Edit In New Window.

5. Choose File » Save.

To alter a regular view (SQL)

1. Connect to the database as a user with DBA authority, or as the owner of the regular view.

2. Execute an ALTER VIEW statement.

Examples
This example shows that when you alter a regular view, you are effectively replacing the definition of the
view. In this case, the view definition is being changed to have column names that are more informative.

CREATE VIEW DepartmentSize (col1, col2) AS
 SELECT DepartmentID, COUNT(*)
 FROM Employees GROUP BY DepartmentID;
ALTER VIEW DepartmentSize (DepartmentNumber, NumberOfEmployees) AS

Working with database objects

44 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 SELECT DepartmentID, COUNT(*)
 FROM Employees GROUP BY DepartmentID;

The next example shows that when you are changing only an attribute of the regular view, you do not need
to redefine the view. In this case, the view is being set to have its definition hidden.

ALTER VIEW DepartmentSize SET HIDDEN;

See “ALTER VIEW statement” [SQL Anywhere Server - SQL Reference].

Drop regular views
You can drop a regular view in both Sybase Central and Interactive SQL.

If you drop a regular view that has dependent views, then the dependent views are made INVALID as part
of the drop operation. The dependent views are not usable until they are changed or the original dropped
view is recreated. See “Alter regular views” on page 43.

To determine whether a regular view has dependent views, use the sa_dependent_views system procedure.
See “sa_dependent_views system procedure” [SQL Anywhere Server - SQL Reference].

For information about regular views are impacted by changes to their underlying objects, see “View
dependencies” on page 37.

To drop a regular view (Sybase Central)

1. Connect to the database as a user with DBA authority, or as the owner of the regular view.

2. In the left pane, double-click Views.

3. Right-click the view and choose Delete.

4. Click Yes.

To drop a regular view (SQL)

1. Connect to the database as a user with DBA authority, or as the owner of the regular view.

2. Execute a DROP VIEW statement.

Examples
Remove a regular view called DepartmentSize.

DROP VIEW DepartmentSize;

See “DROP VIEW statement” [SQL Anywhere Server - SQL Reference].

Enable and disable regular views
The section describes enabling and disabling regular views. For information about enabling and disabling
materialized views, see “Enable and disable materialized views” on page 65.

Working with regular views

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 45

You can control whether a regular view is available for use by the database server by enabling or disabling
it. When you disable a regular view, the database server keeps the definition of the view in the database;
however, the view is not available for use in satisfying a query. If a query explicitly references a disabled
view, the query fails and an error is returned. Once a view is disabled, it must be explicitly re-enabled so
that the database server can use it.

If you disable a view, other views that reference it, directly or indirectly, are automatically disabled. So,
once you re-enable a view, you must re-enable all other views that were dependent on the view when it was
disabled. You can determine the list of dependent views before disabling a view using the
sa_dependent_views system procedure. See “sa_dependent_views system procedure” [SQL Anywhere
Server - SQL Reference].

When you enable a regular view, the database server recompiles it using the definition stored for the view
in the database. If compilation is successful, the view status changes to VALID. An unsuccessful recompile
could indicate that the schema has changed in one or more of the referenced objects. If so, you must change
either the view definition or the referenced objects until they are consistent with each other, and then enable
the view.

Note
Before you enable a regular view, you must re-enable and disabled views that it references.

You can grant permissions on disabled objects. Permissions to disabled objects are stored in the database
and become effective when the object is enabled.

To disable a regular view (Sybase Central)

1. Connect to the database as a user with DBA authority, or as the owner of the regular view.

2. In the left pane, double-click Views.

3. Right-click the view and choose Disable.

To disable a regular view (SQL)

1. Connect to the database as a user with DBA authority, or as the owner of the regular view.

2. Execute an ALTER VIEW ... DISABLE statement.

Example
The following example disables a regular view called ViewSalesOrders owned by GROUPO.

ALTER VIEW GROUPO.ViewSalesOrders DISABLE;

To enable a regular view (Sybase Central)

1. Connect to the database as a user with DBA authority, or as the owner of the regular view.

2. In the left pane, double-click Views.

3. Right-click the view and choose Recompile And Enable.

Working with database objects

46 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To enable a regular view (SQL)

1. Connect to the database as a user with DBA authority, or as the owner of the regular view.

2. Execute an ALTER VIEW ... ENABLE statement.

Example
The following example re-enables the regular view called ViewSalesOrders owned by GROUPO.

ALTER VIEW GROUPO.ViewSalesOrders ENABLE;

See also
● “sa_dependent_views system procedure” [SQL Anywhere Server - SQL Reference]
● “ALTER VIEW statement” [SQL Anywhere Server - SQL Reference]
● “SYSDEPENDENCY system view” [SQL Anywhere Server - SQL Reference]

Browsing data in regular views
To browse the data held within the views, you can use Interactive SQL. Interactive SQL lets you execute
queries to identify the data you want to view. See “Querying data” on page 279.

If you are working in Sybase Central, you can select a view on which you have permission and then choose
File » View Data In Interactive SQL. This command opens Interactive SQL with the view contents
displayed on the Results tab in the Results pane. To browse the view, Interactive SQL executes a SELECT
* FROM owner.view statement.

See also
● “Using Interactive SQL” [SQL Anywhere Server - Database Administration]

View system table data
Data in the system tables is only viewable by querying the system views; you cannot query a system table
directly. With a few exceptions, each system table has a corresponding view.

The system views are named similar to the system tables, but without an I at the beginning. For example, to
view the data in the ISYSTAB system table, you query the SYSTAB system view.

For a list of views provided in SQL Anywhere and a description of the type of information they contain, see
“System views” [SQL Anywhere Server - SQL Reference].

You can either use Sybase Central or Interactive SQL to browse system view data.

To view data for a system table via a system view (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, double-click Views.

Working with regular views

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 47

3. Select the view corresponding to the system table.

4. In the right pane, click the Data tab.

To view data for a system table via a system view (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a SELECT statement that references the system view corresponding to the system table.

Example
Suppose you want to view the data in the ISYSTAB system table. Since you cannot query the table directly,
the following statement displays all data in the corresponding SYSTAB system view:

SELECT * FROM SYS.SYSTAB;

Sometimes, columns that exist in the system table do not exist in the corresponding system view. To extract
a text file containing the definition of a specific view, use a statement such as the following:

SELECT viewtext
FROM SYS.SYSVIEWS
WHERE viewname = 'SYSTAB';
OUTPUT TO viewtext.sql
FORMAT TEXT
ESCAPES OFF
QUOTE '';

Working with database objects

48 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Working with materialized views
A materialized view is a view whose result set has been computed and stored on disk, similar to a base
table. Conceptually, a materialized view is both a view (it has a query specification stored in the catalog)
and a table (it has persistent materialized rows). So, many operations that you perform on tables can be
performed on materialized views as well. For example, you can build indexes on, and unload from,
materialized views.

Consider using materialized views for frequently executed, expensive queries, such as those involving
intensive aggregation and join operations. Materialized views provide a queryable structure in which to store
aggregated, joined data. Materialized views are designed to improve performance in environments where
the database is large, and where frequent queries result in repetitive aggregation and join operations on large
amounts of data. For example, materialized views are ideal for use with data warehousing applications.

Materialized views are precomputed using data from the base tables that they refer to. Materialized views
are read only; no data-altering operations such as INSERT, LOAD, DELETE, and UPDATE can be used
on them.

Column statistics are generated and maintained for materialized views in exactly the same manner as for
tables. See “Optimizer estimates and column statistics” on page 563.

While you can create indexes on materialized views, you cannot create keys, constraints, triggers, or articles
on them.

See also
● “Improving performance with materialized views” on page 574
● “CREATE MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “ALTER MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “sa_materialized_view_info system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_materialized_view_can_be_immediate system procedure” [SQL Anywhere Server - SQL

Reference]
● “sa_refresh_materialized_views system procedure” [SQL Anywhere Server - SQL Reference]

Manual and immediate materialized views
There are two types of materialized views: manual and immediate, which implies the refresh type for the
materialized view.

● Manual views A manual materialized view, or manual view, is a materialized view with a refresh
type defined as MANUAL REFRESH. Data in manual views can become stale because manual views
are not refreshed until a refresh is explicitly requested, for example by using the REFRESH
MATERIALIZED VIEW statement or the sa_refresh_materialized_views system procedure. By default,
when you create a materialized view, it is a manual view.

A manual view is considered stale when any of the underlying tables change, even if the change does
not impact data in the materialized view. You can determine whether a manual view is considered stale

Working with materialized views

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 49

by examining the DataStatus value returned by the sa_materialized_view_info system procedure. If S is
returned, the manual view is stale.

● Immediate views An immediate materialized view, or immediate view, is a materialized view with
a refresh type defined as IMMEDIATE REFRESH. Data in an immediate view is automatically refreshed
when changes to the underlying tables affect data in the view. If changes to the underlying tables do not
impact data in the view, the view is not refreshed.

Also, when an immediate view is refreshed, only the rows that need to be changed are acted upon. This
is different from refreshing a manual view, where all data is dropped and recreated for a refresh.

You can change a manual view to an immediate view, and vice versa. However, the process for changing
from a manual view to an immediate view has more steps. See “Change a manual view to an immediate
view” on page 61.

Changing the refresh type for a materialized view can impact the status and properties of the view, especially
when you change a manual view to an immediate view. See “Materialized view statuses and
properties” on page 52.

Retrieving materialized view information from the database
● Status and property information You can request information, such as the status of a materialized

view, using the sa_materialized_view_info system procedure. See “sa_materialized_view_info system
procedure” [SQL Anywhere Server - SQL Reference].

See also “Materialized view statuses and properties” on page 52.

● Database option information You can retrieve the database options that were stored with a
materialized view when it was created by querying the SYSMVOPTION system view. The following
statements create a materialized view and then query the database to find out the database options used
when creating the view.

CREATE MATERIALIZED VIEW EmployeeConfid15 AS
 SELECT EmployeeID, Employees.DepartmentID, SocialSecurityNumber,
Salary, ManagerID,
 Departments.DepartmentName, Departments.DepartmentHeadID
 FROM Employees, Departments
 WHERE Employees.DepartmentID=Departments.DepartmentID;
SELECT option_name, option_value
FROM SYSMVOPTION JOIN SYSMVOPTIONNAME
WHERE SYSMVOPTION.view_object_id=(
 SELECT object_id FROM SYSTAB
 WHERE table_name='EmployeeConfid15')
ORDER BY option_name;

Caution
When you are done with this example, you should drop the materialized view you created. Otherwise,
you will not be able to make schema changes to its underlying tables Employees and Departments, when
trying out other examples. You cannot alter the schema of a table that has enabled, dependent materialized
view. See “Drop materialized views” on page 69.

Working with database objects

50 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Dependency information To determine the list of views dependent on a materialized view, use the
sa_dependent_views system procedure. See “sa_dependent_views system procedure” [SQL Anywhere
Server - SQL Reference].

This information can also be found in the SYSDEPENDENCY system view. See “SYSDEPENDENCY
system view” [SQL Anywhere Server - SQL Reference].

When to use materialized views
You should carefully consider the following requirements and settings before using a materialized view:

● Disk space requirements Since materialized views contain a duplicate of data from base tables,
you may need to allocate additional space on disk for the database to accommodate the materialized
views you create. Careful consideration needs to be given to the additional space requirements so that
the benefit derived is balanced against the cost of using materialized views.

● Maintenance costs and data freshness requirements The data in materialized views needs to
be refreshed when data in the underlying tables changes. The frequency at which a materialized view
needs to be refreshed needs to be determined by taking into account potentially conflicting factors such
as:

○ Rate at which underlying data changes Frequently or large changes to data renders manual
views stale. Consider using an immediate view if data freshness is important.

○ Cost of refreshing Depending on the complexity of the underlying query for each materialized
view, and the amount of data involved, the computation required for refreshing may be very
expensive, and frequent refreshing of materialized views may impose an unacceptable workload on
the database server. Additionally, materialized views are unavailable for use during the refresh
operation.

○ Data freshness requirements of applications If the database server uses stale materialized
view, it presents stale data to applications. Stale data is data that no longer represents the current state
of data in the underlying tables. The degree of staleness is governed by the frequency at which the
materialized view is refreshed. An application must be designed to determine the degree of staleness
it can tolerate to achieve improved performance. For more information about managing data staleness
in materialized views, see “Setting the optimizer staleness threshold for materialized
views” on page 68.

○ Data consistency requirements When refreshing materialized views, you must determine the
consistency with which the materialized views should be refreshed. See the WITH ISOLATION
LEVEL clause of the “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere Server -
SQL Reference].

● Use in optimization You should verify that the optimizer considers the materialized views when
executing a query. You can see the list of materialized views used for a particular query by looking at
the Advanced Details window of the query's graphical plan in Interactive SQL. See “Reading execution
plans” on page 610, and “Improving performance with materialized views” on page 574.

You can also use Application Profiling mode in Sybase Central to determine whether a materialized view
was considered during the enumeration phase of a query by looking at the access plans enumerated by

Working with materialized views

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 51

the optimizer. Tracing must be turned on, and must be configured to include the
OPTIMIZATION_LOGGING tracing type, to see the access plans enumerated by the optimizer. See
“Application profiling” on page 177, and “Choosing a diagnostic tracing level” on page 190.

See also
● “Manual and immediate materialized views” on page 49
● “Improving performance with materialized views” on page 574

Materialized view statuses and properties
Materialized views are characterized by a combination of their status and properties. The status of a
materialized view reflects the availability of the view for use by the database server. The properties of a
materialized view reflect the state of the data within the view.

The best way to determine the status and properties of existing materialized views is to use the
sa_materialized_view_info system procedure. See “sa_materialized_view_info system procedure” [SQL
Anywhere Server - SQL Reference].

You can also view information about materialized views by choosing the Views folder in Sybase Central
and examining the details provided for the individual views, or by querying the SYSTAB and SYSVIEW
system views. See “SYSTAB system view” [SQL Anywhere Server - SQL Reference], and “SYSVIEW
system view” [SQL Anywhere Server - SQL Reference].

Materialized view statuses

There are two possible statuses for materialized views:

● Enabled A materialized view has the status enabled if it has been successfully compiled and it is
available for use by the database server. An enabled materialized view may not have data in it. For
example, if you truncate the data from an enabled materialized view, it changes to enabled and
uninitialized. A materialized view can be initialized but empty if there is no data in the underlying tables
that satisfies the definition for the materialized view. This is not the same as a materialized view that has
no data in it because it is not initialized.

● Disabled A materialized view has the status disabled only if you explicitly disable it, for example
by using the ALTER MATERIALIZED VIEW ... DISABLE statement. When you disable a materialized
view, the data and indexes for the view are dropped. Also, when you disable an immediate view, it is
changed to a manual view.

To determine whether a view is enabled or disabled, use the sa_materialized_view_info system procedure
to return the Status property for the view. See “sa_materialized_view_info system procedure” [SQL
Anywhere Server - SQL Reference].

For information about enabling and disabling materialized views, see “Enable and disable materialized
views” on page 65.

Working with database objects

52 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Materialized view properties

Materialized view properties are used by the optimizer when evaluating whether to use a view. The following
list describes the properties for a materialized view that are returned by the sa_materialized_view_info
system procedure:

● Status The Status property indicates whether the view is enabled or disabled.

● DataStatus The DataStatus property reflects the state of the data in the view. For example, it tells
you whether the view is initialized and whether the view is stale. Manual views are stale if data in the
underlying tables has changed since the last time the materialized view was refreshed. Immediate views
are never stale.

● ViewLastRefreshed The ViewLastRefreshed property indicates the last time the view was refreshed.

● DateLastModified The DateLastModified property indicates the most recent time the data in any
underlying table was modified if the view is stale.

● AvailForOptimization The AvailForOptimization property reflects whether the view is available for
use by the optimizer.

● RefreshType The RefreshType property indicates whether it is a manual view or an immediate view.

For the list of possible values for each property, see “sa_materialized_view_info system procedure” [SQL
Anywhere Server - SQL Reference].

While there is no property that tells you whether a manual view can be converted to an immediate view, you
can determine this by using the sa_materialized_view_can_be_immediate system procedure. See
“sa_materialized_view_can_be_immediate system procedure” [SQL Anywhere Server - SQL Reference].

Status and property changes when altering, refreshing, and truncating a materialized view

Operations you perform on a materialized view such as altering, refreshing, and truncating, impact the view's
status and properties. The following diagram shows how these tasks impact the status and some of the
properties of a materialized view.

In the diagram, each gray square is a materialized view; immediate views are identified by the term
IMMEDIATE, and manual views by the term MANUAL. The term ALTER in the connectors between grey
boxes is short for ALTER MATERIALIZED VIEW. Although SQL statements are shown for changing the
materialized view status, you can also use Sybase Central to perform these activities.

Working with materialized views

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 53

Some important concepts to note from the diagram are as follows:

● When you create a materialized view, it is an enabled manual view and it is uninitialized (contains no
data).

● When you refresh an uninitialized view, it becomes initialized (populated with data).

● Changing from a manual view to an immediate view requires several steps, and there are additional
restrictions for immediate views. See “Change a manual view to an immediate view” on page 61, and
“Additional restrictions for immediate views” on page 56.

● When you disable a materialized view:

○ the data is dropped

○ the view reverts to uninitialized

○ the indexes are dropped

○ an immediate view reverts to manual

Working with database objects

54 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Working with materialized views” on page 49
● “CREATE MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “ALTER MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “TRUNCATE statement” [SQL Anywhere Server - SQL Reference]
● “DROP MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “Restrictions on materialized views” on page 55
● “Manual and immediate materialized views” on page 49
● “SYSOBJECT system view” [SQL Anywhere Server - SQL Reference]

Restrictions on materialized views
The following restrictions apply when creating, initializing, refreshing, and view matching materialized
views:

● When creating a materialized view, the definition for the materialized view must define column names
explicitly; you cannot include a SELECT * construct as part of the column definition.

● When creating a materialized view, the definition for the materialized view cannot contain:

○ references to other views, materialized or not

○ references to remote or temporary tables

○ variables such as CURRENT USER; all expressions must be deterministic

○ calls to stored procedures, user-defined functions, or external functions

○ T-SQL outer joins

○ FOR XML clauses

● The following database options must have the specified settings when a materialized view is created;
otherwise, an error is returned. These database option values are also required for the view to be used
by the optimizer:

○ ansinull=On
○ conversion_error=On
○ sort_collation=Null
○ string_rtruncation=On

Working with materialized views

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 55

● The following database option settings are stored for each materialized view when it is created. The
current option values for the connection must match the values stored for a materialized view in order
for the view to be used in optimization:

○ date_format
○ date_order
○ default_timestamp_increment
○ first_day_of_week
○ nearest_century
○ precision
○ scale
○ time_format
○ timestamp_format

● When a view is refreshed, the connection settings for all the options listed in the bullets above are ignored.
Instead, the database option settings (which must match the stored settings for the view) are used.

Specifying an ORDER BY clause in a materialized view definition

Materialized views are similar to base tables in that the rows are not stored in any particular order; the
database server orders the rows in the most efficient manner when computing the data. Therefore, specifying
an ORDER BY clause in a materialized view definition has no guaranteed impact on the ordering of rows
when the view is materialized. Also, the ORDER BY clause in the view's definition is ignored by the
optimizer when performing view matching.

For information about materialized views and view matching by the optimizer, see “Improving performance
with materialized views” on page 574.

Additional restrictions for immediate views

The following restrictions are checked when changing a manual view to an immediate view. An error is
returned if the view violates any of the restrictions:

Note
You can use the sa_materialized_view_can_be_immediate system procedure to find out if a manual view is
eligible to become an immediate view. See “sa_materialized_view_can_be_immediate system procedure”
[SQL Anywhere Server - SQL Reference].

● The view must be uninitialized. See “Materialized view statuses and properties” on page 52.

● The view must have a unique index on non-nullable columns. If it does not, you must add one. See
“Create indexes” on page 74.

● If the view definition is a grouped query, the unique index columns must correspond to select list items
that are not aggregate functions.

Working with database objects

56 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● The view definition cannot contain:

○ a SUM function over a nullable expression
○ GROUPING SETS clauses
○ CUBE clauses
○ ROLLUP clauses
○ LEFT OUTER JOIN clauses
○ RIGHT OUTER JOIN clauses
○ FULL OUTER JOIN clauses
○ DISTINCT clauses
○ row limit clauses
○ non-deterministic expressions
○ self and recursive joins

● The view definition must be a single select-project-join or grouped-select-project-join query block, and
the grouped-select-project-join query block cannot contain a HAVING clause.

● The grouped-select-project-join query block must contain COUNT(*) in the select list, and is allowed
only the SUM and COUNT aggregate functions.

For a description of these structures, see “Materialized view evaluation” on page 577.

● An aggregate function in the select list cannot be referenced in a complex expression. For example,
SUM(expression) + 1 is not allowed in the select list.

Create materialized views
When you create a materialized view, its definition is stored in the database. The database server validates
the definition to make sure it compiles properly. All column and table references are fully qualified by the
database server to ensure that all users with access to the view see an identical definition. After successfully
creating a materialized view, you populate it with data, also known as initializing the view, using a
REFRESH MATERIALIZED VIEW statement. See “REFRESH MATERIALIZED VIEW statement” [SQL
Anywhere Server - SQL Reference].

Before creating, initializing, or refreshing materialized views, ensure that all materialized view restrictions
have been met. See “Restrictions on materialized views” on page 55.

To obtain a list of all materialized views in the database, including their status, use the
sa_materialized_view_info system procedure. See “sa_materialized_view_info system procedure” [SQL
Anywhere Server - SQL Reference].

After you finish creating the definition for the materialized view, it appears in the Views folder in Sybase
Central.

See also
● “CREATE MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “SQL Anywhere sample database” [SQL Anywhere 11 - Introduction]

Working with materialized views

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 57

To create a materialized view (Sybase Central)

1. Connect to the database as a user with DBA or RESOURCE authority.

2. In the left pane, right-click Views and choose New » Materialized View.

3. Follow the instructions in the Create Materialized View Wizard.

4. Initialize the materialized view so that it contains data. See “Initialize materialized
views” on page 59.

Caution
When you are done with this example, you should drop the materialized view you created. Otherwise, you
will not be able to make schema changes to its underlying tables Employees and Departments, when trying
out other examples. You cannot alter the schema of a table that has enabled, dependent materialized view.
See “Drop materialized views” on page 69.

To create a materialized view (SQL)

1. Connect to the database as a user with DBA or RESOURCE authority.

2. Execute a CREATE MATERIALIZED VIEW statement. The database server creates and stores the view
definition in the database, and sets the view's status to ENABLED. See “CREATE MATERIALIZED
VIEW statement” [SQL Anywhere Server - SQL Reference].

3. You must initialize the materialized view so that it contains data. See “Initialize materialized
views” on page 59.

Example
The following statement creates a materialized view, EmployeeConfid16, containing information about
employees, and then initializes it to populate it with data.

CREATE MATERIALIZED VIEW EmployeeConfid16 AS
 SELECT EmployeeID, Employees.DepartmentID, SocialSecurityNumber, Salary,
ManagerID,
 Departments.DepartmentName, Departments.DepartmentHeadID
 FROM Employees, Departments
 WHERE Employees.DepartmentID=Departments.DepartmentID;
REFRESH MATERIALIZED VIEW EmployeeConfid16;

Caution
When you are done with this example, you should drop the materialized view you created. Otherwise, you
will not be able to make schema changes to its underlying tables Employees and Departments, when trying
out other examples. You cannot alter the schema of a table that has enabled, dependent materialized view.
See “Drop materialized views” on page 69.

Working with database objects

58 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Initialize materialized views
You must initialize a materialized view to make it available for use by the database server. To initialize it,
you refresh it. A failed refresh attempt returns the materialized view to an uninitialized state.

Before creating, initializing, or refreshing materialized views, ensure that all materialized view restrictions
have been met. See “Restrictions on materialized views” on page 55.

Note
You can also initialize all uninitialized materialized views at once using the sa_refresh_materialized_views
system procedure. See “sa_refresh_materialized_views system procedure” [SQL Anywhere Server - SQL
Reference].

To initialize a materialized view (Sybase Central)

1. Connect to the database as a user with DBA authority, or as a user with INSERT permission on the
materialized view.

2. In the left pane, double-click Views.

3. Right-click a materialized view and choose Refresh Data.

4. Select an isolation level and click OK.

Caution
When you are done with this example, you should drop the materialized view you created. Otherwise,
you will not be able to make schema changes to its underlying tables Employees and Departments, when
trying out other examples. You cannot alter the schema of a table that has enabled, dependent materialized
view. See “Drop materialized views” on page 69.

To initialize a materialized view (SQL)

1. Connect to the database as a user with DBA authority, or as a user with INSERT permission on the
materialized view.

2. Execute a REFRESH MATERIALIZED VIEW statement.

Example
The following statements create a materialized view, EmployeeConfid6, and then initializes it:

CREATE MATERIALIZED VIEW EmployeeConfid6 AS
 SELECT EmployeeID, Employees.DepartmentID, SocialSecurityNumber, Salary,
ManagerID,
 Departments.DepartmentName, Departments.DepartmentHeadID
 FROM Employees, Departments
 WHERE Employees.DepartmentID=Departments.DepartmentID;
REFRESH MATERIALIZED VIEW EmployeeConfid6;

Working with materialized views

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 59

Caution
When you are done with this example, you should drop the materialized view you created. Otherwise, you
will not be able to make schema changes to its underlying tables Employees and Departments, when trying
out other examples. You cannot alter the schema of a table that has enabled, dependent materialized view.
See “Drop materialized views” on page 69.

See also
● “CREATE MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “Enable and disable materialized views” on page 65

Refresh manual views
Manual views become stale when changes occur to their underlying base tables. Refreshing a manual view
means that the database server re-executes the query definition for the view and replaces the view data with
the new result set of the query. Refreshing makes the view data consistent with the underlying data. You
should consider the acceptable degree of data staleness for the manual view and devise a refresh strategy.
Your strategy should allow for the time it takes to complete a refresh, since the view is not available for
querying during the refresh operation.

You can also set up a strategy in which the view is refreshed using events. For example, you can create an
event to refresh at some regular interval.

Immediate views do not need to be refreshed except if they are uninitialized (contain no data), for example
after being truncated.

You can also use the sa_refresh_materialized_views system procedure to refresh views. See
“sa_refresh_materialized_views system procedure” [SQL Anywhere Server - SQL Reference].

You can configure a staleness threshold beyond which the optimizer should not use a materialized view
when processing queries, using the materialized_view_optimization database option. See “Setting the
optimizer staleness threshold for materialized views” on page 68.

When using the REFRESH MATERIALIZED VIEW statement, you can override the connection isolation
level using the WITH ISOLATION LEVEL clause. For more information on how to control concurrency
when refreshing a materialized view, see the WITH clause of the “REFRESH MATERIALIZED VIEW
statement” [SQL Anywhere Server - SQL Reference].

Upgrading databases with materialized views
It is recommended that you refresh materialized views after upgrading your database server, or after
rebuilding or upgrading your database to work with an upgraded database server.

To refresh a manual view (Sybase Central)

1. Connect to the database as a user with DBA authority, or as a user with INSERT permission on the
materialized view. You must also have SELECT permissions on the underlying tables.

2. In the left pane, double-click Views.

Working with database objects

60 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

3. Right-click a materialized view and choose Refresh Data.

4. Select an isolation level and click OK.

To refresh a manual view (SQL)

1. Connect to the database as a user with DBA authority, or as a user with INSERT permission on the
materialized view. You must also have SELECT permissions on the underlying tables.

2. Execute a REFRESH MATERIALIZED VIEW statement.

Example
The following statement creates and then refreshes the EmployeeConfid33 materialized view.

CREATE MATERIALIZED VIEW EmployeeConfid33 AS
 SELECT EmployeeID, Employees.DepartmentID, SocialSecurityNumber, Salary,
ManagerID,
 Departments.DepartmentName, Departments.DepartmentHeadID
 FROM Employees, Departments
 WHERE Employees.DepartmentID=Departments.DepartmentID;
REFRESH MATERIALIZED VIEW EmployeeConfid33;

Caution
When you are done with this example, you should drop the materialized view you created. Otherwise, you
will not be able to make schema changes to its underlying tables Employees and Departments, when trying
out other examples. You cannot alter the schema of a table that has enabled, dependent materialized view.
See “Drop materialized views” on page 69.

See also
● “Change a manual view to an immediate view” on page 61
● “Automating tasks using schedules and events” [SQL Anywhere Server - Database Administration]
● “materialized_view_optimization option [database]” [SQL Anywhere Server - Database

Administration]

Change a manual view to an immediate view
When you create a materialized view its refresh type is manual. However, you can change it to immediate.
To change from manual to immediate, the view must be in an uninitialized state (contain no data). If the
view was just created and has not yet been refreshed, it is uninitialized. If it has data in it, you must truncate
the data. The view must also have a unique index, and must conform to the restrictions required for an
immediate view. See “Additional restrictions for immediate views” on page 56.

An immediate view can be converted to manual at any time by simply changing its refresh type.

The following procedures explain how to change a manual view to an immediate view. Before performing
one of these procedures, verify the manual view has a unique index and is uninitialized. Then, optionally,
check its eligibility for immediate refresh type using the sa_materialized_view_can_be_immediate system
procedure. See “sa_materialized_view_can_be_immediate system procedure” [SQL Anywhere Server - SQL
Reference].

Working with materialized views

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 61

To change a manual view to an immediate view (Sybase Central)

1. Connect to the database as a user with DBA authority, or as owner of the view and all the tables it
references.

2. In the left pane, double-click Views.

3. Right-click the materialized view and choose Properties.

4. In the Refresh Type field, choose Immediate.

5. Click OK.

To change a manual view to an immediate view (SQL)

1. Connect to the database as a user with DBA authority, or as owner of the view and all the tables it
references.

2. Change the refresh type to immediate by executing an ALTER MATERIALIZED VIEW ...
IMMEDIATE REFRESH statement.

The following procedures explain how to change an immediate view to a manual view.

To change an immediate view to a manual view (Sybase Central)

1. Connect to the database as the owner of the view, or as a user with DBA authority.

2. In the left pane, double-click Views.

3. Right-click a materialized view and choose Properties.

4. In the Refresh Type field, choose Manual.

5. Click OK.

To change an immediate view to a manual view (SQL)

1. Connect to the database as the owner of the view, or as a user with DBA authority.

2. Change the refresh type to manual by executing an ALTER MATERIALIZED VIEW ... MANUAL
REFRESH statement.

Example
The following example creates a materialized view and then initializes it. A unique index is then added since
immediate views must have a unique index. Since the view must not have data in it when the refresh type
is changed, the view is truncated. Finally, the refresh type is changed.

CREATE MATERIALIZED VIEW EmployeeConfid44 AS
 SELECT EmployeeID, Employees.DepartmentID,
 SocialSecurityNumber, Salary, ManagerID,
 Departments.DepartmentName, Departments.DepartmentHeadID
 FROM Employees, Departments
 WHERE Employees.DepartmentID=Departments.DepartmentID;
REFRESH MATERIALIZED VIEW EmployeeConfid44;
CREATE UNIQUE INDEX EmployeeIDIdx

Working with database objects

62 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 ON EmployeeConfid44 (EmployeeID);
TRUNCATE MATERIALIZED VIEW EmployeeConfid44;
ALTER MATERIALIZED VIEW EmployeeConfid44
 IMMEDIATE REFRESH;

The following statement changes the refresh type back to manual:

ALTER MATERIALIZED VIEW EmployeeConfid44
 MANUAL REFRESH;

Caution
When you are done with this example, you should drop the materialized view you created. Otherwise, you
will not be able to make schema changes to its underlying tables Employees and Departments, when trying
out other examples. You cannot alter the schema of a table that has enabled, dependent materialized view.
See “Drop materialized views” on page 69.

See also
● “ALTER MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “Materialized view statuses and properties” on page 52
● “Create indexes” on page 74
● “Initialize materialized views” on page 59

Encrypt and decrypt materialized views
Materialized views can be encrypted for additional security. For example, if a materialized view contains
data that was encrypted in the underlying table, you may want to encrypt the materialized view as well. Table
encryption must already be enabled in the database to encrypt a materialized view. The encryption algorithm
and key specified at database creation are used to encrypt the materialized view. To see the encryption
settings in effect for your database, including whether table encryption is enabled, query the Encryption
database property using the DB_PROPERTY function, as follows:

SELECT DB_PROPERTY('Encryption');

As with table encryption, encrypting a materialized view can impact performance since the database server
must decrypt data it retrieves from the view.

To encrypt a materialized view (Sybase Central)

1. Connect to the database as the owner of the view, or as a user with DBA authority.

2. In the left pane, double-click Views.

3. Right-click the materialized view and choose Properties.

4. Click the Miscellaneous tab.

5. Select the Materialized View Data Is Encrypted check box.

6. Click OK.

Working with materialized views

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 63

To encrypt a materialized view (SQL)

1. Connect to the database as a user with DBA authority, or as owner of the materialized view.

2. Execute an ALTER MATERIALIZED VIEW statement using the ENCRYPTED clause.

Example
The following statement creates, initializes, and then encrypts the EmployeeConfid44 materialized view.
The database must already be configured to allow encrypted tables for this statement to work:

CREATE MATERIALIZED VIEW EmployeeConfid44 AS
 SELECT EmployeeID, Employees.DepartmentID, SocialSecurityNumber, Salary,
ManagerID,
 Departments.DepartmentName, Departments.DepartmentHeadID
 FROM Employees, Departments
 WHERE Employees.DepartmentID=Departments.DepartmentID;
REFRESH MATERIALIZED VIEW EmployeeConfid44;
ALTER MATERIALIZED VIEW GROUPO.EmployeeConfid44 ENCRYPTED;

Caution
When you are done with this example, you should drop the materialized view you created. Otherwise, you
will not be able to make schema changes to its underlying tables Employees and Departments, when trying
out other examples. You cannot alter the schema of a table that has enabled, dependent materialized view.
See “Drop materialized views” on page 69.

To decrypt a materialized view (Sybase Central)

1. Connect to the database as the owner of the view, or as a user with DBA authority.

2. In the left pane, double-click Views.

3. Right-click the materialized view and choose Properties.

4. Click the Miscellaneous tab.

5. Clear the Materialized View Data Is Encrypted check box.

6. Click OK.

To decrypt a materialized view (SQL)

1. Connect to the database as a user with DBA authority, or as owner of the materialized view.

2. Execute an ALTER MATERIALIZED VIEW statement using the NOT ENCRYPTED clause.

Example
The following statement decrypts the EmployeeConfid44 materialized view:

ALTER MATERIALIZED VIEW GROUPO.EmployeeConfid44 NOT ENCRYPTED;

Working with database objects

64 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Enabling table encryption in the database” [SQL Anywhere Server - Database Administration]
● “ALTER MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “DB_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference]

Enable and disable materialized views
You can control whether a materialized view is available for use by the database server by enabling or
disabling it. A disabled materialized view is also not considered by the optimizer during optimization. If a
query explicitly references a disabled materialized view, the query fails and an error is returned. When you
disable a materialized view, the database server drops the data for the view, but keeps the definition in the
database. When you re-enable a materialized view, it is in an uninitialized state and you must refresh it to
populate it with data.

Regular views that are dependent on a materialized view are automatically disabled by the database server
if the materialized view is disabled. As a result, once you re-enable a materialized view, you must re-enable
all dependent views. For this reason, you may want to determine the list of views dependent on the
materialized view before disabling it. You can do this using the sa_dependent_views system procedure. This
procedure examines the ISYSDEPENDENCY system table and returns the list of dependent views, if any.

When you disable a materialized view, the data and indexes are dropped, and if the view was an immediate
view, it is changed to a manual view. So, when you re-enable it, you'll need to refresh it, rebuild the indexes,
and change it back to immediate view (if necessary).

You can grant permissions on disabled objects. Permissions to disabled objects are stored in the database
and become effective when the object is enabled.

To disable a materialized view (Sybase Central)

1. Connect to the database as a user with DBA authority, or as owner of the materialized view.

2. In the left pane, double-click Views.

3. Right-click the materialized view and choose Disable.

To disable a materialized view (SQL)

1. Connect to the database as a user with DBA authority, or as owner of the materialized view.

2. Execute an ALTER MATERIALIZED VIEW ... DISABLE statement.

Example
The following example creates the EmployeeConfid55 materialized view, initializes it, and then disables it.
When it is disabled, the data for the materialized view is dropped, the definition for the materialized view
remains in the database, the materialized view is unavailable for use by the database server, and dependent
views, if any, are disabled.

CREATE MATERIALIZED VIEW EmployeeConfid55 AS
 SELECT EmployeeID, Employees.DepartmentID, SocialSecurityNumber, Salary,
ManagerID,

Working with materialized views

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 65

 Departments.DepartmentName, Departments.DepartmentHeadID
 FROM Employees, Departments
 WHERE Employees.DepartmentID=Departments.DepartmentID;
REFRESH MATERIALIZED VIEW EmployeeConfid55;
ALTER MATERIALIZED VIEW EmployeeConfid55 DISABLE;

To enable a materialized view (Sybase Central)

1. Connect to the database as a user with DBA authority, or as owner of the materialized view.

2. In the left pane, double-click Views.

3. Right-click the materialized view and choose Recompile And Enable.

4. Optionally, right-click the view and choose Refresh Data to initialize the view and populate it with data.

To enable a materialized view (SQL)

1. Connect to the database as a user with DBA authority, or as owner of the materialized view.

2. Execute an ALTER MATERIALIZED VIEW ... ENABLE statement.

3. Optionally, execute a REFRESH MATERIALIZED VIEW to initialize the view and populate it with
data.

Example
The following two statements, respectively, re-enable the EmployeeConfid55 materialized view, and then
populate it with data.

ALTER MATERIALIZED VIEW EmployeeConfid55 ENABLE;
REFRESH MATERIALIZED VIEW EmployeeConfid55;

Caution
When you are done with this example, you should drop the materialized view you created. Otherwise, you
will not be able to make schema changes to its underlying tables Employees and Departments, when trying
out other examples. You cannot alter the schema of a table that has enabled, dependent materialized view.
See “Drop materialized views” on page 69.

See also
● “Change a manual view to an immediate view” on page 61
● “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “CREATE INDEX statement” [SQL Anywhere Server - SQL Reference]
● “sa_dependent_views system procedure” [SQL Anywhere Server - SQL Reference]
● “ALTER MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “ALTER VIEW statement” [SQL Anywhere Server - SQL Reference]
● “View dependencies” on page 37
● “SYSDEPENDENCY system view” [SQL Anywhere Server - SQL Reference]

Working with database objects

66 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Enable and disable optimizer use of a materialized view
The optimizer maintains a list of materialized views that can be used in the optimization process. A
materialized view is not considered a candidate for use in optimization if its definition includes certain
elements that the optimizer rejects, or if its data is not considered fresh enough to use. For information about
what qualifies a materialized view as a candidate in the optimization process, see “Improving performance
with materialized views” on page 574.

By default, materialized views are available for use by the optimizer. However, you can disable optimizer's
use of a materialized view unless it is explicitly referenced in a query.

To determine if a materialized view is enabled or disabled for use by the optimizer, use the
sa_materialized_view_info system procedure. See “sa_materialized_view_info system procedure” [SQL
Anywhere Server - SQL Reference].

To enable a materialized view's use in optimization (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, double-click Views.

3. Right-click the materialized view and choose Properties.

4. Click the General tab and select Used In Optimization.

5. Click OK.

To enable a materialized view's use in optimization (SQL)

1. Connect to the database as a user with DBA authority, or as owner of the materialized view.

2. Execute an ALTER MATERIALIZED VIEW statement with the ENABLE USE IN OPTIMIZATION
clause.

Examples
The following statement enables the EmployeeConfid77 view for use in optimization:

ALTER MATERIALIZED VIEW GROUPO.EmployeeConfid77 ENABLE USE IN OPTIMIZATION;

To disable a materialized view's use in optimization (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, double-click Views.

3. Right-click the materialized view and choose Properties.

4. Click the General tab and clear Used In Optimization.

5. Click OK.

To disable a materialized view's use in optimization (SQL)

1. Connect to the database as a user with DBA authority, or as owner of the materialized view.

Working with materialized views

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 67

2. Execute an ALTER MATERIALIZED VIEW statement with the DISABLE USE IN OPTIMIZATION
clause.

Example
The following statement creates the EmployeeConfid77 materialized view, refreshes it, and then disables it
for use in optimization.

CREATE MATERIALIZED VIEW EmployeeConfid77 AS
 SELECT EmployeeID, Employees.DepartmentID, SocialSecurityNumber, Salary,
ManagerID,
 Departments.DepartmentName, Departments.DepartmentHeadID
 FROM Employees, Departments
 WHERE Employees.DepartmentID=Departments.DepartmentID;
REFRESH MATERIALIZED VIEW EmployeeConfid77;
ALTER MATERIALIZED VIEW EmployeeConfid77 DISABLE USE IN OPTIMIZATION;

See also
● “ALTER MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]

Setting the optimizer staleness threshold for materialized
views

Data in a materialized view becomes stale when the data changes in the tables referenced by the materialized
view. The materialized_view_optimization database option allows you to configure a staleness threshold
beyond which the optimizer should no longer consider using it when processing queries. The
materialized_view_optimization database option does not impact how often materialized views are
refreshed.

If a query explicitly references a materialized view, the view is used to process the query, regardless of
freshness of the data in the view. As well, the OPTION clause of a SELECT statement can be used to override
the setting of the materialized_view_optimization database option, forcing the use of the materialized view.
See “SELECT statement” [SQL Anywhere Server - SQL Reference].

If you notice that the materialized view is not considered by the optimizer, it may be due to staleness. Adjust
the interval specified for the event or trigger responsible for refreshing the view.

Note
When snapshot isolation is in use, the optimizer avoids using a materialized view if it was refreshed after
the start of the snapshot for a transaction.

For information about how to use the materialized_view_optimization database option, see
“materialized_view_optimization option [database]” [SQL Anywhere Server - Database Administration].

For information about using events and triggers, see “Automating tasks using schedules and events” [SQL
Anywhere Server - Database Administration].

For information about determining whether the materialized view has been considered by optimizer, see
“Reading execution plans” on page 610 and “Monitor query performance” on page 232.

Working with database objects

68 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Hide materialized views
You can hide a materialized view's definition from users. When you hide a materialized view, you obfuscate
the view definition stored in the database, making the view invisible in the catalog. The view can still be
directly referenced, and is still eligible for use during query processing. When a materialized view is hidden,
debugging using the debugger will not show the view definition, nor will the definition be available through
procedure profiling, and the view can be still unloaded and reloaded into other databases.

Hiding a materialized view is irreversible, and can only be performed using a SQL statement.

To hide a materialized view (SQL)

1. Connect to the database as a user with DBA authority, or as owner of the materialized view.

2. Execute an ALTER MATERIALIZED VIEW statement with the SET HIDDEN clause.

Example
The following statements create a materialized view, EmployeeConfid3, refreshes it, and then obfuscate its
view definition.

CREATE MATERIALIZED VIEW EmployeeConfid3 AS
 SELECT EmployeeID, Employees.DepartmentID, SocialSecurityNumber, Salary,
ManagerID,
 Departments.DepartmentName, Departments.DepartmentHeadID
 FROM Employees, Departments
 WHERE Employees.DepartmentID=Departments.DepartmentID;
REFRESH MATERIALIZED VIEW EmployeeConfid3;
ALTER MATERIALIZED VIEW EmployeeConfid3 SET HIDDEN;

Caution
When you are done with this example, you should drop the materialized view you created. Otherwise, you
will not be able to make schema changes to its underlying tables Employees and Departments, when trying
out other examples. You cannot alter the schema of a table that has enabled, dependent materialized view.
See “Drop materialized views” on page 69.

See also
● “ALTER MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]

Drop materialized views
When a materialized view is no longer needed, you can drop it.

Materialized view deletions and view dependencies
Before you can drop a materialized view, you must drop or disable all dependent views. To determine whether
there are views dependent on a materialized view, use the sa_dependent_views system procedure. See
“sa_dependent_views system procedure” [SQL Anywhere Server - SQL Reference].

See also “View dependencies” on page 37.

Working with materialized views

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 69

To drop a materialized view (Sybase Central)

1. Connect to the database as a user with DBA authority, or as the owner of the view.

2. In the left pane, double-click Views.

3. Right-click the materialized view and choose Delete.

4. Click Yes.

To drop a materialized view (SQL)

1. Connect to the database as a user with DBA authority, or as the owner of the view.

2. Execute a DROP MATERIALIZED VIEW statement.

Example
The following statement creates the EmployeeConfid4 materialized view, initializes it (populates it with
data), and then drops it.

CREATE MATERIALIZED VIEW EmployeeConfid4 AS
 SELECT EmployeeID, Employees.DepartmentID, SocialSecurityNumber, Salary,
ManagerID,
 Departments.DepartmentName, Departments.DepartmentHeadID
 FROM Employees, Departments
 WHERE Employees.DepartmentID=Departments.DepartmentID;
REFRESH MATERIALIZED VIEW EmployeeConfid4;
DROP MATERIALIZED VIEW EmployeeConfid4;

See also
● “DROP MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “sa_dependent_views system procedure” [SQL Anywhere Server - SQL Reference]
● “View dependencies” on page 37

Working with database objects

70 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Working with indexes
Performance is an important consideration when designing and creating your database. Indexes can
dramatically improve the performance of statements that search for a specific row or a specific subset of the
rows. On the other hand, indexes take up additional disk space and can slow inserts, updates, and deletes.

When to use indexes
An index provides an ordering on the rows in a column or columns of a table. An index is like a telephone
book that initially sorts people by surname, and then sorts identical surnames by first names. This ordering
speeds up searches for phone numbers for a particular surname, but it does not provide help in finding the
phone number at a particular address. In the same way, a database index is useful only for searches on a
specific column or columns.

Indexes get more useful as the size of the table increases. The average time to find a phone number at a given
address increases with the size of the phone book, while it does not take much longer to find the phone
number of K. Kaminski in a large phone book than in a small phone book.

The database server query optimizer automatically uses an index when a suitable index exists and when
using one will improve performance.

There are some down sides to creating indexes. In particular, any indexes must be maintained along with
the table itself when the data in a column is modified, so that the performance of inserts, updates, and deletes
can be affected by indexes. For this reason, unnecessary indexes should be dropped. Use the Index Consultant
to identify unnecessary indexes. See “Obtain Index Consultant recommendations for a
query” on page 183.

Deciding what indexes to create
Choosing an appropriate set of indexes for a database is an important part of optimizing performance.
Identifying an appropriate set can also be a demanding problem. The performance benefits from some indexes
can be significant, but there are also costs associated with indexes, in both storage space and in overhead
when altering data.

The Index Consultant is a tool that assists you in proper selection of indexes. It analyzes either a single query
or a set of operations, and recommends which indexes to add to your database. It also notifies you of indexes
that are unused. See “Obtain Index Consultant recommendations for a query” on page 183.

Indexes on frequently-searched columns
SQL Anywhere automatically indexes primary key and foreign key columns. So, manually creating an index
on a key column is not necessary and is generally not recommended. If a column is only part of a key, an
index can help.

Working with indexes

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 71

Indexes require extra space and can slightly reduce the performance of statements that modify the data in
the table, such as INSERT, UPDATE, and DELETE statements. However, they can improve search
performance dramatically and are highly recommended whenever you search data frequently. To learn more
about how indexes improve performance, see “Using indexes” on page 243.

The optimizer automatically uses indexes to improve the performance of any database statement whenever
it is possible to do so. Also, the index is updated automatically when rows are deleted, updated, or inserted.
While you can explicitly refer to indexes using index hints when forming your query, there is no need to.

Index hints
You can supply index hints when forming a query. Index hints override the optimizer's choice of query access
plan by forcing the use of a particular index or indexes. Index hints are typically only used when evaluating
the optimizer's choice of plans, and should be used only by advanced users and database administrators.
Improper application of index hinting can lead to poor query performance.

You specify index hints using subclauses of the FROM clause. For example, the INDEX clause allows you
to specify up to four indexes. The optimizer must be able to use all the specified indexes, otherwise an error
is returned.

Specify NO INDEX to disable the use of indexes for the query, and force a sequential scan of the table
instead. However, sequential scans are very costly, and take longer to execute. Use this clause only for
comparison purposes when evaluating the optimizer's index selection.

By default, if a query can be satisfied using only index data (that is, without having to access rows in the
table), the database server performs an index-only retrieval. However, you may want to specify INDEX
ONLY ON so that an error is returned in the event that the indexes can no longer be used for index-only
retrieval (for example, if they are changed or dropped).

For more information about the index hint clauses you can specify in the FROM clause, see “FROM clause”
[SQL Anywhere Server - SQL Reference].

Using clustered indexes
Although indexes can dramatically improve the performance of statements that search for a specific range
of key values, two rows appearing sequentially in the index do not necessarily appear on the same table page
in the database.

You can further improve a large index scan by declaring that the index is clustered. Using a clustered index
increases the chance that two rows from adjacent index entries will appear on the same page in the database.
This can lead to performance benefits by reducing the number of times a table page needs to be read into
the buffer pool.

The existence of an index with a clustering property causes the database server to attempt to store table rows
in approximately the same order as they appear in the clustered index. However, while the database server
attempts to preserve the key order, clustering is approximate and total clustering is not guaranteed. So, the
database server cannot sequentially scan the table and retrieve all the rows in a clustered index key sequence.

Working with database objects

72 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Ensuring that the rows of the table are returned in sorted order requires an access plan that either accesses
the rows through the index, or performs a physical sort.

The optimizer exploits an index with a clustering property by modifying the expected cost of indexed retrieval
to take into account the expected physical adjacency of table rows with matching or adjacent index key
values.

The amount of clustering for a given table may degrade over time, as more and more rows are inserted or
updated. The database server automatically keeps track of the amount of clustering for each clustered index
in the ISYSPHYSIDX system table. If the database server detects that the rows in a table have become
significantly unclustered, the optimizer will adjust its expected index retrieval costs.

If you decide to make one of the indexes on a table clustered, you need to consider the expected query
workload. Some experimentation is usually required. Generally, the database server can use a clustered index
to improve performance when the following conditions hold for a specified query:

● Many of the table pages required for answering the query are not already in memory. When the table
pages are already in memory, the server does not need to read these pages and such clustering is irrelevant.

● The query can be answered by performing an index retrieval that is expected to return a non-trivial
number of rows. As an example, clustering is usually irrelevant for simple primary key searches.

● The database server actually needs to read table pages, as opposed to performing an index-only retrieval.

Using SQL statements to cluster the index
The clustering property of an index can be added or removed at any time using SQL statements. Any primary
key index, foreign key index, UNIQUE constraint index, or secondary index can be declared with the
CLUSTERED property. However, you may declare at most one clustered index per table. You can do this
using any of the following statements:

● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “ALTER DATABASE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE INDEX statement” [SQL Anywhere Server - SQL Reference]
● “DECLARE LOCAL TEMPORARY TABLE statement” [SQL Anywhere Server - SQL Reference]

Several statements work in conjunction with each other to allow you to maintain and restore the clustering
effect:

● The UNLOAD TABLE statement allows you to unload a table in the order of the clustered index key.
See “UNLOAD statement” [SQL Anywhere Server - SQL Reference].

● The LOAD TABLE statement inserts rows into the table in the order of the clustered index key. See
“LOAD TABLE statement” [SQL Anywhere Server - SQL Reference].

● The INSERT statement attempts to put new rows on the same table page as the one containing adjacent
rows, as per the clustered index key. See “INSERT statement” [SQL Anywhere Server - SQL
Reference].

● The REORGANIZE TABLE statement restores the clustering of a table by rearranging the rows
according to the clustered index. If REORGANIZE TABLE is used with tables where clustering is not

Working with indexes

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 73

specified, the tables are reordered using the primary key. See “REORGANIZE TABLE statement” [SQL
Anywhere Server - SQL Reference].

Creating clustered indexes in Sybase Central
You can also create clustered indexes in Sybase Central using the Create Index Wizard, and selecting Create
A Clustered Index when prompted. See “Create indexes” on page 74.

Reordering rows to match a clustered index
To reorder the rows in a table to match a clustered index, use the REORGANIZE TABLE statement. See
“REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference].

Create indexes
Indexes are created on one or more columns of a specified table. You can create indexes on base tables or
temporary tables, but you cannot create an index on a view. To create an individual index, you can use either
Sybase Central or Interactive SQL. You can use the Index Consultant to guide you in a proper selection of
indexes for your database.

When creating indexes, the order in which you specify the columns becomes the order in which the columns
appear in the index. Duplicate references to column names in the index definition is not allowed.

To create a new index (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, double-click Tables and select the table for which you want to create an index.

3. In the right pane, click the Indexes tab.

4. In the left pane, right-click the table and choose New » Index.

5. Follow the instructions in the Create Index Wizard.

The new index appears on the Index tab for the table. It also appears in Indexes.

To create a new index (SQL)

1. Connect to the database as a user with DBA authority, or as the owner of the table on you are creating
the index.

2. Execute a CREATE INDEX statement.

In addition to creating indexes on one or more columns in a table, you can create indexes on a built-in function
using a computed column. See “CREATE INDEX statement” [SQL Anywhere Server - SQL Reference].

Working with database objects

74 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
The following example creates an index called EmployeeNames on the Employees table, using the Surname
and GivenName columns:

CREATE INDEX EmployeeNames
ON Employees (Surname, GivenName);

See “CREATE INDEX statement” [SQL Anywhere Server - SQL Reference], and “Improving database
performance” on page 175.

Validate indexes
You can validate an index to ensure that every row referenced in the index actually exists in the table. For
foreign key indexes, a validation check also ensures that the corresponding row exists in the primary table.
This check complements the validity checking performed by the VALIDATE TABLE statement.

Caution
Validate tables or entire databases only when no connections are making changes to the database.

To validate an index (Sybase Central)

1. Connect to the database as a user with DBA authority, or as the owner of the table on which the index
is created.

2. In the left pane, double-click Indexes.

3. Right-click the index and choose Validate.

4. Click OK.

To validate an index (SQL)

1. Connect to the database as a user with DBA authority, or as the owner of the table on which the index
is created.

2. Execute a VALIDATE INDEX statement.

To validate an index (dbvalid utility)

● Run a dbvalid command with the -i option specified.

Example 1
Validate an index called EmployeeNames. If you supply a table name instead of an index name, the primary
key index is validated.

VALIDATE INDEX EmployeeNames;

See “VALIDATE statement” [SQL Anywhere Server - SQL Reference].

Working with indexes

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 75

Example 2
Validate an index called EmployeeNames. The -I option specifies that each object name given is an index.

dbvalid -I EmployeeNames

See “Validation utility (dbvalid)” [SQL Anywhere Server - Database Administration].

Rebuild indexes
Sometimes it is necessary to rebuild an index because it has become fragmented or skewed due to extensive
insertion and deletion operations on the table. When you rebuild an index, you rebuild the physical index.
All logical indexes that use the physical index benefit from the rebuild operation. You do not need to perform
a rebuild on logical indexes. See “Index sharing using logical indexes” on page 640.

You can rebuild indexes in Sybase Central, or by executing an ALTER INDEX ... REBUILD statement.
You can also rebuild indexes as part of an effort to remove table fragmentation using the REORGANIZE
TABLE statement. This section describes how to rebuild indexes using Sybase Central and the ALTER
INDEX ... REBUILD statement. For more information about using the REORGANIZE TABLE statement,
see “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference].

To rebuild an index (Sybase Central)

1. Connect to the database as a user with DBA authority, or as the owner of the table on which the index
is created.

2. In the left pane, double-click Indexes.

3. Right-click the index and choose Rebuild.

4. Click OK.

To rebuild an index (SQL)

1. Connect to the database as a user with DBA authority, or as the owner of the table associated with the
index.

2. Execute an ALTER INDEX ... REBUILD statement.

Example
The following statement rebuilds the IX_customer_name index on the Customers table:

ALTER INDEX IX_customer_name ON Customers REBUILD;

For more information about the syntax for the ALTER INDEX statement, see “ALTER INDEX statement”
[SQL Anywhere Server - SQL Reference].

See also
For more information about index fragmentation and skew, and how to reduce them, see “Reducing index
fragmentation and skew” on page 237.

Working with database objects

76 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

For more information about how to detect index fragmentation and skew, see “Application Profiling
Wizard” on page 177, and “sa_index_density system procedure” [SQL Anywhere Server - SQL
Reference].

Drop indexes
If an index is no longer required, you can delete it from the database in Sybase Central or in Interactive SQL.

To drop an index (Sybase Central)

1. Connect to the database as a user with DBA authority, or as the owner of the table on which the index
is created.

2. In the left pane, double-click Indexes.

3. Right-click the index and choose Delete.

4. Click Yes.

To drop an index (SQL)

1. Connect to the database as a user with DBA authority, or as the owner of the table associated with the
index.

2. Execute a DROP INDEX statement.

Example
The following statement removes the EmployeeNames index from the database:

DROP INDEX EmployeeNames;

See “DROP INDEX statement” [SQL Anywhere Server - SQL Reference].

Index information in the catalog
The ISYSIDX system table provides a list of all indexes in the database, including primary and foreign key
indexes. Additional information about the indexes is found in the ISYSPHYSIDX, ISYSIDXCOL, and
ISYSFKEY system views. You can use Sybase Central or Interactive SQL to browse the views for these
tables to see the data they contain.

Following is a brief overview of how index information is stored in the system tables:

● ISYSIDX system table The central table for tracking indexes, each row in the ISYSIDX system table
defines a logical index (PKEY, FKEY, UNIQUE constraint, Secondary index) in the database. See
“SYSIDX system view” [SQL Anywhere Server - SQL Reference] and “Index sharing using logical
indexes” on page 640.

Working with indexes

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 77

● ISYSPHYSIDX system table Each row in the ISYSPHYSIDX system table defines a physical index
in the database. See “SYSPHYSIDX system view” [SQL Anywhere Server - SQL Reference] and “Index
sharing using logical indexes” on page 640.

● ISYSIDXCOL system table Just as each row in the SYSIDX system view describes one index in the
database, each row in the SYSIDXCOL system view describes one column of an index described in the
SYSIDX system view. See “SYSIDXCOL system view” [SQL Anywhere Server - SQL Reference].

● ISYSFKEY system table Every foreign key in the database is defined by one row in the ISYSFKEY
system table and one row in the ISYSIDX system table. See “SYSFKEY system view” [SQL Anywhere
Server - SQL Reference].

Working with database objects

78 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Ensuring data integrity

Contents
How your data can become invalid .. 80
Building integrity constraints into your database ... 81
How the contents of your database change .. 82
Tools for maintaining data integrity .. 83
SQL statements for implementing integrity constraints ... 85
Using column defaults ... 86
Using table and column constraints ... 92
Using domains ... 96
Enforcing entity and referential integrity .. 99
Integrity rules in the system tables .. 106

If data has integrity, the data is valid—correct and accurate—and the relational structure of the database is
intact. Referential integrity constraints enforce the relational structure of the database. These rules maintain
the consistency of data between tables. Building integrity constraints into the database is the best way to
make sure your data remains consistent.

You can enforce several types of integrity constraints. For example, you can ensure individual entries are
correct by imposing constraints and CHECK constraints on tables and columns. You can also configure
column properties by choosing an appropriate data type or setting special default values.

SQL Anywhere supports stored procedures, which give you detailed control over how data enters the
database. You can also create triggers, or customized stored procedures that are invoked automatically when
a certain action, such as an update of a particular column, occurs.

For more information about procedures and triggers see “Using procedures, triggers, and
batches” on page 829.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 79

How your data can become invalid
Data in your database may become invalid if proper checks are not made. You can prevent each of these
examples from occurring using facilities described in this chapter.

Incorrect information
● An operator types the date of a sales transaction incorrectly.

● An employee's salary becomes ten times too small because the operator missed a digit.

Duplicated data
● Two different employees add the same new department (with DepartmentID 200) to the Departments

table of the organization's database.

Foreign key relations invalidated
● The department identified by DepartmentID 300 closes down and one employee record inadvertently

remains unassigned to a new department.

Ensuring data integrity

80 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Building integrity constraints into your database
To ensure the validity of data in a database, you need to formulate checks to define valid and invalid data,
and design rules to which data must adhere (also known as business rules). Together, checks and rules become
constraints.

Constraints that are built into the database itself are more reliable than constraints that are built into client
applications or that are spelled out as instructions to database users. Constraints built into the database
become part of the definition of the database itself, and the database enforces them consistently across all
applications. Setting a constraint once in the database imposes it for all subsequent interactions with the
database.

In contrast, constraints built into client applications are vulnerable every time the software changes, and may
need to be imposed in several applications, or in several places in a single client application.

Building integrity constraints into your database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 81

How the contents of your database change
Changes occur to information in database tables when you submit SQL statements from client applications.
Only a few SQL statements actually modify the information in a database. You can:

● Update information in a row of a table using the UPDATE statement.

● Delete an existing row of a table using the DELETE statement.

● Insert a new row into a table using the INSERT statement.

Ensuring data integrity

82 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Tools for maintaining data integrity
To maintain data integrity, you can use defaults, data constraints, and constraints that maintain the referential
structure of the database.

Defaults

You can assign default values to columns to make certain kinds of data entry more reliable. For example:

● A column can have a current date default value for recording the date of transactions with any user or
client application action.

● Other types of default values allow column values to increment automatically without any specific user
action other than entering a new row. With this feature, you can guarantee that items (such as purchase
orders for example) are unique, sequential numbers.

For more information about these and other column defaults, see “Using column defaults” on page 86.

Constraints

You can apply several types of constraints to the data in individual columns or tables. For example:

● A NOT NULL constraint prevents a column from containing a NULL entry.

● A CHECK constraint assigned to a column can ensure that every item in the column meets a particular
condition. For example, you can ensure that Salary column entries fit within a specified range and are
protected from user error when new values are entered.

● CHECK constraints can be made on the relative values in different columns. For example, you can ensure
that a DateReturned entry is later than a DateBorrowed entry in a library database.

● Triggers can enforce more sophisticated CHECK conditions. See “Using procedures, triggers, and
batches” on page 829.

As well, column constraints can be inherited from domains. For more information about these and other
table and column constraints, see “Using table and column constraints” on page 92.

Entity and referential integrity

Relationships, defined by the primary keys and foreign keys, tie together the information in relational
database tables. You must build these relations directly into the database design. The following integrity
rules maintain the structure of the database:

● Entity integrity Keeps track of the primary keys. It guarantees that every row of a given table can be
uniquely identified by a primary key that guarantees IS NOT NULL.

● Referential integrity Keeps track of the foreign keys that define the relationships between tables. It
guarantees that all foreign key values either match a value in the corresponding primary key or contain
the NULL value if they are defined to allow NULL.

Tools for maintaining data integrity

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 83

For more information about enforcing referential integrity, see “Enforcing entity and referential
integrity” on page 99. For more information about designing appropriate primary and foreign key relations,
see “Creating databases in SQL Anywhere” on page 3.

Triggers for advanced integrity rules

You can also use triggers to maintain data integrity. A trigger is a procedure stored in the database and
executed automatically whenever the information in a specified table changes. Triggers are a powerful
mechanism for database administrators and developers to ensure that data remains reliable.

For more information about triggers, see “Using procedures, triggers, and batches” on page 829.

Ensuring data integrity

84 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL statements for implementing integrity
constraints

The following SQL statements implement integrity constraints:

● CREATE TABLE statement This statement implements integrity constraints during creation of the
table.

● ALTER TABLE statement This statement adds integrity constraints to an existing table, or modifies
constraints for an existing table.

● CREATE TRIGGER statement This statement creates triggers that enforce more complex business
rules.

● CREATE DOMAIN statement This statement creates a user-defined data type. The definition of the
data type can include constraints.

For more information about the syntax of these statements, see “SQL statements” [SQL Anywhere Server -
SQL Reference].

SQL statements for implementing integrity constraints

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 85

Using column defaults
Column defaults automatically assign a specified value to a particular column whenever someone enters a
new row into a database table. The default value assigned requires no action on the part of the client
application, however if the client application does specify a value for the column, the new value overrides
the column default value.

Column defaults can quickly and automatically fill columns with information, such as the date or time a row
is inserted, or the user ID of the person entering the information. Using column defaults encourages data
integrity, but does not enforce it. Client applications can always override defaults.

Supported default values
SQL supports the following default values:

● A string specified in the CREATE TABLE statement or ALTER TABLE statement

● A number specified in the CREATE TABLE statement or ALTER TABLE statement

● AUTOINCREMENT: an automatically incremented number that is one more than the previous highest
value in the column

● Default GLOBAL AUTOINCREMENT, which ensures unique primary keys across multiple databases.

● Universally Unique Identifiers (UUIDs) generated using the NEWID function.

● The current date, time, or timestamp

● The current user ID of the database user

● A NULL value

● A constant expression, as long as it does not reference database objects

Creating column defaults
You can use the CREATE TABLE statement to create column defaults at the time a table is created, or the
ALTER TABLE statement to add column defaults at a later time.

Example
The following statement adds a default to an existing column named ID in the SalesOrders table, so that it
automatically increments (unless a client application specifies a value). Note that in the SQL Anywhere
sample database, this column is already set to AUTOINCREMENT.

ALTER TABLE SalesOrders
ALTER ID DEFAULT AUTOINCREMENT;

For more information, see “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference] and
“CREATE TABLE statement” [SQL Anywhere Server - SQL Reference].

Ensuring data integrity

86 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Altering and dropping column defaults
You can change or remove column defaults using the same form of the ALTER TABLE statement you used
to create the defaults. The following statement changes the default value of a column named OrderDate from
its current setting to CURRENT DATE:

ALTER TABLE SalesOrders
ALTER OrderDate DEFAULT CURRENT DATE;

You can remove column defaults by modifying them to be NULL. The following statement removes the
default from the OrderDate column:

ALTER TABLE SalesOrders
ALTER OrderDate DEFAULT NULL;

Working with column defaults in Sybase Central
You can add, alter, and drop column defaults in Sybase Central using the Value tab of the Column
Properties window.

To display the Properties window for a column

1. Connect to the database as a user with DBA authority.

2. In the left pane, double-click Tables.

3. Click the table.

4. Click the Columns tab.

5. Right-click the column and choose Properties.

Current date and time defaults
For columns with the DATE, TIME, or TIMESTAMP data type, you can use the current date, current time,
or current timestamp as a default. The default you choose must be compatible with the column's data type.

Useful examples of current date default
A current date default might be useful to record:

● dates of phone calls in a contacts database

● dates of orders in a sales entry database

● the date a patron borrows a book in a library database

Using column defaults

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 87

Current timestamp
The current timestamp is similar to the current date default, but offers greater accuracy. For example, a user
of a contact management application may have several interactions with a single customer in one day: the
current timestamp default would be useful to distinguish these contacts.

Since it records a date and the time down to a precision of millionths of a second, you may also find the
current timestamp useful when the sequence of events is important in a database.

Default timestamp
The default timestamp provides a way of indicating when each row in the table was last modified. When a
column is declared with DEFAULT TIMESTAMP, a default value is provided for inserts, and the value is
updated with the current date and time whenever the row is updated. To provide a default value on insert,
but not update the column whenever the row is updated, use DEFAULT CURRENT TIMESTAMP instead
of DEFAULT TIMESTAMP. See the DEFAULT clause in “CREATE TABLE statement” [SQL Anywhere
Server - SQL Reference].

For more information about timestamps, times, and dates, see “SQL data types” [SQL Anywhere Server -
SQL Reference].

The user ID defaults
Assigning a DEFAULT USER to a column is an easy and reliable way of identifying the person making an
entry in a database. This information may be required; for example, when salespeople are working on
commission.

Building a user ID default into the primary key of a table is a useful technique for occasionally connected
users, and helps to prevent conflicts during information updates. These users can make a copy of tables
relevant to their work on a portable computer, make changes while not connected to a multi-user database,
and then apply the transaction log to the server when they return.

The LAST USER special value specifies the name of the user who last modified the row. When combined
with the DEFAULT TIMESTAMP, a default value of LAST USER can be used to record (in separate
columns) both the user and the date and time a row was last changed. See “LAST USER special value” [SQL
Anywhere Server - SQL Reference].

The AUTOINCREMENT default
The AUTOINCREMENT default is useful for numeric data fields where the value of the number itself may
have no meaning. The feature assigns each new row a unique value larger than any other value in the column.
You can use AUTOINCREMENT columns to record purchase order numbers, to identify customer service
calls or other entries where an identifying number is required.

Autoincrement columns are typically primary key columns or columns constrained to hold unique values
(see “Enforcing entity integrity” on page 99).

Ensuring data integrity

88 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

You can retrieve the most recent value inserted into an autoincrement column using the @@identity global
variable. For more information, see “@@identity global variable” [SQL Anywhere Server - SQL
Reference].

Autoincrement and negative numbers
Autoincrement is intended to work with positive integers.

The initial autoincrement value is set to 0 when the table is created. This value remains as the highest value
assigned when inserts are done that explicitly insert negative values into the column. An insert where no
value is supplied causes the AUTOINCREMENT to generate a value of 1, forcing any other generated values
to be positive.

Autoincrement and the IDENTITY column
A column with the AUTOINCREMENT default is referred to in Transact-SQL applications as an IDENTITY
column.

For information about IDENTITY columns, see “The special IDENTITY column” on page 671.

See also
● “Reloading tables with autoincrement columns” [SQL Anywhere 11 - Changes and Upgrading]

The GLOBAL AUTOINCREMENT default
The GLOBAL AUTOINCREMENT default is intended for use when multiple databases are used in a SQL
Remote replication or MobiLink synchronization environment. It ensures unique primary keys across
multiple databases.

This option is similar to AUTOINCREMENT, except that the domain is partitioned. Each partition contains
the same number of values. You assign each copy of the database a unique global database identification
number. SQL Anywhere supplies default values in a database only from the partition uniquely identified by
that database's number.

The partition size can be any positive integer, although the partition size is generally chosen so that the
supply of numbers within any one partition will rarely, if ever, be exhausted.

If the column is of type BIGINT or UNSIGNED BIGINT, the default partition size is 232 = 4294967296;
for columns of all other types, the default partition size is 216 = 65536. Since these defaults may be
inappropriate, especially if your column is not of type INT or BIGINT, it is best to specify the partition size
explicitly.

When using this option, the value of the public option global_database_id in each database must be set to a
unique, non-negative integer. This value uniquely identifies the database and indicates from which partition
default values are to be assigned. The range of allowed values is np + 1 to (n + 1) p, where n is the value of
the public option global_database_id and p is the partition size. For example, if you define the partition size
to be 1000 and set global_database_id to 3, then the range is from 3001 to 4000.

If the previous value is less than (n + 1) p, the next default value is one greater than the previous largest
value in column. If the column contains no values, the first default value is np + 1. Default column values
are not affected by values in the column outside the current partition; that is, by numbers less than np + 1 or

Using column defaults

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 89

greater than p(n + 1). Such values may be present if they have been replicated from another database via
MobiLink synchronization.

Because the public option global_database_id cannot be set to a negative value, the values chosen are always
positive. The maximum identification number is restricted only by the column data type and the partition
size.

If the public option global_database_id is set to the default value of 2147483647, a NULL value is inserted
into the column. If NULL values are not permitted, attempting to insert the row causes an error. This situation
arises, for example, if the column is contained in the table's primary key.

NULL default values are also generated when the supply of values within the partition has been exhausted.
In this case, a new value of global_database_id should be assigned to the database to allow default values
to be chosen from another partition. Attempting to insert the NULL value causes an error if the column does
not permit NULLs. To detect that the supply of unused values is low and handle this condition, create an
event of type GlobalAutoincrement. See “Understanding events” [SQL Anywhere Server - Database
Administration].

Global autoincrement columns are typically primary key columns or columns constrained to hold unique
values (see “Enforcing entity integrity” on page 99).

While using the global autoincrement default in other cases is possible, doing so can adversely affect database
performance. For example, in cases where the next value for each column is stored as a 64-bit signed integer,
using values greater than 231 - 1 or large double or numeric values may cause wraparound to negative values.

You can retrieve the most recent value inserted into an autoincrement column using the @@identity global
variable. For more information, see “@@identity global variable” [SQL Anywhere Server - SQL
Reference].

See also
● “Using global autoincrement” [MobiLink - Server Administration]
● “Global autoincrement columns” [SQL Remote]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Reloading tables with autoincrement columns” [SQL Anywhere 11 - Changes and Upgrading]

The NEWID default
Universally Unique Identifiers (UUIDs), also known as Globally Unique Identifiers (GUIDs), can be used
to identify unique rows in a table. The values are generated such that a value produced on one computer will
not match that produced on another. They can therefore be used as keys in replication and synchronization
environments.

Using UUID values as primary keys has some tradeoffs when you compare them with using GLOBAL
AUTOINCREMENT values. For example:

● UUIDs can be easier to set up than GLOBAL AUTOINCREMENT, since there is no need to assign each
remote database a unique database ID. There is also no need to consider the number of databases in the
system or the number of rows in individual tables. The Extraction utility (dbxtract) can be used to deal
with the assignment of database IDs. This isn't usually a concern for GLOBAL AUTOINCREMENT if
the BIGINT data type is used, but it needs to be considered for smaller data types.

Ensuring data integrity

90 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● UUID values are considerably larger than those required for GLOBAL AUTOINCREMENT, and will
require more table space in both primary and foreign tables. Indexes on these columns will also be less
efficient when UUIDs are used. In short, GLOBAL AUTOINCREMENT is likely to perform better.

● UUIDs have no implicit ordering. For example, if A and B are UUID values, A > B does not imply that
A was generated after B, even when A and B were generated on the same computer. If you require this
behavior, an additional column and index may be necessary.

See also
● “NEWID function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “UNIQUEIDENTIFIER data type” [SQL Anywhere Server - SQL Reference]

The NULL default
For columns that allow NULL values, specifying a NULL default is exactly the same as not specifying a
default at all. If the client inserting the row does not explicitly assign a value, the row automatically receives
A NULL value.

You can use NULL defaults when information for some columns is optional or not always available.

For more information about the NULL value, see “NULL value” [SQL Anywhere Server - SQL Reference].

String and number defaults
You can specify a specific string or number as a default value, as long as the column has a string or numeric
data type. You must ensure that the default specified can be converted to the column's data type.

Default strings and numbers are useful when there is a typical entry for a given column. For example, if an
organization has two offices, the headquarters in city_1 and a small office in city_2, you may want to set a
default entry for a location column to city_1, to make data entry easier.

Constant expression defaults
You can use a constant expression as a default value, as long as it does not reference database objects.
Constant expressions allow column defaults to contain entries such as the date fifteen days from today, which
would be entered as

... DEFAULT (DATEADD(day, 15, GETDATE()));

Using column defaults

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 91

Using table and column constraints
Along with the basic table structure (number, name and data type of columns, name and location of the
table), the CREATE TABLE statement and ALTER TABLE statement can specify many different table
attributes that allow control over data integrity. Constraints allow you to place restrictions on the values that
can appear in a column, or on the relationship between values in different columns. Constraints can be either
table-wide constraints, or can apply to individual columns.

This section describes how to use constraints to help ensure the accuracy of data in the table.

Using CHECK constraints on columns
You use a CHECK condition to ensure that the values in a column satisfy some criteria or rule. These rules
or criteria may be required to verify that the data is correct, or they may be more rigid rules that reflect
organization policies and procedures. CHECK conditions on individual column values are useful when only
a restricted range of values are valid for that column.

Once a CHECK condition is in place, future values are evaluated against the condition before a row is
modified. When you update a value that has a check constraint, the constraints for that value and for the rest
of the row are checked.

You can also attach CHECK constraints to domains. See “Inheriting column CHECK constraints from
domains” on page 93.

Note
Column CHECK tests fail if the condition returns a value of FALSE. If the condition returns a value of
UNKNOWN, the behavior is as though it returns TRUE, and the value is allowed.

For more information about valid conditions, see “Search conditions” [SQL Anywhere Server - SQL
Reference].

Example 1
You can enforce a particular formatting requirement. For example, if a table has a column for phone numbers
you may want to ensure that users enter them all in the same manner. For North American phone numbers,
you could use a constraint such as:

ALTER TABLE Customers
ALTER Phone
CHECK (Phone LIKE '(___) ___-____');

Once this CHECK condition is in place, if you attempt to set a Phone value to 9835, for example, the change
is not allowed.

Example 2
You can ensure that the entry matches one of a limited number of values. For example, to ensure that a City
column only contains one of a certain number of allowed cities (such as those cities where the organization
has offices), you could use a constraint such as:

Ensuring data integrity

92 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ALTER TABLE Customers
ALTER City
CHECK (City IN ('city_1', 'city_2', 'city_3'));

By default, string comparisons are case insensitive unless the database is explicitly created as a case-sensitive
database.

Example 3
You can ensure that a date or number falls in a particular range. For example, you may require that the
StartDate of an employee be between the date the organization was formed and the current date using the
following constraint:

ALTER TABLE Employees
ALTER StartDate
CHECK (StartDate BETWEEN '1983/06/27'
 AND CURRENT DATE);

You can use several date formats. The YYYY/MM/DD format in this example has the virtue of always being
recognized regardless of the current option settings.

Using CHECK constraints on tables
A CHECK condition applied as a constraint on the table typically ensures that two values in a row being
added or modified have a proper relation to each other.

When you give a name to the constraint, the constraint is held individually in the system tables, and you can
replace or drop them individually. Since this is more flexible behavior, it is recommended that you either
name a CHECK constraint or use an individual column constraint wherever possible.

For example, you can add a constraint on the Employees table to ensure that the TerminationDate is always
later than, or equal to, the StartDate:

ALTER TABLE Employees
 ADD CONSTRAINT valid_term_date
 CHECK(TerminationDate >= StartDate);

For more information, see “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference].

Inheriting column CHECK constraints from domains
You can attach CHECK constraints to domains. Columns defined on those domains inherit the CHECK
constraints. A CHECK constraint explicitly specified for the column overrides that from the domain. For
example, the CHECK clause in this domain definition requires that values inserted into columns only be
positive integers.

CREATE DATATYPE posint INT
CHECK (@col > 0);

Any column defined using the posint domain accepts only positive integers unless the column itself has a
CHECK constraint explicitly specified. Since any variable prefixed with the @ sign is replaced by the name

Using table and column constraints

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 93

of the column when the CHECK constraint is evaluated, any variable name prefixed with @ could be used
instead of @col.

An ALTER TABLE statement with the DELETE CHECK clause drops all CHECK constraints from the
table definition, including those inherited from domains.

Any changes made to a constraint in a domain definition (after a column is defined on that domain) are not
applied to the column. The column gets the constraints from the domain when it is created, but there is no
further connection between the two.

See also
● “Domains” [SQL Anywhere Server - SQL Reference]
● “Using CHECK constraints on columns” on page 92

Managing constraints
In Sybase Central, you add, alter, and drop column constraints on the Constraints tab of the table or Column
Properties window.

To manage constraints (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, double-click Tables.

3. Click the table you want to alter.

4. In the right pane, click the Constraints tab and modify an existing constraint or add a new constraint.

Managing UNIQUE constraints
For a column, a UNIQUE constraint specifies that the values in the column must be unique. For a table, the
UNIQUE constraint identifies one or more columns that identify unique rows in the table. No two rows in
the table can have the same values in all the named column(s). A table can have more than one UNIQUE
constraint.

To manage unique constraints (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, double-click Tables.

3. Click the table you want to alter.

4. In the right pane, click the Constraints tab.

5. Right-click in the Constraints tab and choose New » Unique Constraint.

6. Complete the instructions in the Create Unique Constraint Wizard.

Ensuring data integrity

94 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Altering and dropping CHECK constraints
Altering tables can interfere with other users of the database. Although you can execute the ALTER TABLE
statement while other connections are active, you cannot execute the ALTER TABLE statement if any other
connection is using the table you want to alter. For large tables, ALTER TABLE is a time-consuming
operation, and all other requests referencing the table being altered are prohibited while the statement is
processing. See “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference].

There are several ways to alter the existing set of CHECK constraints on a table.

● You can add a new CHECK constraint to the table or to an individual column.

● You can drop a CHECK constraint on a column by setting it to NULL. For example, the following
statement removes the CHECK constraint on the Phone column in the Customers table:

ALTER TABLE Customers
ALTER Phone CHECK NULL;

● You can replace a CHECK constraint on a column in the same way as you would add a CHECK constraint.
For example, the following statement adds or replaces a CHECK constraint on the Phone column of the
Customers table:

ALTER TABLE Customers
ALTER Phone
CHECK (Phone LIKE '___-___-____');

● You can alter a CHECK constraint defined on the table:

○ You can add a new CHECK constraint using ALTER TABLE with an ADD table-constraint clause.

○ If you have defined constraint names, you can alter individual constraints.

○ If you have not defined constraint names, you can drop all existing CHECK constraints (including
column CHECK constraints and CHECK constraints inherited from domains) using ALTER TABLE
DELETE CHECK, and then add in new CHECK constraints.

To use the ALTER TABLE statement with the DELETE CHECK clause:

ALTER TABLE table-name
DELETE CHECK;

Sybase Central lets you add, alter and drop both table and column CHECK constraints. For more information,
see “Managing constraints” on page 94.

Dropping a column from a table does not drop CHECK constraints associated with the column held in the
table constraint. Not removing the constraints produces a column not found error message upon any
attempt to insert, or even just query, data in the table.

Note
Table CHECK constraints fail if a value of FALSE is returned. If the condition returns a value of UNKNOWN
the behavior is as though it returned TRUE, and the value is allowed.

Using table and column constraints

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 95

Using domains
A domain is a user-defined data type that, together with other attributes, can restrict the range of acceptable
values or provide defaults. A domain extends one of the built-in data types. Normally, the range of
permissible values is restricted by a check constraint. In addition, a domain can specify a default value and
may or may not allow NULLs.

Defining your own domains provides many benefits including:

● Preventing common errors if inappropriate values are entered. A constraint placed on a domain ensures
that all columns and variables intended to hold values in a range or format can hold only the intended
values. For example, a data type can ensure that all credit card numbers typed into the database contain
the correct number of digits.

● Making the applications and the structure of a database easier to understand.

● Convenience. For example, you may intend that all table identifiers are positive integers that, by default,
auto-increment. You could enforce this restriction by entering the appropriate constraints and defaults
each time you define a new table, but it is less work to define a new domain, then simply state that the
identifier can take only values from the specified domain.

For more information about domains, see “SQL data types” [SQL Anywhere Server - SQL Reference].

Creating domains (Sybase Central)
You can use Sybase Central to create a domain or assign it to a column.

To create a new domain (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, right-click Domains and choose New » Domain.

3. Follow the instructions in the Create Domain Wizard.

To assign a domain to a column (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, double-click Tables.

3. Click the table.

4. In the right pane, click the Columns tab.

5. Select a column and in the Data Type field click the ellipsis (three dots) button.

6. Click the Data Type tab and select Domain.

7. In the Domain list, select a domain.

8. Click OK.

Ensuring data integrity

96 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Creating domains (SQL)
You can use the CREATE DOMAIN statement to create and define domains. See “CREATE DOMAIN
statement” [SQL Anywhere Server - SQL Reference].

Some pre-defined domains are included with SQL Anywhere. For example, the monetary domain MONEY.

To create a new domain (SQL)

1. Connect to a database.

2. Execute a CREATE DOMAIN statement.

Example 1: Simple domains
Some columns in the database are used for employee names and others to store addresses. You might then
define the following domains.

CREATE DOMAIN persons_name CHAR(30)
CREATE DOMAIN street_address CHAR(35);

Having defined these domains, you can use them much as you would the built-in data types. For example,
you can use these definitions to define a table, as follows.

CREATE TABLE Customers (
 ID INT DEFAULT AUTOINCREMENT PRIMARY KEY,
 Name persons_name,
 Street street_address);

Example 2: Default values, check constraints, and identifiers
In the above example, the table's primary key is specified to be of type integer. Indeed, many of your tables
may require similar identifiers. Instead of specifying that these are integers, it is much more convenient to
create an identifier domain for use in these applications.

When you create a domain, you can specify a default value and provide check constraint to ensure that no
inappropriate values are typed into any column of this type.

Integer values are commonly used as table identifiers. A good choice for unique identifiers is to use positive
integers. Since such identifiers are likely to be used in many tables, you could define the following domain.

CREATE DOMAIN identifier UNSIGNED INT
DEFAULT AUTOINCREMENT;

Using this definition, you can rewrite the definition of the Customers table, shown above.

CREATE TABLE Customers2 (
 ID identifier PRIMARY KEY,
 Name persons_name,
 Street street_address
);

Using domains

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 97

Dropping domains
You can use either Sybase Central or a DROP DOMAIN statement to drop a domain.

Only a user with DBA authority or the user who created a domain can drop it. In addition, since a domain
cannot be dropped if any variable or column in the database uses the domain, you need to first drop any
columns or variables of that type before you can drop the domain.

To drop a domain (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, double-click Domains.

3. In the right pane, right-click the domain and choose Delete.

4. Click Yes.

To drop a domain (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a DROP DOMAIN statement.

Example
The following statement drops the persons_name domain.

DROP DOMAIN persons_name;

For more information, see “DROP DOMAIN statement” [SQL Anywhere Server - SQL Reference].

Ensuring data integrity

98 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Enforcing entity and referential integrity
The relational structure of the database enables the database server to identify information within the
database, and ensures that all the rows in each table uphold the relationships between tables (described in
the database schema).

Enforcing entity integrity
When a user inserts or updates a row, the database server ensures that the primary key for the table is still
valid: that each row in the table is uniquely identified by the primary key.

Example 1
The Employees table in the SQL Anywhere sample database uses an employee ID as the primary key. When
you add a new employee to the table, the database server checks that the new employee ID value is unique
and is not NULL.

Example 2
The SalesOrderItems table in the SQL Anywhere sample database uses two columns to define a primary
key.

This table holds information about items ordered. One column contains an ID specifying an order, but there
may be several items on each order, so this column by itself cannot be a primary key. An additional LineID
column identifies which line corresponds to the item. The columns ID and LineID, taken together, specify
an item uniquely, and form the primary key.

If a client application breaches entity integrity
Entity integrity requires that each value of a primary key be unique within the table, and that no NULL values
exist. If a client application attempts to insert or update a primary key value, providing values that are not
unique would breach entity integrity. A breach in entity integrity prevents the new information from being
added to the database, and instead sends the client application an error.

The application programmer should decide how to present an integrity breach to the user and enable them
to take appropriate action. The appropriate action is usually as simple as asking the user to provide a different,
unique value for the primary key.

Primary keys enforce entity integrity
Once you specify the primary key for each table, maintaining entity integrity requires no further action by
either client application developers or by the database administrator.

The table owner defines the primary key for a table when they create it. If they modify the structure of a
table at a later date, they can also redefine the primary key.

For more information about creating primary keys, see “Managing primary keys” on page 24.

Enforcing entity and referential integrity

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 99

For the detailed syntax of the CREATE TABLE statement, see “CREATE TABLE statement” [SQL
Anywhere Server - SQL Reference].

For information about changing table structure, see “ALTER TABLE statement” [SQL Anywhere Server -
SQL Reference].

Enforcing referential integrity
A foreign key (made up of a particular column or combination of columns) relates the information in one
table (the foreign table) to information in another (referenced or primary) table. For the foreign key
relationship to be valid, the entries in the foreign key must correspond to the primary key values of a row in
the referenced table. Occasionally, some other unique column combination may be referenced instead of a
primary key.

Example 1
The SQL Anywhere sample database contains an Employees table and a Departments table. The primary
key for the Employees table is the employee ID, and the primary key for the Departments table is the
department ID. In the Employees table, the department ID is called a foreign key for the Departments table
because each department ID in the Employees table corresponds exactly to a department ID in the
Departments table.

The foreign key relationship is a many-to-one relationship. Several entries in the Employees table have the
same department ID entry, but the department ID is the primary key for the Departments table, and so is
unique. If a foreign key could reference a column in the Departments table containing duplicate entries, or
entries with a NULL value, there would be no way of knowing which row in the Departments table is the
appropriate reference. This is a mandatory foreign key.

Example 2
Suppose the database also contained an office table listing office locations. The Employees table might have
a foreign key for the office table that indicates which city the employee's office is in. The database designer
can choose to leave an office location unassigned at the time the employee is hired, for example, either
because they haven't been assigned to an office yet, or because they don't work out of an office. In this case,
the foreign key can allow NULL values, and is optional.

Foreign keys enforce referential integrity
Like primary keys, you use the CREATE TABLE or ALTER TABLE statements to create foreign keys.
Once you create a foreign key, the column or columns in the key can contain only values that are present as
primary key values in the table associated with the foreign key.

For more information about creating foreign keys, see “Managing primary keys” on page 24.

Ensuring data integrity

100 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Losing referential integrity
Your database can lose referential integrity if someone:

● Updates or drops a primary key value. All the foreign keys referencing that primary key would become
invalid.

● Adds a new row to the foreign table, and enters a value for the foreign key that has no corresponding
primary key value. The database would become invalid.

SQL Anywhere provides protection against both types of integrity loss.

If a client application breaches referential integrity
If a client application updates or deletes a primary key value in a table, and if a foreign key references that
primary key value elsewhere in the database, there is a danger of a breach of referential integrity.

Example
If the server allowed the primary key to be updated or dropped, and made no alteration to the foreign keys
that referenced it, the foreign key reference would be invalid. Any attempt to use the foreign key reference,
for example in a SELECT statement using a KEY JOIN clause, would fail, as no corresponding value in the
referenced table exists.

While SQL Anywhere handles breaches of entity integrity in a generally straightforward fashion by simply
refusing to enter the data and returning an error message, potential breaches of referential integrity become
more complicated. You have several options (known as referential integrity actions) available to help you
maintain referential integrity.

Referential integrity actions
Maintaining referential integrity when updating or deleting a referenced primary key can be as simple as
disallowing the update or drop. Often, however, it is also possible to take a specific action on each foreign
key to maintain referential integrity. The CREATE TABLE and ALTER TABLE statements allow database
administrators and table owners to specify what action to take on foreign keys that reference a modified
primary key when a breach occurs.

You can specify each of the available referential integrity actions separately for updates and drops of the
primary key:

● RESTRICT Generates an error and prevents the modification if an attempt to alter a referenced primary
key value occurs. This is the default referential integrity action.

● SET NULL Sets all foreign keys that reference the modified primary key to NULL.

● SET DEFAULT Sets all foreign keys that reference the modified primary key to the default value for
that column (as specified in the table definition).

Enforcing entity and referential integrity

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 101

● CASCADE When used with ON UPDATE, this action updates all foreign keys that reference the
updated primary key to the new value. When used with ON DELETE, this action deletes all rows
containing foreign keys that reference the deleted primary key.

System triggers implement referential integrity actions. The trigger, defined on the primary table, is executed
using the permissions of the owner of the secondary table. This behavior means that cascaded operations
can take place between tables with different owners, without additional permissions having to be granted.

Referential integrity checking
For foreign keys defined to RESTRICT operations that would violate referential integrity, default checks
occur at the time a statement executes. If you specify a CHECK ON COMMIT clause, then the checks occur
only when the transaction is committed.

Using a database option to control check time
Setting the wait_for_commit database option controls the behavior when a foreign key is defined to restrict
operations that would violate referential integrity. The CHECK ON COMMIT clause can override this
option.

With the default wait_for_commit set to Off, operations that would leave the database inconsistent cannot
execute. For example, an attempt to DELETE a department that still has employees in it is not allowed. The
following statement gives an error:

DELETE FROM Departments
WHERE DepartmentID = 200;

Setting wait_for_commit to On causes referential integrity to remain unchecked until a commit executes. If
the database is in an inconsistent state, the database disallows the commit and reports an error. In this mode,
a database user could drop a department with employees in it, however, the user cannot commit the change
to the database until they:

● Delete or reassign the employees belonging to that department.

● Insert the DepartmentID row back into the Departments table.

● Roll back the transaction to undo the DELETE operation.

Integrity checks on INSERT
SQL Anywhere performs integrity checks when executing INSERT statements. For example, suppose you
attempt to create a department, but supply a DepartmentID value that is already in use:

INSERT
INTO Departments (DepartmentID, DepartmentName, DepartmentHeadID)
VALUES (200, 'Eastern Sales', 902);

The INSERT is rejected because the primary key for the table would no longer be unique. Since the
DepartmentID column is a primary key, duplicate values are not permitted.

Ensuring data integrity

102 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Inserting values that violate relationships
The following statement inserts a new row in the SalesOrders table, but incorrectly supplies a
SalesRepresentative ID that does not exist in the Employees table.

INSERT
INTO SalesOrders (ID, CustomerID, OrderDate, SalesRepresentative)
VALUES (2700, 186, '2000-10-19', 284);

There is a one-to-many relationship between the Employees table and the SalesOrders table, based on the
SalesRepresentative column of the SalesOrders table and the EmployeeID column of the Employees table.
Only after a record in the primary table (Employees) has been entered can a corresponding record in the
foreign table (SalesOrders) be inserted.

Foreign keys

The primary key for the Employees table is the employee ID number. The sales rep ID number in the
SalesRepresentative table is a foreign key for the Employees table, meaning that each sales rep number in
the SalesOrders table must match the employee ID number for some employee in the Employees table.

When you try to add an order for sales rep 284 you get an error message similar to the following: No
primary key value for foreign key 'FK_SalesRepresentative_EmployeeID' in
table 'SalesOrders'
There isn't an employee in the Employees table with that ID number. This prevents you from inserting orders
without a valid sales representative ID.

See also
● “Relations between tables” [SQL Anywhere 11 - Introduction]

Integrity checks on DELETE or UPDATE
Foreign key errors can also arise when performing update or delete operations. For example, suppose you
try to remove the R&D department from the Departments table. The DepartmentID field, being the primary
key of the Departments table, constitutes the ONE side of a one-to-many relationship (the DepartmentID
field of the Employees table is the corresponding foreign key, and forms the MANY side). A record on the
ONE side of a relationship may not be deleted until all corresponding records on the MANY side are deleted.

Referential integrity error on DELETE

Suppose you attempt to delete the R&D department (DepartmentID 100) in the Departments table. An error
is reported indicating that there are other records in the database that reference the R&D department, and
the delete operation is not performed. To remove the R&D department, you need to first get rid of all
employees in that department, as follows:

DELETE
FROM Employees
WHERE DepartmentID = 100;

Now that you deleted all the employees that belong to the R&D department, you can now delete the R&D
department:

Enforcing entity and referential integrity

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 103

DELETE
FROM Departments
WHERE DepartmentID = 100;

Cancel these changes to the database by entering a ROLLBACK statement:

ROLLBACK;

Referential integrity error on UPDATE
Now, suppose you try to change the DepartmentID field from the Employees table. The DepartmentID field,
being the foreign key of the Employees table, constitutes the MANY side of a one-to-many relationship (the
DepartmentID field of the Departments table is the corresponding primary key, and forms the ONE side).
A record on the MANY side of a relationship may not be changed unless it corresponds to a record on the
ONE side. That is, unless it has a primary key to reference.

For example, the following UPDATE statement causes an integrity error:

UPDATE Employees
SET DepartmentID = 600
WHERE DepartmentID = 100;

The error no primary key value for foreign key
'FK_DepartmentID_DepartmentID' in table 'Employees' is raised because there is no
department with a DepartmentID of 600 in the Departments table.

To change the value of the DepartmentID field in the Employees table, it must correspond to an existing
value in the Departments table. For example:

UPDATE Employees
SET DepartmentID = 300
WHERE DepartmentID = 100;

This statement can be executed because the DepartmentID of 300 corresponds to the existing Finance
department.

Cancel these changes to the database by entering a ROLLBACK statement:

ROLLBACK;

Checking the integrity at commit time
In the previous examples, the integrity of the database was checked as each command was executed. Any
operation that would result in an inconsistent database is not performed.

It is possible to configure the database so that the integrity is not checked until commit time using the
wait_for_commit option. This is useful if you need to make changes that may cause temporary
inconsistencies in the data while the changes are taking place. For example, suppose you want to delete the
R&D department in the Employees and Departments tables. Since these tables reference each other, and
since the deletions must be performed on one table at a time, there will be inconsistencies between the table
during the deletion. In this case, the database cannot perform a COMMIT until the deletion finishes. Set the
wait_for_commit option to On to allow data inconsistencies to exist up until a commit is performed. See
“wait_for_commit option [database]” [SQL Anywhere Server - Database Administration].

You can also define foreign keys in such a way that they are automatically modified to be consistent with
changes made to the primary key. In the above example, if the foreign key from Employees to Departments

Ensuring data integrity

104 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

was defined with ON DELETE CASCADE, then deleting the department ID would automatically delete the
corresponding entries in the Employees table.

In the above cases, there is no way to have an inconsistent database committed as permanent. SQL Anywhere
also supports alternative actions if changes would render the database inconsistent. See “Ensuring data
integrity” on page 79.

Enforcing entity and referential integrity

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 105

Integrity rules in the system tables
All the information about database integrity checks and rules is held in system tables. Use their corresponding
system views as follows to access this information:

System view Description

SYS.SY-
SCON-
STRAINT

Each row in the SYS.SYSCONSTRAINT system view describes a constraint in the da-
tabase. The constraints currently supported include table and column checks, primary
keys, foreign keys, and unique constraints. See “SYSCONSTRAINT system view” [SQL
Anywhere Server - SQL Reference].

For table and column check constraints, the actual CHECK condition is contained in the
SYS.ISYSCHECK system table. See “SYSCHECK system view” [SQL Anywhere Server
- SQL Reference].

SYS.SY-
SCHECK

Each row in the SYS.SYSCHECK system view defines a check constraint listed in the
SYS.SYSCONSTRAINT system view. See “SYSCHECK system view” [SQL Anywhere
Server - SQL Reference].

SYS.SYSF-
KEY

Each row in the SYS.SYSFKEY system view describes a foreign key, including the match
type defined for the key. See “SYSFKEY system view” [SQL Anywhere Server - SQL
Reference].

SYS.SY-
SIDX

Each row in the SYS.SYSIDX system view defines an index in the database. See “SY-
SIDX system view” [SQL Anywhere Server - SQL Reference].

SYS.SY-
STRIGGER

Each row in the SYS.SYSTRIGGER system view describes one trigger in the database,
including triggers that are automatically created for foreign key constraints that have a
referential triggered action (such as ON DELETE CASCADE).

The referential_action column holds a single character indicating whether the action is
cascade (C), delete (D), set null (N), or restrict (R).

The event column holds a single character specifying the event that causes the action to
occur: A=insert and delete, B=insert and update, C=update, D=delete, E=delete and up-
date, I=insert, U=update, M=insert, delete and update.

The trigger_time column shows whether the action occurs after (A) or before (B) the
triggering event. See “SYSTRIGGER system view” [SQL Anywhere Server - SQL Ref-
erence].

Ensuring data integrity

106 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using transactions and isolation levels

Contents
Using transactions ... 109
Introduction to concurrency ... 111
Savepoints within transactions .. 112
Isolation levels and consistency .. 113
Transaction blocking and deadlock ... 128
How locking works ... 132
Choosing isolation levels ... 146
Isolation level tutorials ... 150
Primary key generation and concurrency .. 169
Data definition statements and concurrency ... 170
Summary ... 171

To ensure data integrity, it is essential that you can identify states in which the information in your database
is consistent. The concept of consistency is best illustrated through an example:

Consistency example
Suppose you use your database to handle financial accounts, and you want to transfer money from one client's
account to another. The database is in a consistent state both before and after the money is transferred; but
it is not in a consistent state after you have debited money from one account and before you have credited
it to the second. During a transfer of money, the database is in a consistent state when the total amount of
money in the clients' accounts is as it was before any money was transferred. When the money has been half
transferred, the database is in an inconsistent state. Either both or neither of the debit and the credit must be
processed.

Transactions are logical units of work
A transaction is a logical unit of work. Each transaction is a sequence of logically related commands that
do one task and transform the database from one consistent state into another. The nature of a consistent
state depends on your database.

The statements within a transaction are treated as an indivisible unit: either all are executed or none is
executed. At the end of each transaction, you commit your changes to make them permanent. If for any

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 107

reason some of the commands in the transaction do not process properly, then any intermediate changes are
undone, or rolled back. Another way of saying this is that transactions are atomic.

Grouping statements into transactions is key both to protecting the consistency of your data (even in the
event of media or system failure), and to managing concurrent database operations. Transactions may be
safely interleaved and the completion of each transaction marks a point at which the information in the
database is consistent. You should design each transaction to perform a task that changes your database from
one consistent state to another.

In the event of a system failure or database crash during normal operation, SQL Anywhere performs
automatic recovery of your data when the database is next started. The automatic recovery process recovers
all completed transactions, and rolls back any transactions that were uncommitted when the failure occurred.
The atomic character of transactions ensures that databases are recovered to a consistent state.

For more information about database backups and data recovery, see “Backup and data recovery” [SQL
Anywhere Server - Database Administration].

For more information about concurrent database usage, see “Introduction to concurrency” on page 111.

Using transactions and isolation levels

108 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using transactions
SQL Anywhere expects you to group your commands into transactions. You commit a transaction to make
changes to your database permanent. When you alter data, your alterations are recorded in the transaction
log and are not made permanent until you enter the COMMIT command.

Transactions start with one of the following events:

● The first statement following a connection to a database.

● The first statement following the end of a transaction.

Transactions complete with one of the following events:

● A COMMIT statement makes the changes to the database permanent.

● A ROLLBACK statement undoes all the changes made by the transaction.

● A statement with a side effect of an automatic commit is executed: data definition commands, such as
ALTER, CREATE, COMMENT, and DROP all have the side effect of an automatic commit.

● A disconnection from a database performs an implicit rollback.

● ODBC and JDBC have an autocommit setting that enforces a COMMIT after each statement. By default,
ODBC and JDBC require autocommit to be on, and each statement is a single transaction. If you want
to take advantage of transaction design possibilities, then you should turn autocommit off.

For more information about autocommit, see “Setting autocommit or manual commit mode” [SQL
Anywhere Server - Programming].

● Setting the chained database option to Off is similar to enforcing an autocommit after each statement.
By default, connections that use jConnect or Open Client applications have chained set to Off.

For more information, see “Setting autocommit or manual commit mode” [SQL Anywhere Server -
Programming], and “chained option [compatibility]” [SQL Anywhere Server - Database
Administration].

Options in Interactive SQL

Interactive SQL provides you with two options that let you control when and how transactions end:

● If you set the auto_commit option to On, Interactive SQL automatically commits your results following
every successful statement and automatically performs a ROLLBACK after each failed statement. See
“auto_commit option [Interactive SQL]” [SQL Anywhere Server - Database Administration].

● The setting of the option commit_on_exit controls what happens to uncommitted changes when you exit
Interactive SQL. If this option is set to On (the default), Interactive SQL does a COMMIT; otherwise,
it undoes your uncommitted changes with a ROLLBACK statement. See “commit_on_exit option
[Interactive SQL]” [SQL Anywhere Server - Database Administration].

Using transactions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 109

Using a data source in Interactive SQL
By default, ODBC operates in autocommit mode. Even if you have set the auto_commit option to Off in
Interactive SQL, ODBC's setting will override Interactive SQL's. You can change ODBC's setting using the
SQL_ATTR_AUTOCOMMIT connection attribute. ODBC autocommit is independent of the chained
option.

SQL Anywhere also supports Transact-SQL commands, such as BEGIN TRANSACTION, for compatibility
with Sybase Adaptive Server Enterprise. For more information, see “Transact-SQL
Compatibility” on page 658.

Determining when a transaction began
The TransactionStartTime database property returns the time the database was first modified after a
COMMIT or ROLLBACK. You can use this property to find the start time of the earliest transaction for all
active connections. For example:

BEGIN
 DECLARE connid int;
 DECLARE earliest char(50);
 DECLARE connstart char(50);
 SET connid=next_connection(null);
 SET earliest = NULL;
 lp: LOOP
 IF connid IS NULL THEN LEAVE lp END IF;
 SET connstart = CONNECTION_PROPERTY('TransactionStartTime',connid);
 IF connstart <> '' THEN
 IF earliest IS NULL
 OR CAST(connstart AS TIMESTAMP) < CAST(earliest AS TIMESTAMP) THEN
 SET earliest = connstart;
 END IF;
 END IF;
 SET connid=next_connection(connid);
 END LOOP;
 SELECT earliest
END

Using transactions and isolation levels

110 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Introduction to concurrency
Concurrency is the ability of the database server to process multiple transactions at the same time. Were it
not for special mechanisms within the database server, concurrent transactions could interfere with each
other to produce inconsistent and incorrect information. For example, a database system in a department
store must allow many clerks to update customer accounts concurrently. Each clerk must be able to update
the status of the accounts as they assist each customer: they cannot afford to wait until no one else is using
the database.

Who needs to know about concurrency
Concurrency is a concern to all database administrators and developers. Even if you are working with a
single-user database, you must be concerned with concurrency if you want to process requests from multiple
applications or even from multiple connections from a single application. These applications and connections
can interfere with each other in exactly the same way as multiple users in a network setting.

Transaction size affects concurrency
The way you group SQL statements into transactions can have significant effects on data integrity and on
system performance. If you make a transaction too short and it does not contain an entire logical unit of
work, then inconsistencies can be introduced into the database. If you write a transaction that is too long and
contains several unrelated actions, then there is a greater chance that a ROLLBACK will unnecessarily undo
work that could have been committed quite safely into the database.

If your transactions are long, they can lower concurrency by preventing other transactions from being
processed concurrently.

There are many factors that determine the appropriate length of a transaction, depending on the type of
application and the environment.

To learn more about running concurrent SQL Anywhere database servers, see “Introduction to running SQL
Anywhere database servers” [SQL Anywhere Server - Database Administration].

Introduction to concurrency

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 111

Savepoints within transactions
You can identify important states within a transaction and return to them selectively using savepoints to
separate groups of related statements.

A SAVEPOINT statement defines an intermediate point during a transaction. You can undo all changes after
that point using a ROLLBACK TO SAVEPOINT statement. Once a RELEASE SAVEPOINT statement
has been executed or the transaction has ended, you can no longer use the savepoint. Note that savepoints
do not have an effect on COMMITs. When a COMMIT is executed, all changes within the transaction are
made permanent in the database.

No locks are released by the RELEASE SAVEPOINT or ROLLBACK TO SAVEPOINT commands: locks
are released only at the end of a transaction.

Naming and nesting savepoints
Using named, nested savepoints, you can have many active savepoints within a transaction. Changes between
a SAVEPOINT and a RELEASE SAVEPOINT can be canceled by rolling back to a previous savepoint or
rolling back the transaction itself. Changes within a transaction are not a permanent part of the database until
the transaction is committed. All savepoints are released when a transaction ends.

Savepoints cannot be used in bulk operations mode. There is very little additional overhead in using
savepoints.

Using transactions and isolation levels

112 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Isolation levels and consistency
SQL Anywhere allows you to control the degree to which the operations in one transaction are visible to the
operations in other concurrent transactions. You do so by setting a database option called the isolation
level.

SQL Anywhere also allows you to control the isolation levels of individual tables in a query with
corresponding table hints. See “FROM clause” [SQL Anywhere Server - SQL Reference].

SQL Anywhere provides the following isolation levels:

This iso-
lation lev-
el...

Has these characteristics...

0—read
uncom-
mitted

● Read permitted on row with or without write lock

● No read locks are applied

● No guarantee that concurrent transaction will not modify row or roll back changes to
row

● Corresponds to table hints NOLOCK and READUNCOMMITTED

● Allow dirty reads, non-repeatable reads, and phantom rows

1—read
commit-
ted

● Read only permitted on row with no write lock

● Read lock acquired and held for read on current row only, but released when cursor
moves off the row

● No guarantee that data will not change during transaction

● Corresponds to table hint READCOMMITTED

● Prevent dirty reads

● Allow non-repeatable reads and phantom rows

2—re-
peatable
read

● Read only permitted on row with no write lock

● Read lock acquired as each row in the result set is read, and held until transaction ends

● Corresponds to table hint REPEATABLEREAD

● Prevent dirty reads and non-repeatable reads

● Allow phantom rows

3—serial-
izable

● Read only permitted on rows in result without write lock

● Read locks acquired when cursor is opened and held until transaction ends

● Corresponds to table hints HOLDLOCK and SERIALIZABLE

● Prevent dirty reads, non-repeatable reads, and phantom rows

Isolation levels and consistency

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 113

This iso-
lation lev-
el...

Has these characteristics...

snapshot1 ● No read locks are applied

● Read permitted on any row

● Database snapshot of committed data is taken when the first row is read or updated by
the transaction

state-
ment-
snapshot1

● No read locks are applied

● Read permitted on any row

● Database snapshot of committed data is taken when the first row is read by the statement

readonly-
state-
ment-
snapshot1

● No read locks are applied

● Read permitted on any row

● Database snapshot of committed data is taken when the first row is read by a read-only
statement

● Uses the isolation level (0, 1, 2, or 3) specified by the updatable_statement_isolation
option for an updatable statement

1 Snapshot isolation must be enabled for the database by setting the allow_snapshot_isolation option to On
for the database. See “Enabling snapshot isolation” on page 117.

The default isolation level is 0, except for Open Client, jConnect, and TDS connections, which have a default
isolation level of 1.

For information about MobiLink isolation levels, see “MobiLink isolation levels” [MobiLink - Server
Administration].

Lock-based isolation levels prevent some or all interference. Level 3 provides the highest level of isolation.
Lower levels allow more inconsistencies, but typically have better performance. Level 0 (read uncommitted)
is the default setting.

The snapshot isolation levels prevent all interference between reads and writes. However, writes can still
interfere with each other. Few inconsistences are possible and contention performance is the same as isolation
level 0. Performance not related to contention is worse because of the need to save and use row versions.

Notes
All isolation levels guarantee that each transaction executes completely or not at all, and no updates are lost.

The isolation is between transactions only: multiple cursors within the same transaction can interfere with
each other.

Using transactions and isolation levels

114 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Snapshot isolation
Blocks and deadlocks can occur when users are reading and writing the same data simultaneously. Snapshot
isolation is designed to improve concurrency and consistency by maintaining different versions of data.
When you use snapshot isolation in a transaction, the database server returns a committed version of the data
in response to any read requests. It does this without acquiring read locks, and prevents interference with
users who are writing data.

A snapshot is a set of data that has been committed in the database. When using snapshot isolation, all
queries within a transaction use the same set of data. No locks are acquired on database tables, which allows
other transactions to access and modify the data without blocking. SQL Anywhere supports three snapshot
isolation levels that let you control when a snapshot is taken:

● snapshot Use a snapshot of committed data from the time when the first row is read, inserted, updated,
or deleted by the transaction.

● statement-snapshot Use a snapshot of committed data from the time when the first row is read by
the statement. Each statement within the transaction sees a snapshot of data from a different time.

● readonly-statement-snapshot For read-only statements, use a snapshot of committed data from
the time when the first row is read. Each read-only statement within the transaction sees a snapshot of
data from a different time. For insert, update, and delete statements, use the isolation level specified by
the updatable_statement_isolation option (can be one of 0 (the default), 1, 2, or 3).

You also have the option of specifying when the snapshot starts for a transaction by using the BEGIN
SNAPSHOT statement. See “BEGIN SNAPSHOT statement” [SQL Anywhere Server - SQL Reference].

Snapshot isolation is often useful, such as:

● Applications that perform many reads and few updates Snapshot transactions acquire write
locks only for statements that modify the database. If a transaction is performing mainly read operations,
then the snapshot transaction does not acquire read locks that could interfere with other users'
transactions.

● Applications that perform long-running transactions while other users need to access
data Snapshot transactions do not acquire read locks, which makes data available to other users for
reading and updating while the snapshot transaction takes place.

● Applications that must read a consistent set of data from the database Because a snapshot
shows a committed set of data from a specific point in time, you can use snapshot isolation to see
consistent data that does not change throughout the transaction, even if other users are making changes
to the data while your transaction is running.

Snapshot isolation only affects base tables and global temporary tables that are shared by all users. A read
operation on any other table type never sees an old version of the data, and never initiates a snapshot. The
only time where an update to another table type initiates a snapshot is if the isolation_level option is set to
snapshot, and the update initiates a transaction.

Isolation levels and consistency

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 115

The following statements cannot be executed when there are cursors opened with the WITH HOLD clause
that use either statement or transaction snapshots:

● ALTER INDEX
● ALTER TABLE
● CREATE INDEX
● DROP INDEX
● REFRESH MATERIALIZED VIEW
● REORGANIZE TABLE
● CREATE TEXT INDEX
● REFRESH TEXT INDEX

When opening cursors with the WITH HOLD clause, a snapshot of all rows committed at the snapshot start
time is visible. Also visible are all modifications completed by the current connection since the start of the
transaction within which the cursor was opened.

TRUNCATE TABLE is allowed only when a fast truncation is not performed because in this case, individual
DELETEs are then recorded in the transaction log. See “TRUNCATE statement” [SQL Anywhere Server -
SQL Reference].

In addition, if any of these statements are performed from a non-snapshot transaction, then snapshot
transactions that are already in progress that subsequently try to use the table return an error indicating that
the schema has changed.

Materialized view matching avoids using a view if it was refreshed after the start of the snapshot for a
transaction.

Snapshot isolation levels are supported in all programming interfaces. You can set the isolation level using
the SET OPTION statement. For information about using snapshot isolation, see:

● “isolation_level option [database] [compatibility]” [SQL Anywhere Server - Database Administration]
● ADO and OLE DB: “Using transactions” [SQL Anywhere Server - Programming]
● ADO.NET: “IsolationLevel property” [SQL Anywhere Server - Programming]

Row versions

When snapshot isolation is enabled for a database, each time a row is updated, the database server adds a
copy of the original row to the version stored in the temporary file. The original row version entries are
stored until all the active snapshot transactions complete that might need access to the original row values.
A transaction using snapshot isolation sees only committed values, so if the update to a row was not
committed or rolled back before a snapshot transaction began, the snapshot transaction needs to be able to
access the original row value. This allows transactions using snapshot isolation to view data without placing
any locks on the underlying tables.

The VersionStorePages database property returns the number of pages in the temporary file that are currently
being used for the version store. To obtain this value, execute the following query:

SELECT DB_PROPERTY ('VersionStorePages');

Using transactions and isolation levels

116 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Old row version entries are removed when they are no longer needed. Old versions of BLOBs are stored in
the original table, not the temporary file, until they are no longer required, and index entries for old row
versions are stored in the original index until they are not required.

You can retrieve the amount of free space in the temporary file using the sa_disk_free_space system
procedure. See “sa_disk_free_space system procedure” [SQL Anywhere Server - SQL Reference].

If a trigger is fired that updates row values, the original values of those rows are also stored in the temporary
file.

Designing your application to use shorter transactions and shorter snapshots reduces temporary file space
requirements.

If you are concerned about temporary file growth, you can set up a GrowTemp system event that specifies
the actions to take when the temporary file reaches a specific size. See “Understanding system events” [SQL
Anywhere Server - Database Administration].

Understanding snapshot transactions

Snapshot transactions acquire write locks on updates, but read locks are never acquired for a transaction or
statement that uses a snapshot. As a result, readers never block writers and writers never block readers, but
writers can block writers if they attempt to update the same rows.

Note that for the purposes of snapshot isolation, a transaction does not begin with a BEGIN TRANSACTION
statement. Rather, it begins with the first read, insert, update, or delete within the transaction, depending on
the snapshot isolation level being used for the transaction. The following example shows when a transaction
begins for snapshot isolation:

SET OPTION PUBLIC.allow_snapshot_isolation = 'On';
 SET TEMPORARY OPTION isolation_level = 'snapshot';
 SELECT * FROM Products; --transaction begins and the statement only
 --sees changes that are already committed
 INSERT INTO Products
 SELECT ID + 30, Name, Description,
 'Extra large', Color, 50, UnitPrice, NULL
 FROM Products
 WHERE Name = 'Tee Shirt';
COMMIT; --transaction ends

Enabling snapshot isolation
Snapshot isolation is enabled or disabled for a database using the allow_snapshot_isolation option. When
the option is set to On, row versions are maintained in the temporary file, and connections are allowed to
use any of the snapshot isolation levels. When this option is set to Off, any attempt to use snapshot isolation
results in an error.

Enabling a database to use snapshot isolation can affect performance because copies of all modified rows
must be maintained, regardless of the number of transactions that use snapshot isolation. See “Cursor
sensitivity and isolation levels” [SQL Anywhere Server - Programming].

The following statement enables snapshot isolation for a database:

SET OPTION PUBLIC.allow_snapshot_isolation = 'On';

Isolation levels and consistency

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 117

The setting of the allow_snapshot_isolation option can be changed, even when there are users connected to
the database. When you change the setting of this option from Off to On, all current transactions must
complete before new transactions can use snapshot isolation. When you change the setting of this option
from On to Off, all outstanding transactions using snapshot isolation must complete before the database
server stops maintaining row version information.

You can view the current snapshot isolation setting for a database by querying the value of the
SnapshotIsolationState database property:

SELECT DB_PROPERTY ('SnapshotIsolationState');

The SnapshotIsolationState property has one of the following values:

● On Snapshot isolation is enabled for the database.

● Off Snapshot isolation is disabled for the database.

● in_transition_to_on Snapshot isolation will be enabled once the current transactions complete.

● in_transition_to_off Snapshot isolation will be disabled once the current transactions complete.

When snapshot isolation is enabled for a database, row versions must be maintained for a transaction until
the transaction commits or rolls back, even if snapshots are not being used. Therefore, it is best to set the
allow_snapshot_isolation option to Off if snapshot isolation is never used.

Snapshot isolation example
The following example uses two connections to the SQL Anywhere sample database to illustrate how
snapshot isolation can be used to maintain consistency without blocking.

To use snapshot isolation

1. Execute the following command to create an Interactive SQL connection (Connection1), to the SQL
Anywhere sample database:

dbisql -c "DSN=SQL Anywhere 11
Demo;UID=DBA;PWD=sql;ConnectionName=Connection1"

2. Execute the following command to create an Interactive SQL connection (Connection2) to the SQL
Anywhere sample database:

dbisql -c "DSN=SQL Anywhere 11
Demo;UID=DBA;PWD=sql;ConnectionName=Connection2"

3. In Connection1, execute the following command to set the isolation level to 1 (read committed), which
acquires and holds a read lock on the current row.

SET OPTION isolation_level = 1;
4. In Connection1, execute the following command:

SELECT * FROM Products;

Using transactions and isolation levels

118 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ID Name Description Size Color Quantity ...

300 Tee Shirt Tank Top Small White 28 ...

301 Tee Shirt V-neck Medium Orange 54 ...

302 Tee Shirt Crew Neck One size fits all Black 75 ...

400 Baseball Cap Cotton Cap One size fits all Black 112 ...

...

5. In Connection2, execute the following command:

UPDATE Products
SET Name = 'New Tee Shirt'
WHERE ID = 302;

6. In Connection1, execute the SELECT statement again:

SELECT * FROM Products;

The SELECT statement is blocked and cannot proceed because the UPDATE statement in Connection2
has not been committed or rolled back. The SELECT statement must wait until the transaction in
Connection2 is complete before it can proceed. This ensures that the SELECT statement does not read
uncommitted data into its result.

7. In Connection2, execute the following command:

ROLLBACK;

The transaction in Connection2 completes, and the SELECT statement in Connection1 proceeds.

8. Using the statement snapshot isolation level achieves the same concurrency as isolation level 1, but
without blocking.

In Connection1, execute the following command to allow snapshot isolation:

SET OPTION PUBLIC.allow_snapshot_isolation = 'On';
9. In Connection 1, execute the following command to change the isolation level to statement snapshot:

SET TEMPORARY OPTION isolation_level = 'statement-snapshot';
10. In Connection1, execute the following statement:

SELECT * FROM Products;
11. In Connection2, execute the following statement:

UPDATE Products
SET Name = 'New Tee Shirt'
WHERE ID = 302;

12. In Connection1, issue the SELECT statement again:

SELECT * FROM Products;

Isolation levels and consistency

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 119

The SELECT statement executes without being blocked, but does not include the data from the UPDATE
statement executed by Connection2.

13. In Connection2, finish the transaction by executing the following command:

COMMIT;
14. In Connection1, finish the transaction (the query against the Products table), and then execute the

SELECT statement again to view the updated data:

COMMIT;
SELECT * FROM Products;

ID Name Descrip-
tion

Size Color Quantity ...

300 Tee Shirt Tank Top Small White 28 ...

301 Tee Shirt V-neck Medium Orange 54 ...

302 New Tee
Shirt

Crew Neck One size
fits all

Black 75 ...

400 Baseball
Cap

Cotton Cap One size
fits all

Black 112 ...

...

15. Undo the changes to the SQL Anywhere sample database by executing the following statement:

UPDATE Products
SET Name = 'Tee Shirt'
WHERE id = 302;
COMMIT;

For more examples about using snapshot isolation, see:

● “Using snapshot isolation to avoid dirty reads” on page 152
● “Using snapshot isolation to avoid non-repeatable reads” on page 158
● “Using snapshot isolation to avoid phantom rows” on page 162

Update conflicts and snapshot isolation
With snapshot isolation, an update conflict can occur when a transaction sees an old version of a row and
tries to update or delete it. When this happens, the server gives an error when it detects the conflict. For a
committed change, this is when the update or delete is attempted. For an uncommitted change, the update
or delete blocks and the server returns the error when the change commits.

Update conflicts cannot occur when using readonly-statement-snapshot because updatable statements run
at a non-snapshot isolation, and always see the most recent version of the database. Therefore, the readonly-
statement-snapshot isolation level has many of the benefits of snapshot isolation, without requiring large

Using transactions and isolation levels

120 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

changes to an application originally designed to run at another isolation level. When using the readonly-
statement-snapshot isolation level:

● Read locks are never acquired for read-only statements

● Read-only statements always see a committed state of the database

Typical types of inconsistency
There are three typical types of inconsistency that can occur during the execution of concurrent transactions.
This list is not exhaustive as other types of inconsistencies can also occur. These three types are mentioned
in the ISO SQL/2003 standard and are important because behavior at lower isolation levels is defined in
terms of them.

● Dirty read Transaction A modifies a row, but does not commit or roll back the change. Transaction
B reads the modified row. Transaction A then either further changes the row before performing a
COMMIT, or rolls back its modification. In either case, transaction B has seen the row in a state which
was never committed.

For more information about dirty reads, see “Tutorial: Dirty reads” on page 150.

● Non-repeatable read Transaction A reads a row. Transaction B then modifies or deletes the row and
performs a COMMIT. If transaction A then attempts to read the same row again, the row will have been
changed or deleted.

For more information about non-repeatable reads, see “Tutorial: Non-repeatable reads” on page 154.

● Phantom row Transaction A reads a set of rows that satisfy some condition. Transaction B then
executes an INSERT or an UPDATE on a row which did not previously meet A's condition. Transaction
B commits these changes. These newly committed rows now satisfy Transaction A's condition. If
Transaction A then repeats the read, it obtains the updated set of rows.

For more information about phantom rows, see “Tutorial: Phantom rows” on page 159.

Isolation levels and dirty reads, non-repeatable reads, and phantom rows

SQL Anywhere allows dirty reads, non-repeatable reads, and phantom rows, depending on the isolation level
that is used. An X in the following table indicates that the behavior is allowed for that isolation level.

Isolation level Dirty reads Non-repeatable reads Phantom rows

0-read uncommitted X X X

readonly-statement-snapshot X1 X2 X3

1-read committed X X

statement-snapshot X2 X3

Isolation levels and consistency

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 121

Isolation level Dirty reads Non-repeatable reads Phantom rows

2-repeatable read X

3-serializable

snapshot

1 Dirty reads can occur for updatable statements within a transaction if the isolation level specified by the
updatable_statement_isolation option does not prevent them from occurring.
2 Non-repeatable reads can occur for statements within a transaction if the isolation level specified by the
updatable_statement_isolation option does not prevent them from occurring. Non-repeatable reads can occur
because each statement starts a new snapshot, so one statement may see changes that another statement does
not see.
3 Phantom rows can occur for statements within a transaction if the isolation level specified by the
updatable_statement_isolation option does not prevent them from occurring. Phantom rows can occur
because each statement starts a new snapshot, so one statement may see changes that another statement does
not see.

This table demonstrates two points:

● Each isolation level eliminates one of the three typical types of inconsistencies.

● Each level eliminates the types of inconsistencies eliminated at all lower levels.

● For statement snapshot isolation levels, non-repeatable reads and phantom rows can occur within a
transaction, but not within a single statement in a transaction.

The isolation levels have different names under ODBC. These names are based on the names of the
inconsistencies that they prevent. See “The ValuePtr parameter” on page 124.

Cursor instability
Another significant inconsistency is cursor instability. When this inconsistency is present, a transaction
can modify a row that is being referenced by another transaction's cursor. Cursor stability ensures that
applications using cursors do not introduce inconsistencies into the data in the database.

Example
Transaction A reads a row using a cursor. Transaction B modifies that row and commits. Not realizing that
the row has been modified, Transaction A modifies it.

Eliminating cursor instability
SQL Anywhere provides cursor stability at isolation levels 1, 2, and 3. Cursor stability ensures that no other
transactions can modify information that is contained in the present row of your cursor. The information in
a row of a cursor may be the copy of information contained in a particular table or may be a combination of
data from different rows of multiple tables. More than one table will likely be involved whenever you use
a join or sub-selection within a SELECT statement.

Using transactions and isolation levels

122 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

For information about programming SQL procedures and cursors, see “Using procedures, triggers, and
batches” on page 829.

Cursors are used only when you are using SQL Anywhere through another application. For more information,
see “Using SQL in applications” [SQL Anywhere Server - Programming].

A related but distinct concern for applications using cursors is whether changes to underlying data are visible
to the application. You can control the changes that are visible to applications by specifying the sensitivity
of the cursor.

For more information about cursor sensitivity, see “SQL Anywhere cursors” [SQL Anywhere Server -
Programming].

Set the isolation level
Each connection to the database has its own isolation level. In addition, the database can store a default
isolation level for each user or group. The PUBLIC setting of the isolation_level database option enables
you to set a single default isolation level for the entire database group.

You can also set the isolation level using table hints, but this is an advanced feature that should be used only
when needed. For more information, see the WITH table-hint section in “FROM clause” [SQL Anywhere
Server - SQL Reference].

You can change the isolation of your connection and the default level associated with your user ID by using
the SET OPTION command. If you have permission, you can also change the isolation level for other users
or groups.

If you want to use snapshot isolation, you must first enable snapshot isolation for the database.

For information about enabling and setting snapshot isolation levels, see “Enabling snapshot
isolation” on page 117.

To set the isolation level for the current user

● Execute the SET OPTION statement. For example, the following statement sets the isolation level to 3
for the current user:

SET OPTION isolation_level = 3;

To set the isolation level for a user or group

1. Connect to the database as a user with DBA authority.

2. Execute the SET OPTION statement, adding the name of the group and a period before isolation_level.
For example, the following command sets the default isolation for the PUBLIC group to 3.

SET OPTION PUBLIC.isolation_level = 3;

To set the isolation level just the current connection

● Execute the SET OPTION statement using the TEMPORARY keyword. For example, the following
statement sets the isolation level to 3 for the duration of the current connection:

Isolation levels and consistency

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 123

SET TEMPORARY OPTION isolation_level = 3;

Default isolation level
When you connect to a database, the database server determines your initial isolation level as follows:

1. A default isolation level may be set for each user and group. If a level is stored in the database for your
user ID, then the database server uses it.

2. If not, the database server checks the groups to which you belong until it finds a level. All users are
members of the special group PUBLIC. If it finds no other setting first, then SQL Anywhere uses the
level assigned to that group.

For more information about users and groups, see “Managing user IDs, authorities, and permissions” [SQL
Anywhere Server - Database Administration].

For more information about the SET OPTION statement syntax, see “SET OPTION statement” [SQL
Anywhere Server - SQL Reference].

You may want to change the isolation level mid-transaction if, for example, just one or more tables requires
serialized access. For information about changing the isolation level within a transaction, see “Changing
isolation levels within a transaction” on page 126.

Setting the isolation level from an ODBC-enabled
application

ODBC applications call SQLSetConnectAttr with Attribute set to SQL_ATTR_TXN_ISOLATION and
ValuePtr set according to the corresponding isolation level:

The ValuePtr parameter

ValuePtr Isolation level

SQL_TXN_READ_UNCOMMITTED 0

SQL_TXN_READ_COMMITTED 1

SQL_TXN_REPEATABLE_READ 2

SQL_TXN_SERIALIZABLE 3

SA_SQL_TXN_SNAPSHOT snapshot

SA_SQL_TXN_STATEMENT_SNAPSHOT statement-snapshot

SA_SQL_TXN_READONLY_STATEMENT_SNAPSHOT readonly-statement-snapshot

Using transactions and isolation levels

124 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Changing an isolation level via ODBC
You can change the isolation level of your connection via ODBC using the function SQLSetConnectOption
in the library ODBC32.dll.

The SQLSetConnectOption function takes three parameters: the value of the ODBC connection handle, the
fact that you want to set the isolation level, and the value corresponding to the isolation level. These values
appear in the table below.

String Value

SQL_TXN_ISOLATION 108

SQL_TXN_READ_UNCOMMITTED 1

SQL_TXN_READ_COMMITTED 2

SQL_TXN_REPEATABLE_READ 4

SQL_TXN_SERIALIZABLE 8

SA_SQL_TXN_SNAPSHOT 32

SA_SQL_TXN_STATEMENT_SNAPSHOT 64

SA_SQL_TXN_READONLY_STATEMENT_SNAPSHOT 128

Do not use the SET OPTION statement to change an isolation level from within an ODBC application. Since
the ODBC driver does not parse the statements, execution of any statement in ODBC is not recognized by
the ODBC driver. This could lead to unexpected locking behavior.

Example
The following function call sets the isolation level of the connection MyConnection to isolation level 2:

SQLSetConnectOption(MyConnection.hDbc,
 SQL_TXN_ISOLATION,
 SQL_TXN_REPEATABLE_READ)

ODBC uses the isolation feature to support assorted database lock options. For example, in PowerBuilder
you can use the Lock attribute of the transaction object to set the isolation level when you connect to the
database. The Lock attribute is a string, and is set as follows:

SQLCA.lock = "RU"

The Lock option is honored only at the moment the CONNECT occurs. Changes to the Lock attribute after
the CONNECT have no effect on the connection.

Isolation levels and consistency

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 125

Changing isolation levels within a transaction
Different isolation levels may be suitable for different parts of a single transaction. SQL Anywhere allows
you to change the isolation level of your database in the middle of a transaction.

When you change the isolation_level option in the middle of a transaction, the new setting affects only the
following:

● Any cursors opened after the change

● Any statements executed after the change

You may want to change the isolation level during a transaction to control the number of locks your
transaction places. You may find a transaction needs to read a large table, but perform detailed work with
only a few of the rows. If an inconsistency would not seriously affect your transaction, set the isolation to a
low level while you scan the large table to avoid delaying the work of others.

You may also want to change the isolation level mid-transaction if, for example, just one table or group of
tables requires serialized access.

For an example in which the isolation level is changed in the middle of a transaction, see “Tutorial: Phantom
rows” on page 159.

Note
You can also set the isolation level (levels 0-3 only) using table hints, but this is an advanced feature that
you should use only when needed. For more information, see the WITH table-hint section in “FROM clause”
[SQL Anywhere Server - SQL Reference].

Changing isolation levels when using snapshot isolation

When using snapshot isolation, you can change the isolation level within a transaction. This can be done by
changing the setting of the isolation_level option or by using table hints that affect the isolation level in a
query. You can use statement-snapshot, readonly-statement-snapshot, and isolation levels 0-3 at any time.
However, you cannot use the snapshot isolation level in a transaction if it began at an isolation level other
than snapshot . A transaction is initiated by an update and continues until the next COMMIT or ROLLBACK.
If the first update takes place at some isolation level other than snapshot, then any statement that tries to use
the snapshot isolation level before the transaction commits or rolls back returns error -1065
NON_SNAPSHOT_TRANSACTION. For example:

SET OPTION PUBLIC.allow_snapshot_isolation = 'On';
BEGIN TRANSACTION
 SET OPTION isolation_level = 3;
 INSERT INTO Departments
 (DepartmentID, DepartmentName, DepartmentHeadID)
 VALUES(700, 'Foreign Sales', 129);
 SET TEMPORARY OPTION isolation_level = 'snapshot';
 SELECT * FROM Departments;

Using transactions and isolation levels

126 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Viewing the isolation level
You can inspect the isolation level of the current connection using the CONNECTION_PROPERTY
function.

To view the isolation level for the current connection

● Execute the following statement:

SELECT CONNECTION_PROPERTY('isolation_level');

Isolation levels and consistency

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 127

Transaction blocking and deadlock
When a transaction is being executed, the database server places locks on rows to prevent other transactions
from interfering with the affected rows. Locks control the amount and types of interference permitted.

SQL Anywhere uses transaction blocking to allow transactions to execute concurrently without
interference, or with limited interference. Any transaction can acquire a lock to prevent other concurrent
transactions from modifying or even accessing a particular row. This transaction blocking scheme always
stops some types of interference. For example, a transaction that is updating a particular row of a table always
acquires a lock on that row to ensure that no other transaction can update or delete the same row at the same
time.

Transaction blocking
When a transaction attempts to perform an operation, but is forbidden by a lock held by another transaction,
a conflict arises and the progress of the transaction attempting to perform the operation is impeded.

Sometimes a set of transactions arrive at a state where none of them can proceed. For more information, see
“Deadlock” on page 128.

The blocking option
If two transactions have each acquired a read lock on a single row, the behavior when one of them attempts
to modify that row depends on the setting of the blocking option. To modify the row, that transaction must
block the other, yet it cannot do so while the other transaction has it blocked.

● If the blocking is option is set to On (the default), then the transaction that attempts to write waits until
the other transaction releases its read lock. At that time, the write goes through.

● If the blocking option has been set to Off, then the statement that attempts to write receives an error.

When the blocking option is set to Off, the statement terminates instead of waiting and any partial changes
it has made are rolled back. In this event, try executing the transaction again, later.

Blocking is more likely to occur at higher isolation levels because more locking and more checking is done.
Higher isolation levels usually provide less concurrency. How much less depends on the individual natures
of the concurrent transactions.

For more information about the blocking option, see “blocking option [database]” [SQL Anywhere Server -
Database Administration].

Deadlock
Transaction blocking can lead to deadlock, a situation in which a set of transactions arrive at a state where
none of them can proceed.

Using transactions and isolation levels

128 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Reasons for deadlocks
A deadlock can arise for two reasons:

● A cyclical blocking conflict Transaction A is blocked on transaction B, and transaction B is blocked
on transaction A. Clearly, more time will not solve the problem, and one of the transactions must be
canceled, allowing the other to proceed. The same situation can arise with more than two transactions
blocked in a cycle.

● All active database threads are blocked When a transaction becomes blocked, its database thread
is not relinquished. If the server is configured with three threads and transactions A, B, and C are blocked
on transaction D which is not currently executing a request, then a deadlock situation has arisen since
there are no available threads.

To eliminate a transactional deadlock, SQL Anywhere selects a connection from those involved in the
deadlock, rolls back the changes for the transaction active on that connection and returns an error. SQL
Anywhere selects the connection to roll back using an internal heuristic that prefers the connection with the
smallest blocking wait time left as determined by the blocking_timeout option. If all connections are set to
wait forever, then the connection that caused the server to detect a deadlock is selected as the victim
connection.

To eliminate a thread deadlock, SQL Anywhere selects the last thread to block, rolls back the changes for
the transaction active on that connection and returns an error.

The number of database threads that the server uses depends on the individual database's setting.

For information about setting the number of database threads, see “Controlling threading behavior” [SQL
Anywhere Server - Database Administration].

Determining who is blocked

You can use the sa_conn_info system procedure to determine which connections are blocked on which other
connections. This procedure returns a result set consisting of a row for each connection. One column of the
result set lists whether the connection is blocked, and if so which other connection it is blocked on.

For more information, see “sa_conn_info system procedure” [SQL Anywhere Server - SQL Reference].

You can also use the Deadlock event to take action when a deadlock occurs. The event handler can use the
sa_report_deadlocks procedure to obtain information about the conditions that led to the deadlock. To
retrieve more details about the deadlock from the database server, use the log_deadlocks option and enable
the RememberLastStatement feature.

The follow procedure shows you how to set up a table and system event that can be used to obtain information
about deadlocks when they occur. If you find that your application has frequent deadlocks, you can use
application profiling to help diagnose the cause of the deadlocks. See “Tutorial: Diagnosing
deadlocks” on page 254.

To take action when a deadlock occurs

1. Create a table to store the data returned from the sa_report_deadlocks system procedure:

Transaction blocking and deadlock

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 129

CREATE TABLE DeadlockDetails(
 deadlockId INT PRIMARY KEY DEFAULT AUTOINCREMENT,
 snapshotId BIGINT,
 snapshotAt TIMESTAMP,
 waiter INTEGER,
 who VARCHAR(128),
 what LONG VARCHAR,
 object_id UNSIGNED BIGINT,
 record_id BIGINT,
 owner INTEGER,
 is_victim BIT,
 rollback_operation_count UNSIGNED INTEGER);

2. Create an event that fires when a deadlock occurs.

This event copies the results of the sa_report_deadlocks system procedure into a table and notifies an
administrator about the deadlock:

CREATE EVENT DeadlockNotification
TYPE Deadlock
HANDLER
BEGIN
 INSERT INTO DeadlockDetails WITH AUTO NAME
 SELECT snapshotId, snapshotAt, waiter, who, what, object_id, record_id,
 owner, is_victim, rollback_operation_count
 FROM sa_report_deadlocks ();
 COMMIT;
 CALL xp_startmail (mail_user ='George Smith',
 mail_password ='mypwd');
 CALL xp_sendmail(recipient='DBAdmin',
 subject='Deadlock details added to the DeadlockDetails
table.');
 CALL xp_stopmail ();
END;

3. Set the log_deadlocks option to On:

SET OPTION PUBLIC.log_deadlocks = 'On';
4. Enable logging of the most-recently executed statement:

CALL sa_server_option('RememberLastStatement', 'YES');

See also
● “log_deadlocks option [database]” [SQL Anywhere Server - Database Administration]
● “sa_report_deadlocks system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]
● “CREATE EVENT statement” [SQL Anywhere Server - SQL Reference]

Viewing deadlocks from Sybase Central
When you are connected to a database in Sybase Central, you can see a diagram of any deadlocks that have
occurred in the database since the log_deadlocks option was set to On. Deadlock information is recorded in
an internal buffer.

Using transactions and isolation levels

130 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To use Sybase Central deadlock reporting

1. Select the database in the left pane of Sybase Central, and then choose File » Options.

2. Turn on the log_deadlocks option.

a. In the Options list, select log_deadlocks.

b. In the Value field, type On.

c. Click Set Permanent Now.

d. Click Close.

For more information, see “log_deadlocks option [database]” [SQL Anywhere Server - Database
Administration].

3. In the right pane, click the Deadlocks tab.

A deadlock diagram appears if there are deadlocks in the database. Each node in the deadlock diagram
represents a connection and gives details about which connection was deadlocked, the user name, and
the SQL statement the connection was trying to execute when the deadlock occurred. There are two types
of deadlocks: connection deadlocks and thread deadlocks. Connection deadlocks are characterized by a
circular dependency for the nodes. A thread deadlock is indicated by nodes that are not connected in a
circular dependency, and the number of nodes is equal to the thread limit on the database plus one.

Transaction blocking and deadlock

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 131

How locking works
When the database server processes a transaction, it can lock one or more rows of a table. The locks maintain
the reliability of information stored in the database by preventing concurrent access by other transactions.
They also improve the accuracy of result queries by identifying information which is in the process of being
updated.

The database server places these locks automatically and needs no explicit instruction. It holds all the locks
acquired by a transaction until the transaction is completed, for example by either a COMMIT or
ROLLBACK statement, with a single exception noted in “Early release of read locks” on page 145.

The transaction that has access to the row is said to hold the lock. Depending on the type of lock, other
transactions may have limited access to the locked row, or none at all.

Objects that can be locked
To ensure database consistency and to support appropriate isolation levels between transactions, SQL
Anywhere uses the following types of locks:

● Schema locks These locks control the ability to make schema changes. For example, a transaction
can lock the schema of a table, preventing other transactions from modifying the table's structure.

● Row locks These locks are used to ensure consistency between concurrent transactions at a row level.
For example, a transaction can lock a particular row to prevent another transaction from changing it, and
a transaction must place a write lock on a row if it intends to modify the row.

● Table locks These locks are used to ensure consistency between concurrent transactions at a table
level. For example, a transaction that is changing the structure of a table by inserting a new column can
lock a table so that other transactions are not affected by the schema change. In such a case, it is essential
to limit the access of other transactions to prevent errors.

● Position locks These locks are used to ensure consistency within a sequential or indexed scan of a
table. Transactions typically scan rows using the ordering imposed by an index, or scan rows sequentially.
In either case, a lock can be placed on the scan position. For example, placing a lock in an index can
prevent another transaction from inserting a row with a specific value or range of values.

Schema locks provide a mechanism to prevent schema changes from inadvertently affecting executing
transactions. Row locks, table locks, and position locks each have a separate purpose, but they do interact.
Each lock type prevents a particular set of inconsistencies. Depending on the isolation level you select, the
database server uses some or all these lock types to maintain the degree of consistency you require.

Lock duration

The different classes of locks can be held for different durations:

● Position Short-term locks, such as read locks on specific rows used to implement cursor stability at
isolation level 1.

● Transaction Row, table, and position locks that are held until the end of a transaction.

Using transactions and isolation levels

132 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Connection Schema locks that are held beyond the end of a transaction, such as schema locks created
when WITH HOLD cursors are used.

Obtaining information about locks
To diagnose a locking issue in the database it may be useful to know the contents of the rows that are locked.
You can view the locks currently held in the database using either the sa_locks system procedure, or using
the Table Locks tab in Sybase Central. Both methods provide the information you need, including the
connection holding the lock, lock duration, and lock type.

Note
Due to the transient nature of locks in the database it is possible that the rows visible in Sybase Central, or
returned by the sa_locks system procedure, no longer exist by the time a query completes.

Viewing locks using Sybase Central

You can view locks in Sybase Central. Select the database in the left pane and then click the Table Locks
tab in the right pane. For each lock, this tab shows you the connection ID, user ID, table name, lock type,
and lock name.

Viewing locks using the sa_locks system procedure

The result set of the sa_locks system procedure contains the row_identifier column that allows you to identify
the row in a table the lock refers to. To determine the actual values stored in the locked row, you can join
the results of the sa_locks system procedure to a particular table, using the rowID of the table in the join
predicate. For example:

SELECT S.conn_id, S.user_id, S.lock_class, S.lock_type, E.*
 FROM sa_locks() S JOIN Employees E WITH(NOLOCK)
 ON RowId(E) = S.row_identifier
 WHERE S.table_name = 'Employees';

Note
It may not be necessary to specify the NOLOCK table hint; however, if the query is issued at isolation levels
other than 0, the query may block until the locks are released, which will reduce the usefulness of this method
of checking.

See also
For more information about the sa_locks system procedure, see “sa_locks system procedure” [SQL Anywhere
Server - SQL Reference].

For information about the NOLOCK table hint, see “FROM clause” [SQL Anywhere Server - SQL
Reference].

For more information about the ROWID function, see “ROWID function [Miscellaneous]” [SQL Anywhere
Server - SQL Reference].

How locking works

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 133

Schema locks
Schema locks are used to serialize changes to a database schema, and to ensure that transactions using a
table are not affected by schema changes initiated by other connections. For example, a schema lock prevents
an ALTER TABLE statement from dropping a column from a table when that table is being read by an open
cursor on another connection.

There are two classes of schema locks:

● Shared locks The table schema is locked in shared (read) mode.

● Exclusive locks The table schema is locked for the exclusive use of a single connection.

A shared schema lock is acquired when a transaction refers directly or indirectly to a table in the database.
Shared schema locks do not conflict with each other; any number of transactions can acquire shared locks
on the same table at the same time. The shared schema lock is held until the transaction completes via a
COMMIT or ROLLBACK.

Any connection holding a shared schema lock is allowed to change table data, providing the change does
not conflict with other connections.

An exclusive schema lock is acquired when the schema of a table is modified, usually through the use of a
DDL statement. The ALTER TABLE statement is one example of a DDL statement that acquires an exclusive
lock on the table prior to modifying it. Only one connection can acquire an exclusive schema lock on a table
at any time—all other attempts to lock the table's schema (shared or exclusive) will either block or fail with
an error. This means that a connection executing at isolation level 0, which is the least restrictive isolation
level, will be blocked from reading rows from a table whose schema has been locked in exclusive mode.

Only the connection holding the exclusive table schema lock can change the table data.

Row locks
Row locks are used to prevent lost updates and other types of transaction inconsistencies by ensuring that
any row modified by a transaction cannot be modified by another transaction until the first transaction
completes, either by committing the changes by issuing an implicit or explicit COMMIT statement, or by
aborting the changes via a ROLLBACK statement.

There are three classes of row locks: read (shared) locks, write (exclusive) locks, and intent locks. The
database server acquires these locks automatically for each transaction.

Read locks
When a transaction reads a row, the isolation level of the transaction determines if a read lock is acquired.
Once a row is read locked, no other transaction can obtain a write lock on it. Acquiring a read lock ensures
that a different transaction does not modify or delete a row while it is being read. Any number of transactions
can acquire read locks on any row at the same time, so read locks are sometimes referred to as shared locks,
or non-exclusive locks.

Using transactions and isolation levels

134 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Read locks can be held for different durations. At isolation levels 2 and 3, any read locks acquired by a
transaction are held until the transaction completes through a COMMIT or a ROLLBACK. These read locks
are called long-term read locks.

For transactions executing at isolation level 1, the database server acquires a short-term read lock on the row
upon which a cursor is positioned. As the application scrolls through the cursor, the short-term read lock on
the previously-positioned row is released, and a new short-term read lock is acquired on the subsequent row.
This technique is called cursor stability. Because the application holds a read lock on the current row,
another transaction cannot make changes to the row until the application moves off the row. Note that more
than one lock can be acquired if the cursor is over a query involving multiple tables. Short-term read locks
are acquired only when the position within a cursor must be maintained across requests (ordinarily, these
would be FETCH statements issued by the application). For example, short-term read locks are not acquired
when processing a SELECT COUNT(*) query since a cursor opened over this statement will never be
positioned on a particular base table row. In this case, the database server only needs to guarantee read
committed semantics, that is, that the rows processed by the statement have been committed by other
transactions.

Transactions executing at isolation level 0 (read uncommitted) do not acquire long-term or short-term read
locks, and do not conflict with other transactions (except for exclusive schema locks). However, isolation
level 0 transactions may process uncommitted changes made by other concurrent transactions. You can avoid
processing uncommitted changes by using snapshot isolation. See “Snapshot isolation” on page 115.

Write locks
A transaction acquires a write lock whenever it inserts, updates, or deletes a row. This is true for transactions
at all isolation levels, including isolation level 0 and snapshot isolation levels. No other transaction can obtain
a read, intent, or write lock on the same row after a write lock is acquired. Write locks are also referred to
as exclusive locks because only one transaction can hold an exclusive lock on a row at any time. No
transaction can obtain a write lock while any other transaction holds a lock of any type on the same row.
Similarly, once a transaction acquires a write lock, requests to lock the row by other transactions are denied.

Intent locks
Intent locks, also known as intent-for-update locks, indicate an intent to modify a particular row. Intent locks
are acquired when a transaction:

● issues a FETCH FOR UPDATE statement

● issues a SELECT ... FOR UPDATE BY LOCK statement

● uses SQL_CONCUR_LOCK as its concurrency basis in an ODBC application (set by using the
SQL_ATTR_CONCURRENCY parameter of the SQLSetStmtAttr ODBC API call)

Intent locks do not conflict with read locks, so acquiring an intent lock does not block other transactions
from reading the same row. However, intent locks do prevent other transactions from acquiring either an
intent lock or a write lock on the same row, guaranteeing that the row cannot be changed by any other
transaction prior to an update.

How locking works

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 135

If an intent lock is requested by a transaction executing at snapshot isolation, the intent lock is only acquired
if the row is an unmodified row in the database and common to all concurrent transactions. If the row is a
snapshot copy, however, an intent lock is not acquired since the original row has already been modified by
another transaction. Any attempt by the snapshot transaction to update that row fails and a snapshot update
conflict error is returned.

Table locks
In addition to locks on rows, SQL Anywhere also supports locks on tables. Table locks are different than
schema locks: a table lock places a lock on all the rows in the table, as opposed to a lock on the table's
schema. There are three types of table locks:

● shared
● intent to write
● exclusive

Table locks are only released at the end of a transaction when a COMMIT or ROLLBACK occurs.

The following table identifies the combinations of table locks that conflict.

Shared Intent Exclusive

Shared conflict conflict

Intent conflict conflict

Exclusive conflict conflict conflict

Shared table locks
A shared table lock allows multiple transactions to read the data of a base table. A transaction that has a
shared table lock on a base table can modify the table provided no other transaction holds a lock of any kind
on the rows being modified.

A shared table lock is acquired, for example, by executing a LOCK TABLE ... IN SHARED MODE
statement. The REFRESH MATERIALIZED VIEW and REFRESH TEXT INDEX statements also provide
a WITH SHARE MODE clause that you can use to create shared table locks on the underlying tables while
the refresh operation takes place.

See also
● “LOCK TABLE statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]

Using transactions and isolation levels

136 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Intent to write table locks
An intent to write table lock, also known as an intent table lock, is implicitly acquired the first time a write
lock on a row is acquired by a transaction. As with shared table locks, intent table locks held until the
transaction completes via a COMMIT or a ROLLBACK. Intent table locks conflict with shared and exclusive
table locks, but not with other intent table locks.

Exclusive locks
An exclusive table lock prevents any other transaction from accessing the table for any operation (reads,
writes, schema modifications, and so on). Only one transaction can hold an exclusive lock on any table at
one time. Exclusive table locks conflict with all other table and row locks. However, unlike an exclusive
schema lock, transactions executing at isolation level 0 can still read the rows in a table whose table lock is
held exclusively.

You can acquire an exclusive table lock explicitly by using of the LOCK TABLE ... IN EXCLUSIVE MODE
statement. The REFRESH MATERIALIZED VIEW and REFRESH TEXT INDEX statements also provide
a WITH EXCLUSIVE MODE clause that you can use to create exclusive table locks on the underlying
tables while the refresh operation takes place.

See also
● “LOCK TABLE statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]

Position locks
In addition to row locks, SQL Anywhere also implements a form of key-range locking designed to prevent
anomalies because of the presence of phantoms, or phantom rows. Position locks are only relevant only
when the database server is processing transactions operating at isolation level 3.

Transactions that operate at isolation level 3 are said to be serializable. This means that a transaction's
behavior at isolation level 3 should not be impacted by concurrent update activity by other transactions. In
particular, at isolation level 3, transactions cannot be affected by INSERTs or UPDATEs—phantoms—that
introduce rows that can affect the result of a computation. SQL Anywhere uses position locks to prevent
such updates from occurring. It is this additional locking that differentiates isolation level 2 (repeatable read)
from isolation level 3.

To prevent the creation of phantoms rows, SQL Anywhere acquires locks on positions within a physical
scan of a table. In the case of a sequential scan, the scan position is based on the row identifier of the current
row. In the case of an index scan, the scan's position is based on the current row's index key value (which
can be unique or non-unique). Through locking a scan position, a transaction prevents insertions by other
transactions relating to a particular range of values in that ordering of the rows. This includes INSERT
statements and UPDATE statements that change the value of an indexed attribute. When a scan position is
locked, an UPDATE statement is considered a request to DELETE the index entry followed immediately
by an INSERT request.

How locking works

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 137

There are two types of position locks supported by SQL Anywhere: phantom locks and anti-phantom locks.
Both types of locks are shared, in that any number of transactions can acquire the same type of lock on the
same row. However, phantom and anti-phantom locks conflict.

Phantom locks
A phantom lock, sometimes called an anti-insert lock, is placed on a scan position to prevent the subsequent
creation of phantom rows by other transactions. When a phantom lock is acquired, it prevents other
transactions from inserting a row into a table immediately before the row that is anti-insert locked. A phantom
lock is a long-term lock, that is held until the end of the transaction.

Phantom locks are acquired only by transactions operating at isolation level 3; it is the only isolation level
that guarantees consistency with phantoms.

For an index scan, phantom locks are acquired on each row read through the index, and one additional
phantom lock is acquired at the end of the index scan to prevent insertions into the index at the end of the
satisfying index range. Phantom locks with index scans prevent phantoms from being created by the insertion
of new rows to the table, or the update of an indexed value that would cause the creation of an index entry
at a point covered by a phantom lock.

With a sequential scan, phantom locks are acquired on every row in a table to prevent any insertion from
altering the result set. So, isolation level 3 scans often have a negative effect on database concurrency. While
one or more phantom locks conflict with an insert lock, and one or more read locks conflict with a write
lock, no interaction exists between phantom/insert locks and read/write locks. For example, although a write
lock cannot be acquired on a row that contains a read lock, it can be acquired on a row that has only a phantom
lock. More options are open to the database server because of this flexible arrangement, but it means that
the server must generally take the extra precaution of acquiring a read lock when acquiring a phantom lock.
Otherwise, another transaction could delete the row.

Insert locks
An insert lock, sometimes termed an anti-phantom lock, is a very short-term lock placed on a scan position
to reserve the right to insert a row. The lock is held only for the duration of the insertion itself; once the row
is properly inserted within a database page it is write-locked to ensure consistency, and the insert lock is
released. A transaction that acquires an insert lock on a row prevents other transactions from acquiring a
phantom lock on the same row. Insert locks are necessary because the server must anticipate an isolation
level 3 scan operation by any active connection, which could potentially occur with any new request. Note
that phantom and insert locks do not conflict with each other when they are held by the same transaction.

Locking conflicts
SQL Anywhere uses schema, row, table, and position locks as necessary to ensure the level of consistency
that you require. You do not need to explicitly request the use of a particular lock. Instead, you control the
level of consistency that is maintained by choosing the isolation level that best fits your requirements.
Knowledge of the types of locks will guide you in choosing isolation levels and understanding the impact

Using transactions and isolation levels

138 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

of each level on performance. Keep in mind that any one transaction cannot block itself by acquiring locks;
a locking conflict can only occur between two (or more) transactions.

Which locks conflict?
While each of the four types of locks have specific purposes, all the types interact and therefore may cause
a locking conflict between transactions. To ensure database consistency, only one transaction should change
any one row at any one time. Otherwise, two simultaneous transactions might try to change one value to two
different new ones. So, it is important that a row write lock be exclusive. In contrast, no difficulty arises if
more than one transaction wants to read a row. Since neither is changing it, there is no conflict. So, row read
locks may be shared across many connections.

The following table identifies the combination of locks that conflict. Schema locks are not included because
they do not apply to rows.

read
(R)

intent
(R)

write (R) shared (T) intent
(T)

exclusive
(T)

phan-
tom (P)

insert
(P)

read (R) conflict conflict

intent (R) conflict conflict conflict

write (R) con-
flict

conflict conflict conflict conflict

shared (T) conflict con-
flict

conflict

intent (T) conflict conflict

exclusive (T) con-
flict

conflict conflict conflict con-
flict

conflict conflict con-
flict

phantom (P) conflict con-
flict

insert (P) conflict conflict

Locking during queries
The locks that SQL Anywhere uses when a user enters a SELECT statement depend on the transaction's
isolation level. All SELECT statements, regardless of isolation level, acquire schema locks on the referenced
tables.

How locking works

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 139

SELECT statements at isolation level 0

No locking operations are required when executing a SELECT statement at isolation level 0. Each transaction
is not protected from changes introduced by other transactions. It is the responsibility of the programmer or
database user to interpret the result of these queries with this limitation in mind.

SELECT statements at isolation level 1

SQL Anywhere does not use many more locks when running a transaction at isolation level 1 than it does
at isolation level 0. The database server modifies its operation in only two ways.

The first difference in operation has nothing to do with acquiring locks, but rather with respecting them. At
isolation level 0, a transaction can read any row, even if another transaction has acquired a write lock. By
contrast, before reading each row, an isolation level 1 transaction must check whether a write lock is in place.
It cannot read past any write-locked rows because doing so might entail reading dirty data. The use of the
READPAST hint permits the server to ignore write-locked rows, but while the transaction will no longer
block, its semantics no longer coincide with those of isolation level 1. See READPAST hint in “FROM
clause” [SQL Anywhere Server - SQL Reference].

The second difference in operation affects cursor stability. Cursor stability is achieved by acquiring a short-
term read lock on the current row of a cursor. This read lock is released when the cursor is moved. More
than one row may be affected if the contents of the cursor is the result of a join. In this case, the database
server acquires short-term read locks on all rows which have contributed information to the cursor's current
row, and releases these locks when another row of the cursor is selected as the current row.

SELECT statements at isolation level 2

At isolation level 2, the database server modifies its operation to ensure repeatable read semantics. If a
SELECT statement returns values from every row in a table, then the database server acquires a read lock
on each row of the table as it reads it. If, instead, the SELECT contains a WHERE clause, or another condition
which restricts the rows in the result, then the database server instead reads each row, tests the values in the
row against that condition, and then acquires a read lock on the row if it meets that condition. The read locks
that are acquired are long-term read locks and are held until the transaction completes via an implicit or
explicit COMMIT or ROLLBACK statement. As with isolation level 1, cursor stability is assured at isolation
level 2, and dirty reads are not permitted.

SELECT statements at isolation level 3

When operating at isolation level 3, the database server is obligated to ensure that all transaction schedules
are serializable. In particular, in addition to the requirements imposed at isolation level 2, it must prevent
phantom rows so that re-executing the same statement is guaranteed to return the same results in all
circumstances.

To accommodate this requirement, the database server uses read locks and phantom locks. When executing
a SELECT statement at isolation level 3, the database server acquires a read lock on each row that is processed
during the computation of the result set. Doing so ensures that no other transactions can modify those rows
until the transaction completes.

This requirement is similar to the operations that the database server performs at isolation level 2, but differs
in that a lock must be acquired for each row read, whether those rows satisfy any predicates in the SELECT's
WHERE, ON, or HAVING clauses. For example, if you select the names of all employees in the sales

Using transactions and isolation levels

140 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

department, then the server must lock all the rows which contain information about a sales person, whether
the transaction is executing at isolation level 2 or 3. At isolation level 3, however, the server must also acquire
read locks on each of the rows of employees which are not in the sales department. Otherwise, another
transaction could potentially transfer another employee to the sales department while the first transaction
was still executing.

There are two implications when a read lock must be acquired for each row read:

● The database server may need to place many more locks than would be necessary at isolation level 2.
The number of phantom locks acquired is one more than the number of read locks that are acquired for
the scan. This doubling of the lock overhead adds to the execution time of the request.

● The acquisition of read locks on each row read has a negative impact on the concurrency of database
update operations to the same table.

The number of phantom locks the database server acquires can vary greatly and depends upon the execution
strategy chosen by the query optimizer. The SQL Anywhere query optimizer will attempt to avoid sequential
scans at isolation level 3 because of the potentially adverse affects on overall system concurrency, but the
optimizer's ability to do so depends upon the predicates in the statement and on the relevant indexes available
on the referenced tables.

As an example, suppose you want to select information about the employee with Employee ID 123. As
EmployeeID is the primary key of the employee table, the query optimizer will almost certainly choose an
indexed strategy, using the primary key index, to locate the row efficiently. In addition, there is no danger
that another transaction could change another Employee's ID to 123 because primary key values must be
unique. The server can guarantee that no second employee is assigned that ID number simply by acquiring
a read lock on the row containing information about employee 123.

In contrast, the database server would acquire more locks were you instead to select all the employees in the
sales department. In the absence of a relevant index, the database server must read every row in the employee
table and test whether each employee is in sales. If this is the case, both read and phantom locks must be
acquired for each row in the table.

SELECT statements and snapshot isolation

SELECT statements that execute at snapshot, statement-snapshot, or readonly-statement-snapshot do not
acquire read locks. This is because each snapshot transaction (or statement) sees a snapshot of a committed
state of the database at some previous point in time. The specific point in time is determined by which of
the three snapshot isolation levels is being used by the statement. As such, read transactions never block
update transactions and update transactions never block readers. Therefore, snapshot isolation can give
considerable concurrency benefits in addition to the obvious consistency benefits. However, there is a
tradeoff; snapshot isolation can be very expensive. This is because the consistency guarantee of snapshot
isolation means that copies of changed rows must be saved, tracked, and (eventually) deleted for other
concurrent transactions.

How locking works

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 141

Locking during inserts
INSERT operations create new rows. SQL Anywhere utilizes various types of locks during insertions to
ensure data integrity. The following sequence of operations occurs for INSERT statements executing at any
isolation level.

1. Acquire a shared schema lock on the table, if one is not already held.

2. Acquire an intent-to-write table lock on the table, if one is not already held.

3. Find an unlocked position in a page to store the new row. To minimize lock contention, the server will
not immediately reuse space made available by deleted (but as yet uncommitted) rows. A new page may
be allocated to the table (and the database file may grow) to accommodate the new row.

4. Fill the new row with any supplied values.

5. Place an insert lock in the table to which the row is being added. Recall that insert locks are exclusive,
so once the insert lock is acquired, no other isolation level 3 transaction can block the insertion by
acquiring a phantom lock.

6. Write lock the new row. The insert lock is released once the write lock has been obtained.

7. Insert the row into the table. Other transactions at isolation level 0 can now, for the first time, see that
the new row exists. However, these other transactions cannot modify or delete the new row because of
the write lock acquired earlier.

8. Update all affected indexes and verify uniqueness where appropriate. Primary key values must be unique.
Other columns may also be defined to contain only unique values, and if any such columns exist,
uniqueness is verified.

9. If the table is a foreign table, acquire a shared schema lock on the primary table (if not already held),
and acquire a read lock on the matching primary row in the primary table if the foreign key column
values being inserted are not NULL. The database server must ensure that the primary row still exists
when the inserting transaction COMMITs. It does so by acquiring a read lock on the primary row. With
the read lock in place, any other transaction is still free to read that row, but none can delete or update
it.

If the corresponding primary row does not exist a referential integrity constraint violation is given.

After the last step, any AFTER INSERT triggers defined on the table may fire. Processing within triggers
follows the identical locking behavior as for applications. Once the transaction is committed (assuming all
referential integrity constraints are satisfied) or rolled back, all long-term locks are released.

Uniqueness
You can ensure that all values in a particular column, or combination of columns, are unique. The database
server always performs this task by building an index for the unique column, even if you do not explicitly
create one.

In particular, all primary key values must be unique. The database server automatically builds an index for
the primary key of every table. Do not ask the database server to create an index on a primary key, as that
index would be a redundant index.

Using transactions and isolation levels

142 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Orphans and referential integrity
A foreign key is a reference to a primary key or UNIQUE constraint, usually in another table. When that
primary key does not exist, the offending foreign key is called an orphan. SQL Anywhere automatically
ensures that your database contains no orphans. This process is referred to as verifying referential
integrity. The database server verifies referential integrity by counting orphans.

wait_for_commit

You can instruct the database server to delay verifying referential integrity to the end of your transaction.
In this mode, you can insert a row which contains a foreign key, then subsequently insert a primary row
which contains the missing primary key. Both operations must occur in the same transaction.

To request that the database server delay referential integrity checks until commit time, set the value of the
option wait_for_commit to On. By default, this option is Off. To turn it on, issue the following command:

SET OPTION wait_for_commit = On;

If the server does not find a matching primary row when a new foreign key value is inserted, and
wait_for_commit is On, then the server permits the insertion as an orphan. For orphaned foreign rows, upon
insertion the following series of steps occurs:

● The server acquires a shared schema lock on the primary table (if not already held). The server also
acquires an intent-to-write lock on the primary table.

● The server inserts a surrogate row into the primary table. An actual row is not inserted into the primary
table, but the server manufactures a unique row identifier for that row for the purposes of locking, and
a write lock is acquired on this surrogate row. Subsequently, the server inserts the appropriate values
into the primary table's primary key index

Before committing a transaction, the database server verifies that referential integrity is maintained by
checking the number of orphans your transaction has created. At the end of every transaction, that number
must be zero.

Locking during updates
The database server modifies the information contained in a particular record using the following procedure.
As with insertions, this sequence of operations is followed for all transactions regardless of their isolation
level.

1. Acquire a shared schema lock on the table, if one is not already held.

2. Acquire an intent-to-write table lock on the table, if one is not already held.

a. Identify candidate rows to be updated. As rows are scanned, they are locked. The default locking
behavior is described in “Isolation levels and consistency” on page 113.

At isolation levels 2 and 3 the following differences occur that are different from the default locking
behavior: intent-to-write row-level locks are acquired instead of read locks, and intent-to-write locks
may in some cases be acquired on rows that are ultimately rejected as candidates for update.

How locking works

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 143

b. For each candidate row identified in step 2.a, follow the rest of the sequence.

3. Write lock the affected row.

4. Update each of the affected column values as per the UPDATE statement.

5. If indexed values were changed, add new index entries. The original index entries for the row remain,
but are marked as deleted. New index entries for the new values are inserted while a short-term insert
lock is held. The server verifies index uniqueness where appropriate.

6. If any foreign key values in the row were altered, acquire a shared schema lock on the primary table(s)
and follow the procedure for inserting new foreign key values as outlined in “Locking during
inserts” on page 142. Similarly, follow the procedure for WAIT_FOR_COMMIT if applicable.

7. If the table is a primary table in a referential integrity relationship, and the relationship's UPDATE action
is not RESTRICT, determine the affected row(s) in the foreign table(s) by first acquiring a shared schema
lock on the table(s), an intent-to-write table lock on each, and acquire write locks on all the affected
rows, modifying each as appropriate. Note that this process may cascade through a nested hierarchy of
referential integrity constraints.

After the last step, any AFTER UPDATE triggers may fire. Upon COMMIT, the server verifies referential
integrity by ensuring that the number of orphans produced by this transaction is 0, and release all locks.

Modifying a column value can necessitate a large number of operations. The amount of work that the database
server needs to do is much less if the column being modified is not part of a primary or foreign key. It is
lower still if it is not contained in an index, either explicitly or implicitly because the column has been
declared as unique.

The operation of verifying referential integrity during an UPDATE operation is no less simple than when
the verification is performed during an INSERT. In fact, when you change the value of a primary key, you
may create orphans. When you insert the replacement value, the database server must check for orphans
once more.

Locking during deletes
The DELETE operation follows almost the same steps as the INSERT operation, except in the opposite
order. As with insertions and updates, this sequence of operations is followed for all transactions regardless
of their isolation level.

1. Acquire a shared schema lock on the table, if one is not already held.

2. Acquire an intent-to-write table lock on the table, if one is not already held.

a. Identify candidate rows to be updated. As rows are scanned, they are locked. The default locking
behavior is described in “Isolation levels and consistency” on page 113.

At isolation levels 2 and 3 the following differences occur that are different from the default locking
behavior: intent-to-write row-level locks are acquired instead of read locks, and intent-to-write locks
may in some cases be acquired on rows that are ultimately rejected as candidates for update.

b. For each candidate row identified in step 2.a, follow the rest of the sequence.

Using transactions and isolation levels

144 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

3. Write lock the row to be deleted.

4. Remove the row from the table so that it is no longer visible to other transactions. The row cannot be
destroyed until the transaction is committed because doing so would remove the option of rolling back
the transaction. Index entries for the deleted row are preserved, though marked as deleted, until
transaction completion. This prevents other transactions from re-inserting the same row.

5. If the table is a primary table in a referential integrity relationship, and the relationship's DELETE action
is not RESTRICT, determine the affected row(s) in the foreign table(s) by first acquiring a shared schema
lock on the table(s), an intent-to-write table lock on each, and acquire write locks on all the affected
rows, modifying each as appropriate. Note that this process may cascade through a nested hierarchy of
referential integrity constraints.

The transaction can be committed provided referential integrity is not violated by doing so. To verify
referential integrity, the database server also keeps track of any orphans created as a side effect of the deletion.
Upon COMMIT, the server records the operation in the transaction log file and release all locks.

Early release of read locks
At isolation level 3, a transaction acquires a read lock on every row it reads. Ordinarily, a transaction never
releases a lock before the end of the transaction. In fact, it is essential that a transaction does not release
locks early if the schedule is to be serializable.

SQL Anywhere always retains write locks until a transaction completes. This prevents another transaction
from modifying that row and making it impossible to roll back the first transaction.

Read locks are released only in one circumstance: Under isolation level 1, transactions acquire a read lock
on a row only when it becomes the current row of a cursor. Under isolation level 1, however, when that row
is no longer current, the lock is released. This behavior is acceptable because the database server does not
need to guarantee repeatable reads at isolation level 1.

For more information about isolation levels, see “Choosing isolation levels” on page 146.

How locking works

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 145

Choosing isolation levels
The choice of isolation level depends on the kind of task an application is performing. This section gives
some guidelines for choosing isolation levels.

To choose an appropriate isolation level, you must balance the need for consistency and accuracy with the
need for concurrent transactions to proceed unimpeded. If a transaction involves only one or two specific
values in one table, it is unlikely to interfere as much with other processes compared to one that searches
many large tables and therefore may need to lock many rows or entire tables and may take a very long time
to complete.

For example, if your transactions involve transferring money between bank accounts, you likely want to
ensure that the information you return is correct. On the other hand, if you just want a rough estimate of the
proportion of inactive accounts, then you may not care whether your transaction waits for others or not, and
you may be willing to sacrifice some accuracy to avoid interfering with other users of the database.

Furthermore, a transfer may affect only the two rows which contain the two account balances, whereas all
the accounts must be read to calculate the estimate. For this reason, the transfer is less likely to delay other
transactions.

SQL Anywhere provides four isolation levels: levels 0, 1, 2, and 3. Level 3 provides complete isolation and
ensures that transactions are interleaved in such a manner that the schedule is serializable.

If you have enabled snapshot isolation for a database, then three additional isolation levels are available:
snapshot, statement-snapshot, and readonly-statement-snapshot.

Choosing a snapshot isolation level

Snapshot isolation offers both concurrency and consistency benefits. Using snapshot isolation incurs a cost
penalty since old versions of rows are saved as long as they may be needed by running transactions. Therefore,
long running snapshots can require storage of many old row versions. Usually, snapshots used for statement-
snapshot do not last as long as those for snapshot. Therefore, statement-snapshot may have some space
advantages over snapshot at the cost of less consistency (every statement within the transaction sees the
database at a different point in time).

For more information about the performance implications of using snapshot isolation, see “Cursor sensitivity
and isolation levels” [SQL Anywhere Server - Programming].

For most purposes, the snapshot isolation level is recommended because it provides a single view of the
database for the entire transaction.

The statement-snapshot isolation level provides less consistency, but may be useful in cases where long
running transactions result in too much space being used in the temporary file by the version store.

The readonly-statement-snapshot isolation level provides less consistency than statement-snapshot, but
avoids the possibility of update conflicts. Therefore, it is most appropriate for porting applications originally
intended to run under different isolation levels.

For more information about snapshot isolation, see “Snapshot isolation” on page 115.

Using transactions and isolation levels

146 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Serializable schedules
To process transactions concurrently, the database server must execute some component statements of one
transaction, then some from other transactions, before continuing to process further operations from the first.
The order in which the component operations of the various transactions are interleaved is called the
schedule.

Applying transactions concurrently in this manner can result in many possible outcomes, including the three
particular inconsistencies described in the previous section. Sometimes, the final state of the database also
could have been achieved had the transactions been executed sequentially, meaning that one transaction was
always completed in its entirety before the next was started. A schedule is called serializable whenever
executing the transactions sequentially, in some order, could have left the database in the same state as the
actual schedule.

Serializability is the commonly accepted criterion for correctness. A serializable schedule is accepted as
correct because the database is not influenced by the concurrent execution of the transactions.

The isolation level affects a transaction's serializability. At isolation level 3, all schedules are serializable.
The default setting is 0.

Serializable means that concurrency has added no effect
Even when transactions are executed sequentially, the final state of the database can depend upon the order
in which these transactions are executed. For example, if one transaction sets a particular cell to the value 5
and another sets it to the number 6, then the final value of the cell is determined by which transaction executes
last.

Knowing a schedule is serializable does not settle which order transactions would best be executed, but
rather states that concurrency has added no effect. Outcomes which may be achieved by executing the set
of transactions sequentially in some order are all assumed correct.

Unserializable schedules introduce inconsistencies
The inconsistencies introduced in “Typical types of inconsistency” on page 121 are typical of the types of
problems that appear when the schedule is not serializable. In each case, the inconsistency appeared because
of the way the statements were interleaved; the result produced would not be possible if all transactions were
executed sequentially. For example, a dirty read can only occur if one transaction can select rows while
another transaction is in the middle of inserting or updating data in the same row.

Typical transactions at various isolation levels
Various isolation levels lend themselves to particular types of tasks. Use the information below to help you
decide which level is best suited to each particular operation.

Typical level 0 transactions
Transactions that involve browsing or performing data entry may last several minutes, and read a large
number of rows. If isolation level 2 or 3 is used, concurrency can suffer. Isolation level of 0 or 1 is typically
used for this kind of transaction.

Choosing isolation levels

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 147

For example, a decision support application that reads large amounts of information from the database to
produce statistical summaries may not be significantly affected if it reads a few rows that are later modified.
If high isolation is required for such an application, it may acquire read locks on large amounts of data, not
allowing other applications write access to it.

Typical level 1 transactions
Isolation level 1 is useful in conjunction with cursors, because this combination ensures cursor stability
without greatly increasing locking requirements. SQL Anywhere achieves this benefit through the early
release of read locks acquired for the present row of a cursor. These locks must persist until the end of the
transaction at either levels two or three to guarantee repeatable reads.

For example, a transaction that updates inventory levels through a cursor is suited to this level, because each
of the adjustments to inventory levels as items are received and sold would not be lost, yet these frequent
adjustments would have minimal impact on other transactions.

Typical level 2 transactions
At isolation level 2, rows that match your criterion cannot be changed by other transactions. You can employ
this level when you must read rows more than once and rely that rows contained in your first result set won't
change.

Because of the relatively large number of read locks required, you should use this isolation level with care.
As with level 3 transactions, careful design of your database and indexes reduce the number of locks acquired
and can improve the performance of your database.

Typical level 3 transactions
Isolation level 3 is appropriate for transactions that demand the most in security. The elimination of phantom
rows lets you perform multi-step operations on a set of rows without fear that new rows will appear partway
through your operations and corrupt the result.

However much integrity it provides, isolation level 3 should be used sparingly on large systems that are
required to support a large number of concurrent transactions. SQL Anywhere places more locks at this level
than at any other, raising the likelihood that one transaction will impede the process of many others.

Improving concurrency at isolation levels 2 and 3
Isolation levels 2 and 3 use a lot of locks and so good design is of particular importance for databases that
make regular use of these isolation levels. When you must make use of serializable transactions, it is
important that you design your database, in particular the indexes, with the business rules of your project in
mind. You may also improve performance by breaking large transactions into several smaller ones, and
shorten the length of time that rows are locked.

Although serializable transactions have the most potential to block other transactions, they are not necessarily
less efficient. When processing these transactions, SQL Anywhere can perform certain optimizations that
may improve performance, in spite of the increased number of locks. For example, since all rows read must
be locked whether they match the search criteria, the database server is free to combine the operation of
reading rows and placing locks.

Using transactions and isolation levels

148 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Reducing the impact of locking
To avoid placing a large number of locks that might impact the execution of other concurrent transactions,
it is recommended that you avoid running transactions at isolation level 3.

When the nature of an operation demands that it run at isolation level 3, you can lower its impact on
concurrency by designing the query to read as few rows and index entries as possible. These steps will help
the level 3 transaction run more quickly and, of possibly greater importance, will reduce the number of locks
it places.

When at least one operation executes at isolation level 3, you may find that adding an index improves
transaction speed. An index can have two benefits:

● An index enables rows to be located in an efficient manner

● Searches that make use of the index may need fewer locks.

For more information about the details of the locking methods employed by SQL Anywhere is located in
“How locking works” on page 132.

For more information about performance and how SQL Anywhere plans its access of information to execute
your commands, see “Improving database performance” on page 175.

Choosing isolation levels

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 149

Isolation level tutorials
The different isolation levels behave in very different ways, and which one you will want to use depends on
your database and on the operations you are performing. The following set of tutorials will help you determine
which isolation levels are suitable for different tasks.

Tutorial: Dirty reads
The following tutorial demonstrates one type of inconsistency that can occur when multiple transactions are
executed concurrently. Two employees at a small merchandising company access the corporate database at
the same time. The first person is the company's Sales Manager. The second is the Accountant.

The Sales Manager wants to increase the price of tee shirts sold by their firm by $0.95, but is having a little
trouble with the syntax of the SQL language. At the same time, unknown to the Sales Manager, the
Accountant is trying to calculate the retail value of the current inventory to include in a report he volunteered
to bring to the next management meeting.

Tip
Before altering your database in the following way, it is prudent to test the change by using SELECT in
place of UPDATE.

Note
For this tutorial to work properly, the Automatically Release Database Locks option must not be selected
in Interactive SQL (Tools » Options » SQL Anywhere).

In this example, you assume the role of two employees, both using the SQL Anywhere sample database
concurrently.

1. Start Interactive SQL.

2. In the Connect window, connect to the SQL Anywhere sample database as the Sales Manager:

● In the ODBC Data Source Name field, choose SQL Anywhere 11 Demo.

● Click the Advanced tab, and type Sales Manager in the ConnectionName field.

● Click OK.

3. Start a second instance of Interactive SQL.

4. In the Connect window, connect to the SQL Anywhere sample database as the Accountant:

● In the ODBC Data Source Name field, choose SQL Anywhere 11 Demo.

● Click the Advanced tab and type Accountant in the ConnectionName field.

● Click OK.

5. As the Sales Manager, raise the price of all tee shirts by $0.95:

● In the Sales Manager window, execute the following commands:

Using transactions and isolation levels

150 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UPDATE Products
 SET UnitPrice = UnitPrice + 95
 WHERE Name = 'Tee Shirt';
SELECT ID, Name, UnitPrice
 FROM Products;

The result is:

ID name UnitPrice

300 Tee Shirt 104.00

301 Tee Shirt 109.00

302 Tee Shirt 109.00

400 Baseball Cap 9.00

...

You observe immediately that you should have entered 0.95 instead of 95, but before you can fix your
error, the Accountant accesses the database from another office.

6. The company's Accountant is worried that too much money is tied up in inventory. As the Accountant,
execute the following commands to calculate the total retail value of all the merchandise in stock:

SELECT SUM(Quantity * UnitPrice)
 AS Inventory
 FROM Products;

The result is:

Inventory

21453.00

Unfortunately, this calculation is not accurate. The Sales Manager accidentally raised the price of the
visor $95, and the result reflects this erroneous price. This mistake demonstrates one typical type of
inconsistency known as a dirty read. You, as the Accountant, accessed data which the Sales Manager
has entered, but has not yet committed.

You can eliminate dirty reads and other inconsistencies explained in “Isolation levels and
consistency” on page 113.

7. As the Sales Manager, fix the error by rolling back your first changes and entering the correct UPDATE
command. Check that your new values are correct.

ROLLBACK;
UPDATE Products
SET UnitPrice = UnitPrice + 0.95
WHERE NAME = 'Tee Shirt';
COMMIT;

Isolation level tutorials

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 151

ID name UnitPrice

300 Tee Shirt 9.95

301 Tee Shirt 14.95

302 Tee Shirt 14.95

400 Baseball Cap 9.00

...

8. The Accountant does not know that the amount he calculated was in error. You can see the correct value
by executing the SELECT statement again in the Accountant's window.

SELECT SUM(Quantity * UnitPrice)
 AS Inventory
 FROM Products;

Inventory

6687.15

9. Finish the transaction in the Sales Manager's window. The Sales Manager would enter a COMMIT
statement to make the changes permanent, but you should execute a ROLLBACK, instead, to avoid
changing the local copy of the SQL Anywhere sample database.

ROLLBACK;

The Accountant unknowingly receives erroneous information from the database because the database server
is processing the work of both the Sales Manager and the Accountant concurrently.

Using snapshot isolation to avoid dirty reads
When you use snapshot isolation, other database connections see only committed data in response to their
queries. Setting the isolation level to statement-snapshot or snapshot prevents the possibility of dirty reads
occurring. The Accountant can use snapshot isolation to ensure that they only see committed data when
executing their queries.

1. Start Interactive SQL.

2. In the Connect window, connect to the SQL Anywhere sample database as the Sales Manager:

● In the ODBC Data Source Name field, choose SQL Anywhere 11 Demo.

● Click the Advanced tab and type Sales Manager in the ConnectionName field.

● Click OK to connect.

3. Execute the following statement to enable snapshot isolation for the database:

SET OPTION PUBLIC.allow_snapshot_isolation = 'ON';
4. Start a second instance of Interactive SQL.

Using transactions and isolation levels

152 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

5. In the Connect window, connect to the SQL Anywhere sample database as the Accountant:

● In the ODBC Data Source Name field, choose SQL Anywhere 11 Demo.

● Click the Advanced tab and type Accountant in the ConnectionName field.

● Click OK.

6. As the Sales Manager, raise the price of all the tee shirts by $0.95:

● In the window labeled Sales Manager, execute the following command to:

UPDATE Products
SET UnitPrice = UnitPrice + 0.95
WHERE Name = 'Tee Shirt';

● Calculate the total retail value of all merchandise in stock using the new tee shirt price for the Sales
Manager:

SELECT SUM(Quantity * UnitPrice)
 AS Inventory
 FROM Products;

The result is:

Inventory

6687.15

7. As the Accountant, execute the following command to calculate the total retail value of all the
merchandise in stock. Because this transaction uses the snapshot isolation level, the result is calculated
only for data that has been committed to the database.

SET OPTION isolation_level = 'Snapshot';
SELECT SUM(Quantity * UnitPrice)
 AS Inventory
 FROM Products;

The result is:

Inventory

6538.00

8. As the Sales Manager, commit your changes to the database by executing the following statement:

COMMIT;
9. As the Accountant, execute the following statements to view the updated retail value of the current

inventory:

COMMIT;
SELECT SUM(Quantity * UnitPrice)
 AS Inventory
 FROM Products;

The result is:

Isolation level tutorials

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 153

Inventory

6687.15

Because the snapshot used for the Accountant's transaction began with the first read operation, you must
execute a COMMIT to end the transaction and allow the Accountant to see changes made to the data
after the snapshot transaction began. See “Understanding snapshot transactions” on page 117.

10. As the Sales Manager, execute the following statement to undo the tee shirt price changes and restore
the SQL Anywhere sample database to its original state:

UPDATE Products
SET UnitPrice = UnitPrice - 0.95
WHERE Name = 'Tee Shirt';
COMMIT;

Tutorial: Non-repeatable reads
The example in “Tutorial: Dirty reads” on page 150 demonstrated the first type of inconsistency, namely
the dirty read. In that example, an Accountant made a calculation while the Sales Manager was in the process
of updating a price. The Accountant's calculation used erroneous information which the Sales Manager had
entered and was in the process of fixing.

The following example demonstrates another type of inconsistency: non-repeatable reads. In this example,
you assume the role of the same two employees, both using the SQL Anywhere sample database concurrently.
The Sales Manager wants to offer a new sales price on plastic visors. The Accountant wants to verify the
prices of some items that appear on a recent order.

This example begins with both connections at isolation level 1, rather than at isolation level 0, which is the
default for the SQL Anywhere sample database supplied with SQL Anywhere. By setting the isolation level
to 1, you eliminate the type of inconsistency which the previous tutorial demonstrated, namely the dirty read.

Note
For this tutorial to work properly, the Automatically Release Database Locks option must not be selected
in Interactive SQL (Tools » Options » SQL Anywhere).

1. Start Interactive SQL.

2. In the Connect window, connect to the SQL Anywhere sample database as the Sales Manager:

● In the ODBC Data Source Name field, choose SQL Anywhere 11 Demo.

● Click the Advanced tab and type Sales Manager in the ConnectionName field.

● Click OK.

3. Start a second instance of Interactive SQL.

4. In the Connect window, connect to the SQL Anywhere sample database as the Accountant:

● In the ODBC Data Source Name field, choose SQL Anywhere 11 Demo.

Using transactions and isolation levels

154 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Click the Advanced tab and type Accountant in the ConnectionName field.

● Click OK.

5. Set the isolation level to 1 for the Accountant's connection by executing the following command.

SET TEMPORARY OPTION isolation_level = 1;
6. Set the isolation level to 1 in the Sales Manager's window by executing the following command:

SET TEMPORARY OPTION isolation_level = 1;
7. The Accountant decides to list the prices of the visors. As the Accountant, execute the following

command:

SELECT ID, Name, UnitPrice FROM Products;

ID Name UnitPrice

300 Tee Shirt 9.00

301 Tee Shirt 14.00

302 Tee Shirt 14.00

400 Baseball Cap 9.00

401 Baseball Cap 10.00

500 Visor 7.00

501 Visor 7.00

...

8. The Sales Manager decides to introduce a new sale price for the plastic visor. As the Sales Manager,
execute the following command:

SELECT ID, Name, UnitPrice FROM Products
WHERE Name = 'Visor';
UPDATE Products
SET UnitPrice = 5.95 WHERE ID = 501;
COMMIT;
SELECT ID, Name, UnitPrice FROM Products
WHERE Name = 'Visor';

ID Name UnitPrice

500 Visor 7.00

501 Visor 5.95

Isolation level tutorials

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 155

9. Compare the price of the visor in the Sales Manager window with the price for the same visor in the
Accountant window. The Accountant executes the SELECT statement again, and sees the Sales
Manager's new sale price.

SELECT ID, Name, UnitPrice
FROM Products;

ID Name UnitPrice

300 Tee Shirt 9.00

301 Tee Shirt 14.00

302 Tee Shirt 14.00

400 Baseball Cap 9.00

401 Baseball Cap 10.00

500 Visor 7.00

501 Visor 5.95

...

This inconsistency is called a non-repeatable read because when the Accountant executes the same
SELECT a second time in the same transaction, and did not get the same results.

Of course if the Accountant had finished his transaction, for example by issuing a COMMIT or
ROLLBACK command before using SELECT again, it would be a different matter. The database is
available for simultaneous use by multiple users and it is completely permissible for someone to change
values either before or after the Accountant's transaction. The change in results is only inconsistent
because it happens in the middle of his transaction. Such an event makes the schedule unserializable.

10. The Accountant notices this behavior and decides that from now on he doesn't want the prices changing
while he looks at them. Non-repeatable reads are eliminated at isolation level 2. As the Accountant,
execute the following statements:

SET TEMPORARY OPTION isolation_level = 2;
SELECT ID, Name, UnitPrice
FROM Products;

11. The Sales Manager decides that it would be better to delay the sale on the plastic visor until next week
so that she won't have to give the lower price on a big order that she's expecting will arrive tomorrow.
In her window, try to execute the following statements. The command starts to execute, and then her
window appears to freeze.

UPDATE Products
SET UnitPrice = 7.00
WHERE ID = 501;

The database server must guarantee repeatable reads at isolation level 2. Because the Accountant is using
isolation level 2, the database server places a read lock on each row of the Products table that the
Accountant reads. When the Sales Manager tries to change the price back, her transaction must acquire

Using transactions and isolation levels

156 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

a write lock on the plastic visor row of the Products table. Since write locks are exclusive, her transaction
must wait until the Accountant's transaction releases its read lock.

12. The Accountant is finished looking at the prices. He doesn't want to risk accidentally changing the
database, so he completes his transaction with a ROLLBACK statement.

ROLLBACK;

When the database server executes this statement, the Sales Manager's transaction completes.

ID Name UnitPrice

500 Visor 7.00

501 Visor 7.00

13. The Sales Manager can finish now. She wants to commit her change to restore the original price.

COMMIT;

Types of locks and different isolation levels

When you upgraded the Accountant's isolation from level 1 to level 2, the database server used read locks
where none had previously been acquired. In general, each isolation level is characterized by the types of
locks needed and by how locks held by other transactions are treated.

At isolation level 0, the database server needs only write locks. It makes use of these locks to ensure that no
two transactions make modifications that conflict. For example, a level 0 transaction acquires a write lock
on a row before it updates or deletes it, and inserts any new rows with a write lock already in place.

Level 0 transactions perform no checks on the rows they are reading. For example, when a level 0 transaction
reads a row, it does not check what locks may or may not have been acquired on that row by other transactions.
Since no checks are needed, level 0 transactions are fast. This speed comes at the expense of consistency.
Whenever they read a row which is write locked by another transaction, they risk returning dirty data.

At level 1, transactions check for write locks before they read a row. Although one more operation is required,
these transactions are assured that all the data they read is committed. Try repeating the first tutorial with
the isolation level set to 1 instead of 0. You will find that the Accountant's computation cannot proceed while
the Sales Manager's transaction, which updates the price of the tee shirts, remains incomplete.

When the Accountant raised his isolation to level 2, the database server began using read locks. From then
on, it acquired a read lock for his transaction on each row that matched his selection.

Transaction blocking

In the above tutorial, the Sales Manager's window froze during the execution of her UPDATE command.
The database server began to execute her command, then found that the Accountant's transaction had
acquired a read lock on the row that the Sales Manager needed to change. At this point, the database server
simply paused the execution of the UPDATE. Once the Accountant finished his transaction with the
ROLLBACK, the database server automatically released his locks. Finding no further obstructions, it then
proceeded to complete execution of the Sales Manager's UPDATE.

Isolation level tutorials

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 157

In general, a locking conflict occurs when one transaction attempts to acquire an exclusive lock on a row on
which another transaction holds a lock, or attempts to acquire a shared lock on a row on which another
transaction holds an exclusive lock. One transaction must wait for another transaction to complete. The
transaction that must wait is said to be blocked by another transaction.

When the database server identifies a locking conflict which prohibits a transaction from proceeding
immediately, it can either pause execution of the transaction, or it can terminate the transaction, roll back
any changes, and return an error. You control the route by setting the blocking option. When the blocking
is set to On the second transaction waits, as in the above tutorial.

For more information about the blocking option, see “The blocking option” on page 128.

Using snapshot isolation to avoid non-repeatable reads
You can also use snapshot isolation to help avoid blocking. Because transactions that use snapshot isolation
only see committed data, the Accountant's transaction does not block the Sales Manager's transaction.

1. Start Interactive SQL.

2. In the Connect window, connect to the SQL Anywhere sample database as the Sales Manager:

● In the ODBC Data Source Name field, choose SQL Anywhere 11 Demo.

● Click the Advanced tab and type Sales Manager in the ConnectionName field.

● Click OK.

3. Start a second instance of Interactive SQL.

4. In the Connect window, connect to the SQL Anywhere sample database as the Accountant:

● In the ODBC Data Source Name field, choose SQL Anywhere 11 Demo.

● Click the Advanced tab and type Accountant in the ConnectionName field.

● Click OK.

5. Execute the following statements to enable snapshot isolation for the database and specify that the
snapshot isolation level is used:

SET OPTION PUBLIC.allow_snapshot_isolation = 'On';
SET TEMPORARY OPTION isolation_level = snapshot;

6. The Accountant decides to list the prices of the visors. As the Accountant, execute the following
command:

SELECT ID, Name, UnitPrice
FROM Products
ORDER BY ID;

ID Name UnitPrice

300 Tee Shirt 9.00

301 Tee Shirt 14.00

302 Tee Shirt 14.00

Using transactions and isolation levels

158 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ID Name UnitPrice

400 Baseball Cap 9.00

401 Baseball Cap 10.00

500 Visor 7.00

501 Visor 7.00

...

7. The Sales Manager decides to introduce a new sale price for the plastic visor. As the Sales Manager,
execute the following command:

UPDATE Products
SET UnitPrice = 5.95 WHERE ID = 501;
COMMIT;
SELECT ID, Name, UnitPrice FROM Products
WHERE Name = 'Visor';

8. The Accountant executes his query again, and does not see the change in price because the data that was
committed at the time of the first read is used for the transaction.

SELECT ID, Name, UnitPrice
FROM Products;

9. As the Sales Manager, change the plastic visor back to its original price.

UPDATE Products
SET UnitPrice = 7.00
WHERE ID = 501;
COMMIT;

The database server does not place a read lock on the rows in the Products table that the Accountant is
reading because the Accountant is viewing a snapshot of committed data that was taken before the Sales
Manager made any changes to the Products table.

10. The Accountant is finished looking at the prices. He doesn't want to risk accidentally changing the
database, so he completes his transaction with a ROLLBACK statement.

ROLLBACK;

Tutorial: Phantom rows
In this tutorial, you will observe the appearance of a phantom row.

Note
For this tutorial to work properly, the Automatically Release Database Locks option must not be selected
in Interactive SQL (Tools » Options » SQL Anywhere).

Isolation level tutorials

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 159

1. Start two instances of Interactive SQL. See steps 1 through 4 of “Tutorial: Non-repeatable
reads” on page 154.

2. Set the isolation level to 2 in the Sales Manager window by executing the following command.

SET TEMPORARY OPTION isolation_level = 2;
3. Set the isolation level to 2 for the Accountant window by executing the following command.

SET TEMPORARY OPTION isolation_level = 2;
4. In the Accountant window, enter the following command to list all the departments.

SELECT * FROM Departments
ORDER BY DepartmentID;

DepartmentID DepartmentName DepartmentHeadID

100 R & D 501

200 Sales 902

300 Finance 1293

400 Marketing 1576

500 Shipping 703

5. The Sales Manager decides to set up a new department to focus on the foreign market. Philip Chin, who
has EmployeeID 129, heads the new department.

INSERT INTO Departments
 (DepartmentID, DepartmentName, DepartmentHeadID)
 VALUES(600, 'Foreign Sales', 129);
COMMIT;

The final command creates the new entry for the new department. It appears as a new row at the bottom
of the table in the Sales Manager's window.

In the Sales Manager window, enter the following command to list all the departments.

SELECT *
FROM Departments
ORDER BY DepartmentID;

DepartmentID DepartmentName DepartmentHeadID

100 R & D 501

200 Sales 902

300 Finance 1293

400 Marketing 1576

Using transactions and isolation levels

160 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

DepartmentID DepartmentName DepartmentHeadID

500 Shipping 703

600 Foreign Sales 129

6. The Accountant, however, is not aware of the new department. At isolation level 2, the database server
places locks to ensure that no row changes, but places no locks that stop other transactions from inserting
new rows.

The Accountant will only discover the new row if he executes his SELECT command again. In the
Accountant's window, execute the SELECT statement again. You will see the new row appended to the
table.

SELECT *
FROM Departments
ORDER BY DepartmentID;

DepartmentID DepartmentName DepartmentHeadID

100 R & D 501

200 Sales 902

300 Finance 1293

400 Marketing 1576

500 Shipping 703

600 Foreign Sales 129

The new row that appears is called a phantom row because, from the Accountant's point of view, it
appears like an apparition, seemingly from nowhere. The Accountant is connected at isolation level 2.
At that level, the database server acquires locks only on the rows that he is using. Other rows are left
untouched, so there is nothing to prevent the Sales Manager from inserting a new row.

7. The Accountant would prefer to avoid such surprises in future, so he raises the isolation level of his
current transaction to level 3. Enter the following commands for the Accountant.

SET TEMPORARY OPTION isolation_level = 3;
SELECT *
FROM Departments
ORDER BY DepartmentID;

8. The Sales Manager would like to add a second department to handle a sales initiative aimed at large
corporate partners. Execute the following command in the Sales Manager's window.

INSERT INTO Departments
 (DepartmentID, DepartmentName, DepartmentHeadID)
 VALUES(700, 'Major Account Sales', 902);

Isolation level tutorials

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 161

The Sales Manager's window pauses during execution because the Accountant's locks block the
command. From the toolbar, click Interrupt The SQL Statement (or choose SQL » Stop) to interrupt
this entry.

9. To avoid changing the SQL Anywhere sample database, you should roll back the incomplete transaction
that inserts the Major Account Sales department row and use a second transaction to delete the Foreign
Sales department.

a. Execute the following command in the Sales Manager's window to rollback the last, incomplete
transaction:

ROLLBACK;
b. Also in the Sales Manager's window, execute the following two statements to delete the row that you

inserted earlier and commit this operation.

DELETE FROM Departments
WHERE DepartmentID = 600;
COMMIT;

Explanation
When the Accountant raised his isolation to level 3 and again selected all rows in the Departments table, the
database server placed anti-insert locks on each row in the table, and added one extra phantom lock to block
inserts at the end of the table. When the Sales Manager attempted to insert a new row at the end of the table,
it was this final lock that blocked her command.

Notice that the Sales Manager's command was blocked even though she is still connected at isolation level
2. The database server places anti-insert locks, like read locks, as demanded by the isolation level and
statements of each transactions. Once placed, these locks must be respected by all other concurrent
transactions.

For more information about locking, see “How locking works” on page 132.

Using snapshot isolation to avoid phantom rows
You can use the snapshot isolation level to maintain consistency at the same level as isolation level at 3,
without any sort of blocking. The Sales Manager's command is not blocked, and the Accountant does not
see a phantom row.

If you have not done so, follow steps 1 through 4 of the “Tutorial: Phantom rows” on page 159 which describe
how to start two instances of Interactive SQL.

1. Enable snapshot isolation for the Accountant by executing the following command.

SET OPTION PUBLIC. allow_snapshot_isolation = 'On';
SET TEMPORARY OPTION isolation_level = snapshot;

2. In the Accountant window, enter the following command to list all the departments.

SELECT * FROM Departments
ORDER BY DepartmentID;

Using transactions and isolation levels

162 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

DepartmentID DepartmentName DepartmentHeadID

100 R & D 501

200 Sales 902

300 Finance 1293

400 Marketing 1576

500 Shipping 703

3. The Sales Manager decides to set up a new department to focus on the foreign market. Philip Chin, who
has EmployeeID 129, heads the new department.

INSERT INTO Departments
 (DepartmentID, DepartmentName, DepartmentHeadID)
 VALUES(600, 'Foreign Sales', 129);
COMMIT;

The final command creates the new entry for the new department. It appears as a new row at the bottom
of the table in the Sales Manager's window.

SELECT * FROM Departments
ORDER BY DepartmentID;

DepartmentID DepartmentName DepartmentHeadID

100 R & D 501

200 Sales 902

300 Finance 1293

400 Marketing 1576

500 Shipping 703

600 Foreign Sales 129

4. The Accountant can execute his query again, and does not see the new row because the transaction has
not ended.

SELECT *
FROM Departments
ORDER BY DepartmentID;

DepartmentID DepartmentName DepartmentHeadID

100 R & D 501

200 Sales 902

Isolation level tutorials

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 163

DepartmentID DepartmentName DepartmentHeadID

300 Finance 1293

400 Marketing 1576

500 Shipping 703

5. The Sales Manager would like to add a second department to handle sales initiative aimed at large
corporate partners. Execute the following command in the Sales Manager's window.

INSERT INTO Departments
 (DepartmentID, DepartmentName, DepartmentHeadID)
 VALUES(700, 'Major Account Sales', 902);

The Sales Manager's change is not blocked because the Accountant is using snapshot isolation.

6. The Accountant must end his snapshot transaction to see the changes the Sales Manager committed to
the database.

COMMIT;
 SELECT * FROM Departments
 ORDER BY DepartmentID;

Now the Accountant sees the Foreign Sales department, but not the Major Account Sales department.

DepartmentID DepartmentName DepartmentHeadID

100 R & D 501

200 Sales 902

300 Finance 1293

400 Marketing 1576

500 Shipping 703

600 Foreign Sales 129

7. To avoid changing the SQL Anywhere sample database, you should roll back the incomplete transaction
that inserts the Major Account Sales department row and use a second transaction to delete the Foreign
Sales department.

a. Execute the following command in the Sales Manager's window to rollback the last, incomplete
transaction:

ROLLBACK;
b. Also in the Sales Manager's window, execute the following two statements to delete the row that you

inserted earlier and commit this operation.

DELETE FROM Departments
WHERE DepartmentID = 600;

Using transactions and isolation levels

164 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

COMMIT;

Tutorial: Practical locking implications
In this tutorial the Accountant and the Sales Manager both have tasks that involve the SalesOrder and
SalesOrderItems tables. The Accountant needs to verify the amounts of the commission checks paid to the
sales employees for the sales they made during the month of April 2001. The Sales Manager notices that a
few orders have not been added to the database and wants to add them.

Their work demonstrates phantom locking. A phantom lock is a shared lock placed on an indexed scan
position to prevent phantom rows. When a transaction at isolation level 3 selects rows which match a given
criterion, the database server places anti-insert locks to stop other transactions from inserting rows which
would also match. The number of locks placed on your behalf depends both on the search criterion and on
the design of your database.

Note
For this tutorial to work properly, the Automatically Release Database Locks option must not be selected
in Interactive SQL (Tools » Options » SQL Anywhere).

1. Start two instances of Interactive SQL. See steps 1 through 4 of “Tutorial: Non-repeatable
reads” on page 154.

2. Set the isolation level to 2 in both the Sales Manager window and the Accountant window by executing
the following command.

SET TEMPORARY OPTION isolation_level = 2;
3. Each month, the sales representatives are paid a commission that is calculated as a percentage of their

sales for that month. The Accountant is preparing the commission checks for the month of April 2001.
His first task is to calculate the total sales of each representative during this month.

Enter the following command in the Accountant's window. Prices, sales order information, and employee
data are stored in separate tables. Join these tables using the foreign key relationships to combine the
necessary pieces of information.

SELECT EmployeeID, GivenName, Surname,
 SUM(SalesOrderItems.Quantity * UnitPrice)
 AS "April sales"
FROM Employees
 KEY JOIN SalesOrders
 KEY JOIN SalesOrderItems
 KEY JOIN Products
WHERE '2001-04-01' <= OrderDate
 AND OrderDate < '2001-05-01'
GROUP BY EmployeeID, GivenName, Surname
ORDER BY EmployeeID;

EmployeeID GivenName Surname April sales

129 Philip Chin 2160.00

Isolation level tutorials

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 165

EmployeeID GivenName Surname April sales

195 Marc Dill 2568.00

299 Rollin Overbey 5760.00

467 James Klobucher 3228.00

...

4. The Sales Manager notices that a big order sold by Philip Chin was not entered into the database. Philip
likes to be paid his commission promptly, so the Sales manager enters the missing order, which was
placed on April 25.

In the Sales Manager's window, enter the following commands. The Sales order and the items are entered
in separate tables because one order can contain many items. You should create the entry for the sales
order before you add items to it. To maintain referential integrity, the database server allows a transaction
to add items to an order only if that order already exists.

INSERT into SalesOrders
VALUES (2653, 174, '2001-04-22', 'r1',
 'Central', 129);
INSERT into SalesOrderItems
VALUES (2653, 1, 601, 100, '2001-04-25');
COMMIT;

5. The Accountant has no way of knowing that the Sales Manager has just added a new order. Had the new
order been entered earlier, it would have been included in the calculation of Philip Chin's April sales.

In the Accountant's window, calculate the April sales totals again. Use the same command, and observe
that Philip Chin's April sales changes to $4560.00.

EmployeeID GivenName Surname April sales

129 Philip Chin 4560.00

195 Marc Dill 2568.00

299 Rollin Overbey 5760.00

467 James Klobucher 3228.00

...

Imagine that the Accountant now marks all orders placed in April to indicate that commission has been
paid. The order that the Sales Manager just entered might be found in the second search and marked as
paid, even though it was not included in Philip's total April sales!

6. At isolation level 3, the database server places anti-insert locks to ensure that no other transactions can
add a row which matches the criterion of a search or select.

In the Sales Manager's window, execute the following statements to remove the new order.

Using transactions and isolation levels

166 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

DELETE
FROM SalesOrderItems
WHERE ID = 2653;
DELETE
FROM SalesOrders
WHERE ID = 2653;
COMMIT;

7. In the Accountant's window, execute the following two statements.

ROLLBACK;
SET TEMPORARY OPTION isolation_level = 3;

8. In the Accountant's window, execute same query as before.

SELECT EmployeeID, GivenName, Surname,
 SUM(SalesOrderItems.Quantity * UnitPrice)
 AS "April sales"
FROM Employees
 KEY JOIN SalesOrders
 KEY JOIN SalesOrderItems
 KEY JOIN Products
WHERE '2001-04-01' <= OrderDate
 AND OrderDate < '2001-05-01'
GROUP BY EmployeeID, GivenName, Surname;

Because you set the isolation to level 3, the database server automatically places anti-insert locks to
ensure that the Sales Manager cannot insert April order items until the Accountant finishes his transaction.

9. Return to the Sales Manager's window. Again attempt to enter Philip Chin's missing order.

INSERT INTO SalesOrders
VALUES (2653, 174, '2001-04-22',
 'r1','Central', 129);

The Sales Manager's window stops responding, and the operation does not complete. On the toolbar,
click Interrupt The SQL Statement (or choose SQL » Stop) to interrupt this entry.

10. The Sales Manager cannot enter the order in April, but you might think that she could still enter it in
May.

Change the date of the command to May 05 and try again.

INSERT INTO SalesOrders
VALUES (2653, 174, '2001-05-05', 'r1',
 'Central', 129);

The Sales Manager's window stops responding again. On the toolbar, click Interrupt The SQL
Statement (or choose SQL » Stop) to interrupt this entry. Although the database server places no more
locks than necessary to prevent insertions, these locks have the potential to interfere with a large number
of other transactions.

The database server places locks in table indexes. For example, it places a phantom lock in an index so
a new row cannot be inserted immediately before it. However, when no suitable index is present, it must
lock every row in the table.

In some situations, anti-insert locks may block some insertions into a table, yet allow others.

11. The Sales Manager wants to add a second item to order 2651. Use the following command.

Isolation level tutorials

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 167

INSERT INTO SalesOrderItems
VALUES (2651, 2, 302, 4, '2001-05-22');

The Sales Manager's window stops responding. On the toolbar, click Interrupt The SQL Statement
(or choose SQL » Stop) to interrupt this entry.

12. Conclude this tutorial by undoing any changes to avoid changing the SQL Anywhere sample database.
Enter the following command in the Sales Manager's window.

ROLLBACK;

Enter the same command in the Accountant's window.

ROLLBACK;

Close both windows.

Using transactions and isolation levels

168 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Primary key generation and concurrency
You will encounter situations where the database should automatically generate a unique number. For
example, if you are building a table to store sales invoices you might prefer that the database assign unique
invoice numbers automatically, rather than require sales staff to pick them.

Example
For example, invoice numbers could be obtained by adding 1 to the previous invoice number. This method
does not work when there is more than one person adding invoices to the database. Two employees may
decide to use the same invoice number.

There is more than one solution to the problem:

● Assign a range of invoice numbers to each person who adds new invoices.

You could implement this scheme by creating a table with the columns user name and invoice number.
The table would have one row for each user that adds invoices. Each time a user adds an invoice, the
number in the table would be incremented and used for the new invoice. To handle all tables in the
database, the table should have three columns: table name, user name, and last key value. You should
periodically verify that each person has enough numbers.

● Create a table with the columns table name and last key value.

One row in this table would contain the last invoice number used. Each time someone adds an invoice,
establish a new connection, increment the number in the table, and commit the change immediately. The
incremented number can be used for the new invoice. Other users will be able to grab invoice numbers
because you updated the row with a separate transaction that only lasted an instant.

● Use a column with a default value of NEWID in conjunction with the UNIQUEIDENTIFIER binary
data type to generate a universally unique identifier.

UUID and GUID values can be used to identify unique rows in a table. The values are generated such
that a value produced on one computer will not match that produced on another. They can therefore be
used as keys in replication and synchronization environments.

For more information about generating unique identifiers, see “The NEWID default” on page 90.

● Use a column with a default value of AUTOINCREMENT. For example:

CREATE TABLE Orders (
 OrderID INTEGER NOT NULL DEFAULT AUTOINCREMENT,
 OrderDate DATE,
 primary key(OrderID)
);

On inserts into the table, if a value is not specified for the autoincrement column, a unique value is
generated. If a value is specified, it will be used. If the value is larger than the current maximum value
for the column, that value will be used as a starting point for subsequent inserts. The value of the most
recently inserted row in an autoincrement column is available as the global variable @@identity.

Primary key generation and concurrency

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 169

Data definition statements and concurrency
Data definition statements that change an entire table, such as CREATE INDEX, ALTER TABLE, and
TRUNCATE TABLE, are prevented whenever the table on which the statement is acting is currently being
used by another connection. These data definition statements can be time consuming and the database server
will not process requests referencing the same table while the command is being processed.

The CREATE TABLE statement does not cause any concurrency conflicts.

The GRANT statement, REVOKE statement, and SET OPTION statement also do not cause concurrency
conflicts. These commands affect any new SQL statements sent to the database server, but do not affect
existing outstanding statements.

GRANT and REVOKE for a user are not allowed if that user is connected to the database.

Data definition statements and synchronized databases
Using data definition statements in databases using synchronization requires special care. See MobiLink -
Server Administration and “Data definition statements” [SQL Remote].

Using transactions and isolation levels

170 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Summary
Transactions and locking are second only in importance to relations between tables. The integrity and
performance of any database can benefit from the judicious use of locking and careful construction of
transactions. Both are essential to creating databases that must execute a large number of commands
concurrently.

Transactions group SQL statements into logical units of work. To complete transactions, you can either roll
back all the changes you made, or commit the changes to make them permanent.

In the event of system failure, transactions are essential to data recovery. They also play a pivotal role in
interweaving statements from concurrent transactions.

To improve performance, multiple transactions must be executed concurrently. Each transaction is composed
of component SQL statements. When two or more transactions are executed concurrently, the database server
must schedule the execution of the individual statements. Unlike sequentially executed transactions,
concurrent transactions could introduce inconsistencies.

Four types of inconsistencies are used to define isolation levels:

● Dirty read One transaction reads data modified, but not yet committed, by another.

● Non-repeatable read A transaction reads the same row twice and gets different values.

● Phantom row A transaction selects rows, using a certain criterion, twice and finds new rows in the
second result set.

● Lost update One transaction's changes to a row are completely lost because another transaction is
allowed to save an update based on earlier data.

A schedule is called serializable whenever the effect of executing the statements according to the schedule
is the same as could be achieved by executing each of the transactions sequentially. Schedules are said to
be correct if they are serializable. A serializable schedule will cause none of the above inconsistencies.

Locking controls the amount and types of interference permitted. SQL Anywhere provides you with four
levels of locking: isolation levels 0, 1, 2, and 3. At the highest isolation, level 3, SQL Anywhere guarantees
that the schedule is serializable, meaning that the effect of executing all the transactions is equivalent to
running them sequentially.

Unfortunately, locks acquired by one transaction may impede the progress of other transactions. Because of
this problem, lower isolation levels are desirable whenever the inconsistencies they may allow are tolerable.
Increased isolation to improve data consistency frequently means lowering the concurrency, the efficiency
of the database at processing concurrent transactions. You must frequently balance the requirements for
consistency against the need for performance to determine the best isolation level for each operation.

Conflicting locking requirements between different transactions may lead to blocking or deadlock. SQL
Anywhere contains mechanisms for dealing with both these situations, and provides you with options to
control them.

Transactions at higher isolation levels do not, however, always impact concurrency. Other transactions will
be impeded only if they require access to locked rows. You can improve concurrency through careful design
of your database and transactions. For example, you can shorten the time that locks are held by dividing one

Summary

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 171

transaction into two shorter ones, or you might find that adding an index allows your transaction to operate
at higher isolation levels with fewer locks.

Using transactions and isolation levels

172 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Monitoring and Improving Database
Performance

This section describes how to perform database and application profiling activities, monitor and improve
performance, and troubleshoot specific performance problems.

Improving database performance ... 175
Application profiling tutorials .. 253

Improving database performance

Contents
Application profiling ... 177
Index Consultant .. 183
Advanced application profiling using diagnostic tracing .. 188
Other diagnostic tools and techniques .. 206
Monitoring database performance ... 212
Performance Monitor statistics .. 217
Performance improvement tips .. 229

To improve database performance, you must determine if the existing database is performing at optimum
levels. This section provides information about using SQL Anywhere analysis tools to analyze and correct
database performance.

SQL Anywhere provides several diagnostic tools for the detection of production database performance
issues. Most of the tools rely on the diagnostic tracing infrastructure; a system of tables, files, and other
components that capture and store diagnostic data. You can use diagnostic tracing data to perform diagnostic
and monitoring tasks such as application profiling.

There are several methods for analyzing SQL Anywhere performance data including:

● The Application Profiling Wizard This wizard, available from Application profiling mode in Sybase
Central, provides a fully-automated method of checking performance. At the end of the wizard,
improvement recommendations are provided. See “Application profiling” on page 177.

● The Database Tracing Wizard This wizard, available from Application Profiling mode in Sybase
Central, provides the ability to customize the type of performance data gathered. This allows you to
monitor the performance of specific users or activities. See “Advanced application profiling using
diagnostic tracing” on page 188.

● Request trace analysis This feature allows you to narrow diagnostic data gathering to requests
(statements) issued by specific users or connections. See “Perform request trace
analysis” on page 203.

● Index Consultant This feature analyzes the indexes in the database and provides recommendations
for improvement. You can access this tool through Application Profiling mode, or as a standalone tool.
See “Index Consultant” on page 183.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 175

● Procedure profiling This feature allows you to determine how long it takes procedures, user-defined
functions, events, system triggers, and triggers to execute. Procedure profiling is available as a feature
in Sybase Central. See “Procedure profiling in Application Profiling mode” on page 178.

You can also use system procedures to implement procedure profiling. See “Procedure profiling using
system procedures” on page 208.

● Execution plans This feature allows you to use an execution plan to access information in the
database related to a statement. You can view the execution plan in Interactive SQL or use SQL functions.
You can retrieve an execution plan in several different formats and the plan can be saved. See “Reading
execution plans” on page 610.

Note
In the documentation, the terms application profiling and diagnostic tracing are used interchangeably.
Diagnostic tracing is advanced application profiling.

Improving database performance

176 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Application profiling
Application profiling generates data that you can use to understand how applications interact with the
database and to identify and eliminate performance problems. Two methods are available for generating
profiling information; an automated method, using the Application Profiling Wizard, or using the tools
and features found in Application Profiling mode of Sybase Central.

The Application Profiling Wizard is not supported on Windows Mobile; however, the Database Tracing
Wizard is. You cannot automatically create a tracing database from a Windows Mobile device, and you
cannot trace to the local database on a Windows Mobile device. You must trace from the Windows Mobile
device to a copy of the Windows Mobile database running on a database server on a desktop computer.

● Automated application profiling Use the Application Profiling Wizard in Sybase Central to
identify common performance problems. The wizard allows you to define the types of activities to profile
and provides recommendations for improving database performance when it is complete. The Index
Consultant has also been integrated into the Application Profiling Wizard and uses the data to
recommend index improvements.

An automated approach is ideal for environments with few database connections, or where sophisticated
profiling is not required.

● Advanced application profiling using diagnostic tracing Use the Database Tracing Wizard
to customize the data returned during a tracing session and where it is stored. You can also use the
command line to return and store customized tracing data. You can control the activities profiled, and
target specific issues. For example, you can target specific statements executed by the database server,
query plans used, deadlocks, connections that block each other, and performance statistics.

An advanced approach is recommended for environments in which the database has a high workload,
or where sophisticated profiling is required to diagnose a problem. By customizing the tracing session,
you can reduce the tracing scope to specific activities, and you can direct tracing data to a remotely
located database. Both of these actions reduce the workload on the database being profiled.

See “Advanced application profiling using diagnostic tracing” on page 188.

Application Profiling Wizard
The Application Profiling Wizard in Sybase Central provides an automated method of performing a
diagnostic tracing session for the purpose of profiling applications. The wizard gathers data on how your
applications are interacting with the database, provides you access to the data, and with indexing
recommendations, if any. See “Application Profiling Wizard” on page 177.

When you use the Application Profiling Wizard in Sybase Central, the wizard automatically creates a
tracing database with the same name you specify in the wizard for the analysis file. For more information
about the database files created for application profiling and diagnostic tracing, see “Tracing session
data” on page 188.

The Application Profiling Wizard cannot be used to create a tracing session for a database running on
Windows Mobile. You must use the Database Tracing Wizard. See “Create a diagnostic tracing
session” on page 199.

Application profiling

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 177

To disable the Application Profiling Wizard from starting automatically when switching to Application
Profiling mode, on the first page of the wizard select In The Future, Do Not Show This Wizard After
Switching To Application Profiling Mode. You can also suppress the first page of the wizard by selecting
In The Future, Do Not Show This Page. To change these options at any time, choose Tools » SQL
Anywhere 11 » Preferences, select the Utilities tab, and then select the appropriate options.

To use the Application Profiling Wizard (Sybase Central)

1. Open Sybase Central.

2. Connect to the database as a user with DBA authority or as a user with PROFILE authority.

3. Choose Mode » Application Profiling.

If the Application Profiling Wizard does not appear, choose Application Profiling » Open
Application Profiling Wizard.

4. Follow the Application Profiling Wizard instructions. Do not click Finish; this ends profiling, and
closes the wizard.

The wizard:

● creates a local database to hold diagnostic tracing information

● starts the network server

● starts a tracing session

● prompts you to run the application you would like to profile

5. Return to the Application Profiling Wizard and click Finish. When the wizard finishes, it returns its
findings and allows you to review the data it gathered during the tracing session.

For more information about the indexing recommendations returned from the Application Profiling
Wizard, see “Understanding Index Consultant recommendations” on page 184.

For more information about the procedure profiling information gathered during the tracing session, see
“How to read procedure profiling results” on page 182.

See also
● “PROFILE authority” [SQL Anywhere Server - Database Administration]

Procedure profiling in Application Profiling mode
This section explains how to use the Application Profiling mode in Sybase Central to perform procedure
profiling. It is the recommended method for accessing procedure profiling results. However, you can also
use SQL commands to perform procedure profiling. See “Procedure profiling using system
procedures” on page 208.

Procedure profiling shows you how long it takes your procedures, user-defined functions, events, system
triggers, and triggers to execute. You can also view line-by-line execution times for these objects, once they
have run during profiling. Then, using the information provided in the procedure profiling results, you can
determine which objects should be fine-tuned to improve performance within your database.

Improving database performance

178 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Procedure profiling can also help you analyze specific database procedures (including stored procedures,
functions, events and triggers) found to be expensive via request logging. It can also help you discover
expensive hidden procedures, for example, triggers, events, and nested stored procedure calls. As well, it
can help pin-point potential problem areas within the body of a procedure.

Procedure profiling results are stored in memory by the database server. Profiling information is cumulative,
and accurate to 1 ms.

Enable procedure profiling
Once procedure profiling is enabled, the database server gathers profiling information until you disable
profiling or until the database server is shut down.

Note
All profiling information is deleted when the database server is shut down. To export profiling information,
use the sa_procedure_profile system procedure. See “sa_procedure_profile system procedure” [SQL
Anywhere Server - SQL Reference].

You cannot use SQL statements to query profiling information retained by the database server. Profiling
information is kept in in-memory database server data structures.

To enable procedure profiling (Sybase Central)

1. Open Sybase Central.

2. Connect to the database as a user with DBA authority or as a user with PROFILE authority.

3. In the left pane, select the database.

4. Choose Mode » Application Profiling.

If the Application Profiling Wizard does not appear, choose Application Profiling » Open
Application Profiling Wizard.

5. Follow the Application Profiling Wizard instructions.

6. On the Profiling Options page, select Stored Procedure, Function, Trigger, Or Event Execution
Time.

7. Click Finish.

If you switch to another mode, a prompt appears asking whether you want to stop collecting procedure
profiling information. Select No to continue working in other modes while profiling continues.

See also
● “Reset procedure profiling” on page 180
● “Disable procedure profiling” on page 180
● “Analyze procedure profiling results” on page 181
● “PROFILE authority” [SQL Anywhere Server - Database Administration]

Application profiling

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 179

Reset procedure profiling
Reset procedure profiling when you want to clear existing profiling information about procedures, functions,
events, and triggers. Resetting does not stop procedure profiling if it is enabled, nor does it start procedure
profiling if it is disabled.

To reset profiling (Sybase Central)

1. Open Sybase Central.

2. Connect to the database as a user with DBA authority or as a user with PROFILE authority.

3. In the left pane, select the database.

4. Choose Mode » Application Profiling. If the Application Profiling Wizard appears, click Cancel.

5. If procedure profiling is enabled: in the Application Profiling Details pane, click the database and then
click View Profiling Settings On Selected Databases.

If procedure profiling is not enabled, in the left pane, right-click the database and choose Properties.

6. Click the Profiling Settings tab.

7. Click Reset Now.

8. Click OK.

See also
● “Enable procedure profiling” on page 179
● “Disable procedure profiling” on page 180
● “Analyze procedure profiling results” on page 181

Disable procedure profiling
When you are finished capturing profiling information for procedures, triggers, and functions, you can
disable procedure profiling. When you disable procedure profiling, you also have the option to delete the
profiling information gathered so far. You may want to do this if you have already completed your analysis
work.

If you do not choose to delete profiling data, it remains available for review in Application Profiling mode
in Sybase Central, even after procedure profiling is disabled.

To disable profiling without deleting profiling information (Sybase Central)

1. Open Sybase Central.

2. Connect to the database as a user with DBA authority or as a user with PROFILE authority.

3. In the left pane, select the database.

4. Choose Mode » Application Profiling. If the Application Profiling Wizard appears, click Cancel.

Improving database performance

180 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

5. In the Application Profiling Details pane, click Stop Collecting Profiling Information On Selected
Databases.

To delete profiling information and disable procedure profiling (Sybase Central)

1. Open Sybase Central.

2. Connect to the database as a user with DBA authority or as a user with PROFILE authority.

3. In the left pane, select the database.

4. Choose Mode » Application Profiling. If the Application Profiling Wizard appears, click Cancel.

5. In the Application Profiling Details pane, select the database and click View Profiling Settings On
Selected Databases.

6. Click the Profiling Settings tab.

7. Click Clear Now.

8. Click OK.

See also
● “Enable procedure profiling” on page 179
● “Reset procedure profiling” on page 180
● “Analyze procedure profiling results” on page 181

Analyze procedure profiling results
Even though it is called procedure profiling, you are actually able to view profiling results for stored
procedures, user-defined functions, triggers, system triggers, and events in your database.

To view procedure profiling information (Sybase Central)

1. Connect to the database as a user with DBA authority and enable procedure profiling. See “Enable
procedure profiling” on page 179.

2. In the left pane, double-click one of the following: Triggers, System Triggers, Procedures &
Functions, or Events.

3. In the right pane, click the Profiling Results tab.

A list appears of all the objects of the selected type that have executed since you enabled procedure
profiling.

An expected object might be missing because it has not been executed. Or, it may have executed but the
results have not yet been refreshed. Press F5 to refresh the list.

If you find more objects listed than you expected, one object can call other objects, so there may be more
items listed than those that users explicitly called.

4. To view in-depth profiling results for a specific object, double-click the object on the Profiling
Results tab.

Application profiling

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 181

The right pane details are replaced with in-depth profiling information for the object.

How to read procedure profiling results
The Profiling Results tab provides a summary of the profiling information for all the objects, grouped by
type, that have been executed within the database since you started procedure profiling. The information
displayed includes:

Column Description

Name The name of the object.

Owner The owner of the object.

Table or Table Name The table a trigger belongs to (this column only appears on the database Profile
tab).

Event The type of object, for example, a procedure.

Type The type of trigger for system triggers. This can be Update or Delete.

Execs. The number times each object has been called.

msec. The total execution time for each object.

These columns, and their content, may vary depending on the type of object.

When you double-click a specific object, such as a procedure, details specific to that object appears in the
Profiling Results tab. The information displayed includes:

Column Description

Execs The number of times the line of code in the object was executed.

Milliseconds The total amount of time that a line took to execute.

% The percent of total time that a line took to execute.

Line The line number within the object.

Source The code that was executed.

Lines with long execution times compared to other lines in the code should be analyzed to see whether there
is a more efficient way to achieve the same functionality. You must be connected to the database, have
profiling enabled, and have DBA authority to access procedure profiling information.

Improving database performance

182 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Index Consultant
You must have DBA or PROFILE authority to run the Index Consultant.

The selection of a proper set of indexes can improve the database performance. The SQL Anywhere Index
Consultant helps you select indexes by providing recommendations n the best set of indexes for your
database.

You can run the Index Consultant against a single query using Interactive SQL, or against the database using
Application Profiling mode in Sybase Central. When analyzing a database, the Index Consultant uses a
tracing session to gather data and make recommendations. It estimates query execution costs using those
indexes to see which indexes lead to improved execution plans. The Index Consultant evaluates multiple
column indexes, single-column indexes, and investigates the impact of clustered or unclustered indexes.

The Index Consultant analyzes a database or single query by generating candidate indexes and determining
their effect on performance. To explore the effect of different candidate indexes, the Index Consultant
repeatedly re-optimizes the queries under different sets of indexes. It does not execute the queries.

Note
You can use Sybase Central to connect to a version 9 database server. However, the layout of windows in
Sybase Central reverts to the version 9 layout, which does not include Application Profiling mode. Refer to
your version 9 documentation for information about locating and using the Index Consultant in Sybase
Central.

See also
● “Working with indexes” on page 71
● “Indexes” on page 640
● “Application profiling” on page 177
● “PROFILE authority” [SQL Anywhere Server - Database Administration]
● “Application profiling” on page 177
● “Understanding Index Consultant recommendations” on page 184

Obtain Index Consultant recommendations for a query

To obtain Index Consultant recommendations for a query (Sybase Central)

1. Open Sybase Central.

2. Connect to the database as a user with DBA authority or as a user with PROFILE authority.

3. Right-click the database and choose Open Interactive SQL.

4. In the SQL Statements pane, type the query.

5. Choose Tools » Index Consultant.

Index Consultant

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 183

Obtain Index Consultant recommendations for a database
To obtain Index Consultant recommendations for an entire database, use the Application Profiling mode in
Sybase Central. The Index Consultant needs profiling data before it can made its recommendations. The
following procedure is a quick way to gather data and obtain the recommendations using data gathered by
the Application Profiling Wizard. However, if you already have application profiling data (for example,
if you profiled your database already using the Database Tracing Wizard), you can also run the Index
Consultant on the tracing database that you created.

To obtain Index Consultant recommendations for a database using Application Profiling
Wizard (Sybase Central)

1. Connect to the database as the DBA, or as a user with PROFILE authority.

2. Choose Mode » Application Profiling.

3. Follow the Application Profiling Wizard instructions.

If the Application Profiling Wizard does not appear, choose Application Profiling » Open
Application Profiling Wizard, and follow the wizard instructions until it completes.

4. In Sybase Central, choose Application Profiling » Run Index Consultant On Tracing Database.

5. Follow the Index Consultant Wizard instructions.

Understanding Index Consultant recommendations
Before analyzing a tracing session, the Index Consultant asks you for the type of recommendations you want:

● Recommend clustered indexes If this option is selected, the Index Consultant analyzes the effect
of clustered and unclustered indexes.

Properly selected clustered indexes can provide significant performance improvements over unclustered
indexes for some workloads, but you must reorganize the table (using the REORGANIZE TABLE
statement) for them to be effective. In addition, the analysis takes longer if the effects of clustered indexes
are considered. See “Using clustered indexes” on page 72.

● Keep existing secondary indexes The Index Consultant can perform its analysis by either
maintaining the existing set of secondary indexes in the database, or by ignoring the existing secondary
indexes. A secondary index is an index that is not a unique constraint or a primary or foreign key. Indexes
that are present to enforce referential integrity constraints are always considered when selecting access
plans.

The analysis includes the following steps:

● Generate candidate indexes For each tracing session, the Index Consultant generates a set of
candidate indexes. Creating a real index on a large table can be a time consuming operation, so the Index
Consultant creates its candidates as virtual indexes. A virtual index cannot be used to actually execute
queries, but the optimizer can use virtual indexes to estimate the cost of execution plans as if such an

Improving database performance

184 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

index were available. Virtual indexes allow the Index Consultant to perform "what-if" analysis without
the expense of creating and managing real indexes. Virtual indexes have a limit of four columns.

● Testing the benefits and costs of candidate indexes The Index Consultant asks the optimizer
to estimate the cost of executing the queries in the tracing database, with and without different
combinations of candidate indexes.

● Generating recommendations The Index Consultant assembles the results of the query costs and
sorts the indexes by the total benefit they provide. It provides a SQL script, which you can run to
implement the recommendations or which you can save for your own review and analysis.

Understanding Index Consultant results
The Index Consultant provides a set of tabs with the results of a given analysis. You can save the results of
an analysis for later review.

Summary tab

The Summary tab provides an overview of the analysis, including the number of queries, the number of
recommended indexes, the number of pages required for the recommended indexes, and the benefit that the
recommended indexes are expected to yield. The benefit number is measured in internal units of cost.

Recommended Indexes tab

The Recommended Indexes tab contains data about each of the recommended indexes. The information
provided includes:

● Clustered Each table can have at most one clustered index. In some cases, a clustered index can
provide significantly more benefit than an unclustered index. See “Using clustered
indexes” on page 72.

● Pages The estimated number of database pages required to hold the index if you choose to create it.
See “Table and page sizes” on page 639.

● Relative Benefit A number from one to ten, indicating the estimated overall benefit of creating the
specified index. A higher number indicates a greater benefit.

The relative benefit is computed using an internal algorithm, separately from the Total Cost Benefit
column. There are several factors included in estimating the relative benefit that do not appear in the
total cost benefit. For example, it can happen that the presence of one index dramatically affects the
benefits associated with a second index. In this case, the relative benefit attempts to estimate the separate
impact of each index.

For more information, see “Implementing Index Consultant results” on page 186.

● Total Benefit The cost decrease associated with the index, summed over all operations in the tracing
session, measured in internal units of cost (the cost model). See “How the optimizer
works” on page 562.

Index Consultant

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 185

● Update Cost Adding an index introduces cost, both in additional storage space and in extra work
required when data is modified. The Update Cost column is an estimate of the additional maintenance
cost associated with an index. It is measured in internal units of cost.

● Total Cost Benefit The total benefit minus the update cost associated with the index.

Requests tab

The Requests tab provides a breakdown of the impact of the recommendations for individual requests within
the tracing session. The information includes the estimated cost before and after applying the recommended
indexes, and the virtual indexes used by the query. A button allows you to view the best execution plan found
for the request.

Updates tab

The Updates tab provides a breakdown of the impact of the recommendations.

Unused Indexes tab

The Unused Indexes tab lists indexes that already exist in the database that were not used in the execution
of any requests in the tracing session. Only secondary indexes are listed: that is, neither indexes on primary
keys and foreign keys nor unique constraints are listed.

Log tab

The Log tab lists activities that have been completed for this analysis.

See also
● “Working with indexes” on page 71
● “Indexes” on page 640
● “Application profiling” on page 177

Implementing Index Consultant results
Although the Index Consultant provides a SQL script that you can run to implement its results, you may
want to assess the results before implementing them. For example, you may want to rename the proposed
index names generated during the analysis.

When assessing the results, consider the following:

● Do the proposed indexes match your expectations? If you know the data in your database well,
and you know the queries being run against the database, you may want to check the usefulness of the
proposed indexes against your own knowledge. Perhaps a proposed index only affects a single query
that is run rarely, or perhaps it is on a small table and makes relatively little overall impact. Perhaps an
index that the Index Consultant suggests should be dropped is used for some other task that was not
included in your tracing session.

● Are there strong correlations between the effects of proposed indexes? The index
recommendations attempt to evaluate the relative benefit of each index separately. However, it is possible

Improving database performance

186 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

that two indexes are of use only if both exist (a query can use both if they exist, and none if either is
missing). You can study the Requests tab and inspect the query plans to see how the proposed indexes
are being used.

● Are you able to reorganize a table when creating a clustered index? To take full advantage
of a clustered index, you should reorganize the table on which it is created using the REORGANIZE
TABLE statement. If the Index Consultant recommends many clustered indexes, you may need to unload
and reload your database to get the full benefit. Unloading and reloading tables can be a time-consuming
operation and can require large disk space resources. You may want to confirm that you have the time
and resources you need to implement the recommendations.

● Do the server and connection state during the analysis reflect a realistic state during product
operation? The results of the analysis depend on the state of the database server, including which
data is in the cache. They also depend on the state of the connection, including some database option
settings. As the analysis creates only virtual indexes, and does not execute requests, the state of the
database server is essentially static during the analysis (except for changes introduced by other
connections). If the state does not represent the typical operation of your database, you may want to rerun
the analysis under different conditions.

See also
● “Understanding Index Consultant recommendations” on page 184
● “Using SQL command files” on page 771
● “Working with indexes” on page 71
● “Indexes” on page 640
● “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Application profiling” on page 177

Index Consultant

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 187

Advanced application profiling using diagnostic
tracing

Diagnostic tracing is an advanced method of application profiling. The diagnostic tracing data produced by
the database server can include the time stamps and connection ids of statements handled by the database
server. For queries, diagnostic tracing data includes the isolation level, number of rows fetched, cursor type,
and query execution plan. For INSERT, UPDATE, and DELETE statements, the number of rows affected
is also included. You can also use diagnostic tracing to record information about locking and deadlocks, and
to capture numerous performance statistics.

You use the data gathered during diagnostic tracing to perform in-depth application profiling activities such
as identifying and troubleshooting:

● specific performance problems

● statements that are unusually slow to execute

● improper option settings

● circumstances that cause the optimizer to pick a sub-optimal plan

● contention for resources (CPUs, memory, disk I/O)

● application logic problems

Tracing data is also used by tools such as the Index Consultant to make specific recommendations on how
to change your database or application to improve performance.

The tracing architecture is robust and scalable. It can record all the information that request logging records,
and details to support tailored analysis. For information about request logging, see “Perform request trace
analysis” on page 203.

See also
● “Application profiling” on page 177

Tracing session data
Diagnostic tracing data is gathered during a tracing session. Three methods are available to capture tracing
session data:

● the Database Tracing Wizard in Sybase Central
● transparently, as part of the automated activities of the Application Profiling Wizard
● the ATTACH TRACING and DETACH TRACING statements

When a tracing session is in progress, SQL Anywhere generates diagnostic information for the specified
database. The amount of tracing data generated depends on the tracing settings. For more information about
how to configure the amount and type of tracing data generated, see “Configuring diagnostic
tracing” on page 190.

Improving database performance

188 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The database being profiled is either referred to as the production database, the source database, or the
database being profiled. The database into which the tracing data is stored is referred to as the tracing
database. The production and tracing database can be the same database. However, to avoid increasing the
size of the production database, it is recommended that you store tracing data in a separate database. The
size of database files cannot be reduced after they have grown. Also, the production database performs better
if the overhead for storing and maintaining tracing data is performed in another database, especially if the
production database is large and heavily used.

The tables in the tracing database that hold the tracing data are referred to as the diagnostic tracing
tables. These tables are owned by dbo. For more information about these tables, see “Diagnostic tracing
tables” [SQL Anywhere Server - SQL Reference].

Note
The Application Profiling Wizard is not supported on Windows Mobile; however, the Database Tracing
Wizard is. As well, you must trace from the Windows Mobile device to a copy of the Windows Mobile
database running on a database server on a desktop computer. You cannot automatically create a tracing
database from a Windows Mobile device, and you cannot trace to the local database on a Windows Mobile
device.

Files created during a tracing session
The files created and used for a tracing session differ depending on whether you use the Application
Profiling Wizard, or the Database Tracing Wizard.

When you run the Application Profiling Wizard, the wizard silently captures a tracing session behind the
scenes, creating the tracing database to hold the diagnostic tables. This external database is created using
the name and location you specify in the wizard, and it has the extension .adb. The wizard also creates an
analysis log file in the same directory as the tracing database, using the same name but with the
extension .alg. This analysis log file contains the results of the analysis work done by the wizard, and can
be opened at any time in a text editor.

When you are finished with the data generated by the Application Profiling Wizard, you can delete the
tracing database and analysis log file associated with the session.

When you create a tracing session using the Database Tracing Wizard, the wizard asks you to choose
whether to save tracing data internally, in the production database, or externally, in a separate database (for
example, tracingData.db). Creating an external tracing database is recommended. See “Creating an external
tracing database” on page 204.

Note
Tracing information is not unloaded as part of a database unload or reload operation. If you want to transfer
tracing information from one database to another, you must do so manually by copying the contents of the
sa_diagnostic_* tables; however, this is not recommended.

Advanced application profiling using diagnostic tracing

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 189

Configuring diagnostic tracing
You cannot change the pre-configured tracing settings of the Application Profiling Wizard in Sybase
Central. However, you can use the Database Tracing Wizard to configure almost all aspects of your tracing
activities. Use one of the following methods to configure diagnostic tracing settings:

● use the Database Tracing Wizard in Sybase Central. This method is recommended because it allows
you to see all the tracing settings that are in effect. See “Change the diagnostic tracing configuration
settings” on page 198.

● use system procedures to change settings stored in the diagnostic tracing tables. For more information
about the system procedures used to administer application profiling, see “sa_set_tracing_level system
procedure” [SQL Anywhere Server - SQL Reference] and “sa_save_trace_data system procedure” [SQL
Anywhere Server - SQL Reference].

Tracing settings are stored in the sa_diagnostic_tracing_level system table. See “sa_diagnostic_tracing_level
table” [SQL Anywhere Server - SQL Reference].

The SendingTracingTo and ReceivingTracingFrom database properties identify the tracing and production
databases, respectively. For more information about these properties, see “Database properties” [SQL
Anywhere Server - Database Administration].

Choosing a diagnostic tracing level
Diagnostic tracing settings are grouped into several levels, but you can also customize the settings further
within these levels. The types of information gathered at the various levels are referred to as diagnostic
tracing types. Following are descriptions of the levels you can specify, and the diagnostic tracing types they
include. For a description of the diagnostic tracing types mentioned below, see “Diagnostic tracing
types” on page 193.

Customizing diagnostic tracing settings allows you to reduce the amount of unwanted tracing data in the
diagnostic tracing session. For example, suppose that user AliceB has been complaining that her application
has been running slowly, yet the rest of the users are not experiencing the same problem. You now want to
know exactly what is going on with AliceB's queries. This means you should gather the list of all queries
and other statements that AliceB runs as part of her application, and any query plans for long running queries.
To do this, you could just set the diagnostic tracing level to 3 and generate tracing data for a day or two.
However, since this level can significantly impact performance for other users, you should limit the tracing
to just AliceB's activities. To do this, you set the diagnostic tracing level to 3, and then customize the scope
of the diagnostic tracing to be USER, and specify AliceB as the user name. Allow the diagnostic tracing
session to run for a couple of hours, and then examine the results.

The recommended method for customize diagnostic tracing settings is using the Database Tracing
Wizard. See “Change the diagnostic tracing configuration settings” on page 198.

You can also use the sa_set_tracing_level system procedure; however, you cannot make as many
customizations using this approach. See also “sa_set_tracing_level system procedure” [SQL Anywhere
Server - SQL Reference].

Improving database performance

190 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

As a good practice, you should not change diagnostic tracing settings while a tracing session is in progress
because it makes interpreting the data more difficult. However, it is possible to do so. See “Change diagnostic
tracing settings when a tracing session is in progress” on page 199.

Diagnostic tracing levels
The following is a list of diagnostic tracing levels specified in the Database Tracing Wizard. For a
description of the various diagnostic tracing types, see “Diagnostic tracing types” on page 193.

Estimated impacts to performance reflect the assumption that tracing data is sent to a tracing database on
another database server (recommended).

● Level 0 This level keeps the tracing session running, but does not send any tracing data to the tracing
tables.

● Level 1 Performance counters and a sampling of executed statements (once every five seconds) are
gathered. For this level, the diagnostic tracing types include:

○ volatile_statistics, with sampling every 1 second

○ non_volatile_statistics, with sampling every 60 seconds

This level has a negligible impact on performance.

● Level 2 This level gathers performance counters, a sampling of executed plans (once every five
seconds), and records all executed statements. For this level, the diagnostic tracing types include:

○ volatile_statistics, with sampling every 1 second

○ non_volatile_statistics, with sampling every 60 seconds

○ statements

○ plans, sampling every 5 seconds

This level has a medium impact on performance—up to, but not more than, a 20% overhead.

● Level 3 This level records the same details as Level 2 but with more frequent plan samples (once
every 2 seconds) and detailed blocking and deadlock information. For this level, the diagnostic tracing
types include:

○ volatile_statistics, with sampling every 1 second

○ non_volatile_statistics, with sampling every 60 seconds

○ statements

○ blocking

○ deadlock

○ statements_with_variables

○ plans, with sampling every 2 seconds

This level has the greatest impact on performance—greater than 20% overhead.

Advanced application profiling using diagnostic tracing

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 191

Diagnostic tracing scopes
Following is the list of scopes for diagnostic tracing. Scope values can be used to limit tracing to who (or
what) is causing the activity in the database. For example, you can set the scope to trace requests coming
from a specified connection. Scope values are stored in the scope column of the
dbo.sa_diagnostic_tracing_level diagnostic table, and may have corresponding arguments, typically an
identifier such as an object name or user name, which are stored in the identifier column. The values in the
scope column reflect the settings specified in the Database Tracing Wizard.

Values in the
scope column

Description

DATABASE Records tracing data for any event occurring within the database, assuming the event
corresponds to the specified level and condition. Used for long-term background mon-
itoring of the database, or for short-term diagnostics, when it is necessary to determine
the source of costly queries.

There is no identifier to specify when you specify DATABASE.

ORIGIN Records tracing data for the queries originating from either outside or inside the data-
base.

There are two possible identifiers you can specify when specifying the scope ORIGIN:
External or Internal. External specifies to log the statement text and associated details
for queries that come from outside the database server, and that correspond to the
specified level and condition. Internal specifies to log the same information for queries
that come from within the database server, and that correspond to the level and con-
dition specified.

USER Records tracing data only for the queries issued by the specified user, and by connec-
tions created by the specified user. This scope is used to diagnose problematic queries
originating from a particular user.

The identifier for this scope is the name of the user for whom the tracing is to be
performed.

CONNEC-
TION_NAME,
or CONNEC-
TION_NUM-
BER

Records tracing data only for the statements executed by the current connection. These
scopes are used when the user has multiple connections, one of which is executing
costly statements.

The identifier for this scope is the name of the connection, or the connection number,
respectively.

Improving database performance

192 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Values in the
scope column

Description

FUNCTION,
PROCEDURE,
EVENT, TRIG-
GER, or TA-
BLE

Records tracing data for the statements that use the specified object. If the object ref-
erences other objects, all the data for those objects is recorded as well. For example,
if tracing is being done for a procedure that uses a function which, in turn, triggers an
event, statements for all three objects are logged, providing they correspond to the
specified level and condition provided for logging. Used when use of a specific object
is costly, or when the statements that reference the object take an unusually long time
to finish.

The TABLE scope is used for tables, materialized views, and non-materialized views.

The identifier for this scope is the fully qualified name of the object.

See also
● “Diagnostic tracing types” on page 193
● “Diagnostic tracing conditions” on page 196

Diagnostic tracing types
The following table lists the tracing types you can choose for diagnostic tracing. Each diagnostic tracing
type requires a corresponding condition, as noted below, and is stored in the trace_type column of the
dbo.sa_diagnostic_tracing_level diagnostic table, and may have corresponding diagnostic tracing
conditions, which are stored in the trace_condition column. For a list of all possible conditions, see
“Diagnostic tracing conditions” on page 196.

The values in trace_type column reflect the settings specified in the Database Tracing Wizard.

Value in the trace_type
column

Description

VOLATILE_STATIS-
TICS

Collects a sample of frequently changing database and server statistics.

Scopes and conditions: This diagnostic tracing type requires the DATABASE
scope, and uses the SAMPLE_EVERY condition as the interval at which to
collect the data. See “Diagnostic tracing scopes” on page 192, and “Diagnostic
tracing conditions” on page 196.

Advanced application profiling using diagnostic tracing

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 193

Value in the trace_type
column

Description

NONVOLA-
TILE_STATISTICS

Collects a sample of database and server statistics that do not change frequent-
ly. Non-volatile statistics cannot be collected more frequently then volatile
statistics. Volatile statistics must be collected in order for non-volatile statistics
to be collected, and the time difference between the sampling for non-volatile
statistics should be a multiple of the time difference specified for the volatile
statistics.

Scopes and conditions: This diagnostic tracing type requires the DATABASE
scope, and uses the SAMPLE_EVERY condition as the interval at which to
collect the data. See “Diagnostic tracing scopes” on page 192, and “Diagnostic
tracing conditions” on page 196.

CONNECTION_STA-
TISTICS

Collects a sample of connection statistics. If the scope is database, statistics
for all connections to the database are collected. If the scope is user, statistics
for all connections for the specified user are collected. If the scope is CON-
NECTION_NAME or CONNECTION_NUMBER, only statistics for the
specified connection are collected. Volatile statistics have to be collected in
order for CONNECTION_STATISTICS to be collected, and the time interval
between sampling should be a multiple of that specified for the VOLA-
TILE_STATISTICS.

Scopes and conditions: This diagnostic tracing type can be used with the DA-
TABASE, USER, CONNECTION_NUMBER, and CONNECTION_NAME
scopes, and uses the SAMPLE_EVERY condition as the interval at which to
collect the data. See “Diagnostic tracing scopes” on page 192, and “Diagnostic
tracing conditions” on page 196.

BLOCKING Collects information about blocks according to the specified scope and con-
dition. If the scope is CONNECTION_NAME or CONNECTION_NUMBER,
then the block may be recorded when the connection blocks another connec-
tion, or is blocked by another connection.

Scopes and conditions: This diagnostic tracing type can be used with all the
scopes, and can use any one of the following conditions for collection: NONE,
NULL, SAMPLE_EVERY. See “Diagnostic tracing scopes” on page 192, and
“Diagnostic tracing conditions” on page 196.

PLANS Collects execution plans for queries, depending on the condition and scope.

Scopes and conditions: This diagnostic tracing type can be used with all the
scopes, and can use any one of the following conditions for collection: NONE,
NULL, SAMPLE_EVERY, and ABSOLUTE_COST. See “Diagnostic trac-
ing scopes” on page 192, and “Diagnostic tracing conditions” on page 196.

Improving database performance

194 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Value in the trace_type
column

Description

PLANS_WITH_STA-
TISTICS

Collects plans with execution statistics. Plans are recorded at cursor close time.
If the RELATIVE_COST_DIFFERENCE condition is specified, part of the
statistics in the output might be best-guess statistics.

Scopes and conditions: This diagnostic tracing type can be used with all the
scopes, and accepts any one of the conditions for collection.

STATEMENTS Collects SQL statements for the specified scope and condition. Internal vari-
ables are collected the first time each procedure is executed. This diagnostic
tracing type is automatically included if the STATEMENTS_WITH_VARI-
ABLES, PLANS, PLANS_WITH_STATISTICS, OPTIMIZATION_LOG-
GING, or OPTIMIZATION_LOGGING_WITH_PLANS diagnostic tracing
type is specified.

Scopes and conditions: This diagnostic tracing type can be used with all the
scopes, and can use any one of the conditions for collection. See “Diagnostic
tracing scopes” on page 192, and “Diagnostic tracing condi-
tions” on page 196.

STATE-
MENTS_WITH_VARI-
ABLES

Collects SQL statements and the variables attached to the statements. For each
variable, either internal or host, all the values that were assigned are collected
as well.

Scopes and conditions: This diagnostic tracing type can be used with all the
scopes, and can use any one of the conditions for collection. See “Diagnostic
tracing scopes” on page 192, and “Diagnostic tracing condi-
tions” on page 196.

OPTIMIZA-
TION_LOGGING

Collects data about join strategies considered by the optimizer for execution
of each query. Information about cost of execution of each strategy, and the
basic information necessary to reconstruct the tree for the structure, is collec-
ted. Information about rewrites applied to the query is also collected. If a scope
other than DATABASE, CONNECTION_NAME, CONNECTION_NUM-
BER, ORIGIN, or USER is used, the first recorded statement text might be
different than the initial text of the query since some rewrites can be applied
before it can be determined that optimization logging should be applied to the
current statement. This diagnostic tracing type is automatically added when-
ever the OPTIMIZATION_LOGGING_WITH_PLANS tracing type is speci-
fied.

This diagnostic tracing type corresponds to all the scopes, and does not take a
condition. See “Diagnostic tracing scopes” on page 192.

Advanced application profiling using diagnostic tracing

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 195

Value in the trace_type
column

Description

OPTIMIZA-
TION_LOG-
GING_WITH_PLANS

Collects data about join strategies considered by the optimizer. Information
about the cost of execution for each strategy, and the complete XML plan
describing the join strategy tree structure, is collected. Information about re-
writes applied to the query is also collected. If a scope other then DATABASE,
CONNECTION_NAME, CONNECTION_NUMBER, ORIGIN, or USER is
used, the first recorded statement text might be different then the initial text of
the query since some rewrites can be applied before it can be determined that
optimization logging should be applied to the current statement. The OPTI-
MIZATION_LOGGING tracing type is automatically added whenever the
OPTIMIZATION_LOGGING_WITH_PLANS tracing type is specified.

This diagnostic tracing type corresponds to all the scopes, and does not take a
condition. See “Diagnostic tracing scopes” on page 192.

See also
● “Diagnostic tracing scopes” on page 192
● “Diagnostic tracing conditions” on page 196

Diagnostic tracing conditions
The following table lists the diagnostic tracing conditions you can set. Conditions control the criteria that
must be met in order for a tracing entry to be made for a specific diagnostic tracing type. Most conditions
require a value, as noted below. Conditions are stored in the trace_condition column of the
dbo.sa_diagnostic_tracing_level diagnostic table, and may have a corresponding value, such as an amount
of time in milliseconds, stored in the value column. The values in the condition column reflect the settings
specified in the Database Tracing Wizard.

Value in the
trace_condition col-
umn

Description

NONE, or NULL Records all the tracing data that satisfies the level and scope requirements. Using
expensive diagnostic tracing levels (plans, for example) with this condition for
extended time periods is not recommended.

SAMPLE_EVERY Records tracing data that satisfies the level and scope requirements if more than
the specified time interval has elapsed since the last event was recorded.

Values: This condition takes a positive integer, reflecting time in milliseconds.

ABSOLUTE_COST Records the statements with cost of execution greater than, or equal to, the
specified value.

Values: This condition takes a cost value, specified in milliseconds.

Improving database performance

196 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Value in the
trace_condition col-
umn

Description

RELA-
TIVE_COST_DIF-
FERENCE

Records the statements for which the difference between the expected time for
execution and the real time for execution is greater than or equal to the specified
value.

Values: This condition takes a cost value specified as a percentage. For example,
to log statements that are at least twice as slow as estimated, specify a value of
200.

See also
● “Diagnostic tracing scopes” on page 192
● “Diagnostic tracing types” on page 193

Determine current diagnostic tracing settings
Use the Database Tracing Wizard in Sybase Central to view current diagnostic tracing settings. When you
are done examining the settings, cancel the wizard. You can also retrieve the diagnostic tracing settings in
effect by querying the sa_diagnostic_tracing_level table.

You can retrieve diagnostic tracing settings regardless of whether a tracing session is in progress.

To determine the current diagnostic tracing settings (Sybase Central)

1. Connect to the database as a user with DBA authority or as a user with PROFILE authority.

2. Choose Mode » Application Profiling. If the Application Profiling Wizard appears, click Cancel.

3. In the left pane, right-click the database and choose Tracing.

If the Database Tracing Wizard does not appear, choose Tracing » Configure.

4. Review the settings currently specified for diagnostic tracing on the Edit Tracing Levels list.

5. Click Cancel.

To determine the current diagnostic tracing settings (Interactive SQL)

1. Connect to the database as a user with DBA authority or as a user with PROFILE authority.

2. Query the sa_diagnostic_tracing_level table for rows in which the enabled column contains a 1.

The database server returns the diagnostic tracing settings currently in use. A 1 in the enabled column
indicates that the setting is in effect.

Example
The following statement shows you how to query the sa_diagnostic_tracing_level diagnostic table to retrieve
the current diagnostic tracing settings:

Advanced application profiling using diagnostic tracing

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 197

SELECT * FROM sa_diagnostic_tracing_level WHERE enabled = 1;

The following table is an example result set from the query:

id scope identifier trace_type trace_condition value enabled

1 database (NULL) volatile_statistics sample_every 1,000 1

2 database (NULL) nonvolatile_statistics sample_every 60.000 1

3 database (NULL) connection_statistics (NULL) 60,000 1

4 database (NULL) blocking (NULL) (NULL) 1

5 database (NULL) deadlock (NULL) (NULL) 1

6 database (NULL) plans_with_statistics sample_every 2,000 1

See also
● “sa_diagnostic_tracing_level table” [SQL Anywhere Server - SQL Reference]
● “PROFILE authority” [SQL Anywhere Server - Database Administration]

Change the diagnostic tracing configuration settings
Diagnostic tracing settings are specific to a production database. You use the Database Tracing Wizard in
Sybase Central to change diagnostic tracing settings when creating a tracing session. To learn how to start
the Database Tracing Wizard, see “Create a diagnostic tracing session” on page 199.

Diagnostic tracing settings configured in the Database Tracing Wizard do not affect settings or behavior
for the Application Profiling Wizard. The settings for the Application Profiling Wizard are pre-
configured and cannot be changed.

You can also use the sa_set_tracing_level system procedure to change the diagnostic tracing level. This does
not start a tracing session, and fails if a tracing session is already in progress. Also, it does not allow you as
much control over other settings such as scopes, conditions, values, and so on. For more information about
this procedure, see “sa_set_tracing_level system procedure” [SQL Anywhere Server - SQL Reference].

To change the diagnostic tracing level (Interactive SQL)

1. Connect to the database as a user with DBA authority or as a user with PROFILE authority.

2. Use the sa_set_tracing_level system procedure to set the diagnostic tracing levels.

Example
The following statement uses the sa_set_tracing_level system procedure to set the diagnostic tracing level
to 1:

CALL sa_set_tracing_level(1);

Improving database performance

198 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Existing settings are overwritten with the default settings associated with diagnostic tracing level 1. To see
the default settings associated with the various diagnostic tracing levels, see “Diagnostic tracing
levels” on page 191.

Change diagnostic tracing settings when a tracing session
is in progress

You can change diagnostic tracing settings while a tracing session is in progress using the Database Tracing
Wizard in Sybase Central.

To change diagnostic tracing settings during a tracing session (Sybase Central)

1. Connect to the database as a user with DBA authority or as a user with PROFILE authority.

2. In the left pane, right-click the database and choose Tracing » Change Tracing Levels.

3. Add new, or delete existing, tracing levels.

4. Click OK.

Create a diagnostic tracing session
When you start a diagnostic tracing session, you also configure the type of tracing you want to perform, and
specify where you want the tracing data to be stored. Your tracing session continues until you explicitly
request that it stops.

To start a tracing session, TCP/IP must be running on the database server(s) on which the tracing database
and production database are running. See “Using the TCP/IP protocol” [SQL Anywhere Server - Database
Administration].

Note
Starting a tracing session is also referred to as attaching tracing. Likewise, stopping a tracing session is
referred to as detaching tracing. The SQL statements for starting and stopping tracing are, respectively,
ATTACH TRACING and DETACH TRACING.

To create a diagnostic tracing session (Sybase Central)

1. Connect to the database as a user with DBA authority or as a user with PROFILE authority.

2. Right-click the database and choose Tracing.

3. Click Next.

4. On the Tracing Detail Level page, select the level of tracing.

5. On the Edit Tracing Levels page, customize the diagnostic tracing settings.

6. On the Create External Database page:

Advanced application profiling using diagnostic tracing

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 199

● Select Create A New Tracing Database.

● Select a location to save the database.

● Complete the User Name and Password fields.

● Select Start Database On The Current Server.

● Click Create Database.

7. On the Start Tracing page:

● Select Save Tracing Data In An External Database.

● Complete the User Name and Password fields. Specify the user name and password used to connect
to the production database.

● In the Other Connection Parameters field, type the database server and database name in the form
of a partial connect string. For example, ENG=Server47;DBN=TracingDB

Note
Only DBN, DBF, ENG, DBKEY and LINKS (CommLinks) are supported in the connection string
for an external database.

● In the Do You Want To Limit The Volume Of Trace Data That Is Stored list, select an option.

8. Click Finish.

9. When you are done gathering diagnostic tracing data, right-click the database and choose Tracing »
Stop Tracing With Save.

To create a diagnostic tracing session (Interactive SQL)

1. Connect to the database as the DBA, or as a user with PROFILE authority.

2. Use the sa_set_tracing_level system procedure to set the tracing levels.

3. Start tracing by executing an ATTACH TRACING statement.

4. Stop tracing by executing a DETACH TRACING statement.

You can view the diagnostic tracing data in Application Profiling mode in Sybase Central. See
“Application profiling” on page 177.

Examples
This example shows how to start diagnostic tracing on the current database, store the tracing data in a separate
database, and set a two hour limit on the amount of data to store. This example is all on one line:

ATTACH TRACING TO
'UID=DBA;PWD=sql;ENG=dbsrv11;DBN=tracing;LINKS=tcpip' LIMIT HISTORY 2 HOURS;

This example shows how to start diagnostic tracing on the current database, store the tracing data in the local
database, and set a two megabyte limit on the amount of data to store:

ATTACH TRACING TO LOCAL DATABASE LIMIT SIZE 2 MB;

Improving database performance

200 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

This example shows how to stop diagnostic tracing and save the diagnostic data that was captured during
the tracing session:

DETACH TRACING WITH SAVE;

This example shows how to stop diagnostic tracing and not save the diagnostic data.

DETACH TRACING WITHOUT SAVE;

See also
● “ATTACH TRACING statement” [SQL Anywhere Server - SQL Reference]
● “DETACH TRACING statement” [SQL Anywhere Server - SQL Reference]
● “sa_set_tracing_level system procedure” [SQL Anywhere Server - SQL Reference]
● “PROFILE authority” [SQL Anywhere Server - Database Administration]

Analyzing diagnostic tracing information
Diagnostic tracing data provides a record of all activities that took place on the database server and correspond
to the diagnostic tracing levels and the tracing session settings. When reviewing the data, you must consider
the settings that were in place. For example, the absence of a statement that you expected to see in a tracing
session might indicate that the statement never ran, but it might also indicate that the statement was not
expensive enough to fulfill a condition that only expensive statements be traced.

There are many reasons you may want to examine in detail what activities the database server is performing.
These include troubleshooting performance problems, estimating resource usage to plan for future
workloads, and debugging application logic.

See also
● “Application profiling tutorials” on page 253

Troubleshooting performance problems
Use the application profiling feature to determine whether performance problems are caused by:

● long application processing times

● poor query plans

● contention for shared hardware resources such as CPU or disk I/O

● contention for database objects

● suboptimal database design

When troubleshooting poor database performance, the first task is to determine whether the application or
the database server is the primary cause. To determine how much processing time a client application is
consuming, use the Details tab in the application profiling tool and filter the results by a single connection.
If there are time differences between different requests from that connection, then the primary delay is within
the application client.

Advanced application profiling using diagnostic tracing

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 201

If the database server is affecting performance, you will need to identify the specific cause.

See also
● “Application profiling tutorials” on page 253

Detecting when hardware resources are a limiting factor
As larger and larger workloads are placed on a database, performance is typically limited by CPU cycles,
memory space, or disk I/O bandwidth. An inefficient application or database server could be the cause. If
you cannot detect any inefficiencies, you may need to add additional hardware resources. To view a list of
common inefficiencies and recommendations for solving them, see “Troubleshooting performance
problems” on page 201.

Adding resources may not resolve scalability problems or improve computer performance. For example, if
a database server is fully using all of its allotted CPUs, it may indicate that you should assign more CPU
resources. However, doubling the number of CPUs available to the database server may not double the
amount of work the database server can perform.

Use the Statistics tab in the Application Profiling Details area to detect whether hardware resources are a
limiting factor for performance.

● Detecting whether CPU is a limiting factor To detect whether CPU as a limiting factor, check the
ProcessCPU statistic. If this statistic is not present on the graph, click the Add Statistics button and
select ProcessCPU. If the graph shows ProcessCPU increasing at a rate of nearly 1 point per second per
CPU assigned to the database server, then the CPU is a limiting factor. For example, for a database server
running on two CPUs, if the Process CPU counter increased from 2220 to 2237 in ten seconds, this
indicates that CPU usage over that twelve second period was (2237-2220) / 10s * 100 % = 170%, meaning
that each CPU is running at 170% / 2 = 85% of its capacity.

● Detecting whether memory is a limiting factor To detect whether memory (buffer pool size) is a
limiting factor, check the CacheHits and CacheReads database statistics. If these statistics are not present
on the graph, click the Add Statistics button and select CacheHits And CacheReads. If CacheHits is
less than 10% of CacheReads, this indicates that the buffer pool is too small. If the ratio is in the range
of 10-70%, this may indicate that the buffer pool is too small—you should try increasing the cache size
for the database server. If the ratio is above 70%, the cache size is likely adequate. Note that this strategy
only applies while the database server is running at a steady-state—that is, it is servicing a typical
workload and has not just been started.

● Detecting whether I/O bandwidth is a limiting factor To detect whether I/O bandwidth is a
limiting factor, check the CurrIO database statistic. If this statistic is not present on the graph, click the
Add Statistics button and select CurrIO. Look for the largest sustained number for this statistic. For
example, look for a high plateau on the graph; the wider it is, the more significant the impact. If the graph
has sustained values equal to, or greater than 3 + the number of physical disks used by database server,
it may indicate that the disk system cannot keep up with the level of database server activity.

Improving database performance

202 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Performance Monitor statistics” on page 217
● “Application profiling tutorials” on page 253
● “Troubleshooting performance problems” on page 201

Debugging application logic
If you have errors in your application code or in stored procedures, triggers, functions, or events, it can be
useful to examine all statements executed by the database server that relate to the incorrect code. For
applications that dynamically generate SQL, you can examine the actual text seen by the database server to
detect errors in how the SQL text is built by the application. Such errors may cause queries to fail to be
executed, or may return different results than the query was intended to return. For example, during
development, your application may occasionally report that a SQL syntax error was encountered, but your
application may not be instrumented to report the SQL text of the query that failed. If you have a trace taken
when the application was run, you can search for statements that returned syntax (or other) errors, and see
the exact text that was generated by your application.

For internal database objects such as procedures and triggers, you can use the debugger in Sybase Central.
However, there may be times when it is more effective to cause the database server to trace all statements
executed by a given procedure, and then examine these statements using the application profiling tool. For
example, a given stored procedure may be returning an incorrect result once out of every 1000 invocations,
but you may not understand under what conditions it fails. Rather than step through the procedure code 1000
times in the debugger, you could turn on diagnostic tracing for that procedure and run your application. Then,
you could examine the set of statements that the database server executed, locate the set of statements that
correspond to the incorrect execution of the procedure, and determine either why the procedure failed, or
the conditions under which it behaves unexpectedly. If you know under what conditions the procedure
behaves unexpectedly, you can set a breakpoint in the procedure and investigate further with the debugger.
See “Debugging procedures, functions, triggers, and events” on page 881.

Perform request trace analysis
When you have a specific application or request that is problematic, you can perform a request trace analysis
to determine the problem. Request trace analysis involves configuring the Database Tracing Wizard to
narrow diagnostic data gathering to only the user, connection, or request that is experiencing the problem.
Then, using the various data viewing tools in Application Profiling mode, identifying any potential conflicts
or bottlenecks.

To perform a request trace analysis

1. Connect to the database as a user with DBA authority or as a user with PROFILE authority.

2. Choose Mode » Application Profiling. If the Application Profiling Wizard appears, click Cancel.

3. Right-click the database and choose Tracing or choose Tracing » Configure And Start Tracing.

4. Follow the instructions in the Database Tracing Wizard.

Advanced application profiling using diagnostic tracing

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 203

5. When you are done gathering tracing data, right-click the database and choose Tracing » Stop Tracing
With Save.

6. In the Application Profiling Details pane, click Open An Analysis File Or Connect To A Tracing
Database.

7. Choose In A Tracing Database, and click Open.

8. Complete the User Name and Password fields and click OK.

9. In the Application Profiling Details pane, select the last entry in the Logging Session ID list.

10. Click Database Tracing Data tab at the bottom of the Application Profiling Details pane.

You can select from several tabs that provide you with different views of the data gathered for your
analysis. For example, the Summary tab allows you to see all requests executed against the database
during the tracing session, including how many times each request was executed, execution duration
times, the user who executed the request, and so on. If the list is long and you are looking for a specific
request, click the Filtering title bar on the Summary tab and enter a string in the SQL Statements
Containing field.

To view more details about a specific request, right-click the request and choose Show The Detailed
SQL Statements For The Selected Summary Statement. The Details tab opens. Right-click the row
containing the request, and additional choices for information are provided, including viewing additional
SQL statement, connection, and blocking details.

Creating an external tracing database
When you create a tracing session, you have the option of storing tracing data within the database being
profiled. This is suitable for development environments where you are testing applications, or if there are
few connections to the database. However, if your database typically handles 10 or more connections at any
given time, it is recommended that you store tracing data in an external tracing database to reduce the impact
on performance.

When you start a tracing session, use the Database Tracing Wizard to create an external tracing database.
The Database Tracing Wizard unloads schema and permission information from the production database.
You can use the tracing database to store data for subsequent tracing sessions. For information about creating
a tracing session, see “Create a diagnostic tracing session” on page 199.

Use the Unload utility (dbunload) to manually create a tracing database without a tracing session.

To create an external tracing database using the Unload utility (dbunload)

1. Connect to the database as a user with DBA authority or as a user with PROFILE authority.

2. Execute a dbunload command, similar to the following, to unload the schema from the production
database into the new tracing database:

dbunload -c "UID=DBA;PWD=sql;ENG=demo;DBN=demo" -an tracing.db -n -k

This example creates a new database with the name supplied by the -an option (tracing.db). The -n option
unloads the schema from the database being profiled (in this case, the SQL Anywhere sample database,

Improving database performance

204 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

demo.db) into the new tracing database. The -k option populates the tracing database with information
that the application profiling tool uses to analyze the tracing data.

3. If you want to store the tracing database on a separate computer, copy it to the new location.

See also
● “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration]
● “PROFILE authority” [SQL Anywhere Server - Database Administration]

Advanced application profiling using diagnostic tracing

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 205

Other diagnostic tools and techniques
In addition to application profiling and diagnostic tracing, a variety of other diagnostic tools and techniques
are available to help you analyze and monitor the current performance of your SQL Anywhere database.

Request logging
Request logging logs individual requests received from, and responses sent to, an application. It is most
useful for determining what the database server is being asked to do by the application.

Request logging is also a good starting point for performance analysis of a specific application when it is
not obvious whether the database server or the client is at fault. You can use request logging to determine
the specific request to the database server that might be responsible for problems.

Note
All the functionality and data provided by the request logging feature is also available using diagnostic
tracing. Diagnostic tracing also offers additional features and data. See “Advanced application profiling
using diagnostic tracing” on page 188.

Logged information includes such things as timestamps, connection IDs, and request type. For queries, it
also includes the isolation level, number of rows fetched, and cursor type. For INSERT, UPDATE, and
DELETE statements, it also includes the number of rows affected and number of triggers fired.

Caution
The request log can contain sensitive information because it contains the full text of SQL statements that
contain passwords, such as the GRANT CONNECT, CREATE DATABASE, and CREATE EXTERNAL
LOGIN statements. If you are concerned about security, you should restrict access to the request log file.

You can use the -zr server option to turn on request logging when you start the database server. You can
redirect the output to a request log file for further analysis using the -zo server option. The -zn and -zs option
let you specify the number of request log files that are saved and the maximum size of request log files.

For more information about these options, see:

● “-zr server option” [SQL Anywhere Server - Database Administration]
● “-zo server option” [SQL Anywhere Server - Database Administration]
● “-zn server option” [SQL Anywhere Server - Database Administration]
● “-zs server option” [SQL Anywhere Server - Database Administration]

Note
These server options do not impact diagnostic tracing in Sybase Central. File-based request logging is
completely separate from the diagnostic tracing feature in Sybase Central, which makes use of dbo-owned
diagnostic tables in the database to store request log information.

The sa_get_request_times system procedure reads a request log and populates a global temporary table
(satmp_request_time) with statements from the log and their execution times. For INSERT/UPDATE/

Improving database performance

206 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

DELETE statements, the time recorded is the time when the statements were executed. For queries, the time
recorded is the total elapsed time from PREPARE to DROP (describe/open/fetch/close). That means you
need to be aware of any open cursors.

Analyze satmp_request_time for statements that could be candidates for improvements. Statements that are
cheap, but frequently executed, may represent performance problems.

You can use sa_get_request_profile to call sa_get_request_times and summarize satmp_request_time into
another global temporary table called satmp_request_profile. This procedure also groups statements together
and provides the number of calls, execution times, and so on. See “sa_get_request_times system procedure”
[SQL Anywhere Server - SQL Reference], and “sa_get_request_profile system procedure” [SQL Anywhere
Server - SQL Reference].

Filtering request logs
Output to the request log can be filtered to include only requests from a specific connection or from a specific
database, using the sa_server_option system procedure. This can help reduce the size of the log when
monitoring a database server with many active connections or multiple databases. See “sa_server_option
system procedure” [SQL Anywhere Server - SQL Reference].

To filter according to a connection

● Use the following syntax:

CALL sa_server_option('RequestFilterConn' , connection-id);

You can obtain connection-id by executing CALL sa_conn_info();.

To filter according to a database

● Use the following syntax:

CALL sa_server_option('RequestFilterDB' , database-id);

The database-id can be obtained by executing SELECT
CONNECTION_PROPERTY('DBNumber') when connected to that database. Filtering remains in
effect until explicitly reset, or until the database server is shut down.

To reset filtering

● Use either of the following two statements to reset filtering either by connection or by database:

CALL sa_server_option('RequestFilterConn' , -1);

CALL sa_server_option('RequestFilterDB' , -1);

Outputting host variables to request logs
Host variable values can be output to a request log.

To include host variable values

● To include host variable values in the request log:

Other diagnostic tools and techniques

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 207

● use the -zr server option with a value of hostvars

● execute the following:

CALL sa_server_option('RequestLogging' , 'hostvars');

The request log analysis procedure, sa_get_request_times, recognizes host variables in the log and adds them
to the global temporary table satmp_request_hostvar.

Procedure profiling using system procedures
Procedure profiling provides valuable information about the usage of stored procedures, user-defined
functions, events, system triggers, and triggers by all connections. You can perform procedure profiling in
either Sybase Central, or Interactive SQL using system procedure calls. Sybase Central offers much greater
features and flexibility to help you perform procedure profiling. For this reason, it is recommended that you
perform procedure profiling using the procedure profiling features found in the Application Profiling mode
of Sybase Central. See “Procedure profiling in Application Profiling mode” on page 178.

Enable profiling using sa_server_option

To enable procedure profiling in Interactive SQL

1. Connect to the database as a user with DBA authority or as a user with PROFILE authority.

2. Call the sa_server_option system procedure, setting the ProcedureProfiling option to ON.

For example, enter:

CALL sa_server_option('ProcedureProfiling' , 'ON');

If necessary, you can see what procedures a specific user is using, without preventing other connections
from using the database. This is useful if the connection already exists, or if multiple users connect with the
same user ID.

To filter procedure profiling by user in Interactive SQL

1. Connect to the database as the DBA, or as a user with PROFILE authority.

2. Call the sa_server_option system procedure as follows:

CALL sa_server_option('ProfileFilterUser' , 'userid');

The value of userid is the name of the user being monitored.

See also
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]

Improving database performance

208 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Reset profiling using sa_server_option
When you reset profiling, the database clears the old information and immediately starts collecting new
information about procedures, functions, events, and triggers. This section explains how to reset procedure
profiling from Interactive SQL using the sa_server_option system procedure.

The following sections assume that you are already connected to your database as the DBA, or as a user with
PROFILE authority, and that procedure profiling is enabled.

To reset profiling in Interactive SQL

● Call the sa_server_option system procedure, setting the ProcedureProfiling option to RESET.

For example, enter:

CALL sa_server_option('ProcedureProfiling' , 'RESET');

See also
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]

Disable profiling using sa_server_option
Once you are finished with the profiling information, you can either disable profiling or you can clear
profiling. If you disable profiling, the database stops collecting profiling information and the information
that it has collected to that point remains on the Profile tab in Sybase Central. If you clear profiling, the
database turns profiling off and clears all the profiling data from the Profile tab in Sybase Central. This
section explains how to disable procedure profiling from Interactive SQL using the sa_server_option system
procedure.

To disable profiling (Interactive SQL)

● Call the sa_server_option system procedure, setting the ProcedureProfiling option to OFF.

For example, enter:

CALL sa_server_option('ProcedureProfiling' , 'OFF');

To disable profiling and clear existing data (Interactive SQL)

● Call the sa_server_option system procedure, setting the ProcedureProfiling option to CLEAR.

For example, enter:

CALL sa_server_option('ProcedureProfiling' , 'CLEAR');

See also
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]

Other diagnostic tools and techniques

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 209

Retrieve profiling information using system procedures
You can use system procedures to view procedure profiling information for the following objects: stored
procedures, functions, events, system triggers, and triggers. Also, procedure profiling must already be
enabled. See “Enable profiling using sa_server_option” on page 208.

The sa_procedure_profile system procedure shows in-depth profiling information, including execution times
for the lines within each object; each line in the result set represents an executable line of code in the object.

The sa_procedure_profile_summary system procedure shows you the overall execution time for each object,
giving you a summary of all objects that ran; each line in the result set represents the execution details for
one object.

When reviewing the results from these system procedures, there may be more objects listed than those
specifically called. This is because one object can call another object. For example, a trigger might call a
stored procedure that, in turn, calls another stored procedure.

To view summary profiling information (Interactive SQL)

1. Connect to the database as a user with DBA authority or as a user with PROFILE authority.

2. Execute the sa_procedure_profile_summary system procedure.

For example, enter:

CALL sa_procedure_profile_summary;
3. Choose SQL » Execute.

A result set with information about all the procedures in your database appears on the Results pane.

To view in-depth profiling information (Interactive SQL)

1. Connect to the database as a user with DBA authority or as a user with PROFILE authority.

2. Execute the sa_procedure_profile system procedure.

For example, enter:

CALL sa_procedure_profile;
3. Choose SQL » Execute.

A result set with profiling information appears in the Results pane.

See also
● “sa_procedure_profile_summary system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_procedure_profile system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]

Improving database performance

210 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Timing utilities
Some performance testing utilities, including fetchtst, instest, and trantest, are available in samples-dir
\SQLAnywhere. For more information about the location of samples-dir, see “Samples directory” [SQL
Anywhere Server - Database Administration].

The fetchtst utility measures fetch rates for an arbitrary query. The instest utility determines the time required
for rows to be inserted into a table. The trantest utility measures the load that can be handled by a given
server configuration given a database design and a set of transactions.

These tools give you more accurate timings than the graphical plan with statistics, and can provide an
indication of the best achievable performance (for example, throughput) for a given server and database
configuration.

Complete documentation for the tools can be found in the readme.txt file in the same folder as the utility.

Other diagnostic tools and techniques

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 211

Monitoring database performance
SQL Anywhere provides a set of statistics you can use to monitor database performance. There are three
ways to access these statistics:

● SQL functions These functions allow your application to access SQL Anywhere database statistics
directly. See “Monitoring statistics using SQL functions” on page 212.

● Sybase Central Performance Monitor This graphical tool queries the database and graphs only
those statistics you have configured the Performance Monitor to graph. See “Monitoring statistics using
Sybase Central Performance Monitor” on page 213.

● Windows Performance Monitor This is a monitoring tool provided by your Windows operating
system. See “Monitor statistics using Windows Performance Monitor” on page 215.

● SQL Anywhere Console utility (dbconsole) The utility provides administration and monitoring
facilities for database server connections. See “SQL Anywhere Console utility (dbconsole)” [SQL
Anywhere Server - Database Administration].

These methods are useful for monitoring in real time. However, you can also capture statistics as part of
diagnostic tracing and save them for analysis at a later time. For more information about diagnostic tracing,
see “Advanced application profiling using diagnostic tracing” on page 188.

For a complete listing of the SQL Anywhere statistics available for monitoring, see “Performance Monitor
statistics” on page 217.

Monitoring statistics using SQL functions
SQL Anywhere provides a set of system functions that can access information on a per-connection, per-
database, or server-wide basis. The kind of information available ranges from static information (such as
the database server name) to detailed performance-related statistics (such as disk and memory usage).

Functions that retrieve system information
The following functions retrieve system information:

● PROPERTY function This function provides the value of a given property on a server-wide basis.
See “PROPERTY function [System]” [SQL Anywhere Server - SQL Reference].

● DB_PROPERTY and DB_EXTENDED_PROPERTY functions These functions provide the value
of a given property for a given database, or by default, for the current database. See “DB_PROPERTY
function [System]” [SQL Anywhere Server - SQL Reference], and “DB_EXTENDED_PROPERTY
function [System]” [SQL Anywhere Server - SQL Reference].

● CONNECTION_PROPERTY and CONNECTION_EXTENDED_PROPERTY functions These
functions provide the value of a given property for a given connection, or by default, for the current
connection. See “CONNECTION_PROPERTY function [System]” [SQL Anywhere Server - SQL
Reference], and “CONNECTION_EXTENDED_PROPERTY function [String]” [SQL Anywhere Server
- SQL Reference].

Improving database performance

212 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Supply as an argument only the name of the property you want to retrieve. The functions return the value
for the current server, connection, or database.

For a complete list of the properties available from the system functions, see “System functions” [SQL
Anywhere Server - SQL Reference].

Examples
The following statement sets a variable named server_name to the name of the current server:

SET server_name = PROPERTY('name');

The following query returns the user ID for the current connection:

SELECT CONNECTION_PROPERTY('UserID');

The following query returns the file name for the root file of the current database:

SELECT DB_PROPERTY('file');

Improving query efficiency
For better performance, a client application monitoring database activity should use the
PROPERTY_NUMBER function to identify a named property, and then use the number to repeatedly
retrieve the statistic.

Property names obtained in this way are available for many different database statistics, from the number
of transaction log page write operations and the number of checkpoints performed, to the number of reads
of index leaf pages from the memory cache.

The following set of statements illustrates the process from Interactive SQL:

CREATE VARIABLE propnum INT;
CREATE VARIABLE propval INT;
SET propnum = PROPERTY_NUMBER('CacheRead');
SET propval = DB_PROPERTY(propnum);

For more information about the PROPERTY_NUMBER function, see “PROPERTY_NUMBER function
[System]” [SQL Anywhere Server - SQL Reference].

You can view many of these statistics in graph form from the Sybase Central Performance Monitor. See
“Monitoring statistics using Sybase Central Performance Monitor” on page 213.

Monitoring statistics using Sybase Central Performance
Monitor

The Sybase Central Performance Monitor is useful for tracking details about database server actions,
including disk and memory access. The Sybase Central Performance Monitor can graph statistics for any
SQL Anywhere database server to which you can connect.

Features of the Sybase Central Performance Monitor include:

● Real-time updates (at adjustable intervals)

Monitoring database performance

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 213

● A color-coded and resizable legend

● Configurable appearance properties

The Sybase Central Performance Monitor queries the database to gather its statistics. This can affect some
statistics such as Cache Reads/sec. If you do not want your statistics to be affected by monitoring, you can
use the Windows Performance Monitor instead. See “Monitor statistics using Windows Performance
Monitor” on page 215.

If you run multiple versions of SQL Anywhere simultaneously, you can also run multiple versions of the
Performance Monitor simultaneously.

For a complete listing of the SQL Anywhere statistics available for monitoring, see “Performance Monitor
statistics” on page 217.

Open the Sybase Central Performance Monitor
The Sybase Central Performance Monitor appears in the right pane of Sybase Central, when the Performance
Monitor tab is selected. The graph displays only those statistics that you configured it to display. For more
information about adding and removing statistics from the Performance Monitor graph, see “Add and remove
statistics” on page 214.

To open the Performance Monitor

1. In the left pane, select the server.

2. In the right pane, click the Performance Monitor tab.

See also
● “Monitor statistics using Windows Performance Monitor” on page 215
● “Add and remove statistics” on page 214

Add and remove statistics

To add statistics to the Sybase Central Performance Monitor

1. In the left pane, select the server.

2. In the right pane, click the Statistics tab.

3. Right-click a statistic that is not currently being monitored and choose Add To Performance
Monitor.

To remove statistics from the Sybase Central Performance Monitor

1. In the left pane, select the server.

2. In the right pane, click the Statistics tab.

Improving database performance

214 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

3. Right-click a statistic that is currently being monitored and choose Remove From Performance
Monitor.

Tip
You can also add a statistic to or remove one from the Performance Monitor on the statistic's properties
window.

For a complete listing of the SQL Anywhere statistics available for monitoring, see “Performance Monitor
statistics” on page 217.

See also
● “Open the Sybase Central Performance Monitor” on page 214
● “Monitor statistics using Windows Performance Monitor” on page 215

Monitor statistics using Windows Performance Monitor
As an alternative to using the Sybase Central Performance Monitor, you can use the Windows Performance
Monitor.

The Windows Performance Monitor offers more performance statistics than the Sybase Central Performance
Monitor, especially network communication statistics. It also uses a shared-memory scheme instead of
performing queries against the database server, so it does not affect the statistics themselves.

The Windows Performance Monitor is available on Windows. If you run multiple versions of SQL Anywhere
simultaneously, it is also possible to run multiple versions of the Performance Monitor simultaneously.

For a complete list of performance statistics you can monitor for SQL Anywhere, see “Performance Monitor
statistics” on page 217.

When starting the database server that controls the memory used by the Windows Performance Monitor,
you can specify the database server options, and the maximum number of connections or database that the
Performance Monitor can monitor. See:

● “-ks server option” [SQL Anywhere Server - Database Administration]
● “-ksc server option” [SQL Anywhere Server - Database Administration]
● “-ksd server option” [SQL Anywhere Server - Database Administration]

The following instructions explain how to start Windows Performance Monitor on Windows XP. For other
versions of Windows, consult your Windows operating system documentation for information about how
to start Windows Performance Monitor.

To use the Windows Performance Monitor on Windows XP

1. With a SQL Anywhere server running, start the Performance Monitor:

● From the Windows Control Panel, choose Administrative Tools.

● Choose Performance.

Monitoring database performance

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 215

2. On the toolbar, click the Plus sign tool (+).

3. In the Performance Object list, select one of the following:

● SQL Anywhere 11 Connection This monitors performance for a single connection. A
connection must currently exist to see this selection.

● SQL Anywhere 11 Database This monitors performance for a single database.

● SQL Anywhere 11 Server This monitors performance on a server-wide basis.

The Counters box displays a list of the statistics you can view.

If you selected SQL Anywhere Connection or SQL Anywhere Database, the Instances box displays a
list of the connections or databases upon which you can view statistics.

4. In the Counter list, click a statistic to view. To select multiple statistics, hold the Ctrl or Shift keys while
clicking.

5. If you selected SQL Anywhere 11 Connection or SQL Anywhere 11 Database, choose a database
connection or database to monitor from the Instances box.

6. For a description of the selected counter, click Explain.

7. To display the counter, click Add.

8. When you have selected all the counters you want to display, click Close.

Improving database performance

216 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Performance Monitor statistics
SQL Anywhere provides the following statistics:

● “Cache statistics” on page 217
● “Checkpoint and recovery statistics” on page 218
● “Communications statistics” on page 219
● “Disk I/O statistics” on page 221
● “Disk read statistics” on page 221
● “Disk write statistics” on page 222
● “Index statistics” on page 223
● “Memory pages statistics” on page 225
● “Request statistics” on page 226
● “Miscellaneous statistics” on page 228

Rates are reported in 1 second intervals.

Cache statistics
These statistics describe the use of the cache.

Statistic Scope Description

Cache Hits/sec Connection and database Shows the rate at which database
page lookups are satisfied by finding
the page in the cache.

Cache Reads: Index Interior/sec Connection and database Shows the rate at which index inter-
nal-node pages are read from the
cache.

Cache Reads: Index Leaf/sec Connection and database Shows the rate at which index leaf
pages are read from the cache.

Cache Reads: Table/sec Connection and database Shows the rate at which table pages
are read from the cache.

Cache Reads: Total Pages/sec Connection and database Shows the rate at which database pa-
ges are looked up in the cache.

Cache Reads: Work Table Connection and database Shows the rate at which work table
pages are being read from the cache.

Performance Monitor statistics

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 217

Statistic Scope Description

Cache Replacements: Total Pages/
sec

Server Shows the rate at which database pa-
ges are being purged from the cache
to make room for another page that is
needed.

Cache Size: Current Server Shows the current size of the database
server cache, in kilobytes.

Cache Size: Maximum Server Shows the maximum allowed size of
the database server cache, in kilo-
bytes.

Cache Size: Minimum Server Shows the minimum allowed size of
the database server cache, in kilo-
bytes.

Cache Size: Peak Server Shows the peak size of the database
server cache, in kilobytes.

Checkpoint and recovery statistics
These statistics isolate the checkpoint and recovery actions performed when the database is in an idle state.

Statistic Scope Description

Checkpoint Flushes/sec Database Shows the rate at which ranges of adjacent pages are
written out during a checkpoint.

Checkpoint Urgency Database Shows the checkpoint urgency, expressed as a percent-
age.

Checkpoints/sec Database Shows the rate at which checkpoints are performed.

ChkptLog: Bitmap size Database Shows the size of the checkpoint log bitmap.

ChkptLog: Commit to disk/sec Database Shows the rate at which checkpoint log commit_to_disk
operations are being performed.

ChkptLog: Log size Database Shows the size of the checkpoint log in pages.

ChkptLog: Page images saved/sec Database Shows the rate at which pages are being saved in the
checkpoint log prior to modification.

Improving database performance

218 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Statistic Scope Description

ChkptLog: Pages in use Database Shows the number of pages in the checkpoint log which
are currently in use.

ChkptLog: Relocate pages/sec Database Shows the rate at which pages in the checkpoint log are
being relocated.

ChkptLog: Save preimage/sec Database Shows the rate at which new database page preimages
are being added to the checkpoint log.

ChkptLog: Write pages/sec Database Shows the rate at which pages are being written to the
checkpoint log.

ChkptLog: Writes/sec Database Shows the rate at which disk writes are being performed
in the checkpoint log. One write can include multiple
pages.

ChkptLog: Writes to bitmap/sec Database Shows the rate at which disk writes are being performed
in the checkpoint log for bitmap pages.

Idle Actives/sec Database Shows the rate at which the database server's idle thread
becomes active to do idle writes, idle checkpoints, and
so on.

Idle Checkpoint Time Database Shows the total time spent doing idle checkpoints, in
seconds.

Idle Checkpoints/sec Database Shows the rate at which checkpoints are completed by
the database server's idle thread. An idle checkpoint oc-
curs whenever the idle thread writes out the last dirty
page in the cache.

Idle Writes/sec Database Shows the rate at which disk writes are issued by the
database server's idle thread.

Recovery I/O Estimate Database Shows the estimated number of I/O operations required
to recover the database.

Recovery Urgency Database Shows the recovery urgency expressed as a percentage.

Communications statistics
These statistics describe client/server communication activity.

Performance Monitor statistics

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 219

Statistic Scope Description

Comm: Bytes Received/sec Connection and server Shows the rate at which network data
(in bytes) are received.

Comm: Bytes Received Uncom-
pressed/sec

Connection and server Shows the rate at which bytes would
have been received if compression was
disabled.

Comm: Bytes Sent/sec Connection and server Shows the rate at which bytes are
transmitted over the network.

Comm: Bytes Sent Uncompressed/sec Connection and server Shows the rate at which bytes would
have been sent if compression was dis-
abled.

Comm: Free Buffers Server Shows the number of free network buf-
fers.

Comm: Multi-packets Received/sec Server Shows the rate at which multi-packet
deliveries are received.

Comm: Multi-packets Sent/sec Server Shows the rate at which multi-packet
deliveries are transmitted.

Comm: Packets Received/sec Connection and server Shows the rate at which network pack-
ets are received.

Comm: Packets Received Uncom-
pressed/sec

Connection and server Shows the rate at which network pack-
ets would have been received if com-
pression was disabled.

Comm: Packets Sent/sec Connection and server Shows the rate at which network pack-
ets are transmitted.

Comm: Packets Sent Uncompressed/
sec

Connection and server Shows the rate at which network pack-
ets would have been transmitted if
compression was disabled.

Comm: Remoteput Waits/sec Server Shows the rate at which the communi-
cation link must wait because it does
not have buffers available to send in-
formation. This statistic is collected
for TCP/IP only.

Improving database performance

220 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Statistic Scope Description

Comm: Requests Received Connection and server Shows the number of client/server
communication requests or round-
trips. It is different from the Comm:
Packets Received statistic in that mul-
ti-packet requests count as one request,
and liveness packets are not included.

Comm: Send Fails/sec Server Shows the rate at which the underlying
protocol(s) failed to send a packet.

Comm: Total Buffers Server Shows the total number of network
buffers.

Comm: Unique Client Addresses Server Shows the number of unique client net-
work addresses connected to the data-
base server. This is usually the number
of client machines connected, and may
be less than the total number of con-
nections.

Disk I/O statistics
These statistics combine disk reads and disk writes to give overall information about the amount of activity
devoted to disk I/O.

Statistic Scope Description

Disk: Active I/Os Database Shows the current number of file I/Os issued by the database
server which have not yet completed.

Disk: Maximum Active I/Os Database Shows the maximum value "Disk: Active I/Os" has reached.

Disk read statistics
These statistics describe the amount and type of activity devoted to reading information from disk.

Statistic Scope Description

Disk Reads: Total Pages/sec Connection and database Shows the rate at which pages are read from
a file.

Performance Monitor statistics

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 221

Statistic Scope Description

Disk Reads: Active Database Shows the current number of file reads is-
sued by the database server which haven't
yet completed.

Disk Reads: Index interior/sec Connection and database Shows the rate at which index internal-node
pages are being read from disk.

Disk Reads: Index leaf/sec Connection and database Shows the rate at which index leaf pages are
being read from disk.

Disk Reads: Table/sec Connection and database Shows the rate at which table pages are be-
ing read from disk.

Disk Reads: Maximum Active Database Shows the maximum value "Disk Reads:
Active" has reached.

Disk Reads: Work Table Connection and database Shows the rate at which work table pages
are being read from disk.

Disk write statistics
These statistics describe the amount and type of activity devoted to writing information to disk.

Statistic Scope Description

Disk Writes: Active Database Shows the current number of file writes
issued by the database server that aren't
yet completed.

Disk Writes: Maximum Active Database Shows the maximum value "Disk
Writes: Active" has reached.

Disk Writes: Commit Files/sec Database Shows the rate at which the database
server forces a flush of the disk cache.
Windows platforms use unbuffered
(direct) I/O, so the disk cache doesn't
need to be flushed.

Disk Writes: Database Extends/sec Database Shows the rate at which the database
file is extended, in pages/sec.

Disk Writes: Temp Extends/sec Database Shows the rate at which temporary files
are extended, in pages/sec.

Improving database performance

222 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Statistic Scope Description

Disk Writes: Pages/sec Connection and database Shows the rate at which modified pages
are being written to disk.

Disk Writes: Transaction Log/sec Connection and database Shows the rate at which pages are writ-
ten to the transaction log.

Translog Group Commits/sec Connection and database Shows the rate at which a commit of the
transaction log was requested but the
log had already been written (so the
commit was done for free).

Index statistics
These statistics describe the use of the index.

Statistic Scope Description

Index: Adds/sec Connection and database Shows the rate at which entries are added to in-
dexes.

Index: Lookups/sec Connection and database Shows the rate at which entries are looked up in
indexes.

Index: Full Compares/sec Connection and database Shows the rate at which comparisons beyond the
hash value in an index must be performed.

Memory diagnostic statistics
These statistics describe how the database server is using memory.

Statistic Scope Description

Cache: Multi-Page Allocations Server Shows the number of multi-page allo-
cations.

Cache: Panics Server Shows the number of times the cache
manager has failed to find a page to al-
locate.

Cache: Scavenge Visited Server Shows the number of pages visited
while scavenging for a page to allo-
cate.

Performance Monitor statistics

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 223

Statistic Scope Description

Cache: Scavenges Server Shows the number of times the cache
manager has scavenged for a page to
allocate.

Cache Pages: Allocated Structures Server Shows the number of cache pages that
have been allocated for database server
data structures.

Cache Pages: File Server Shows the number of cache pages used
to hold data from database files.

Cache Pages: File Dirty Server Shows the number of cache pages that
are dirty (needing a write).

Cache Pages: Free Server Shows the number of cache pages not
being used.

Cache Pages: Pinned Server Shows the number of pages currently
unavailable for reuse.

Cache Replacements: Total Pages/sec Server Shows the rate at which database pages
are being purged from the cache to
make room for another page that is
needed.

Heaps: Carver Connection and server Shows the number of heaps used for
short-term purposes such as query op-
timization..

Heaps: Query Processing Connection and server Shows the number of heaps used for
query processing (hash and sort oper-
ations).

Heaps: Relocatable Connection and server Shows the number of relocatable
heaps.

Heaps: Relocatable Locked Connection and server Shows the number of relocatable heaps
currently locked in the cache.

Map physical memory/sec Server Shows the rate at which database page
address space windows are being map-
ped to physical memory in the cache
using Address Windowing Exten-
sions.

Improving database performance

224 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Statistic Scope Description

Mem Pages: Carver Connection and server Shows the number of heap pages used
for short-term purposes such as query
optimization.

Mem Pages: Pinned Cursor Server Shows the number of pages used to
keep cursor heaps pinned in memory.

Mem Pages: Query Processing Connection and server Shows the number of cache pages used
for query processing (hash and sort op-
erations).

Query Memory: Current Active Connection and server Shows the current number of requests
actively using query memory.

Query Memory: Estimated Active Server Shows the database server's estimate
of the steady state average of the num-
ber of requests actively using query
memory.

Query Memory: Extra Available Server Shows the amount of memory availa-
ble to grant beyond the base memory-
intensive grant.

Query Memory: Number of Grant
Fails

Connection and server Shows the total number of times any
request waited for query memory and
failed to get it.

Query Memory: Number of Grant Re-
quests

Connection and server Shows the total number of times any
request attempted to acquire query
memory.

Query Memory: Number of Grant
Waits

Connection and server Shows the total number of times any
request waited for memory.

Query Memory: Pages Granted Connection and server Shows the number of pages currently
granted to requests.

Query Memory: Requests Waiting Connection and server Shows the current number of requests
waiting for query memory.

Memory pages statistics
These statistics describe the amount and purpose of memory used by the database server.

Performance Monitor statistics

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 225

Statistic Scope Description

Mem Pages: Lock Table Database Shows the number of pages used to
store lock information.

Mem Pages: Locked Heap Server Shows the number of heap pages
locked in the cache.

Mem Pages: Main Heap Server Shows the number of pages used for
global database server data structures.

Mem Pages: Map Pages Database Shows the number of map pages used
for accessing the lock table, frequency
table, and table layout.

Mem Pages: Procedure Definitions Database Shows the number of relocatable heap
pages used for procedures.

Mem Pages: Relocatable Database Shows the number of pages used for
relocatable heaps (cursors, statements,
procedures, triggers, views, and so on).

Mem Pages: Relocations/sec Database Shows the rate at which relocatable
heap pages are read from the temporary
file.

Mem Pages: Rollback Log Connection and database Shows the number of pages in the roll-
back log.

Mem Pages: Trigger Definitions Database Shows the number of relocatable heap
pages used for triggers.

Mem Pages: View Definitions Database Shows the number of relocatable heap
pages used for views.

Request statistics
These statistics describe the database server activity devoted to responding to requests from client
applications.

Statistic Scope Description

Cursors Connection Shows the number of declared cursors currently
maintained by the database server.

Improving database performance

226 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Statistic Scope Description

Cursors Open Connection Shows the number of open cursors currently main-
tained by the database server.

Lock Count Connection and database Shows the number of locks.

Requests/sec Server Shows the rate at which the database server is en-
tered to allow it to handle a new request or con-
tinue processing an existing request.

Requests: Active Server Shows the number of database server threads that
are currently handling a request.

Tasks: Exchange Server Shows the number of database server threads that
are currently being used for parallel execution of
a query.

Requests: Unscheduled Server Shows the number of requests that are currently
queued up waiting for an available database server
thread.

Snapshot Count Connection and database Shows the number of active snapshots.

Statement Cache Hits Connection and server Shows the rate at which statement prepares cached
by the client are being re-used by the database
server.

Statement Cache Misses Connection and server Shows the rate at which statement prepares cached
by the client need to be prepared again by the da-
tabase server.

Statement Prepares Connection and database Shows the rate at which statement prepares are
being handled by the database server.

Statements Connection Shows the number of prepared statements cur-
rently maintained by the database server.

Transaction Commits Connection Shows the rate at which Commit requests are han-
dled.

Transaction Rollbacks Connection Shows the rate at which Rollback requests are
handled.

Performance Monitor statistics

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 227

Miscellaneous statistics

Statistic Scope Description

Avail IO Server Shows the current number of available I/O
control blocks.

Connection Count Database Shows the number of connections to this
database.

Main Heap Bytes Server Shows the number of bytes used for global
database server data structures.

Query: Plan cache pages Connection and database Shows the number of pages used to cache
execution plans.

Query: Low memory strategies Connection and database Shows the number of times the database
server changed its execution plan during
execution because of low memory condi-
tions.

Query: Rows materialized/sec Connection and database Shows the rate at which rows are written to
work tables during query processing.

Requests: GET DATA/sec Connection and database Shows the rate at which a connection is is-
suing GET DATA requests.

Temporary Table Pages Connection and database Shows the number of pages in the tempo-
rary file used for temporary tables.

Version Store Pages Database Shows the number of pages of the tempo-
rary file currently being used for the row
version store when snapshot isolation is
enabled.

Improving database performance

228 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Performance improvement tips

Acquire adequate hardware
When running on a PC, the following are the minimum CPU, memory, and disk requirements:

● A minimum of 4 MB of memory. If you are using the administration tools, such as Sybase Central and
Interactive SQL, a minimum of 48 MB of RAM is required.

● Enough disk space to hold your database and log files.

If your server meets only the minimum hardware requirements, performance may suffer; you might want to
upgrade your hardware. In general, evaluate the hardware configuration to see if it is adequate for the kind
of work load being placed on the database server.

You can specify the -fc option when starting the database server to implement a callback function when the
database server encounters a file system full condition.

For more information, see “-fc server option” [SQL Anywhere Server - Database Administration].

Always use a transaction log
Using a transaction log can provide data protection, and can dramatically improve the performance of SQL
Anywhere.

When operating without a transaction log, SQL Anywhere performs a checkpoint at the end of every
transaction which consumes considerable resources.

When operating with a transaction log, SQL Anywhere only writes notes detailing the changes as they occur.
It can choose to write the new database pages all at once, at the most efficient time. Checkpoints make sure
information enters the database file, and that it is consistent and up to date.

You can further improve performance if you store the transaction log on a different physical device than the
one containing the primary database file. The extra drive head does not generally have to seek to get to the
end of the transaction log.

Check for concurrency issues
When the database server processes a transaction, it can lock one or more table rows. The locks maintain
the reliability of information stored in the database by preventing concurrent access by other transactions.
They also improve the accuracy of result queries by identifying information that is in the process of being
updated.

The database server places these locks automatically and needs no explicit instruction. It holds all the locks
acquired by a transaction until the transaction is completed. The transaction that has access to the row is said

Performance improvement tips

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 229

to hold the lock. Depending on the type of lock, other transactions may have limited access to the locked
row, or none at all.

Performance can be compromised if a row or rows are frequently accessed by several users simultaneously.
If you suspect locking problems, consider using the sa_locks procedure to obtain information on locks in
the database. See “sa_locks system procedure” [SQL Anywhere Server - SQL Reference].

If lock issues are identified, information on the connection processes involved can be found using the AppInfo
connection property. See “Connection properties” [SQL Anywhere Server - Database Administration].

Choose the optimizer goal
The optimization_goal option controls whether SQL Anywhere optimizes SQL statements for response time
(First-row) or for total resource consumption (All-rows). In simpler terms, you can choose whether to
optimize query processing towards returning the first row quickly, or towards minimizing the cost of
returning the complete result set.

If the option is set to First-row, SQL Anywhere chooses an access plan that is intended to reduce the time
to fetch the first row of the query's result, possibly at the expense of total retrieval time. In particular, the
optimizer typically avoids, if possible, access plans that require the materialization of results to reduce the
time to return the first row. With this setting, for example, the optimizer favors access plans that utilize an
index to satisfy a query's ORDER BY clause, rather than plans that require an explicit sorting operation.

The optimization goal used by the optimizer for a particular statement is decided using these rules:

● If the main query block has a table in the FROM clause with the table hint set to FASTFIRSTROW, then
the statement is optimized using the First-row optimization goal.

● If the statement has an OPTION clause containing a setting for the optimization_goal option, then the
statement is optimized using this setting.

● Else, the optimizer uses the current setting of the option optimization_goal option.

Note that even if the optimization goal is First-row, the optimizer may be unable to find a plan that can
quickly return the first row. For example, statements requiring materialization due to the presence of
DISTINCT, GROUP BY, or ORDER BY clauses, and for which a relevant index does not exist to provide
the necessary order, are optimized with the All-rows goal.

If the option is set to All-rows (the default), the SQL Anywhere query is optimized to choose an access plan
with the minimal estimated total retrieval time. Setting optimization_goal to All-rows may be appropriate
for applications that intend to process the entire result set, such as PowerBuilder DataWindow applications.

See also
● “optimization_goal option [database]” [SQL Anywhere Server - Database Administration]
● “FROM clause” [SQL Anywhere Server - SQL Reference]

Improving database performance

230 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

You can also refer to the OPTION clause of SQL statements such as the following:

● “DELETE statement” [SQL Anywhere Server - SQL Reference]
● “INSERT statement” [SQL Anywhere Server - SQL Reference]
● “SELECT statement” [SQL Anywhere Server - SQL Reference]
● “MERGE statement” [SQL Anywhere Server - SQL Reference]
● “UPDATE statement” [SQL Anywhere Server - SQL Reference]
● “UNION clause” [SQL Anywhere Server - SQL Reference]

Collect statistics on small tables
SQL Anywhere uses statistical information to determine the most efficient strategy for executing each
statement. SQL Anywhere automatically gathers and updates these statistics, and stores them permanently
in the database. Statistics gathered while processing one statement are available when searching for efficient
ways to execute subsequent statements.

By default SQL Anywhere creates statistics for all tables with five or more rows. If you need to create
statistics for a table with less than five rows, you can do so using the CREATE STATISTICS statement.
This statement creates statistics for all tables, regardless of how many rows are in a table. Once created, the
statistics are automatically maintained by SQL Anywhere. See “CREATE STATISTICS statement” [SQL
Anywhere Server - SQL Reference].

Declare constraints
Undeclared primary key-foreign key relationships exist between tables when there is an implied relationship
between the values of columns in different tables. It is true that not declaring the relationship can save time
on index maintenance, however, declaring the relationship can improve performance of queries when joins
take place because the cost model is able to do a better job of estimation. See “Using table and column
constraints” on page 92.

Increase the cache size
SQL Anywhere stores recently used pages in a cache. If a request needs access to the page more than once,
or should another connection require the same page, it may find it already in memory and avoid having to
read information from disk. This is especially an issue for encrypted databases, which require a larger cache
than unencrypted.

If your cache is too small, SQL Anywhere cannot keep pages in memory long enough to reap these benefits.

On Unix and Windows, the database server dynamically changes cache size as needed. However, the cache
is still limited by the amount of memory that is physically available, and by the amount used by other
applications.

Performance improvement tips

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 231

Tip
Increasing the cache size can often improve performance dramatically, since retrieving information from
memory is many times faster than reading it from disk. You may find it worthwhile to add more RAM to
allow a larger cache.

See “Using the cache to improve performance” on page 244.

Minimize cascading referential actions
Cascading referential actions are costly in terms of performance because they cause updates to multiple
tables for every transaction. For example, if the foreign key from Employees to Departments was defined
with ON UPDATE CASCADE, then updating a department ID would automatically update the Employees
table. While cascading referential actions are convenient, sometimes it might be more efficient to implement
them in application logic instead. See “Ensuring data integrity” on page 79.

Monitor query performance
SQL Anywhere includes several tools for testing the performance of queries. These tools are stored in
subdirectories under samples-dir\SQLAnywhere, as noted below. Complete documentation about each tool
can be found in a readme.txt file that is located in the same folder as the tool. For more information about
the location of samples-dir, see “Samples directory” [SQL Anywhere Server - Database Administration].

For information about system procedures that measure query execution times, see “sa_get_request_profile
system procedure” [SQL Anywhere Server - SQL Reference] and “sa_get_request_times system procedure”
[SQL Anywhere Server - SQL Reference].

fetchtst
Function Determines the time required for a result set to be retrieved.

Location samples-dir\SQLAnywhere\PerformanceFetch

odbcfet
Function Determines the time required for a result set to be retrieved. This tool is similar to fetchtst, but
with less functionality.

Location samples-dir\SQLAnywhere\PerformanceFetch

instest
Function Determines the time required for rows to be inserted into a table.

Location samples-dir\SQLAnywhere\PerformanceInsert

trantest
Function Measures the load that can be handled by a given database server configuration given a database
design and a set of transactions.

Improving database performance

232 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Location samples-dir\SQLAnywhere\PerformanceTransaction

Normalize your table structure
One or more database tables may contain multiple copies of the same information (for example, a column
that is repeated in several tables), and your table may need to be normalized.

Normalization reduces duplication in a relational database. For example, suppose your company employees
work at several different offices. To normalize the database, consider placing information about the offices
(such as its address and main telephone numbers) in a separate table, rather than duplicating all this
information for every employee.

If the amount of duplicate information is small, you may find it better to duplicate the information and
maintain its integrity using triggers or other constraints.

For more information about normalizing data, see “Creating databases in SQL Anywhere” on page 3.

Review the order of columns in tables
Columns in a row are accessed in a sequential manner in the order of their creation. For example, to access
columns at the end of a row, SQL Anywhere skips columns that appear earlier in the row. Primary key
columns are always stored at the beginning of rows. For this reason, it is important to create tables so that
small and/or frequently accessed columns are placed before seldom accessed columns in the table.

See also
● “Creating databases in SQL Anywhere” on page 3
● “Managing primary keys” on page 24

Place different files on different devices
Disk drives operate much more slowly than modern processors or RAM. Often, simply waiting for the disk
to read or write pages is the reason that a database server is slow.

You may improve database performance by putting different physical database files on different physical
devices. For example, while one disk drive is busy swapping database pages to and from the cache, another
device can be writing to the log file.

Notice that to gain these benefits, the devices must be independent. A single disk, partitioned into smaller
logical drives, is unlikely to yield benefits.

SQL Anywhere uses four types of files:

1. database (.db)

2. transaction log (.log)

3. transaction log mirror (.mlg)

Performance improvement tips

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 233

4. temporary file (.tmp)

The database file holds the entire contents of your database. A single file can contain a single database, or
you can add up to 12 dbspaces, which are additional files holding portions of the same database. You choose
a location for the database file and dbspaces.

The transaction log file is required for recovery of the information in your database in the event of a failure.
For extra protection, you can maintain a duplicate copy of the transaction log in a third type of file called a
transaction log mirror file. SQL Anywhere writes the same information at the same time to each of these
files.

Tip
Placing the transaction log mirror file (if you use one) on a physically separate drive helps protect against
disk failure, and SQL Anywhere runs faster because it can efficiently write to the log and log mirror files.
To specify the location of the transaction log and transaction log mirror files, use the Transaction Log utility
(dblog), or the Change Log File Settings Wizard in Sybase Central. See “Transaction Log utility (dblog)”
[SQL Anywhere Server - Database Administration], and “Changing the location of a transaction log” [SQL
Anywhere Server - Database Administration].

The temporary file is used when SQL Anywhere needs more space than is available to it in the cache for
such operations as sorting and forming unions. When the database server needs this space, it generally uses
it intensively. The overall performance of your database becomes heavily dependent on the speed of the
device containing the temporary file.

Tip
If the temporary file is on a fast device, physically separate from the one holding the database file, SQL
Anywhere typically runs faster. This is because many of the operations that necessitate using the temporary
file also require retrieving a lot of information from the database. Placing the information on two separate
disks allows the operations to take place simultaneously.

Choose the location of your temporary file carefully. The location of the temporary file can be specified
when starting the database server using the -dt server option. If you do not specify a location for the temporary
file when starting the database server, SQL Anywhere checks the following environment variables, in order:

1. SATMP

2. TMP

3. TMPDIR

4. TEMP

If an environment variable is not defined, SQL Anywhere places its temporary file in the current directory
for Windows, and in the /tmp directory for Unix.

If your computer has enough fast devices, you can gain even more performance by placing each of these
files on a separate device. You can even divide your database into multiple dbspaces, located on separate
devices. In such a case, group tables in the separate dbspaces so that common join operations read information
from different dbspaces.

Improving database performance

234 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

When you create all tables or indexes in a location other than the system dbspace, the system dbspace is only
used for the checkpoint log and system tables. This is useful if you want to put the checkpoint log on a
separate disk from the rest of your database objects for performance reasons. To create base tables in another
dbspace change all the CREATE TABLE statements to use the IN DBSPACE clause to specify the alternative
dbspace, or change the setting of the default_dbspace option before creating any tables. Temporary tables
can only be created in the TEMPORARY dbspace. See “default_dbspace option [database]” [SQL Anywhere
Server - Database Administration], and “CREATE TABLE statement” [SQL Anywhere Server - SQL
Reference].

For more information about the default dbspace for base and temporary tables, see “Using additional
dbspaces” [SQL Anywhere Server - Database Administration].

A similar strategy involves placing the temporary and database files on a RAID device or a stripe set.
Although such devices act as a logical drive, they dramatically improve performance by distributing files
over many physical drives and accessing the information using multiple heads.

You can specify the -fc option when starting the database server to implement a callback function when the
database server encounters a file system full condition. See “-fc server option” [SQL Anywhere Server -
Database Administration].

See also
● “Use work tables in query processing (use All-rows optimization goal)” on page 250
● “Backup and data recovery” [SQL Anywhere Server - Database Administration]
● “SATMP environment variable” [SQL Anywhere Server - Database Administration]

Rebuild your database
Rebuilding your database is the process of unloading and reloading your entire database. It is also called
upgrading your database file format.

Rebuilding removes all the information, including data and schema, and puts it all back in a uniform fashion.
Like defragmenting your disk drive, performance is improved space is filled in. It also gives you the
opportunity to change certain settings. See “Rebuilding databases” on page 758.

Reducing fragmentation
Fragmentation occurs naturally as you make changes to your database. Performance can suffer if your files,
tables, or indexes are excessively fragmented. Reducing fragmentation becomes more important as your
database increases in size. SQL Anywhere contains stored procedures that generate information about the
fragmentation of files, tables, and indexes.

If you are noticing a significant decrease in performance, consider:

● rebuilding your database to reduce table and/or index fragmentation, especially if you have performed
extensive delete/update/insert activity on multiple tables

● putting the database on a disk partition by itself to reduce file fragmentation

Performance improvement tips

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 235

● running one of the available Windows utilities periodically to reduce file fragmentation

● reorganizing your tables to reduce database fragmentation

● using the REORGANIZE TABLE statement to defragment rows in a table, or to compress indexes which
may have become sparse due to DELETEs. Reorganizing tables can reduce the total number of pages
used to store a table and its indexes, and it may reduce the number of levels in an index tree as well.

Reducing file fragmentation
A fragmented database file can affect the performance of your database server. Reducing disk fragmentation
becomes more important as the size of your database increases.

The database server determines the number of file fragments in each dbspace when you start a database on
Windows. The database server displays the following information in the database server messages window
when the number of fragments is greater than one: Database file "mydatabase.db" consists
of nnn fragments.

You can also obtain the number of database file fragments using the DBFileFragments database property.
See “Database properties” [SQL Anywhere Server - Database Administration].

To eliminate file fragmentation problems, put the database on a disk partition by itself and then periodically
run one of the available Windows disk defragmentation utilities.

Reducing table fragmentation
Table fragmentation occurs when rows are not stored contiguously, or when rows are split between multiple
pages. These rows require additional page access and this reduces the performance of the database server.

The effect that fragmentation has on performance varies. A table might be highly fragmented, but if it fits
in memory, and the way it is accessed allows the pages to be cached, then the impact may be minimal. At
the other end of the scale, a fragmented table may cause much more I/O to be done and can result in a
significant performance hit if split rows are accessed frequently and the cost of extra I/Os is not reduced by
caching.

While reorganizing tables and rebuilding a database reduces fragmentation, doing so too frequently or not
frequently enough, can also impact performance. Experiment using the tools and methods described in the
section below to determine an acceptable level of fragmentation for your tables.

If you reduce fragmentation and performance is still poor, another issue may be to blame, such as inaccurate
statistics.

Determine the degree of table fragmentation
Use the sa_table_fragmentation system procedure to obtain information about the degree of fragmentation
of your database tables. Running this system procedure just once is not helpful in determining whether to
defragment to improve performance. Instead, rebuild your database and run the procedure to establish
baseline results. Then, continue to run it periodically over an extended length of time, looking for correlation
between the change in its output to changes in performance measures. In this way you can determine the

Improving database performance

236 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

rate at which tables become fragmented to the degree that performance is impacted, and so determine the
optimal frequency at which to defragment tables.

You must have DBA authority to run this procedure. The following statement calls the
sa_table_fragmentation system procedure:

CALL sa_table_fragmentation(['table-name' [, 'owner-name']]);

Methods to reduce fragmentation
The following methods help control table fragmentation:

● Use PCTFREE SQL Anywhere reserves extra room on each page to allow rows to grow slightly.
When an update to a row causes it to grow beyond the original space allocated for it, the row is split and
the initial row location contains a pointer to another page where the entire row is stored. For example,
filling empty rows with UPDATE statements or inserting new columns into a table can lead to severe
row splitting. As more rows are stored on separate pages, more time is required to access the additional
pages.

You can reduce the amount of fragmentation in your tables by specifying the percentage of space in a
table page that should be reserved for future updates. This PCTFREE specification can be set with
CREATE TABLE, ALTER TABLE, DECLARE LOCAL TEMPORARY TABLE, or LOAD TABLE.

● Reorganize tables You can defragment specific tables using the REORGANIZE TABLE statement.
Reorganizing tables does not disrupt database access.

● Rebuild the database Rebuilding the database defragments all tables, including system tables,
provided the rebuild is performed as a two-step process, that is, data is unloaded and stored to disk, and
then reloaded. Rebuilding in this manner also has the benefit of rearranging the table rows so they appear
in the order specified by the clustered index and primary keys. One-step rebuilds (for example, using the
-ar, -an, or -ac options), do not reduce table fragmentation.

See also
● “sa_table_fragmentation system procedure” [SQL Anywhere Server - SQL Reference]
● “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration]
● “Rebuild utility (rebuild)” [SQL Anywhere Server - Database Administration]

Reducing index fragmentation and skew
Indexes are designed to speed up searches on particular columns, but they can become fragmented (less
dense) and skewed (unbalanced) if many delete operations are performed on the indexed table.

Index density reflects the average fullness of the index pages. Index skew reflects the typical deviation from
the average density. The amount of skew is important to the optimizer when making selectivity estimates.

To determine whether your database contains indexes that contain unacceptable levels of fragmentation or
skew, use the Application Profiling Wizard. See “Application Profiling Wizard” on page 177.

Performance improvement tips

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 237

You can also use the sa_index_fragmentation system procedure to review levels of index fragmentation and
skew. For example, the following statement calls the sa_index_density system procedure to examine indexes
on the Customers table.

CALL sa_index_density('Customers');

TableName TableId IndexName IndexID IndexType LeafPages Density Skew

Customers 686 CustKey 0 PKEY 1 0.645992 1.002772

Customers 686 IX_cust_name 1 NUI 1 0.789795 1.432239

SQL Anywhere creates indexes on primary keys automatically. Note that these indexes have an IndexID of
0 in the results for the sa_index_density system procedure.

When the number of leaf pages is low, you do not need to be concerned about density and skew values.
Density and skew values become important only when the number of leaf pages is high. When the number
of leaf pages is high, a low density value can indicate fragmentation, and a high skew value can indicate that
indexes are not well balanced. Both of these can be factors in poor performance. Executing a REORGANIZE
TABLE statement addresses both of these issues. See “REORGANIZE TABLE statement” [SQL Anywhere
Server - SQL Reference].

See also
● “sa_index_density system procedure” [SQL Anywhere Server - SQL Reference]
● “Working with indexes” on page 71

Reduce primary key width
Wide primary keys are composed of two or more columns. The more columns contained in your primary
key, the more demand there is on the database server. Reducing the number of columns in your primary keys
can improve performance.

See also
● “Managing primary keys” on page 24
● “Use keys to improve query performance” on page 243

Reduce table widths
Tables where the combined columns (or the size of an individual row) exceeds the database page size and
must be split across two or more database pages are referred to as wide table. The more pages a row takes
up, the longer the database server takes to read each row. If you have wide tables, and find performance slow
consider further normalizing your tables to reduce the number of columns. If that is not possible, a larger
database page size may be helpful, especially if most tables are wide. See “Creating databases in SQL
Anywhere” on page 3.

Improving database performance

238 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Reduce requests between client and server
If you find yourself in a situation where your network exhibits poor latency, or your application sends many
cursor open and close requests, you can use the LazyClose and PrefetchOnOpen network connection
parameters to reduce the number of requests between the client and server and thereby improve performance.
See “LazyClose connection parameter [LCLOSE]” [SQL Anywhere Server - Database Administration], and
“PrefetchOnOpen connection parameter” [SQL Anywhere Server - Database Administration].

Reduce expensive user-defined functions
Reducing expensive user-defined functions in queries where they have to be executed many times can
improve performance. See “Introduction to user-defined functions” on page 838.

Replace expensive triggers
Evaluate the use of triggers to see if some of the triggers could be replaced by features available in the
database server. For instance, triggers to update columns with the latest update time and user information
can be replaced with the corresponding special values in the database server. As well, using the default
settings on existing triggers can also improve performance. See “Introduction to triggers” on page 842.

Strategic sorting of query results
Reduce the amount of unnecessary sorting of data; unless you need the data returned in a predictable order,
do not specify an ORDER BY clause in SELECT statements. Sorting requires extra time and resources to
process the query.

For more information about sorting, see “The ORDER BY clause: sorting query results” on page 380, or
“The GROUP BY clause: Organizing query results into groups” on page 373.

Specify the correct cursor type
Specifying the correct cursor type can improve performance. For example, if a cursor is read-only, then
declaring it as read-only allows for faster optimization and execution, since there is less material to build,
such as check constraints, and so on. If the cursor is updatable, some query rewrites can be skipped. Also,
if a query is updatable, then depending on the execution plan chosen by the optimizer, the database server
must use a keyset driven approach. Keep in mind that keyset cursors are more expensive. See “Choosing
cursor types” [SQL Anywhere Server - Programming].

Supply explicit selectivity estimates sparingly
Occasionally, statistics may become inaccurate. This condition is most likely to arise when only a few queries
have been executed since a large amount of data was added, updated, or deleted. Inaccurate or unavailable

Performance improvement tips

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 239

statistics can impede performance. If SQL Anywhere is taking too long to update the statistics, try executing
CREATE STATISTICS or DROP STATISTICS to refresh them.

SQL Anywhere also updates some statistics when executing LOAD TABLE statements, during query
execution, and when performing update DML statements.

In unusual circumstances, however, these measures may prove ineffective. If you know that a condition has
a success rate that differs from the optimizer's estimate, you can explicitly supply a user estimate in the
search condition.

Although user defined estimates can sometimes improve performance, avoid supplying explicit user-defined
estimates in statements that are to be used on an ongoing basis. Should the data change, the explicit estimate
may become inaccurate and may force the optimizer to select poor plans.

If you have used selectivity estimates that are inaccurate as a workaround to performance problems where
the software-selected access plan was poor, you can set user_estimates to Off to ignore the values. See
“Explicit selectivity estimates” [SQL Anywhere Server - SQL Reference].

Turn off autocommit mode
If your application runs in autocommit mode, then SQL Anywhere treats each of your statements as a
separate transaction. In effect, it is equivalent to appending a COMMIT statement to the end of each of your
commands.

Instead of running in autocommit mode, consider grouping your commands so each group performs one
logical task. If you disable autocommit, you must execute an explicit commit after each logical group of
commands. Also, be aware that if logical transactions are large, blocking and deadlock can happen.

If you are not using a transaction log file, the cost of using autocommit mode is high. Every statement forces
a checkpoint—an operation that can involve writing numerous pages of information to disk.

Each application interface has its own way of setting autocommit behavior. For the Open Client, ODBC,
and JDBC interfaces, Autocommit is the default behavior.

For more information about autocommit, see “Setting autocommit or manual commit mode” [SQL Anywhere
Server - Programming].

Use an appropriate page size
The page size you choose can affect the performance of your database. There are advantages and
disadvantages to both large and small page sizes.

Smaller pages hold less information and may use space less efficiently, particularly if you insert rows that
are slightly more than half a page in size. However, small page sizes allow SQL Anywhere to run with fewer
resources because more pages can be stored in a cache of the same size. Small pages are useful if your
database runs on a small computer with limited memory. They can also help when your database is used
primarily for the retrieval of small pieces of information from random locations.

A larger page size helps SQL Anywhere read databases more efficiently. Large page sizes tend to benefit
large databases, and queries that perform sequential table scans. Often, the physical design of disks permits

Improving database performance

240 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

them to retrieve fewer large blocks more efficiently than many small ones. Other benefits of large page sizes
include improving the fan-out of your indexes, thereby reducing the number of index levels, and allowing
tables to include more columns.

Keep in mind that larger page sizes have additional memory requirements. As well, extremely large page
sizes (16 KB or 32 KB) are not recommended for most applications unless you can be sure that a large
database server cache is always available. Investigate the effects of increased memory and disk space on
performance characteristics before using 16 KB or 32 KB page sizes.

The database server's memory usage is proportional to the number of databases loaded, and the page size of
the databases. It is strongly recommended that you do performance testing (and testing in general) when
choosing a page size. Then choose the smallest page size (>= 4 KB) that gives satisfactory results. It is
important to pick the correct (and reasonable) page size if a large number of databases are going to be started
on the same server.

You cannot change the page size of an existing database. Instead you must create a new database and use
the -p option of dbinit to specify the page size. For example, the following command creates a database with
4 KB pages.

dbinit -p 4096 new.db

You can also use the CREATE DATABASE statement with a PAGE SIZE clause to create a database with
the new page size. See “CREATE DATABASE statement” [SQL Anywhere Server - SQL Reference].

For more information about larger page sizes, see “Setting a maximum page size” [SQL Anywhere Server -
Database Administration].

Scattered reads
If you are working with Windows, a minimum page size of 4 KB allows the database server to read a large
contiguous region of database pages on disk directly into the appropriate place in cache, bypassing the 64
KB buffer entirely. This feature can significantly improve performance.

Note
Scattered reads are not used for files on remote computers, or for files specified using a UNC name such as
\\mycomputer\myshare\mydb.db.

Use appropriate data types
Data types store information about specific sets of data, including ranges of values, the operations that can
be performed on those values, and how the values are stored in memory. You can improve performance by
using the appropriate data type for your data. For instance, avoid assigning a data type of CHAR to values
that only contain numeric data. And whenever possible, choose efficient data types over the more expensive
numeric and string types. See “SQL data types” [SQL Anywhere Server - SQL Reference].

Use AUTOINCREMENT to create primary keys
Primary key values must be unique. Although there are a variety of ways to create unique values for primary
keys, the most efficient method is setting the default column value to be AUTOINCREMENT. You can use

Performance improvement tips

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 241

this default for any column in which you want to maintain unique values. Using the AUTOINCREMENT
feature to generate primary key values is faster than other methods because the value is generated by the
database server. See “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference], and “ALTER
TABLE statement” [SQL Anywhere Server - SQL Reference].

Use bulk operations methods
If you find yourself loading large amounts of information into your database, you can benefit from the special
tools provided for these tasks.

If you are loading large files, it is more efficient to create indexes on the table after the data is loaded.

For information about improving bulk operation performance, see “Performance aspects of bulk
operations” on page 726.

Use delayed commits
When the rate of committed changes to a database is high, the rate of transaction log writes can be the single
largest factor in determining overall database performance. If you are trying to improve transaction log
performance, you can set the delayed_commits option to On. When set to On, the database server replies to
a COMMIT statement immediately instead of waiting until the transaction log entry for the COMMIT has
been written to disk. When set to Off, the application must wait until the COMMIT is written to disk. Turning
on the delayed_commits option results in fewer transaction log writes by avoiding multiple re-writes of
partially-filled log pages, and you can set the option per connection or for all connections. When the
delayed_commits option is turned on, there is a risk that committed operations may be lost if the server goes
down before the transaction log pages are flushed to disk. See “delayed_commits option [database]” [SQL
Anywhere Server - Database Administration].

Use in-memory mode
If your application can tolerate the loss of committed transactions after the most recent checkpoint, then your
application may benefit from using in-memory mode.

This mode is useful in applications where increased performance is desirable, and you are running on a
system with a large amount of available memory, typically enough to hold all the database files within the
cache.

You can choose between two different in-memory modes. In never-write mode, committed transactions are
not written to the database file on disk. When you specify never-write mode, multiple concurrent LOAD
TABLE statements can be active on the same or different tables. All changes are lost if the database is shut
down or the connection is lost. In checkpoint-only mode, the database server does not use a transaction log,
and you cannot recover to the most recent committed transaction. However, because the checkpoint log is
enabled, the database can be recovered to the most recent checkpoint.

For more information about configuring in-memory mode and determining if it is appropriate for your
application, see “-im server option” [SQL Anywhere Server - Database Administration].

Improving database performance

242 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Separately licensed component required
In-memory mode requires a separate license. See “Separately licensed components” [SQL Anywhere 11 -
Introduction].

Use indexes effectively
When executing a query, SQL Anywhere chooses how to access each table. Indexes greatly speed up the
access. When the database server cannot find a suitable index, it resorts to scanning the table sequentially
—a process that can take a long time.

For example, suppose you need to search a large database for employees, and you only know their first or
last name, but not both. If no index exists, SQL Anywhere scans the entire table. If, however, you created
two indexes (one that contains the last names first, and a second that contains the first names first), SQL
Anywhere scans the indexes first, and can generally return the information to you faster.

Proper selection of indexes can make a large performance difference. Creating and managing indexes is
described in “Working with indexes” on page 71.

Using indexes
Although indexes let SQL Anywhere locate information very efficiently, exercise some caution when adding
them. Each index creates extra work every time you insert, delete, or update a row because SQL Anywhere
must also update all affected indexes.

Consider adding an index when it allows SQL Anywhere to access data more efficiently. In particular, add
an index when it eliminates unnecessarily accessing a large table sequentially. If, however, you need better
performance when you add rows to a table, and finding information quickly is not an issue, use as few indexes
as possible.

You may want to use the Index Consultant to guide you through the selection of an effective set of indexes
for your database. See “Index Consultant” on page 183.

Clustered indexes
Using clustered indexes helps store rows in a table in approximately the same order as they appear in the
index. See “Indexes” on page 640, and “Using clustered indexes” on page 72.

Use keys to improve query performance
Primary keys and foreign keys, while used primarily for validation purposes, can also improve database
performance.

Example
The following example illustrates how primary keys can make queries execute more quickly.

SELECT *
FROM Employees
WHERE EmployeeID = 390;

Performance improvement tips

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 243

The simplest way for the database server to execute this query would be to look at all 75 rows in the
Employees table and check the employee ID number in each row to see if it is 390. This does not take very
long since there are only 75 employees, but for tables with many thousands of entries a sequential search
can take a long time.

The referential integrity constraints embodied by each primary or foreign key are enforced by SQL Anywhere
through the help of an index, implicitly created with each primary or foreign key declaration. The
EmployeeID column is the primary key for the Employees table. The corresponding primary key index
permits the retrieval of employee number 390 quickly. This quick search takes almost the same amount of
time whether there are 100 rows or 1000000 rows in the Employees table.

Separate indexes are created automatically for primary and foreign keys. This arrangement allows SQL
Anywhere to perform many operations more efficiently.

For more information about how primary and foreign keys work, see “Relations between tables” [SQL
Anywhere 11 - Introduction].

Using the cache to improve performance
The database cache is an area of memory used by the database server to store database pages for repeated
fast access. The more pages that are accessible in the cache, the fewer times the database server needs to
read data from disk. As reading data from disk is a slow operation, the amount of cache available is often a
key factor in determining performance.

You can specify the -c options to control the size of the database cache on the database server command line
when the database is started.

The database server messages window displays the size of the cache at startup, and you can use the following
statement to obtain the current size of the cache:

SELECT PROPERTY('CacheSize');

See also
● “-c server option” [SQL Anywhere Server - Database Administration]
● “-ca server option” [SQL Anywhere Server - Database Administration]
● “-ch server option” [SQL Anywhere Server - Database Administration]
● “-cl server option” [SQL Anywhere Server - Database Administration]

Limiting cache memory use
The initial, minimum, and maximum cache sizes are all controllable from the database server command line.

● Initial cache size You can change the initial cache size by specifying the database server -c option.
The default value is as follows:

○ Windows Mobile The formula is as follows:

max(600 KB, min(dbsize, physical-memory));

Improving database performance

244 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The dbsize is the total size of the database file or files started, and physical-memory is 25% of the
physical memory on the computer.

○ Windows The formula is as follows:

max(2 MB, min(dbsize, physical-memory));

The dbsize is the total size of the database file or files started, and physical-memory is 25% of the
physical memory on the computer.

If an AWE cache is used on Windows the formula is as follows:

min(100% of available memory-128MB, dbsize);

An AWE cache is not used if this value is smaller than 2 MB.

For information about AWE caches, see “-cw server option” [SQL Anywhere Server - Database
Administration].

○ Unix At least 8 MB.

For information about Unix initial cache size, see “Dynamic cache sizing on Unix” on page 247.

● Maximum cache size You can control the maximum cache size by specifying the database server -
ch option. The default is based on a heuristic that depends on the physical memory in your computer.
On Windows Mobile, the default maximum cache size is the amount of available program memory minus
4 MB. On other non-Unix computers, this is approximately the lower of the maximum non-AWE cache
size and 90% of the physical memory of the computer. On Unix, the default maximum cache size is
calculated as follows:

○ On 32-bit Unix platforms, it is the lesser of 90% of total physical memory or 1,834,880 KB.

○ On 64-bit Unix platforms, it is the lesser of 90% of total physical memory and 8,589,672,320 KB.

● Minimum cache size You can control the minimum cache size by specifying the database server -
cl server option. By default, the minimum cache size is the same as the initial cache size, except on
Windows Mobile. On Windows Mobile, the default minimum cache size is 600 KB.

You can also disable dynamic cache sizing by using the -ca 0 server option.

The following server properties return information about the database server cache:

● MinCacheSize Returns the minimum allowed cache size, in kilobytes.

● MaxCacheSize Returns the maximum allowed cache size, in kilobytes.

● CurrentCacheSize Returns the current cache size, in kilobytes.

● PeakCacheSize Returns the largest value the cache has reached in the current session, in kilobytes.

For information about obtaining server property values, see “Database server properties” [SQL Anywhere
Server - Database Administration].

Performance improvement tips

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 245

See also
● “-c server option” [SQL Anywhere Server - Database Administration]
● “-ca server option” [SQL Anywhere Server - Database Administration]
● “-ch server option” [SQL Anywhere Server - Database Administration]
● “-cl server option” [SQL Anywhere Server - Database Administration]

Dynamic cache sizing
You can use SQL Anywhere to automatically resize the database cache. However, the effectiveness of
dynamic cache sizing is limited by the operating system on which the database server is running and by the
amount of available physical memory.

With full dynamic cache sizing, database server performance is unaffected by the allocation of inadequate
memory. The cache grows when the database server can usefully use more, as long as memory is available,
and shrinks when cache memory is required by other applications. This prevents the database server from
affecting other applications on the system.

Typically, the cache requirements are assessed by dynamic cache sizing once per minute. However, the
assessment period may increase to once every five seconds for thirty seconds when a new database is started
or when a file grows significantly. After the initial thirty second period, the sampling rate returns to once
per minute. File growth of 1/8 since the database started or since the last growth that triggered an increase
in the sampling rate is considered significant. This change improves performance further, by adapting the
cache size more quickly when databases are started dynamically and when a lot of data is inserted.

With dynamic cache sizing you do not need to explicitly configure the database cache.

When an Address Windowing Extensions (AWE) cache is used, dynamic cache sizing is disabled. You
cannot use an AWE cache on Windows Mobile.

For more information about AWE caches, see “-cw server option” [SQL Anywhere Server - Database
Administration].

Dynamic cache sizing on Windows
On Windows and Windows Mobile, the database server evaluates cache and operating statistics once per
minute and computes an optimum cache size. The database server computes a target cache size that uses all
physical memory currently not in use, except for approximately 5 MB that is to be left free for system use.
The target cache size is never smaller than the specified or implicit minimum cache size. The target cache
size never exceeds the specified or implicit maximum cache size, or the sum of the sizes of all open database
and temporary files plus the size of the main heap.

To avoid cache size oscillations, the database server increases the cache size incrementally. Rather than
immediately adjusting the cache size to the target value, each adjustment modifies the cache size by 75% of
the difference between the current and target cache size.

Windows can use Address Windowing Extensions (AWE) to support large cache sizes by specifying the -
cw command line option when starting the database server. AWE caches do not support dynamic cache

Improving database performance

246 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sizing. Windows Mobile does not support AWE caches. See “-cw server option” [SQL Anywhere Server -
Database Administration].

Dynamic cache sizing on Unix
On Unix, the database server uses swap space and memory to manage the cache size. The swap space is a
system-wide resource on most Unix operating systems, but not on all. In this section, the sum of memory
and swap space is called the system resources. See your operating system documentation for details.

On startup, the database allocates the specified maximum cache size from the system resources. It loads
some of this into memory (the initial cache size) and keeps the remainder as swap space.

The total amount of system resources used by the database server is constant until the database server shuts
down, but the proportion loaded into memory changes. Each minute, the database server evaluates cache
and operating statistics. If the database server is busy and demanding of memory, it may move cache pages
from swap space into memory. If the other processes in the system require memory, the database server may
move cache pages out from memory to swap space.

Initial cache size
By default, the initial cache size is assigned using an heuristic based on the available system resources. The
initial cache size is always less than 1.1 times the total database size.

If the initial cache size is greater than 3/4 of the available system resources, the database server exits with a
Not Enough Memory error.

You can change the initial cache size using the -c option. See “-c server option” [SQL Anywhere Server -
Database Administration].

Maximum cache size
The maximum cache must be less than the available system resources on the computer. By default, the
maximum cache size is assigned using an heuristic based on the available system resources and the total
physical memory on the computer. The cache size never exceeds the specified or implicit maximum cache
size, or the sum of the sizes of all open database and temporary files plus the size of the main heap.

If you specify a maximum cache size greater than the available system resources, the database server exits
with a Not Enough Memory error. If you specify a maximum cache size greater than the available
memory, the database server warns of performance degradation, but does not exit.

The database server allocates all the maximum cache size from the system resources, and does not relinquish
it until the database server exits. You should be sure that you choose a maximum cache size that gives good
SQL Anywhere performance while leaving space for other applications. The formula for the default
maximum cache size is an heuristic that attempts to achieve this balance. You only need to tune the value
if the default value is not appropriate on your system.

You can use the -ch server option to set the maximum cache size, and limit automatic cache growth. For
more information, see “-ch server option” [SQL Anywhere Server - Database Administration].

Performance improvement tips

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 247

Minimum cache size
If the -c option is specified, the minimum cache size is the same as the initial cache size. If no -c option is
specified, the minimum cache size on Unix is 8 MB.

You can use the -cl server option to adjust the minimum cache size. See “-cl server option” [SQL Anywhere
Server - Database Administration].

Monitoring cache size
The following statistics are included in the Windows Performance Monitor and the database's property
functions.

● CurrentCacheSize The current cache size in kilobytes

● MinCacheSize The minimum allowed cache size in kilobytes

● MaxCacheSize The maximum allowed cache size in kilobytes

● PeakCacheSize The peak cache size in kilobytes

Note
The Windows Performance Monitor is available on Windows.

For more information about these properties, see “Database server properties” [SQL Anywhere Server -
Database Administration].

For information about monitoring performance, see “Monitoring database performance” on page 212.

Using cache warming
Cache warming is designed to help reduce the execution times of the initial queries executed against a
database. This is done by preloading the database server's cache with database pages that were referenced
the last time the database was started. Warming the cache can improve performance when the same query
or similar queries are executed against a database each time it is started.

You control the cache warming settings on the database server command line. There are two activities that
can take place when a database is started and cache warming is turned on: collection of database pages and
cache reloading (warming).

Collection of referenced database pages is controlled by the -cc database server option, and is turned on by
default. When database page collection is turned on, the database server keeps track of every database page
that is requested from database startup until one of the following occurs: the maximum number of pages has
been collected (the value is based on cache size and database size), the collection rate falls below the
minimum threshold value, or the database is shut down. Note that the database server controls the maximum
number of pages and the collection threshold. Once collection completes, the referenced pages are recorded
in the database so they can be used to warm the cache the next time the database is started.

Improving database performance

248 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Cache warming (reloading) is turned on by default, and is controlled by the -cr database server option. To
warm the cache, the database server checks whether the database contains a previously recorded collection
of pages. If it does, the database server loads the corresponding pages into the cache. The database can still
process requests while the cache is loading pages, but warming may stop if a significant amount of I/O
activity is detected in the database. Cache warming stops in this case to avoid performance degradation of
queries that access pages that are not contained in the set of pages being reloaded into the cache. You can
specify the -cv option if you want messages about cache warming to appear in the database server messages
window.

For more information about the database server options used for cache warming, see “-cc server option” [SQL
Anywhere Server - Database Administration], “-cr server option” [SQL Anywhere Server - Database
Administration], and “-cv server option” [SQL Anywhere Server - Database Administration].

Use the compression features
Enabling compression for one connection or all connections, and adjusting the minimum size limit at which
packets are compressed can offer significant improvements to performance under some circumstances.

To determine if enabling compression is beneficial, conduct a performance analysis on your network and
using your application before using communication compression in a production environment.

Enabling compression increases the quantity of information stored in data packets, thereby reducing the
number of packets required to transmit a particular set of data. By reducing the number of packets, the data
can be transmitted more quickly.

Specifying the compression threshold allows you to choose the minimum size of data packets that you want
compressed. The optimal value for the compression threshold may be affected by a variety of factors,
including the type and speed of network you are using.

See also
● “Adjusting communication compression settings to improve performance” [SQL Anywhere Server -

Database Administration]
● “Compress connection parameter [COMP]” [SQL Anywhere Server - Database Administration]
● “CompressionThreshold connection parameter [COMPTH]” [SQL Anywhere Server - Database

Administration]

Use the WITH EXPRESS CHECK option when validating
tables

If you find that validating large databases with a small cache takes a long time, you can use one of two
options to reduce the amount of time it takes. Using the WITH EXPRESS CHECK option with the
VALIDATE TABLE statement, or the -fx option with the Validation utility (dbvalid) can significantly
increase the speed at which your tables validate.

Performance improvement tips

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 249

See also
● “Improving performance when validating databases” [SQL Anywhere Server - Database

Administration]
● “VALIDATE statement” [SQL Anywhere Server - SQL Reference]
● “Validation utility (dbvalid)” [SQL Anywhere Server - Database Administration]

Use work tables in query processing (use All-rows
optimization goal)

Work tables are materialized temporary result sets that are created during the execution of a query. Work
tables are used when SQL Anywhere determines that the cost of using one is less than alternative strategies.
Generally, the time to fetch the first few rows is higher when a work table is used, but the cost of retrieving
all rows may be substantially lower in some cases if a work table can be used. Because of this difference,
SQL Anywhere chooses different strategies based on the optimization_goal setting. The default is first-row.
When it is set to first-row, SQL Anywhere tries to avoid work tables. When it is set to All-rows, SQL
Anywhere uses work tables when they reduce the total execution cost of a query.

For more information about the optimization_goal setting, see “optimization_goal option [database]” [SQL
Anywhere Server - Database Administration].

Work tables are used in the following cases:

● when a query has an ORDER BY, GROUP BY, or DISTINCT clause, and SQL Anywhere does not use
an index for sorting the rows. If a suitable index exists and the optimization_goal setting is First-row,
SQL Anywhere avoids using a work table. However, when optimization_goal is set to All-rows, it may
be more expensive to fetch all the rows of a query using an index than it is to build a work table and sort
the rows. SQL Anywhere chooses the cheaper strategy if the optimization goal is set to All-rows. For
GROUP BY and DISTINCT, the hash-based algorithms use work tables, but are generally more efficient
when fetching all the rows out of a query.

● when a hash join algorithm is chosen. In this case, work tables are used to store interim results (if the
input doesn't fit into memory) and a work table is used to store the results of the join.

● when a cursor is opened with sensitive values. In this case, a work table is created to hold the row
identifiers and primary keys of the base tables. This work table is filled in as rows are fetched from the
query in the forward direction. However, if you fetch the last row from the cursor, the entire table is
filled in.

● when a cursor is opened with insensitive semantics. In this case, a work table is populated with the results
of the query when the query is opened.

● when a multiple-row UPDATE is being performed and the column being updated appears in the WHERE
clause of the update or in an index being used for the update

● when a multiple-row UPDATE or DELETE has a subquery in the WHERE clause that references the
table being modified

● when performing an INSERT from a SELECT statement and the SELECT statement references the insert
table

Improving database performance

250 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● when performing a multiple row INSERT, UPDATE, or DELETE, and a corresponding trigger is defined
on the table that may fire during the operation

In these cases, the records affected by the operation go into the work table. In certain circumstances, such
as keyset-driven cursors, a temporary index is built on the work table. The operation of extracting the required
records into a work table can take a significant amount of time before the query results appear. Creating
indexes that can be used to do the sorting in the first case, above, improves the time to retrieve the first few
rows. However, the total time to fetch all rows may be lower if work tables are used, since these permit query
algorithms based on hashing and merge sort. These algorithms use sequential I/O, which is faster than the
random I/O used with an index scan.

The optimizer analyzes each query to determine whether a work table would give the best performance. No
user action is required to take advantage of these optimizations.

Notes
The INSERT, UPDATE, and DELETE cases above are usually not a performance problem since they are
usually one-time operations. However, if problems occur, you may be able to rephrase the command to avoid
the conflict and avoid building a work table. This is not always possible.

Performance improvement tips

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 251

252

Application profiling tutorials

Contents
Tutorial: Diagnosing deadlocks ... 254
Tutorial: Diagnosing slow statements .. 260
Tutorial: Diagnosing index fragmentation .. 265
Tutorial: Diagnosing table fragmentation ... 268
Tutorial: Baselining with procedure profiling .. 271

Use the application profiling tutorials to learn how to use the Application Profiling Wizard and the
Database Tracing Wizard to analyze common performance problems including deadlocks, slow
statements, index fragmentation, table fragmentation, and slow procedures.

Caution
The tutorials use the test database app_profiling.db which you create, and not the sample database
(demo.db). Do not use the sample database to complete the tutorials.

You must have PROFILE authority to perform application profiling. For the application profiling tutorials,
connect as a user with DBA authority.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 253

Tutorial: Diagnosing deadlocks
Use the tutorials in this section to learn how to use the Database Tracing Wizard to view deadlocks that
might occur in your database. You can use the Database Tracing Wizard to examine the conditions under
which the deadlocks are occurring, and the connections that are causing them.

Deadlocks occur when two or more transactions block one another. For example, Transaction A requires
access to Table B, but Table B is locked by Transaction B. Transaction B requires access to Table A, but
Table A is locked by Transaction A. A cyclical blocking conflict occurs.

A good indication that deadlocks are occurring is when SQLCODE -306 and -307 are returned. To resolve
a deadlock, SQL Anywhere automatically rolls back the last statement that created the deadlock. Performance
problems occur if statements are constantly rolled back.

Lesson 1: Creating the test database
Use the following procedure to create the test database app_profiling.db using data from the sample database.
The test database is used in all application profiling tutorials.

To create the test database

1. Create the directory C:\AppProfilingTutorial.

2. Open a command prompt and type the following command to create the test database
app_profiling.db. The samples-dir is the location of your Samples directory:

dbunload -c "UID=DBA;PWD=sql;DBF=samples-dir\demo.db" -an C:
\AppProfilingTutorial\app_profiling.db

For example, on a computer with Windows XP and SQL Anywhere installed in the default locations,
the command would be:

dbunload -c "UID=DBA;PWD=sql;DBF=C:\Documents and Settings\All Users
\Documents\SQL Anywhere 11\Samples\demo.db" -an C:\AppProfilingTutorial
\app_profiling.db

For more information about the location of samples-dir, see “Samples directory” [SQL Anywhere Server
- Database Administration].

Tip
In the application profiling tutorials, tracing information is stored in the same database that you are profiling
(app_profiling.db). However, if you profile a database that experiences heavy loads, you should consider
storing tracing data in a separate database to avoid impacting performance on the production database.

See also
● “Application Profiling Wizard” on page 177
● “Advanced application profiling using diagnostic tracing” on page 188
● “PROFILE authority” [SQL Anywhere Server - Database Administration]

Application profiling tutorials

254 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Lesson 2: Creating a deadlock
This tutorial assumes you have created the test database. If you have not, see “Lesson 1: Creating the test
database” on page 254.

Tip
You can copy and paste the SQL statements in this tutorial into Interactive SQL.

To create a deadlock

1. Start Sybase Central and connect to the test database app_profiling.db with the user ID DBA and the
password sql.

If you are unfamiliar with starting Sybase Central and connecting to a database, see “Connect to a local
database” [SQL Anywhere Server - Database Administration].

2. In the left pane, click app_profiling - DBA, and then choose File » Open Interactive SQL.

Interactive SQL starts and connects to the app_profiling.db database.

3. In Interactive SQL, run the following SQL statements:

a. Create two tables

CREATE TABLE "DBA"."deadlock1" (
 "id" UNSIGNED BIGINT NOT NULL DEFAULT AUTOINCREMENT,
 "val" CHAR(1));
CREATE TABLE "DBA"."deadlock2" (
 "id" UNSIGNED BIGINT NOT NULL DEFAULT AUTOINCREMENT,
 "val" CHAR(1));

b. Insert values into each table

INSERT INTO "deadlock1"("val") VALUES('x');
INSERT INTO "deadlock2"("val") VALUES('x');

c. Create two procedures which you later use to cause the deadlock

CREATE PROCEDURE "DBA"."proc_deadlock1"()
 BEGIN
 LOCK TABLE "DBA"."deadlock1" IN EXCLUSIVE MODE;
 WAITFOR DELAY '00:00:20:000';
 UPDATE deadlock2 SET val='y';
 END;
CREATE PROCEDURE "DBA"."proc_deadlock2"()
 BEGIN
 LOCK TABLE "DBA"."deadlock2" IN EXCLUSIVE MODE;
 WAITFOR DELAY '00:00:20:000';
 UPDATE deadlock1 SET val='y';
 END;

d. Commit the changes you made to the database

COMMIT;
4. Exit Interactive SQL.

Tutorial: Diagnosing deadlocks

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 255

Lesson 3: Capturing deadlock data
The Database Tracing Wizard can be used to create a diagnostic tracing session. The tracing session
captures deadlock data.

To capture deadlock data

1. In Sybase Central, choose Mode » Application Profiling.

If the Application Profiling Wizard appears, click Cancel.

2. Start the Database Tracing Wizard.

a. In the left pane click app_profiling - DBA, and choose File » Tracing.

b. On the Welcome page, click Next.

c. On the Tracing Detail Level page, select High Detail (Recommended For Short-Term, Intensive
Monitoring) and click Next.

d. On the Edit Tracing Levels page, click Next.

e. On the Create External Database page, select Do Not Create A New Database. I Will Use An
Existing Tracing Database, and then click Next.

f. On the Start Tracing page, select Save Tracing Data In This Database.

g. To place no limits on the amount of stored tracing data, select No Limit, and then click Finish.

h. Click Finish.

3. Create the deadlock.

a. In the left pane of Sybase Central, select the app_profiling - DBA database and choose File » Open
Interactive SQL.
Interactive SQL starts and connects to the app_profiling - DBA database.

b. Repeat the previous step to open a second Interactive SQL window.

c. In one Interactive SQL window, run the following SQL statement:

CALL "DBA"."proc_deadlock1"();
d. In the second Interactive SQL window, run the following SQL statement within 20 seconds:

CALL "DBA"."proc_deadlock2"();

After a few moments, the ISQL Error window appears indicating that a deadlock has been detected.
This is because proc_deadlock1 requires access to the deadlock2 table, which is locked by
proc_deadlock2. And proc_deadlock2 requires access to the deadlock1 table, which is locked by
proc_deadlock1.

e. Click OK.

4. Close both Interactive SQL windows.

5. To stop the tracing session, in Sybase Central select the app_profiling - DBA database and choose File »
Tracing » Stop Tracing With Save.

Application profiling tutorials

256 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Lesson 4: Reviewing blocked connection data
The Application Profiling mode provides a graphical representation of the connections participating in the
deadlock. It also provides a Connection Blocks tab that provides additional information on the blocked
connections.

To review blocked connection data

1. Open the analysis file created during the tracing session.

a. In Sybase Central, choose Application Profiling » Open Analysis File Or Connect To A Tracing
Database.

b. Select In A Tracing Database.

c. Click Open.

d. Click the Identification tab, and type DBA in the User ID field and sql in the Password field.

e. Click the Database tab, and in the Database File field, browse to and select app_profiling - DBA.

f. Click OK.

2. View the graphical representation of the deadlock.

a. In the Application Profiling Details pane click the Status tab and choose the most recent ID from
the Logging Session ID list.
If the Application Profiling Details pane does not appear, choose View » Application Profiling
Details.

b. At the bottom of the Application Profiling Details pane, click the Deadlocks tab. The most recent
deadlock appears. Click the Deadlock list to view additional deadlocks.

The following image shows how the UPDATE statements created a deadlock condition.

Tutorial: Diagnosing deadlocks

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 257

Each connection involved in the deadlock is represented by a table with the following fields:

● Connection Name This field shows the user ID that opened the connection.

● SQL Statement This field shows the actual statement involved in the deadlock. In this case, the
deadlock was caused by the UPDATE statements found in the procedures you executed from each
instance of Interactive SQL.

● Owning Connection ID This field shows the ID of the connection that blocked the current connection.

● Record ID This field shows the ID of the row that the current connection is blocked on.

● Rollback Operation Count This field shows the number of operations that must be rolled back as
a result of the deadlock. In this case, the procedures contained only the UPDATE statements, so the count
is 0.

Application profiling tutorials

258 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Lesson 5: Viewing deadlock data
Use the following procedure to view additional deadlock data, such as how often they occur, and how long
they last. Use the Connection Blocks tab to view a list of all deadlocks recorded during the database tracing
session.

To view deadlock data

1. In the Application Profiling Details pane, click the Database Tracing Data tab.

2. Click the Connection Blocks tab, just above the Database Tracing Data tab.

The Connection Blocks tab appears, displaying block time, unblock time, and duration of each blocked
connection.

See also
● “Transaction blocking and deadlock” on page 128
● “Choosing a diagnostic tracing level” on page 190
● “Deadlock” on page 128
● “Advanced application profiling using diagnostic tracing” on page 188

Tutorial: Diagnosing deadlocks

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 259

Tutorial: Diagnosing slow statements
Use the tutorials in this section to learn how to use the Database Tracing Wizard to view execution times
for statements, and how to identify statements that appear to run slowly.

A slow statement occurs when the database server takes a long time to process the statement. Long processing
times can be the result of several issues such as an improperly designed database, poor use of indexes, index
and table fragmentation, a small cache size, and so on. A statement may also run slowly because it is not
well formed, or does use more efficient shortcuts to achieve results.

This tutorial does not show you how to rewrite slow statements, since each statement can have special
requirements. However, the tutorial does show you where to look for execution times, and how to compare
execution times when rewriting queries using alternate syntax.

See also
● “Querying data” on page 279
● “Joins: Retrieving data from several tables” on page 389
● “Using subqueries” on page 503

Lesson 1: Creating a diagnostic tracing session
The Database Tracing Wizard is used to create a diagnostic tracing session. The tracing session captures
processing statement data which includes duration times.

This tutorial assumes you have created the test database. If you have not, see “Lesson 1: Creating the test
database” on page 254.

Tip
You can copy and paste the SQL statements in this tutorial into Interactive SQL.

To create a diagnostic tracing session

1. Start Sybase Central and connect to the test database app_profiling.db with the user ID DBA and the
password sql.

If you are unfamiliar with starting Sybase Central and connecting to a database, see “Connect to a local
database” [SQL Anywhere Server - Database Administration].

2. Start the Database Tracing Wizard.

a. In Sybase Central, choose Mode » Application Profiling. If the Application Profiling Wizard
appears, click Cancel.

b. Choose File » Configure And Start Tracing.

c. On the Welcome page, click Next.

d. On the Tracing Detail Level page, select High Detail (Recommended For Short-Term, Intensive
Monitoring), and then click Next.

e. On the Edit Tracing Levels page, click Next.

Application profiling tutorials

260 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

f. On the Create External Database page, select Do Not Create A New Database, and then click
Next.

g. On the Start Tracing page, select Save Tracing Data In This Database.

h. To allow no limits on the amount of stored tracing data, select No Limit, and then click Finish.

3. In Sybase Central, in the left pane, select the app_profiling - DBA database, and then choose File » Open
Interactive SQL.

Interactive SQL starts and connects to the app_profiling - DBA database.

4. In Interactive SQL, run the following SQL statement.

SELECT SalesOrderItems.ID, LineID, ProductID, SalesOrderItems.Quantity,
ShipDate
FROM SalesOrderItems, SalesOrders
WHERE SalesOrders.CustomerID = 105 AND
 SalesOrderItems.ID=SalesOrders.ID;

5. In Interactive SQL, run the following SQL statement. This query returns the same results as the previous
query, but uses a uncorrelated subquery.

SELECT *
FROM SalesOrderItems
WHERE SalesOrderItems.ID IN (
 SELECT SalesOrders.ID
 FROM SalesOrders
 WHERE SalesOrders.CustomerID = 105);

6. Exit Interactive SQL.

7. In Sybase Central, select the database and then choose File » Tracing » Stop Tracing With Save to
stop the tracing session.

For information about the Database Tracing Wizard, see “Advanced application profiling using diagnostic
tracing” on page 188.

Lesson 2: Reviewing statements processed by the database
server

You can identify which statements the database server spends the most time processing by using the
Summary and Detail tabs, located in Application Profiling pane in Sybase Central.

To review statements processed by the database server

1. Open the analysis file.

a. In Sybase Central, choose Mode » Application Profiling. If the Application Profiling Wizard
appears, click Cancel.

b. Choose Application Profiling » Open Analysis File Connect To A Tracing Database.

c. Select In A Tracing Database, and then click Open.

d. Click the Identification tab, and type DBA in the User ID field, and sql in the Password field.

Tutorial: Diagnosing slow statements

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 261

e. Click the Database tab, and in the Database File field, browse to and select app_profiling - DBA.

f. Click OK.
If the Application Profiling Details pane does not appear at the bottom of the window, choose
View » Application Profiling Details.

2. Examine statement execution times of statements that were processed during the tracing session.

a. On the Status tab in the Application Profiling Details pane, select the most recent ID (highest
number) from the Logging Session ID field, and then click the Database Tracing Data tab.

b. Data for the session appears.
On the Summary tab, the SQL statements you executed during the session appear. You may see
more additional statements as well. This is because statements you executed automatically caused
other statements to be executed (for example, a trigger).
The Summary tab groups similar statements together and summarizes the total number of
invocations and the total time spent processing them. SELECT, INSERT, UPDATE, and DELETE
statements are grouped together by what tables, columns, and expressions they reference. Other
statements are grouped together as a whole (for example, all CREATE TABLE statements appear
as a single entry in the Summary tab). A statement may appear expensive in the Summary tab
because it is an expensive statement, or because it is frequently executed.
Use the Total Time and Maximum Time columns to examine the execution times for the two queries
you executed earlier in this tutorial. The first query shows a total time of 20 milliseconds for
execution. The second query shows a faster execution time (16 milliseconds), indicating that the
second query, which uses a uncorrelated subquery, may be a more efficient syntax to use.

Application profiling tutorials

262 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

3. To view additional information about any SQL statement in the Summary tab, right-click the statement
and choose Show The Detailed SQL Statements For The Selected Summary SQL Statement.

● To view information about the connection that executed the statement, right-click the statement and
choose View Connection Details For The Selected Statement.

● To view the execution plan used for the statement, right-click the statement in the Details tab, and
choose View More SQL Statement Details For The Selected Statement.

The SQL Statement Details window appears, displaying the full text of the statement along with
details about the context in which it was used. Note that the text displayed for the statement may not
match the original SQL statement you executed. Instead, the SQL Statement Details window
displays the statement in its rewritten form, as it was processed by the database server. For example,
queries over views may appear very different, since the view definitions are often rewritten by the
optimizer when executing the query.

To view the execution plan, click the Query Information tab.

Tutorial: Diagnosing slow statements

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 263

For more information on the items shown in the execution plan, see “Reading execution
plans” on page 610.

For information about correlated and uncorrelated subqueries, see “Using subqueries” on page 503.

For information about using the Summary and Details tabs, see “Perform request trace
analysis” on page 203.

Application profiling tutorials

264 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Tutorial: Diagnosing index fragmentation
Use the tutorials in this section to learn how to use the Application Profiling Wizard to determine if your
database has unacceptable levels of index fragmentation.

When an index is created, table data is read and values for the index are recorded on index pages following
a logical order. As data changes in the table, new index values can be inserted between existing values. To
maintain the logical order of index values, the database server may need to create new index pages to
accommodate existing values that are moved. The new pages are not usually adjacent to the pages on which
the values were originally stored. This cumulative degradation in the order of index pages is called index
fragmentation.

Commonly executed queries taking longer to perform on tables where large blocks of rows are continuously
being inserted, updated, and deleted is a symptom of index fragmentation.

Lesson 1: Setting up index fragmentation
This tutorial assumes you have created the test database. If you have not, see “Lesson 1: Creating the test
database” on page 254.

Tip
You can copy and paste the SQL statements in this tutorial into Interactive SQL.

To set up index fragmentation

1. Start Sybase Central and connect to the test database app_profiling.db with the user ID DBA and the
password sql.

If you are unfamiliar with starting Sybase Central and connecting to a database, see “Connect to a local
database” [SQL Anywhere Server - Database Administration].

2. In the left pane, select the app_profiling - DBA database, and then choose File » Open Interactive
SQL.

Interactive SQL starts and connects to the app_profiling - DBA database.

3. In Interactive SQL, run the following SQL statements to introduce index fragmentation. These statements
can take a few minutes to complete.

CREATE TABLE fragment (id INT);
CREATE INDEX idx_fragment ON fragment (id);
INSERT INTO fragment SELECT * FROM sa_rowgenerator (0, 100000);
DELETE FROM fragment WHERE MOD (id, 2) = 0;
INSERT INTO fragment SELECT * FROM sa_rowgenerator (0, 100000);
INSERT INTO fragment SELECT * FROM sa_rowgenerator (0, 100000);
COMMIT;

4. Exit Interactive SQL.

Tutorial: Diagnosing index fragmentation

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 265

Lesson 2: Identifying index fragmentation
Use this procedure to identify index fragmentation and to learn where to look for index fragmentation
warnings. It is recommended that you periodically check for fragmentation warnings on your production
database.

Note
The statements you executed in the previous procedure introduced index fragmentation. However, on some
systems there might not be enough fragmentation to result in the warnings and recommendations described
in this procedure.

To identify index fragmentation

1. In Sybase Central, choose Mode » Application Profiling.

If the Application Profiling Wizard does not appear, choose Application Profiling » Open
Application Profiling Wizard.

2. On the Welcome page, click Next.

3. On the Profiling Options page, select Overall Database Performance Based On The Database
Schema, and then click Next.

4. On the Analysis File page, in the Save The Analysis To The Following File field, type C:
\AppProfilingTutorial.

5. Click Finish.

A list of recommendations appear in the Application Profiling Details pane.

6. To view more detail, double-click the Fragmented Indexes. A Recommendation window appears
containing a SQL statement you can run to resolve the index fragmentation.

Lesson 3: Checking the index density of a table
To periodically check the density of indexes for a table, run the sa_index_density system procedure. Density
values range between 0 and 1. Values closer to 1 indicate little index fragmentation. Values less than 0.5,
indicate a level of index fragmentation that may impact performance.

In Interactive SQL, run the following SQL statement to view the index fragmentation introduced to the
fragment table during this tutorial:

CALL sa_index_density('fragment');

TableName TableId IndexName IndexId IndexType LeafPages Density

fragment 736 idx_fragment 1 NUI 1,177 0.597509

Your results might be different, but the Density column value should be approximately 0.6.

In Interactive SQL, run the following SQL statement to improve the density of the index:

Application profiling tutorials

266 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ALTER INDEX idx_fragment ON fragment REBUILD;

See also
● “sa_index_density system procedure” [SQL Anywhere Server - SQL Reference]
● “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Rebuild indexes” on page 76
● “Reducing index fragmentation and skew” on page 237
● “Application profiling” on page 177

Tutorial: Diagnosing index fragmentation

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 267

Tutorial: Diagnosing table fragmentation
Use the tutorials in this section to learn how to use the Application Profiling Wizard to determine if your
database has unacceptable levels of table fragmentation.

Table data is stored on database pages. When Data Modification Language (DML) statements such as
INSERT, UPDATE, and DELETE are executed against a table, rows might not be stored contiguously, or
might be split between multiple pages. Even though CPU activity is high, table fragmentation can negatively
impact the performance of queries that require a scan of the table.

Lesson 1: Setting up table fragmentation
This tutorial assumes you have created the test database. If you have not, see “Lesson 1: Creating the test
database” on page 254.

Tip
You can copy and paste the SQL statements in this tutorial into Interactive SQL.

To set up table fragmentation

1. Start Sybase Central and connect to the test database app_profiling.db with the user ID DBA and the
password sql.

If you are unfamiliar with starting Sybase Central and connecting to a database, see “Connect to a local
database” [SQL Anywhere Server - Database Administration].

2. In the left pane, select the app_profiling - DBA database, and then choose File » Open Interactive
SQL.

Interactive SQL starts and connects to the app_profiling - DBA database.

3. In Interactive SQL, run the following SQL statements to introduce table fragmentation:

a. Create the table:

CREATE TABLE "DBA"."tablefrag" (
"id" UNSIGNED BIGINT NOT NULL DEFAULT AUTOINCREMENT,
"val1" LONG VARCHAR NULL,
"val2" LONG VARCHAR NULL,
"val3" LONG VARCHAR NULL,
"val4" LONG VARCHAR NULL,
"val5" LONG VARCHAR NULL,
"val6" LONG VARCHAR NULL,
"val7" LONG VARCHAR NULL,
"val8" LONG VARCHAR NULL,
"val9" LONG VARCHAR NULL,
"val10" LONG VARCHAR NULL,
PRIMARY KEY (id));

b. Create a procedure to insert values into the table:

CREATE PROCEDURE "DBA"."proc_tablefrag"()
 BEGIN
 DECLARE I INTEGER;

Application profiling tutorials

268 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 SET I = 0;
 WHILE I < 1000
 LOOP
 INSERT INTO "DBA"."tablefrag" ("val1")
 VALUES('a');
 SET I = I + 1;
 END LOOP;
 END;

c. Insert values:

CALL proc_tablefrag();
d. Update the values in the table:

UPDATE "DBA"."tablefrag"
SET "val1" = 'abcdefghijklmnopqrstuvwxyz0123456789',
 "val2" = 'abcdefghijklmnopqrstuvwxyz0123456789',
 "val3" = 'abcdefghijklmnopqrstuvwxyz0123456789',
 "val4" = 'abcdefghijklmnopqrstuvwxyz0123456789',
 "val5" = 'abcdefghijklmnopqrstuvwxyz0123456789',
 "val6" = 'abcdefghijklmnopqrstuvwxyz0123456789',
 "val7" = 'abcdefghijklmnopqrstuvwxyz0123456789',
 "val8" = 'abcdefghijklmnopqrstuvwxyz0123456789',
 "val9" = 'abcdefghijklmnopqrstuvwxyz0123456789',
 "val10" = 'abcdefghijklmnopqrstuvwxyz0123456789';

e. Commit the changes you made to the database:

COMMIT;
4. Exit Interactive SQL.

Lesson 2: Identifying table fragmentation
Use this procedure to identify table fragmentation and how to locate table fragmentation warnings. It is
recommended that you periodically check for fragmentation warnings on your production database.

Note
The statements you executed in the previous procedure introduced table fragmentation. However, on some
systems there might not be enough table fragmentation to result in the warnings and recommendations
described in this procedure.

To identify table fragmentation

1. In Sybase Central, choose Mode » Application Profiling.

If the Application Profiling Wizard does not appear, choose Application Profiling » Open
Application Profiling Wizard.

2. On the Profiling Options page, select Overall Database Performance Based On The Database
Schema.

3. On the Analysis File page, save the analysis file in the appropriate directory. For example, C:
\AppProfilingTutorial.

4. Click Finish.

Tutorial: Diagnosing table fragmentation

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 269

A list of recommendations appear in the Application Profiling Details pane.

5. To view more detail, double-click Fragmented Tables. A Recommendation window appears
containing a SQL statement you can run to resolve the table fragmentation.

Lesson 3: Checking for table fragmentation
To check for table fragmentation (for example, CALL
sa_table_fragmentation('tablefrag');) run the sa_table_fragmentation system
procedure . If the number of segments per row is greater than 1.1, then table fragmentation is present. Higher
degrees of fragmentation may negatively impact performance. See “sa_table_fragmentation system
procedure” [SQL Anywhere Server - SQL Reference].

The table you created in this tutorial should have a fragmentation value of approximately 1.9.

In Interactive SQL, run the following SQL statement to reduce table fragmentation:

REORGANIZE TABLE tablefrag;

See “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference].

See also
● “Reducing table fragmentation” on page 236
● “Application profiling” on page 177

Application profiling tutorials

270 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Tutorial: Baselining with procedure profiling
Use the tutorials in this section to learn how to use the Application Profiling Wizard to create a baseline
that you can use for comparison purposes when improving performance.

Procedure profiling provides execution time measurements for procedures, user-defined functions, events,
system triggers, and triggers. You can set your saved results as a baseline and make incremental changes to
the procedure and run it after each change you make. This allows you to compare the new results to the
baseline.

Lesson 1: Creating a baseline procedure
This tutorial assumes you have created the test database. If you have not, see “Lesson 1: Creating the test
database” on page 254.

Tip
You can copy and paste the SQL statements in this tutorial into Interactive SQL.

To create a baseline procedure

1. Start Sybase Central and connect to the test database app_profiling - DBA with the user ID DBA and the
password sql.

If you are unfamiliar with starting Sybase Central and connecting to a database, see “Connect to a local
database” [SQL Anywhere Server - Database Administration].

2. In the left pane, select the app_profiling - DBA database, and then choose File » Open Interactive
SQL.

Interactive SQL starts and connects to the app_profiling - DBA database.

3. In Interactive SQL, run the following SQL statements:

a. Create a table:

CREATE TABLE table1 (
Count INT);

b. Create a baseline procedure:

CREATE PROCEDURE baseline()
 BEGIN
 INSERT table1
 SELECT COUNT (*)
 FROM rowgenerator r1, rowgenerator r2,
 rowgenerator r3
 WHERE r3.row_num < 5;
 END;

c. Commit the changes you made to the database:

COMMIT;
4. Close Interactive SQL.

Tutorial: Baselining with procedure profiling

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 271

Lesson 2: Running an updated procedure against the
baseline procedure

To run an updated procedure against the baseline procedure

1. In Sybase Central, choose Mode » Application Profiling.

If the Application Profiling Wizard does not appear, choose Application Profiling » Open
Application Profiling Wizard.

2. On the Welcome page, click Next.

3. On the Profiling Options page, select Stored Procedure, Function, Trigger, Or Event Execution
Time.

4. Click Finish.

The database server begins procedure profiling.

5. In the left pane of Sybase Central, double-click Procedures & Functions.

6. Right-click the baseline procedure and choose Execute From Interactive SQL. Procedure profiling is
enabled, so execution details for the procedure are captured.

7. Close Interactive SQL.

8. View the profiling results.

a. In the left pane of Sybase Central, select the baseline procedure.

b. Click the Profiling Results tab in the right pane. If no results appear, choose View » Refresh
Folder.
The execution times appear for each line in the baseline procedure.

9. Save the profiling results.

a. Right-click the database and choose Properties.

b. Click the Profiling Settings tab.

c. Select Save The Profiling Information Currently In The Database To The Following Profiling
Log File, and then specify a location and file name for the profiling log file.

d. Click Apply. Do not close the properties window.
The procedure profiling information that was just gathered is saved to the specified profiling log file
(.plg).

10. Enable baselining against the profiling log file.

a. On the Profiling Settings tab of the App_Profiling - DBA Database Properties window, select
Use The Profiling Information In The Following Profiling Log File As A Baseline For
Comparison.

b. Browse to and select the profiling log file you created.

c. Click Apply.

d. Click OK to close the App_Profiling - DBA Database Properties window.

Application profiling tutorials

272 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

11. Make changes to the baseline procedure.

a. In Sybase Central, choose Mode » Design.

b. In the left pane, browse to and select the baseline procedure in the Procedures & Functions.

c. On the SQL tab in the right pane, delete the existing INSERT statement.

d. Copy and paste the following SQL statement into the procedure:

INSERT table1
 SELECT COUNT (*) FROM rowgenerator r1, rowgenerator r2,
rowgenerator r3
 WHERE r3.row_num < 250;

e. Choose File » Save.

12. In Procedures & Functions, right-click the baseline procedure and choose Execute From Interactive
SQL.

13. Exit Interactive SQL when the procedure completes.

Lesson 3: Comparing the procedure profiling results
To compare the procedure profiling results

1. In Sybase Central, choose Mode » Application Profiling.

If the Application Profiling Wizard appears, click Cancel.

2. In the left pane of Sybase Central, in Procedures & Functions, click the baseline procedure.

3. In the right pane, click the Profiling Results tab.

4. Choose View » Refresh Folder.

Two new columns, Execs. +/- and ms. +/-, appear.

Tutorial: Baselining with procedure profiling

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 273

The Execs. +/- and ms. +/- columns result from comparing statistics in the profiling log file to the statistics
captured during the most recent execution of the procedure. Specifically, they compare number of executions
and duration of execution, respectively, for each line of code in the procedure.

Application profiling tutorials

274 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Typically, you are interested in the ms. +/- column, which indicates whether you improved the execution
time for lines of code in the procedure. Faster times are indicated by a minus sign and red font. Slower times
are indicated by no sign, and green font. In this tutorial, the value in the ms. +/- column should be a + sign
along with a execution time in green font. The INSERT statement in the updated procedure has a slower
time than the INSERT statement in the baseline procedure.

See also
● “Analyze procedure profiling results” on page 181
● “Procedure profiling in Application Profiling mode” on page 178

Tutorial: Baselining with procedure profiling

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 275

276

Querying and Modifying Data

This section describes how to query and modify data, including how to use joins. It includes several chapters on
queries, from simple to complex, and information about inserting, deleting, and updating data. This section also
includes an in-depth look at how to create analytical queries that return multidimensional results.

Querying data ... 279
Summarizing, grouping, and sorting query results ... 367
Joins: Retrieving data from several tables .. 389
Common table expressions ... 433
OLAP support ... 453
Using subqueries .. 503
Adding, changing, and deleting data .. 529

Querying data

Contents
Querying and the SELECT statement ... 280
SQL queries ... 281
The select list: Specifying columns .. 283
The FROM clause: Specifying tables .. 291
The WHERE clause: Specifying rows ... 293
The ORDER BY clause: Ordering results .. 304
Aggregate functions ... 307
Full text searching ... 311
Text configuration objects .. 312
Text indexes .. 326
Types of full text searches ... 332

A query requests data from the database and receives the results. This process is also known as data retrieval.
All SQL queries are expressed using the SELECT statement. You use the SELECT statement to retrieve all,
or a subset of, the rows in one or more tables, and to retrieve all, or a subset of, the columns in one or more
tables.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 279

Querying and the SELECT statement
The SELECT statement retrieves information from a database for use by the client application. SELECT
statements are also called queries. The information is delivered to the client application in the form of a
result set. The client can then process the result set. For example, Interactive SQL displays the result set in
the Results pane. Result sets consist of a set of rows, just like tables in the database.

SELECT statements contain clauses, which are commands that define the scope of the results to return. In
the following SELECT syntax, each new line is a separate clause. Only the more common clauses are listed
here.

SELECT select-list
[FROM table-expression]
[WHERE search-condition]
[GROUP BY column-name]
[HAVING search-condition]
[ORDER BY { expression | integer }]

The clauses in the SELECT statement are as follows:

● The SELECT clause specifies the columns you want to retrieve. It is the only required clause in the
SELECT statement.

● The FROM clause specifies the tables from which columns are pulled. It is required in all queries that
retrieve data from tables. SELECT statements without FROM clauses have a different meaning, and this
chapter does not discuss them.

Although most queries operate on tables, queries may also retrieve data from other objects that have
columns and rows, including views, other queries (derived tables) and stored procedure result sets. See
“FROM clause” [SQL Anywhere Server - SQL Reference].

● The WHERE clause specifies the rows in the tables you want to see.

● The GROUP BY clause allows you to aggregate data.

● The HAVING clause specifies rows on which aggregate data is to be collected.

● The ORDER BY clause sorts the rows in the result set. (By default, rows are returned from relational
databases in an order that has no meaning.)

For information about GROUP BY, HAVING, and ORDER BY clauses, see “Summarizing, grouping,
and sorting query results” on page 367.

Most of the clauses are optional, but if they are included then they must appear in the correct order.

See “SELECT statement” [SQL Anywhere Server - SQL Reference].

Querying data

280 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL queries
Throughout the documentation, SELECT statements and other SQL statements appear with each clause on
a separate row, and with the SQL keywords in uppercase. This is done to make the statements easier to read
but is not a requirement. You can enter SQL keywords in any case, and you can have line breaks anywhere
in the statement.

Keywords and line breaks
For example, the following SELECT statement finds the first and last names of contacts living in California
from the Contacts table.

SELECT GivenName, Surname
FROM Contacts
WHERE State = 'CA';

It is equally valid, though not as readable, to enter the statement as follows:

SELECT GivenName,
Surname from Contacts
WHERE State
 = 'CA';

Case sensitivity of strings and identifiers

Identifiers such as table names, column names, and so on, are case insensitive in SQL Anywhere databases.

Strings are case insensitive by default, so that 'CA', 'ca', 'cA', and 'Ca' are equivalent, but if you create a
database as case sensitive then the case of strings is significant. The SQL Anywhere sample database is case
insensitive.

See also
● “Creating a database” [SQL Anywhere Server - Database Administration]
● “Initialization utility (dbinit)” [SQL Anywhere Server - Database Administration]
● “Case sensitivity” on page 668

Qualifying identifiers
You can qualify the names of database identifiers if there is ambiguity about which object is being referred
to. For example, the SQL Anywhere sample database contains several tables with a column called City, so
you may have to qualify references to City with the name of the table. In a larger database you may also
have to use the name of the owner of the table to identify the table.

SELECT Contacts.City
FROM Contacts
WHERE State = 'CA';

Since the examples in this section involve single-table queries, column names in syntax models and examples
are usually not qualified with the names of the tables or owners to which they belong.

These elements are left out for readability; it is never wrong to include qualifiers.

SQL queries

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 281

Row order in the result set
Row order in the result set is insignificant. There is no guarantee of the order in which rows are returned
from the database, and no meaning to the order. If you want to retrieve rows in a particular order, you must
specify the order in the query.

Querying data

282 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The select list: Specifying columns
The select list comprises one or more objects from which to query data. The select list commonly consists
of a series of column names separated by commas, or an asterisk as shorthand to represent all columns. More
generally, the select list can include one or more expressions, separated by commas. There is no comma
after the last column in the list, or if there is only one column in the list.

The general syntax for the select list looks like this:

SELECT expression [, expression]...

If any table or column name in the list does not conform to the rules for valid identifiers, you must enclose
the identifier in double quotes.

The select list expressions can include * (all columns), a list of column names, character strings, column
headings, and expressions including arithmetic operators. You can also include aggregate functions, which
are discussed in “Summarizing, grouping, and sorting query results” on page 367.

For more information about expressions, see “Expressions” [SQL Anywhere Server - SQL Reference].

Selecting all columns from a table
The asterisk (*) has a special meaning in SELECT statements. It represents all the column names in all the
tables specified in the FROM clause. You can use it to save entering time and errors when you want to see
all the columns in a table.

When you use SELECT *, the columns are returned in the order in which they were defined when the table
was created.

The syntax for selecting all the columns in a table is:

SELECT *
FROM table-expression;

SELECT * finds all the columns currently in a table, so that changes in the structure of a table such as adding,
removing, or renaming columns automatically modify the results of SELECT *. Listing the columns
individually gives you more precise control over the results.

Example
The following statement retrieves all columns in the Departments table. No WHERE clause is included;
therefore, this statement retrieves every row in the table:

SELECT *
FROM Departments;

The results look like this:

DepartmentID DepartmentName DepartmentHeadID

100 R & D 501

The select list: Specifying columns

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 283

DepartmentID DepartmentName DepartmentHeadID

200 Sales 902

300 Finance 1293

400 Marketing 1576

...

You get exactly the same results by listing all the column names in the table in order after the SELECT
keyword:

SELECT DepartmentID, DepartmentName, DepartmentHeadID
FROM Departments;

Like a column name, "*" can be qualified with a table name, as in the following query:

SELECT Departments.*
FROM Departments;

Selecting specific columns from a table
You can limit the columns that a SELECT statement retrieves by listing the column(s) immediately after the
SELECT keyword. This SELECT statement has the following syntax:

SELECT column-name [, column-name]...
FROM table-name

In the syntax, column-name and table-name should be replaced with the names of the columns and table you
are querying.

For example:

SELECT Surname, GivenName
FROM Employees;

Projections and restrictions
A projection is a subset of the columns in a table. A restriction (also called selection) is a subset of the
rows in a table, based on some conditions.

For example, the following SELECT statement retrieves the names and prices of all products in the SQL
Anywhere sample database that cost more than $15:

SELECT Name, UnitPrice
FROM Products
WHERE UnitPrice > 15;

This query uses both a projection (SELECT Name, UnitPrice) and a restriction (WHERE UnitPrice
> 15).

Querying data

284 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Rearranging the order of columns
The order in which you list column names determines the order in which the columns are displayed. The
two following examples show how to specify column order in a display. Both of them find and display the
department names and identification numbers from all five of the rows in the Departments table, but in a
different order.

SELECT DepartmentID, DepartmentName
FROM Departments;

DepartmentID DepartmentName

100 R & D

200 Sales

300 Finance

400 Marketing

... ...

SELECT DepartmentName, DepartmentID
FROM Departments;

DepartmentName DepartmentID

R & D 100

Sales 200

Finance 300

Marketing 400

... ...

Joins
A join links the rows in two or more tables by comparing the values in columns of each table. For example,
you might want to select the order item identification numbers and product names for all order items that
shipped more than a dozen pieces of merchandise:

SELECT SalesOrderItems.ID, Products.Name
FROM Products JOIN SalesOrderItems
WHERE SalesOrderItems.Quantity > 12;

The Products table and the SalesOrderItems table are joined together based on the foreign key relationship
between them.

See “Joins: Retrieving data from several tables” on page 389.

The select list: Specifying columns

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 285

Renaming columns in query results
Query results consist of a set of columns. By default, the heading for each column is the expression supplied
in the select list.

When query results are displayed, each column's default heading is the name given to it when it was created.
You can specify a different column heading, or alias, as follows:

SELECT column-name [AS] alias

Providing an alias can produce more readable results. For example, you can change DepartmentName to
Department in a listing of departments as follows:

SELECT DepartmentName AS Department,
 DepartmentID AS "Identifying Number"
FROM Departments;

Department Identifying Number

R & D 100

Sales 200

Finance 300

Marketing 400

... ...

Using spaces and keywords in alias
The Identifying Number alias for DepartmentID is enclosed in double quotes because it is an identifier. You
also use double quotes if you want to use keywords in aliases. For example, the following query is invalid
without the quotation marks:

SELECT DepartmentName AS Department,
 DepartmentID AS "integer"
FROM Departments;

If you want to ensure compatibility with Adaptive Server Enterprise, you should use quoted aliases of 30
bytes or less.

Character strings in query results
Most SELECT statements produce results that consist solely of data from the tables in the FROM clause.
However, strings of characters can also be displayed in query results by enclosing them in single quotation
marks and separating them from other elements in the select list with commas. To enclose a quotation mark
in a string, you precede it with another quotation mark. For example:

SELECT 'The department''s name is' AS "Prefix",
 DepartmentName AS Department
FROM Departments;

Querying data

286 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Prefix Department

The department's name is R & D

The department's name is Sales

The department's name is Finance

The department's name is Marketing

The department's name is Shipping

Computing values in the SELECT list
The expressions in the select list can be more complicated than just column names or strings. For example,
you can perform computations with data from numeric columns in a select list.

Arithmetic operations
To illustrate the numeric operations you can perform in the select list, you start with a listing of the names,
quantity in stock, and unit price of products in the SQL Anywhere sample database.

SELECT Name, Quantity, UnitPrice
FROM Products;

Name Quantity UnitPrice

Tee Shirt 28 9

Tee Shirt 54 14

Tee Shirt 75 14

Baseball Cap 112 9

...

Suppose the practice is to replenish the stock of a product when there are ten items left in stock. The following
query lists the number of each product that must be sold before re-ordering:

SELECT Name, Quantity - 10
 AS "Sell before reorder"
FROM Products;

Name Sell before reorder

Tee Shirt 18

Tee Shirt 44

The select list: Specifying columns

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 287

Name Sell before reorder

Tee Shirt 65

Baseball Cap 102

... ...

You can also combine the values in columns. The following query lists the total value of each product in
stock:

SELECT Name, Quantity * UnitPrice AS "Inventory value"
FROM Products;

Name Inventory value

Tee Shirt 252.00

Tee Shirt 756.00

Tee Shirt 1050.00

Baseball Cap 1008.00

... ...

Arithmetic operator precedence
When there is more than one arithmetic operator in an expression, multiplication, division, and modulo are
calculated first, followed by subtraction and addition. When all arithmetic operators in an expression have
the same level of precedence, the order of execution is left to right. Expressions within parentheses take
precedence over all other operations.

For example, the following SELECT statement calculates the total value of each product in inventory, and
then subtracts five dollars from that value.

SELECT Name, Quantity * UnitPrice - 5
FROM Products;

To ensure correct results, use parentheses where possible. The following query has the same meaning and
gives the same results as the previous one, but the syntax is more precise:

SELECT Name, (Quantity * UnitPrice) - 5
FROM Products;

See also “Operator precedence” [SQL Anywhere Server - SQL Reference].

String operations
You can concatenate strings using a string concatenation operator. You can use either || (SQL/2003
compliant) or + (supported by Adaptive Server Enterprise) as the concatenation operator. For example, the
following statement retrieves and concatenates GivenName and Surname values in the results:

Querying data

288 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SELECT EmployeeID, GivenName || ' ' || Surname AS Name
FROM Employees;

EmployeeID Name

102 Fran Whitney

105 Matthew Cobb

129 Philip Chin

148 Julie Jordan

... ...

Date and time operations
Although you can use operators on date and time columns, this typically involves the use of functions. See
“SQL functions” [SQL Anywhere Server - SQL Reference].

Additional notes on calculated columns
● Columns can be given an alias By default the column name is the expression listed in the select

list, but for calculated columns the expression is cumbersome and not very informative.

● Other operators are available The multiplication operator can be used to combine columns. You
can use other operators, including the standard arithmetic operators, and logical operators and string
operators.

For example, the following query lists the full names of all customers:

SELECT ID, (GivenName || ' ' || Surname) AS "Full name"
FROM Customers;

The || operator concatenates strings. In this query, the alias for the column has spaces, and so must be
surrounded by double quotes. This rule applies not only to column aliases, but to table names and other
identifiers in the database. See “Operators” [SQL Anywhere Server - SQL Reference].

● Functions can be used In addition to combining columns, you can use a wide range of built-in
functions to produce the results you want.

For example, the following query lists the product names in uppercase:

SELECT ID, UCASE(Name)
FROM Products;

ID UCASE(Products.name)

300 TEE SHIRT

301 TEE SHIRT

302 TEE SHIRT

The select list: Specifying columns

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 289

ID UCASE(Products.name)

400 BASEBALL CAP

... ...

See “SQL functions” [SQL Anywhere Server - SQL Reference].

Eliminating duplicate query results
The optional DISTINCT keyword eliminates duplicate rows from the results of a SELECT statement. If you
do not specify DISTINCT, you get all rows, including duplicates. Optionally, you can specify ALL before
the select list to get all rows. For compatibility with other implementations of SQL, SQL Anywhere syntax
allows the use of ALL to explicitly ask for all rows. ALL is the default.

For example, if you search for all the cities in the Contacts table without DISTINCT, you get 60 rows:

SELECT City
FROM Contacts;

You can eliminate the duplicate entries using DISTINCT. The following query returns only 16 rows:

SELECT DISTINCT City
FROM Contacts;

NULL values are not distinct
The DISTINCT keyword treats NULL values as duplicates of each other. In other words, when DISTINCT
is included in a SELECT statement, only one NULL is returned in the results, no matter how many NULL
values are encountered. See “Elimination of unnecessary DISTINCT conditions” on page 550.

Querying data

290 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The FROM clause: Specifying tables
The FROM clause is required in every SELECT statement involving data from tables, views, or stored
procedures.

The FROM clause can include JOIN conditions linking two or more tables, and can include joins to other
queries (derived tables). For information about these features, see “Joins: Retrieving data from several
tables” on page 389.

Qualifying table names
In the FROM clause, the full naming syntax for tables and views is always permitted, such as:

SELECT select-list
FROM owner.table-name;

Qualifying table, view, and procedure names is necessary only when the object is owned by a user ID that
is different from the user ID of the current connection, or if the user ID of the owner is not the name of a
group to which the user ID of the current connection belongs.

Using correlation names
You can give a table name a correlation name to improve readability, and to save entering the full table name
each place it is referenced. You assign the correlation name in the FROM clause by entering it after the table
name, like this:

SELECT d.DepartmentID, d.DepartmentName
FROM Departments d;

When a correlation name is used, all other references to the table, for example in a WHERE clause, must
use the correlation name, rather than the table name. Correlation names must conform to the rules for valid
identifiers.

See “FROM clause” [SQL Anywhere Server - SQL Reference].

Querying derived tables

A derived table is a table derived directly, or indirectly, from one or more tables by the evaluation of a query
expression. Derived tables are defined in the FROM clause of a SELECT statement.

Querying a derived table works the same as querying a view. That is, the values of a derived table are
determined at the time the derived table definition is evaluated. Derived tables differ from views, however,
in that the definition for a derived table is not stored in the database. Derived tables differ from base and
temporary tables in that they are not materialized and they cannot be referred to from outside the query in
which they are defined.

The following query uses a derived table (my_drv_tbl) to hold the maximum salary in each department. The
data in the derived table is then joined to the Employees table to get the surnames of the employee earning
the salaries.

SELECT Surname,
 my_drv_tbl.max_sal AS Salary,
 my_drv_tbl.DepartmentID
FROM Employees e,

The FROM clause: Specifying tables

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 291

 (SELECT MAX(Salary) AS max_sal, DepartmentID
 FROM Employees
 GROUP BY DepartmentID) my_drv_tbl
 WHERE e.Salary = my_drv_tbl.max_sal
 AND e.DepartmentID = my_drv_tbl.DepartmentID
ORDER BY Salary DESC;

Surname Salary DepartmentID

Shea 138948.00 300

Scott 96300.00 100

Kelly 87500.00 200

Evans 68940.00 400

Martinez 55500.80 500

The following example creates a derived table (MyDerivedTable) that ranks the items in the Products table,
and then queries the derived table to return the three least expensive items:

SELECT TOP 3 *
 FROM (SELECT Description,
 Quantity,
 UnitPrice,
 RANK() OVER (ORDER BY UnitPrice ASC)
 AS Rank
 FROM Products) AS MyDerivedTable
ORDER BY Rank;

See also: “FROM clause” [SQL Anywhere Server - SQL Reference].

Querying objects other than tables

The most common elements in a FROM clause are table names. However, it is also possible to query rows
from other database objects that have a table-like structure—that is, a well-defined set of rows and columns.
For example, you can query views, or query stored procedures that return result sets.

For example, the following statement queries the result set of a stored procedure called
ShowCustomerProducts.

SELECT *
FROM ShowCustomerProducts(149);

Querying data

292 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The WHERE clause: Specifying rows
The WHERE clause in a SELECT statement specifies the search conditions for exactly which rows are
retrieved. Search conditions are also referred to as predicates. The general format is:

SELECT select-list
FROM table-list
WHERE search-condition

Search conditions in the WHERE clause include the following:

● Comparison operators (=, <, >, and so on) For example, you can list all employees earning more
than $50,000:

SELECT Surname
 FROM Employees
 WHERE Salary > 50000;

● Ranges (BETWEEN and NOT BETWEEN) For example, you can list all employees earning between
$40,000 and $60,000:

SELECT Surname
 FROM Employees
 WHERE Salary BETWEEN 40000 AND 60000;

● Lists (IN, NOT IN) For example, you can list all customers in Ontario, Quebec, or Manitoba:

SELECT CompanyName, State
 FROM Customers
 WHERE State IN('ON', 'PQ', 'MB');

● Character matches (LIKE and NOT LIKE) For example, you can list all customers whose phone
numbers start with 415. (The phone number is stored as a string in the database):

SELECT CompanyName, Phone
 FROM Customers
 WHERE Phone LIKE '415%';

● Unknown values (IS NULL and IS NOT NULL) For example, you can list all departments with
managers:

SELECT DepartmentName
 FROM Departments
 WHERE DepartmentHeadID IS NOT NULL;

● Combinations (AND, OR) For example, you can list all employees earning over $50,000 whose first
name begins with the letter A.

SELECT GivenName, Surname
 FROM Employees
 WHERE Salary > 50000
 AND GivenName like 'A%';

For the full syntax of search conditions, see “Search conditions” [SQL Anywhere Server - SQL Reference].

The WHERE clause: Specifying rows

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 293

Using comparison operators in the WHERE clause
You can use comparison operators in the WHERE clause. The operators follow the syntax:

WHERE expression comparison-operator expression

See “Comparison operators” [SQL Anywhere Server - SQL Reference], and “Expressions” [SQL Anywhere
Server - SQL Reference].

Notes on comparisons
● Sort orders In comparing character data, < means earlier in the sort order and > means later in the

sort order. The sort order is determined by the collation chosen when the database is created. You can
find out the collation by running the dbinfo utility against the database:

dbinfo -c "uid=DBA;pwd=sql"

You can also find the collation from Sybase Central by going to the Extended Information tab of the
Database Properties window.

● Trailing blanks When you create a database, you indicate whether trailing blanks are to be ignored
or not for the purposes of comparison.

By default, databases are created with trailing blanks not ignored. For example, 'Dirk' is not the same as
'Dirk '. You can create databases with blank padding, so that trailing blanks are ignored.

● Comparing dates In comparing dates, < means earlier and > means later.

● Case sensitivity When you create a database, you indicate whether string comparisons are case
sensitive or not.

By default, databases are created case insensitive. For example, 'Dirk' is the same as 'DIRK'. You can
create databases to be case sensitive.

Here are some SELECT statements using comparison operators:

SELECT *
 FROM Products
 WHERE Quantity < 20;
SELECT E.Surname, E.GivenName
 FROM Employees E
 WHERE Surname > 'McBadden';
SELECT ID, Phone
 FROM Contacts
 WHERE State != 'CA';

The NOT operator
The NOT operator negates an expression. Either of the following two queries find all Tee shirts and baseball
caps that cost $10 or less. However, note the difference in position between the negative logical operator
(NOT) and the negative comparison operator (!>).

SELECT ID, Name, Quantity
 FROM Products
 WHERE (name = 'Tee Shirt' OR name = 'BaseBall Cap')
 AND NOT UnitPrice > 10;

Querying data

294 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SELECT ID, Name, Quantity
 FROM Products
 WHERE (name = 'Tee Shirt' OR name = 'BaseBall Cap')
 AND UnitPrice !> 10;

Using ranges in the WHERE clause
The BETWEEN keyword specifies an inclusive range, in which the lower value and the upper value and the
values they bracket are searched for.

To list all the products with prices between $10 and $15, inclusive

● Enter the following query:

SELECT Name, UnitPrice
 FROM Products
 WHERE UnitPrice BETWEEN 10 AND 15;

Name UnitPrice

Tee Shirt 14

Tee Shirt 14

Baseball Cap 10

Shorts 15

You can use NOT BETWEEN to find all the rows that are not inside the range.

To list all the products cheaper than $10 or more expensive than $15

● Execute the following query:

SELECT Name, UnitPrice
 FROM Products
 WHERE UnitPrice NOT BETWEEN 10 AND 15;

Name UnitPrice

Tee Shirt 9

Baseball Cap 9

Visor 7

Visor 7

... ...

The WHERE clause: Specifying rows

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 295

Using lists in the WHERE clause
The IN keyword allows you to select values that match any one of a list of values. The expression can be a
constant or a column name, and the list can be a set of constants or, more commonly, a subquery.

For example, without IN, if you want a list of the names and states of all the customers who live in Ontario,
Manitoba, or Quebec, you can enter this query:

SELECT CompanyName, State
 FROM Customers
 WHERE State = 'ON' OR State = 'MB' OR State = 'PQ';

However, you get the same results if you use IN. The items following the IN keyword must be separated by
commas and enclosed in parentheses. Put single quotes around character, date, or time values. For example:

SELECT CompanyName, State
 FROM Customers
 WHERE State IN('ON', 'MB', 'PQ');

Perhaps the most important use for the IN keyword is in nested queries, also called subqueries.

Matching character strings in the WHERE clause
Pattern matching is a versatile way of identifying character data. In SQL, the LIKE keyword is used to search
for patterns. Pattern matching employs wildcard characters to match different combinations of characters.

The LIKE keyword indicates that the following character string is a matching pattern. LIKE is used with
character data.

The syntax for LIKE is:

expression [NOT] LIKE match-expression

The expression to be matched is compared to a match-expression that can include these special symbols:

Symbols Meaning

% Matches any string of 0 or more characters

_ Matches any one character

[specifier] The specifier in the brackets may take the following forms:

● Range A range is of the form rangespec1-rangespec2, where rangespec1 indicates
the start of a range of characters, the hyphen indicates a range, and rangespec2 indicates
the end of a range of characters

● Set A set can include any discrete set of values, in any order. For example, [a2bR].

Note that the range [a-f], and the sets [abcdef] and [fcbdae] return the same set of values.

Querying data

296 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Symbols Meaning

[^specifier] The caret symbol (^) preceding a specifier indicates non-inclusion. [^a-f] means not in the
range a-f; [^a2bR] means not a, 2, b, or R.

You can match the column data to constants, variables, or other columns that contain the wildcard characters
displayed in the table. When using constants, you should enclose the match strings and character strings in
single quotes.

Examples
All the following examples use LIKE with the Surname column in the Contacts table. Queries are of the
form:

SELECT Surname
 FROM Contacts
 WHERE Surname LIKE match-expression;

The first example would be entered as

SELECT Surname
 FROM Contacts
 WHERE Surname LIKE 'Mc%';

Match expression Description Returns

'Mc%' Search for every name that begins with the let-
ters Mc

McEvoy

'%er' Search for every name that ends with er Brier, Miller, Weaver, Rayner

'%en%' Search for every name containing the letters en. Pettengill, Lencki, Cohen

'_ish' Search for every four-letter name ending in ish. Fish

'Br[iy][ae]r' Search for Brier, Bryer, Briar, or Bryar. Brier

'[M-Z]owell' Search for all names ending with owell that
begin with a single letter in the range M to Z.

Powell

'M[^c]%' Search for all names beginning with M' that do
not have c as the second letter

Moore, Mulley, Miller, Masalsky

Wildcards require LIKE
Wildcard characters used without LIKE are interpreted as string literals rather than as a pattern: they
represent exactly their own values. The following query attempts to find any phone numbers that consist of
the four characters 415% only. It does not find phone numbers that start with 415.

SELECT Phone
 FROM Contacts
 WHERE Phone = '415%';

The WHERE clause: Specifying rows

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 297

See also “String literals” [SQL Anywhere Server - SQL Reference].

Using LIKE with date and time values
You can use LIKE on date and time fields and on character data. When you use LIKE with date and time
values, the dates are converted to the standard DATETIME format, and then to VARCHAR.

One feature of using LIKE when searching for DATETIME values is that, since date and time entries may
contain a variety of date parts, an equality test has to be written carefully to succeed.

For example, if you insert the value 9:20 and the current date into a column named arrival_time, the following
clause fails to find the value, because the entry holds the date and the time:

WHERE arrival_time = '9:20'

However, the clause below would find the 9:20 value:

WHERE arrival_time LIKE '%09:20%'

Using NOT LIKE
With NOT LIKE, you can use the same wildcard characters that you can use with LIKE. To find all the
phone numbers in the Contacts table that do not have 415 as the area code, you can use either of these queries:

SELECT Phone
 FROM Contacts
 WHERE Phone NOT LIKE '415%';

SELECT Phone
 FROM Contacts
 WHERE NOT Phone LIKE '415%';

Using underscores
Another special character that can be used with LIKE is the _ (underscore) character, which matches exactly
one character. For example, the pattern 'BR_U%' matches all names starting with BR and having U as the
fourth letter. In Braun the _ character matches the letter A and the % matches N. See “LIKE search condition”
[SQL Anywhere Server - SQL Reference].

Character strings and quotation marks
When you enter or search for character and date data, you must enclose it in single quotes, as in the following
example.

SELECT GivenName, Surname
 FROM Contacts
 WHERE GivenName = 'John';

If the quoted_identifier database option is set to Off (it is On by default), you can also use double quotes
around character or date data.

To set the quoted_identifier option off for the current user ID

● Enter the following command:

Querying data

298 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SET OPTION quoted_identifier = 'Off';

The quoted_identifier option is provided for compatibility with Adaptive Server Enterprise. By default, the
Adaptive Server Enterprise option is quoted_identifier Off and the SQL Anywhere option is
quoted_identifier On. See “quoted_identifier option [compatibility]” [SQL Anywhere Server - Database
Administration].

Quotation marks in strings
There are two ways to specify literal quotations within a character entry. The first method is to use two
consecutive quotation marks. For example, if you have begun a character entry with a single quotation mark
and want to include a single quotation mark as part of the entry, use two single quotation marks:

'I don''t understand.'

With double quotation marks (quoted_identifier Off), specify:

"He said, ""It is not really confusing."""

The second method, applicable only with quoted_identifier Off, is to enclose a quotation in the other kind
of quotation mark. In other words, surround an entry containing double quotation marks with single quotation
marks, or vice versa. Here are some examples:

'George said, "There must be a better way."'
"Isn't there a better way?"
'George asked, "Isn''t there a better way?"'

Unknown Values: NULL
A NULL in a column means that the user or application has made no entry in that column. That is, a data
value for the column is unknown or not available.

NULL does not mean the same as zero (numerical values) or blank (character values). Rather, NULL values
allow you to distinguish between a deliberate entry of zero for numeric columns or blank for character
columns and a non-entry, which is NULL for both numeric and character columns.

Entering NULL
NULL can be entered only where NULL values are permitted for the column. Whether a column can accept
NULL values is determined when the table is created. Assuming a column can accept NULL values, NULL
is inserted:

● Default If no data is entered, and the column has no other default setting.

● Explicit entry You can explicitly insert the word NULL without quotation marks. If the word NULL
is typed in a character column with quotation marks, it is treated as data, not as the NULL value.

For example, the DepartmentHeadID column of the Departments table allows NULL values. You can enter
two rows for departments with no manager as follows:

INSERT INTO Departments (DepartmentID, DepartmentName)
 VALUES (201, 'Eastern Sales')
INSERT INTO Departments
 VALUES (202, 'Western Sales', null);

The WHERE clause: Specifying rows

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 299

Returning NULL values
NULL values are returned to the client application for display, just as with other values. For example, the
following example illustrates how NULL values are displayed in Interactive SQL:

SELECT *
FROM Departments;

DepartmentID DepartmentName DepartmentHeadID

100 R & D 501

200 Sales 904

300 Finance 1293

400 Marketing 1576

500 Shipping 703

201 Eastern Sales (null)

202 Western Sales (null)

Testing a column for NULL
You can use the IS NULL search conditions to compare column values to NULL, and to select them or
perform a particular action based on the results of the comparison. Only columns that return a value of TRUE
are selected or result in the specified action; those that return FALSE or UNKNOWN do not.

The following example selects only rows for which UnitPrice is less than $15 or is NULL:

SELECT Quantity, UnitPrice
 FROM Products
 WHERE UnitPrice < 15
 OR UnitPrice IS NULL;

The result of comparing any value to NULL is UNKNOWN, since it is not possible to determine whether
NULL is equal (or not equal) to a given value or to another NULL.

There are some conditions that never return true, so that queries using these conditions do not return result
sets. For example, the following comparison can never be determined to be true, since NULL means having
an unknown value:

WHERE column1 > NULL

This logic also applies when you use two column names in a WHERE clause, that is, when you join two
tables. A clause containing the condition WHERE column1 = column2 does not return rows where the
columns contain NULL.

You can also find NULL or non-NULL with these patterns:

WHERE column_name IS NULL

Querying data

300 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

WHERE column_name IS NOT NULL

For example:

WHERE advance < $5000
OR advance IS NULL

See “NULL value” [SQL Anywhere Server - SQL Reference].

Properties of NULL
The following list expands on the properties of a NULL value.

● The difference between FALSE and UNKNOWN Although neither FALSE nor UNKNOWN
returns values, there is an important logical difference between FALSE and UNKNOWN; the opposite
of false ("not false") is true, whereas the opposite of UNKNOWN does not mean something is known.
For example, 1 = 2 evaluates to false, and 1 != 2 (1 does not equal 2) evaluates to true.

But if a NULL is included in a comparison, you cannot negate the expression to get the opposite set of
rows or the opposite truth value. An UNKNOWN value remains UNKNOWN.

● Substituting a value for NULL values You can use the ISNULL built-in function to substitute a
particular value for NULL values. The substitution is made only for display purposes; actual column
values are not affected. The syntax is:

ISNULL(expression, value)

For example, use the following statement to select all the rows from Departments, and display all the
NULL values in column DepartmentHeadID with the value -1.

SELECT DepartmentID,
 DepartmentName,
 ISNULL(DepartmentHeadID, -1) AS DepartmentHead
 FROM Departments;

● Expressions that evaluate to NULL An expression with an arithmetic or bitwise operator evaluates
to NULL if any of the operands are the NULL value. For example, 1 + column1 evaluates to NULL
if column1 is NULL. See “Arithmetic operators” [SQL Anywhere Server - SQL Reference], and “Bitwise
operators” [SQL Anywhere Server - SQL Reference].

● Concatenating strings and NULL If you concatenate a string and NULL, the expression evaluates
to the string. For example, the following statement returns the string abcdef:

SELECT 'abc' || NULL || 'def';

Connecting conditions with logical operators
The logical operators AND, OR, and NOT are used to connect search conditions in WHERE clauses. When
more than one logical operator is used in a statement, AND operators are normally evaluated before OR
operators. You can change the order of execution with parentheses.

The WHERE clause: Specifying rows

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 301

Using AND
The AND operator joins two or more conditions and returns results only when all the conditions are true.
For example, the following query finds only the rows in which the contact's last name is Purcell and the
contact's first name is Beth.

SELECT *
 FROM Contacts
 WHERE GivenName = 'Beth'
 AND Surname = 'Purcell';

Using OR
The OR operator connects two or more conditions and returns results when any of the conditions is true.
The following query searches for rows containing variants of Elizabeth in the GivenName column.

SELECT *
 FROM Contacts
 WHERE GivenName = 'Beth'
 OR GivenName = 'Liz';

Using NOT
The NOT operator negates the expression that follows it. The following query lists all the contacts who do
not live in California:

SELECT *
 FROM Contacts
 WHERE NOT State = 'CA';

Comparing dates in search conditions
You can use operators other than equals to select a set of rows that satisfy the search condition. The inequality
operators (< and >) can be used to compare numbers, dates, and even character strings.

List all employees born before March 13, 1964

● In Interactive SQL, execute the following query:

SELECT Surname, BirthDate
 FROM Employees
 WHERE BirthDate < 'March 13, 1964'
 ORDER BY BirthDate DESC;

Surname BirthDate

Ahmed 1963-12-12

Dill 1963-07-19

Rebeiro 1963-04-12

Garcia 1963-01-23

Querying data

302 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Surname BirthDate

Pastor 1962-07-14

... ...

Notes
● Automatic conversion to dates The SQL Anywhere database server knows that the BirthDate

column contains dates, and automatically converts the string 'March 13, 1964' to a date.

● Ways of specifying dates There are many ways of specifying dates. For example:

'March 13, 1964'
'1964/03/13'
'1964-03-13'

You can configure the interpretation of dates in queries by setting the date_order option database option.
See “date_order option [database]” [SQL Anywhere Server - Database Administration].

Dates in the format yyyy/mm/dd or yyyy-mm-dd are always recognized unambiguously as dates,
regardless of the date_order setting.

● Other comparison operators SQL Anywhere supports several comparison operators. See
“Comparison operators” [SQL Anywhere Server - SQL Reference].

Matching rows by sound
With the SOUNDEX function, you can match rows by sound. For example, suppose a phone message was
left for a name that sounded like "Ms. Brown". You could execute the following query to search for
employees that have names that sound like Brown.

List employees with a last name that sound like Brown

● In Interactive SQL, execute the following query:

SELECT Surname, GivenName
 FROM Employees
 WHERE SOUNDEX(Surname) = SOUNDEX('Brown');

Surname GivenName

Braun Jane

The algorithm used by SOUNDEX makes it useful mainly for English-language databases. See “SOUNDEX
function [String]” [SQL Anywhere Server - SQL Reference].

The WHERE clause: Specifying rows

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 303

The ORDER BY clause: Ordering results
Unless otherwise requested, the database server returns the rows of a table in an order that has no meaning.
Often it is useful to look at the rows in a table in a more meaningful sequence. For example, you might like
to see products in alphabetical order.

You order the rows in a result set by adding an ORDER BY clause to the end of the SELECT statement.
This SELECT statement has the following syntax:

SELECT column-name-1, column-name-2,...
FROM table-name
ORDER BY order-by-column-name

You must replace column-name-1, column-name-2, and table-name with the names of the columns and table
you are querying, and order-by-column-name with a column in the table. As before, you can use the asterisk
as a short form for all the columns in the table.

List the products in alphabetical order

● In Interactive SQL, execute the following query:

SELECT ID, Name, Description
 FROM Products
 ORDER BY Name;

ID Name Description

400 Baseball Cap Cotton Cap

401 Baseball Cap Wool cap

700 Shorts Cotton Shorts

600 Sweatshirt Hooded Sweatshirt

...

Notes
● The order of clauses is important The ORDER BY clause must follow the FROM clause and the

SELECT clause.

● You can specify either ascending or descending order The default order is ascending. You can
specify a descending order by adding the keyword DESC to the end of the clause, as in the following
query:

SELECT ID, Quantity
 FROM Products
 ORDER BY Quantity DESC;

Querying data

304 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ID Quantity

400 112

700 80

302 75

301 54

600 39

... ...

● You can order by several columns The following query sorts first by size (alphabetically), and
then by name:

SELECT ID, Name, Size
 FROM Products
 ORDER BY Size, Name;

ID Name Size

600 Sweatshirt Large

601 Sweatshirt Large

700 Shorts Medium

301 Tee Shirt Medium

...

● The ORDER BY column does not need to be in the select list The following query sorts products
by unit price, even though the price is not included in the result set

SELECT ID, Name, Size
 FROM Products
 ORDER BY UnitPrice;

ID Name Size

500 Visor One size fits all

501 Visor One size fits all

300 Tee Shirt Small

400 Baseball Cap One size fits all

...

The ORDER BY clause: Ordering results

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 305

● If you do not use an ORDER BY clause, and you execute a query more than once, you may
appear to get different results This is because SQL Anywhere may return the same result set in a
different order. In the absence of an ORDER BY clause, SQL Anywhere returns rows in whatever order
is most efficient. This means the appearance of result sets may vary depending on when you last accessed
the row and other factors. The only way to ensure that rows are returned in a particular order is to use
ORDER BY.

Using indexes to improve ORDER BY performance
Sometimes there is more than one possible way for the SQL Anywhere database server to execute a query
with an ORDER BY clause. You can use indexes to enable the database server to search the tables more
efficiently.

Queries with WHERE and ORDER BY clauses
An example of a query that can be executed in more than one possible way is one that has both a WHERE
clause and an ORDER BY clause.

SELECT *
 FROM Customers
 WHERE ID > 300
 ORDER BY CompanyName;

In this example, SQL Anywhere must decide between two strategies:

1. Go through the entire Customers table in order by company name, checking each row to see if the
customer ID is greater than 300.

2. Use the key on the ID column to read only the companies with ID greater than 300. The results would
then need to be sorted by company name.

If there are very few ID values greater than 300, the second strategy is better because only a few rows are
scanned and quickly sorted. If most of the ID values are greater than 300, the first strategy is much better
because no sorting is necessary.

Solving the problem
Creating a two-column index on ID and CompanyName could solve the example above. SQL Anywhere
can use this index to select rows from the table in the correct order. However, keep in mind that indexes take
up space in the database file and involve some overhead to keep up to date. Do not create indexes
indiscriminately. See “Using indexes” on page 243.

Querying data

306 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Aggregate functions
Some queries examine aspects of the data in your table that reflect properties of groups of rows rather than
of individual rows. For example, you may want to find the average amount of money that a customer pays
for an order, or to see how many employees work for each department. For these types of tasks, you use
aggregate functions and the GROUP BY clause.

Aggregate functions return a single value for a set of rows. If there is no GROUP BY clause, an aggregate
function returns a single value for all the rows that satisfy other aspects of the query.

List the number of employees in the company

● In Interactive SQL, execute the following query:

SELECT COUNT(*)
 FROM Employees;

COUNT(*)

75

The result set consists of only one column, with title COUNT(*), and one row, which contains the total
number of employees.

List the number of employees in the company and the birth dates of the oldest and youngest
employee

● In Interactive SQL, execute the following query:

SELECT COUNT(*), MIN(BirthDate), MAX(BirthDate)
 FROM Employees;

COUNT(*) MIN(Employees.BirthDate) MAX(Employees.BirthDate)

75 1936-01-02 1973-01-18

The functions COUNT, MIN, and MAX are called aggregate functions. Aggregate functions summarize
information. Other aggregate functions include statistical functions such as AVG, STDDEV, and
VARIANCE. All but COUNT require a parameter. See “Aggregate functions” [SQL Anywhere Server - SQL
Reference].

Applying aggregate functions to grouped data
In addition to providing information about an entire table, aggregate functions can be used on groups of
rows. The GROUP BY clause arranges rows into groups, and aggregate functions return a single value for
each group of rows.

Aggregate functions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 307

Example
List the sales representatives and the number of orders each has taken

● In Interactive SQL, execute the following query:

SELECT SalesRepresentative, COUNT(*)
 FROM SalesOrders
 GROUP BY SalesRepresentative
 ORDER BY SalesRepresentative;

SalesRepresentative count(*)

129 57

195 50

299 114

467 56

... ...

A GROUP BY clause tells SQL Anywhere to partition the set of all the rows that would otherwise be returned.
All rows in each partition, or group, have the same values in the named column or columns. There is only
one group for each unique value or set of values. In this case, all the rows in each group have the same
SalesRepresentative value.

Aggregate functions such as COUNT are applied to the rows in each group. So, this result set displays the
total number of rows in each group. The results of the query consist of one row for each sales rep ID number.
Each row contains the sales rep ID, and the total number of sales orders for that sales representative.

Whenever GROUP BY is used, the resulting table has one row for each column or set of columns named in
the GROUP BY clause. See “The GROUP BY clause: Organizing query results into groups” on page 373.

A common error with GROUP BY
A common error with GROUP BY is to try to get information that cannot properly be put in a group. For
example, the following query gives an error.

SELECT SalesRepresentative, Surname, COUNT(*)
 FROM SalesOrders KEY JOIN Employees
 GROUP BY SalesRepresentative;

The error Function or column reference to 'Surname' in the select list must
also appear in a GROUP BY is reported because SQL Anywhere cannot be sure that each of the
result rows for an employee with a given ID all have the same last name.

To fix this error, add the column to the GROUP BY clause.

SELECT SalesRepresentative, Surname, COUNT(*)
 FROM SalesOrders KEY JOIN Employees
 GROUP BY SalesRepresentative, Surname
 ORDER BY SalesRepresentative;

If this is not appropriate, you can instead use an aggregate function to select only one value:

Querying data

308 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SELECT SalesRepresentative, MAX(Surname), COUNT(*)
 FROM SalesOrders KEY JOIN Employees
 GROUP BY SalesRepresentative
 ORDER BY SalesRepresentative;

The MAX function chooses the maximum (last alphabetically) Surname from the detail rows for each group.
This statement is valid because there can be only one distinct maximum value. In this case, the same Surname
appears on every detail row within a group.

Restricting groups
You have already seen how to restrict rows in a result set using the WHERE clause. You restrict the rows
in groups using the HAVING clause.

List all sales representatives with more than 55 orders

● In Interactive SQL, execute the following query:

SELECT SalesRepresentative, COUNT(*) AS orders
FROM SalesOrders KEY JOIN Employees
GROUP BY SalesRepresentative
HAVING count(*) > 55
ORDER BY orders DESC;

SalesRepresentative orders

299 114

129 57

1142 57

467 56

See also “The HAVING clause: selecting groups of data” on page 378.

Combining WHERE and HAVING clauses
Sometimes you can specify the same set of rows using either a WHERE clause or a HAVING clause. In
such cases, one method is not more or less efficient than the other. The optimizer always automatically
analyzes each statement you enter and selects an efficient means of executing it. It is best to use the syntax
that most clearly describes the intended result. In general, that means eliminating undesired rows in earlier
clauses.

Example
To list all sales reps with more than 55 orders and an ID of more than 1000, enter the following statement.

SELECT SalesRepresentative, COUNT(*)
FROM SalesOrders

Aggregate functions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 309

WHERE SalesRepresentative > 1000
GROUP BY SalesRepresentative
HAVING count(*) > 55
ORDER BY SalesRepresentative;

The following statement produces the same results.

SELECT SalesRepresentative, COUNT(*)
FROM SalesOrders
GROUP BY SalesRepresentative
HAVING count(*) > 55 AND SalesRepresentative > 1000
ORDER BY SalesRepresentative;

SQL Anywhere detects that both statements describe the same result set, and so executes each efficiently.

Querying data

310 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Full text searching
Full text search can quickly find all instances of a term (word) in a database without having to scan table
rows and without having to know which column a term is stored in. Full text search works by using text
indexes. A text index stores positional information for terms in the indexed column(s). Using a text index
to find rows that contain a term can be faster than scanning every row in the table for the same reasons that
it can be faster to use a regular index to find rows containing a given value. See “Text
indexes” on page 326.

Full text search uses the CONTAINS search condition. It differs from searching using predicates such as
LIKE, REGEXP, and SIMILAR TO, because the matching is term-based and not pattern-based. See
“CONTAINS search condition” [SQL Anywhere Server - SQL Reference].

String comparisons in full text search use all the normal collation settings for the database. For example, if
the database is configured to be case insensitive, then full text searches will be case insensitive. See
“Understanding collations” [SQL Anywhere Server - Database Administration].

Except where noted, full text search leverages all the international features supported by SQL Anywhere.
See “SQL Anywhere international features” [SQL Anywhere Server - Database Administration].

To perform a full text search on a database containing Chinese, Japanese, and Korean (CJK) data, see the
whitepaper Performing Full Text Searches on Chinese, Japanese, and Korean Data in SQL Anywhere 11
which is available at http://www.sybase.com/detail?id=1061814.

Performing a full text query
You can perform a full text query by using the CONTAINS clause in the FROM clause of a SELECT
statement, or by using the CONTAINS search condition (predicate) in a WHERE clause. Both return the
same rows; however, the CONTAINS clause also returns scores for the matching rows.

For example, the following two statements query the Description column in the MarketingInformation table,
and return the rows where the value in the Description column contains the term cotton. The second statement
also returns scores for the matching rows.

SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (Description, 'cotton');
SELECT *
 FROM MarketingInformation
 CONTAINS (Description, 'cotton');

See “FROM clause” [SQL Anywhere Server - SQL Reference], and “CONTAINS search condition” [SQL
Anywhere Server - SQL Reference].

Full text searching

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 311

http://www.sybase.com/detail?id=1061814

Text configuration objects
A text configuration object controls what terms go into a text index when it is built or refreshed, and how a
full text query is interpreted. The settings for each text configuration object are stored as a row in the
ISYSTEXTCONFIG system table.

When the database server creates or refreshes a text index, it uses the settings for the text configuration object
specified when the text index was created. If you did not specify a text configuration object when creating
the text index, the database server chooses one of the default text configuration objects, based on the type
of data in the columns being indexed. SQL Anywhere provides two default text configuration objects. See
“Example text configuration objects” on page 318.

To view settings for existing text configuration objects, query the SYSTEXTCONFIG system view. See
“SYSTEXTCONFIG system view” [SQL Anywhere Server - SQL Reference].

Text configuration object settings
SQL Anywhere provides two default text configuration objects, default_char for use with non-NCHAR data,
and default_nchar. For information about their settings, see “Default text configuration
objects” on page 318.

The following table explains text configuration object settings and how they impact what is indexed and
how a full text search query is interpreted. For examples of text configuration objects and their impact on
text indexes and full text searching, see “Example text configuration objects” on page 318.

● Term breaker algorithm (TERM BREAKER) The TERM BREAKER setting specifies the algorithm
to use for breaking strings into terms. The choices are GENERIC (the default) for storing terms, or
NGRAM for storing n-grams. An n-gram is a group of characters of length n where n is the value of
MAXIMUM TERM LENGTH.

Regardless of the term breaker you specify, the database server records in the text index the original
positional information for the terms when they are inserted into the text index. In the case of n-grams,
the positional information of the n-grams is stored, not the positional information for the original terms.

Querying data

312 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

TERM BREAKER impact to text index TERM BREAKER impact to query terms

GENERIC text index When building a GENER-
IC text index (the default), groups of alphanumeric
characters appearing between non-alphanumeric
characters are processed as terms by the database
server. After the terms have been defined, terms that
exceed the term length settings, and terms found in
the stoplist, are counted but not inserted in the text
index.

Performance on GENERIC text indexes can be faster
than NGRAM text indexes. However, you cannot
perform fuzzy searches on GENERIC text indexes.

NGRAM text index When building an NGRAM
text index, the database server treats as a term any
group of alphanumeric characters between non-al-
phanumeric characters. Once the terms are defined,
the database server breaks the terms into n-grams. In
doing so, terms shorter than n, and n-grams that are
in the stoplist, are discarded.

For example, for an NGRAM text index with MAX-
IMUM TERM LENGTH 3, the string 'my red table'
is represented in the text index as the following n-
grams: red tab abl ble.

GENERIC text index When querying a
GENERIC text index, terms in the query string
are processed in the same manner as if they
were being indexed. Matching is performed by
comparing query terms to terms in the text in-
dex.

NGRAM text index When querying an
NGRAM text index, terms in the query string
are processed in the same manner as if they
were being indexed. Matching is performed by
comparing n-grams from the query terms to n-
grams from the indexed terms.

● Minimum term length setting (MINIMUM TERM LENGTH) The MINIMUM TERM LENGTH
setting specifies the minimum length, in characters, for terms inserted in the index or searched for in a
full text query. MINIMUM TERM LENGTH is not relevant for NGRAM text indexes.

MINIMUM TERM LENGTH has special implications on prefix searching. See “Prefix
searching” on page 336.

The value of MINIMUM TERM LENGTH must be greater than 0. If you set it higher than MAXIMUM
TERM LENGTH, then MAXIMUM TERM LENGTH is automatically adjusted to be equal to
MINIMUM TERM LENGTH.

The default for MINIMUM TERM LENGTH is taken from the setting in the default text configuration
object, which is typically 1. See “Default text configuration objects” on page 318.

Text configuration objects

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 313

MINIMUM TERM LENGTH impact to text index MINIMUM TERM LENGTH impact to query
terms

GENERIC text index For GENERIC text in-
dexes, the text index will not contain words short-
er than MINIMUM TERM LENGTH.

NGRAM text index For NGRAM text in-
dexes, this setting is ignored.

GENERIC text index When querying a GE-
NERIC text index, query terms shorter than MIN-
IMUM TERM LENGTH are ignored because
they cannot exist in the text index.

NGRAM text index The MINIMUM TERM
LENGTH setting has no impact on full text quer-
ies on NGRAM text indexes.

● Maximum term length setting (MAXIMUM TERM LENGTH) The MAXIMUM TERM LENGTH
setting is used differently depending on the term breaker algorithm.

The value of MAXIMUM TERM LENGTH must be less than or equal to 60. If you set it lower than the
MINIMUM TERM LENGTH, then MINIMUM TERM LENGTH is automatically adjusted to be equal
to MAXIMUM TERM LENGTH.

The default for this setting is taken from the setting in the default text configuration object, which is
typically 20. See “Default text configuration objects” on page 318.

MAXIMUM TERM LENGTH impact to text index MAXIMUM TERM LENGTH impact to query
terms

GENERIC text indexes For GENERIC text
indexes, MAXIMUM TERM LENGTH speci-
fies the maximum length, in characters, for terms
inserted in the text index.

NGRAM text index For NGRAM text in-
dexes, MAXIMUM TERM LENGTH deter-
mines the length of the n-grams that terms are
broken into. An appropriate choice of length for
MAXIMUM TERM LENGTH depends on the
language. Typical values are 4 or 5 characters for
English, and 2 or 3 characters for Chinese.

GENERIC text indexes For GENERIC text
indexes, query terms longer than MAXIMUM
TERM LENGTH are ignored because they cannot
exist in the text index.

NGRAM text index For NGRAM text in-
dexes, query terms are broken into n-grams of
length n, where n is the same as MAXIMUM
TERM LENGTH. Then, the database server uses
the n-grams to search the text index. Terms shorter
than MAXIMUM TERM LENGTH are ignored
because they will not match the n-grams in the text
index.

● Stoplist setting (STOPLIST) The stoplist setting specifies the terms that must not be indexed.

The default for this setting is taken from the setting in the default text configuration object, which
typically has an empty stoplist. See “Default text configuration objects” on page 318.

Querying data

314 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

STOPLIST impact to text index STOPLIST impact to query terms

GENERIC text indexes For GE-
NERIC text indexes, terms that are in
the stoplist are not inserted into the text
index.

NGRAM text index For GENERIC
text indexes, the text index will not con-
tain the n-grams formed from the terms
in the stoplist.

GENERIC text indexes For GENERIC text indexes,
query terms that are in the stoplist are ignored because they
cannot exist in the text index.

NGRAM text index Terms in the stoplist are broken into
n-grams and the n-grams are used for the stoplist. Likewise,
query terms are broken into n-grams and any that match n-
grams in the stoplist are dropped because they cannot exist
in the text index.

Carefully consider whether you want to put terms in your stoplist. In particular, do not include words
that have non-alphanumeric characters in them such as apostrophes or dashes. These characters act as
term breakers. For example, the word you'll (which must be specified as 'you''ll') is broken into
you and ll and stored in the stoplist as these two terms. Subsequent full text searches for 'you' or
'they''ll' are negatively impacted.

Stoplists in the case of NGRAM text indexes can cause unexpected results because the stoplist that is
stored is actually in n-gram form, not the actual stoplist terms you specified. For example, in an NGRAM
text index where MAXIMUM TERM LENGTH is 3, if you specify STOPLIST 'there', the
following n-grams are stored as the stoplist: the her ere. This impacts the ability to query for any terms
that contain the n-grams the, her, and ere.

Note
The same restrictions with regards to specifying string literals also apply to stoplists. For example,
apostrophes must be escaped, and so on. For more information on formatting string literals, see “String
literals” [SQL Anywhere Server - SQL Reference].

The Samples directory contains sample code that loads stoplists for several languages. These sample
stoplists are recommended for use only on GENERIC text indexes. For the location of the Samples
directory, see “Samples directory” [SQL Anywhere Server - Database Administration].

See also
● “Default text configuration objects” on page 318
● “Create a text configuration object” on page 316
● “Alter a text configuration object” on page 316
● “Example text configuration objects” on page 318
● “Fuzzy searches” on page 343
● “Text indexes” on page 326
● “CONTAINS search condition” [SQL Anywhere Server - SQL Reference]
● “CREATE TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “DROP TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “SYSTEXTIDX system view” [SQL Anywhere Server - SQL Reference]

Text configuration objects

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 315

Create a text configuration object
When you create a text configuration object using SQL statements, you use another text configuration object
as a template. Then, you alter the configuration settings and create your text index using the new text
configuration.

When you create a text configuration object in Sybase Central, the Create Text Configuration Object
Wizard allows you to configure settings during creation.

To create a text configuration object (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE TEXT CONFIGURATION statement.

For example, the following statement creates a text configuration object called myTxtConfig using the
default_char text configuration object as a template:

CREATE TEXT CONFIGURATION myTxtConfig FROM default_char;

To create a text configuration object (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Right-click Text Configuration Objects and choose New » Text Configuration Object.

3. Follow the instructions in the Create Text Configuration Object Wizard.

The new text configuration object appears in the Text Configuration Objects pane.

See also
● “Full text searching” on page 311
● “Text configuration object settings” on page 312
● “Example text configuration objects” on page 318
● “View text configuration objects in the database” on page 318
● “CREATE TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “Default text configuration objects” on page 318

Alter a text configuration object
A text index is dependent on the text configuration object used to create it. So, you must truncate dependent
text indexes before you can alter a text configuration object. Since an IMMEDIATE REFRESH text index
cannot be truncated, you must drop it before you can alter the text configuration object.

To alter a text configuration object (SQL)

1. Connect to the database as a user with DBA authority, or as owner of the text configuration object.

Querying data

316 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

2. Execute an ALTER TEXT CONFIGURATION statement. For example, the following statement alters
the minimum term length for the myTxtConfig text configuration object:

ALTER TEXT CONFIGURATION myTxtConfig
MINIMUM TERM LENGTH 2;

To alter a text configuration object (Sybase Central)

1. Connect to the database as a user with DBA authority, or as owner of the text configuration object.

2. In the left pane, click Text Configuration Objects.

3. Right-click the text configuration object and choose Properties.

4. Edit the text configuration object properties and click OK.

See also
● “Full text searching” on page 311
● “Text configuration object settings” on page 312
● “Example text configuration objects” on page 318
● “View text configuration objects in the database” on page 318
● “CREATE TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “Default text configuration objects” on page 318

Database options and text configuration objects
When a text configuration object is created, the current settings for the date_format, time_format, and
timestamp_format database options are stored with the text configuration object. This is because these
settings affect string conversions when creating and refreshing the text indexes that depend on the text
configuration object.

Storing the settings with the text configuration object allows you change the settings for these database
options without causing a change to the format of data stored in the dependent text indexes.

If you want to change the format of the strings representing the dates and times in a text index, you must do
the following:

1. Drop the text index and text configuration object.

2. Change the database options to the format you want.

3. Create a text configuration object.

4. Create a text index using the new text configuration object.

Note
The conversion_error option must be set to ON when creating or refreshing a text index.

Text configuration objects

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 317

See also
● “Text configuration object settings” on page 312
● “date_format option [database]” [SQL Anywhere Server - Database Administration]
● “time_format option [compatibility]” [SQL Anywhere Server - Database Administration]
● “timestamp_format option [compatibility]” [SQL Anywhere Server - Database Administration]
● “conversion_error option [compatibility]” [SQL Anywhere Server - Database Administration]

View text configuration objects in the database
You can view information about text configuration objects in the database using Sybase Central, or by using
a SQL statement.

To view settings for a text configuration object (Sybase Central)

1. Connect to the database as a user with DBA authority, or as the owner of the text configuration object.

2. In the left pane, click Text Configuration Objects.

3. Double-click the text configuration object to view its settings.

To view settings for a text configuration object (SQL)

1. Connect to the database as a user with DBA authority, or as the owner of the text configuration object.

2. Query the SYSTEXTCONFIG system view, as follows:

SELECT * FROM SYSTEXTCONFIG;

See also
● “Text configuration object settings” on page 312
● “SYSTEXTCONFIG system view” [SQL Anywhere Server - SQL Reference]

Example text configuration objects
For in-depth descriptions of text configuration object settings and how they impact the contents of a text
index and the results returned when querying a text index, see “Text configuration object
settings” on page 312.

For a list of all text configuration objects in the database and the settings they contain, query the
SYSTEXTCONFIG system view (for example, SELECT * FROM SYSTEXTCONFIG). See
“SYSTEXTCONFIG system view” [SQL Anywhere Server - SQL Reference].

Default text configuration objects

SQL Anywhere provides two default text configuration objects, default_nchar and default_char for use
with NCHAR and non-NCHAR data, respectively. These configurations are created the first time you attempt

Querying data

318 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

to create a text configuration object or text index. If you delete one by mistake, it is recreated the next time
you attempt to create a text configuration object or text index.

The settings for default_char and default_nchar at the time of installation are shown in the table below. These
settings were chosen because they were best suited for most character-based languages. It is strongly
recommended that you do not change the settings in the default text configuration objects.

Setting Installed value

TERM BREAKER 0 (GENERIC)

MINIMUM TERM LENGTH 1

MAXIMUM TERM LENGTH 20

STOPLIST (empty)

If you delete a default text configuration object, it is automatically recreated the next time you create a text
index or text configuration object. See “DROP TEXT CONFIGURATION statement” [SQL Anywhere
Server - SQL Reference].

Example text configuration objects

The following table shows the settings for different text configuration objects and how the settings impact
what is indexed and how a full text query string is interpreted. All the examples use the string 'I'm not
sure I understand'.

Configuration settings Terms that are indexed Query interpretation

TERM BREAKER GENERIC

MINIMUM TERM LENGTH 1

MAXIMUM TERM LENGTH
20

STOPLIST ''

I m not sure I under-
stand

"I m" AND not AND sure
AND I AND understand'

TERM BREAKER GENERIC

MINIMUM TERM LENGTH 2

MAXIMUM TERM LENGTH
20

STOPLIST 'not and'

sure understand 'sure AND understand'.

Text configuration objects

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 319

Configuration settings Terms that are indexed Query interpretation

TERM BREAKER NGRAM

MAXIMUM TERM LENGTH 3

STOPLIST 'not and'

sur ure und nde der ers
rst sta tan

'sur AND ure AND und
AND nde AND der AND
ers AND rst AND sta
AND tan'.

In the case of a fuzzy search:

'sur OR ure OR und OR
nde OR der OR ers OR
rst OR sta OR tan'

TERM BREAKER GENERIC

MINIMUM TERM LENGTH 1

MAXIMUM TERM LENGTH
20

STOPLIST 'not and'

I m sure I understand '"I m" AND sure AND I
AND understand'.

TERM BREAKER NGRAM

MAXIMUM TERM LENGTH
20

STOPLIST 'not and'

Nothing is indexed because no
term is equal to or longer than 20
characters.

This illustrates how differently
MAXIMUM TERM LENGTH
impacts GENERIC and NGRAM
text indexes; on NGRAM text in-
dexes, MAXIMUM TERM
LENGTH sets the length of the n-
grams inserted into the text index.

The search returns an empty re-
sult set because no n-grams of 20
characters can be formed from
the query string.

Example string interpretations

The following table provides examples of how the settings of the text configuration object strings are
interpreted.

The parenthetical numbers in the Interpreted string column reflect the position information stored for each
term. The numbers are for illustration purposes in the documentation. The actual stored terms do not include
the parenthetical numbers.

Configuration settings String Interpreted String

TERM BREAKER GENERIC

MINIMUM TERM LENGTH 3

MAXIMUM TERM LENGTH 20

'w*' '"w*(1)"'

'we*' '"we*(1)"'

'wea*' '"wea*(1)"'

Querying data

320 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Configuration settings String Interpreted String

'we* -the' '"we*(1)"
-"the(1)"'

'we* the' "we*(1)" &
"the(1)"'

'for* | wonderl*' '"for*(1)" |
"wonderl*(1)"'

'wonderlandwonderlandwon-
derland*'

''

'"tr* weather"' '"weather(1)"'

'"tr* the weather"' '"the(1)
weather(2)"'

'"wonderlandwonderland-
wonderland* wonderland"'

'"wonder-
land(1)"'

'"wonderlandwonderland-
wonderland* weather"'

'"weather(1)"'

'"the_wonderlandwonder-
landwonderland* weather"'

'"the(1)
weather(3)"'

'the_wonderlandwonder-
landwonderland* weather'

'"the(1)" &
"weather(1)"'

'"light_a* the end" & tun-
nel'

'"light(1)
the(3) end(4)"
& "tunnel(1)"'

light_b* the end" & tun-
nel'

'"light(1)
the(3) end(4)"
& "tunnel(1)"'

'"light_at_b* end"' '"light(1)
end(4)"'

'and-te*' '"and(1)
te*(2)"'

'a_long_and_t* & journey' '"long(2)
and(3) t*(4)" &
"journey(1)"'

Text configuration objects

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 321

Configuration settings String Interpreted String

TERM BREAKER NGRAM

MAXIMUM TERM LENGTH 3

'w*' '"w*(1)"'

'we*' '"we*(1)"'

'wea* '"wea(1)"'

'we* -the' '"we*(1)"
-"the(1)"'

'we* the' '"we*(1)" &
"the(1)"'

'for | la*' '"for(1)" |
"la*(1)"'

'weath*' '"wea(1)
eat(2)
ath(3)"'

'"ful weat*"' '"ful(1)
wea(2)
eat(3)"'

'"wo* la*"' '"wo*(1)" &
"la*(2)"'

'"la* won* "' '"la*(1)" &
"won(2)"'

'"won* weat*"' '"won(1)" &
"wea(2)
eat(3)"'

'"won* weat"' '"won(1)" &
"wea(2)
eat(3)"'

'"wo* weat*"' '"wo*(1)" &
"wea(2)
eat(3)"'

'"weat* wo* "' '"wea(1)
eat(2)" &
"wo*(3)"'

Querying data

322 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Configuration settings String Interpreted String

'"wo* weat"' '"wo*(1)" &
"wea(2)
eat(3)"'

'"weat wo* "' '"wea(1)
eat(2)
wo*(3)"'

'w* NEAR[1] f*' '"w*(1)" &
"f*(1)"'

'weat* NEAR[1] f*' "wea(1)
eat(2)" &
"f*(1)"'

'f* NEAR[1] weat*' '"f*(1)" &
"wea(1)
eat(2)"'

'weat NEAR[1] f*' '"wea(1)
eat(2)" &
"f*(1)"'

'f* NEAR[1] weat' '"f*(1)" &
"wea(1)
eat(2)"'

'for NEAR[1] weat*' '"for(1)" &
"wea(1)
eat(2)"'

'weat* NEAR[1] for' '"wea(1)
eat(2)" &
"for(1)"'

'and_tedi*' '"and(1)
ted(2)
edi(3)"'

'and-t*' '"and(1)
t*(2)"'

'"and_tedi*"' '"and(1)
ted(2)
edi(3)"'

Text configuration objects

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 323

Configuration settings String Interpreted String

'"and-t*"' '"and(1)
t*(2)"'

'"ligh* at_the_end of_the
tun* nel"'

'"lig(1)
igh(2)" &
("the(4)
end(5) the(7)
tun(8)" &
"nel(9)")'

'"ligh*
at_the_end_of_the_tun*
nel"'

'"lig(1)
igh(2)" &
("the(4)
end(5) the(7)
tun(8)" &
"nel(9)")'

'"at_the_end of_the tun*
ligh* nel"'

'"the(2)
end(3) the(5)
tun(6)" &
("lig(7)
igh(8)" &
"nel(9)")'

'l* NEAR[1] and_t*' "l*(1)" &
"and(1)
t*(2)"'

'long NEAR[1] and_t*' '"lon(1)
ong(2)" &
"and(1)
t*(2)"'

'end NEAR[3] tunne*' '"end(1)" &
"tun(1) unn(2)
nne(3)"'

TERM BREAKER NGRAM

MAXIMUM TERM LENGTH 3

SKIPPED TOKENS IN TABLE
AND IN QUERIES

'"cat in a hat"' '"cat(1)
hat(4)"'

'"cat in_a hat"' '"cat(1)
hat(4)"'

'"cat_in_a_hat"' '"cat(1)
hat(4)"'

Querying data

324 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Configuration settings String Interpreted String

'"cat_in a_hat"' '"cat(1)
hat(4)"'

'cat in a hat' '"cat(1)" &
"hat(1)"'

'cat in_a hat' '"cat(1)" &
"hat(1)"'

'"ice hat"' '"ice(1)
hat(2)"'

'ice NEAR[1] hat' '"ice(1)"
NEAR[1]
"hat(1)"'

'ear NEAR[2] hat' '"ear(1)"
NEAR[2]
"hat(1)"'

'"ear a hat"' '"ear(1)
hat(3)"'

'"cat hat"' '"cat(1)
hat(2)"'

'cat NEAR[1] hat' '"cat(1)"
NEAR[1]
"hat(1)"'

'ear NEAR[1] hat' '"ear(1)"
NEAR[1]
"hat(1)"'

'"ear hat"' '"ear(1)
hat(2)"'

'"wear a a hat"' '"wea(1)
ear(2)
hat(5)"'

See also
● “sa_char_terms system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_nchar_terms system procedure” [SQL Anywhere Server - SQL Reference]

Text configuration objects

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 325

Text indexes
When you perform a full text search, you are searching a text index (not table rows). So, before you can
perform a full text search, you must create a text index on the columns you want to search. A text index
stores positional information for terms in the indexed columns. Queries that use text indexes can be faster
than those that must scan all the values in the table.

When you create a text index, you can specify which text configuration object to use when creating and
refreshing the text index. A text configuration object contains settings that affect how an index is built. If
you do not specify a text configuration object, the database server uses a default configuration object. See
“Text configuration objects” on page 312.

You can also specify a refresh type for the text index. The refresh type defines how often the text index is
refreshed. A more recently refreshed text index returns more accurate results. However, refreshing takes
time and can impede performance. For example, frequent updates to an indexed table can impact performance
if the text index is configured to refresh each time the underlying data changes. See “Text index refresh
types” on page 326.

To view settings for existing text indexes, use the sa_text_index_stats system procedure. See
“sa_text_index_stats system procedure” [SQL Anywhere Server - SQL Reference].

Text index refresh types
When you create a text index, you must also choose a refresh type. There are three refresh types supported
for text indexes: immediate, automatic, and manual. You define the refresh type for a text index at creation
time. With the exception of immediate text indexes, you can change the refresh type after creating the text
index.

For information on how to set the refresh type see “CREATE TEXT INDEX statement” [SQL Anywhere
Server - SQL Reference], and “ALTER TEXT INDEX statement” [SQL Anywhere Server - SQL
Reference].

● Immediate refresh (the default) Immediate refresh text indexes are refreshed when data in the
underlying table changes, and are recommended only when the data must always be up-to-date, or when
the indexed columns are relatively short.

The default refresh type for text indexes is immediate.

If you have an automatic or manual refresh text index, you cannot alter it to be an immediate refresh text
index. Instead, you must drop and recreate it as an immediate refresh text index.

Immediate refresh text indexes support all isolation levels. They are populated at creation time, and an
exclusive lock is held on the table during this initial refresh.

● Automatic refresh Automatic refresh text indexes are refreshed automatically at a time interval that
you specify, and are recommended when some data staleness is acceptable. A query on a stale index
returns matching rows that have not been changed since the last refresh. So, rows that have been inserted,
deleted, or updated since the last refresh are not returned by a query.

Querying data

326 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Automatic refresh text indexes may also be refreshed more often than the interval specified if either of
the following conditions are true: the time since the last refresh is larger than the refresh interval, or the
total length of all pending rows (pending_length as returned by the sa_text_index_stats system
procedure) exceeds 20% of the total index size (doc_length as returned by sa_text_index_stats).

Automatic refresh text indexes are refreshed using isolation level 0.

An automatic refresh text index contains no data at creation time, and is not available for use until after
the first refresh, which takes place usually within the first minute after the text index is created. You can
also refresh an automatic refresh text index manually using the REFRESH TEXT INDEX statement.

Automatic refresh text indexes are not refreshed during a reload unless the -g option is specified for
dbunload. See “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration].

● Manual refresh Manual refresh text indexes are refreshed only when you refresh them, and are
recommended if data in the underlying table is rarely changed, or if a greater degree of data staleness is
acceptable, or if you want to refresh after an event or a condition is met. A query on a stale index returns
matching rows that have not been changed since the last refresh. So, rows that have been inserted, deleted,
or updated since the last refresh are not returned by a query.

You can define your own strategy for refreshing manual refresh text indexes. For example, you can use
a procedure that refreshes all manual refresh text indexes using a refresh interval that is passed as an
argument, and rules that are similar to those used for automatic refresh text indexes.

In the following example, replace text-index-name, table-owner and table-name.

CREATE PROCEDURE refresh_manual_text_indexes(
 refresh_interval UNSIGNED INT)
BEGIN
 FOR lp1 AS c1 CURSOR FOR
 SELECT ts.*
 FROM SYS.SYSTEXTIDX ti JOIN sa_text_index_stats() ts
 ON (ts.index_id = ti.index_id)
 WHERE ti.refresh_type = 1 -- manual refresh indexes only
 DO
 BEGIN
 IF last_refresh IS null
 OR cast(pending_length as float) / (
 IF doc_length=0 THEN NULL ELSE doc_length ENDIF) > 0.2
 OR DATEDIFF(MINUTE, CURRENT TIMESTAMP, last_refresh)
 > refresh_interval THEN
 EXECUTE IMMEDIATE 'REFRESH TEXT INDEX ' || text-index-name || ' ON "'
 || table-owner || '"."' || table-name || '"';
 END IF;
 END;
 END FOR;
END;

At any time, you can use the sa_text_index_stats system procedure to decide if a refresh is needed, and
whether the refresh should be a complete rebuild or an incremental update. See “sa_text_index_stats
system procedure” [SQL Anywhere Server - SQL Reference].

An manual refresh text index contains no data at creation time, and is not available for use until you
refresh it. To refresh a manual refresh text index, use the REFRESH TEXT INDEX statement.

Manual refresh text indexes are not refreshed during a reload unless the -g option is specified for
dbunload. See “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration].

Text indexes

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 327

See also
● “Full text searching” on page 311
● “Create a text index” on page 328
● “Text configuration object settings” on page 312
● “sa_text_index_stats system procedure” [SQL Anywhere Server - SQL Reference]
● “REFRESH TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “isolation_level option [database] [compatibility]” [SQL Anywhere Server - Database Administration]

Create a text index
You can create text indexes on columns of any type. Columns that are not of type VARCHAR or
NVARCHAR are converted to strings during indexing. See “Data type conversions” [SQL Anywhere Server
- SQL Reference].

Text indexes consume disk space and need to be refreshed. Create them only on the columns that are required
to support your queries.

You cannot create a text index on a materialized view, a regular view, or a temporary table.

Do not create more than one text index referencing a column since this can return unexpected results.

To create a text index (Sybase Central)

1. Connect to the database as a user with DBA authority, or as the owner of the table on which you are
creating the text index.

2. Click the Text Indexes tab.

3. Choose File » New » Text Index.

4. Follow the instructions in the Create Index Wizard.

The new text index appears on the Text Indexes tab. It also appears in the Text Indexes folder.

5. If you created an immediate refresh text index, it is automatically populated with data. For other refresh
types, you must refresh the text index by right-clicking it and choosing Refresh Data.

To create a new text index (SQL)

1. Connect to the database as a user with DBA authority, or as the owner of the table on which you are
creating the text index.

2. Execute a CREATE TEXT INDEX statement. See “CREATE TEXT INDEX statement” [SQL Anywhere
Server - SQL Reference].

3. If you created an immediate refresh text index, it is automatically populated with data. For other refresh
types, you must refresh the text index by executing a REFRESH TEXT INDEX statement. See
“REFRESH TEXT INDEX statement” [SQL Anywhere Server - SQL Reference].

Querying data

328 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Text index refresh types” on page 326
● “Full text searching” on page 311

Refresh a text index
You can only refresh text indexes that are defined as AUTO REFRESH and MANUAL REFRESH.

To refresh a text index (Sybase Central)

1. Connect to the database as a user with DBA authority, or as the owner of the table on which the text
index is built.

2. In the left pane, click Text Indexes.

3. Right-click the text index and choose Refresh Data.

4. Select an isolation level for the refresh and click OK.

To refresh a text index (SQL)

1. Connect to the database as a user with DBA authority, or as the owner of the table on which the text
index is built.

2. Execute a REFRESH TEXT INDEX statement.

For example, the following statement refreshes a text index called txt_index_manual on the Description
column of the Products table in the demo database:

REFRESH TEXT INDEX txt_index_manual ON Products
 WITH ISOLATION LEVEL 0;

See “REFRESH TEXT INDEX statement” [SQL Anywhere Server - SQL Reference].

See also
● “Text index refresh types” on page 326
● “Full text searching” on page 311

Altering text indexes overview
You can alter the following characteristics of a text index:

● Refresh type You can change the refresh type from AUTO REFRESH to MANUAL REFRESH,
and vice versa. Use the REFRESH clause of the ALTER TEXT INDEX statement to change the refresh
type. See “ALTER TEXT INDEX statement” [SQL Anywhere Server - SQL Reference].

You cannot change a text index to, or from, IMMEDIATE REFRESH; to make this change, you must
drop the text index and recreate it. See “DROP TEXT INDEX statement” [SQL Anywhere Server - SQL
Reference], and “CREATE TEXT INDEX statement” [SQL Anywhere Server - SQL Reference].

Text indexes

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 329

● Name You can rename the text index using the RENAME clause of the ALTER TEXT INDEX
statement. See “ALTER TEXT INDEX statement” [SQL Anywhere Server - SQL Reference].

● Content With the exception of the column list, settings that control what is indexed are stored in a
text configuration object. If you want to change what is indexed, you alter the text configuration object
that a text index refers to. You must truncate dependent text indexes before you can alter the text
configuration object, and refresh the text index after altering the text configuration object. For immediate
refresh text indexes, you must drop the text index and recreate it after you alter the text configuration
object.

See:

○ “Text configuration objects” on page 312
○ “TRUNCATE TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
○ “ALTER TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
○ “REFRESH TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
○ “sa_refresh_text_indexes system procedure” [SQL Anywhere Server - SQL Reference]

You cannot alter a text index to refer to a different text configuration object. If you want a text index to refer
to another text configuration object, drop the text index and recreate it specifying the new text configuration
object.

Alter a text index
You can change the name of a text index, or change its refresh type.

To alter the refresh type for a text index (Sybase Central)

1. Connect to the database as a user with DBA authority, or as the owner of the table on which the text
index is built.

2. In the left pane, click Text Indexes.

3. Right-click the text index and choose Properties.

4. Edit the text index properties and click OK.

To alter the refresh type for a text index (SQL)

1. Connect to the database as a user with DBA authority, or as the owner of the text index.

2. Execute an ALTER TEXT INDEX statement. See “ALTER TEXT INDEX statement” [SQL Anywhere
Server - SQL Reference].

To rename a text index (Sybase Central)

1. Connect to the database as a user with DBA authority, or as the owner of the table on which the text
index is built.

2. In the left pane, click Text Indexes.

Querying data

330 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

3. Right-click the text index and choose Properties.

4. Click the General tab and type a new name for the text index.

5. Click OK.

To rename a text index (SQL)

1. Connect to the database as a user with DBA authority, or as the owner of the text index.

2. Execute an ALTER TEXT INDEX statement. See “ALTER TEXT INDEX statement” [SQL Anywhere
Server - SQL Reference].

See also
● “Text indexes” on page 326
● “Full text searching” on page 311

View text indexes in the database
You can view information about text indexes in the database using Sybase Central, or by using a SQL
statement.

To view text indexes in the database (Sybase Central)

1. Connect to the database as a user with DBA authority, or as the owner of the text index.

2. In the left pane, click Text Indexes.

3. To view the terms in the text index, double-click the text index in the left pane, and then choose the
Vocabulary tab in the right pane.

4. To view the text index settings, such as the refresh type or the text configuration object that the index
refers to, right-click the text index and choose Properties.

To view text indexes in the database (SQL)

1. Connect to the database as a user with DBA authority, or as the owner text index.

2. Call the sa_text_index_stats system procedure, as follows:

CALL sa_text_index_stats();

See also
● “sa_text_index_stats system procedure” [SQL Anywhere Server - SQL Reference]

Text indexes

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 331

Types of full text searches
Using full text search, you can search for terms, phrases (sequences of terms), or prefixes. You can also
combine multiple terms, phrases, or prefixes into boolean expressions, or require that expressions appear
near to each other with proximity searches.

You perform a full text search using a CONTAINS clause in either a WHERE clause or a FROM clause of
a SELECT statement. You can also perform a full text search as part of the IF search condition (for example,
SELECT IF CONTAINS...).

Term and phrase searching
When performing a full text search for a list of terms, the order of terms is not important unless they are
within a phrase. If you put the terms within a phrase, the database server looks for those terms in exactly the
same order, and same relative positions, in which you specified them.

When performing a term or phrase search, if terms are dropped from the query because they exceed term
length settings or because they are in the stoplist, you can get back a different number of rows than you
expect. This is because removing the terms from the query is equivalent to changing your search criteria.
For example, if you search for the phrase '"grown cotton"' and grown is in the stoplist, you get every
indexed row containing cotton.

You can search for the terms that are considered keywords of the CONTAINS clause grammar, as long as
they are within phrases.

Term searching
In the demo database, a text index called MarketingTextIndex has been built on the Description column of
the MarketingInformation table. The following statement queries the MarketingInformation.Description
column and returns the rows where the value in the Description column contains the term cotton.

SELECT ID, Description
 FROM MarketingInformation
 WHERE CONTAINS (Description, 'cotton');

ID Description

906 <html><head><meta http-equiv=Content-Type content="text/html;
charset=windows-1252"><title>Visor</title></head><body lang=EN-
US><p>Light-
weight 100% organically grown cotton construction. Shields against
sun and precipitation.cotton Metallic ions in the fibers inhibit
bacterial growth, and help neutralize odor.</p></body></
html>

Querying data

332 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ID Description

908 <html><head><meta http-equiv=Content-Type content="text/html;
charset=windows-1252"><title>Sweatshirt</title></head><body
lang=EN-US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Lightweight 100% organically grown cotton hooded sweat-
shirt with taped neck seams. Comes pre-washed for softness and to
lessen shrinkage.</p></body></html>

909 <html><head><meta http-equiv=Content-Type content="text/html;
charset=windows-1252"><title>Sweatshirt</title></head><body
lang=EN-US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Top-notch construction includes durable topstitched
seams for strength with low-bulk, resilient rib-knit collar, cuffs
and bottom. An 80% cotton/20% polyester blend makes it easy to
keep them clean.</p></body></html>

910 <html><head><meta http-equiv=Content-Type content="text/html;
charset=windows-1252"><title>Shorts</title></head><body lang=EN-
US><p>These
quick-drying cotton shorts provide all day comfort on or off the
trails. Now with a more comfortable and stretchy fabric and an ad-
justable drawstring waist.</p></body></html>

The following example queries the MarketingInformation table and returns a single value for each row
indicating whether the value in the Description column contains the term cotton.

SELECT ID, IF CONTAINS (Description, 'cotton')
 THEN 1
 ELSE 0
 ENDIF AS Results
 FROM MarketingInformation;

ID Results

901 0

902 0

903 0

904 0

905 0

906 1

907 0

908 1

Types of full text searches

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 333

ID Results

909 1

910 1

The next example queries the MarketingInformation table for items that have the term cotton the Description
column, and shows the score for each match.

SELECT ID, ct.score, Description
 FROM MarketingInformation CONTAINS (MarketingInformation.Description,
'cotton') as ct
 ORDER BY ct.score DESC;

ID score Description

908 0.9461597363521859 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Sweatshirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Lightweight 100% organically grown cot-
ton hooded sweatshirt with taped neck seams.
Comes pre-washed for softness and to lessen
shrinkage.</p></body></html>

910 0.9244136988525732 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Shorts</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>These quick-drying cotton shorts pro-
vide all day comfort on or off the trails. Now
with a more comfortable and stretchy fabric and
an adjustable drawstring waist.</p></
body></html>

906 0.9134171046194403 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Visor</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Lightweight 100% organically grown cot-
ton construction. Shields against sun and precip-
itation. Metallic ions in the fibers inhibit bac-
terial growth, and help neutralize odor.</
p></body></html>

Querying data

334 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ID score Description

909 0.8856420222728282 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Sweatshirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Top-notch construction includes durable
topstitched seams for strength with low-bulk, re-
silient rib-knit collar, cuffs and bottom. An 80%
cotton/20% polyester blend makes it easy to keep
them clean.</p></body></html>

For more information about scoring results when CONTAINS is used in the FROM clause of a query, see
“Scoring full text search results” on page 344.

Phrase searching

When performing a full text search for a phrase, you enclose the phrase in double quotes. A column matches
if it contains the terms in the specified order and relative positions.

You cannot specify CONTAINS keywords, such as AND or FUZZY, as terms to search for unless you place
them inside a phrase (single term phrases are allowed). For example, the statement below is acceptable even
though NOT is a CONTAINS keyword. For a list of CONTAINS keywords and special characters, see
“CONTAINS search condition” [SQL Anywhere Server - SQL Reference].

SELECT * FROM table-name CONTAINS (Remarks, '"NOT"');

With the exception of asterisk, special characters are not interpreted as special characters when they are in
a phrase.

Phrases cannot be used as arguments for proximity searches.

The following statement queries MarketingInformation.Description for the phrase "grown cotton", and
shows the score for each match:

SELECT ID, ct.score, Description
 FROM MarketingInformation CONTAINS (MarketingInformation.Description,
'"grown cotton"') as ct
 ORDER BY ct.score DESC;

ID score Description

908 1.6619019465461564 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Sweatshirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Lightweight 100% organically grown cot-
ton hooded sweatshirt with taped neck seams.
Comes pre-washed for softness and to lessen
shrinkage.</p></body></html>

Types of full text searches

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 335

ID score Description

906 1.6043904700786786 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Visor</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Lightweight 100% organically grown cot-
ton construction. Shields against sun and precip-
itation. Metallic ions in the fibers inhibit bac-
terial growth, and help neutralize odor.</
p></body></html>

Prefix searching
The full text search feature allows you to search for the beginning portion of a term. This is called a prefix
search. To perform a prefix search, you specify the prefix you want to search for, followed by an asterisk.
This is called a prefix term.

Keywords for the CONTAINS clause cannot be used for prefix searching unless they are in a phrase. For a
list of CONTAINS keywords, see “CONTAINS search condition” [SQL Anywhere Server - SQL
Reference].

You also can specify multiple prefix terms in a query string, including within phrases (for example, '"shi*
fab"').

For complete syntax restrictions for prefix searching, see “Allowed syntax for asterisk (*)” [SQL Anywhere
Server - SQL Reference].

The following example queries the MarketingInformation table for items that start with the prefix shi:

SELECT ID, ct.score, Description
 FROM MarketingInformation CONTAINS (MarketingInformation.Description,
'shi*') AS ct
 ORDER BY ct.score DESC;

ID score Description

906 2.295363835537917 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Visor</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Lightweight 100% organically grown cot-
ton construction. Shields against sun and precip-
itation. Metallic ions in the fibers inhibit bac-
terial growth, and help neutralize odor.</
p></body></html>

Querying data

336 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ID score Description

901 1.6883275743936228 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Tee Shirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>We've improved the design of this per-
ennial favorite. A sleek and technical shirt
built for the trail, track, or sidewalk. UPF rat-
ing of 50+.</p></body></html>

903 1.6336529491832605 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Tee Shirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>A sporty, casual shirt made of recycled
water bottles. It will serve you equally well on
trails or around town. The fabric has a wicking
finish to pull perspiration away from your
skin.</p></body></html>

902 1.6181703448678983 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Tee Shirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>This simple, sleek, and lightweight
technical shirt is designed for high-intensity
workouts in hot and humid weather. The recycled
polyester fabric is gentle on the earth and soft
against your skin.</p></body></html>

ID 906 has the highest score because the term shield occurs less frequently than shirt in the text index.

Prefix searches on GENERIC text indexes

On GENERIC text indexes, the behavior for prefix searches is as follows:

● If a prefix term is longer than the MAXIMUM TERM LENGTH, it is dropped from the query string
since there can be no terms in the text index that exceed the MAXIMUM TERM LENGTH. So, on a
text index with MAXIMUM TERM LENGTH 3, searching for 'red appl*' is equivalent to searching
for 'red'.

● If a prefix term is shorter than MINIMUM TERM LENGTH, and is not part of a phrase search, the prefix
search proceeds normally. So, on a GENERIC text index where MINIMUM TERM LENGTH is 5,
searching for 'macintosh a*' returns indexed rows that contain macintosh and any terms of length
5 or greater that start with a.

● If a prefix term is shorter than MINIMUM TERM LENGTH, but is part of a phrase search, the prefix
term is dropped from the query. So, on a GENERIC text index where MINIMUM TERM LENGTH is

Types of full text searches

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 337

5, searching for '"macintosh appl* turnover"' is equivalent to searching for macintosh
followed by any term followed by turnover. A row containing "macintosh turnover" will not be
found; there must be a term between macintosh and turnover.

Prefix searches on NGRAM text indexes

On NGRAM text indexes, prefix searching can return unexpected results since an NGRAM text index
contains only n-grams, and contains no information about the beginning of terms. Query terms are also
broken into n-grams, and searching is performed using the n-grams not the query terms. Because of this, the
following behaviors should be noted:

● If a prefix term is shorter than the n-gram length (MAXIMUM TERM LENGTH), the query returns all
indexed rows that contain n-grams starting with the prefix term. For example, on a 3-gram text index,
searching for 'ea*' returns all indexed rows containing n-grams starting with ea. So, if the terms
weather and fear were indexed, the rows would be considered matches since their n-grams include eat
and ear, respectively.

● If a prefix term is longer than n-gram length, and is not part of a phrase, and not an argument in a proximity
search, the prefix term is converted to an n-grammed phrase and the asterisk is dropped. For example,
on a 3-gram text index, searching for 'purple blac*' is equivalent to searching for '"pur urp
rpl ple" AND "bla lac"'.

● In the case of phrases, the following behavior also takes place:

○ If the prefix term is the only term in the phrase, it is converted to an n-grammed phrase and the
asterisk is dropped. For example, on a 3-gram text index, searching for '"purpl*"' is equivalent
to searching for '"pur urp rpl"'.

○ If the prefix term is in the last position of the phrase, the asterisk is dropped and the terms are converted
to a phrase of n-grams. For example, on a 3-gram text index, searching for '"purple
blac*"' is equivalent to searching for '"pur urp rpl ple bla lac"'.

○ If the prefix term is not in the last position of the phrase, the phrase is broken up into phrases that
are ANDed together. For example, on a 3-gram text index, searching for '"purp* blac*"' is
equivalent to searching for '"pur urp" AND "bla lac"'.

● If a prefix term is an argument in a proximity search, the proximity search is converted to an AND. For
example, on a 3-gram text index, searching for 'red NEAR[1] appl*' is equivalent to searching
for 'red AND "app ppl"'.

See also
● “Text indexes” on page 326
● “CONTAINS search condition” [SQL Anywhere Server - SQL Reference]

Proximity searching
The full text search feature allows you to search for terms that are near each other in a single column. This
is called a proximity search. To perform a proximity search, you specify two terms with either the keyword
NEAR between them, or the tilde (~).

Querying data

338 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

You can specify an integer argument with the NEAR keyword to specify the maximum distance. For
example, term1 NEAR[5] term2 finds instances of term1 that are within five terms of term2. The order of
terms is not significant; 'term1 NEAR term2' is equivalent to 'term2 NEAR term1'.

If you do not specify a distance, the database server uses 10 as the default distance.

You can also specify a tilde (~) instead of the NEAR keyword. For example, 'term1 ~ term2'.
However, you cannot specify a distance when using the tilde form; the default of ten terms is applied.

You cannot specify a phrase as an argument in proximity searches.

In a proximity search, if you specify a prefix term as an argument, the proximity search is converted to an
AND expression. For example, on a 3-gram text index, searching for 'red NEAR[1] appl*' is
equivalent to searching for 'red AND "app ppl"'. Since this is no longer a proximity search, the search
is no longer restricted to a single column in the case where multiple columns are specified in the CONTAINS
clause.

Examples
Suppose you want to search MarketingInformation.Description for the term fabric within 10 terms of the
term skin. You can execute the following statement.

SELECT ID, "contains".score, Description
 FROM MarketingInformation CONTAINS (Description, 'fabric ~ skin');

ID score Description

902 1.5572371866083279 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Tee Shirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>This simple, sleek, and lightweight
technical shirt is designed for high-intensity
workouts in hot and humid weather. The recycled
polyester fabric is gentle on the earth and soft
against your skin.</p></body></html>

Since the default distance is 10 terms, you did not need to specify a distance. By extending the distance by
one term, however, another row is returned:

SELECT ID, "contains".score, Description
 FROM MarketingInformation CONTAINS (Description, 'fabric NEAR[11] skin');

Types of full text searches

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 339

ID score Description

903 1.5787803210404958 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Tee Shirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>A sporty, casual shirt made of recycled
water bottles. It will serve you equally well on
trails or around town. The fabric has a wicking
finish to pull perspiration away from your
skin.</p></body></html>

902 2.163125855043747 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Tee Shirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>This simple, sleek, and lightweight
technical shirt is designed for high-intensity
workouts in hot and humid weather. The recycled
polyester fabric is gentle on the earth and soft
against your skin.</p></body></html>

The score for ID 903 is higher because the terms are closer together.

Boolean searching
You can specify multiple terms separated by Boolean operators when performing full text searches. SQL
Anywhere supports the following Boolean operators when performing a full text search: AND, OR, and
AND NOT.

For more information about the syntax for boolean searching, see “CONTAINS search condition” [SQL
Anywhere Server - SQL Reference].

Using the AND operator in full text searches
The AND operator matches a row if it contains both of the terms specified on either side of the AND. You
can also use an ampersand (&) for the AND operator. If terms are specified without an operator between
them, AND is implied.

The order in which the terms are listed is not important.

For example, each of the following statements finds rows in MarketingInformation.Description that contain
the term fabric and a term that begins with ski:

SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (MarketingInformation.Description, 'ski* AND fabric');
SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (MarketingInformation.Description, 'fabric & ski*');

Querying data

340 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (MarketingInformation.Description, 'ski* fabric');

Using the OR operator in full text searches
The OR operator matches a row if it contains at least one of the specified search terms on either side of the
OR. You can also use a vertical bar (|) for the OR operator; the two are equivalent.

The order in which the terms are listed is not important.

For example, either statement below returns rows in the MarketingInformation.Description that contain
either the term fabric or a term that starts with ski:

SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (MarketingInformation.Description, 'ski* OR fabric');
SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (MarketingInformation.Description, 'fabric | ski*');

Using the AND NOT operator in full text searches
The AND NOT operator finds results that match the left argument and do not match the right argument. You
can also use a hyphen (-) for the AND NOT operator; the two are equivalent.

For example, the following statements are equivalent and return rows that contain the term fabric, but do
not contain any terms that begin with ski.

SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (MarketingInformation.Description, 'fabric AND NOT
ski*');
SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (MarketingInformation.Description, 'fabric -ski*');
SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (MarketingInformation.Description, 'fabric & -ski*');

Combining different boolean operators
The boolean operators can be combined in a query string. For example, the following statements are
equivalent and search the MarketingInformation.Description column for items that contain fabric and
skin, but not cotton:

SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (MarketingInformation.Description, 'skin fabric -
cotton');
SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (MarketingInformation.Description, 'fabric -cotton AND
skin');

The following statements are equivalent and search the MarketingInformation.Description column for items
that contain fabric or both cotton and skin:

SELECT *
 FROM MarketingInformation

Types of full text searches

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 341

 WHERE CONTAINS (MarketingInformation.Description, 'fabric | cotton AND
skin');
SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (MarketingInformation.Description, 'cotton skin OR
fabric');

Grouping terms and phrases

Terms and expressions can be grouped with parentheses. For example, the following statement searches the
MarketingInformation.Description column for items that contain cotton or fabric, and that have terms that
start with ski.

SELECT ID, Description FROM MarketingInformation
 WHERE CONTAINS(MarketingInformation.Description, '(cotton OR fabric) AND
shi*');

Description

902 <html><head><meta http-equiv=Content-Type content="text/html;
charset=windows-1252"><title>Tee Shirt</title></head><body
lang=EN-US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>This simple, sleek, and lightweight technical shirt is
designed for high-intensity workouts in hot and humid weather. The
recycled polyester fabric is gentle on the earth and soft against
your skin.</p></body></html>

903 <html><head><meta http-equiv=Content-Type content="text/html;
charset=windows-1252"><title>Tee Shirt</title></head><body
lang=EN-US><p>A
sporty, casual shirt made of recycled water bottles. It will serve
you equally well on trails or around town. The fabric has a wick-
ing finish to pull perspiration away from your skin.</p></
body></html>

906 <html><head><meta http-equiv=Content-Type content="text/html;
charset=windows-1252"><title>Visor</title></head><body lang=EN-
US><p>Light-
weight 100% organically grown cotton construction. Shields against
sun and precipitation. Metallic ions in the fibers inhibit bacte-
rial growth, and help neutralize odor.</p></body></html>

Searching across multiple columns

You can perform a full text search across multiple columns in a single query, as long as the columns are part
of the same text index.

SELECT *
 FROM Products
 WHERE CONTAINS (t.c1, t.c2, 'term1|term2');
SELECT *
 FROM t

Querying data

342 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 WHERE CONTAINS(t.c1, 'term1')
 OR CONTAINS(t.c2, 'term2');

The first query matches if t1.c1 contains term1, or if t1.c2 contains term2.

The second query matches if either t1.c1 or t1.c2 contains either term1 or term2. Using the contains in this
manner also returns scores for the matches. See “Scoring full text search results” on page 344.

Fuzzy searches
Fuzzy searching can be used to search for misspellings or variations of a word. To do so, use the FUZZY
operator followed by a string in double quotes to find an approximate match for the string. For example,
CONTAINS (Products.Description, 'FUZZY "cotton"') returns cotton and misspellings
such as coton or cotten.

Note
You can only perform fuzzy searches on text indexes built using the NGRAM term breaker. For more
information about the NGRAM term breaker and how it applies to fuzzy searches, see “Text configuration
object settings” on page 312.

Using the FUZZY operator is equivalent to breaking the string manually into substrings of length n and
separating them with OR operators. For example, suppose you have a text index configured with the NGRAM
term breaker and a MAXIMUM TERM LENGTH of 3. Specifying 'FUZZY "500 main street"' is
equivalent to specifying '500 OR mai OR ain OR str OR tre OR ree OR eet'.

The FUZZY operator is useful in a full text search that returns a score. This is because many approximate
matches may be returned, but usually only the matches with the highest scores are meaningful.

Terms dropped from the index
Text indexes are built according to the settings defined for the text configuration object used to create the
text index. A term does not appear in a text index if one or more of the following conditions are true:

● the term is included in the stoplist

● the term is shorter than the minimum term length (GENERIC only)

● the term is longer than the maximum term length

The same rules apply to query strings. The dropped term can match zero or more terms at the end or beginning
of the phrase. For example, suppose the term 'the' is in the stoplist:

● If the term appears on either side of an AND, OR, or NEAR, then both the operator and the term are
removed. For example, searching for 'the AND apple', 'the OR apple', or 'the NEAR
apple' are equivalent to searching for 'apple'.

● If the term appears on the right side of an AND NOT, both the AND NOT and the term are dropped. For
example, searching for 'apple AND NOT the' is equivalent to searching for 'apple'.

Types of full text searches

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 343

If the term appears on the left side of an AND NOT, the entire expression is dropped and no rows are
returned. For example, 'orange and the AND NOT apple' = 'orange'

● If the term appears in a phrase, the phrase is allowed to match with any term at the dropped term's position.
For example, searching for 'feed the dog' matches 'feed the dog', 'feed my dog',
'feed any dog', and so on.

If none of the terms you are searching for are in the text index, no rows are returned. For example, suppose
both 'the' and 'a' are in the stoplist. Searching for 'a OR the' returns no rows.

See also
● “Text configuration objects” on page 312

View searching
To use a view in a full text search, you must build a text index on the required columns in the base table.
For example, suppose you create a text index on the Employees.Address column called
EmployeeAddressTxtIdx. Then, you create a view on the Employees table called MyEmployeesView. Using
a statement similar to the following, you can query the view using the text index on the underlying table.

SELECT COUNT(*) FROM MyEmployeesView WHERE CONTAINS(EmployeeAddressTxtIdx,
'Avenue');

Searching a view using a text index on the underlying base table is restricted as follows:

● The view cannot contain a TOP, FIRST, DISTINCT, GROUP BY, ORDER BY, UNION, INTERSECT,
EXCEPT clause, or window function.

● A CONTAINS query can refer to a base table inside a view, but not to a base table inside a view inside
another view.

Scoring full text search results
When you include a CONTAINS clause in the FROM clause of a query, each match has a score associated
with it. The score indicates how close the match is, and you can use score information to sort the data.

Scoring is based on two main criteria:

● Number of times a term appears in the indexed row The more times a term appears in an indexed
row, the higher its score.

● Number of times a term appears in the text index The more times a term appears in a text index,
the lower its score. In Sybase Central, you can view how many times a term appears in the text index by
viewing the Vocabulary tab for the text index. Choose the term column to sort the terms alphabetically.
The freq column tells you how many times the term appears in the text index.

Then, depending on the type of full text search, other criteria impact scoring. For example, in proximity
searches, the proximity of search terms impacts scoring.

Querying data

344 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

How to use scores
By default, the result set of a CONTAINS clause has the correlation name contains that has a single column
in it called score. You can refer to "contains".score in the SELECT list, ORDER BY clause, or other
parts of the query. However, because contains is a SQL reserved word, you must remember to put it in double
quotes. Alternatively, you can specify another correlation name such (for example, CONTAINS
(expression) AS ct). In the documentation examples for full text search, the score column is
referred to as ct.score.

The following statement searches MarketingInformation.Description for terms starting with stretch or terms
starting with comfort:

SELECT ID, ct.score, Description
 FROM MarketingInformation CONTAINS (MarketingInformation.Description,
'stretch* | comfort*') AS ct
 ORDER BY ct.score DESC;

ID score Description

910 5.570408968026068 <html><head><meta http-
equiv=Content-Type con-
tent="text/html; char-
set=windows-1252"><ti-
tle>Shorts</title></
head><body lang=EN-
US><p><span style='font-
size:10.0pt;font-fami-
ly:Arial'>These quick-drying
cotton shorts provide all day
comfort on or off the trails.
Now with a more comfortable
and stretchy fabric and an
adjustable drawstring
waist.</p></body></
html>

Types of full text searches

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 345

ID score Description

907 3.658418186470189 <html><head><meta http-
equiv=Content-Type con-
tent="text/html; char-
set=windows-1252"><title>Vi-
sor</title></head><body
lang=EN-US><p><span
style='font-size:
10.0pt;font-family:Arial'>A
polycarbonate visor with an
abrasion-resistant coating
on the outside. Great for
jogging in the spring, sum-
mer, and early fall. The
elastic headband has plenty
of stretch to give you a snug
yet comfortable fit every
time you wear it.</
p></body></html>

905 1.6750365447462499 <html><head><meta http-
equiv=Content-Type con-
tent="text/html; char-
set=windows-1252"><ti-
tle>Baseball Cap</title></
head><body lang=EN-
US><p><span style='font-
size:10.0pt;font-fami-
ly:Arial'>A lightweight wool
cap with mesh side vents for
breathable comfort during
aerobic activities. Mois-
ture-absorbing headband lin-
er.</p></body></html>

Item 910 has the highest score because it contains two instances of the prefix term comfort, whereas the
others only have one instance. As well, item 910 has an instance of the prefix term stretch.

Example 2: Searching multiple columns
The following example shows you how to perform a full text search across multiple columns and score the
results:

1. Create an immediate text index on the Products table as follows:

CREATE TEXT INDEX scoringExampleMult
 ON Products (Description, Name);

Querying data

346 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

2. Perform a full text search on the Description and Name columns for the terms cap or visor, as follows.
The result of the CONTAINS clause is assigned the correlation name ct, and is referenced in the SELECT
list so that it is included in the results. Also, the ct.score column is referenced in the ORDER BY clause
to sort the results in descending order by score.

SELECT Products.Description, Products.Name, ct.score
 FROM Products CONTAINS (Products.Description, Products.Name, 'cap OR
visor') ct
 ORDER BY ct.score DESC;

Description Name score

Cloth Visor Visor 3.5635154905713042

Plastic Visor Visor 3.4507856451176244

Wool cap Baseball Cap 3.2340501745357333

Cotton Cap Baseball Cap 3.090467108972918

The scores for a multi-column search are calculated as if the column values were concatenated together
and indexed as a single value. Note, however, that phrases and NEAR operators never match across
column boundaries, and that a search term that appears in more than one column increases the score
more than it would in a single concatenated value.

3. For other examples in the documentation to work properly, you must delete the text index you created
on the Products table. To do so, execute the following statement:

DROP TEXT INDEX scoringExampleMult ON Products;

Tutorial: Performing a full text search on a GENERIC text
index

Use the following procedure to perform a full text search on a text index that uses a GENERIC term breaker.

See also: “Tutorial: Performing a fuzzy full text search” on page 353.

Perform a full text search on a GENERIC text index

1. Create the text configuration object.

The following example creates a text configuration object called myTxtConfig. Remember that you must
include the FROM clause to specify the text configuration object to use as a template.

CREATE TEXT CONFIGURATION myTxtConfig FROM default_char;
2. Customize the text configuration object.

Add a stoplist containing the words because, about, therefore, and only. Then, set the maximum term
length to 30. You must do this in separate ALTER TEXT CONFIGURATION statements, as follows:

Types of full text searches

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 347

ALTER TEXT CONFIGURATION myTxtConfig
 STOPLIST 'because about therefore only';
ALTER TEXT CONFIGURATION myTxtConfig
 MAXIMUM TERM LENGTH 30;

3. Create a copy of the MarketingInformation table.

a. In Sybase Central, expand the Tables folder.

b. Right-click MarketingInformation and choose Copy.

c. Right-click the Tables folder and choose Paste.

d. In the Name field, type MarketingInformation1. Click OK.

4. In Interactive SQL, execute the following command to populate the new table with data:

INSERT INTO MarketingInformation1
 SELECT * FROM MarketingInformation;

5. On the Description column of the MarketingInformation1 table in the demo database, create a text index
that references the myTxtConfig text configuration object. Set the refresh interval to 24 hours.

CREATE TEXT INDEX myTxtIndex ON MarketingInformation1 (Description)
 CONFIGURATION myTxtConfig
 AUTO REFRESH EVERY 24 HOURS;

6. Execute the following statement to refresh the text index:

REFRESH TEXT INDEX myTxtIndex ON MarketingInformation1;
7. Execute the following statements to test the text index.

a. This statement searches the text index for the terms cotton or cap. The results are sorted by score in
descending order. Cap has a higher score than cotton because cap occurs less frequently in the text
index.

SELECT ID, Description, ct.*
 FROM MarketingInformation1
 CONTAINS (Description, 'cotton | cap') ct
 ORDER BY score DESC;

ID Description Score

905 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Baseball Cap</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>A light-
weight wool cap with mesh side vents for
breathable comfort during aerobic activi-
ties. Moisture-absorbing headband liner.</
span></p></body></html>

2.2742084275032632

Querying data

348 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ID Description Score

904 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Baseball Cap</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>This fash-
ionable hat is ideal for glacier travel,
sea-kayaking, and hiking. With concealed
draw cord for windy days.</p></
body></html>

1.6980426550094467

908 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Sweatshirt</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>Lightweight
100% organically grown cotton hooded sweat-
shirt with taped neck seams. Comes pre-wash-
ed for softness and to lessen shrinkage. </
span></p></body></html>

0.9461597363521859

910 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Shorts</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>These quick-
drying cotton shorts provide all day comfort
on or off the trails. Now with a more com-
fortable and stretchy fabric and an adjust-
able drawstring waist.</p></body></
html>

0.9244136988525732

906 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Visor</title></head><body
lang=EN-US><p><span style='font-size:
10.0pt;font-family:Arial'>Lightweight 100%
organically grown cotton construction.
Shields against sun and precipitation. Met-
allic ions in the fibers inhibit bacterial
growth, and help neutralize odor.</
p></body></html>

0.9134171046194403

Types of full text searches

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 349

ID Description Score

909 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Sweatshirt</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>Top-notch
construction includes durable topstitched
seams for strength with low-bulk, resilient
rib-knit collar, cuffs and bottom. An 80%
cotton/20% polyester blend makes it easy to
keep them clean.</p></body></html>

0.8856420222728282

b. Query 2:

SELECT ID, Description
 FROM MarketingInformation1
 WHERE CONTAINS(Description, 'cotton -visor');

ID Description

908 <html><head><meta http-equiv=Content-Type content="text/
html; charset=windows-1252"><title>Sweatshirt</title></
head><body lang=EN-US><p><span style='font-size:10.0pt;font-
family:Arial'>Lightweight 100% organically grown cotton hoo-
ded sweatshirt with taped neck seams. Comes pre-washed for
softness and to lessen shrinkage.</p></body></html>

909 <html><head><meta http-equiv=Content-Type content="text/
html; charset=windows-1252"><title>Sweatshirt</title></
head><body lang=EN-US><p><span style='font-size:10.0pt;font-
family:Arial'>Top-notch construction includes durable top-
stitched seams for strength with low-bulk, resilient rib-knit
collar, cuffs and bottom. An 80% cotton/20% polyester blend
makes it easy to keep them clean.</p></body></html>

910 <html><head><meta http-equiv=Content-Type content="text/
html; charset=windows-1252"><title>Shorts</title></
head><body lang=EN-US><p><span style='font-size:10.0pt;font-
family:Arial'>These quick-drying cotton shorts provide all
day comfort on or off the trails. Now with a more comfortable
and stretchy fabric and an adjustable drawstring waist.</
span></p></body></html>

c. The following statements tests each row for the term cotton. If the row contains the term, a 1 appears
in the Results column; otherwise, a 0 is returned.

SELECT ID, Description, IF CONTAINS (Description, 'cotton')
 THEN 1
 ELSE 0

Querying data

350 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 ENDIF AS Results
 FROM MarketingInformation1;

ID Description Results

901 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Tee
Shirt</title></head><body lang=EN-US><p>We've im-
proved the design of this perennial favorite. A sleek
and technical shirt built for the trail, track, or
sidewalk. UPF rating of 50+.</p></body></html>

0

902 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Tee
Shirt</title></head><body lang=EN-US><p>This sim-
ple, sleek, and lightweight technical shirt is de-
signed for high-intensity workouts in hot and humid
weather. The recycled polyester fabric is gentle on
the earth and soft against your skin.</p></
body></html>

0

903 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Tee
Shirt</title></head><body lang=EN-US><p>A sporty,
casual shirt made of recycled water bottles. It will
serve you equally well on trails or around town. The
fabric has a wicking finish to pull perspiration away
from your skin.</p></body></html>

0

904 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Base-
ball Cap</title></head><body lang=EN-US><p>This
fashionable hat is ideal for glacier travel, sea-
kayaking, and hiking. With concealed draw cord for
windy days.</p></body></html>

0

905 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Base-
ball Cap</title></head><body lang=EN-US><p>A light-
weight wool cap with mesh side vents for breathable
comfort during aerobic activities. Moisture-absorbing
headband liner.</p></body></html>

0

Types of full text searches

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 351

ID Description Results

906 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Vi-
sor</title></head><body lang=EN-US><p>Light-
weight 100% organically grown cotton construction.
Shields against sun and precipitation. Metallic ions
in the fibers inhibit bacterial growth, and help neu-
tralize odor.</p></body></html>

1

907 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Vi-
sor</title></head><body lang=EN-US><p>A poly-
carbonate visor with an abrasion-resistant coating on
the outside. Great for jogging in the spring, summer,
and early fall. The elastic headband has plenty of
stretch to give you a snug yet comfortable fit every
time you wear it.</p></body></html>

0

908 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Sweat-
shirt</title></head><body lang=EN-US><p>Light-
weight 100% organically grown cotton hooded sweat-
shirt with taped neck seams. Comes pre-washed for
softness and to lessen shrinkage.</p></body></
html>

1

909 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Sweat-
shirt</title></head><body lang=EN-US><p>Top-notch
construction includes durable topstitched seams for
strength with low-bulk, resilient rib-knit collar,
cuffs and bottom. An 80% cotton/20% polyester blend
makes it easy to keep them clean.</p></body></
html>

1

Querying data

352 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ID Description Results

910 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Shorts</title></head><body lang=EN-US><p>These
quick-drying cotton shorts provide all day comfort on
or off the trails. Now with a more comfortable and
stretchy fabric and an adjustable drawstring waist.</
span></p></body></html>

1

See also
● “Full text searching” on page 311
● “Text configuration objects” on page 312
● “CREATE TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “Text indexes” on page 326
● “CREATE TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]

Tutorial: Performing a fuzzy full text search
Use the following procedure to perform a fuzzy full text search on a text index that uses a NGRAM term
breaker.

See also: “Tutorial: Performing a full text search on a GENERIC text index” on page 347.

Perform a fuzzy full text search on a NGRAM term index

1. Execute the following statement to create a text configuration object called myFuzzyTextConfig.

CREATE TEXT CONFIGURATION myFuzzyTextConfig FROM default_char;
2. Execute the following statement to change the term breaker to NGRAM and set the maximum term

length to 3. Fuzzy searches are performed using n-grams. Separate ALTER TEXT CONFIGURATION
statements are used to implement these changes:

ALTER TEXT CONFIGURATION myFuzzyTextConfig
 TERM BREAKER NGRAM;
ALTER TEXT CONFIGURATION myFuzzyTextConfig
 MAXIMUM TERM LENGTH 3;

3. Create a copy of the MarketingInformation table.

a. In Sybase Central, expand the Tables folder.

b. Right-click MarketingInformation and choose Copy.

c. Right-click the Tables folder and choose Paste.

d. In the Name field, type MarketingInformation2. Click OK.

Types of full text searches

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 353

4. Execute the following command to add data to the MarketingInformation2 table:

INSERT INTO MarketingInformation2
 SELECT * FROM MarketingInformation;

5. Execute the following command to create a text index on the MarketingInformation2.Description column
that references the myFuzzyTextConfig text configuration object:

CREATE TEXT INDEX myFuzzyTextIdx ON MarketingInformation2 (Description)
 CONFIGURATION myFuzzyTextConfig;

6. Execute the following statements to test the text index.

The following fuzzy query checks for terms similar to coten.

SELECT MarketingInformation2.Description, ct.*
 FROM MarketingInformation2 CONTAINS
(MarketingInformation2.Description, 'FUZZY "coten"') ct
 ORDER BY ct.score DESC;

Description Score

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Sweatshirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Lightweight 100% organically grown cot-
ton hooded sweatshirt with taped neck seams. Comes
pre-washed for softness and to lessen shrinkage.</
span></p></body></html>

0.9461597363521859

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Shorts</title></head><body lang=EN-US><p>These
quick-drying cotton shorts provide all day comfort
on or off the trails. Now with a more comfortable
and stretchy fabric and an adjustable drawstring
waist.</p></body></html>

0.9244136988525732

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Vi-
sor</title></head><body lang=EN-US><p>Light-
weight 100% organically grown cotton construction.
Shields against sun and precipitation. Metallic
ions in the fibers inhibit bacterial growth, and
help neutralize odor.</p></body></html>

0.9134171046194403

Querying data

354 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Description Score

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Sweatshirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Top-notch construction includes durable
topstitched seams for strength with low-bulk, re-
silient rib-knit collar, cuffs and bottom. An 80%
cotton/20% polyester blend makes it easy to keep
them clean.</p></body></html>

0.8856420222728282

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Baseball Cap</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>This fashionable hat is ideal for glacier
travel, sea-kayaking, and hiking. With concealed
draw cord for windy days.</p></body></html>

0

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Baseball Cap</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>A lightweight wool cap with mesh side
vents for breathable comfort during aerobic activ-
ities. Moisture-absorbing headband liner.</
p></body></html>

0

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Tee
Shirt</title></head><body lang=EN-US><p>We've
improved the design of this perennial favorite. A
sleek and technical shirt built for the trail,
track, or sidewalk. UPF rating of 50+.</p></
body></html>

0

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Tee
Shirt</title></head><body lang=EN-US><p>A spor-
ty, casual shirt made of recycled water bottles. It
will serve you equally well on trails or around
town. The fabric has a wicking finish to pull per-
spiration away from your skin.</p></body></
html>

0

Types of full text searches

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 355

Description Score

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Tee
Shirt</title></head><body lang=EN-US><p>This
simple, sleek, and lightweight technical shirt is
designed for high-intensity workouts in hot and hu-
mid weather. The recycled polyester fabric is gen-
tle on the earth and soft against your skin.</
span></p></body></html>

0

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Vi-
sor</title></head><body lang=EN-US><p>A poly-
carbonate visor with an abrasion-resistant coating
on the outside. Great for jogging in the spring,
summer, and early fall. The elastic headband has
plenty of stretch to give you a snug yet comforta-
ble fit every time you wear it.</p></body></
html>

0

Note
The last six rows have terms that contain matching n-grams. However, no scores are assigned to them because
all row in the table contain these terms.

See also
● “Full text searching” on page 311
● “Text configuration objects” on page 312
● “CREATE TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “Text indexes” on page 326
● “CREATE TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “Scoring full text search results” on page 344

Tutorial: Performing a full text search on a NGRAM text index
Use the following procedure to perform a full text search on a text index that uses a NGRAM term breaker.
This procedure can also be used to create a full text search of Chinese, Japanese, or Korean data

In databases with multibyte character sets, some punctuation and space characters such as full width commas
and full width spaces may be treated as alphanumeric characters.

See also: “Tutorial: Performing a fuzzy full text search” on page 353.

Querying data

356 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Perform a full text search on an NGRAM text index

1. Execute the following statement to create an NCHAR text configuration object named
myNcharNGRAMTextConfig:

CREATE TEXT CONFIGURATION myNcharNGRAMTextConfig FROM default_nchar;
2. Execute the following statements to change the TERM BREAKER algorithm to NGRAM, and to set

MAXIMUM TERM LENGTH (N) to 2.

ALTER TEXT CONFIGURATION myNcharNGRAMTextConfig
 TERM BREAKER NGRAM;
ALTER TEXT CONFIGURATION myNcharNGRAMTextConfig
 MAXIMUM TERM LENGTH 2;

For Chinese, Japanese, and Korean data, the recommended value for N is 2 or 3. For searches limited to
one or two characters, set the N value to 1. Setting the N value to 1 can cause slower execution of long
queries.

3. Create a copy of the MarketingInformation table.

a. In Sybase Central, expand the Tables folder.

b. Right-click MarketingInformation and choose Copy.

c. Right-click the Tables folder and choose Paste.

d. In the Name field, type MarketingInformationNgram. Click OK.

4. Execute the following statement to add data to the MarketingInformationNgram table:

INSERT INTO MarketingInformationNgram
 SELECT *
 FROM MarketingInformation;
COMMIT;

5. Execute the following statement to create an IMMEDIATE REFRESH text index on
MarketingInformationNgram.Description column using the myNcharNGRAMTextConfig text
configuration object:

CREATE TEXT INDEX ncharNGRAMTextIndex
 ON MarketingInformationNgram(Description)
 CONFIGURATION myNcharNGRAMTextConfig;

6. Execute the following statements to test the text index.

a. This statement searches the 2-GRAM text index for terms containing sw. The results are sorted by
score in descending order.

SELECT M.Description, ct.*
 FROM MarketingInformationNgram AS M
CONTAINS(M.Description, 'sw') ct
 ORDER BY ct.score DESC;

Types of full text searches

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 357

Description Score

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Sweatshirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Lightweight 100% organically grown
cotton hooded Sweatshirt with taped neck seams.
Comes pre-washed for softness and to lessen
shrinkage.</p></body></html>

2.262071918398649

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Sweatshirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Top-notch construction includes dura-
ble topstitched seams for strength with low-
bulk, resilient rib-knit collar, cuffs and bot-
tom. An 80% cotton/20% polyester blend makes it
easy to keep them clean.</p></body></
html>

1.5556043490424176

b. The following statement searches for terms containing ams. The results are sorted by score in
descending order.

SELECT M.Description, ct.*
 FROM MarketingInformationNgram AS M
CONTAINS(M.Description, 'ams') ct
 ORDER BY ct.score DESC;

With the 2-GRAM text index, the previous statement is semantically equivalent to:

SELECT M.Description, ct.*
 FROM MarketingInformationNgram AS M
CONTAINS(M.Description, '"am ms"') ct
 ORDER BY ct.score DESC;

Description Score

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Sweatshirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Lightweight 100% organically grown
cotton hooded sweatshirt with taped neck seams.
Comes pre-washed for softness and to lessen
shrinkage.</p></body></html>

1.6619019465461564

Querying data

358 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Description Score

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Sweatshirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Top-notch construction includes dura-
ble topstitched seams for strength with low-
bulk, resilient rib-knit collar, cuffs and bot-
tom. An 80% cotton/20% polyester blend makes it
easy to keep them clean.</p></body></
html>

1.5556043490424176

c. The following statement searches for terms with v followed by any alphanumeric character. Because
ve occurs more frequently in the indexed data, rows that contain the 2-gram ve are assigned a lower
score than rows containing vi. The results are sorted by score in descending order.

SELECT M.ID, M.Description, ct.*
 FROM MarketingInformationNgram AS M
CONTAINS(M.Description, 'v*') ct
 ORDER BY ct.score DESC;

ID Description Score

901 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Tee Shirt</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>We've im-
proved the design of this perennial
favvorite. A sleek and technical shirt built
for the trail, track, or sidewalk. UPF rat-
ing of 50+.</p></body></html>

3.3416789108071976

907 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Visor</title></head><body
lang=EN-US><p><span style='font-size:
10.0pt;font-family:Arial'>A polycarbonate
visor with an abrasion-resistant coating on
the outside. Great for jogging in the
spring, summer, and early fall. The elastic
headband has plenty of stretch to give you a
snug yet comfortable fit every time you wear
it.</p></body></html>

2.1123084896159376

Types of full text searches

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 359

ID Description Score

905 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Baseball Cap</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>A light-
weight wool cap with mesh side vents for
breathable comfort during aerobic ac-
tivities. Moisture-absorbing headband lin-
er.</p></body></html>

1.6750365447462499

910 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Shorts</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>These quick-
drying cotton shorts provide all day comfort
on or off the trails. Now with a more com-
fortable and stretchy fabric and an adjust-
able drawstring waist.</p></body></
html>

0.9244136988525732

906 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Visor</title></head><body
lang=EN-US><p><span style='font-size:
10.0pt;font-family:Arial'>Lightweight 100%
organically grown cotton construction.
Shields against sun and precipitation. Met-
allic ions in the fibers inhibit bacterial
growth, and help neutralize odor.</
p></body></html>

0.9134171046194403

904 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Baseball Cap</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>This fash-
ionable hat is ideal for glacier travel,
sea-kayaking, and hiking. With concealed
draw cord for windy days.</p></
body></html>

0.7313071661212746

Querying data

360 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ID Description Score

903 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Tee Shirt</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>A sporty,
casual shirt made of recycled water bottles.
It will serve you equally well on trails or
around town. The fabric has a wicking finish
to pull perspiration away from your skin.</
span></p></body></html>

0.6799436746197272

d. The following statements search each row for any terms containing v. After the second statement,
the variable contains the string av OR ev OR iv OR ov OR rv OR ve OR vi OR vo.
The results are sorted by score in descending order. When an n-gram appears in all indexed rows, it
is assigned a score of zero.
This is the only method that allows a single character to be located if it appears before a whitespace
or a non-alphanumeric character.

CREATE VARIABLE query NVARCHAR (100);
SELECT LIST (term, ' OR ')
INTO query
 FROM sa_text_index_vocab('ncharNGRAMTextIndex',
'MarketingInformationNgram', 'dba')
 WHERE term LIKE '%v%';
SELECT M.ID, M.Description, ct.*
 FROM MarketingInformationNgram AS M
 CONTAINS(M.Description, query) ct
 ORDER BY ct.score DESC;

ID Description Score

901 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Tee Shirt</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>We've
improved the design of this perennial
favorite. A sleek and technical shirt built
for the trail, track, or sidewalk. UPF rat-
ing of 50+.</p></body></html>

6.654350268810443

Types of full text searches

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 361

ID Description Score

907 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Visor</title></head><body
lang=EN-US><p><span style='font-size:
10.0pt;font-family:Arial'>A polycarbonate
visor with an abrasion-resistant coating on
the outside. Great for jogging in the
spring, summer, and early fall. The elastic
headband has plenty of stretch to give you a
snug yet comfortable fit every time you wear
it.</p></body></html>

4.265623837817126

903 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Tee Shirt</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>A sporty,
casual shirt made of recycled water bottles.
It will serve you equally well on trails or
around town. The fabric has a wicking finish
to pull perspiration away from your skin.</
span></p></body></html>

2.9386676702799504

910 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Shorts</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>These quick-
drying cotton shorts provide all day comfort
on or off the trails. Now with a more com-
fortable and stretchy fabric and an adjust-
able drawstring waist.</p></body></
html>

2.5481193655722336

904 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Baseball Cap</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>This fash-
ionable hat is ideal for glacier travel,
sea-kayaking, and hiking. With concealed
draw cord for windy days.</p></
body></html>

2.4293498211307214

Querying data

362 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ID Description Score

905 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Baseball Cap</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>A light-
weight wool cap with mesh side vents for
breathable comfort during aerobic
activities. Moisture-absorbing headband lin-
er.</p></body></html>

1.6750365447462499

906 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Visor</title></head><body
lang=EN-US><p><span style='font-size:
10.0pt;font-family:Arial'>Lightweight 100%
organically grown cotton construction.
Shields against sun and precipitation. Met-
allic ions in the fibers inhibit bacterial
growth, and help neutralize odor.</
p></body></html>

0.9134171046194403

902 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Tee Shirt</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>This simple,
sleek, and lightweight technical shirt is
designed for high-intensity workouts in hot
and humid weather. The recycled polyester
fabric is gentle on the earth and soft
against your skin.</p></body></html>

0

908 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Sweatshirt</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>Lightweight
100% organically grown cotton hooded sweat-
shirt with taped neck seams. Comes pre-wash-
ed for softness and to lessen shrinkage.</
span></p></body></html>

0

Types of full text searches

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 363

ID Description Score

909 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Sweatshirt</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>Top-notch
construction includes durable topstitched
seams for strength with low-bulk, resilient
rib-knit collar, cuffs and bottom. An 80%
cotton/20% polyester blend makes it easy to
keep them clean.</p></body></html>

0

e. The following statement searches the Description column for rows that contain ea, ka, and k.

SELECT M.ID, M.Description, ct.*
 FROM MarketingInformationNgram AS M
CONTAINS(M.Description, 'ea ka ki') ct
 ORDER BY ct.score DESC;

ID Description Score

904 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Baseball Cap</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>This fash-
ionable hat is ideal for glacier travel,
sea-kayaking, and hiking. With concealed
draw cord for windy days.</p></
body></html>

3.4151032739119733

f. The following statement searches the Description column for rows that contain ve and vi, but not
gg.

SELECT M.ID, M.Description, ct.*
 FROM MarketingInformationNgram AS M
CONTAINS(M.Description, 've & vi –gg') ct
 ORDER BY ct.score DESC;

Querying data

364 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ID Description Score

905 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Baseball Cap</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>A light-
weight wool cap with mesh side vents for
breathable comfort during aerobic ac-
tivities. Moisture-absorbing headband lin-
er.</p></body></html>

1.6750365447462499

Types of full text searches

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 365

366

Summarizing, grouping, and sorting query
results

Contents
Summarizing query results using aggregate functions .. 368
The GROUP BY clause: Organizing query results into groups 373
The HAVING clause: selecting groups of data .. 378
The ORDER BY clause: sorting query results ... 380
Performing set operations on query results with UNION, INTERSECT, and
EXCEPT .. 383

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 367

Summarizing query results using aggregate
functions

Aggregate functions display summaries of the values in specified columns. You can also use the GROUP
BY clause, HAVING clause, and ORDER BY clause to group and sort the results of queries using aggregate
functions, and the UNION operator to combine the results of queries.

You can apply aggregate functions to all the rows in a table, to a subset of the table specified by a WHERE
clause, or to one or more groups of rows in the table. From each set of rows to which an aggregate function
is applied, SQL Anywhere generates a single value.

The following are some of the supported aggregate functions:

● avg(expression) The mean of the supplied expression over the returned rows.

● count(expression) The number of rows in the supplied group where the expression is not NULL.

● count(*) The number of rows in each group.

● list(string-expr) A string containing a comma-separated list composed of all the values for string-
expr in each group of rows.

● max(expression) The maximum value of the expression, over the returned rows.

● min(expression) The minimum value of the expression, over the returned rows.

● stddev(expression) The standard deviation of the expression, over the returned rows.

● sum(expression) The sum of the expression, over the returned rows.

● variance(expression) The variance of the expression, over the returned rows.

For a complete list of aggregate functions, see “Aggregate functions” [SQL Anywhere Server - SQL
Reference].

You can use the optional keyword DISTINCT with AVG, SUM, LIST, and COUNT to eliminate duplicate
values before the aggregate function is applied.

The expression to which the syntax statement refers is usually a column name. It can also be a more general
expression.

For example, with this statement you can find what the average price of all products would be if one dollar
were added to each price:

SELECT AVG (UnitPrice + 1)
FROM Products;

Example
The following query calculates the total payroll from the annual salaries in the Employees table:

SELECT SUM(Salary)
FROM Employees;

Summarizing, grouping, and sorting query results

368 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To use aggregate functions, you must give the function name followed by an expression on whose values it
will operate. The expression, which is the Salary column in this example, is the function's argument and
must be specified inside parentheses.

Where you can use aggregate functions
The aggregate functions can be used in a select list, as in the previous examples, or in the HAVING clause
of a select statement that includes a GROUP BY clause. See “The HAVING clause: selecting groups of
data” on page 378.

You cannot use aggregate functions in a WHERE clause or in a JOIN condition. However, a SELECT
statement with aggregate functions in its select list often includes a WHERE clause that restricts the rows
to which the aggregate is applied.

If a SELECT statement includes a WHERE clause, but not a GROUP BY clause, an aggregate function
produces a single value for the subset of rows that the WHERE clause specifies.

Whenever an aggregate function is used in a SELECT statement that does not include a GROUP BY clause,
it produces a single value. This is true whether it is operating on all the rows in a table or on a subset of rows
defined by a where clause.

You can use more than one aggregate function in the same select list, and produce more than one scalar
aggregate in a single SELECT statement.

Aggregate functions and outer references
SQL Anywhere follows SQL/2003 standards for clarifying the use of aggregate functions when they appear
in a subquery. These changes affect the behavior of statements written for previous versions of the software:
previously correct queries may now produce error messages, and result sets may change.

When an aggregate function appears in a subquery, and the column referenced by the aggregate function is
an outer reference, the entire aggregate function itself is now treated as an outer reference. This means that
the aggregate function is now computed in the outer block, not in the subquery, and becomes a constant
within the subquery.

The following restrictions apply to the use of outer reference aggregate functions in subqueries:

● The outer reference aggregate function can only appear in subqueries that are in the SELECT list or
HAVING clause, and these clauses must be in the immediate outer block.

● Outer reference aggregate functions can only contain one outer column reference.

● Local column references and outer column references cannot be mixed in the same aggregate function.

Some problems related to the new standards can be circumvented by rewriting the aggregate function so that
it only includes local references. For example, the subquery (SELECT MAX(S.y + R.y) FROM S)
contains both a local column reference (S.y) and an outer column reference (R.y), which is now illegal. It
can be rewritten as (SELECT MAX(S.y) + R.y FROM S). In the rewrite, the aggregate function has
only a local column reference. The same sort of rewrite can be used when an outer reference aggregate
function appears in clauses other than SELECT or HAVING.

Summarizing query results using aggregate functions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 369

Example
The following query produced the following results in Adaptive Server Anywhere version 7.

SELECT Name,
 (SELECT SUM(p.Quantity)
 FROM SalesOrderItems)
 FROM Products p;

Name SUM(p.Quantity)

Tee shirt 30,716

Tee shirt 59,238

In later versions, the same query produces the error message SQL Anywhere Error -149:
Function or column reference to 'name' must also appear in a GROUP BY.
The reason that the statement is no longer valid is that the outer reference aggregate function
sum(p.Quantity) is now computed in the outer block. In later versions, the query is semantically
equivalent to the following (except that Z does not appear as part of the result set):

SELECT Name,
 SUM(p.Quantity) AS Z,
 (SELECT Z
 FROM SalesOrderItems)
 FROM Products p;

Since the outer block now computes an aggregate function, the outer block is treated as a grouped query and
column name must appear in a GROUP BY clause to appear in the SELECT list.

Aggregate functions and data types
Some aggregate functions have meaning only for certain kinds of data. For example, you can use SUM and
AVG with numeric columns only.

However, you can use MIN to find the lowest value—the one closest to the beginning of the alphabet—in
a character column:

SELECT MIN(Surname)
 FROM Contacts;

Using COUNT(*)
COUNT(*) returns the number of rows in the specified table without eliminating duplicates. It counts each
row separately, including rows that contain NULL. This function does not require an expression as an
argument because, by definition, it does not use information about any particular column.

The following statement finds the total number of employees in the Employees table:

SELECT COUNT(*)
 FROM Employees;

Summarizing, grouping, and sorting query results

370 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Like other aggregate functions, you can combine COUNT(*) with other aggregate functions in the select
list, with WHERE clauses, and so on. For example:

SELECT COUNT(*), AVG(UnitPrice)
 FROM Products
 WHERE UnitPrice > 10;

COUNT(*) AVG(Products.UnitPrice)

5 18.2

Using aggregate functions with DISTINCT
The DISTINCT keyword is optional with SUM, AVG, and COUNT. When you use DISTINCT, duplicate
values are eliminated before calculating the sum, average, or count. For example, to find the number of
different cities in which there are contacts, execute the following statement:

SELECT COUNT(DISTINCT City)
 FROM Contacts;

COUNT(DISTINCT Contacts.City)

16

You can use more than one aggregate function with DISTINCT in a query. Each DISTINCT is evaluated
independently. For example:

SELECT COUNT(DISTINCT GivenName) "first names",
 COUNT(DISTINCT Surname) "last names"
 FROM Contacts;

first names last names

48 60

Aggregate functions and NULL
Any NULLS in the column on which the aggregate function is operating are ignored for the purposes of the
function except COUNT(*), which includes them. If all the values in a column are NULL,
COUNT(column_name) returns 0.

If no rows meet the conditions specified in the WHERE clause, COUNT returns a value of 0. The other
functions all return NULL. Here are examples:

SELECT COUNT(DISTINCT Name)
 FROM Products
 WHERE UnitPrice > 50;

Summarizing query results using aggregate functions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 371

COUNT(DISTINCT Name)

0

SELECT AVG(UnitPrice)
 FROM Products
 WHERE UnitPrice > 50;

AVG(Products.UnitPrice)

(NULL)

Summarizing, grouping, and sorting query results

372 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The GROUP BY clause: Organizing query results into
groups

The GROUP BY clause divides the output of a table into groups. You can group rows by one or more column
names, or by the results of computed columns.

Order of clauses
A GROUP BY clause must always appear before a HAVING clause. If a WHERE clause and a GROUP BY
clause are present, the WHERE clause must appear before the GROUP BY clause.

HAVING clauses and WHERE clauses can both be used in a single query. Conditions in the HAVING clause
logically restrict the rows of the result only after the groups have been constructed. Criteria in the WHERE
clause are logically evaluated before the groups are constructed, and so save time.

Understanding which queries are valid and which are not can be difficult when the query involves a GROUP
BY clause. This section describes a way to think about queries with GROUP BY so that you may understand
the results and the validity of queries better.

How queries with GROUP BY are executed
This section uses the ROLLUP sub-clause of the GROUP BY clause in the explanation and example. For
more information on the ROLLUP clause, see “Using ROLLUP and CUBE as a shortcut to GROUPING
SETS” on page 460.

Consider a single-table query of the following form:

SELECT select-list
 FROM table
 WHERE where-search-condition
 GROUP BY [group-by-expression | ROLLUP (group-by-expression)]
 HAVING having-search-condition

This query is executed in the following manner:

1. Apply the WHERE clause

This generates an intermediate result that contains only some of the rows of the table.

The GROUP BY clause: Organizing query results into groups

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 373

2. Partition the result into groups

This action generates an intermediate result with one row for each group as dictated by the GROUP BY
clause. Each generated row contains the group-by-expression for each group, and the computed aggregate
functions in the select-list and having-search-condition.

3. Apply any ROLLUP operation

Subtotal rows computed as part of a ROLLUP operation are added to the result set.

4. Apply the HAVING clause

Any rows from this second intermediate result that do not meet the criteria of the HAVING clause are
removed at this point.

5. Project out the results to display

This action takes from step 3 only those columns that need to be displayed in the result set of the query
—that is, it takes only those columns corresponding to the expressions from the select-list.

Summarizing, grouping, and sorting query results

374 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

This process makes requirements on queries with a GROUP BY clause:

● The WHERE clause is evaluated first. Therefore, any aggregate functions are evaluated only over those
rows that satisfy the WHERE clause.

● The final result set is built from the second intermediate result, which holds the partitioned rows. The
second intermediate result holds rows corresponding to the group-by-expression. Therefore, if an
expression that is not an aggregate function appears in the select-list, then it must also appear in the
group-by-expression. No function evaluation can be performed during the projection step.

● An expression can be included in the group-by-expression but not in the select-list. It is projected out in
the result.

Using GROUP BY with multiple columns
You can list more than one expression in the GROUP BY clause—that is, you can group a table by any
combination of expressions.

The following query lists the average price of products, grouped first by name and then by size:

SELECT Name, Size, AVG(UnitPrice)
 FROM Products
 GROUP BY Name, Size;

Name Size AVG(Products.UnitPrice)

Baseball Cap One size fits all 9.5

Sweatshirt Large 24

Tee Shirt Large 14

Tee Shirt One size fits all 14

...

Columns in GROUP BY that are not in the select list
A Sybase extension to the SQL/92 standard that is supported by both Adaptive Server Enterprise and SQL
Anywhere is to allow expressions to the GROUP BY clause that are not in the select list. For example, the
following query lists the number of contacts in each city:

SELECT State, COUNT(ID)
 FROM Contacts
 GROUP BY State, City;

The GROUP BY clause: Organizing query results into groups

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 375

WHERE clause and GROUP BY
You can use a WHERE clause in a statement with GROUP BY. The WHERE clause is evaluated before the
GROUP BY clause. Rows that do not satisfy the conditions in the WHERE clause are eliminated before any
grouping is done. Here is an example:

SELECT Name, AVG(UnitPrice)
 FROM Products
 WHERE ID > 400
 GROUP BY Name;

Only the rows with ID values of more than 400 are included in the groups that are used to produce the query
results.

Example
The following query illustrates the use of WHERE, GROUP BY, and HAVING clauses in one query:

SELECT Name, SUM(Quantity)
 FROM Products
 WHERE Name LIKE '%shirt%'
 GROUP BY Name
 HAVING SUM(Quantity) > 100;

Name SUM(Products.Quantity)

Tee Shirt 157

In this example:

● The WHERE clause includes only rows that have a name including the word shirt (Tee Shirt, Sweatshirt).

● The GROUP BY clause collects the rows with a common name.

● The SUM aggregate calculates the total quantity of products available for each group.

● The HAVING clause excludes from the final results the groups whose inventory totals do not exceed
100.

Using GROUP BY with aggregate functions
A GROUP BY clause almost always appears in statements that include aggregate functions, in which case
the aggregate produces a value for each group. These values are called vector aggregates. (A scalar
aggregate is a single value produced by an aggregate function without a GROUP BY clause.)

Example
The following query lists the average price of each kind of product:

SELECT Name, AVG(UnitPrice) AS Price
 FROM Products
 GROUP BY Name;

Summarizing, grouping, and sorting query results

376 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Name Price

Tee Shirt 12.333333333

Baseball Cap 9.5

Visor 7

Sweatshirt 24

... ...

The vector aggregates produced by SELECT statements with aggregates and a GROUP BY appear as
columns in each row of the results. By contrast, the scalar aggregates)produced by queries with aggregates
and no GROUP BY also appear as columns, but with only one row. For example:

SELECT AVG(UnitPrice)
 FROM Products;

AVG(Products.UnitPrice)

13.3

GROUP BY and the SQL/2003 standard
The SQL/2003 standard for GROUP BY requires the following:

● A column used in an expression of the SELECT clause must be in the GROUP BY clause. Otherwise,
the expression using that column is an aggregate function.

● A GROUP BY expression can only contain column names from the select list, but not those used only
as arguments for vector aggregates.

A standard GROUP BY with vector aggregate functions produces one row with one value per group.

SQL Anywhere support an extension that allows aggregate functions in the HAVING clause, even if they
do not exist in the select list or GROUP BY clause.

For more information about SQL Anywhere compliance with other standards, see “SQL
dialects” on page 651.

The GROUP BY clause: Organizing query results into groups

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 377

The HAVING clause: selecting groups of data
The HAVING clause restricts the rows returned by a query. It sets conditions for the GROUP BY clause
similar to the way in which WHERE sets conditions for the SELECT clause.

The HAVING clause search conditions are identical to WHERE search conditions except that WHERE
search conditions cannot include aggregates. For example, the following usage is allowed:

HAVING AVG(UnitPrice) > 20

The following usage is not allowed:

WHERE AVG(UnitPrice) > 20

Using HAVING with aggregate functions
The following statement is an example of simple use of the HAVING clause with an aggregate function.

To list those products available in more than one size or color, you need a query to group the rows in the
Products table by name, but eliminate the groups that include only one distinct product:

SELECT Name
 FROM Products
 GROUP BY Name
 HAVING COUNT(*) > 1;

Name

Tee Shirt

Baseball Cap

Visor

Sweatshirt

For information about when you can use aggregate functions in HAVING clauses, see “Where you can use
aggregate functions” on page 369.

Using HAVING without aggregate functions
The HAVING clause can also be used without aggregates.

The following query groups the products, and then restricts the result set to only those groups for which the
name starts with B.

SELECT Name
 FROM Products
 GROUP BY Name
 HAVING Name LIKE 'B%';

Name

Baseball Cap

Summarizing, grouping, and sorting query results

378 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

More than one condition in HAVING
More than one condition can be included in the HAVING clause. They are combined with the AND, OR,
or NOT operators, as in the following example.

To list those products available in more than one size or color, for which one version costs more than $10,
you need a query to group the rows in the Products table by name, but eliminate the groups that include only
one distinct product, and eliminate those groups for which the maximum unit price is under $10.

SELECT Name
 FROM Products
 GROUP BY Name
 HAVING COUNT(*) > 1
 AND MAX(UnitPrice) > 10;

Name

Tee Shirt

Sweatshirt

The HAVING clause: selecting groups of data

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 379

The ORDER BY clause: sorting query results
The ORDER BY clause allows sorting of query results by one or more columns. Each sort can be ascending
(ASC) or descending (DESC). If neither is specified, ASC is assumed.

A simple example
The following query returns results ordered by name:

SELECT ID, Name
 FROM Products
 ORDER BY Name;

ID Name

400 Baseball Cap

401 Baseball Cap

700 Shorts

600 Sweatshirt

... ...

Sorting by more than one column
If you name more than one column in the ORDER BY clause, the sorts are nested.

The following statement sorts the shirts in the Products table first by name in ascending order, then by
Quantity (descending) within each name:

SELECT ID, Name, Quantity
 FROM Products
 WHERE Name like '%shirt%'
 ORDER BY Name, Quantity DESC;

ID Name Quantity

600 Sweatshirt 39

601 Sweatshirt 32

302 Tee Shirt 75

301 Tee Shirt 54

...

Summarizing, grouping, and sorting query results

380 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using the column position
You can use the position number of a column in a select list instead of the column name. Column names
and select list numbers can be mixed. Both of the following statements produce the same results as the
preceding one.

SELECT ID, Name, Quantity
 FROM Products
 WHERE Name like '%shirt%'
 ORDER BY 2, 3 DESC;
SELECT ID, Name, Quantity
 FROM Products
 WHERE Name like '%shirt%'
 ORDER BY 2, Quantity DESC

Most versions of SQL require that ORDER BY items appear in the select list, but SQL Anywhere has no
such restriction. The following query orders the results by Quantity, although that column does not appear
in the select list:

SELECT ID, Name
 FROM Products
 WHERE Name like '%shirt%'
 ORDER BY 2, Quantity DESC;

ORDER BY and NULL
With ORDER BY, NULL sorts before all other values in ascending sort order.

ORDER BY and case sensitivity
The effects of an ORDER BY clause on mixed-case data depend on the database collation and case sensitivity
specified when the database is created.

Explicitly limiting the number of rows returned by a query
You can use the FIRST or TOP keywords to limit the number of rows included in the result set of a query.
These keywords are for use with queries that include an ORDER BY clause.

Examples
The following query returns information about the employee that appears first when employees are sorted
by last name:

SELECT FIRST *
 FROM Employees
 ORDER BY Surname;

The following query returns the first five employees as sorted by last name:

SELECT TOP 5 *
 FROM Employees
 ORDER BY Surname;

When you use TOP, you can also use START AT to provide an offset. The following statement lists the fifth
and sixth employees sorted in descending order by last name:

The ORDER BY clause: sorting query results

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 381

SELECT TOP 2 START AT 5 *
 FROM Employees
 ORDER BY Surname DESC;

FIRST and TOP should be used only in conjunction with an ORDER BY clause to ensure consistent results.
Use of FIRST or TOP without an ORDER BY triggers a syntax warning, and will likely yield unpredictable
results.

Note
The START AT value must be greater than 0. The TOP value must be greater than 0 when a constant and
greater or equal to 0 when a variable.

ORDER BY and GROUP BY
You can use an ORDER BY clause to order the results of a GROUP BY in a particular way.

Example
The following query finds the average price of each product and orders the results by average price:

SELECT Name, AVG(UnitPrice)
 FROM Products
 GROUP BY Name
 ORDER BY AVG(UnitPrice);

Name AVG(Products.UnitPrice)

Visor 7

Baseball Cap 9.5

Tee Shirt 12.333333333

Shorts 15

... ...

Summarizing, grouping, and sorting query results

382 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Performing set operations on query results with
UNION, INTERSECT, and EXCEPT

The operators described in this section perform set operations on the results of two or more queries. While
many of the operations can also be performed using operations in the WHERE clause or HAVING clause,
there are some operations that are very difficult to perform in any way other than using these set-based
operators. For example:

● When data is not normalized, you may want to assemble seemingly disparate information into a single
result set, even though the tables are unrelated.

● NULL is treated differently by set operators than in the WHERE clause or HAVING clause. In the
WHERE clause or HAVING clause, two null-containing rows with identical non-null entries are not
seen as identical, as the two NULL values are not defined to be identical. The set operators see two such
rows as the same.

See also
● “Set operators and NULL” on page 386
● “EXCEPT clause” [SQL Anywhere Server - SQL Reference]
● “INTERSECT clause” [SQL Anywhere Server - SQL Reference]
● “UNION clause” [SQL Anywhere Server - SQL Reference]

Combining sets with the UNION statement
The UNION operator combines the results of two or more queries into a single result set.

By default, the UNION operator removes duplicate rows from the result set. If you use the ALL option,
duplicates are not removed. The columns in the final result set have the same names as the columns in the
first result set. Any number of union operators may be used.

By default, a statement containing multiple UNION operators is evaluated from left to right. Parentheses
may be used to specify the order of evaluation.

For example, the following two expressions are not equivalent, due to the way that duplicate rows are
removed from result sets:

x UNION ALL (y UNION z)
(x UNION ALL y) UNION z

In the first expression, duplicates are eliminated in the UNION between y and z. In the UNION between
that set and x, duplicates are not eliminated. In the second expression, duplicates are included in the union
between x and y, but are then eliminated in the subsequent union with z.

Performing set operations on query results with UNION, INTERSECT, and EXCEPT

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 383

Using EXCEPT and INTERSECT
The EXCEPT statement lists the differences between two result sets. The following general construction
lists all those rows that appear in the result set of query-1, but not in the result set of query-2.

query-1
EXCEPT
query-2

The INTERSECT statement lists the rows that appear in each of two result sets. The following general
construction lists all those rows that appear in the result set of both query-1 and query-2.

query-1
INTERSECT
query-2

Like the UNION statement, both EXCEPT and INTERSECT take the ALL modifier, which prevents the
elimination of duplicate rows from the result set.

See also
● “EXCEPT clause” [SQL Anywhere Server - SQL Reference]
● “INTERSECT clause” [SQL Anywhere Server - SQL Reference]

Rules for set operations
The following rules apply to UNION, EXCEPT, and INTERSECT statements:

● Same number of items in the select lists All select lists in the queries must have the same number
of expressions (such as column names, arithmetic expressions, and aggregate functions). The following
statement is invalid because the first select list is longer than the second:

SELECT store_id, city, state
 FROM stores
UNION
 SELECT store_id, city
 FROM stores_east;

● Data types must match Corresponding expressions in the SELECT lists must be of the same data
type, or an implicit data conversion must be possible between the two data types, or an explicit conversion
should be supplied.

For example, a UNION, INTERSECT, or EXCEPT is not possible between a column of the CHAR data
type and one of the INT data type, unless an explicit conversion is supplied. However, a set operation is
possible between a column of the MONEY data type and one of the INT data type.

● Column ordering You must place corresponding expressions in the individual queries of a set
operation in the same order, because the set operators compare the expressions one to one in the order
given in the individual queries in the SELECT clauses.

Summarizing, grouping, and sorting query results

384 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Multiple set operations You can string several set operations together, as in the following example:

SELECT City AS Cities
 FROM Contacts
 UNION
 SELECT City
 FROM Customers
 UNION
 SELECT City
 FROM Employees;

For UNION statements, the order of queries is not important. For INTERSECT, the order is important
when there are two or more queries. For EXCEPT, the order is always important.

● Column headings The column names in the table resulting from a UNION are taken from the first
individual query in the statement. If you want to define a new column heading for the result set, you can
do so in the select list of the first query, as in the following example:

SELECT City AS Cities
 FROM Contacts
 UNION
 SELECT City
 FROM Customers;

In the following query, the column heading remains as City, as it is defined in the first query of the
UNION statement.

SELECT City
 FROM Contacts
 UNION
 SELECT City AS Cities
 FROM Customers;

Alternatively, you can use the WITH clause to define the column names. For example:

WITH V(Cities)
AS (SELECT City
 FROM Contacts
 UNION
 SELECT City
 FROM Customers)
SELECT * FROM V;

● Ordering the results You can use the WITH clause of the SELECT statement to order the column
names in the select list . For example:

WITH V(CityName)
AS (SELECT City AS Cities
 FROM Contacts
 UNION
 SELECT City
 FROM Customers)
SELECT * FROM V
 ORDER BY CityName;

Alternatively, you can use a single ORDER BY clause at the end of the list of queries, but you must use
integers rather than column names, as in the following example:

SELECT City AS Cities
 FROM Contacts

Performing set operations on query results with UNION, INTERSECT, and EXCEPT

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 385

 UNION
 SELECT City
 FROM Customers
 ORDER BY 1;

Set operators and NULL
NULL is treated differently by the set operators UNION, EXCEPT, and INTERSECT than it is in search
conditions. This difference is one of the main reasons to use set operators.

When comparing rows, set operators treat NULL values as equal to each other. In contrast, when NULL is
compared to NULL in a search condition the result is unknown (not true).

One result of this difference is that the number of rows in the result set for query-1 EXCEPT ALL
query-2 is always the difference in the number of rows in the result sets of the individual queries.

For example, consider two tables T1 and T2, each with the following columns:

col1 INT,
col2 CHAR(1)

The tables and data are set up as follows:

CREATE TABLE T1 (col1 INT, col2 CHAR(1));
CREATE TABLE T2 (col1 INT, col2 CHAR(1));
INSERT INTO T1 (col1, col2) VALUES(1, 'a');
INSERT INTO T1 (col1, col2) VALUES(2, 'b');
INSERT INTO T1 (col1) VALUES(3);
INSERT INTO T1 (col1) VALUES(3);
INSERT INTO T1 (col1) VALUES(4);
INSERT INTO T1 (col1) VALUES(4);
INSERT INTO T2 (col1, col2) VALUES(1, 'a');
INSERT INTO T2 (col1, col2) VALUES(2, 'x');
INSERT INTO T2 (col1) VALUES(3);

The data in the tables is as follows:

● Table T1.

col1 col2

1 a

2 b

3 (NULL)

3 (NULL)

4 (NULL)

4 (NULL)

● Table T2

Summarizing, grouping, and sorting query results

386 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

col1 col2

1 a

2 x

3 (NULL)

One query that asks for rows in T1 that also appear in T2 is as follows:

SELECT T1.col1, T1.col2
 FROM T1 JOIN T2
 ON T1.col1 = T2.col1
 AND T1.col2 = T2.col2;

T1.col1 T1.col2

1 a

The row (3, NULL) does not appear in the result set, as the comparison between NULL and NULL is not
true. In contrast, approaching the problem using the INTERSECT operator includes a row with NULL:

SELECT col1, col2
 FROM T1
 INTERSECT
 SELECT col1, col2
 FROM T2;

col1 col2

1 a

3 (NULL)

The following query uses search conditions to list rows in T1 that do not appear in T2:

SELECT col1, col2
 FROM T1
 WHERE col1 NOT IN (
 SELECT col1
 FROM T2
 WHERE T1.col2 = T2.col2)
 OR col2 NOT IN (
 SELECT col2
 FROM T2
 WHERE T1.col1 = T2.col1);

col1 col2

2 b

3 (NULL)

Performing set operations on query results with UNION, INTERSECT, and EXCEPT

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 387

col1 col2

4 (NULL)

3 (NULL)

4 (NULL)

The NULL-containing rows from T1 are not excluded by the comparison. In contrast, approaching the
problem using EXCEPT ALL excludes NULL-containing rows that appear in both tables. In this case, the
(3, NULL) row in T2 is identified as the same as the (3, NULL) row in T1.

SELECT col1, col2
 FROM T1
 EXCEPT ALL
 SELECT col1, col2
 FROM T2;

col1 col2

2 b

3 (NULL)

4 (NULL)

4 (NULL)

The EXCEPT operator is more restrictive still. It eliminates both (3, NULL) rows from T1 and excludes one
of the (4, NULL) rows as a duplicate.

SELECT col1, col2
 FROM T1
 EXCEPT
 SELECT col1, col2
 FROM T2;

col1 col2

2 b

4 (NULL)

Summarizing, grouping, and sorting query results

388 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Joins: Retrieving data from several tables

Contents
Displaying a list of tables ... 390
Sample database schema ... 391
How joins work .. 392
Explicit join conditions (the ON clause) ... 397
Cross joins ... 401
Inner and outer joins .. 402
Specialized joins .. 409
Natural joins ... 417
Key joins .. 421

When you create a database, you normalize the data by placing information specific to different objects in
different tables, rather than in one large table with many redundant entries. Therefore, to retrieve related
data from more than one table, you perform a join operation using the SQL JOIN operator. A join operation
recreates a larger table using the information from two or more tables (or views). Using different joins, you
can construct a variety of these virtual tables, each suited to a particular task.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 389

Displaying a list of tables
In Interactive SQL, press F7 to display a list of tables in the database you are connected to.

Select a table and click Show Columns to see the columns for that table. Press Esc to return to the table list;
press Esc again to return to the SQL Statements pane. Press Enter to copy the selected table or column
name into the SQL Statements pane at the current cursor position.

Press Esc to leave the list.

For more information about the tables in the SQL Anywhere sample database, see “Tutorial: Using the
sample database” [SQL Anywhere Server - Database Administration].

Joins: Retrieving data from several tables

390 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Sample database schema
In the following diagram, the SQL Anywhere sample database is shown with the names of the foreign keys
that relate the tables. These foreign key role names are required for some advanced joins.

For more information about role names, see “Key joins when there are multiple foreign key
relationships” on page 422.

Sample database schema

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 391

How joins work
A join is an operation that combines the rows in tables by comparing the values in specified columns. This
section is an overview of SQL Anywhere join syntax.

A relational database stores information about different types of objects in different tables. For example,
information particular to employees appears in one table, and information that pertains to departments in
another. The Employees table contains information such as employee names and addresses. The Departments
table contains information about one department, such as the name of the department and who the department
head is.

Most questions can only be answered using a combination of information from different tables. For example,
to answer the question "Who manages the Sales department?", you use the Departments table to identify the
correct employee, and then look up the employee name in the Employees table.

Joins are a means of answering such questions by forming a new virtual table that includes information from
multiple tables. For example, you could create a list of the department heads by combining the information
contained in the Employees table and the Departments table. You specify which tables contain the
information you need using the FROM clause.

To make the join useful, you must combine the correct columns of each table. To list department heads, each
row of the combined table should contain the name of a department and the name of the employee who
manages it. You control how columns are matched in the composite table by either specifying a particular
type of join operation or using the ON clause.

See also
● “FROM clause” [SQL Anywhere Server - SQL Reference]

The FROM clause
Use the FROM clause to specify which base tables, temporary tables, views or derived tables to join. The
FROM clause can be used in SELECT or UPDATE statements. An abbreviated syntax for the FROM clause
is as follows:

FROM table-expression, ...

where:

table-expression :
table-name
| view-name
| derived-table-name
| lateral-derived-table-name
| join-expression
| (table-expression, ...)
| openstring-expression
| apply-expression

table-name or view-name:
[owner.] table-or-view-name [[AS] correlation-name]

Joins: Retrieving data from several tables

392 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

derived-table-name :
(select-statement) [AS] correlation-name [(column-name, ...)]

join-expression :
table-expression join-operator table-expression [ON join-condition]

join-operator:
[KEY | NATURAL] [join-type] JOIN
| CROSS JOIN

join-type:
 INNER
| FULL [OUTER]
| LEFT [OUTER]
| RIGHT [OUTER]

apply-expression :
table-expression { CROSS | OUTER } APPLY table-expression

join-condition :

See “Search conditions” [SQL Anywhere Server - SQL Reference].

Notes
You cannot use an ON clause with CROSS JOIN.

For more syntax information, see “FROM clause” [SQL Anywhere Server - SQL Reference].

Join conditions
Tables can be joined using join conditions. A join condition is simply a search condition. It chooses a subset
of rows from the joined tables based on the relationship between values in the columns. For example, the
following query retrieves data from the Products and SalesOrderItems tables.

SELECT *
FROM Products JOIN SalesOrderItems
 ON Products.ID = SalesOrderItems.ProductID;

The join condition in this query is

Products.ID = SalesOrderItems.ProductID

This join condition means that rows can be combined in the result set only if they have the same product ID
in both tables.

Join conditions can be explicit or generated. An explicit join condition is a join condition that is put in an
ON clause or a WHERE clause. The following query uses an ON clause. It produces a cross product of the
two tables (all combinations of rows), but with rows excluded if the ID numbers do not match. The result is
a list of customers with details of their orders.

SELECT *
FROM Customers
JOIN SalesOrders
ON SalesOrders.CustomerID = Customers.ID;

How joins work

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 393

A generated join condition is a join condition that is automatically created when you specify KEY JOIN
or NATURAL JOIN. In the case of a key join, the generated join condition is based on the foreign key
relationships between the tables. In the case of a natural join, the generated join condition is based on columns
that have the same name.

Tip
Both key join syntax and natural join syntax are shortcuts: you get identical results from using the keyword
JOIN without KEY or NATURAL, and then explicitly stating the same join condition in an ON clause.

When you use an ON clause with a key join or natural join, the join condition that is used is the
conjunction of the explicitly specified join condition with the generated join condition. This means that the
join conditions are combined with the keyword AND.

Joined tables
SQL Anywhere supports the following classes of joined tables.

● CROSS JOIN This type of join of two tables produces all possible combinations of rows from the
two tables. The size of the result set is the number of rows in the first table multiplied by the number of
rows in the second table. A cross join is also called a cross product or Cartesian product. You cannot use
an ON clause with a cross join.

● KEY JOIN This type of join condition uses the foreign key relationships between the tables. Key join
is the default when the JOIN keyword is used without specifying a join type (such a INNER, OUTER,
and so on) and there is no ON clause.

● NATURAL JOIN This join is automatically generated based on columns having the same name.

● Join using an ON clause This type of join results from explicit specification of the join condition
in an ON clause. When used with a key join or natural join, the join condition contains both the generated
join condition and the explicit join condition. When used with the keyword JOIN without the keywords
KEY or NATURAL, there is no generated join condition. See “Explicit join conditions (the ON
clause)” on page 397.

Inner and outer joins
Key joins, natural joins and joins with an ON clause may be qualified by specifying INNER, LEFT OUTER,
RIGHT OUTER, or FULL OUTER. The default is INNER. When using the keywords LEFT, RIGHT or
FULL, the keyword OUTER is optional.

In an inner join, each row in the result satisfies the join condition.

In a left or right outer join, all rows are preserved for one of the tables, and for the other table nulls are
returned for rows that do not satisfy the join condition. For example, in a right outer join the right side is
preserved and the left side is null-supplying.

In a full outer join, all rows are preserved for both of the tables, and nulls are supplied for rows that do not
satisfy the join condition.

Joins: Retrieving data from several tables

394 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Joining two tables
To understand how a simple inner join is computed, consider the following query. It answers the question:
which product sizes have been ordered in the same quantity as the quantity in stock?

SELECT DISTINCT Name, Size,
 SalesOrderItems.Quantity
FROM Products JOIN SalesOrderItems
ON Products.ID = SalesOrderItems.ProductID
 AND Products.Quantity = SalesOrderItems.Quantity;

name Size Quantity

Baseball Cap One size fits all 12

Visor One size fits all 36

You can interpret the query as follows. Note that this is a conceptual explanation of the processing of this
query, used to illustrate the semantics of a query involving a join. It does not represent how SQL Anywhere
actually computes the result set.

● Create a cross product of the Products table and SalesOrderItems table. A cross product contains every
combination of rows from the two tables.

● Exclude all rows where the product IDs are not identical (because of the join condition Products.ID
= SalesOrderItems.ProductID).

● Exclude all rows where the quantity is not identical (because of the join condition
Products.Quantity = SalesOrderItems.Quantity).

● Create a result table with three columns: Products.Name, Products.Size, and SalesOrderItems.Quantity.

● Exclude all duplicate rows (because of the DISTINCT keyword).

For a description of how outer joins are computed, see “Outer joins” on page 402.

Joining more than two tables
With SQL Anywhere, there is no fixed limit on the number of tables you can join.

When joining more than two tables, parentheses are optional. If you do not use parentheses, SQL Anywhere
evaluates the statement from left to right. Therefore, A JOIN B JOIN C is equivalent to (A JOIN
B) JOIN C. Also, the following two SELECT statements are equivalent:

SELECT *
FROM A JOIN B JOIN C JOIN D;
SELECT *
FROM ((A JOIN B) JOIN C) JOIN D;

How joins work

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 395

Whenever more than two tables are joined, the join involves table expressions. In the example A JOIN B
JOIN C, the table expression A JOIN B is joined to C. This means, conceptually, that A and B are joined,
and then the result is joined to C.

The order of joins is important if the table expression contains outer joins. For example, A JOIN B LEFT
OUTER JOIN C is interpreted as (A JOIN B) LEFT OUTER JOIN C. This means that the table
expression A JOIN B is joined to C. The table expression A JOIN B is preserved and table C is null-
supplying.

For more information about outer joins, see “Outer joins” on page 402.

For more information about how SQL Anywhere performs a key join of table expressions, see “Key joins
of table expressions” on page 424.

For more information about how SQL Anywhere performs a natural join of table expressions, see “Natural
joins of table expressions” on page 419.

Join compatible data types
When you join two tables, the columns you compare must have the same or compatible data types.

For more information about data type conversion in joins, see “Comparisons between data types” [SQL
Anywhere Server - SQL Reference].

Using joins in delete, update, and insert statements
You can use joins in DELETE, UPDATE, INSERT, and SELECT statements. You can update some cursors
that contain joins if the ansi_update_constraints option is set to Off. This is the default for databases created
before SQL Anywhere version 7. For databases created in version 7 or later, the default is Cursors. See
“ansi_update_constraints option [compatibility]” [SQL Anywhere Server - Database Administration].

Non-ANSI joins
SQL Anywhere supports ISO/ANSI standards for joins. It also supports the following non-standard joins:

● “Transact-SQL outer joins (*= or =*)” on page 406
● “Duplicate correlation names in joins (star joins)” on page 410
● “Key joins” on page 421
● “Natural joins” on page 417

You can use the REWRITE function to see the ANSI equivalent of a non-ANSI join. See “REWRITE
function [Miscellaneous]” [SQL Anywhere Server - SQL Reference].

Joins: Retrieving data from several tables

396 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Explicit join conditions (the ON clause)
Instead of, or along with, a key or natural join, you can specify a join using an explicit join condition. You
specify a join condition by inserting an ON clause immediately after the join. The join condition always
refers to the join immediately preceding it. The ON clause applies a restriction to the rows in a join, in much
the same way that the WHERE clause applies restrictions to the rows of a query.

The ON clause allows you to construct more useful joins than the CROSS JOIN. For example, you can apply
the ON clause to a join of the SalesOrders and Employees table to retrieve only those rows for which the
SalesRepresentative in the SalesOrders table is the same as the one in the Employees table in every row of
the result. Then each row contains information about an order and the sales representative responsible for
it.

For example, in the following query, the first ON clause is used to join SalesOrders to Customers. The second
ON clause is used to join the table expression (SalesOrders JOIN Customers) to the base table
SalesOrderItems.

SELECT *
FROM SalesOrders JOIN Customers
 ON SalesOrders.CustomerID = Customers.ID
 JOIN SalesOrderItems
 ON SalesOrderItems.ID = SalesOrders.ID;

Referencing tables in an ON clause
The tables that are referenced in an ON clause must be part of the join that the ON clause modifies. For
example, the following is invalid:

FROM (A KEY JOIN B) JOIN (C JOIN D ON A.x = C.x)

The problem is that the join condition A.x = C.x references table A, which is not part of the join it modifies
(in this case, C JOIN D).

However, as of the ANSI/ISO standard SQL99 and Adaptive Server Anywhere 7.0, there is an exception to
this rule: if you use commas between table expressions, an ON condition of a join can reference a table that
precedes it syntactically in the FROM clause. Therefore, the following is valid:

FROM (A KEY JOIN B) , (C JOIN D ON A.x = C.x)

For more information about commas, see “Commas” on page 401.

Example
The following example joins the SalesOrders table with the Employees table. Each row in the result reflects
rows in the SalesOrders table where the value of the SalesRepresentative column matched the value of the
EmployeeID column of the Employees table.

SELECT Employees.Surname, SalesOrders.ID, SalesOrders.OrderDate
FROM SalesOrders
JOIN Employees
ON SalesOrders.SalesRepresentative = Employees.EmployeeID;

Explicit join conditions (the ON clause)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 397

Surname ID OrderDate

Chin 2008 4/2/2001

Chin 2020 3/4/2001

Chin 2032 7/5/2001

Chin 2044 7/15/2000

Chin 2056 4/15/2001

...

Following are some notes about this example:

● The results of this query contain only 648 rows (one for each row in the SalesOrders table). Of the 48,600
rows in the cross product, only 648 of them have the employee number equal in the two tables.

● The ordering of the results has no meaning. You could add an ORDER BY clause to impose a particular
order on the query.

● The ON clause includes columns that are not included in the final result set.

Generated joins and the ON clause
Key joins are the default if the keyword JOIN is used and no join type is specified—unless you use an ON
clause. If you use an ON clause with an unspecified JOIN, key join is not the default and no generated join
condition is applied.

For example, the following is a key join, because key join is the default when the keyword JOIN is used and
there is no ON clause:

SELECT *
FROM A JOIN B;

The following is a join between table A and table B with the join condition A.x = B.y. It is not a key
join.

SELECT *
FROM A JOIN B ON A.x = B.y;

If you specify a KEY JOIN or NATURAL JOIN and use an ON clause, the final join condition is the
conjunction of the generated join condition and the explicit join condition(s). For example, the following
statement has two join conditions: one generated because of the key join, and one explicitly stated in the ON
clause.

SELECT *
FROM A KEY JOIN B ON A.x = B.y;

If the join condition generated by the key join is A.w = B.z, then the following statement is equivalent:

Joins: Retrieving data from several tables

398 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SELECT *
FROM A JOIN B
 ON A.x = B.y
 AND A.w = B.z;

For more information about key joins, see “Key joins” on page 421.

Types of explicit join conditions
Most join conditions are based on equality, and so are called equijoins. For example,

SELECT *
FROM Departments JOIN Employees
 ON Departments.DepartmentID = Employees.DepartmentID;

However, you do not have to use equality (=) in a join condition. You can use any search condition, such as
conditions containing LIKE, SOUNDEX, BETWEEN, > (greater than), and != (not equal to).

Example
The following example answers the question: For which products has someone ordered more than the
quantity in stock?

SELECT DISTINCT Products.Name
FROM Products JOIN SalesOrderItems
ON Products.ID = SalesOrderItems.ProductID
 AND SalesOrderItems.Quantity > Products.Quantity;

For more information about search conditions, see “Search conditions” [SQL Anywhere Server - SQL
Reference].

Using the WHERE clause for join conditions
Except when using outer joins, you can specify join conditions in the WHERE clause instead of the ON
clause. However, you should be aware that there may be semantic differences between the two if the query
contains outer joins.

The ON clause is part of the FROM clause, and so is processed before the WHERE clause. This does not
make a difference to results except in the case of outer joins, where using the WHERE clause can convert
the join to an inner join.

When deciding whether to put join conditions in an ON clause or WHERE clause, keep the following rules
in mind:

● When you specify an outer join, putting a join condition in the WHERE clause may convert the outer
join to an inner join.

For more information about the WHERE clause and outer joins, see “Outer joins and join
conditions” on page 403.

Explicit join conditions (the ON clause)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 399

● Conditions in an ON clause can only refer to tables that are in the table expressions joined by the
associated JOIN. However, conditions in a WHERE clause can refer to any tables, even if they are not
part of the join.

● You cannot use an ON clause with the keywords CROSS JOIN, but you can always use a WHERE
clause.

● When join conditions are in an ON clause, key join is not the default. However, key join can be the
default if join conditions are put in a WHERE clause.

For more information about the conditions under which key join is the default, see “When key join is
the default” on page 421.

In the examples in this documentation, join conditions are put in an ON clause. In examples using outer
joins, this is necessary. In other cases it is done to make it obvious that they are join conditions and not
general search conditions.

Joins: Retrieving data from several tables

400 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Cross joins
A cross join of two tables produces all possible combinations of rows from the two tables. A cross join is
also called a cross product or Cartesian product.

Each row of the first table appears once with each row of the second table. So, the number of rows in the
result set is the product of the number of rows in the first table and the number of rows in the second table,
minus any rows that are omitted because of restrictions in a WHERE clause.

You cannot use an ON clause with cross joins. However, you can put restrictions in a WHERE clause.

Inner and outer modifiers do not apply to cross joins
Except in the presence of additional restrictions in the WHERE clause, all rows of both tables always appear
in the result set of cross joins. So, the keywords INNER, LEFT OUTER and RIGHT OUTER are not
applicable to cross joins.

For example, the following statement joins two tables.

SELECT *
FROM A CROSS JOIN B;

The result set from this query includes all columns in A and all columns in B. There is one row in the result
set for each combination of a row in A and a row in B. If A has n rows and B has m rows, the query returns
n x m rows.

Commas
A comma works like a join operator, but is not one. A comma creates a cross product exactly as the keyword
CROSS JOIN does. However, join keywords create table expressions, and commas create lists of table
expressions.

In the following simple inner join of two tables, a comma and the keywords CROSS JOIN are equivalent:

SELECT *
FROM A CROSS JOIN B CROSS JOIN C
WHERE A.x = B.y;

and

SELECT *
FROM A, B, C
WHERE A.x = B.y;

Generally, you can use a comma instead of the keywords CROSS JOIN. The comma syntax is equivalent
to cross join syntax, except in the case of generated join conditions in table expressions using commas.

For information about how commas work with generated join conditions, see “Key joins of table
expressions” on page 424.

In the syntax of star joins, commas have a special use. For more information, see “Duplicate correlation
names in joins (star joins)” on page 410.

Cross joins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 401

Inner and outer joins
The keywords INNER, LEFT OUTER, RIGHT OUTER, and FULL OUTER may be used to modify key
joins, natural joins, and joins with an ON clause. The default is INNER. These modifiers do not apply to
cross joins.

Inner joins
By default, joins are inner joins. This means that rows are included in the result set only if they satisfy the
join condition.

Example
For example, each row of the result set of the following query contains the information from one Customers
row and one SalesOrders row, satisfying the key join condition. If a particular customer has placed no orders,
the condition is not satisfied and the result set does not contain the row corresponding to that customer.

SELECT GivenName, Surname, OrderDate
FROM Customers KEY INNER JOIN SalesOrders
ORDER BY OrderDate;

GivenName Surname OrderDate

Hardy Mums 2000-01-02

Aram Najarian 2000-01-03

Tommie Wooten 2000-01-03

Alfredo Margolis 2000-01-06

...

Because inner joins and key joins are the defaults, you obtain the same results as above using the FROM
clause as follows:

SELECT GivenName, Surname, OrderDate
FROM Customers JOIN SalesOrders
ORDER BY OrderDate;

Outer joins
Typically, you create joins that return rows only if they satisfy join conditions; these are called inner joins,
and are the default join used when querying. However, sometimes you may want to preserve all the rows in
one table. To do this, you use an outer join.

A left or right outer join of two tables preserves all the rows in one table, and supplies nulls for the other
table when it does not meet the join condition. A left outer join preserves every row in the left-hand table,

Joins: Retrieving data from several tables

402 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

and a right outer join preserves every row in the right-hand table. In a full outer join, all rows from both
tables are preserved.

The table expressions on either side of a left or right outer join are referred to as preserved and null-
supplying. In a left outer join, the left-hand table expression is preserved and the right-hand table expression
is null-supplying.

For information about creating outer joins with Transact-SQL syntax, see “Transact-SQL outer joins (*= or
=*)” on page 406.

Example
The following statement includes all customers. If a particular customer has not placed an order, each column
in the result that corresponds to order information contains the NULL value.

SELECT Surname, OrderDate, City
FROM Customers LEFT OUTER JOIN SalesOrders
 ON Customers.ID = SalesOrders.CustomerID
WHERE Customers.State = 'NY'
ORDER BY OrderDate;

Surname OrderDate City

Thompson (NULL) Bancroft

Reiser 2000-01-22 Rockwood

Clarke 2000-01-27 Rockwood

Mentary 2000-01-30 Rockland

...

You can interpret the outer join in this statement as follows. Note that this is a conceptual explanation, and
does not represent how SQL Anywhere actually computes the result set.

● Return one row for every sales order placed by a customer. More than one row is returned when the
customer placed two or more sales orders, because a row is returned for each sales order. This is the
same result as an inner join. The ON condition is used to match customer and sales order rows. The
WHERE clause is not used for this step.

● Include one row for every customer who has not placed any sales orders. This ensures that every row in
the Customers table is included. For all these rows, the columns from SalesOrders are filled with nulls.
These rows are added because the keyword OUTER is used, and would not have appeared in an inner
join. Neither the ON condition nor the WHERE clause is used for this step.

● Exclude every row where the customer does not live in New York, using the WHERE clause.

Outer joins and join conditions
A common mistake with outer joins is the placement of the join condition. In most cases, if you place
restrictions on the null-supplying table in a WHERE clause, the join is equivalent to an inner join.

Inner and outer joins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 403

The reason for this is that most search conditions cannot evaluate to TRUE when any of their inputs are
NULL. The WHERE clause restriction on the null-supplying table compares values to NULL, resulting in
the elimination of the row from the result set. The rows in the preserved table are not preserved and so the
join is an inner join.

The exception to this is comparisons that can evaluate to true when any of their inputs are NULL. These
include IS NULL, IS UNKNOWN, IS FALSE, IS NOT TRUE, and expressions involving ISNULL or
COALESCE.

Example
For example, the following statement computes a left outer join.

SELECT *
FROM Customers KEY LEFT OUTER JOIN SalesOrders
 ON SalesOrders.OrderDate < '2000-01-03';

In contrast, the following statement creates an inner join.

SELECT Surname, OrderDate
FROM Customers KEY LEFT OUTER JOIN SalesOrders
 WHERE SalesOrders.OrderDate < '2000-01-03';

The first of these two statements can be thought of as follows: First, left-outer join the Customers table to
the SalesOrders table. The result set includes every row in the Customers table. For those customers who
have no orders prior to January 3 2000, fill the sales order fields with nulls.

In the second statement, first left-outer join Customers and SalesOrders. The result set includes every row
in the Customers table. For those customers who have no orders, fill the sales order fields with nulls. Next,
apply the WHERE condition by selecting only those rows in which the customer has placed an order since
January 3 2000. For those customers who have not placed orders, these values are NULL. Comparing any
value to NULL evaluates to UNKNOWN. So, these rows are eliminated and the statement reduces to an
inner join.

For more information about search conditions, see “Search conditions” [SQL Anywhere Server - SQL
Reference].

Understanding complex outer joins
The order of joins is important when a query includes table expressions using outer joins. For example, A
JOIN B LEFT OUTER JOIN C is interpreted as (A JOIN B) LEFT OUTER JOIN C. This means
that the table expression (A JOIN B) is joined to C. The table expression (A JOIN B) is preserved and
table C is null-supplying.

Consider the following statement, in which A, B and C are tables:

SELECT *
FROM A LEFT OUTER JOIN B RIGHT OUTER JOIN C;

To understand this statement, first remember that SQL Anywhere evaluates statements from left to right,
adding parentheses. This results in

SELECT *
FROM (A LEFT OUTER JOIN B) RIGHT OUTER JOIN C;

Joins: Retrieving data from several tables

404 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Next, you may want to convert the right outer join to a left outer join so that both joins are the same type.
To do this, simply reverse the position of the tables in the right outer join, resulting in:

SELECT *
FROM C LEFT OUTER JOIN (A LEFT OUTER JOIN B);

A is the preserved table and B is the null-supplying table for the nested outer join. C is the preserved table
for the first outer join.

You can interpret this join as follows:

● Join A to B, preserving all rows in A.

● Next, join C to the results of the join of A and B, preserving all rows in C.

The join does not have an ON clause, and so is by default a key join. The way SQL Anywhere generates
join conditions for this type of join is explained in “Key joins of table expressions that do not contain
commas” on page 425.

In addition, the join condition for an outer join must only include tables that have previously been referenced
in the FROM clause. This restriction is according to the ANSI/ISO standard, and is enforced to avoid
ambiguity. For example, the following two statements are syntactically incorrect, because C is referenced
in the join condition before the table itself is referenced.

SELECT *
FROM (A LEFT OUTER JOIN B ON B.x = C.x) JOIN C;

and

SELECT *
FROM A LEFT OUTER JOIN B ON A.x = C.x, C;

Outer joins of views and derived tables
Outer joins can also be specified for views and derived tables.

The statement

SELECT *
FROM V LEFT OUTER JOIN A ON (V.x = A.x);

can be interpreted as follows:

● Compute the view V.

● Join all the rows from the computed view V with A by preserving all the rows from V, using the join
condition V.x = A.x.

Example
The following example defines a view called V that returns the employee IDs and department names of
women who make over $60000.

CREATE VIEW V AS
SELECT Employees.EmployeeID, DepartmentName

Inner and outer joins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 405

 FROM Employees JOIN Departments
 ON Employees.DepartmentID = Departments.DepartmentID
 WHERE Sex = 'F' and Salary > 60000;

Next, use this view to add a list of the departments where the women work and the regions where they have
sold. The view V is preserved and SalesOrders is null-supplying.

SELECT DISTINCT V.EmployeeID, Region, V.DepartmentName
 FROM V LEFT OUTER JOIN SalesOrders
 ON V.EmployeeID = SalesOrders.SalesRepresentative;

EmployeeID Region DepartmentName

243 (NULL) R & D

316 (NULL) R & D

529 (NULL) R & D

902 Eastern Sales

...

Transact-SQL outer joins (*= or =*)

Note
Support for the Transact-SQL outer join operators *= and =* is deprecated and will be removed in a future
release.

In accordance with ANSI/ISO SQL standards, SQL Anywhere supports the LEFT OUTER, RIGHT OUTER,
and FULL OUTER keywords. For compatibility with Adaptive Server Enterprise prior to version 12, SQL
Anywhere also supports the Transact-SQL counterparts of these keywords, *= and =*, providing the
tsql_outer_joins database option is set to On. See “tsql_outer_joins option [compatibility]” [SQL Anywhere
Server - Database Administration].

There are some limitations and potential problems with the Transact-SQL semantics. For a detailed
discussion of Transact-SQL outer joins, see the whitepaper Semantics and Compatibility of Transact-SQL
Outer Joins, which is available at http://www.sybase.com/detail?id=1017447.

In the Transact-SQL dialect, you create outer joins by supplying a comma-separated list of tables in the
FROM clause, and using the special operators *= or =* in the WHERE clause. In Adaptive Server Enterprise
prior to version 12, the join condition must appear in the WHERE clause (ON was not supported).

Caution
When you are creating outer joins, do not mix *= syntax with ON clause syntax. This also applies to views
that are referenced in the query.

Joins: Retrieving data from several tables

406 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1017447

Example
The following left outer join lists all customers and finds their order dates (if any):

SELECT GivenName, Surname, OrderDate
FROM Customers, SalesOrders
WHERE Customers.ID *= SalesOrders.CustomerID
ORDER BY OrderDate;

This statement is equivalent to the following statement, in which ANSI/ISO syntax is used:

SELECT GivenName, Surname, OrderDate
FROM Customers LEFT OUTER JOIN SalesOrders
ON Customers.ID = SalesOrders.CustomerID
ORDER BY OrderDate;

Transact-SQL outer join limitations

Note
Support for Transact-SQL outer join operators *= and =* is deprecated and will be removed in a future
release.

There are several restrictions for Transact-SQL outer joins:

● If you specify an outer join and a qualification on a column from the null-supplying table of the outer
join, the results may not be what you expect. The qualification in the query does not exclude rows from
the result set, but rather affects the values that appear in the rows of the result set. For rows that do not
meet the qualification, a NULL value appears in the null-supplying table.

● You cannot mix ANSI/ISO SQL syntax and Transact-SQL outer join syntax in a single query. If a view
is defined using one dialect for an outer join, you must use the same dialect for any outer-join queries
on that view.

● A null-supplying table cannot participate in both a Transact-SQL outer join and a regular join or two
outer joins. For example, the following WHERE clause is not allowed, because table S violates this
limitation.

WHERE R.x *= S.x
AND S.y = T.y

When you cannot rewrite your query to avoid using a table in both an outer join and a regular join clause,
you must divide your statement into two separate queries, or use only ANSI/ISO SQL syntax.

● You cannot use a subquery that contains a join condition involving the null-supplying table of an outer
join. For example, the following WHERE clause is not allowed:

WHERE R.x *= S.y
AND EXISTS (SELECT *
 FROM T
 WHERE T.x = S.x)

Inner and outer joins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 407

Using views with Transact-SQL outer joins
If you define a view with an outer join, and then query the view with a qualification on a column from the
null-supplying table of the outer join, the results may not be what you expect. The query returns all rows
from the null-supplying table. Rows that do not meet the qualification show a NULL value in the appropriate
columns of those rows.

The following rules determine what types of updates you can make to columns through views that contain
outer joins:

● INSERT and DELETE statements are not allowed on outer join views.

● UPDATE statements are allowed on outer join views. If the view is defined WITH CHECK option, the
update fails if any of the affected columns appears in the WHERE clause in an expression that includes
columns from more than one table.

How NULL affects Transact-SQL joins
NULL values in tables or views being joined never match each other in a Transact-SQL outer join. The result
of comparing a NULL value with any other NULL value is FALSE.

Joins: Retrieving data from several tables

408 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Specialized joins
This section describes how to create some specialized joins such as self-joins, star joins, and joins using
derived tables.

Self-joins
In a self-join, a table is joined to itself by referring to the same table using a different correlation name.

Example 1
The following self-join produces a list of pairs of employees. Each employee name appears in combination
with every employee name.

SELECT a.GivenName, a.Surname,
 b.GivenName, b.Surname
FROM Employees AS a CROSS JOIN Employees AS b;

GivenName Surname GivenName Surname

Fran Whitney Fran Whitney

Fran Whitney Matthew Cobb

Fran Whitney Philip Chin

Fran Whitney Julie Jordan

...

Since the Employees table has 75 rows, this join contains 75 x 75 = 5625 rows. It includes, as well, rows
that list each employee with themselves. For example, it contains the row

GivenName Surname GivenName Surname

Fran Whitney Fran Whitney

If you want to exclude rows that contain the same name twice, add the join condition that the employee IDs
should not be equal to each other.

SELECT a.GivenName, a.Surname,
 b.GivenName, b.Surname
FROM Employees AS a CROSS JOIN Employees AS b
WHERE a.EmployeeID != b.EmployeeID;

Without these duplicate rows, the join contains 75 x 74 = 5550 rows.

This new join contains rows that pair each employee with every other employee, but because each pair of
names can appear in two possible orders, each pair appears twice. For example, the result of the above join
contains the following two rows.

Specialized joins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 409

GivenName Surname GivenName Surname

Matthew Cobb Fran Whitney

Fran Whitney Matthew Cobb

If the order of the names is not important, you can produce a list of the (75 x 74)/2 = 2775 unique pairs.

SELECT a.GivenName, a.Surname,
 b.GivenName, b.Surname
FROM Employees AS a CROSS JOIN Employees AS b
WHERE a.EmployeeID < b.EmployeeID;

This statement eliminates duplicate lines by selecting only those rows in which the EmployeeID of employee
a is less than that of employee b.

Example 2
The following self-join uses the correlation names report and manager to distinguish two instances of the
Employees table, and creates a list of employees and their managers.

SELECT report.GivenName, report.Surname,
 manager.GivenName, manager.Surname
FROM Employees AS report JOIN Employees AS manager
 ON (report.ManagerID = manager.EmployeeID)
ORDER BY report.Surname, report.GivenName;

This statement produces the result shown partially below. The employee names appear in the two left-hand
columns, and the names of their managers are on the right.

GivenName Surname GivenName Surname

Alex Ahmed Scott Evans

Joseph Barker Jose Martinez

Irene Barletta Scott Evans

Jeannette Bertrand Jose Martinez

...

Duplicate correlation names in joins (star joins)
The reason for using duplicate table names is to create a star join. In a star join, one table or view is joined
to several others.

To create a star join, you use the same table name, view name, or correlation name more than once in the
FROM clause. This is an extension to the ANSI/ISO SQL standard. The ability to use duplicate names does
not add any additional functionality, but it makes it much easier to formulate certain queries.

Joins: Retrieving data from several tables

410 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The duplicate names must be in different joins for the syntax to make sense. When a table name or view
name is used twice in the same join, the second instance is ignored. For example, FROM A,A and FROM A
CROSS JOIN A are both interpreted as FROM A.

The following example, in which A, B and C are tables, is valid in SQL Anywhere. In this example, the
same instance of table A is joined both to B and C. Note that a comma is required to separate the joins in a
star join. The use of a comma in star joins is specific to the syntax of star joins.

SELECT *
FROM A LEFT OUTER JOIN B ON A.x = B.x,
 A LEFT OUTER JOIN C ON A.y = C.y;

The next example is equivalent.

SELECT *
FROM A LEFT OUTER JOIN B ON A.x = B.x,
 C RIGHT OUTER JOIN A ON A.y = C.y;

Both of these are equivalent to the following standard ANSI/ISO syntax. (The parentheses are optional.)

SELECT *
FROM (A LEFT OUTER JOIN B ON A.x = B.x)
LEFT OUTER JOIN C ON A.y = C.y;

In the next example, table A is joined to three tables: B, C and D.

SELECT *
FROM A JOIN B ON A.x = B.x,
 A JOIN C ON A.y = C.y,
 A JOIN D ON A.w = D.w;

This is equivalent to the following standard ANSI/ISO syntax. (The parentheses are optional.)

SELECT *
FROM ((A JOIN B ON A.x = B.x)
JOIN C ON A.y = C.y)
JOIN D ON A.w = D.w;

With complex joins, it can help to draw a diagram. The previous example can be described by the following
diagram, which illustrates that tables B, C and D are joined via table A.

Note
You can use duplicate table names only if the extended_join_syntax option is On (the default).

For more information, see “extended_join_syntax option [database]” [SQL Anywhere Server - Database
Administration].

Example 1
Create a list of the names of the customers who placed orders with Rollin Overbey. Notice that one of the
tables in the FROM clause, Employees, does not contribute any columns to the results. Nor do any of the

Specialized joins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 411

columns that are joined—such as Customers.ID or Employees.EmployeeID—appear in the results.
Nonetheless, this join is possible only using the Employees table in the FROM clause.

SELECT Customers.GivenName, Customers.Surname,
 SalesOrders.OrderDate
FROM SalesOrders KEY JOIN Customers,
 SalesOrders KEY JOIN Employees
WHERE Employees.GivenName = 'Rollin'
 AND Employees.Surname = 'Overbey'
ORDER BY SalesOrders.OrderDate;

GivenName Surname OrderDate

Tommie Wooten 2000-01-03

Michael Agliori 2000-01-08

Salton Pepper 2000-01-17

Tommie Wooten 2000-01-23

...

Following is the equivalent statement in standard ANSI/ISO syntax:

SELECT Customers.GivenName, Customers.Surname,
 SalesOrders.OrderDate
FROM SalesOrders JOIN Customers
 ON SalesOrders.CustomerID =
 Customers.ID
JOIN Employees
 ON SalesOrders.SalesRepresentative =
 Employees.EmployeeID
WHERE Employees.GivenName = 'Rollin'
 AND Employees.Surname = 'Overbey'
ORDER BY SalesOrders.OrderDate;

Example 2
This example answers the question: How much of each product has each customer ordered, and who is the
manager of the salesperson who took the order?

To answer the question, start by listing the information you need to retrieve. In this case, it is product,
quantity, customer name, and manager name. Next, list the tables that hold this information. They are
Products, SalesOrderItems, Customers, and Employees. When you look at the structure of the SQL
Anywhere sample database (see “Sample database schema” on page 391), you will notice that these tables
are all related through the SalesOrders table. You can create a star join on the SalesOrders table to retrieve
the information from the other tables.

In addition, you need to create a self-join to get the name of the manager, because the Employees table
contains ID numbers for managers and the names of all employees, but not a column listing only manager
names. For more information, see “Self-joins” on page 409.

The following statement creates a star join around the SalesOrders table. The joins are all outer joins so that
the result set will include all customers. Some customers have not placed orders, so the other values for these

Joins: Retrieving data from several tables

412 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

customers are NULL. The columns in the result set are Customers, Products, Quantity ordered, and the name
of the manager of the salesperson.

SELECT Customers.GivenName, Products.Name,
 SUM(SalesOrderItems.Quantity), m.GivenName
FROM SalesOrders
 KEY RIGHT OUTER JOIN Customers,
 SalesOrders
 KEY LEFT OUTER JOIN SalesOrderItems
 KEY LEFT OUTER JOIN Products,
 SalesOrders
 KEY LEFT OUTER JOIN Employees AS e
 LEFT OUTER JOIN Employees AS m
 ON (e.ManagerID = m.EmployeeID)
WHERE Customers.State = 'CA'
GROUP BY Customers.GivenName, Products.Name, m.GivenName
ORDER BY SUM(SalesOrderItems.Quantity) DESC,
 Customers.GivenName;

GivenName Name SUM(SalesOrderItems.Quantity) GivenName

Sheng Baseball Cap 240 Moira

Laura Tee Shirt 192 Moira

Moe Tee Shirt 192 Moira

Leilani Sweatshirt 132 Moira

...

Following is a diagram of the tables in this star join. The arrows indicate the directionality (left or right) of
the outer joins. As you can see, the complete list of customers is maintained throughout all the joins.

The following standard ANSI/ISO syntax is equivalent to the star join in Example 2.

SELECT Customers.GivenName, Products.Name,
 SUM(SalesOrderItems.Quantity), m.GivenName
FROM SalesOrders LEFT OUTER JOIN SalesOrderItems

Specialized joins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 413

 ON SalesOrders.ID = SalesOrderItems.ID
 LEFT OUTER JOIN Products
 ON SalesOrderItems.ProductID = Products.ID
 LEFT OUTER JOIN Employees as e
 ON SalesOrders.SalesRepresentative = e.EmployeeID
 LEFT OUTER JOIN Employees as m
 ON e.ManagerID = m.EmployeeID
 RIGHT OUTER JOIN Customers
 ON SalesOrders.CustomerID = Customers.ID
WHERE Customers.State = 'CA'
GROUP BY Customers.GivenName, Products.Name, m.GivenName
ORDER BY SUM(SalesOrderItems.Quantity) DESC,
 Customers.GivenName;

Joins involving derived tables
Derived tables allow you to nest queries within a FROM clause. With derived tables, you can perform
grouping of groups, or you can construct a join with a group, without having to create a separate view or
table and join to it

In the following example, the inner SELECT statement (enclosed in parentheses) creates a derived table,
grouped by customer ID values. The outer SELECT statement assigns this table the correlation name
sales_order_counts and joins it to the Customers table using a join condition.

SELECT Surname, GivenName, number_of_orders
FROM Customers JOIN
 (SELECT CustomerID, COUNT(*)
 FROM SalesOrders
 GROUP BY CustomerID)
 AS sales_order_counts (CustomerID, number_of_orders)
 ON (Customers.ID = sales_order_counts.CustomerID)
WHERE number_of_orders > 3;

The result is a table of the names of those customers who have placed more than three orders, including the
number of orders each has placed.

For an explanation of key joins of derived tables, see “Key joins of views and derived
tables” on page 429.

For an explanation of natural joins of derived tables, see “Natural joins of views and derived
tables” on page 420.

For an explanation of outer joins of derived tables, see “Outer joins of views and derived
tables” on page 405.

Joins resulting from apply expressions
An apply expression is an easy way to specify joins where the right side is dependent upon the left. For
example, use an apply expression to evaluate a procedure or derived table once for each row in a table
expression. Apply expressions are placed in the FROM clause of a SELECT statement, and do not permit
the use of an ON clause.

Joins: Retrieving data from several tables

414 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

An APPLY combines rows from multiple sources, similar to a JOIN except that you cannot specify an ON
condition for APPLY. The main difference between an APPLY and a JOIN is that the right side of an APPLY
can change depending on the current row from the left side. For each row on the left side, the right side is
recalculated and the resulting rows are joined with the row on the left. In the case where a row on the left
side returns more than one row on the right, the left side is duplicated in the results as many times as there
are rows returned from the right.

There are two types of APPLY you can specify: CROSS APPLY and OUTER APPLY. CROSS APPLY
returns only rows on the left side that produce results on the right side. OUTER APPLY returns all rows that
a CROSS APPLY returns, plus all rows on the left side for which the right side does not return rows (by
supplying NULLs for the right side).

The syntax of an apply expression is as follows:

table-expression { CROSS | OUTER } APPLY table-expression

Example

The following example creates a procedure, EmployeesWithHighSalary, which takes as input a department
ID, and returns the names of all employees in that department with salaries greater than $80,000.

CREATE PROCEDURE EmployeesWithHighSalary(IN dept INTEGER)
 RESULT (Name LONG VARCHAR)
 BEGIN
 SELECT E.GivenName || ' ' || E.Surname
 FROM Employees E
 WHERE E.DepartmentID = dept AND E.Salary > 80000;
 END;

The following query uses OUTER APPLY to join the Departments table to the results of the
EmployeesWithHighSalary procedure, and return the names of all employees with salary greater than
$80,000 in each department. The query returns rows with NULL on the right side, indicating that there were
no employees with salaries over $80,000 in the respective departments.

SELECT D.DepartmentName, HS.Name
 FROM Departments D
 OUTER APPLY EmployeesWithHighSalary(D.DepartmentID) AS HS;

DepartmentName Name

R & D Kim Lull

R & D David Scott

R & D John Sheffield

Sales Moira Kelly

Finance Mary Anne Shea

Marketing NULL

Shipping NULL

Specialized joins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 415

The next query uses a CROSS APPLY to join the Departments table to the results of the
EmployeesWithHighSalary procedure. Note that rows with NULL on the right side are not included.

SELECT D.DepartmentName, HS.Name
 FROM Departments D
 CROSS APPLY EmployeesWithHighSalary(D.DepartmentID) AS HS;

DepartmentName Name

R & D Kim Lull

R & D David Scott

R & D John Sheffield

Sales Moira Kelly

Finance Mary Anne Shea

The next query returns the same results as the previous query, but uses a derived table as the right side of
the CROSS APPLY.

SELECT D.DepartmentName, HS.Name
 FROM Departments D
 CROSS APPLY (
 SELECT E.GivenName || ' ' || E.Surname
 FROM Employees E
 WHERE E.DepartmentID = D.DepartmentID AND E.Salary > 80000
) HS(Name);

See also
● “FROM clause” [SQL Anywhere Server - SQL Reference]
● “Cross joins” on page 401
● “Inner and outer joins” on page 402

Joins: Retrieving data from several tables

416 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Natural joins
When you specify a natural join, SQL Anywhere generates a join condition based on columns with the same
name. For this to work in a natural join of base tables, there must be at least one pair of columns with the
same name, with one column from each table. If there is no common column name, an error is issued.

If table A and table B have one column name in common, and that column is called x, then

SELECT *
FROM A NATURAL JOIN B;

is equivalent to the following:

SELECT *
FROM A JOIN B
 ON A.x = B.x;

If table A and table B have two column names in common, and they are called a and b, then A NATURAL
JOIN B is equivalent to the following:

A JOIN B
 ON A.a = B.a
 AND A.b = B.b;

Example 1
For example, you can join the Employees and Departments tables using a natural join because they have a
column name in common, the DepartmentID column.

SELECT GivenName, Surname, DepartmentName
FROM Employees NATURAL JOIN Departments
ORDER BY DepartmentName, Surname, GivenName;

GivenName Surname DepartmentName

Janet Bigelow Finance

Kristen Coe Finance

James Coleman Finance

Jo Ann Davidson Finance

...

The following statement is equivalent. It explicitly specifies the join condition that was generated in the
previous example.

SELECT GivenName, Surname, DepartmentName
FROM Employees JOIN Departments
 ON (Employees.DepartmentID = Departments.DepartmentID)
ORDER BY DepartmentName, Surname, GivenName;

Example 2
In Interactive SQL, execute the following query:

Natural joins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 417

SELECT Surname, DepartmentName
FROM Employees NATURAL JOIN Departments;

Surname DepartmentName

Whitney R & D

Cobb R & D

Breault R & D

Shishov R & D

Driscoll R & D

... ...

SQL Anywhere looks at the two tables and determines that the only column name they have in common is
DepartmentID. The following ON CLAUSE is internally generated and used to perform the join:

FROM Employees JOIN Departments
 ON Employees.DepartmentID = Departments.DepartmentID

NATURAL JOIN is just a shortcut for entering the ON clause; the two queries are identical.

Errors using NATURAL JOIN
The NATURAL JOIN operator can cause problems by equating columns you may not intend to be equated.
For example, the following query generates unwanted results:

SELECT *
FROM SalesOrders NATURAL JOIN Customers;

The result of this query has no rows. SQL Anywhere internally generates the following ON clause:

FROM SalesOrders JOIN Customers
 ON SalesOrders.ID = Customers.ID

The ID column in the SalesOrders table is an ID number for the order. The ID column in the Customers table
is an ID number for the customer. None of them match. Of course, even if a match were found, it would be
a meaningless one.

Natural joins with an ON clause
When you specify a NATURAL JOIN and put a join condition in an ON clause, the result is the conjunction
of the two join conditions.

For example, the following two queries are equivalent. In the first query, SQL Anywhere generates the join
condition Employees.DepartmentID = Departments.DepartmentID. The query also
contains an explicit join condition.

Joins: Retrieving data from several tables

418 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SELECT GivenName, Surname, DepartmentName
FROM Employees NATURAL JOIN Departments
 ON Employees.ManagerID = Departments.DepartmentHeadID;

The next query is equivalent. In it, the natural join condition that was generated in the previous query is
specified in the ON clause.

SELECT GivenName, Surname, DepartmentName
FROM Employees JOIN Departments
 ON Employees.ManagerID = Departments.DepartmentHeadID
 AND Employees.DepartmentID = Departments.DepartmentID;

Natural joins of table expressions
When there is a multiple-table expression on at least one side of a natural join, SQL Anywhere generates a
join condition by comparing the set of columns for each side of the join operator, and looking for columns
that have the same name.

For example, in the statement

SELECT *
FROM (A JOIN B) NATURAL JOIN (C JOIN D);

there are two table expressions. The column names in the table expression A JOIN B are compared to the
column names in the table expression C JOIN D, and a join condition is generated for each unambiguous
pair of matching column names. An unambiguous pair of matching columns means that the column name
occurs in both table expressions, but does not occur twice in the same table expression.

If there is a pair of ambiguous column names, an error is issued. However, a column name may occur twice
in the same table expression, as long as it doesn't also match the name of a column in the other table
expression.

Natural joins of lists
When a list of table expressions is on at least one side of a natural join, a separate join condition is generated
for each table expression in the list.

Consider the following tables:

● table A consists of columns called a, b and c

● table B consists of columns called a and d

● table C consists of columns called d and c

In this case, the join (A,B) NATURAL JOIN C causes SQL Anywhere to generate two join conditions:

ON A.c = C.c
 AND B.d = C.d

If there is no common column name for A-C or B-C, an error is issued.

If table C consists of columns a, d, and c, then the join (A,B) NATURAL JOIN C is invalid. The reason
is that column a appears in all three tables, and so the join is ambiguous.

Natural joins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 419

Example
The following example answers the question: for each sale, provide information about what was sold and
who sold it.

SELECT *
FROM (Employees KEY JOIN SalesOrders)
 NATURAL JOIN (SalesOrderItems KEY JOIN Products);

This is equivalent to

SELECT *
FROM (Employees KEY JOIN SalesOrders)
 JOIN (SalesOrderItems KEY JOIN Products)
 ON SalesOrders.ID = SalesOrderItems.ID;

Natural joins of views and derived tables
An extension to the ANSI/ISO SQL standard is that you can specify views or derived tables on either side
of a natural join. In the following statement,

SELECT *
FROM View1 NATURAL JOIN View2;

the columns in View1 are compared to the columns in View2. If, for example, a column called EmployeeID
is found to occur in both views, and there are no other columns that have identical names, then the generated
join condition is (View1.EmployeeID = View2.EmployeeID).

Example
The following example illustrates that a view used in a natural join can include expressions, and not just
columns, and they are treated the same way in the natural join. First, create the view V with a column called
x, as follows:

CREATE VIEW V(x) AS
SELECT R.y + 1
FROM R;

Next, create a natural join of the view to a derived table. The derived table has a correlation name T with a
column called x.

SELECT *
FROM V NATURAL JOIN (SELECT P.y FROM P) as T(x);

This join is equivalent to the following:

SELECT *
FROM V JOIN (SELECT P.y FROM P) as T(x) ON (V.x = T.x);

Joins: Retrieving data from several tables

420 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Key joins
Many common joins are between two tables related by a foreign key. The most common join restricts foreign
key values to be equal to primary key values. The KEY JOIN operator joins two tables based on a foreign
key relationship. In other words, SQL Anywhere generates an ON clause that equates the primary key column
from one table with the foreign key column of the other. To use a key join, there must be a foreign key
relationship between the tables, or an error is issued.

A key join can be considered a shortcut for the ON clause; the two queries are identical. However, you can
also use the ON clause with a KEY JOIN. Key join is the default when you specify JOIN but do not specify
CROSS, NATURAL, KEY, or use an ON clause. If you look at the diagram of the SQL Anywhere sample
database, lines between tables represent foreign keys. You can use the KEY JOIN operator anywhere two
tables are joined by a line in the diagram. For more information about the SQL Anywhere sample database,
see “Tutorial: Using the sample database” [SQL Anywhere Server - Database Administration].

When key join is the default
Key join is the default in SQL Anywhere when all the following apply:

● the keyword JOIN is used.

● the keywords CROSS, NATURAL or KEY are not specified.

● there is no ON clause.

Example
For example, the following query joins the tables Products and SalesOrderItems based on the foreign key
relationship in the database.

SELECT *
FROM Products KEY JOIN SalesOrderItems;

The next query is equivalent. It leaves out the word KEY, but by default a JOIN without an ON clause is a
KEY JOIN.

SELECT *
FROM Products JOIN SalesOrderItems;

The next query is also equivalent because the join condition specified in the ON clause happens to be the
same as the join condition that SQL Anywhere generates for these tables based on their foreign key
relationship in the SQL Anywhere sample database.

SELECT *
FROM Products JOIN SalesOrderItems
ON SalesOrderItems.ProductID = Products.ID;

Key joins with an ON clause
When you specify a KEY JOIN and put a join condition in an ON clause, the result is the conjunction of the
two join conditions. For example,

Key joins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 421

SELECT *
FROM A KEY JOIN B
ON A.x = B.y;

If the join condition generated by the key join of A and B is A.w = B.z, then this query is equivalent to

SELECT *
FROM A JOIN B
ON A.x = B.y AND A.w = B.z;

Key joins when there are multiple foreign key relationships
When SQL Anywhere attempts to generate a join condition based on a foreign key relationship, it sometimes
finds more than one relationship. In these cases, SQL Anywhere determines which foreign key relationship
to use by matching the role name of the foreign key to the correlation name of the primary key table that the
foreign key references.

The following sections describe how SQL Anywhere generates join conditions for key joins. This
information is summarized in “Rules describing the operation of key joins” on page 431.

Correlation name and role name
A correlation name is the name of a table or view that is used in the FROM clause of the query—either its
original name, or an alias that is defined in the FROM clause.

A role name is the name of the foreign key. It must be unique for a given foreign (child) table.

If you do not specify a role name for a foreign key, the name is assigned as follows:

● If there is no foreign key with the same name as the primary table name, the primary table name is
assigned as the role name.

● If the primary table name is already being used by another foreign key, the role name is the primary table
name concatenated with a zero-padded three-digit number unique to the foreign table.

If you don't know the role name of a foreign key, you can find it in Sybase Central by expanding the database
container in the left pane. Select the table in left pane, and then click the Constraints tab in the right pane.
A list of foreign keys for that table appears in the right pane.

See “Sample database schema” on page 391 for a diagram that includes the role names of all foreign keys
in the SQL Anywhere sample database.

Generating join conditions
SQL Anywhere looks for a foreign key that has the same role name as the correlation name of the primary
key table:

● If there is exactly one foreign key with the same name as a table in the join, SQL Anywhere uses it to
generate the join condition.

● If there is more than one foreign key with the same name as a table, the join is ambiguous and an error
is issued.

Joins: Retrieving data from several tables

422 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● If there is no foreign key with the same name as the table, SQL Anywhere looks for any foreign key
relationship, even if the names don't match. If there is more than one foreign key relationship, the join
is ambiguous and an error is issued.

Example 1
In the SQL Anywhere sample database, two foreign key relationships are defined between the tables
Employees and Departments: the foreign key FK_DepartmentID_DepartmentID in the Employees table
references the Departments table; and the foreign key FK_DepartmentHeadID_EmployeeID in the
Departments table references the Employees table.

The following query is ambiguous because there are two foreign key relationships and neither has the same
role name as the primary key table name. Therefore, attempting this query results in the syntax error
SQLE_AMBIGUOUS_JOIN (-147).

SELECT Employees.Surname, Departments.DepartmentName
FROM Employees KEY JOIN Departments;

Example 2
This query modifies the query in Example 1 by specifying the correlation name
FK_DepartmentID_DepartmentID for the Departments table. Now, the foreign key
FK_DepartmentID_DepartmentID has the same name as the table it references, and so it is used to define
the join condition. The result includes all the employee last names and the departments where they work.

SELECT Employees.Surname,
 FK_DepartmentID_DepartmentID.DepartmentName
FROM Employees KEY JOIN Departments
 AS FK_DepartmentID_DepartmentID;

The following query is equivalent. It is not necessary to create an alias for the Departments table in this
example. The same join condition that was generated above is specified in the ON clause in this query:

Key joins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 423

SELECT Employees.Surname, Departments.DepartmentName
FROM Employees JOIN Departments
 ON Departments.DepartmentID = Employees.DepartmentID;

Example 3
If the intent was to list all the employees that are the head of a department, then the foreign key
FK_DepartmentHeadID_EmployeeID should be used and Example 1 should be rewritten as follows. This
query imposes the use of the foreign key FK_DepartmentHeadID_EmployeeID by specifying the correlation
name FK_DepartmentHeadID_EmployeeID for the primary key table Employees.

SELECT FK_DepartmentHeadID_EmployeeID.Surname, Departments.DepartmentName
FROM Employees AS FK_DepartmentHeadID_EmployeeID
 KEY JOIN Departments;

The following query is equivalent. The join condition that was generated above is specified in the ON clause
in this query:

SELECT Employees.Surname, Departments.DepartmentName
FROM Employees JOIN Departments
 ON Departments.DepartmentHeadID = Employees.EmployeeID;

Example 4
A correlation name is not needed if the foreign key role name is identical to the primary key table name. For
example, you can define the foreign key Departments for the Employees table:

ALTER TABLE Employees
 ADD FOREIGN KEY Departments (DepartmentID)
 REFERENCES Departments (DepartmentID);

Now, this foreign key relationship is the default join condition when a KEY JOIN is specified between the
two tables. If the foreign key Departments is defined, then the following query is equivalent to Example 3.

SELECT Employees.Surname, Departments.DepartmentName
FROM Employees KEY JOIN Departments;

Note
If you try this example in Interactive SQL, you should reverse the change to the SQL Anywhere sample
database with the following statement:

ALTER TABLE Employees DROP FOREIGN KEY Departments;

Key joins of table expressions
SQL Anywhere generates join conditions for the key join of table expressions by examining the foreign key
relationship of each pair of tables in the statement.

The following example joins four pairs of tables.

SELECT *
FROM (A NATURAL JOIN B) KEY JOIN (C NATURAL JOIN D);

The table-pairs are A-C, A-D, B-C and B-D. SQL Anywhere considers the relationship within each pair and
then creates a generated join condition for the table expression as a whole. How SQL Anywhere does this

Joins: Retrieving data from several tables

424 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

depends on whether the table expressions use commas or not. Therefore, the generated join conditions in
the following two examples are different. A JOIN B is a table expression that does not contain commas,
and (A,B) is a table expression list.

SELECT *
FROM (A JOIN B) KEY JOIN C;

is semantically different from

SELECT *
FROM (A,B) KEY JOIN C;

The two types of join behavior are explained in the following sections:

● “Key joins of table expressions that do not contain commas” on page 425
● “Key joins of table expression lists” on page 426

Key joins of table expressions that do not contain commas
When both of the two table expressions being joined do not contain commas, SQL Anywhere examines the
foreign key relationships in the pairs of tables in the statement, and generates a single join condition.

For example, the following join has two table-pairs, A-C and B-C.

(A NATURAL JOIN B) KEY JOIN C

SQL Anywhere generates a single join condition for joining C with (A NATURAL JOIN B) by looking
at the foreign key relationships within the table-pairs A-C and B-C. It generates one join condition for the
two pairs according to the rules for determining key joins when there are multiple foreign key relationships:

● First, it looks at both A-C and B-C for a single foreign key that has the same role name as the correlation
name of one of the primary key tables it references. If there is exactly one foreign key meeting this
criterion, it uses it. If there is more than one foreign key with the same role name as the correlation name
of a table, the join is considered to be ambiguous and an error is issued.

● If there is no foreign key with the same name as the correlation name of a table, SQL Anywhere looks
for any foreign key relationship between the tables. If there is one, it uses it. If there is more than one,
the join is considered to be ambiguous and an error is issued.

● If there is no foreign key relationship, an error is issued.

For more information, see “Key joins when there are multiple foreign key relationships” on page 422.

Example
The following query finds all the employees who are sales representatives, and their departments.

SELECT Employees.Surname,
 FK_DepartmentID_DepartmentID.DepartmentName
FROM (Employees KEY JOIN Departments
 AS FK_DepartmentID_DepartmentID)
 KEY JOIN SalesOrders;

You can interpret this query as follows.

Key joins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 425

● SQL Anywhere considers the table expression (Employees KEY JOIN Departments as
FK_DepartmentID_DepartmentID) and generates the join condition
Employees.DepartmentID = FK_DepartmentID_DepartmentID.DepartmentID
based on the foreign key FK_DepartmentID_DepartmentID.

● SQL Anywhere then considers the table-pairs Employees/SalesOrders and Departments/SalesOrders.
Note that only one foreign key can exist between the tables SalesOrders and Employees and between
SalesOrders and Departments, or the join is ambiguous. As it happens, there is exactly one foreign key
relationship between the tables SalesOrders and Employees (FK_SalesRepresentative_EmployeeID),
and no foreign key relationship between SalesOrders and Departments. So, the generated join condition
is SalesOrders.EmployeeID = Employees.SalesRepresentative.

The following query is therefore equivalent to the previous query:

SELECT Employees.Surname, Departments.DepartmentName
FROM (Employees JOIN Departments
 ON (Employees.DepartmentID = Departments.DepartmentID))
JOIN SalesOrders
 ON (Employees.EmployeeID = SalesOrders.SalesRepresentative);

Key joins of table expression lists
To generate a join condition for the key join of two table expression lists, SQL Anywhere examines the pairs
of tables in the statement, and generates a join condition for each pair. The final join condition is the
conjunction of the join conditions for each pair. There must be a foreign key relationship between each pair.

The following example joins two table-pairs, A-C and B-C.

SELECT *
FROM (A,B) KEY JOIN C;

SQL Anywhere generates a join condition for joining C with (A,B) by generating a join condition for each
of the two pairs A-C and B-C. It does so according to the rules for key joins when there are multiple foreign
key relationships:

● For each pair, SQL Anywhere looks for a foreign key that has the same role name as the correlation
name of the primary key table. If there is exactly one foreign key meeting this criterion, it uses it. If there
is more than one, the join is considered to be ambiguous and an error is issued.

● For each pair, if there is no foreign key with the same name as the correlation name of the table, SQL
Anywhere looks for any foreign key relationship between the tables. If there is one, it uses it. If there is
more than one, the join is considered to be ambiguous and an error is issued.

● For each pair, if there is no foreign key relationship, an error is issued.

● If SQL Anywhere is able to determine exactly one join condition for each pair, it combines the join
conditions using AND.

See also “Key joins when there are multiple foreign key relationships” on page 422.

Example
The following query returns the names of all salespeople who have sold at least one order to a specific region.

Joins: Retrieving data from several tables

426 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SELECT DISTINCT Employees.Surname,
 FK_DepartmentID_DepartmentID.DepartmentName,
 SalesOrders.Region
FROM (SalesOrders, Departments
 AS FK_DepartmentID_DepartmentID)
 KEY JOIN Employees;

Surname DepartmentName Region

Chin Sales Eastern

Chin Sales Western

Chin Sales Central

...

This query deals with two pairs of tables: SalesOrders and Employees; and Departments AS
FK_DepartmentID_DepartmentID and Employees.

For the pair SalesOrders and Employees, there is no foreign key with the same role name as one of the tables.
However, there is a foreign key (FK_SalesRepresentative_EmployeeID) relating the two tables. It is the only
foreign key relating the two tables, and so it is used, resulting in the generated join condition
(Employees.EmployeeID = SalesOrders.SalesRepresentative).

For the pair Departments AS FK_DepartmentID_DepartmentID and Employees, there is one foreign key
that has the same role name as the primary key table. It is FK_DepartmentID_DepartmentID, and it matches
the correlation name given to the Departments table in the query. There are no other foreign keys with the
same name as the correlation name of the primary key table, so FK_DepartmentID_DepartmentID is used
to form the join condition for the table-pair. The join condition that is generated is
(Employees.DepartmentID = FK_DepartmentID_DepartmentID.DepartmentID).
Note that there is another foreign key relating the two tables, but as it has a different name from either of
the tables, it is not a factor.

The final join condition adds together the join condition generated for each table-pair. Therefore, the
following query is equivalent:

SELECT DISTINCT Employees.Surname,
 Departments.DepartmentName,
 SalesOrders.Region
FROM (SalesOrders, Departments)
 JOIN Employees
 ON Employees.EmployeeID = SalesOrders.SalesRepresentative
 AND Employees.DepartmentID = Departments.DepartmentID;

Key joins of lists and table expressions that do not contain commas
When table expression lists are joined via key join with table expressions that do not contain commas, SQL
Anywhere generates a join condition for each table in the table expression list.

Key joins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 427

For example, the following statement is the key join of a table expression list with a table expression that
does not contain commas. This example generates a join condition for table A with table expression C
NATURAL JOIN D, and for table B with table expression C NATURAL JOIN D.

SELECT *
FROM (A,B) KEY JOIN (C NATURAL JOIN D);

(A,B) is a list of table expressions and C NATURAL JOIN D is a table expression. SQL Anywhere must
therefore generate two join conditions: it generates one join condition for the pairs A-C and A-D, and a
second join condition for the pairs B-C and B-D. It does so according to the rules for key joins when there
are multiple foreign key relationships:

● For each set of table-pairs, SQL Anywhere looks for a foreign key that has the same role name as the
correlation name of one of the primary key tables. If there is exactly one foreign key meeting this criterion,
it uses it. If there is more than one, the join is ambiguous and an error is issued.

● For each set of table-pairs, if there is no foreign key with the same name as the correlation name of a
table, SQL Anywhere looks for any foreign key relationship between the tables. If there is exactly one
relationship, it uses it. If there is more than one, the join is ambiguous and an error is issued.

● For each set of pairs, if there is no foreign key relationship, an error is issued.

● If SQL Anywhere is able to determine exactly one join condition for each set of pairs, it combines the
join conditions with the keyword AND.

Example 1
Consider the following join of five tables:

((A,B) JOIN (C NATURAL JOIN D) ON A.x = D.y) KEY JOIN E

In this case, SQL Anywhere generates a join condition for the key join to E by generating a condition either
between (A,B) and E or between C NATURAL JOIN D and E. This is as described in “Key joins of table
expressions that do not contain commas” on page 425.

If SQL Anywhere generates a join condition between (A,B) and E, it needs to create two join conditions,
one for A-E and one for B-E. It must find a valid foreign key relationship within each table-pair. This is as
described in “Key joins of table expression lists” on page 426.

If SQL Anywhere creates a join condition between C NATURAL JOIN D and E, it creates only one join
condition, and so must find only one foreign key relationship in the pairs C-E and D-E. This is as described
in “Key joins of table expressions that do not contain commas” on page 425.

Example 2
The following is an example of a key join of a table expression and a list of table expressions. The example
provides the name and department of employees who are sales representatives and also managers.

SELECT DISTINCT Employees.Surname,
 FK_DepartmentID_DepartmentID.DepartmentName
FROM (SalesOrders, Departments
 AS FK_DepartmentID_DepartmentID)
 KEY JOIN (Employees JOIN Departments AS d
 ON Employees.EmployeeID = d.DepartmentHeadID);

SQL Anywhere generates two join conditions:

Joins: Retrieving data from several tables

428 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● There is exactly one foreign key relationship between the table-pairs SalesOrders/Employees and
SalesOrders/d: SalesOrders.SalesRepresentative = Employees.EmployeeID.

● There is exactly one foreign key relationship between the table-pairs FK_DepartmentID_DepartmentID/
Employees and FK_DepartmentID_DepartmentID/d:
FK_DepartmentID_DepartmentID.DepartmentID = Employees.DepartmentID.

This example is equivalent to the following. In the following version, it is not necessary to create the
correlation name Departments AS FK_DepartmentID_DepartmentID, because that was only
needed to clarify which of two foreign keys should be used to join Employees and Departments.

SELECT DISTINCT Employees.Surname,
 Departments.DepartmentName
FROM (SalesOrders, Departments)
 JOIN (Employees JOIN Departments AS d
 ON Employees.EmployeeID = d.DepartmentHeadID)
 ON SalesOrders.SalesRepresentative = Employees.EmployeeID
 AND Departments.DepartmentID = Employees.DepartmentID;

Key joins of views and derived tables
When you include a view or derived table in a key join, SQL Anywhere follows the same basic procedure
as with tables, but with these differences:

● For each key join, SQL Anywhere considers the pairs of tables in the FROM clause of the query and the
view, and generates one join condition for the set of all pairs, regardless of whether the FROM clause
in the view contains commas or join keywords.

● SQL Anywhere joins the tables based on the foreign key that has the same role name as the correlation
name of the view or derived table.

● When you include a view or derived table in a key join, the view or derived table definition cannot contain
UNION, INTERSECT, EXCEPT, ORDER BY, DISTINCT, GROUP BY, aggregate functions, window
functions, TOP, FIRST, START AT, or FOR XML. If it contains any of these items, an error is returned.
In addition, the derived table cannot be defined as a recursive table expression.

A derived table works identically to a view. The only difference is that instead of referencing a predefined
view, the definition for the table is included in the statement.

For information about recursive table expressions, see “Recursive common table
expressions” on page 441, and “RecursiveTable algorithm (RT)” on page 602.

Example 1
For example, in the following statement, View1 is a view.

SELECT *
FROM View1 KEY JOIN B;

The definition of View1 can be any of the following and result in the same join condition to B. (The result
set will differ, but the join conditions will be identical.)

SELECT *
FROM C CROSS JOIN D;

Key joins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 429

or

SELECT *
FROM C,D;

or

SELECT *
FROM C JOIN D ON (C.x = D.y);

In each case, to generate a join condition for the key join of View1 and B, SQL Anywhere considers the
table-pairs C-B and D-B, and generates a single join condition. It generates the join condition based on the
rules for multiple foreign key relationships described in “Key joins of table expressions” on page 424, except
that it looks for a foreign key with the same name as the correlation name of the view (rather than a table
referenced in the view).

Using any of the view definitions above, you can interpret the processing of View1 KEY JOIN B as
follows:

SQL Anywhere generates a single join condition by considering the table-pairs C-B and D-B. It generates
the join condition according to the rules for determining key joins when there are multiple foreign key
relationships:

● First, it looks at both C-B and D-B for a single foreign key that has the same role name as the correlation
name of the view. If there is exactly one foreign key meeting this criterion, it uses it. If there is more
than one foreign key with the same role name as the correlation name of the view, the join is considered
to be ambiguous and an error is issued.

● If there is no foreign key with the same name as the correlation name of the view, SQL Anywhere looks
for any foreign key relationship between the tables. If there is one, it uses it. If there is more than one,
the join is considered to be ambiguous and an error is issued.

● If there is no foreign key relationship, an error is issued.

Assume this generated join condition is B.y = D.z. You can now expand the original join. For example,
the following two statements are equivalent:

SELECT *
FROM View1 KEY JOIN B;
SELECT *
FROM View1 JOIN B ON B.y = View1.z;

See “Key joins when there are multiple foreign key relationships” on page 422.

Example 2
The following view contains all the employee information about the manager of each department.

CREATE VIEW V AS
SELECT Departments.DepartmentName, Employees.*
FROM Employees JOIN Departments
 ON Employees.EmployeeID = Departments.DepartmentHeadID;

The following query joins the view to a table expression.

Joins: Retrieving data from several tables

430 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SELECT *
FROM V KEY JOIN (SalesOrders,
 Departments FK_DepartmentID_DepartmentID);

The following query is equivalent to the previous query:

SELECT *
FROM V JOIN (SalesOrders,
 Departments FK_DepartmentID_DepartmentID)
ON (V.EmployeeID = SalesOrders.SalesRepresentative
AND V.DepartmentID =
 FK_DepartmentID_DepartmentID.DepartmentID);

Rules describing the operation of key joins
The following rules summarize the information provided above.

Rule 1: Key join of two tables
This rule applies to A KEY JOIN B, where A and B are base or temporary tables.

1. Find all foreign keys from A referencing B.

If there exists a foreign key whose role name is the correlation name of table B, then mark it as a preferred
foreign key.

2. Find all foreign keys from B referencing A.

If there exists a foreign key whose role name is the correlation name of table A, then mark it as a preferred
foreign key.

3. If there is more than one preferred key, the join is ambiguous. The syntax error
SQLE_AMBIGUOUS_JOIN (-147) is issued.

4. If there is a single preferred key, then this foreign key is chosen to define the generated join condition
for this KEY JOIN expression.

5. If there is no preferred key, then other foreign keys between A and B are used:

● If there is more than one foreign key between A and B, then the join is ambiguous. The syntax error
SQLE_AMBIGUOUS_JOIN (-147) is issued.

● If there is a single foreign key, then this foreign key is chosen to define the generated join condition
for this KEY JOIN expression.

● If there is no foreign key, then the join is invalid and an error is generated.

Rule 2: Key join of table expressions that do not contain commas
This rule applies to A KEY JOIN B, where A and B are table expressions that do not contain commas.

1. For each pair of tables; one from expression A and one from expression B, list all foreign keys, and mark
all preferred foreign keys between the tables. The rule for determining a preferred foreign key is given
in Rule 1, above.

Key joins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 431

2. If there is more than one preferred key, then the join is ambiguous. The syntax error
SQLE_AMBIGUOUS_JOIN (-147) is issued.

3. If there is a single preferred key, then this foreign key is chosen to define the generated join condition
for this KEY JOIN expression.

4. If there is no preferred key, then other foreign keys between pairs of tables are used:

● If there is more than one foreign key, then the join is ambiguous. The syntax error
SQLE_AMBIGUOUS_JOIN (-147) is issued.

● If there is a single foreign key, then this foreign key is chosen to define the generated join condition
for this KEY JOIN expression.

● If there is no foreign key, then the join is invalid and an error is generated.

Rule 3: Key join of table expression lists
This rule applies to (A1, A2, ...) KEY JOIN (B1, B2, ...) where A1, B1, and so on are
table expressions that do not contain commas.

1. For each pair of table expressions Ai and Bj, find a unique generated join condition for the table
expression (Ai KEY JOIN Bj) by applying Rule 1 or 2. If any KEY JOIN for a pair of table
expressions is ambiguous by Rule 1 or 2, a syntax error is generated.

2. The generated join condition for this KEY JOIN expression is the conjunction of the join conditions
found in step 1.

Rule 4: Key join of lists and table expressions that do not contain commas
This rule applies to (A1, A2, ...) KEY JOIN (B1, B2, ...) where A1, B1, and so on are
table expressions that may contain commas.

1. For each pair of table expressions Ai and Bj, find a unique generated join condition for the table
expression (Ai KEY JOIN Bj) by applying Rule 1, 2, or 3. If any KEY JOIN for a pair of table
expressions is ambiguous by Rule 1, 2, or 3, then a syntax error is generated.

2. The generated join condition for this KEY JOIN expression is the conjunction of the join conditions
found in step 1.

Joins: Retrieving data from several tables

432 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Common table expressions

Contents
Using common table expressions .. 434
Specifying multiple correlation names ... 435
Using multiple table expressions ... 436
Where common table expressions are permitted .. 437
Typical applications of common table expressions ... 438
Recursive common table expressions ... 441
Parts explosion problems .. 444
Data type declarations in recursive common table expressions 447
Least distance problem ... 448
Using multiple recursive common table expressions ... 451

The WITH prefix to the SELECT statement affords you the opportunity to define common table expressions.
Common table expressions are temporary views that are known only within the scope of a single SELECT
statement. They permit you to write queries more easily, and to write queries that could not otherwise be
expressed.

Common table expressions are useful or may be necessary if a query involves multiple aggregate functions
or defines a view within a stored procedure that references program variables. Common table expressions
also provide a convenient means to temporarily store sets of values.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 433

Using common table expressions
Common table expressions are defined using the WITH clause, which precedes the SELECT keyword in a
SELECT statement. The content of the clause defines one or more temporary views that may then be
referenced elsewhere in the statement. The syntax of this clause mimics that of the CREATE VIEW
statement. Using common table expressions, you can express the previous query as follows.

WITH CountEmployees(DepartmentID, n) AS
 (SELECT DepartmentID, COUNT(*) AS n
 FROM Employees GROUP BY DepartmentID)
SELECT DepartmentID, n
FROM CountEmployees
WHERE n = (SELECT MAX(n)
 FROM CountEmployees);

Changing the query to search for the department with the fewest employees demonstrates that such queries
may return multiple rows.

WITH CountEmployees(DepartmentID, n) AS
 (SELECT DepartmentID, COUNT(*) AS n
 FROM Employees GROUP BY DepartmentID)
SELECT DepartmentID, n
FROM CountEmployees
WHERE n = (SELECT MIN(n)
 FROM CountEmployees);

In the SQL Anywhere sample database, two departments share the minimum number of employees, which
is 9.

See also
● “Specifying multiple correlation names” on page 435
● “Using multiple table expressions” on page 436
● “Where common table expressions are permitted” on page 437

Common table expressions

434 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Specifying multiple correlation names
Just as when using tables, you can give different correlation names to multiple instances of a common table
expression. Doing so permits you to join a common table expression to itself. For example, the query below
produces pairs of departments that have the same number of employees, although there are only two
departments with the same number of employees in the SQL Anywhere sample database.

WITH CountEmployees(DepartmentID, n) AS
 (SELECT DepartmentID, COUNT(*) AS n
 FROM Employees GROUP BY DepartmentID)
SELECT a.DepartmentID, a.n, b.DepartmentID, b.n
FROM CountEmployees AS a JOIN CountEmployees AS b
ON a.n = b.n AND a.DepartmentID < b.DepartmentID;

See also
● “Using common table expressions” on page 434
● “Using multiple table expressions” on page 436
● “Where common table expressions are permitted” on page 437

Specifying multiple correlation names

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 435

Using multiple table expressions
A single WITH clause may define more than one common table expression. These definitions must be
separated by commas. The following example lists the department that has the smallest payroll and the
department that has the largest number of employees.

WITH
 CountEmployees(DepartmentID, n) AS
 (SELECT DepartmentID, COUNT(*) AS n
 FROM Employees GROUP BY DepartmentID),
 DeptPayroll(DepartmentID, amt) AS
 (SELECT DepartmentID, SUM(Salary) AS amt
 FROM Employees GROUP BY DepartmentID)
SELECT count.DepartmentID, count.n, pay.amt
FROM CountEmployees AS count JOIN DeptPayroll AS pay
ON count.DepartmentID = pay.DepartmentID
WHERE count.n = (SELECT MAX(n) FROM CountEmployees)
 OR pay.amt = (SELECT MIN(amt) FROM DeptPayroll);

See also
● “Using common table expressions” on page 434
● “Specifying multiple correlation names” on page 435
● “Where common table expressions are permitted” on page 437

Common table expressions

436 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Where common table expressions are permitted
Common table expression definitions are permitted in only three places, although they may be referenced
throughout the body of the query or in any subqueries.

● Top-level SELECT statement Common table expressions are permitted within top-level SELECT
statements, but not within subqueries.

WITH DeptPayroll(DepartmentID, amt) AS
 (SELECT DepartmentID, SUM(Salary) AS amt
 FROM Employees GROUP BY DepartmentID)
SELECT DepartmentID, amt
FROM DeptPayroll
WHERE amt = (SELECT MAX(amt)
 FROM DeptPayroll);

● The top-level SELECT statement in a view definition Common table expressions are permitted
within the top-level SELECT statement that defines a view, but not within subqueries within the
definition.

CREATE VIEW LargestDept (DepartmentID, Size, pay) AS
 WITH
 CountEmployees(DepartmentID, n) AS
 (SELECT DepartmentID, COUNT(*) AS n
 FROM Employees GROUP BY DepartmentID),
 DeptPayroll(DepartmentID, amt) AS
 (SELECT DepartmentID, SUM(Salary) AS amt
 FROM Employees GROUP BY DepartmentID)
 SELECT count.DepartmentID, count.n, pay.amt
 FROM CountEmployees count JOIN DeptPayroll pay
 ON count.DepartmentID = pay.DepartmentID
 WHERE count.n = (SELECT MAX(n) FROM CountEmployees)
 OR pay.amt = (SELECT MAX(amt) FROM DeptPayroll);

● A top-level SELECT statement in an INSERT statement Common table expressions are permitted
within a top-level SELECT statement in an INSERT statement, but not within subqueries within the
INSERT statement.

CREATE TABLE LargestPayrolls (DepartmentID INTEGER, Payroll NUMERIC,
CurrentDate DATE);
INSERT INTO LargestPayrolls(DepartmentID, Payroll, CurrentDate)
 WITH DeptPayroll(DepartmentID, amt) AS
 (SELECT DepartmentID, SUM(Salary) AS amt
 FROM Employees
 GROUP BY DepartmentID)
 SELECT DepartmentID, amt, CURRENT TIMESTAMP
 FROM DeptPayroll
 WHERE amt = (SELECT MAX(amt)
 FROM DeptPayroll);

See also
● “Using common table expressions” on page 434
● “Specifying multiple correlation names” on page 435
● “Using multiple table expressions” on page 436

Where common table expressions are permitted

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 437

Typical applications of common table expressions
In general, common table expressions are useful whenever a table expression must appear multiple times
within a single query. The following typical situations are suited to common table expressions.

● Queries that involve multiple aggregate functions.

● Views within a procedure that must contain a reference to a program variable.

● Queries that use temporary views to store a set of values.

This list is not exhaustive; you may encounter many other situations in which common table expressions are
useful.

Multiple aggregate functions
Common table expressions are useful whenever multiple levels of aggregation must appear within a single
query. This is the case in the example used in the previous section. The task was to retrieve the department
ID of the department that has the most employees. To do so, the count aggregate function is used to calculate
the number of employees in each department and the MAX function is used to select the largest department.

A similar situation arises when writing a query to determine which department has the largest payroll. The
SUM aggregate function is used to calculate each department's payroll and the MAX function to determine
which is largest. The presence of both functions in the query is a clue that a common table expression may
be helpful.

WITH DeptPayroll(DepartmentID, amt) AS
 (SELECT DepartmentID, SUM(Salary) AS amt
 FROM Employees GROUP BY DepartmentID)
SELECT DepartmentID, amt
FROM DeptPayroll
WHERE amt = (SELECT MAX(amt)
 FROM DeptPayroll)

For more information about aggregate functions, see “Window aggregate functions” on page 473.

Views that reference program variables
Sometimes, it can be convenient to create a view that contains a reference to a program variable. For example,
you may define a variable within a procedure that identifies a particular customer. You want to query the
customer's purchase history, and as you will be accessing similar information multiple times or perhaps using
multiple aggregate functions, you want to create a view that contains information about that specific
customer.

You cannot create a view that references a program variable because there is no way to limit the scope of a
view to that of your procedure. Once created, a view can be used in other contexts. You can, however, use
a common table expressions within the queries in your procedure. As the scope of a common table expression
is limited to the statement, the variable reference creates no ambiguity and is permitted.

Common table expressions

438 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The following statement selects the gross sales of the various sales representatives in the SQL Anywhere
sample database.

SELECT GivenName || ' ' || Surname AS sales_rep_name,
 SalesRepresentative AS sales_rep_id,
 SUM(p.UnitPrice * i.Quantity) AS total_sales
FROM Employees LEFT OUTER JOIN SalesOrders AS o
 INNER JOIN SalesOrderItems AS I
 INNER JOIN Products AS p
WHERE OrderDate BETWEEN '2000-01-01' AND '2001-12-31'
GROUP BY SalesRepresentative, GivenName, Surname;

The above query is the basis of the common table expression that appears in the following procedure. The
ID number of the sales representative and the year in question are incoming parameters. As the following
procedure demonstrates, the procedure parameters and any declared local variables can be referenced within
the WITH clause.

CREATE PROCEDURE sales_rep_total (
 IN rep INTEGER,
 IN yyyy INTEGER)
BEGIN
 DECLARE StartDate DATE;
 DECLARE EndDate DATE;
 SET StartDate = YMD(yyyy, 1, 1);
 SET EndDate = YMD(yyyy, 12, 31);
 WITH total_sales_by_rep (sales_rep_name,
 sales_rep_id,
 month,
 order_year,
 total_sales) AS
 (SELECT GivenName || ' ' || Surname AS sales_rep_name,
 SalesRepresentative AS sales_rep_id,
 month(OrderDate),
 year(OrderDate),
 SUM(p.UnitPrice * i.Quantity) AS total_sales
 FROM Employees LEFT OUTER JOIN SalesOrders o
 INNER JOIN SalesOrderItems I
 INNER JOIN Products p
 WHERE OrderDate BETWEEN StartDate AND EndDate
 AND SalesRepresentative = rep
 GROUP BY year(OrderDate), month(OrderDate),
 GivenName, Surname, SalesRepresentative)
 SELECT sales_rep_name,
 monthname(YMD(yyyy, month, 1)) AS month_name,
 order_year,
 total_sales
 FROM total_sales_by_rep
 WHERE total_sales =
 (SELECT MAX(total_sales) FROM total_sales_by_rep)
 ORDER BY order_year ASC, month ASC;
END;

The following statement calls the previous procedure.

CALL sales_rep_total(129, 2000);

Typical applications of common table expressions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 439

Views that store values
It can be useful to store a particular set of values within a SELECT statement or within a procedure. For
example, suppose a company prefers to analyze the results of its sales staff by thirds of a year, instead of by
quarter. Since there is no built-in date part for thirds, as there is for quarters, it is necessary to store the dates
within the procedure.

WITH thirds (q_name, q_start, q_end) AS
(SELECT 'T1', '2000-01-01', '2000-04-30' UNION
 SELECT 'T2', '2000-05-01', '2000-08-31' UNION
 SELECT 'T3', '2000-09-01', '2000-12-31')
SELECT q_name,
 SalesRepresentative,
 count(*) AS num_orders,
 SUM(p.UnitPrice * i.Quantity) AS total_sales
FROM thirds LEFT OUTER JOIN SalesOrders AS o
 ON OrderDate BETWEEN q_start and q_end
 KEY JOIN SalesOrderItems AS I
 KEY JOIN Products AS p
 GROUP BY q_name, SalesRepresentative
 ORDER BY q_name, SalesRepresentative;

This method should be used with care, as the values may need periodic maintenance. For example, the above
statement must be modified if it is to be used for any other year.

You can also apply this method within procedures. The following example declares a procedure that takes
the year in question as an argument.

CREATE PROCEDURE sales_by_third (IN y INTEGER)
BEGIN
 WITH thirds (q_name, q_start, q_end) AS
 (SELECT 'T1', YMD(y, 01, 01), YMD(y, 04, 30) UNION
 SELECT 'T2', YMD(y, 05, 01), YMD(y, 08, 31) UNION
 SELECT 'T3', YMD(y, 09, 01), YMD(y, 12, 31))
 SELECT q_name,
 SalesRepresentative,
 count(*) AS num_orders,
 SUM(p.UnitPrice * i.Quantity) AS total_sales
 FROM thirds LEFT OUTER JOIN SalesOrders AS o
 ON OrderDate BETWEEN q_start and q_end
 KEY JOIN SalesOrderItems AS I
 KEY JOIN Products AS p
 GROUP BY q_name, SalesRepresentative
 ORDER BY q_name, SalesRepresentative;
END;

The following statement calls the previous procedure.

CALL sales_by_third (2000);

Common table expressions

440 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Recursive common table expressions
Common table expressions may be recursive. Common table expressions are recursive when the
RECURSIVE keyword appears immediately after WITH. A single WITH clause may contain multiple
recursive expressions, and may contain both recursive and non-recursive common table expressions.

Recursion provides a much easier means of traversing tables that represent tree or tree-like data structures.
The only way to traverse such a structure in a single statement without using recursive expressions is to join
the table to itself once for each possible level. For example, if a reporting hierarchy contains at most seven
levels, you must join the Employees table to itself seven times. If the company reorganizes and a new
management level is introduced, you must rewrite the query.

Recursive common table expressions provide a convenient way to write queries that return relationships to
an arbitrary depth. For example, given a table that represents the reporting relationships within a company,
you can readily write a query that returns all the employees that report to one particular person.

For example, consider the problem of determining which department has the most employees. The
Employees table in the SQL Anywhere sample database lists all the employees in a fictional company and
specifies in which department each works. The following query lists the department ID codes and the total
number of employees in each department.

SELECT DepartmentID, COUNT(*) AS n
FROM Employees
GROUP BY DepartmentID;

This query can be used to extract the department with the most employees as follows:

SELECT DepartmentID, n
FROM (SELECT DepartmentID, COUNT(*) AS n
 FROM Employees GROUP BY DepartmentID) AS a
WHERE a.n =
 (SELECT MAX(n)
 FROM (SELECT DepartmentID, COUNT(*) AS n
 FROM Employees GROUP BY DepartmentID) AS b);

While this statement provides the correct result, it has some disadvantages. The first disadvantage is that the
repeated subquery makes this statement less efficient . The second is that this statement provides no clear
link between the subqueries.

One way around these problems is to create a view, then use it to re-express the query. This approach avoids
the problems mentioned above.

CREATE VIEW CountEmployees(DepartmentID, n) AS
 SELECT DepartmentID, COUNT(*) AS n
 FROM Employees GROUP BY DepartmentID;
SELECT DepartmentID, n
 FROM CountEmployees
 WHERE n = (SELECT MAX(n)
 FROM CountEmployees);

The disadvantage of this approach is that some overhead is required, as the database server must update the
system tables when creating the view. If the view will be used frequently, this approach is reasonable.
However, in cases where the view is used only once within a particular SELECT statement, the preferred
method is to instead use a common table expression. For more information about common table expressions,
see “Using common table expressions” on page 434.

Recursive common table expressions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 441

Recursive common table expressions contain an initial subquery, or seed, and a recursive subquery that
during each iteration appends additional rows to the result set. The two parts can be connected only with the
operator UNION ALL. The initial subquery is an ordinary non-recursive query and is processed first. The
recursive portion contains a reference to the rows added during the previous iteration. Recursion stops
automatically whenever an iteration generates no new rows. There is no way to reference rows selected prior
to the previous iteration.

The select list of the recursive subquery must match that of the initial subquery in number and data type. If
automatic translation of data types cannot be performed, explicitly cast the results of one subquery so that
they match those in the other subquery.

Selecting hierarchical data
Depending on how you write the query, you may want to limit the number of levels of recursion. Limiting
the number of levels permits you to return only the top levels of management, for example, but may exclude
some employees if the chains of command are longer than you anticipated. Providing no restriction on the
number of levels ensures no employees are excluded, but can introduce infinite recursion should the
execution require any cycles; for example, if an employee directly or indirectly reports to himself. This
situation could arise within a company's management hierarchy if, for example, an employee within the
company also sits on the board of directors.

The following query demonstrates how to list the employees by management level. Level 0 represents
employees with no managers. Level 1 represents employees who report directly to one of the level 0
managers, level 2 represents employees who report directly to a level 1 manager, and so on.

WITH RECURSIVE
 manager (EmployeeID, ManagerID,
 GivenName, Surname, mgmt_level) AS
((SELECT EmployeeID, ManagerID, -- initial subquery
 GivenName, Surname, 0
 FROM Employees AS e
 WHERE ManagerID = EmployeeID)
 UNION ALL
 (SELECT e.EmployeeID, e.ManagerID, -- recursive subquery
 e.GivenName, e.Surname, m.mgmt_level + 1
 FROM Employees AS e JOIN manager AS m
 ON e.ManagerID = m.EmployeeID
 AND e.ManagerID <> e.EmployeeID
 AND m.mgmt_level < 20))
SELECT * FROM manager
ORDER BY mgmt_level, Surname, GivenName;

The condition within the recursive query that restricts the management level to less than 20 is an important
precaution. It prevents infinite recursion in the event that the table data contains a cycle.

max_recursive_iterations option

The max_recursive_iterations option is designed to catch runaway recursive queries. The default value of
this option is 100. Recursive queries that exceed this number of levels of recursion end, but cause an error.

Although this option may seem to diminish the importance of a stop condition, this is not usually the case.
The number of rows selected during each iteration may grow exponentially, seriously impacting database

Common table expressions

442 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

performance before the maximum is reached. Stop conditions within recursive queries provide a means of
setting appropriate limits in each situation.

Restrictions on recursive common table expressions
The following restrictions apply to recursive common table expressions.

● References to other recursive common table expressions cannot appear within the definition of recursive
common table expressions. So, recursive common table expressions cannot be mutually recursive.
However, non-recursive common table expressions can contain references to recursive ones, and
recursive common table expressions can contain references to non-recursive ones.

● The only set operator permitted between the initial subquery and the recursive subquery is UNION ALL.
No other set operators are permitted.

● Within the definition of a recursive subquery, a self-reference to the recursive table expression can appear
only within the FROM clause of the recursive subquery.

● When a self-reference appears within the FROM clause of the recursive subquery, the reference to the
recursive table cannot appear on the null-supplying side of an outer join.

● The recursive subquery cannot contain DISTINCT, or a GROUP BY or an ORDER BY clause.

● The recursive subquery can not make use of any aggregate function.

● To prevent runaway recursive queries, an error is generated if the number of levels of recursion exceeds
the current setting of the max_recursive_iterations option. The default value of this option is 100.

Recursive common table expressions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 443

Parts explosion problems
The parts explosion problem is a classic application of recursion. In this problem, the components necessary
to assemble a particular object are represented by a graph. The goal is to represent this graph using a database
table, then to calculate the total number of the necessary elemental parts.

For example, the following graph represents the components of a simple bookshelf. The bookshelf is made
up of three shelves, a back, and four feet that are held on by four screws. Each shelf is a board held on with
four screws. The back is another board held on by eight screws.

The information in the table below represents the edges of the bookshelf graph. The first column names a
component, the second column names one of the subcomponents of that component, and the third column
specifies how many of the subcomponents are required.

component subcomponent quantity

bookcase back 1

bookcase side 2

bookcase shelf 3

bookcase foot 4

bookcase screw 4

back backboard 1

back screw 8

Common table expressions

444 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

component subcomponent quantity

side plank 1

shelf plank 1

shelf screw 4

Execute the following statements to create the bookcase table and insert component and subcomponent data.

CREATE TABLE bookcase (
 component VARCHAR(9),
 subcomponent VARCHAR(9),
 quantity INTEGER,
 PRIMARY KEY (component, subcomponent)
);
INSERT INTO bookcase
 SELECT 'bookcase', 'back', 1 UNION
 SELECT 'bookcase', 'side', 2 UNION
 SELECT 'bookcase', 'shelf', 3 UNION
 SELECT 'bookcase', 'foot', 4 UNION
 SELECT 'bookcase', 'screw', 4 UNION
 SELECT 'back', 'backboard', 1 UNION
 SELECT 'back', 'screw', 8 UNION
 SELECT 'side', 'plank', 1 UNION
 SELECT 'shelf', 'plank', 1 UNION
 SELECT 'shelf', 'screw', 4;

Execute the following statement to generate a list of components and subcomponents and the quantity
required to assemble the bookcase.

SELECT * FROM bookcase
ORDER BY component, subcomponent;

Execute the following statement to generate a list of subcomponents and the quantity required to assemble
the bookcase.

WITH RECURSIVE parts (component, subcomponent, quantity) AS
(SELECT component, subcomponent, quantity
 FROM bookcase WHERE component = 'bookcase'
 UNION ALL
 SELECT b.component, b.subcomponent, p.quantity * b.quantity
 FROM parts p JOIN bookcase b ON p.subcomponent = b.component)
SELECT subcomponent, SUM(quantity) AS quantity
FROM parts
WHERE subcomponent NOT IN (SELECT component FROM bookcase)
GROUP BY subcomponent
ORDER BY subcomponent;

The results of this query are shown below.

subcomponent quantity

backboard 1

foot 4

Parts explosion problems

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 445

subcomponent quantity

plank 5

screw 24

Alternatively, you can rewrite this query to perform an additional level of recursion, and avoid the need for
the subquery in the main SELECT statement. The results of the following query are identical to those of the
previous query.

WITH RECURSIVE parts (component, subcomponent, quantity) AS
(SELECT component, subcomponent, quantity
 FROM bookcase WHERE component = 'bookcase'
 UNION ALL
 SELECT p.subcomponent, b.subcomponent,
 IF b.quantity IS NULL
 THEN p.quantity
 ELSE p.quantity * b.quantity
 ENDIF
 FROM parts p LEFT OUTER JOIN bookcase b
 ON p.subcomponent = b.component
 WHERE p.subcomponent IS NOT NULL
)
SELECT component, SUM(quantity) AS quantity
FROM parts
WHERE subcomponent IS NULL
GROUP BY component
ORDER BY component;

Common table expressions

446 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Data type declarations in recursive common table
expressions

The data types of the columns in the temporary view are defined by those of the initial subquery. The data
types of the columns from the recursive subquery must match. The database server automatically attempts
to convert the values returned by the recursive subquery to match those of the initial query. If this is not
possible, or if information may be lost in the conversion, an error is generated.

In general, explicit casts are often required when the initial subquery returns a literal value or NULL. Explicit
casts may also be required when the initial subquery selects values from different columns than the recursive
subquery.

Casts may be required if the columns of the initial subquery do not have the same domains as those of the
recursive subquery. Casts must always be applied to NULL values in the initial subquery.

For example, the bookshelf parts explosion sample works correctly because the initial subquery returns rows
from the bookcase table, and inherits the data types of the selected columns. See “Parts explosion
problems” on page 444.

If this query is rewritten as follows, explicit casts are required.

WITH RECURSIVE parts (component, subcomponent, quantity) AS
(SELECT NULL, 'bookcase', 1 -- ERROR! Wrong domains!
 UNION ALL
 SELECT b.component, b.subcomponent,
 p.quantity * b.quantity
 FROM parts p JOIN bookcase b
 ON p.subcomponent = b.component)
SELECT * FROM parts
ORDER BY component, subcomponent;

Without casting, errors result for the following reasons:

● The correct data type for component names is VARCHAR, but the first column is NULL.

● The digit 1 is assumed to be a SMALL INT, but the data type of the quantity column is INT.

No cast is required for the second column because this column of the initial query is already a string.

Casting the data types in the initial subquery allows the query to behave as intended:

WITH RECURSIVE parts (component, subcomponent, quantity) AS
(SELECT CAST(NULL AS VARCHAR), -- CASTs must be used
 'bookcase', -- to declare the
 CAST(1 AS INT) -- correct datatypes
 UNION ALL
 SELECT b.component, b.subcomponent,
 p.quantity * b.quantity
 FROM parts p JOIN bookcase b
 ON p.subcomponent = b.component)
SELECT * FROM parts
ORDER BY component, subcomponent;

Data type declarations in recursive common table expressions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 447

Least distance problem
You can use recursive common table expressions to find desirable paths on a directed graph. Each row in a
database table represents a directed edge. Each row specifies an origin, a destination, and a cost of traveling
from the origin to the destination. Depending on the problem, the cost may represent distance, travel time,
or some other measure. Recursion permits you to explore possible routes through this graph. From the set
of possible routes, you can then select the ones that interest you.

For example, consider the problem of finding a desirable way to drive between the cities of Kitchener and
Pembroke. There are quite a few possible routes, each of which takes you through a different set of
intermediate cities. The goal is to find the shortest routes, and to compare them to reasonable alternatives.

First, define a table to represent the edges of this graph and insert one row for each edge. Since all the edges
of this graph happen to be bi-directional, the edges that represent the reverse directions must be inserted
also. This is done by selecting the initial set of rows, but interchanging the origin and destination. For
example, one row must represent the trip from Kitchener to Toronto, and another row the trip from Toronto
back to Kitchener.

CREATE TABLE travel (
 origin VARCHAR(10),
 destination VARCHAR(10),
 distance INT,
 PRIMARY KEY (origin, destination)
);
INSERT INTO travel
 SELECT 'Kitchener', 'Toronto', 105 UNION
 SELECT 'Kitchener', 'Barrie', 155 UNION
 SELECT 'North Bay', 'Pembroke', 220 UNION
 SELECT 'Pembroke', 'Ottawa', 150 UNION
 SELECT 'Barrie', 'Toronto', 90 UNION
 SELECT 'Toronto', 'Belleville', 190 UNION
 SELECT 'Belleville', 'Ottawa', 230 UNION
 SELECT 'Belleville', 'Pembroke', 230 UNION
 SELECT 'Barrie', 'Huntsville', 125 UNION
 SELECT 'Huntsville', 'North Bay', 130 UNION

Common table expressions

448 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 SELECT 'Huntsville', 'Pembroke', 245;
INSERT INTO travel -- Insert the return trips
 SELECT destination, origin, distance
 FROM travel;

The next task is to write the recursive common table expression. Since the trip starts in Kitchener, the initial
subquery begins by selecting all the possible paths out of Kitchener, along with the distance of each.

The recursive subquery extends the paths. For each path, it adds segments that continue along from the
destinations of the previous segments, and adds the length of the new segments to maintain a running total
cost of each route. For efficiency, routes end if they meet either of the following conditions:

● The path returns to the starting location.

● The path returns to the previous location.

● The path reaches the final destination.

In the current example, no path should return to Kitchener and all paths should end if they reach Pembroke.

When using recursive queries to explore cyclic graphs, it is important to verify that they finish properly. In
this case, the above conditions are insufficient, as a route may include an arbitrarily large number of trips
back and forth between two intermediate cities. The recursive query below guarantees an end by limiting
the maximum number of segments in any given route to seven.

Since the point of the example query is to select a practical route, the main query selects only those routes
that are less than 50 percent longer than the shortest route.

WITH RECURSIVE
 trip (route, destination, previous, distance, segments) AS
(SELECT CAST(origin || ', ' || destination AS VARCHAR(256)),
 destination, origin, distance, 1
 FROM travel
 WHERE origin = 'Kitchener'
 UNION ALL
 SELECT route || ', ' || v.destination,
 v.destination, -- current endpoint
 v.origin, -- previous endpoint
 t.distance + v.distance, -- total distance
 segments + 1 -- total number of segments
 FROM trip t JOIN travel v ON t.destination = v.origin
 WHERE v.destination <> 'Kitchener' -- Don't return to start
 AND v.destination <> t.previous -- Prevent backtracking
 AND v.origin <> 'Pembroke' -- Stop at the end
 AND segments -- TERMINATE RECURSION!
 < (SELECT count(*)/2 FROM travel))
SELECT route, distance, segments FROM trip
WHERE destination = 'Pembroke' AND
 distance < 1.5 * (SELECT MIN(distance)
 FROM trip
 WHERE destination = 'Pembroke')
ORDER BY distance, segments, route;

When run with against the above data set, this statement yields the following results.

route distance segments

Kitchener, Barrie, Huntsville, Pembroke 525 3

Least distance problem

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 449

route distance segments

Kitchener, Toronto, Belleville, Pembroke 525 3

Kitchener, Toronto, Barrie, Huntsville, Pembroke 565 4

Kitchener, Barrie, Huntsville, North Bay, Pembroke 630 4

Kitchener, Barrie, Toronto, Belleville, Pembroke 665 4

Kitchener, Toronto, Barrie, Huntsville, North Bay, Pembroke 670 5

Kitchener, Toronto, Belleville, Ottawa, Pembroke 675 4

Common table expressions

450 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using multiple recursive common table expressions
A recursive query may include multiple recursive queries, as long as they are disjoint. It may also include a
mix of recursive and non-recursive common table expressions. The RECURSIVE keyword must be present
if at least one of the common table expressions is recursive.

For example, the following query—which returns the same result as the previous query—uses a second,
non-recursive common table expression to select the length of the shortest route. The definition of the second
common table expression is separated from the definition of the first by a comma.

WITH RECURSIVE
 trip (route, destination, previous, distance, segments) AS
 (SELECT CAST(origin || ', ' || destination AS VARCHAR(256)),
 destination, origin, distance, 1
 FROM travel
 WHERE origin = 'Kitchener'
 UNION ALL
 SELECT route || ', ' || v.destination,
 v.destination,
 v.origin,
 t.distance + v.distance,
 segments + 1
 FROM trip t JOIN travel v ON t.destination = v.origin
 WHERE v.destination <> 'Kitchener'
 AND v.destination <> t.previous
 AND v.origin <> 'Pembroke'
 AND segments
 < (SELECT count(*)/2 FROM travel)),
 shortest (distance) AS -- Additional,
 (SELECT MIN(distance) -- non-recursive
 FROM trip -- common table
 WHERE destination = 'Pembroke') -- expression
SELECT route, distance, segments FROM trip
WHERE destination = 'Pembroke' AND
 distance < 1.5 * (SELECT distance FROM shortest)
ORDER BY distance, segments, route;

Like non-recursive common table expressions, recursive expressions, when used within stored procedures,
may contain references to local variables or procedure parameters. For example, the best_routes procedure,
defined below, identifies the shortest routes between the two named cities.

CREATE PROCEDURE best_routes (
 IN initial VARCHAR(10),
 IN final VARCHAR(10)
)
BEGIN
 WITH RECURSIVE
 trip (route, destination, previous, distance, segments) AS
 (SELECT CAST(origin || ', ' || destination AS VARCHAR(256)),
 destination, origin, distance, 1
 FROM travel
 WHERE origin = initial
 UNION ALL
 SELECT route || ', ' || v.destination,
 v.destination, -- current endpoint
 v.origin, -- previous endpoint
 t.distance + v.distance, -- total distance
 segments + 1 -- total number of segments
 FROM trip t JOIN travel v ON t.destination = v.origin
 WHERE v.destination <> initial -- Don't return to start

Using multiple recursive common table expressions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 451

 AND v.destination <> t.previous -- Prevent backtracking
 AND v.origin <> final -- Stop at the end
 AND segments -- TERMINATE RECURSION!
 < (SELECT count(*)/2 FROM travel))
 SELECT route, distance, segments FROM trip
 WHERE destination = final AND
 distance < 1.4 * (SELECT MIN(distance)
 FROM trip
 WHERE destination = final)
 ORDER BY distance, segments, route;
END;

The following statement calls the previous procedure.

CALL best_routes ('Pembroke', 'Kitchener');

Common table expressions

452 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

OLAP support

Contents
Improving OLAP performance ... 455
GROUP BY clause extensions .. 456
Using ROLLUP and CUBE as a shortcut to GROUPING SETS 460
Window functions .. 466
Window functions in SQL Anywhere ... 473

On-Line Analytical Processing (OLAP) offers the ability to perform complex data analysis within a single
SQL statement, increasing the value of the results, while improving performance by decreasing the amount
of querying on the database. OLAP functionality is made possible in SQL Anywhere through the use of
extensions to SQL statements and window functions. These SQL extensions and functions provide the ability,
in a concise way, to perform multidimensional data analysis, data mining, time series analyses, trend analysis,
cost allocations, goal seeking, and exception alerting, often with a single SQL statement.

● Extensions to the SELECT statement Extensions to the SELECT statement allow you to group
input rows, analyze the groups, and include the findings in the final result set. These extensions include
extensions to the GROUP BY clause (GROUPING SETS, CUBE, and ROLLUP subclauses), and the
WINDOW clause.

The extensions to the GROUP BY clause allow you to partition the input rows in multiple ways, yielding
a result set that concatenates the different groups together. You can also create a sparse, multi-
dimensional result set for data mining analyses (also known as a data cube). Finally, the extensions
provide sub-total and grand-total rows to make analysis more convenient. See “GROUP BY clause
extensions” on page 456.

The WINDOW clause is used in conjunction with window functions to provide additional analysis
opportunities on groups of input rows. See “Window functions” on page 466.

● Window aggregate functions Almost all SQL Anywhere aggregate functions support the concept
of a configurable sliding window that moves down through the input rows as they are processed.
Additional calculations can be performed on data in the window as it moves, allowing further analysis
in a manner that is more efficient than using semantically equivalent self-join queries, or correlated
subqueries.

For example, window aggregate functions, coupled with the CUBE, ROLLUP, and GROUPING SETS
extensions to the GROUP BY clause, provide an efficient mechanism to compute percentiles, moving
averages, and cumulative sums in a single SQL statement that would otherwise require self-joins,
correlated subqueries, temporary tables, or some combination of all three.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 453

You can use window aggregate functions to obtain such information as the quarterly moving average of
the Dow Jones Industrial Average, or all employees and their cumulative salaries for each department.
You can also use them to compute variance, standard deviation, correlation, and regression measures.
See “Window aggregate functions” on page 473.

● Window ranking functions Window ranking functions allow you to form single-statement SQL
queries to obtain information such as the top 10 products shipped this year by total sales, or the top 5%
of salespersons who sold orders to at least 15 different companies. See “Window ranking
functions” on page 491.

OLAP support

454 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Improving OLAP performance
To improve OLAP performance, set the optimization_workload database option to OLAP to instruct the
optimizer to consider using the Clustered Group By Hash operator in the possibilities it investigates. You
can also tune indexes for OLAP workloads using the FOR OLAP WORKLOAD option when defining the
index. Using this option causes the database server to perform certain optimizations which include
maintaining a statistic used by the Clustered Group By Hash operator regarding the maximum page distance
between two rows within the same key.

See also
● “optimization_workload option [database]” [SQL Anywhere Server - Database Administration]
● “ClusteredHashGroupBy algorithm (GrByHClust)” on page 600
● “CREATE INDEX statement” [SQL Anywhere Server - SQL Reference]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]

Improving OLAP performance

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 455

GROUP BY clause extensions
The standard GROUP BY clause of a SELECT statement allows you to group rows in the result set according
the grouping expressions you supply. For example, if you specify GROUP BY columnA, columnB, the
rows are grouped by combinations of unique values from columnA and columnB. In the standard GROUP
BY clause, the groups reflect the evaluation of the combination of all specified GROUP BY expressions.

However, you may want to specify different groupings or subgroupings of the result set. For example, you
may want to your results to show your data grouped by unique values of columnA and columnB, and then
regrouped again by unique values of columnC. You can achieve this result using the GROUPING SETS
extension to the GROUP BY clause.

GROUP BY GROUPING SETS
The GROUPING SETS clause is an extension to the GROUP BY clause of a SELECT statement. The
GROUPING SETS clause allows you to group your results multiple ways, without having to use multiple
SELECT statements to do so. This means you can reduce response time and improve performance.

For example, the following two queries statements are semantically equivalent. However, the second query
defines the grouping criteria more efficiently using a GROUP BY GROUPING SETS clause.

Multiple groupings using multiple SELECT statements:

SELECT NULL, NULL, NULL, COUNT(*) AS Cnt
FROM Customers
WHERE State IN ('MB' , 'KS')
 UNION ALL
SELECT City, State, NULL, COUNT(*) AS Cnt
FROM Customers
WHERE State IN ('MB' , 'KS')
GROUP BY City, State
 UNION ALL
SELECT NULL, NULL, CompanyName, COUNT(*) AS Cnt
FROM Customers
WHERE State IN ('MB' , 'KS')
GROUP BY CompanyName;

Multiple groupings using GROUPING SETS:

SELECT City, State, CompanyName, COUNT(*) AS Cnt
FROM Customers
WHERE State IN ('MB' , 'KS')
GROUP BY GROUPING SETS((City, State), (CompanyName) , ());

Both methods produce the same results, shown below:

City State CompanyName Cnt

1 (NULL) (NULL) (NULL) 8

2 (NULL) (NULL) Cooper Inc. 1

3 (NULL) (NULL) Westend Dealers 1

OLAP support

456 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

City State CompanyName Cnt

4 (NULL) (NULL) Toto's Active Wear 1

5 (NULL) (NULL) North Land Trading 1

6 (NULL) (NULL) The Ultimate 1

7 (NULL) (NULL) Molly's 1

8 (NULL) (NULL) Overland Army Navy 1

9 (NULL) (NULL) Out of Town Sports 1

10 'Pembroke' 'MB' (NULL) 4

11 'Petersburg' 'KS' (NULL) 1

12 'Drayton' 'KS' (NULL) 3

Rows 2-9 are the rows generated by grouping over CompanyName, rows 10-12 are rows generated by
grouping over the combination of City and State, and row 1 is the grand total represented by the empty
grouping set, specified using a pair of matched parentheses (). The empty grouping set represents a single
partition of all the rows in the input to the GROUP BY.

Notice how NULL values are used as placeholders for any expression that is not used in a grouping set,
because the result sets must be combinable. For example, rows 2-9 result from the second grouping set in
the query (CompanyName). Since that grouping set did not include City or State as expressions, for rows
2-9 the values for City and State contain the placeholder NULL, while the values in CompanyName contain
the distinct values found in CompanyName.

Because NULLs as used as placeholders, it is easy to confuse placeholder NULLs with actual NULLs found
in the data. To help distinguish placeholder NULLs from NULL data, use the GROUPING function. See
“Detecting placeholder NULLs using the GROUPING function” on page 464.

Example
The following example shows how you can tailor the results that are returned from a query using GROUPING
SETS, and an ORDER BY clause to better organize the results. The query returns the total number of orders
by Quarter in each Year, and a total for each Year. Ordering by Year and then Quarter makes the results
easier to understand:

SELECT Year(OrderDate) AS Year,
 Quarter(OrderDate) AS Quarter,
 COUNT (*) AS Orders
FROM SalesOrders
GROUP BY GROUPING SETS ((Year, Quarter), (Year))
ORDER BY Year, Quarter;

This query returns the following results:

GROUP BY clause extensions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 457

Year Quarter Orders

1 2000 (NULL) 380

2 2000 1 87

3 2000 2 77

4 2000 3 91

5 2000 4 125

6 2001 (NULL) 268

7 2001 1 139

8 2001 2 119

9 2001 3 10

Rows 1 and 6 are subtotals of orders for Year 2000 and Year 2001, respectively. Rows 2-5 and rows 7-9 are
the detail rows for the subtotal rows. That is, they show the total orders per quarter, per year.

There is no grand total for all quarters in all years in the result set. To do that, the query must include the
empty grouping specification '()' in the GROUPING SETS specification.

Specifying an empty grouping specification
If you use an empty GROUPING SETS specification '()' in the GROUP BY clause, this results in a grand
total row for all things that are being totaled in the results. With a grand total row, all values for all grouping
expressions contain placeholder NULLs. You can use the GROUPING function to distinguish placeholder
NULLs from actual NULLs resulting from the evaluation of values in the underlying data for the row. See
“Detecting placeholder NULLs using the GROUPING function” on page 464.

Specifying duplicate grouping sets
You can specify duplicate grouping specifications in a GROUPING SETS clause. In this case, the result of
the SELECT statement contains identical rows.

The following query includes duplicate groupings:

SELECT City, COUNT(*) AS Cnt
FROM Customers
WHERE State IN ('MB' , 'KS')
GROUP BY GROUPING SETS((City), (City));

This query returns the following results. Note that as a result of the duplicate groupings, rows 1-3 are identical
to rows 4-6:

City Cnt

1 'Drayton' 3

OLAP support

458 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

City Cnt

2 'Petersburg' 1

3 'Pembroke' 4

4 'Drayton' 3

5 'Petersburg' 1

6 'Pembroke' 4

Practicing good form
Grouping syntax is interpreted differently for a GROUP BY GROUPING SETS clause than it is for a simple
GROUP BY clause. For example, GROUP BY (X, Y) returns results grouped by distinct combinations of
X and Y values. However, GROUP BY GROUPING SETS (X, Y) specifies two individual grouping sets,
and the result of the two groupings are UNIONed together. That is, results are grouped by (X), and then
unioned to the same results grouped by (Y).

For good form, and to avoid any ambiguity in the case of complex expressions, use parentheses around each
individual grouping set in the specification whenever there is a possibility for error. For example, while both
of the following statements are correct and semantically equivalent, the second one reflects the recommended
form:

SELECT * FROM t GROUP BY GROUPING SETS (X, Y);
SELECT * FROM t GROUP BY GROUPING SETS((X), (Y));

GROUP BY clause extensions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 459

Using ROLLUP and CUBE as a shortcut to GROUPING
SETS

Using GROUPING SETS is useful when you want to concatenate several different data partitions into a
single result set. However, if you have many groupings to specify, and want subtotals included, you may
want to use the ROLLUP and CUBE extensions.

The ROLLUP and CUBE clauses can be considered shortcuts for pre-defined GROUPING SETS
specifications.

ROLLUP is equivalent to specifying a series of grouping set specifications starting with the empty grouping
set '()' and successively followed by grouping sets where one additional expression is concatenated to the
previous one. For example, if you have three grouping expressions, a, b, and c, and you specify ROLLUP,
it is as though you specified a GROUPING SETS clause with the sets: (), (a), (a, b), and (a, b, c). This
construction is sometimes referred to as hierarchical groupings.

CUBE offers even more groupings. Specifying CUBE is equivalent to specifying all possible GROUPING
SETS. For example, if you have the same three grouping expressions, a, b, and c, and you specify CUBE,
it is as though you specified a GROUPING SETS clause with the sets: (), (a), (a, b), (a, c), (b), (b, c), (c),
and (a, b, c).

When specifying ROLLUP or CUBE, use the GROUPING function to distinguish placeholder NULLs in
your results, caused by the subtotal rows that are implicit in a result set formed by ROLLUP or CUBE. See
“Detecting placeholder NULLs using the GROUPING function” on page 464.

Using ROLLUP
A common requirement of many applications is to compute subtotals of the grouping attributes from left-
to-right, in sequence. This pattern is referred to as a hierarchy because the introduction of additional subtotal
calculations produces additional rows with finer granularity of detail. In SQL Anywhere, you can specify a
hierarchy of grouping attributes using the ROLLUP keyword to specify a ROLLUP clause.

A query using a ROLLUP clause produces a hierarchical series of grouping sets, as follows. If the ROLLUP
clause contains n GROUP BY expressions of the form (X1,X2, ... , Xn) then the ROLLUP clause generates
n + 1 grouping sets as:

{(), (X1), (X1,X2), (X1,X2,X3), ... , (X1,X2,X3, ... , Xn)}

Example
The following query summarizes the sales orders by year and quarter, and returns the result set shown in the
table below:

SELECT QUARTER(OrderDate) AS Quarter,
 YEAR(OrderDate) AS Year,
 COUNT(*) AS Orders,
 GROUPING(Quarter) AS GQ,
 GROUPING(Year) AS GY
FROM SalesOrders
GROUP BY ROLLUP(Year, Quarter)
ORDER BY Year, Quarter;

OLAP support

460 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

This query returns the following results:

Quarter Year Orders GQ GY

1 (NULL) (NULL) 648 1 1

2 (NULL) 2000 380 1 0

3 1 2000 87 0 0

4 2 2000 77 0 0

5 3 2000 91 0 0

6 4 2000 125 0 0

7 (NULL) 2001 268 1 0

8 1 2001 139 0 0

9 2 2001 119 0 0

10 3 2001 10 0 0

The first row in a result set shows the grand total (648) of all orders, for all quarters, for both years.

Row 2 shows total orders (380) for year 2000, while rows 3-6 show the order subtotals, by quarter, for the
same year. Likewise, row 7 shows total Orders (268) for year 2001, while rows 8-10 show the subtotals, by
quarter, for the same year.

Note how the values returned by GROUPING function can be used to differentiate subtotal rows from the
row that contains the grand total. For rows 2 and 7, the presence of NULL in the quarter column, and the
value of 1 in the GQ column (Grouping by Quarter), indicate that the row is a totaling of orders in all quarters
(per year).

Likewise, in row 1, the presence of NULL in the Quarter and Year columns, plus the presence of a 1 in the
GQ and GY columns, indicate that the row is a totaling of orders for all quarters and for all years.

For more information about the syntax for the ROLLUP clause, see “GROUP BY clause” [SQL Anywhere
Server - SQL Reference].

Support for T-SQL WITH ROLLUP syntax

Alternatively, you can also use the Transact-SQL compatible syntax, WITH ROLLUP, to achieve the same
results as GROUP BY ROLLUP. However, the syntax is slightly different and you can only supply a simple
GROUP BY expression list in the syntax.

The following query produces an identical result to that of the previous GROUP BY ROLLUP example:

SELECT QUARTER(OrderDate) AS Quarter,
 YEAR(OrderDate) AS Year,
 COUNT(*) AS Orders,
 GROUPING(Quarter) AS GQ,

Using ROLLUP and CUBE as a shortcut to GROUPING SETS

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 461

 GROUPING(Year) AS GY
FROM SalesOrders
GROUP BY Year, Quarter WITH ROLLUP
ORDER BY Year, Quarter;

Using CUBE
As an alternative to the hierarchical grouping pattern provided by the ROLLUP clause, you can also create
a data cube, that is, an n-dimensional summarization of the input using every possible combination of
GROUP BY expressions, using the CUBE clause. The CUBE clause results in a product set of all possible
combinations of elements from each set of values. This can be very useful for complex data analysis.

If there are n GROUPING expressions of the form (X1,X2, ...,Xn) in a CUBE clause, then CUBE generates
2n grouping sets as:

{(), (X1), (X1,X2), (X1,X2,X3), ... , (X1,X2,X3, ...,Xn),(X2), (X2,X3), (X2,X3,X4), ... , (X2,X3,X4, ... , Xn), ... , (Xn)}.

Example
The following query summarizes sales orders by year, by quarter, and quarter within year, and yields the
result set shown in the table below:

SELECT QUARTER(OrderDate) AS Quarter,
 YEAR(OrderDate) AS Year,
 COUNT(*) AS Orders,
 GROUPING(Quarter) AS GQ,
 GROUPING(Year) AS GY
FROM SalesOrders
GROUP BY CUBE (Year, Quarter)
ORDER BY Year, Quarter;

This query returns the following results:

Quarter Year Orders GQ GY

1 (NULL) (NULL) 648 1 1

2 1 (NULL) 226 0 1

3 2 (NULL) 196 0 1

4 3 (NULL) 101 0 1

5 4 (NULL) 125 0 1

6 (NULL) 2000 380 1 0

7 1 2000 87 0 0

8 2 2000 77 0 0

OLAP support

462 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Quarter Year Orders GQ GY

9 3 2000 91 0 0

10 4 2000 125 0 0

11 (NULL) 2001 268 1 0

12 1 2001 139 0 0

13 2 2001 119 0 0

14 3 2000 10 0 0

The first row in the result set shows the grand total (648) of all orders, for all quarters, for years 2000 and
2001 combined.

Rows 2-5 summarize sales orders by calendar quarter in any year.

Rows 6 and 11 show total Orders for years 2000, and 2001, respectively.

Rows 7-10 and rows 12-14 show the quarterly totals for years 2000, and 2001, respectively.

Note how the values returned by the GROUPING function can be used to differentiate subtotal rows from
the row that contains the grand total. For rows 6 and 11, the presence of NULL in the Quarter column, and
the value of 1 in the GQ column (Grouping by Quarter), indicate that the row is a totaling of Orders in all
quarters for the year.

Note
The result set generated through the use of CUBE can be very large because CUBE generates an exponential
number of grouping sets. For this reason, SQL Anywhere does not permit a GROUP BY clause to contain
more than 64 GROUP BY expressions. If a statement exceeds this limit, it fails with SQLCODE -944
(SQLSTATE 42WA1).

For more information about the syntax for the CUBE clause, see “GROUP BY clause” [SQL Anywhere
Server - SQL Reference].

Support for T-SQL WITH CUBE syntax

Alternatively, you can also use the Transact-SQL compatible syntax, WITH CUBE, to achieve the same
results as GROUP BY CUBE. However, the syntax is slightly different and you can only supply a simple
GROUP BY expression list in the syntax.

The following query produces an identical result to that of the previous GROUP BY CUBE example:

SELECT QUARTER(OrderDate) AS Quarter,
 YEAR(OrderDate) AS Year,
 COUNT(*) AS Orders,
 GROUPING(Quarter) AS GQ,
 GROUPING(Year) AS GY
FROM SalesOrders
GROUP BY Year, Quarter WITH CUBE
ORDER BY Year, Quarter;

Using ROLLUP and CUBE as a shortcut to GROUPING SETS

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 463

Detecting placeholder NULLs using the GROUPING function
The total and subtotal rows created by ROLLUP and CUBE contain placeholder NULLs in any column
specified in the SELECT list that was not used for the grouping. This means that when you are examining
your results, you cannot distinguish whether a NULL in a subtotal row is a placeholder NULL, or a NULL
resulting from the evaluation of the underlying data for the row. As a result, it is also difficult to distinguish
between a detail row, a subtotal row, and a grand total row.

The GROUPING function allows you to distinguish placeholder NULLs from NULLs caused by underlying
data. If you specify a GROUPING function with one group-by-expression from the grouping set
specification, the function returns a 1 if it is a placeholder NULL, and 0 if it reflects a value (perhaps NULL)
present in the underlying data for that row.

For example, the following query returns the result set shown in the table below:

SELECT Employees.EmployeeID AS Employee,
 YEAR(OrderDate) AS Year,
 COUNT(SalesOrders.ID) AS Orders,
 GROUPING(Employee) AS GE,
 GROUPING(Year) AS GY
FROM Employees LEFT OUTER JOIN SalesOrders
 ON Employees.EmployeeID = SalesOrders.SalesRepresentative
WHERE Employees.Sex IN ('F')
 AND Employees.State IN ('TX' , 'NY')
GROUP BY GROUPING SETS ((Year, Employee), (Year), ())
ORDER BY Year, Employee;

This query returns the following results:

Employees Year Orders GE GY

1 (NULL) (NULL) 54 1 1

2 (NULL) (NULL) 0 1 0

3 102 (NULL) 0 0 0

4 390 (NULL) 0 0 0

5 1062 (NULL) 0 0 0

6 1090 (NULL) 0 0 0

7 1507 (NULL) 0 0 0

8 (NULL) 2000 34 1 0

9 667 2000 34 0 0

10 (NULL) 2001 20 1 0

11 667 2001 20 0 0

OLAP support

464 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

In this example, row 1 represents the grand total of orders (54) because the empty grouping set '()' was
specified. Notice that GE and GY both contain a 1 to indicate that the NULLs in the Employees and Year
columns are placeholder NULLs for Employees and Year columns, respectively.

Row 2 is a subtotal row. The 1 in the GE column indicates that the NULL in the Employees column is a
placeholder NULL. The 0 in the GY column indicates that the NULL in the Year column is the result of
evaluating the underlying data, and not a placeholder NULL; in this case, this row represents those employees
who have no orders.

Rows 3-7 show the total number of orders, per employee, where the Year was NULL. That is, these are the
female employees that live in Texas and New York who have no orders. These are the detail rows for row
2. That is, row 2 is a totaling of rows 3-7.

Row 8 is a subtotal row showing the number of orders for all employees combined, in the year 2000. Row
9 is the single detail row for row 8.

Row 10 is a subtotal row showing the number of orders for all employees combined, in the year 2001. Row
11 is the single detail row for row 10.

For more information about the syntax of the GROUPING function, see “GROUPING function [Aggregate]”
[SQL Anywhere Server - SQL Reference].

Using ROLLUP and CUBE as a shortcut to GROUPING SETS

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 465

Window functions
OLAP functionality includes the concept of a sliding window that moves down through the input rows as
they are processed. Additional calculations can be performed on the data in the window as it moves, allowing
further analysis in a manner that is more efficient than using semantically equivalent self-join queries, or
correlated subqueries.

You configure the bounds of the window based on the information you are trying to extract from the data.
A window can be one, many, or all the rows in the input data, which has been partitioned according to the
grouping specifications provided in the window definition. The window moves down through the input data,
incorporating the rows needed to perform the requested calculations.

The following diagram illustrates the movement of the window as input rows are processed. The data
partitions reflect the grouping of input rows specified in the window definition. If no grouping is specified,
all input rows are considered one partition. The length of the window (that is, the number of rows it includes),
and the offset of the window compared to the current row, reflect the bounds specified in the window
definition.

Defining a window
You can use SQL windowing extensions to configure the bounds of a window, and the partitioning and
ordering of the input rows. Logically, as part of the semantics of computing the result of a query specification,
partitions are created after the groups defined by the GROUP BY clause are created, but before the evaluation
of the final SELECT list and the query's ORDER BY clause. So, the order of evaluation of the clauses within
a SQL statement is:

OLAP support

466 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

1. FROM

2. WHERE

3. GROUP BY

4. HAVING

5. WINDOW

6. DISTINCT

7. ORDER BY

When forming your query, the impact of the order of evaluation should be considered. For example, you
cannot have a predicate on an expression referencing a window function in the same SELECT query block.
However, by putting the query block in a derived table, you can specify a predicate on the derived table. The
following query fails with a message indicating that the failure was the result of a predicate being specified
on a window function:

SELECT DepartmentID, Surname, StartDate, Salary,
 SUM(Salary) OVER (PARTITION BY DepartmentID
 ORDER BY StartDate
 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS
"Sum_Salary"
 FROM Employees
 WHERE State IN ('CA', 'UT', 'NY', 'AZ')
 AND DepartmentID IN ('100', '200')
 GROUP BY DepartmentID, Surname, StartDate, Salary
 HAVING Salary > 0 AND "Sum_Salary" > 200
 ORDER BY DepartmentID, StartDate;

Use a derived table (DT) and specify a predicate on it to achieve the results you want:

SELECT * FROM (SELECT DepartmentID, Surname, StartDate, Salary,
 SUM(Salary) OVER (PARTITION BY DepartmentID
 ORDER BY StartDate
 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
AS "Sum_Salary"
 FROM Employees
 WHERE State IN ('CA', 'UT', 'NY', 'AZ')
 AND DepartmentID IN ('100', '200')
 GROUP BY DepartmentID, Surname, StartDate, Salary
 HAVING Salary > 0
 ORDER BY DepartmentID, StartDate) AS DT
 WHERE DT.Sum_Salary > 200;

Because window partitioning follows a GROUP BY operator, the result of any aggregate function, such as
SUM, AVG, or VARIANCE, is available to the computation done for a partition. So, windows provide
another opportunity to perform grouping and ordering operations in addition to a query's GROUP BY and
ORDER BY clauses.

Defining a window specification
When you define the window over which a window function operates, you specify one or more of the
following:

Window functions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 467

● Partitioning (PARTITION BY clause) The PARTITION BY clause defines how the input rows are
grouped. If omitted, the entire input is treated as a single partition. A partition can be one, several, or all
input rows, depending on what you specify. Data from two partitions is never mixed. That is, when a
window reaches the boundary between two partitions, it completes processing the data in one partition,
before beginning on the data in the next partition. This means that the window size may vary at the
beginning and end of a partition, depending on how the bounds are defined for the window.

● Ordering (ORDER BY clause) The ORDER BY clause defines how the input rows are ordered,
prior to being processed by the window function. The ORDER BY clause is required only if you are
specifying the bounds using a RANGE clause, or if a ranking function references the window. Otherwise,
the ORDER BY clause is optional. If omitted, the database server processes the input rows in the most
efficient manner.

● Bounds (RANGE and ROWS clauses) The current row provides the reference point for
determining the start and end rows of a window. You can use the RANGE and ROWS clauses of the
window definition to set these bounds. RANGE defines the window in terms of a range of data values
offset from the value in the current row. So, if you specify RANGE, you must also specify an ORDER
BY clause since range calculations require that the data be ordered.

ROWS defines the window in terms of the number of rows offset from the current row.

Since RANGE defines a set of rows in terms of a range of data values, the rows included in a RANGE
window can include rows beyond the current row. This is different from how ROWS is handled. The
following diagram illustrates the difference between the ROWS and RANGE clauses:

Within the ROWS and RANGE clauses, you can (optionally) specify the start and end rows of the
window, relative to the current row. To do this, you use the PRECEDING, BETWEEN, and
FOLLOWING clauses. These clauses take expressions, and the keywords UNBOUNDED and
CURRENT ROW. If no bounds are defined for a window, the default window bounds are set as follows:

○ If the window specification contains an ORDER BY clause, it is equivalent to specifying RANGE
BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW.

○ If the window specification does not contain an ORDER BY clause, it is equivalent to specifying
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

The following table contains some example window bounds and description of the rows they contain:

OLAP support

468 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Specification Meaning

ROWS BETWEEN
UNBOUNDED PRE-
CEDING AND CUR-
RENT ROW

Start at the beginning of the partition, and end with the current row. Use this
when computing cumulative results, such as cumulative sums.

ROWS BETWEEN
UNBOUNDED PRE-
CEDING AND UN-
BOUNDED FOL-
LOWING

Use all rows in the partition. Use this when you want the value of an aggregate
function to be identical for each row of a partition.

ROWS BETWEEN x
PRECEDING AND y
FOLLOWING

Create a fixed-size moving window of rows starting at a distance of x from
current row and ending at a distance of y from current row (inclusive). Use
this example when you want to calculate a moving average, or when you
want to compute differences in values between adjacent rows.

With a moving window of more than one row, NULLs occur when comput-
ing the first and last row in the partition. This occurs because when the current
row is either the very first or very last row of the partition, there are no
preceding or following (respectively) rows to use in the computation. There-
fore, NULL values are used instead.

ROWS BETWEEN
CURRENT ROW
AND CURRENT
ROW

A window of one row; the current row.

RANGE BETWEEN
5 PRECEDING AND
5 FOLLOWING

Create a window that is based on values in the rows. For example, suppose
that for the current row, the column specified in the ORDER BY clause
contains the value 10. If you specify the window size to be RANGE BE-
TWEEN 5 PRECEDING AND 5 FOLLOWING, you are specifying the size
of the window to be as large as required to ensure that the first row contains
a 5 in the column, and the last row in the window contains a 15 in the column.
As the window moves down the partition, the size of the window may grow
or shrink according to the size required to fulfill the range specification.

Make your window specification as explicit as possible. Otherwise, the defaults may not return the results
you expect.

Use the RANGE clause to avoid problems caused by gaps in the input to a window function when the
set of values is not continuous. When a window bounds are set using a RANGE clause, the database
server automatically handles adjacent rows and rows with duplicate values.

RANGE uses unsigned integer values. Truncation of the range expression can occur depending on the
domain of the ORDER BY expression and the domain of the value specified in the RANGE clause.

Do not specify window bounds when using a ranking or a row-numbering function.

Window functions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 469

Window definition: inlining and the WINDOW clause
There are three ways to define a window:

● inline (within the OVER clause of a window function)

● in a WINDOW clause

● partially inline and partially in a WINDOW clause

However, some approaches have restrictions, as noted in the following sections.

Inline definition
A window definition can be placed in the OVER clause of a window function. This is referred to as defining
the window inline.

For example, the following statement queries the SQL Anywhere sample database for all products shipped
in July and August 2001, and the cumulative shipped quantity by shipping date. The window is defined
inline.

SELECT p.ID, p.Description, s.Quantity, s.ShipDate,
 SUM(s.Quantity) OVER (PARTITION BY s.ProductID
 ORDER BY s.ShipDate
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS Cumulative_qty
FROM SalesOrderItems s JOIN Products p
 ON (s.ProductID = p.ID)
WHERE s.ShipDate BETWEEN '2001-07-01' AND '2001-08-31'
ORDER BY p.ID;

This query returns the following results:

ID Description Quantity ShipDate Cumulative_qty

1 301 V-neck 24 2001-07-16 24

2 302 Crew Neck 60 2001-07-02 60

3 302 Crew Neck 36 2001-07-13 96

4 400 Cotton Cap 48 2001-07-05 48

5 400 Cotton Cap 24 2001-07-19 72

6 401 Wool Cap 48 2001-07-09 48

7 500 Cloth Visor 12 2001-07-22 12

8 501 Plastic Visor 60 2001-07-07 60

9 501 Plastic Visor 12 2001-07-12 72

OLAP support

470 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ID Description Quantity ShipDate Cumulative_qty

10 501 Plastic Visor 12 2001-07-22 84

11 601 Zipped Sweatshirt 60 2001-07-19 60

12 700 Cotton Shorts 24 2001-07-26 24

In this example, the computation of the SUM window function occurs after the join of the two tables and
the application of the query's WHERE clause. The query is processed as follows:

1. Partition (group) the input rows based on the value ProductID.

2. Within each partition, sort the rows based on the value of ShipDate.

3. For each row in the partition, evaluate the SUM function over the values in Quantity, using a sliding
window consisting of the first (sorted) row of each partition, up to and including the current row.

WINDOW clause definition
An alternative construction for the above query is to use a WINDOW clause to specify the window separately
from the functions that use it, and then reference the window from within the OVER clause of each function.

In this example, the WINDOW clause creates a window called Cumulative, partitioning data by ProductID,
and ordering it by ShipDate. The SUM function references the window in its OVER clause, and defines its
size using a ROWS clause.

SELECT p.ID, p.Description, s.Quantity, s.ShipDate,
 SUM(s.Quantity) OVER (Cumulative
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS cumulative_qty
FROM SalesOrderItems s
JOIN Products p ON (s.ProductID = p.ID)
WHERE s.ShipDate BETWEEN '2001-07-01' AND '2001-08-31'
WINDOW Cumulative AS (PARTITION BY s.ProductID ORDER BY s.ShipDate)
ORDER BY p.ID;

When using the WINDOW clause syntax, the following restrictions apply:

● If a PARTITION BY clause is specified, it must be placed within the WINDOW clause.

● If a ROWS or RANGE clause is specified, it must be placed in the OVER clause of the referencing
function.

● If an ORDER BY clause is specified for the window, it can be placed in either the WINDOW clause or
the referencing function's OVER clause, but not both.

● The WINDOW clause must precede the SELECT statement's ORDER BY clause.

Combination inline and WINDOW clause definition
You can inline part of a window definition and then define the rest in the WINDOW clause. For example:

AVG() OVER (windowA
 ORDER BY expression)...
...
WINDOW windowA AS (PARTITION BY expression)

Window functions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 471

When splitting the window definition in this manner, the following restrictions apply:

● You cannot use a PARTITION BY clause in the window function syntax.

● You can use an ORDER BY clause in either the window function syntax or in the WINDOW clause, but
not in both.

● You cannot include a RANGE or ROWS clause in the WINDOW clause.

See also
● “WINDOW clause” [SQL Anywhere Server - SQL Reference]
● “Window aggregate functions” on page 473
● “Window ranking functions” on page 491
● “Defining a window” on page 466

OLAP support

472 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Window functions in SQL Anywhere
Functions that allow you to perform analytic operations over a set of input rows are referred to as window
functions. For example, all ranking functions, and most aggregate functions, are window functions. You
can use them to perform additional analysis on your data. This is achieved by partitioning and sorting the
input rows, prior to their being processed, and then processing the rows in a configurable-sized window that
moves through the input.

There are three types of window functions: window aggregate functions, window ranking functions, and
row numbering functions.

Window aggregate functions
Window aggregate functions return a value for a specified set of rows in the input. For example, you can
use window functions to calculate a moving average of the sales figures for a company over a specified time
period.

Window aggregate functions are organized into the following three categories:

● Basic aggregate functions Following is the list of supported basic aggregate functions:

○ SUM
○ AVG
○ MAX
○ MIN
○ FIRST_VALUE
○ LAST_VALUE
○ COUNT

For more information about basic aggregate functions, see “Basic aggregate functions” on page 474.

● Standard deviation and variance functions Following is the list of supported standard deviation
and variance functions:

○ STDDEV
○ STDDEV_POP
○ STDDEV_SAMP
○ VAR_POP
○ VAR_SAMP
○ VARIANCE

For more information about standard deviation and variance functions, see “Standard deviation and
variance functions” on page 485.

Window functions in SQL Anywhere

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 473

● Correlation and linear regression functions Following is the list of supported correlation and
linear regression functions:

○ COVAR_POP
○ COVAR_SAMP
○ REGR_AVGX
○ REGR_AVGY
○ REGR_COUNT
○ REGR_INTERCEPT
○ REGR_R2
○ REGR_SLOPE
○ REGR_SXX
○ REGR_SXY
○ REGR_SYY

For more information about correlation and linear regression functions, see “Correlation and linear
regression functions” on page 489.

Basic aggregate functions
Complex data analysis often requires multiple levels of aggregation. Window partitioning and ordering, in
addition to, or instead of, a GROUP BY clause, offers you considerable flexibility in the composition of
complex SQL queries. For example, by combining a window construct with a simple aggregate function,
you can compute values such as moving average, moving sum, moving minimum or maximum, and
cumulative sum.

Following are the basic aggregate functions in SQL Anywhere:

● SUM function Returns the total of the specified expression for each group of rows.

● AVG function Returns the average of a numeric expression or of a set unique values for a set of rows.

● MAX function Returns the maximum expression value found in each group of rows.

● MIN function Returns the minimum expression value found in each group of rows.

● FIRST_VALUE function Returns values from the first row of a window. This function requires a
window specification.

● LAST_VALUE function Returns values from the last row of a window. This function requires a
window specification.

● COUNT function Returns the number of rows that qualify for the specified expression.

See also
● “Window functions” on page 466

OLAP support

474 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SUM function example
The following example shows the SUM function used as a window function. The query returns a result set
that partitions the data by DepartmentID, and then provides a cumulative summary (Sum_Salary) of
employees' salaries, starting with the employee who has been at the company the longest. The result set
includes only those employees who reside in California, Utah, New York, or Arizona. The column
Sum_Salary provides the cumulative total of employees' salaries.

SELECT DepartmentID, Surname, StartDate, Salary,
SUM(Salary) OVER (PARTITION BY DepartmentID
 ORDER BY StartDate
 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
AS "Sum_Salary"
FROM Employees
WHERE State IN ('CA', 'UT', 'NY', 'AZ')
 AND DepartmentID IN ('100', '200')
ORDER BY DepartmentID, StartDate;

The table that follows represents the result set from the query. The result set is partitioned by DepartmentID.

DepartmentID Surname StartDate Salary Sum_Salary

1 100 Whitney 1984-08-28 45700.00 45700.00

2 100 Cobb 1985-01-01 62000.00 107700.00

3 100 Shishov 1986-06-07 72995.00 180695.00

4 100 Driscoll 1986-07-01 48023.69 228718.69

5 100 Guevara 1986-10-14 42998.00 271716.69

6 100 Wang 1988-09-29 68400.00 340116.69

7 100 Soo 1990-07-31 39075.00 379191.69

8 100 Diaz 1990-08-19 54900.00 434091.69

9 200 Overbey 1987-02-19 39300.00 39300.00

10 200 Martel 1989-10-16 55700.00 95000.00

11 200 Savarino 1989-11-07 72300.00 167300.00

12 200 Clark 1990-07-21 45000.00 212300.00

13 200 Goggin 1990-08-05 37900.00 250200.00

For DepartmentID 100, the cumulative total of salaries from employees in California, Utah, New York, and
Arizona is $434,091.69 and the cumulative total for employees in department 200 is $250,200.00.

For more information about the exact syntax of the SUM function, see “SUM function [Aggregate]” [SQL
Anywhere Server - SQL Reference].

Window functions in SQL Anywhere

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 475

Computing deltas between adjacent rows
Using two windows—one window over the current row, the other over the previous row—you can compute
deltas, or changes, between adjacent rows. For example, the following query computes the delta (Delta)
between the salary for one employee and the previous employee in the results:

SELECT EmployeeID AS EmployeeNumber,
 Surname AS LastName,
 SUM(Salary) OVER (ORDER BY BirthDate
 ROWS BETWEEN CURRENT ROW AND CURRENT ROW)
 AS CurrentRow,
 SUM(Salary) OVER (ORDER BY BirthDate
 ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING)
 AS PreviousRow,
 (CurrentRow - PreviousRow) AS Delta
FROM Employees
WHERE State IN ('NY');

EmployeeNumber LastName CurrentRow PreviousRow Delta

1 913 Martel 55700.000 (NULL) (NULL)

2 1062 Blaikie 54900.000 55700.000 -800.000

3 249 Guevara 42998.000 54900.000 -11902.000

4 390 Davidson 57090.000 42998.000 14092.000

5 102 Whitney 45700.000 57090.000 -11390.000

6 1507 Wetherby 35745.000 45700.000 -9955.000

7 1751 Ahmed 34992.000 35745.000 -753.000

8 1157 Soo 39075.000 34992.000 4083.000

Note that SUM is performed only on the current row for the CurrentRow window because the window size
was set to ROWS BETWEEN CURRENT ROW AND CURRENT ROW. Likewise, SUM is performed only
over the previous row for the PreviousRow window, because the window size was set to ROWS BETWEEN
1 PRECEDING AND 1 PRECEDING. The value of PreviousRow is NULL in the first row since it has
no predecessor, so the Delta value is also NULL.

Complex analytics
Consider the following query, which lists the top salespeople (defined by total sales) for each product in the
database:

SELECT s.ProductID AS Products, o.SalesRepresentative,
 SUM(s.Quantity) AS total_quantity,
 SUM(s.Quantity * p.UnitPrice) AS total_sales
 FROM SalesOrders o KEY JOIN SalesOrderItems s
 KEY JOIN Products p
 GROUP BY s.ProductID, o.SalesRepresentative
 HAVING total_sales = (
 SELECT First SUM(s2.Quantity * p2.UnitPrice)
 AS sum_sales

OLAP support

476 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 FROM SalesOrders o2 KEY JOIN
 SalesOrderItems s2 KEY JOIN Products p2
 WHERE s2.ProductID = s.ProductID
 GROUP BY o2.SalesRepresentative
 ORDER BY sum_sales DESC)
 ORDER BY s.ProductID;

This query returns the result:

Products SalesRepresentative total_quantity total_sales

1 300 299 660 5940.00

2 301 299 516 7224.00

Window functions in SQL Anywhere

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 477

Products SalesRepresentative total_quantity total_sales

3 302 299 336 4704.00

4 400 299 458 4122.00

5 401 902 360 3600.00

6 500 949 360 2520.00

7 501 690 360 2520.00

8 501 949 360 2520.00

9 600 299 612 14688.00

10 601 299 636 15264.00

11 700 299 1008 15120.00

The original query is formed using a correlated subquery that determines the highest sales for any particular
product, as ProductID is the subquery's correlated outer reference. Using a nested query, however, is often
an expensive option, as in this case. This is because the subquery involves not only a GROUP BY clause,
but also an ORDER BY clause within the GROUP BY clause. This makes it impossible for the query
optimizer to rewrite this nested query as a join while retaining the same semantics. So, during query execution
the subquery is evaluated for each derived row computed in the outer block.

OLAP support

478 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Note the expensive Filter predicate in the graphical plan: the optimizer estimates that 99% of the query's
execution cost is because of this plan operator. The plan for the subquery clearly illustrates why the filter
operator in the main block is so expensive: the subquery involves two nested loops joins, a hashed GROUP
BY operation, and a sort.

Rewriting using a ranking function
A rewrite of the same query, using a ranking function, computes the identical result much more efficiently:

SELECT v.ProductID, v.SalesRepresentative,
 v.total_quantity, v.total_sales
 FROM (SELECT o.SalesRepresentative, s.ProductID,
 SUM(s.Quantity) AS total_quantity,
 SUM(s.Quantity * p.UnitPrice) AS total_sales,
 RANK() OVER (PARTITION BY s.ProductID

Window functions in SQL Anywhere

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 479

 ORDER BY SUM(s.Quantity * p.UnitPrice) DESC)
 AS sales_ranking
 FROM SalesOrders o KEY JOIN SalesOrderItems s KEY JOIN Products p
 GROUP BY o.SalesRepresentative, s.ProductID)
 AS v
 WHERE sales_ranking = 1
 ORDER BY v.ProductID;

This rewritten query results in a simpler plan:

Recall that a window operator is computed after the processing of a GROUP BY clause and prior to the
evaluation of the select list items and the query's ORDER BY clause. As seen in the graphical plan, after the
join of the three tables, the joined rows are grouped by the combination of the SalesRepresentative and

OLAP support

480 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ProductID attributes. So, the SUM aggregate functions of total_quantity and total_sales can be computed
for each combination of SalesRepresentative and ProductID.

Following the evaluation of the GROUP BY clause, the RANK function is then computed to rank the rows
in the intermediate result in descending sequence by total_sales, using a window. Note that the WINDOW
specification involves a PARTITION BY clause. By doing so, the result of the GROUP BY clause is
repartitioned (or regrouped)—this time by ProductID. So, the RANK function ranks the rows for each
product—in descending order of total sales—but for all sales representatives that have sold that product.
With this ranking, determining the top salespeople simply requires restricting the derived table's result to
reject those rows where the rank is not 1. In the case of ties (rows 7 and 8 in the result set), RANK returns
the same value. So, both salespeople 690 and 949 appear in the final result.

See also
● “SUM function [Aggregate]” [SQL Anywhere Server - SQL Reference]

AVG function example
In this example, AVG is used as a window function to compute the moving average of all product sales, by
month, in the year 2000. Note that the WINDOW specification uses a RANGE clause, which causes the
window bounds to be computed based on the month value, and not by the number of adjacent rows as with
the ROWS clause. Using ROWS would yield different results if, for example, there were no sales of some
or all the products in a particular month.

SELECT *
 FROM (SELECT s.ProductID,
 Month(o.OrderDate) AS julian_month,
 SUM(s.Quantity) AS sales,
 AVG(SUM(s.Quantity))
 OVER (PARTITION BY s.ProductID
 ORDER BY Month(o.OrderDate) ASC
 RANGE BETWEEN 1 PRECEDING AND 1 FOLLOWING)
 AS average_sales
 FROM SalesOrderItems s KEY JOIN SalesOrders o
 WHERE Year(o.OrderDate) = 2000
 GROUP BY s.ProductID, Month(o.OrderDate))
 AS DT
 ORDER BY 1,2;

See also
● “AVG function [Aggregate]” [SQL Anywhere Server - SQL Reference]

MAX function example

Eliminating correlated subqueries
In some situations, you may need the ability to compare a particular column value with a maximum or
minimum value. Often you form these queries as nested queries involving a correlated attribute (also known
as an outer reference). As an example, consider the following query, which lists all orders, including product
information, where the product quantity-on-hand cannot cover the maximum single order for that product:

Window functions in SQL Anywhere

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 481

SELECT o.ID, o.OrderDate, p.*
FROM SalesOrders o, SalesOrderItems s, Products p
WHERE o.ID = s.ID AND s.ProductID = p.ID
 AND p.Quantity < (SELECT MAX(s2.Quantity)
 FROM SalesOrderItems s2
 WHERE s2.ProductID = p.ID)
ORDER BY p.ID, o.ID;

The graphical plan for this query is displayed in the Plan Viewer as shown below. Note how the query
optimizer has transformed this nested query to a join of the Products and SalesOrders tables with a derived
table, denoted by the correlation name DT, which contains a window function.

OLAP support

482 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Rather than relying on the optimizer to transform the correlated subquery into a join with a derived table—
which can only be done for straightforward cases due to the complexity of the semantic analysis—you can
form such queries using a window function:

SELECT order_qty.ID, o.OrderDate, p.*
 FROM (SELECT s.ID, s.ProductID,
 MAX(s.Quantity) OVER (
 PARTITION BY s.ProductID
 ORDER BY s.ProductID)
 AS max_q
 FROM SalesOrderItems s)
 AS order_qty, Products p, SalesOrders o
 WHERE p.ID = ProductID
 AND o.ID = order_qty.ID
 AND p.Quantity < max_q
 ORDER BY p.ID, o.ID;

See also
● “MIN function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “MAX function [Aggregate]” [SQL Anywhere Server - SQL Reference]

FIRST_VALUE and LAST_VALUE function examples
The FIRST_VALUE and LAST_VALUE functions return values from the first and last rows of a window.
This allows a query to access values from multiple rows at once, without the need for a self-join.

These two functions are different from the other window aggregate functions because they must be used
with a window. Also, unlike the other window aggregate functions, these functions allow the IGNORE
NULLS clause. If IGNORE NULLS is specified, the first or last non-NULL value of the desired expression
is returned. Otherwise, the first or last value is returned.

Example 1: First entry in a group
The FIRST_VALUE function can be used to retrieve the first entry in an ordered group of values. The
following query returns, for each order, the product identifier of the order's first item; that is, the ProductID
of the item with the smallest LineID for each order.

Notice that the query uses the DISTINCT keyword to remove duplicates; without it, duplicate rows are
returned for each item in each order.

SELECT DISTINCT ID,
FIRST_VALUE(ProductID) OVER (PARTITION BY ID ORDER BY LineID)
FROM SalesOrderItems
ORDER BY ID;

Example 2: Percentage of highest sales
A common use of the FIRST_VALUE function is to compare a value in each row with the maximum or
minimum value within the current group. The following query computes the total sales for each sales
representative, and then compares that representative's total sales with the maximum total sales for the same
product. The result is expressed as a percentage of the maximum total sales.

SELECT s.ProductID AS prod_id, o.SalesRepresentative AS sales_rep,
 SUM(s.Quantity * p.UnitPrice) AS total_sales,

Window functions in SQL Anywhere

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 483

 100 * total_sales / (FIRST_VALUE(SUM(s.Quantity * p.UnitPrice))
 OVER Sales_Window) AS total_sales_percentage
 FROM SalesOrders o KEY JOIN SalesOrderItems s KEY JOIN Products p
 GROUP BY o.SalesRepresentative, s.ProductID
 WINDOW Sales_Window AS (PARTITION BY s.ProductID
 ORDER BY SUM(s.Quantity * p.UnitPrice) DESC)
 ORDER BY s.ProductID;

Example 3: Populating NULL values making data more dense

The FIRST_VALUE and LAST_VALUE functions are useful when you have made your data more dense
and you need to populate values instead of having NULLs. For example, suppose the sales representative
with the highest total sales each day wins the distinction of Representative of the Day. The following query
lists the winning sales representatives for the first week of April, 2001:

SELECT v.OrderDate, v.SalesRepresentative AS rep_of_the_day
FROM (SELECT o.SalesRepresentative, o.OrderDate,
 RANK() OVER (PARTITION BY o.OrderDate
 ORDER BY SUM(s.Quantity *
 p.UnitPrice) DESC) AS sales_ranking
 FROM SalesOrders o KEY JOIN SalesOrderItems s KEY JOIN Products p
 GROUP BY o.SalesRepresentative, o.OrderDate) AS v
WHERE v.sales_ranking = 1
AND v.OrderDate BETWEEN '2001-04-01' AND '2001-04-07'
ORDER BY v.OrderDate;

The query returns the following results:

OrderDate rep_of_the_day

2001-04-01 949

2001-04-02 856

2001-04-05 902

2001-04-06 467

2001-04-07 299

However, note that no results are returned for days in which no sales were made. The following query makes
the data more dense, creating records for days in which no sales were made. Additionally, it uses the
LAST_VALUE function to populate the NULL values for rep_of_the_day (on non-winning days) with the
ID of the last winning representative, until a new winner occurs in the results.

SELECT d.dense_order_date,
 LAST_VALUE(v.SalesRepresentative IGNORE NULLS)
 OVER (ORDER BY d.dense_order_date)
 AS rep_of_the_day
FROM (SELECT o.SalesRepresentative, o.OrderDate,
 RANK() OVER (PARTITION BY o.OrderDate
 ORDER BY SUM(s.Quantity *
 p.UnitPrice) DESC) AS sales_ranking
 FROM SalesOrders o KEY JOIN SalesOrderItems s KEY JOIN Products p
 GROUP BY o.SalesRepresentative, o.OrderDate) AS v
RIGHT OUTER JOIN (SELECT DATEADD(day, row_num, '2001-04-01')
 AS dense_order_date

OLAP support

484 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 FROM sa_rowgenerator(0, 6)) AS d
ON v.OrderDate = d.dense_order_date AND sales_ranking = 1
ORDER BY d.dense_order_date;

The query returns the following results:

OrderDate rep_of_the_day

2001-04-01 949

2001-04-02 856

2001-04-03 856

2001-04-04 856

2001-04-05 902

2001-04-06 467

2001-04-07 299

The derived table v from the previous query is joined to a derived table d, which contains all the dates under
consideration. This yields a row for each desired day, but this outer join contains NULL in the
SalesRepresentative column for dates on which no sales were made. Using the LAST_VALUE function
solves this problem by defining rep_of_the_day for a given row to be the last non-NULL value of
SalesRepresentative leading up to the corresponding day.

See also
● “FIRST_VALUE function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “LAST_VALUE function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “Window functions” on page 466

Standard deviation and variance functions
SQL Anywhere supports two versions of variance and standard deviation functions: a sampling version, and
a population version. Choosing between the two versions depends on the statistical context in which the
function is to be used.

All the variance and standard deviation functions are true aggregate functions in that they can compute values
for a partition of rows as determined by the query's GROUP BY clause. As with other basic aggregate
functions such as MAX or MIN, their computation also ignores NULL values in the input.

For improved performance, SQL Anywhere calculates the mean, and the deviation from mean, in one step.
This means that only one pass over the data is required.

Also, regardless of the domain of the expression being analyzed, all variance and standard deviation
computation is done using IEEE double-precision floating point. If the input to any variance or standard

Window functions in SQL Anywhere

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 485

deviation function is the empty set, then each function returns NULL as its result. If VAR_SAMP is computed
for a single row, then it returns NULL, while VAR_POP returns the value 0.

Following are the standard deviation and variance functions offered in SQL Anywhere:

● STDDEV function
● STDDEV_POP function
● STDDEV_SAMP function
● VARIANCE function
● VAR_POP function
● VAR_SAMP function

To review the mathematical formulas represented by these functions see “Mathematical formulas for the
aggregate functions” on page 500.

STDDEV function

This function is an alias for the STDDEV_SAMP function. See “STDDEV_SAMP function [Aggregate]”
[SQL Anywhere Server - SQL Reference].

STDDEV_POP function

This function computes the standard deviation of a population consisting of a numeric expression, as a
DOUBLE.

Example 1
The following query returns a result set that shows the employees whose salary is one standard deviation
greater than the average salary of their department. Standard deviation is a measure of how much the data
varies from the mean.

SELECT *
FROM (SELECT
 Surname AS Employee,
 DepartmentID AS Department,
 CAST(Salary as DECIMAL(10, 2))
 AS Salary,
 CAST(AVG(Salary)
 OVER (PARTITION BY DepartmentID) AS DECIMAL (10, 2))
 AS Average,
 CAST(STDDEV_POP(Salary)
 OVER (PARTITION BY DepartmentID) AS DECIMAL (10, 2))
 AS StandardDeviation
 FROM Employees
 GROUP BY Department, Employee, Salary)
 AS DerivedTable
WHERE Salary > Average + StandardDeviation
ORDER BY Department, Salary, Employee;

The table that follows represents the result set from the query. Every department has at least one employee
whose salary significantly deviates from the mean.

OLAP support

486 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Employee Department Salary Average StandardDeviation

1 Lull 100 87900.00 58736.28 16829.60

2 Scheffield 100 87900.00 58736.28 16829.60

3 Scott 100 96300.00 58736.28 16829.60

4 Sterling 200 64900.00 48390.95 13869.60

5 Savarino 200 72300.00 48390.95 13869.60

6 Kelly 200 87500.00 48390.95 13869.60

7 Shea 300 138948.00 59500.00 30752.40

8 Blaikie 400 54900.00 43640.67 11194.02

9 Morris 400 61300.00 43640.67 11194.02

10 Evans 400 68940.00 43640.67 11194.02

11 Martinez 500 55500.00 33752.20 9084.50

Employee Scott earns $96,300.00, while the departmental average is $58,736.28. The standard deviation for
that department is $16,829.00, which means that salaries less than $75,565.88 (58736.28 + 16829.60
= 75565.88) fall within one standard deviation of the mean. At $96,300.00, employee Scott is well above
that figure.

This example assumes that Surname and Salary are unique for each employee, which isn't necessarily true.
To ensure uniqueness, you could add EmployeeID to the GROUP BY clause.

Example 2
The following statement lists the average and variance in the number of items per order in different time
periods:

SELECT YEAR(ShipDate) AS Year,
 QUARTER(ShipDate) AS Quarter,
 AVG(Quantity) AS Average,
 STDDEV_POP(Quantity) AS Variance
FROM SalesOrderItems
GROUP BY Year, Quarter
ORDER BY Year, Quarter;

This query returns the following result:

Year Quarter Average Variance

2000 1 25.775148 14.2794...

2000 2 27.050847 15.0270...

Window functions in SQL Anywhere

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 487

Year Quarter Average Variance

...

For more information about the syntax for this function, see “STDDEV_SAMP function [Aggregate]” [SQL
Anywhere Server - SQL Reference].

STDDEV_SAMP function

This function computes the standard deviation of a sample consisting of a numeric expression, as a DOUBLE.
For example, the following statement returns the average and variance in the number of items per order in
different quarters:

SELECT YEAR(ShipDate) AS Year,
 QUARTER(ShipDate) AS Quarter,
 AVG(Quantity) AS Average,
 STDDEV_SAMP(Quantity) AS Variance
FROM SalesOrderItems
GROUP BY Year, Quarter
ORDER BY Year, Quarter;

This query returns the following result:

Year Quarter Average Variance

2000 1 25.775148 14.3218...

2000 2 27.050847 15.0696...

...

For more information about the syntax for this function, see “STDDEV_POP function [Aggregate]” [SQL
Anywhere Server - SQL Reference].

VARIANCE function

This function is an alias for the VAR_SAMP function. See “VAR_SAMP function [Aggregate]” [SQL
Anywhere Server - SQL Reference].

VAR_POP function

This function computes the statistical variance of a population consisting of a numeric expression, as a
DOUBLE. For example, the following statement lists the average and variance in the number of items per
order in different time periods:

SELECT YEAR(ShipDate) AS Year,
 QUARTER(ShipDate) AS Quarter,
 AVG(Quantity) AS Average,
 VAR_POP(quantity) AS Variance
FROM SalesOrderItems
GROUP BY Year, Quarter
ORDER BY Year, Quarter;

This query returns the following result:

OLAP support

488 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Year Quarter Average Variance

2000 1 25.775148 203.9021...

2000 2 27.050847 225.8109...

...

If VAR_POP is computed for a single row, then it returns the value 0.

For more information about the syntax for this function, see “VAR_POP function [Aggregate]” [SQL
Anywhere Server - SQL Reference].

VAR_SAMP function

This function computes the statistical variance of a sample consisting of a numeric expression, as a DOUBLE.

For example, the following statement lists the average and variance in the number of items per order in
different time periods:

SELECT YEAR(ShipDate) AS Year,
 QUARTER(ShipDate) AS Quarter,
 AVG(Quantity) AS Average,
 VAR_SAMP(Quantity) AS Variance
FROM SalesOrderItems
GROUP BY Year, Quarter
ORDER BY Year, Quarter;

This query returns the following result:

Year Quarter Average Variance

2000 1 25.775148 205.1158...

2000 2 27.050847 227.0939...

...

If VAR_SAMP is computed for a single row, then it returns NULL.

For more information about the syntax for this function, see “VAR_SAMP function [Aggregate]” [SQL
Anywhere Server - SQL Reference].

Correlation and linear regression functions
SQL Anywhere supports a variety of statistical functions, the results of which can be used to assist in
analyzing the quality of a linear regression.

For more information about the mathematical formulas represented by these functions see “Mathematical
formulas for the aggregate functions” on page 500.

Window functions in SQL Anywhere

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 489

The first argument of each function is the dependent expression (designated by Y), and the second argument
is the independent expression (designated by X).

● COVAR_SAMP function The COVAR_SAMP function returns the sample covariance of a set of
(Y, X) pairs.

For more information about the syntax for this function, see “COVAR_SAMP function [Aggregate]”
[SQL Anywhere Server - SQL Reference].

● COVAR_POP function The COVAR_POP function returns the population covariance of a set of
(Y, X) pairs.

For more information about the syntax for this function, see “COVAR_POP function [Aggregate]” [SQL
Anywhere Server - SQL Reference].

● CORR function The CORR function returns the correlation coefficient of a set of (Y, X) pairs.

For more information about the syntax for this function, see “CORR function [Aggregate]” [SQL
Anywhere Server - SQL Reference].

● REGR_AVGX function The REGR_AVGX function returns the mean of the x-values from all the
non-NULL pairs of (Y, X) values.

For more information about the syntax for this function, see “REGR_AVGX function [Aggregate]” [SQL
Anywhere Server - SQL Reference].

● REGR_AVGY function The REGR_AVGY function returns the mean of the y-values from all the
non-NULL pairs of (Y, X) values.

For more information about the syntax for this function, see “REGR_AVGY function [Aggregate]” [SQL
Anywhere Server - SQL Reference].

● REGR_SLOPE function The REGR_SLOPE function computes the slope of the linear regression
line fitted to non-NULL pairs.

For more information about the syntax for this function, see “REGR_SLOPE function [Aggregate]” [SQL
Anywhere Server - SQL Reference].

● REGR_INTERCEPT function The REGR_INTERCEPT function computes the y-intercept of the
linear regression line that best fits the dependent and independent variables.

For more information about the syntax for this function, see “REGR_INTERCEPT function [Aggregate]”
[SQL Anywhere Server - SQL Reference].

● REGR_R2 function The REGR_R2 function computes the coefficient of determination (also referred
to as R-squared or the goodness of fit statistic) for the regression line.

For more information about the syntax for this function, see “REGR_R2 function [Aggregate]” [SQL
Anywhere Server - SQL Reference].

● REGR_COUNT function The REGR_COUNT function returns the number of non-NULL pairs of
(Y, X) values in the input. Only if both X and Y in a given pair are non-NULL is that observation be
used in any linear regression computation.

For more information about the syntax for this function, see “REGR_COUNT function [Aggregate]”
[SQL Anywhere Server - SQL Reference].

OLAP support

490 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● REGR_SXX function The function returns the sum of squares of x-values of the (Y, X) pairs.

The equation for this function is equivalent to the numerator of the sample or population variance
formulae. Note, as with the other linear regression functions, that REGR_SXX ignores any pair of (Y,
X) values in the input where either X or Y is NULL.

For more information about the syntax for this function, see “REGR_SXX function [Aggregate]” [SQL
Anywhere Server - SQL Reference].

● REGR_SYY function The function returns the sum of squares of y-values of the (Y, X) pairs.

For more information about the syntax for this function, see “REGR_SYY function [Aggregate]” [SQL
Anywhere Server - SQL Reference].

● REGR_SXY function The function returns the difference of two sum of products over the set of (Y,
X) pairs.

For more information about the syntax for this function, see “REGR_SXY function [Aggregate]” [SQL
Anywhere Server - SQL Reference].

Window ranking functions
Window ranking functions return the rank of a row relative to the other rows in a partition. The ranking
functions supported by SQL Anywhere are:

● CUME_DIST
● DENSE_RANK
● PERCENT_RANK
● RANK

Ranking functions are not considered aggregate functions because they do not compute a result from multiple
input rows in the same manner as, for example, the SUM aggregate function. Rather, each of these functions
computes the rank, or relative ordering, of a row within a partition based on the value of a particular
expression. Each set of rows within a partition is ranked independently; if the OVER clause does not contain
a PARTITION BY clause, the entire input is treated as a single partition. So, you cannot specify a ROWS
or RANGE clause for a window used by a ranking function. It is possible to form a query containing multiple
ranking functions, each of which partition or sort the input rows differently.

All ranking functions require an ORDER BY clause to specify the sort order of the input rows upon which
the ranking functions depend. If the ORDER BY clause includes multiple expressions, the second and
subsequent expressions are used to break ties if the first expression has the same value in adjacent rows.
NULL values in SQL Anywhere are always sorted before any other value (in ascending sequence).

RANK function
You use the RANK function to return the rank of the value in the current row as compared to the value in
other rows. The rank of a value reflects the order in which it would appear if the list of values was sorted.

Window functions in SQL Anywhere

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 491

When using the RANK function, the rank is calculated for the expression specified in the window's ORDER
BY clause. If the ORDER BY clause includes multiple expressions, the second and subsequent expressions
are used to break ties if the first expression has the same value in adjacent rows. NULL values are sorted
before any other value (in ascending sequence).

Example 1
The following query determines the three most expensive products in the database. A descending sort
sequence is specified for the window so that the most expensive products have the lowest rank, that is,
rankings start at 1.

SELECT Top 3 *
 FROM (SELECT Description, Quantity, UnitPrice,
 RANK() OVER (ORDER BY UnitPrice DESC) AS Rank
 FROM Products) AS DT
ORDER BY Rank;

This query returns the following result:

Description Quantity UnitPrice Rank

1 Zipped Sweatshirt 32 24.00 1

2 Hooded Sweatshirt 39 24.00 1

3 Cotton Shorts 80 15.00 3

Note that rows 1 and 2 have the same value for Unit Price, and therefore also have the same rank. This is
called a tie.

With the RANK function, the rank value jumps after a tie. For example, the rank value for row 3 has jumped
to three instead of 2. This is different from the DENSE_RANK function, where no jumping occurs after a
tie. See “DENSE_RANK function” on page 494.

Example 2
The following SQL query finds the male and female employees from Utah and ranks them in descending
order according to salary.

SELECT Surname, Salary, Sex,
 RANK() OVER (ORDER BY Salary DESC) "Rank"
 FROM Employees
WHERE State IN ('UT');

The table that follows represents the result set from the query:

Surname Salary Sex Rank

1 Shishov 72995.00 F 1

2 Wang 68400.00 M 2

3 Cobb 62000.00 M 3

OLAP support

492 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Surname Salary Sex Rank

4 Morris 61300.00 M 4

5 Diaz 54900.00 M 5

6 Driscoll 48023.69 M 6

7 Hildebrand 45829.00 F 7

8 Goggin 37900.00 M 8

9 Rebeiro 34576.00 M 9

10 Bigelow 31200.00 F 10

11 Lynch 24903.00 M 11

Example 3
You can partition your data to provide different results. Using the query from Example 2, you can change
the data by partitioning it by gender. The following example ranks employees in descending order by salary
and partitions by gender.

SELECT Surname, Salary, Sex,
 RANK () OVER (PARTITION BY Sex
 ORDER BY Salary DESC) "Rank"
 FROM Employees
WHERE State IN ('UT');

The table that follows represents the result set from the query:

Surname Salary Sex Rank

1 Wang 68400.00 M 1

2 Cobb 62000.00 M 2

3 Morris 61300.00 M 3

4 Diaz 54900.00 M 4

5 Driscoll 48023.69 M 5

6 Goggin 37900.00 M 6

7 Rebeiro 34576.00 M 7

8 Lynch 24903.00 M 8

9 Shishov 72995.00 F 1

Window functions in SQL Anywhere

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 493

Surname Salary Sex Rank

10 Hildebrand 45829.00 F 2

11 Bigelow 31200.00 F 3

For more information about the syntax for the RANK function, see “RANK function [Ranking]” [SQL
Anywhere Server - SQL Reference].

DENSE_RANK function
Similar to the RANK function, you use the DENSE_RANK function to return the rank of the value in the
current row as compared to the value in other rows. The rank of a value reflects the order in which it would
appear if the list of values were sorted. Rank is calculated for the expression specified in the window's
ORDER BY clause.

The DENSE_RANK function returns a series of ranks that are monotonically increasing with no gaps, or
jumps in rank value. The term dense is used because there are no jumps in rank value (unlike the RANK
function).

As the window moves down the input rows, the rank is calculated for the expression specified in the window's
ORDER BY clause. If the ORDER BY clause includes multiple expressions, the second and subsequent
expressions are used to break ties if the first expression has the same value in adjacent rows. NULL values
are sorted before any other value (in ascending sequence).

Example 1
The following query determines the three most expensive products in the database. A descending sort
sequence is specified for the window so that the most expensive products have the lowest rank (rankings
start at 1).

SELECT Top 3 *
 FROM (SELECT Description, Quantity, UnitPrice,
 DENSE_RANK() OVER (ORDER BY UnitPrice DESC) AS Rank
 FROM Products) AS DT
 ORDER BY Rank;

This query returns the following result:

Description Quantity UnitPrice Rank

1 Hooded Sweatshirt 39 24.00 1

2 Zipped Sweatshirt 32 24.00 1

3 Cotton Shorts 80 15.00 2

Note that rows 1 and 2 have the same value for Unit Price, and therefore also have the same rank. This is
called a tie.

OLAP support

494 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

With the DENSE_RANK function, there is no jump in the rank value after a tie. For example, the rank value
for row 3 is 2. This is different from the RANK function, where a jump in rank values occurs after a tie. See
“RANK function” on page 491.

Example 2

Because windows are evaluated after a query's GROUP BY clause, you can specify complex requests that
determine rankings based on the value of an aggregate function.

The following query produces the top three salespeople in each region by their total sales within that region,
along with the total sales for each region:

SELECT *
 FROM (SELECT o.SalesRepresentative, o.Region,
 SUM(s.Quantity * p.UnitPrice) AS total_sales,
 DENSE_RANK() OVER (PARTITION BY o.Region,
 GROUPING(o.SalesRepresentative)
 ORDER BY total_sales DESC) AS sales_rank
 FROM Products p, SalesOrderItems s, SalesOrders o
 WHERE p.ID = s.ProductID AND s.ID = o.ID
 GROUP BY GROUPING SETS((o.SalesRepresentative, o.Region),
 o.Region)) AS DT
 WHERE sales_rank <= 3
 ORDER BY Region, sales_rank;

This query returns the following result:

SalesRepresentative Region total_sales sales_rank

1 299 Canada 9312.00 1

2 (NULL) Canada 24768.00 1

3 1596 Canada 3564.00 2

4 856 Canada 2724.00 3

5 299 Central 32592.00 1

6 (NULL) Central 134568.00 1

7 856 Central 14652.00 2

8 467 Central 14352.00 3

9 299 Eastern 21678.00 1

10 (NULL) Eastern 142038.00 1

11 902 Eastern 15096.00 2

12 690 Eastern 14808.00 3

Window functions in SQL Anywhere

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 495

SalesRepresentative Region total_sales sales_rank

13 1142 South 6912.00 1

14 (NULL) South 45262.00 1

15 667 South 6480.00 2

16 949 South 5782.00 3

17 299 Western 5640.00 1

18 (NULL) Western 37632.00 1

19 1596 Western 5076.00 2

20 667 Western 4068.00 3

This query combines multiple groupings through the use of GROUPING SETS. So, the WINDOW
PARTITION clause for the window uses the GROUPING function to distinguish between detail rows that
represent particular salespeople and the subtotal rows that list the total sales for an entire region. The subtotal
rows by region, which have the value NULL for the sales rep attribute, each have the ranking value of 1
because the result's ranking order is restarted with each partition of the input; this ensures that the detail rows
are ranked correctly starting at 1.

Finally, note in this example that the DENSE_RANK function ranks the input over the aggregation of the
total sales. An aliased select list item is used as a shorthand in the WINDOW ORDER clause.

For more information about the syntax for the DENSE_RANK function, see “DENSE_RANK function
[Ranking]” [SQL Anywhere Server - SQL Reference].

CUME_DIST function
The cumulative distribution function, CUME_DIST, is sometimes defined as the inverse of percentile.
CUME_DIST computes the normalized position of a specific value relative to the set of values in the window.
The range of the function is between 0 and 1.

As the window moves down the input rows, the cumulative distribution is calculated for the expression
specified in the window's ORDER BY clause. If the ORDER BY clause includes multiple expressions, the
second and subsequent expressions are used to break ties if the first expression has the same value in adjacent
rows. NULL values are sorted before any other value (in ascending sequence).

The following example returns a result set that provides a cumulative distribution of the salaries of employees
who live in California.

SELECT DepartmentID, Surname, Salary,
 CUME_DIST() OVER (PARTITION BY DepartmentID
 ORDER BY Salary DESC) "Rank"
 FROM Employees
 WHERE State IN ('CA');

OLAP support

496 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

This query returns the following result:

DepartmentID Surname Salary Rank

200 Savarino 72300.00 0.333333333333333

200 Clark 45000.00 0.666666666666667

200 Overbey 39300.00 1

For more information about the syntax for the CUME_DIST function, see “CUME_DIST function
[Ranking]” [SQL Anywhere Server - SQL Reference].

PERCENT_RANK function
Similar to the PERCENT function, the PERCENT_RANK function returns the rank for the value in the
column specified in the window's ORDER BY clause, but expressed as a fraction between 0 an 1, calculated
as (RANK - 1)/(–1).

As the window moves down the input rows, the rank is calculated for the expression specified in the window's
ORDER BY clause. If the ORDER BY clause includes multiple expressions, the second and subsequent
expressions are used to break ties if the first expression has the same value in adjacent rows. NULL values
are sorted before any other value (in ascending sequence).

Example 1
The following example returns a result set that shows the ranking of New York employees' salaries by gender.
The results are ranked in descending order using a decimal percentage, and are partitioned by gender.

SELECT DepartmentID, Surname, Salary, Sex,
 PERCENT_RANK() OVER (PARTITION BY Sex
 ORDER BY Salary DESC) AS PctRank
 FROM Employees
 WHERE State IN ('NY');

This query returns the following results:

DepartmentID Surname Salary Sex PctRank

1 200 Martel 55700.000 M 0.0

2 100 Guevara 42998.000 M 0.333333333

3 100 Soo 39075.000 M 0.666666667

4 400 Ahmed 34992.000 M 1.0

5 300 Davidson 57090.000 F 0.0

6 400 Blaikie 54900.000 F 0.333333333

Window functions in SQL Anywhere

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 497

DepartmentID Surname Salary Sex PctRank

7 100 Whitney 45700.000 F 0.666666667

8 400 Wetherby 35745.000 F 1.0

Since the input is partitioned by gender (Sex), PERCENT_RANK is evaluated separately for males and
females.

Example 2
The following example returns a list of female employees in Utah and Arizona and ranks them in descending
order according to salary. Here, the PERCENT_RANK function is used to provide a cumulative total in
descending order.

SELECT Surname, Salary,
 PERCENT_RANK () OVER (ORDER BY Salary DESC) "Rank"
 FROM Employees
WHERE State IN ('UT', 'AZ') AND Sex IN ('F');

This query returns the following results:

Surname Salary Rank

1 Shishov 72995.00 0

2 Jordan 51432.00 0.25

3 Hildebrand 45829.00 0.5

4 Bigelow 31200.00 0.75

5 Bertrand 29800.00 1

Using PERCENT_RANK to find top and bottom percentiles

You can use PERCENT_RANK to find the top or bottom percentiles in the data set. In the following example,
the query returns male employees whose salary is in the top five percent of the data set.

SELECT *
FROM (SELECT Surname, Salary,
 PERCENT_RANK () OVER (ORDER BY Salary DESC) "Rank"
 FROM Employees
 WHERE Sex IN ('M'))
 AS DerivedTable (Surname, Salary, Percent)
WHERE Percent < 0.05;

This query returns the following results:

Surname Salary Percent

1 Scott 96300.00 0

OLAP support

498 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Surname Salary Percent

2 Sheffield 87900.00 0.025

3 Lull 87900.00 0.025

For more information about the syntax for the PERCENT_RANK function, see “PERCENT_RANK function
[Ranking]” [SQL Anywhere Server - SQL Reference].

Row numbering functions
Row numbering functions uniquely number the rows in a partition. SQL Anywhere supports two row
numbering functions; NUMBER and ROW_NUMBER. It is recommended that you use the
ROW_NUMBER function because it is an ANSI standard-compliant function that provides much of the
same functionality as the SQL Anywhere NUMBER(*) function. While both functions perform similar tasks,
there are several limitations to the NUMBER function that do not exist for the ROW_NUMBER function.

See also
● “NUMBER function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “ROW_NUMBER function” on page 499

ROW_NUMBER function
The ROW_NUMBER function uniquely numbers the rows in its result. It is not a ranking function; however,
you can use it in any situation in which you can use a ranking function, and it behaves similarly to a ranking
function.

For example, you can use ROW_NUMBER in a derived table so that additional restrictions, even joins, can
be made over the ROW_NUMBER values:

SELECT *
FROM (SELECT Description, Quantity,
 ROW_NUMBER() OVER (ORDER BY ID ASC) AS RowNum
FROM Products) AS DT
WHERE RowNum <= 3
ORDER BY RowNum;

This query returns the following results:

Description Quantity RowNum

Tank Top 28 1

V-neck 54 2

Crew Neck 75 3

As with the ranking functions, ROW_NUMBER requires an ORDER BY clause.

Window functions in SQL Anywhere

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 499

As well, ROW_NUMBER can return non-deterministic results when the window's ORDER BY clause is
over non-unique expressions; row order is unpredictable in the case of ties.

ROW_NUMBER is designed to work over the entire partition, so a ROWS or RANGE clause cannot be
specified with a ROW_NUMBER function.

For more information about the syntax for the ROW_NUMBER function, see “ROW_NUMBER function
[Miscellaneous]” [SQL Anywhere Server - SQL Reference].

Mathematical formulas for the aggregate functions
For information purposes, the following two tables provide the equivalent mathematical formulas for all the
window aggregate functions supported in SQL Anywhere.

Simple aggregate functions

OLAP support

500 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Statistical aggregate functions

Window functions in SQL Anywhere

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 501

502

Using subqueries

Contents
Single-row and multiple-row subqueries .. 504
Correlated and uncorrelated subqueries ... 507
Nested subqueries ... 508
Using subqueries instead of joins .. 509
Subqueries in the WHERE clause ... 511
Subqueries in the HAVING clause .. 512
Testing subqueries .. 514
Optimizer automatic conversion of subqueries to joins ... 521

With a relational database, you can store related data in more than one table. In addition to being able to
extract data from related tables using a join, you can also extract it using a subquery. A subquery is a
SELECT statement nested within the SELECT, WHERE, or HAVING clause of a parent SQL statement.

Subqueries make some queries easier to write than joins, and there are queries that cannot be written without
using subqueries.

Subqueries can be categorized in different ways:

● whether they can return one or more rows (single-row vs. multiple-row subqueries)

● whether they are correlated or uncorrelated

● whether they are nested within another subquery

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 503

Single-row and multiple-row subqueries
Subqueries that can return only one or zero rows to the outer statement are called single-row subqueries.
Single-row subqueries are subqueries used with a comparison operator in a WHERE, or HAVING clause.

Subqueries that can return more than one row (but only one column) to the outer statement are called
multiple-row subqueries. Multiple-row subqueries are subqueries used with an IN, ANY, or ALL clause.

Example 1: Single-row subquery
You store information particular to products in one table, Products, and information that pertains to sales
orders in another table, SalesOrdersItems. The Products table contains the information about the various
products. The SalesOrdersItems table contains information about customers' orders. If a company reorders
products when there are fewer than 50 of them in stock, then it is possible to answer the question "Which
products are nearly out of stock?" with this query:

SELECT ID, Name, Description, Quantity
FROM Products
WHERE Quantity < 50;

However, a more helpful result would take into consideration how frequently a product is ordered, since
having few of a product that is frequently purchased is more of a concern than having few product that is
rarely ordered.

You can use a subquery to determine the average number of items that a customer orders, and then use that
average in the main query to find products that are nearly out of stock. The following query finds the names
and descriptions of the products which number less than twice the average number of items of each type that
a customer orders.

SELECT Name, Description
FROM Products WHERE Quantity < 2 * (
 SELECT AVG(Quantity)
 FROM SalesOrderItems
);

In the WHERE clause, subqueries help select the rows from the tables listed in the FROM clause that appear
in the query results. In the HAVING clause, they help select the row groups, as specified by the main query's
GROUP BY clause, that appear in the query results.

Example 2: Single-row subquery
The following example of a single-row subquery calculates the average price of the products in the Products
table. The average is then passed to the WHERE clause of the outer query. The outer query returns the ID,
Name, and UnitPrice of all products that are less expensive than the average:

SELECT ID, Name, UnitPrice
FROM Products
WHERE UnitPrice <
 (SELECT AVG(UnitPrice) FROM Products)
ORDER BY UnitPrice DESC;

ID Name UnitPrice

401 Baseball Cap 10.00

Using subqueries

504 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ID Name UnitPrice

300 Tee Shirt 9.00

400 Baseball Cap 9.00

500 Visor 7.00

501 Visor 7.00

Example 3: Simple multiple-row subquery using IN
Suppose you want to identify items that are low in stock, while also identifying orders for those items. You
could execute a SELECT statement containing a subquery in the WHERE clause, similar to the following:

SELECT *
FROM SalesOrderItems
WHERE ProductID IN
 (SELECT ID
 FROM Products
 WHERE Quantity < 20)
ORDER BY ShipDate DESC;

In this example, the subquery makes a list of all values in the ID column in the Products table, satisfying the
WHERE clause search condition. The subquery then returns a set of rows, but only a single column. The IN
keyword treats each value as a member of a set and tests whether each row in the main query is a member
of the set.

Example 4: Multiple-row subqueries comparing use of IN, ANY, and ALL
Two tables in the SQL Anywhere sample database contain financial results data. The FinancialCodes table
is a table holding the different codes for financial data and their meaning. To list the revenue items from the
FinancialData table, execute the following query:

SELECT *
FROM FinancialData
WHERE Code IN
 (SELECT Code
 FROM FinancialCodes
 WHERE type = 'revenue');

Year Quarter Code Amount

1999 Q1 r1 1023

1999 Q2 r1 2033

1999 Q3 r1 2998

1999 Q4 r1 3014

2000 Q1 r1 3114

Single-row and multiple-row subqueries

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 505

Year Quarter Code Amount

...

The ANY and ALL keywords can be used in a similar manner. For example, the following query returns the
same results as the previous query, but uses the ANY keyword:

SELECT *
FROM FinancialData
WHERE FinancialData.Code = ANY
 (SELECT FinancialCodes.Code
 FROM FinancialCodes
 WHERE type = 'revenue');

While the =ANY condition is identical to the IN condition, ANY can also be used with inequalities such as
< or > to give more flexible use of subqueries.

The ALL keyword is similar to the word ANY. For example, the following query lists financial data that is
not revenue:

SELECT *
FROM FinancialData
WHERE FinancialData.Code <> ALL
 (SELECT FinancialCodes.Code
 FROM FinancialCodes
 WHERE type = 'revenue');

This is equivalent to the following command using NOT IN:

SELECT *
FROM FinancialData
WHERE FinancialData.Code NOT IN
 (SELECT FinancialCodes.Code
 FROM FinancialCodes
 WHERE type = 'revenue');

Using subqueries

506 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Correlated and uncorrelated subqueries
A subquery can contain a reference to an object defined in a parent statement. This is called an outer
reference. A subquery that contains an outer reference is called a correlated subquery. Correlated
subqueries cannot be evaluated independently of the outer query because the subquery uses the values of
the parent statement. That is, the subquery is performed for each row in the parent statement. So, results of
the subquery are dependent upon the active row being evaluated in the parent statement.

For example, the subquery in the statement below returns a value dependent upon the active row in the
Products table:

SELECT Name, Description
FROM Products
WHERE Quantity < 2 * (
 SELECT AVG(Quantity)
 FROM SalesOrderItems
 WHERE Products.ID=SalesOrderItems.ProductID);

In this example, the Products.ID column in this subquery is the outer reference. The query extracts the names
and descriptions of the products whose in-stock quantities are less than double the average ordered quantity
of that product—specifically, the product being tested by the WHERE clause in the main query. The subquery
does this by scanning the SalesOrderItems table. But the Products.ID column in the WHERE clause of the
subquery refers to a column in the table named in the FROM clause of the main query—not the subquery.
As the database server moves through each row of the Products table, it uses the ID value of the current row
when it evaluates the WHERE clause of the subquery.

A query executes without error when a column referenced in a subquery does not exist in the table referenced
by the subquery's FROM clause, but exists in a table referenced by the outer query's FROM clause. SQL
Anywhere implicitly qualifies the column in the subquery with the table name in the outer query.

A subquery that does not contain references to objects in a parent statement is called an uncorrelated
subquery. In the example below, the subquery calculates exactly one value: the average quantity from the
SalesOrderItems table. In evaluating the query, the database server computes this value once, and compares
each value in the Quantity field of the Products table to it to determine whether to select the corresponding
row.

SELECT Name, Description
FROM Products
WHERE Quantity < 2 * (
 SELECT AVG(Quantity)
 FROM SalesOrderItems);

Correlated and uncorrelated subqueries

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 507

Nested subqueries
A nested subquery is a subquery nested within another subquery. There is no limit to the level of subquery
nesting you can define, however, queries with three or more levels take considerably longer to run than do
smaller queries.

The following example uses nested subqueries to determine the order IDs and line IDs of those orders shipped
on the same day when any item in the fees department was ordered.

SELECT ID, LineID
FROM SalesOrderItems
WHERE ShipDate = ANY (
 SELECT OrderDate
 FROM SalesOrders
 WHERE FinancialCode IN (
 SELECT Code
 FROM FinancialCodes
 WHERE (Description = 'Fees')));

ID LineID

2001 1

2001 2

2001 3

2002 1

... ...

In this example, the innermost subquery produces a column of financial codes whose descriptions are "Fees":

SELECT Code
FROM FinancialCodes
WHERE (Description = 'Fees');

The next subquery finds the order dates of the items whose codes match one of the codes selected in the
innermost subquery:

SELECT OrderDate
FROM SalesOrders
WHERE FinancialCode
IN (subquery-expression);

Finally, the outermost query finds the order IDs and line IDs of the orders shipped on one of the dates found
in the subquery.

SELECT ID, LineID
FROM SalesOrderItems
WHERE ShipDate = ANY (subquery-expression);

Using subqueries

508 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using subqueries instead of joins
Suppose you need a chronological list of orders and the company that placed them, but would like the
company name instead of their Customers ID. You can get this result using a join.

Using a join
To list the order ID, date, and company name for each order since the beginning of 2001, execute the
following query:

SELECT SalesOrders.ID,
 SalesOrders.OrderDate,
 Customers.CompanyName
FROM SalesOrders
 KEY JOIN Customers
WHERE OrderDate > '2001/01/01'
ORDER BY OrderDate;

Using a subquery
The following statement obtains the same results using a subquery instead of a join:

SELECT SalesOrders.ID,
 SalesOrders.OrderDate,
 (SELECT CompanyName FROM Customers
 WHERE Customers.ID = SalesOrders.CustomerID)
FROM SalesOrders
WHERE OrderDate > '2001/01/01'
ORDER BY OrderDate;

The subquery refers to the CustomerID column in the SalesOrders table even though the SalesOrders table
is not part of the subquery. Instead, the SalesOrders.CustomerID column refers to the SalesOrders table in
the main body of the statement.

A subquery can be used instead of a join whenever only one column is required from the other table. (Recall
that subqueries can only return one column.) In this example, you only needed the CompanyName column,
so the join could be changed into a subquery.

Using an outer join
To list all customers in Washington state, together with their most recent order ID, execute the following
query:

SELECT CompanyName, State,
 (SELECT MAX(ID)
 FROM SalesOrders
 WHERE SalesOrders.CustomerID = Customers.ID)
FROM Customers
WHERE State = 'WA';

CompanyName State MAX(SalesOrders.ID)

Custom Designs WA 2547

It's a Hit! WA (NULL)

Using subqueries instead of joins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 509

The It's a Hit! company placed no orders, and the subquery returns NULL for this customer. Companies who
have not placed an order are not listed when inner joins are used.

You could also specify an outer join explicitly. In this case, a GROUP BY clause is also required.

SELECT CompanyName, State,
 MAX(SalesOrders.ID)
FROM Customers
 KEY LEFT OUTER JOIN SalesOrders
WHERE State = 'WA'
GROUP BY CompanyName, State;

Using subqueries

510 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Subqueries in the WHERE clause
Subqueries in the WHERE clause work as part of the row selection process. You use a subquery in the
WHERE clause when the criteria you use to select rows depend on the results of another table.

Example
Find the products whose in-stock quantities are less than double the average ordered quantity.

SELECT Name, Description
FROM Products WHERE Quantity < 2 * (
 SELECT AVG(Quantity)
 FROM SalesOrderItems);

This is a two-step query: first, find the average number of items requested per order; and then find which
products in stock number less than double that quantity.

The query in two steps
The Quantity column of the SalesOrderItems table stores the number of items requested per item type,
customer, and order. The subquery is

SELECT AVG(Quantity)
FROM SalesOrderItems;

It returns the average quantity of items in the SalesOrderItems table, which is 25.851413.

The next query returns the names and descriptions of the items whose in-stock quantities are less than twice
the previously-extracted value.

SELECT Name, Description
FROM Products
WHERE Quantity < 2*25.851413;

Using a subquery combines the two steps into a single operation.

Purpose of a subquery in the WHERE clause
A subquery in the WHERE clause is part of a search condition. The chapter “Querying data” on page 279
describes simple search conditions you can use in the WHERE clause.

Subqueries in the WHERE clause

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 511

Subqueries in the HAVING clause
Although you usually use subqueries as search conditions in the WHERE clause, sometimes you can also
use them in the HAVING clause of a query. When a subquery appears in the HAVING clause, like any
expression in the HAVING clause, it is used as part of the row group selection.

Here is a request that lends itself naturally to a query with a subquery in the HAVING clause: "Which
products' average in-stock quantity is more than double the average number of each item ordered per
customer?"

Example
SELECT Name, AVG(Quantity)
FROM Products
GROUP BY Name
HAVING AVG(Quantity) > 2* (
 SELECT AVG(Quantity)
 FROM SalesOrderItems
);

name AVG(Products.Quantity)

Baseball Cap 62.000000

Shorts 80.000000

Tee Shirt 52.333333

The query executes as follows:

● The subquery calculates the average quantity of items in the SalesOrderItems table.

● The main query then goes through the Products table, calculating the average quantity per product,
grouping by product name.

● The HAVING clause then checks if each average quantity is more than double the quantity found by the
subquery. If so, the main query returns that row group; otherwise, it doesn't.

● The SELECT clause produces one summary row for each group, displaying the name of each product
and its in-stock average quantity.

You can also use outer references in a HAVING clause, as shown in the following example, a slight variation
on the one above.

Example
This example finds the product ID numbers and line ID numbers of those products whose average ordered
quantities is more than half the in-stock quantities of those products.

SELECT ProductID, LineID
FROM SalesOrderItems
GROUP BY ProductID, LineID
HAVING 2* AVG(Quantity) > (
 SELECT Quantity

Using subqueries

512 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 FROM Products
 WHERE Products.ID = SalesOrderItems.ProductID);

ProductID LineID

601 3

601 2

601 1

600 2

... ...

In this example, the subquery must produce the in-stock quantity of the product corresponding to the row
group being tested by the HAVING clause. The subquery selects records for that particular product, using
the outer reference SalesOrderItems.ProductID.

A subquery with a comparison returns a single value
This query uses the comparison >, suggesting that the subquery must return exactly one value. In this case,
it does. Since the ID field of the Products table is a primary key, there is only one record in the Products
table corresponding to any particular product ID.

Subqueries in the HAVING clause

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 513

Testing subqueries
The chapter “Querying data” on page 279 describes simple search conditions you can use in the HAVING
clause. Since a subquery is just an expression that appears in the WHERE or HAVING clauses, the search
conditions on subqueries may look familiar.

They include:

● Subquery comparison test Compares the value of an expression to a single value produced by the
subquery for each record in the table(s) in the main query. Comparison tests use the operators (=, <>, <.
<=, >, >=) provided with the subquery.

● Quantified comparison test Compares the value of an expression to each of the set of values
produced by a subquery.

● Subquery set membership test Checks if the value of an expression matches one of the set of
values produced by a subquery.

● Existence test Checks if the subquery produces any rows.

Subquery comparison test
The subquery comparison test (=, <>, <. <=, >, >=) is a modified version of the simple comparison test. The
only difference between the two is that in the former, the expression following the operator is a subquery.
This test is used to compare a value from a row in the main query to a single value produced by the subquery.

Example
This query contains an example of a subquery comparison test:

SELECT Name, Description, Quantity
FROM Products
WHERE Quantity < 2 * (
 SELECT AVG(Quantity)
 FROM SalesOrderItems);

name Description Quantity

Tee Shirt Tank Top 28

Baseball Cap Wool cap 12

Visor Cloth Visor 36

Visor Plastic Visor 28

...

The following subquery retrieves a single value—the average quantity of items of each type per customer's
order—from the SalesOrderItems table.

Using subqueries

514 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SELECT AVG(Quantity)
FROM SalesOrderItems;

Then the main query compares the quantity of each in-stock item to that value.

A subquery in a comparison test returns one value
A subquery in a comparison test must return exactly one value. Consider this query, whose subquery extracts
two columns from the SalesOrderItems table:

SELECT Name, Description, Quantity
FROM Products
WHERE Quantity < 2 * (
 SELECT AVG(Quantity), MAX(Quantity)
 FROM SalesOrderItems);

It returns the error Subquery allowed only one select list item.

Subqueries and the IN test
You can use the subquery set membership test to compare a value from the main query to more than one
value in the subquery.

The subquery set membership test compares a single data value for each row in the main query to the single
column of data values produced by the subquery. If the data value from the main query matches one of the
data values in the column, the subquery returns TRUE.

Example
Select the names of the employees who head the Shipping or Finance departments:

SELECT GivenName, Surname
FROM Employees
WHERE EmployeeID IN (
 SELECT DepartmentHeadID
 FROM Departments
 WHERE (DepartmentName='Finance' OR
 DepartmentName = 'Shipping'));

GivenName Surname

Mary Anne Shea

Jose Martinez

The subquery in this example extracts from the Departments table the ID numbers that correspond to the
heads of the Shipping and Finance departments. The main query then returns the names of the employees
whose ID numbers match one of the two found by the subquery.

SELECT DepartmentHeadID
FROM Departments
WHERE (DepartmentName='Finance' OR
 DepartmentName = 'Shipping');

Testing subqueries

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 515

Set membership test is equivalent to =ANY test
The subquery set membership test is equivalent to the =ANY test. The following query is equivalent to the
query from the above example.

SELECT GivenName, Surname
FROM Employees
WHERE EmployeeID = ANY (
 SELECT DepartmentHeadID
 FROM Departments
 WHERE (DepartmentName='Finance' OR
 DepartmentName = 'Shipping'));

Negation of the set membership test
You can also use the subquery set membership test to extract those rows whose column values are not equal
to any of those produced by a subquery. To negate a set membership test, insert the word NOT in front of
the keyword IN.

Example
The subquery in this query returns the first and last names of the employees that are not heads of the Finance
or Shipping departments.

SELECT GivenName, Surname
FROM Employees
WHERE EmployeeID NOT IN (
 SELECT DepartmentHeadID
 FROM Departments
 WHERE (DepartmentName='Finance' OR
 DepartmentName = 'Shipping'));

Subqueries and the ANY test
The ANY test, used in conjunction with one of the SQL comparison operators (=, >, <, >=, <=, !=, <>, !>, !
<), compares a single value to the column of data values produced by the subquery. To perform the test,
SQL uses the specified comparison operator to compare the test value to each data value in the column. If
any of the comparisons yields a TRUE result, the ANY test returns TRUE.

A subquery used with ANY must return a single column.

Example
Find the order and customer IDs of those orders placed after the first product of the order #2005 was shipped.

SELECT ID, CustomerID
FROM SalesOrders
WHERE OrderDate > ANY (
 SELECT ShipDate
 FROM SalesOrderItems
 WHERE ID=2005);

Using subqueries

516 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ID CustomerID

2006 105

2007 106

2008 107

2009 108

... ...

In executing this query, the main query tests the order dates for each order against the shipping dates of
every product of the order #2005. If an order date is greater than the shipping date for one shipment of order
#2005, then that ID and customer ID from the SalesOrders table are part of the result set. The ANY test is
analogous to the OR operator: the above query can be read, "Was this sales order placed after the first product
of the order #2005 was shipped, or after the second product of order #2005 was shipped, or..."

Understanding the ANY operator
The ANY operator can be a bit confusing. It is tempting to read the query as "Return those orders placed
after any products of order #2005 were shipped." But this means the query will return the order IDs and
customer IDs for the orders placed after all products of order #2005 were shipped—which is not what the
query does.

Instead, try reading the query like this: "Return the order and customer IDs for those orders placed after at
least one product of order #2005 was shipped." Using the keyword SOME may provide a more intuitive
way to phrase the query. The following query is equivalent to the previous query.

SELECT ID, CustomerID
FROM SalesOrders
WHERE OrderDate > SOME (
 SELECT ShipDate
 FROM SalesOrderItems
 WHERE ID=2005);

The keyword SOME is equivalent to the keyword ANY.

Notes about the ANY operator
There are two additional important characteristics of the ANY test:

● Empty subquery result set If the subquery produces an empty result set, the ANY test returns
FALSE. This makes sense, since if there are no results, then it is not true that at least one result satisfies
the comparison test.

● NULL values in subquery result set Assume that there is at least one NULL value in the subquery
result set. If the comparison test is FALSE for all non-NULL data values in the result set, the ANY search
returns UNKNOWN. This is because in this situation, you cannot conclusively state whether there is a
value for the subquery for which the comparison test holds. There may or may not be a value, depending
on the correct values for the NULL data in the result set. For more information about the ANY search
condition, see “ANY and SOME search conditions” [SQL Anywhere Server - SQL Reference].

Testing subqueries

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 517

Subqueries and the ALL test
The ALL test is used with one of the SQL comparison operators (=, >, <, >=, <=, !=, <>, !>, !<) to compare
a single value to the data values produced by the subquery. To perform the test, SQL uses the specified
comparison operator to compare the test value to each data value in the result set. If all the comparisons yield
TRUE results, the ALL test returns TRUE.

Example
This example finds the order and customer IDs of orders placed after all products of order #2001 were
shipped.

SELECT ID, CustomerID
FROM SalesOrders
WHERE OrderDate > ALL (
 SELECT ShipDate
 FROM SalesOrderItems
 WHERE ID=2001);

ID CustomerID

2002 102

2003 103

2004 104

2005 101

... ...

In executing this query, the main query tests the order dates for each order against the shipping dates of
every product of order #2001. If an order date is greater than the shipping date for every shipment of order
#2001, then the ID and customer ID from the SalesOrders table are part of the result set. The ALL test is
analogous to the AND operator: the above query can be read, "Was this sales order placed before the first
product of order #2001 was shipped, and before the second product of order #2001 was shipped, and..."

Notes about the ALL operator
There are three additional important characteristics of the ALL test:

● Empty subquery result set If the subquery produces an empty result set, the ALL test returns TRUE.
This makes sense, since if there are no results, then it is true that the comparison test holds for every
value in the result set.

● NULL values in subquery result set If the comparison test is false for any values in the result set,
the ALL search returns FALSE. It returns TRUE if all values are true. Otherwise, it returns UNKNOWN
—for example, this can occur if there is a NULL value in the subquery result set but the search condition
is TRUE for all non-NULL values.

● Negating the ALL test The following expressions are not equivalent.

Using subqueries

518 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

NOT a = ALL (subquery)
a <> ALL (subquery)

For more information about this test, see “Subquery that follows ANY, ALL or SOME” on page 523.

Subqueries and the EXISTS test
Subqueries used in the subquery comparison test and set membership test both return data values from the
subquery table. Sometimes, however, you may be more concerned with whether the subquery returns any
results, rather than which results. The existence test (EXISTS) checks whether a subquery produces any rows
of query results. If the subquery produces one or more rows of results, the EXISTS test returns TRUE.
Otherwise, it returns FALSE.

Example
Here is an example of a request expressed using a subquery: "Which customers placed orders after July 13,
2001?"

SELECT GivenName, Surname
FROM Customers
WHERE EXISTS (
 SELECT *
 FROM SalesOrders
 WHERE (OrderDate > '2001-07-13') AND
 (Customers.ID = SalesOrders.CustomerID));

GivenName Surname

Almen de Joie

Grover Pendelton

Ling Ling Andrews

Bubba Murphy

Explanation of the existence test
Here, for each row in the Customers table, the subquery checks if that customer ID corresponds to one that
has placed an order after July 13, 2001. If it does, the query extracts the first and last names of that customer
from the main table.

The EXISTS test does not use the results of the subquery; it just checks if the subquery produces any rows.
So the existence test applied to the following two subqueries return the same results. These are subqueries
and cannot be processed on their own, because they refer to the Customers table which is part of the main
query, but not part of the subquery.

For more information, see “Correlated and uncorrelated subqueries” on page 507.

SELECT *
FROM Customers, SalesOrders
WHERE (OrderDate > '2001-07-13') AND
 (Customers.ID = SalesOrders.CustomerID)

Testing subqueries

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 519

SELECT OrderDate
FROM Customers, SalesOrders
WHERE (OrderDate > '2001-07-13') AND
 (Customers.ID = SalesOrders.CustomerID);

It does not matter which columns from the SalesOrders table appear in the SELECT statement, though by
convention, the "SELECT *" notation is used.

Negating the existence test
You can reverse the logic of the EXISTS test using the NOT EXISTS form. In this case, the test returns
TRUE if the subquery produces no rows, and FALSE otherwise.

Correlated subqueries
You may have noticed that the subquery contains a reference to the ID column from the Customers table. A
reference to columns or expressions in the main table(s) is called an outer reference and the subquery is
said to be correlated. Conceptually, SQL processes the above query by going through the Customers table,
and performing the subquery for each customer. If the order date in the SalesOrders table is after July 13,
2001, and the customer ID in the Customers and SalesOrders tables match, then the first and last names from
the Customers table appear. Since the subquery references the main query, the subquery in this section,
unlike those from previous sections, returns an error if you attempt to run it by itself.

Using subqueries

520 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Optimizer automatic conversion of subqueries to
joins

The query optimizer automatically rewrites as joins many of the queries that make use of subqueries. The
conversion is performed without any user action. This section describes which subqueries can be converted
to joins so you can understand the performance of queries in your database.

The criteria that must be satisfied in order for a multi-level query to be able to be rewritten with joins differ
for the various types of operators, and the structures of the query and of the subquery. Recall that when a
subquery appears in the query's WHERE clause, it is of the form

SELECT select-list
FROM table
WHERE
[NOT] expression comparison-operator (subquery-expression)
| [NOT] expression comparison-operator { ANY | SOME } (subquery-expression)
| [NOT] expression comparison-operator ALL (subquery-expression)
| [NOT] expression IN (subquery-expression)
| [NOT] EXISTS (subquery-expression)
GROUP BY group-by-expression
HAVING search-condition

For example, consider the request, "When did Mrs. Clarke and Suresh place their orders, and by which sales
representatives?" It can be answered with the following query:

SELECT OrderDate, SalesRepresentative
FROM SalesOrders
WHERE CustomerID IN (
 SELECT ID
 FROM Customers
 WHERE Surname = 'Clarke' OR GivenName = 'Suresh');

OrderDate SalesRepresentative

2001-01-05 1596

2000-01-27 667

2000-11-11 467

2001-02-04 195

... ...

The subquery yields a list of customer IDs that correspond to the two customers whose names are listed in
the WHERE clause, and the main query finds the order dates and sales representatives corresponding to
those two people's orders.

The same question can be answered using joins. Here is an alternative form of the query, using a two-table
join:

SELECT OrderDate, SalesRepresentative
FROM SalesOrders, Customers

Optimizer automatic conversion of subqueries to joins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 521

WHERE CustomerID=Customers.ID AND
 (Surname = 'Clarke' OR GivenName = 'Suresh');

This form of the query joins the SalesOrders table to the Customers table to find the orders for each customer,
and then returns only those records for Suresh and Clarke.

Case where a subquery works, but a join does not
There are cases where a subquery works but a join does not. For example:

SELECT Name, Description, Quantity
FROM Products
WHERE Quantity < 2 * (
 SELECT AVG(Quantity)
 FROM SalesOrderItems);

name Description Quantity

Tee Shirt Tank Top 28

Baseball Cap Wool cap 12

Visor Cloth Visor 36

...

In this case, the inner query is a summary query and the outer query is not, so there is no way to combine
the two queries by a simple join.

See also
● “Joins: Retrieving data from several tables” on page 389

Subquery that follows a comparison operator
A subquery that follows a comparison operator (=, >, <, >=, <=, !=, <>, !>, !<) is called a comparison. The
optimizer converts these subqueries to joins provided that the subquery:

● returns exactly one value for each row of the main query.

● does not contain a GROUP BY clause

● does not contain the keyword DISTINCT

● is not a UNION query

● is not an aggregate query

Example
Suppose the request "When were Suresh's products ordered, and by which sales representative?" were
phrased as the subquery

SELECT OrderDate, SalesRepresentative
FROM SalesOrders

Using subqueries

522 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

WHERE CustomerID = (
 SELECT ID
 FROM Customers
 WHERE GivenName = 'Suresh');

This query satisfies the criteria, and therefore, it would be converted to a query using a join:

SELECT OrderDate, SalesRepresentative
FROM SalesOrders, Customers
WHERE CustomerID=Customers.ID AND
 (Surname = 'Clarke' OR GivenName = 'Suresh');

However, the request, "Find the products whose in-stock quantities are less than double the average ordered
quantity" cannot be converted to a join, as the subquery contains the AVG aggregate function:

SELECT Name, Description
FROM Products
WHERE Quantity < 2 * (
 SELECT AVG(Quantity)
 FROM SalesOrderItems);

Subquery that follows ANY, ALL or SOME
A subquery that follows one of the keywords ALL, ANY and SOME is called a quantified comparison. The
optimizer converts these subqueries to joins provided that:

● The main query does not contain a GROUP BY clause, and is not an aggregate query, or the subquery
returns exactly one value.

● The subquery does not contain a GROUP BY clause.

● The subquery does not contain the keyword DISTINCT.

● The subquery is not a UNION query.

● The subquery is not an aggregate query.

● The conjunct 'expression comparison-operator { ANY | SOME } (subquery-expression)' must not be
negated.

● The conjunct 'expression comparison-operator ALL (subquery-expression)' must be negated.

The first four of these conditions are relatively straightforward.

Example
The request "When did Ms. Clarke and Suresh place their orders, and by which sales representatives?" can
be handled in subquery form:

SELECT OrderDate, SalesRepresentative
FROM SalesOrders
WHERE CustomerID = ANY (
 SELECT ID
 FROM Customers
 WHERE Surname = 'Clarke' OR GivenName = 'Suresh');

Alternately, it can be phrased in join form

Optimizer automatic conversion of subqueries to joins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 523

SELECT OrderDate, SalesRepresentative
FROM SalesOrders, Customers
WHERE CustomerID=Customers.ID AND
 (Surname = 'Clarke' OR GivenName = 'Suresh');

However, the request, "When did Ms. Clarke, Suresh, and any employee who is also a customer, place their
orders?" would be phrased as a union query, and cannot be converted to a join:

SELECT OrderDate, SalesRepresentative
FROM SalesOrders
WHERE CustomerID = ANY (
 SELECT ID
 FROM Customers
 WHERE Surname = 'Clarke' OR GivenName = 'Suresh'
 UNION
 SELECT EmployeeID
 FROM Employees);

Similarly, the request "Find the order IDs and customer IDs of those orders not shipped after the first shipping
dates of all the products" would be phrased as the aggregate query, and therefore cannot be converted to a
join:

SELECT ID, CustomerID
FROM SalesOrders
WHERE NOT OrderDate > ALL (
 SELECT FIRST (ShipDate)
 FROM SalesOrderItems
 ORDER BY ShipDate);

Negating subqueries with the ANY and ALL operators
The fifth criterion is a little more puzzling. Queries taking the following form are converted to joins:

SELECT select-list
FROM table
WHERE NOT expression comparison-operator ALL (subquery-expression)

SELECT select-list
FROM table
WHERE expression comparison-operator ANY (subquery-expression)

However, the following queries are not converted to joins:

SELECT select-list
FROM table
WHERE expression comparison-operator ALL (subquery-expression)

SELECT select-list
FROM table
WHERE NOT expression comparison-operator ANY (subquery-expression)

The first two queries are equivalent, as are the last two. Recall that the ANY operator is analogous to the
OR operator, but with a variable number of arguments; and that the ALL operator is similarly analogous to
the AND operator. For example, the following two expressions are equivalent:

NOT ((X > A) AND (X > B))
(X <= A) OR (X <= B)

The following two expressions are also equivalent:

Using subqueries

524 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

WHERE NOT OrderDate > ALL (
 SELECT FIRST (ShipDate)
 FROM SalesOrderItems
 ORDER BY ShipDate)

WHERE OrderDate <= ANY (
 SELECT FIRST (ShipDate)
 FROM SalesOrderItems
 ORDER BY ShipDate)

Negating the ANY and ALL expressions
In general, the following expressions are equivalent:

NOT column-name operator ANY (subquery-expression)

column-name inverse-operator ALL (subquery-expression)

These expressions are generally equivalent as well:

NOT column-name operator ALL (subquery-expression)

column-name inverse-operator ANY (subquery-expression)

where inverse-operator is obtained by negating operator, as shown in the table below:

operator inverse-operator

= <>

< =>

> =<

=< >

=> <

<> =

Subquery that follows IN
The optimizer converts a subquery that follows an IN keyword only if:

● The main query does not contain a GROUP BY clause, and is not an aggregate query, or the subquery
returns exactly one value.

● The subquery does not contain a GROUP BY clause.

● The subquery does not contain the keyword DISTINCT.

● The subquery is not a UNION query.

● The subquery is not an aggregate query.

Optimizer automatic conversion of subqueries to joins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 525

● The conjunct 'expression IN (subquery-expression)' must not be negated.

Example
So, the request "Find the names of the employees who are also department heads", expressed by the following
query, would be converted to a joined query, as it satisfies the conditions.

SELECT GivenName, Surname
FROM Employees
WHERE EmployeeID IN (
 SELECT DepartmentHeadID
 FROM Departments
 WHERE (DepartmentName ='Finance' OR
 DepartmentName = 'Shipping'));

However, the request, "Find the names of the employees who are either department heads or customers"
would not be converted to a join if it were expressed by the UNION query.

A UNION query following the IN operator cannot be converted
SELECT GivenName, Surname
FROM Employees
WHERE EmployeeID IN (
 SELECT DepartmentHeadID
 FROM Departments
 WHERE (DepartmentName='Finance' OR
 DepartmentName = 'Shipping')
 UNION
 SELECT CustomerID
 FROM SalesOrders);

Similarly, the request "Find the names of employees who are not department heads" is formulated as the
negated subquery shown below, and would not be converted

SELECT GivenName, Surname
FROM Employees
 WHERE NOT EmployeeID IN (
 SELECT DepartmentHeadID
 FROM Departments
 WHERE (DepartmentName='Finance' OR
 DepartmentName = 'Shipping'));

The conditions necessary for an IN or ANY subquery to be converted to a join are identical. This is because
the two expressions are logically equivalent.

Query with IN operator converted to a query with an ANY operator
In some cases, SQL Anywhere converts a query with the IN operator to one with an ANY operator, and
decides whether to convert the subquery to a join. For example, the following two expressions are equivalent:

WHERE column-name IN(subquery-expression)

WHERE column-name = ANY(subquery-expression)

Likewise, the following two queries are equivalent:

SELECT GivenName, Surname
FROM Employees
WHERE EmployeeID IN (
 SELECT DepartmentHeadID

Using subqueries

526 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 FROM Departments
 WHERE (DepartmentName='Finance' OR
 DepartmentName = 'Shipping'));
SELECT GivenName, Surname
FROM Employees
WHERE EmployeeID = ANY (
 SELECT DepartmentHeadID
 FROM Departments
 WHERE (DepartmentName='Finance' OR
 DepartmentName = 'Shipping'));

Subquery that follows EXISTS
The optimizer converts a subquery that follows the EXISTS keyword only if:

● The main query does not contain a GROUP BY clause, and is not an aggregate query, or the subquery
returns exactly one value.

● The conjunct 'EXISTS (subquery)' is not negated.

● The subquery is correlated; that is, it contains an outer reference.

Example
The request, "Which customers placed orders after July 13, 2001?", which can be formulated by a query
whose non-negated subquery contains the outer reference Customers.ID = SalesOrders.CustomerID, can
be represented with the following join:

SELECT GivenName, Surname
FROM Customers
WHERE EXISTS (
 SELECT *
 FROM SalesOrders
 WHERE (OrderDate > '2001-07-13') AND
 (Customers.ID = SalesOrders.CustomerID));

The EXISTS keyword tells the database server to check for empty result sets. When using inner joins, the
database server automatically displays only the rows where there is data from all the tables in the FROM
clause. So, this query returns the same rows as does the one with the subquery:

SELECT DISTINCT GivenName, Surname
FROM Customers, SalesOrders
WHERE (SalesOrders.OrderDate > '2001-07-13') AND
 (Customers.ID = SalesOrders.CustomerID);

Optimizer automatic conversion of subqueries to joins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 527

528

Adding, changing, and deleting data

Contents
Data modification statements .. 530
Adding data using INSERT .. 533
Changing data using UPDATE .. 537
Changing data using INSERT ... 539
Deleting data using DELETE ... 540

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 529

Data modification statements
The statements you use to add, change, or delete data are called data modification statements, also referred
to as the data modification language (DML) part of SQL. The three main DML statements are:

● INSERT statement adds new rows to a table

● UPDATE statement changes existing rows in a table

● DELETE statement removes specific rows from a table

Any single INSERT, UPDATE, or DELETE statement changes the data in only one table or view.

In addition to the statements above, the LOAD TABLE and TRUNCATE TABLE statements are especially
useful for bulk loading and deleting of data.

See also
● “INSERT statement” [SQL Anywhere Server - SQL Reference]
● “UPDATE statement” [SQL Anywhere Server - SQL Reference]
● “DELETE statement” [SQL Anywhere Server - SQL Reference]

Permissions for data modification
You can only execute data modification statements if you have the proper permissions on the database tables
you want to modify. The database administrator and the owners of database objects use the GRANT and
REVOKE statements to decide who has access to which data modification functions.

Permissions can be granted to individual users, groups, or the PUBLIC group. For more information on
permissions, see “Managing user IDs, authorities, and permissions” [SQL Anywhere Server - Database
Administration].

Transactions and data modification
When you modify data, the rollback log stores a copy of the old and new state of each row affected by each
data modification statement. This means that if you begin a transaction, realize you have made a mistake,
and roll the transaction back, you restore the database to its previous condition. See “Using transactions and
isolation levels” on page 107.

Making changes permanent
The COMMIT statement makes all changes permanent.

You should use the COMMIT statement after groups of statements that make sense together. For example,
if you want to transfer money from one customer's account to another, you should add money to one

Adding, changing, and deleting data

530 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

customer's account, then delete it from the other's, and then commit, since in this case it does not make sense
to leave your database with less or more money than it started with.

You can instruct Interactive SQL to commit your changes automatically by setting the auto_commit option
to On. This is an Interactive SQL option. When auto_commit is set to On, Interactive SQL issues a COMMIT
statement after every insert, update, and delete statement you make. This can slow down performance
considerably. Therefore, it is a good idea to leave the auto_commit option set to Off.

Use COMMIT with care
When trying the examples in this tutorial, be careful not to commit changes until you are sure that you want
to change the database permanently. See “COMMIT statement” [SQL Anywhere Server - SQL Reference].

See also
● “Interactive SQL options” [SQL Anywhere Server - Database Administration]

Canceling changes
Any uncommitted change you make can be canceled. SQL allows you to undo all the changes you made
since your last commit with the ROLLBACK statement. This statement undoes all changes you have made
to the database since the last time you made changes permanent. See “ROLLBACK statement” [SQL
Anywhere Server - SQL Reference].

Transactions and data recovery
SQL Anywhere protects the integrity of your database in the event of a system failure or power outage. You
have several different options for restoring your database server. For example, the log file that SQL
Anywhere stores on a separate drive can be used to restore your data. When using a log file for recovery,
SQL Anywhere does not need to update your database as frequently, and the performance of your database
server is improved.

Transaction processing allows the database server to identify situations in which your data is in a consistent
state. Transaction processing ensures that if, for any reason, a transaction is not successfully completed, then
the entire transaction is undone, or rolled back. The database is left entirely unaffected by failed transactions.

The transaction processing in SQL Anywhere ensures that the contents of a transaction are processed
securely, even in the event of a system failure in the middle of a transaction.

See also
● “Backup and data recovery” [SQL Anywhere Server - Database Administration]

Referential integrity
SQL Anywhere automatically checks for some common errors in your data when inserting, updating, and
deleting data. This kind of validity checking is called enforcing referential integrity as it checks the integrity

Data modification statements

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 531

of data within and between tables in the database. See “Enforcing entity and referential
integrity” on page 99.

Adding, changing, and deleting data

532 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Adding data using INSERT
You add rows to the database using the INSERT statement. The INSERT statement has two forms: you can
use the VALUES keyword or a SELECT statement:

INSERT using values
The VALUES keyword specifies values for some or all the columns in a new row. A simplified version of
the syntax for the INSERT statement using the VALUES keyword is:

INSERT [INTO] table-name [(column-name, ...)]
VALUES (expression, ...)

You can omit the list of column names if you provide a value for each column in the table, in the order in
which they appear when you execute a query using SELECT *.

INSERT from SELECT
You can use SELECT within an INSERT statement to pull values from one or more tables. If the table you
are inserting data into has a large number of columns, you can also use WITH AUTO NAME to simplify
the syntax. Using WITH AUTO NAME, you only need to specify the column names in the SELECT
statement, rather than in both the INSERT and the SELECT statements. The names in the SELECT statement
must be column references or aliased expressions.

A simplified version of the syntax for the INSERT statement using a select statement is:

INSERT [INTO] table-name
[WITH AUTO NAME] select-statement

For more information about the INSERT statement, see “INSERT statement” [SQL Anywhere Server - SQL
Reference].

Inserting values into all columns of a row
The following INSERT statement adds a new row to the Departments table, giving a value for every column
in the row:

INSERT INTO Departments
VALUES (702, 'Eastern Sales', 902);

Notes
● Type the values in the same order as the column names in the original CREATE TABLE statement, that

is, first the ID number, then the name, then the department head ID.

● Surround the values by parentheses.

● Enclose all character data in single quotes.

● Use a separate insert statement for each row you add.

Adding data using INSERT

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 533

Inserting values into specific columns
You can add data to some columns in a row by specifying only those columns and their values. Define all
other columns not included in the column list to allow NULL or have defaults. If you skip a column that has
a default value, the default appears in that column.

Adding data in only two columns, for example, DepartmentID and DepartmentName, requires a statement
like this:

INSERT INTO Departments (DepartmentID, DepartmentName)
VALUES (703, 'Western Sales');

DepartmentHeadID does not have a default value but accepts NULL. therefore a NULL is automatically
assigned to that column.

Cancel these changes to the database by entering a ROLLBACK statement:

ROLLBACK;

While the column order you specify does not need to match the order of columns in the table, it must match
the order in which you specify the values you are inserting.

Inserted values for specified and unspecified columns
Values are inserted in a row according to what is specified in the INSERT statement. If no value is specified
for a column, the inserted value depends on column settings such as whether to allow NULLs, whether to
use a DEFAULT, and so on. In some cases, the insert operation may fail and return an error. The following
table shows the possible outcomes depending on the value being inserted (if any) and the column settings:

Value being
inserted

Nullable Not nullable Nullable, with
DEFAULT

Not nullable,
with DE-
FAULT

Not nullable,
with DEFAULT
AUTOINCRE-
MENT

<none> NULL SQL error DEFAULT
value

DEFAULT
value

DEFAULT value

NULL NULL SQL error NULL SQL error DEFAULT value

specified value specified val-
ue

specified
value

specified value specified value specified value

By default, columns allow NULL values unless you explicitly state NOT NULL in the column definition
when creating a table. You can alter this default using the allow_nulls_by_default option. You can also alter
whether a specific column allows NULLs using the ALTER TABLE statement. See “allow_nulls_by_default
option [compatibility]” [SQL Anywhere Server - Database Administration] and “ALTER TABLE statement”
[SQL Anywhere Server - SQL Reference].

Restricting column data using constraints
You can create constraints for a column or domain. Constraints govern the kind of data you can or cannot
add. See “Using table and column constraints” on page 92.

Adding, changing, and deleting data

534 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Explicitly inserting NULL
You can explicitly insert NULL into a column by entering NULL. Do not enclose this in quotes, or it will
be taken as a string. For example, the following statement explicitly inserts NULL into the
DepartmentHeadID column:

INSERT INTO Departments
VALUES (703, 'Western Sales', NULL);

Using defaults to supply values
You can define a column so that, even though the column receives no value, a default value automatically
appears whenever a row is inserted. You do this by supplying a default for the column. See “Using column
defaults” on page 86.

Adding new rows with SELECT
To pull values into a table from one or more other tables, you can use a SELECT clause in the INSERT
statement. The select clause can insert values into some or all the columns in a row.

Inserting values for only some columns can come in handy when you want to take some values from an
existing table. Then, you can use update to add the values for the other columns.

Before inserting values for some, but not all, columns in a table, make sure that either a default exists, or
you specify NULL for the columns for which you are not inserting values. Otherwise, an error appears.

When you insert rows from one table into another, the two tables must have compatible structures—that is,
the matching columns must be either the same data types or data types between which SQL Anywhere
automatically converts.

Example
If the columns are in the same order in both tables, you do not need to specify column names in either table.
For example, suppose you have a table named NewProducts that has the same schema as the Products table
and contains some rows of product information that you want to add to the Products table. You could execute
the following statement:

INSERT Products
SELECT *
FROM NewProducts;

Inserting data into some columns
You can use the SELECT statement to add data to some, but not all, columns in a row just as you do with
the VALUES clause. Simply specify the columns to which you want to add data in the INSERT clause.

Inserting data from the same table
You can insert data into a table based on other data in the same table. Essentially, this means copying all or
part of a row.

Adding data using INSERT

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 535

For example, you can insert new products, based on existing products, into the Products table. The following
statement adds new Extra Large Tee Shirts (of Tank Top, V-neck, and Crew Neck varieties) into the Products
table. The identification number is 30 greater than the existing sized shirt:

INSERT INTO Products
SELECT ID + 30, Name, Description,
 'Extra large', Color, 50, UnitPrice, NULL
FROM Products
WHERE Name = 'Tee Shirt';

Inserting documents and images
If you want to store documents or images in your database, you can write an application that reads the contents
of the file into a variable, and supplies that variable as a value for an INSERT statement. See “How to use
prepared statements” [SQL Anywhere Server - Programming], and “SET statement” [SQL Anywhere Server
- SQL Reference].

You can also use the xp_read_file system function to insert file contents into a table. This function is useful
if you want to insert file contents from Interactive SQL, or some other environment that does not provide a
full programming language.

DBA authority is required to use this function.

Example
In this example, you create a table, and insert an image into a column of the table. You can perform these
steps from Interactive SQL.

1. Create a table to hold some images.

CREATE TABLE Pictures
(C1 INT DEFAULT AUTOINCREMENT PRIMARY KEY,
 Filename VARCHAR(254),
 Picture LONG BINARY);

2. Insert the contents of portrait.gif, in the current working directory of the database server, into the table.

INSERT INTO Pictures (Filename, Picture)
VALUES ('portrait.gif',
 xp_read_file('portrait.gif'));

See also
● “xp_read_file system procedure” [SQL Anywhere Server - SQL Reference]
● “Using openxml with xp_read_file” on page 693
● “Storing BLOBs” on page 5
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “INSERT statement” [SQL Anywhere Server - SQL Reference]

Adding, changing, and deleting data

536 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Changing data using UPDATE
You can use the UPDATE statement, followed by the name of the table or view, to change single rows,
groups of rows, or all rows in a table. As in all data modification statements, you can change the data in only
one table or view at a time.

The UPDATE statement specifies the row or rows you want changed and the new data. The new data can
be a constant or an expression that you specify or data pulled from other tables.

If an UPDATE statement violates an integrity constraint, the update does not take place and an error message
appears. For example, if one of the values being added is the wrong data type, or if it violates a constraint
defined for one of the columns or data types involved, the update does not take place.

UPDATE syntax
A simplified version of the UPDATE syntax is:

UPDATE table-name
SET column_name = expression
WHERE search-condition

If the company Newton Ent. (in the Customers table of the SQL Anywhere sample database) is taken over
by Einstein, Inc., you can update the name of the company using a statement such as the following:

UPDATE Customers
SET CompanyName = 'Einstein, Inc.'
WHERE CompanyName = 'Newton Ent.';

You can use any expression in the WHERE clause. If you are not sure how the company name was spelled,
you could try updating any company called Newton, with a statement such as the following:

UPDATE Customers
SET CompanyName = 'Einstein, Inc.'
WHERE CompanyName LIKE 'Newton%';

The search condition need not refer to the column being updated. The company ID for Newton
Entertainments is 109. As the ID value is the primary key for the table, you could be sure of updating the
correct row using the following statement:

UPDATE Customers
SET CompanyName = 'Einstein, Inc.'
WHERE ID = 109;

Tip
You can also modify rows from the result set in Interactive SQL. See “Editing result sets in Interactive SQL”
[SQL Anywhere Server - Database Administration].

The SET clause
The SET clause specifies the columns to be updated, and their new values. The WHERE clause determines
the row or rows to be updated. If you do not have a WHERE clause, the specified columns of all rows are
updated with the values given in the SET clause.

You can provide any expression of the correct data type in the SET clause.

Changing data using UPDATE

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 537

The WHERE clause
The WHERE clause specifies the rows to be updated. For example, the following statement replaces the One
Size Fits All Tee Shirt with an Extra Large Tee Shirt

UPDATE Products
SET Size = 'Extra Large'
WHERE Name = 'Tee Shirt'
 AND Size = 'One Size Fits All';

The FROM clause
You can use a FROM clause to pull data from one or more tables into the table you are updating.

Adding, changing, and deleting data

538 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Changing data using INSERT
You can use the ON EXISTING clause of the INSERT statement to update existing rows in a table (based
on primary key lookup) with new values. This clause can only be used on tables that have a primary key.
Attempting to use this clause on tables without primary keys or on proxy tables generates a syntax error.

Specifying the ON EXISTING clause causes the server to do a primary key lookup for each input row. If
the corresponding row does not exist, it inserts the new row. For rows already existing in the table, you can
choose to:

● generate an error for duplicate key values. This is the default behavior if the ON EXISTING clause is
not specified.

● silently ignore the input row, without generating any errors.

● update the existing row with the values in the input row

For more information, see “INSERT statement” [SQL Anywhere Server - SQL Reference].

Changing data using INSERT

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 539

Deleting data using DELETE
Simple DELETE statements have the following form:

DELETE [FROM] table-name
WHERE column-name = expression

You can also use a more complex form, as follows

DELETE [FROM] table-name
FROM table-list
WHERE search-condition

The WHERE clause
Use the WHERE clause to specify which rows to remove. If no WHERE clause appears, the DELETE
statement remove all rows in the table.

The FROM clause
The FROM clause in the second position of a DELETE statement is a special feature allowing you to select
data from a table or tables and delete corresponding data from the first-named table. The rows you select in
the FROM clause specify the conditions for the delete. See “DELETE statement” [SQL Anywhere Server -
SQL Reference].

Example
This example uses the SQL Anywhere sample database. To execute the statements in the example, you
should set the option wait_for_commit to On. The following statement does this for the current connection
only:

SET TEMPORARY OPTION wait_for_commit = 'On';

This allows you to delete rows even if they contain primary keys referenced by a foreign key, but does not
permit a COMMIT unless the corresponding foreign key is deleted also.

The following view displays products and the value of that product that has been sold:

CREATE VIEW ProductPopularity as
SELECT Products.ID,
 SUM(Products.UnitPrice * SalesOrderItems.Quantity)
 AS "Value Sold"
FROM Products JOIN SalesOrderItems
ON Products.ID = SalesOrderItems.ProductID
GROUP BY Products.ID;

Using this view, you can delete those products which have sold less than $20,000 from the Products table.

DELETE
FROM Products
FROM Products NATURAL JOIN ProductPopularity
WHERE "Value Sold" < 20000;

Cancel these changes to the database by entering a ROLLBACK statement:

ROLLBACK;

Adding, changing, and deleting data

540 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Tip
You can also delete rows from database tables from the Interactive SQL result set. See “Editing result sets
in Interactive SQL” [SQL Anywhere Server - Database Administration].

Deleting all rows from a table
You can use the TRUNCATE TABLE statement as a fast method of deleting all the rows in a table. It is
faster than a DELETE statement with no conditions, because the DELETE logs each change, while
TRUNCATE does not record individual rows deleted.

The table definition for a table emptied with the TRUNCATE TABLE statement remains in the database,
along with its indexes and other associated objects, unless you execute a DROP TABLE statement.

You cannot use TRUNCATE TABLE if another table has rows that reference it through a referential integrity
constraint. Delete the rows from the foreign table, or truncate the foreign table and then truncate the primary
table.

Truncating base tables or performing bulk loading operations causes data in indexes (regular or text) and
dependent materialized views to become stale. You should first truncate the data in the indexes and dependent
materialized views, execute the INPUT statement, and then rebuild or refresh the indexes and materialized
views. See “TRUNCATE statement” [SQL Anywhere Server - SQL Reference], and “TRUNCATE TEXT
INDEX statement” [SQL Anywhere Server - SQL Reference].

TRUNCATE TABLE syntax
The syntax of TRUNCATE TABLE is:

TRUNCATE TABLE table-name

For example, to remove all the data in the SalesOrders table, enter the following:

TRUNCATE TABLE SalesOrders;

A TRUNCATE TABLE statement does not fire triggers defined on the table.

Cancel these changes to the database by entering a ROLLBACK statement:

ROLLBACK;

Deleting data using DELETE

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 541

542

Query Processing

This section describes the query optimizer and how it works, including: phases of query processing, strategies
used by the optimizer, and tips on how to maximize the optimizer's performance. It also describes how to view
and analyze execution plans for queries.

Query optimization and execution .. 545

Query optimization and execution

Contents
Query processing phases .. 546
Semantic query transformations .. 549
How the optimizer works ... 562
Improving performance with materialized views .. 574
Query execution algorithms ... 586
Reading execution plans ... 610
Improving query performance .. 638

Optimization is essential in generating a suitable access plan for a query. Once each query is parsed, the
optimizer analyzes it and decides on an access plan that computes the result using as few resources as
possible. Optimization begins just before execution. If you are using cursors in your application, optimization
commences when the cursor is opened. Unlike many other commercial database systems, SQL Anywhere
usually optimizes each statement just before executing it. Because SQL Anywhere performs just-in-time
optimization of each statement, the optimizer has access to the values of host and stored procedure variables,
which allows for better selectivity estimation analysis. In addition, just-in-time optimization allows the
optimizer to adjust its choices based on the statistics saved after previous query executions.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 545

Query processing phases
This section describes the phases that a statement goes through starting with the annotation phase and ending
with its execution. It also describes the assumptions that underlie the design of the optimizer, and discusses
selectivity estimation, cost estimation, and the steps of query processing.

Statements that have no result sets, such as UPDATE or DELETE statements, go through the query
processing phases.

● Annotation phase When the database server receives a query, it uses a parser to parse the statement
and transform it into an algebraic representation of the query, also known as a parse tree. At this stage
the parse tree is used for semantic and syntactic checking (for example, validating that objects referenced
in the query exist in the catalog), permission checking, KEY JOINs and NATURAL JOINs
transformation using defined referential constraints, and non-materialized view expansion. The output
of this phase is a rewritten query, in the form of a parse tree, which contains annotation to all the objects
referenced in the original query.

● Semantic transformation phase During this phase, the query undergoes iterative semantic
transformations. While the query is still represented as an annotated parse tree, rewrite optimizations,
such as join elimination, DISTINCT elimination, and predicate normalization, are applied in this phase.
The semantic transformations in this phase are performed based on semantic transformation rules that
are applied heuristically to the parse tree representation. See “Semantic query
transformations” on page 549.

Queries with plans already cached by the database server skip this phase of query processing. Simple
statements may also skip this phase of query processing. For example, many statements that use heuristic
plan selection in the optimizer bypass are not processed by the semantic transformation phase. The
complexity of the SQL statement determines if this phase is applied to a statement. See “Plan
caching” on page 572, and “Eligibility to skip query processing phases” on page 547.

● Optimization phase The optimization phase uses a different internal representation of the query, the
query optimization structure, which is built from the parse tree. See “How the optimizer
works” on page 562.

Queries with plans already cached by the database server skip this phase of query processing. As well,
simple statements may also skip this phase of query processing. See “Plan caching” on page 572, and
“Eligibility to skip query processing phases” on page 547.

This phase is broken into two sub-phases:

○ Pre-optimization phase The pre-optimization phase completes the optimization structure with
the information needed later in the enumeration phase. During this phase the query is analyzed to
find all relevant indexes and materialized views that may be used in the query access plan. For
example, in this phase, the View Matching algorithm determines all the materialized views that may
be used to satisfy all, or part of the query. In addition, based on query predicate analysis, the optimizer
builds alternative join methods that may be used in the enumeration phase to join the query's tables.
During this phase, no decision is made regarding the best access plan for the query; the goal of this
phase is to prepare for the enumeration phase.

○ Enumeration phase During this phase, the optimizer enumerates possible access plans for the
query using the building blocks generated in the pre-optimization phase. The search space is very

Query optimization and execution

546 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

large and the optimizer uses a proprietary enumeration algorithm to generate and prune the generated
access plans. For each plan, cost estimation is computed, which is used to compare the current plan
with the best plan found so far. Expensive plans are discarded during these comparisons. Cost
estimation takes into account resource utilization such as disk and CPU operations, the estimated
number of rows of the intermediate results, optimization goal, cache size, and so on. The output of
the enumeration phase is the best access plan for the query.

● Plan building phase The plan building phase takes the best access plan and builds the corresponding
final representation of the query execution plan used to execute the query. You can see a graphical version
of the plan in the Plan Viewer in Interactive SQL. The graphical plan has a tree structure where each
node is a physical operator implementing a specific relational algebraic operation, for example, Hash
Join and Ordered Group By are physical operators implementing a join and a group by operation,
respectively. See “Reading graphical plans” on page 613.

Queries with plans already cached by the database server skip this phase of query processing. See “Plan
caching” on page 572, and “Eligibility to skip query processing phases” on page 547.

● Execution phase The result of the query is computed using the query execution plan built in the plan
building phase.

Eligibility to skip query processing phases
Almost all statements pass through all query processing phases. However, there are two main exceptions:
queries that benefit from plan caching (queries whose plans are already cached by the database server), and
bypass queries.

● Plan caching For queries contained inside stored procedures and user-defined functions, the database
server may cache the execution plans so that they can be reused. For this class of queries, the query
execution plan is cached after execution. The next time the query is executed, the plan is retrieved and
all the phases up to the execution phase are skipped. See “Plan caching” on page 572.

● Bypass queries Bypass queries are a subclass of simple queries that have certain characteristics that
the database server recognizes as making them eligible for bypassing the optimizer. Bypassing
optimization can reduce the time needed to build an execution plan.

If a query is recognized as a bypass query, a heuristic rather than cost-based optimization is used—that
is, the semantic transformation and optimization phases may be skipped and the query execution plan is
built directly from the parse tree representation of the query.

Simple queries

A simple query is a SELECT, INSERT, DELETE, or UPDATE statement with a single query block and the
following characteristics:

● The query block does not contain subqueries or additional query blocks such as UNION, EXCEPT, and
common table expressions.

● The query block references a single base table or materialized view.

● The query block may include the TOP N, FIRST, ORDER BY, or DISTINCT clauses.

Query processing phases

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 547

● The query block may include aggregate functions without GROUP BY or HAVING clauses.

● The query block does not include window functions.

● The query block expressions do not include NUMBER, IDENTITY, or subqueries.

● The constraints defined on the base table are simple expressions.

A complex statement may be transformed into a simple statement after the semantic transformation phase.
When this occurs, the query can be processed by the optimizer bypass or have its plan cached by the SQL
Anywhere server.

Forcing optimization, and forcing no optimization

You can force queries that qualify for plan caching, or for bypassing the optimizer, to be processed by the
SQL Anywhere optimizer. To do so, use the FORCE OPTIMIZATION clause with any SQL statement.

You can also try to force a statement to bypass the optimizer. To do so, use the FORCE NO OPTIMIZATION
clause of the statement. If the statement is too complex to bypass the optimizer - possibly due to database
option settings or characteristics of the schema or query - the query fails and an error is returned.

The FORCE OPTIMIZATION and FORCE NO OPTIMIZATION clauses are permitted in the OPTION
clause of the following statements:

● “SELECT statement” [SQL Anywhere Server - SQL Reference]
● “UPDATE statement” [SQL Anywhere Server - SQL Reference]
● “INSERT statement” [SQL Anywhere Server - SQL Reference]
● “DELETE statement” [SQL Anywhere Server - SQL Reference]

Query optimization and execution

548 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Semantic query transformations
To operate efficiently, SQL Anywhere rewrites your queries into semantically equivalent, but syntactically
different, forms. SQL Anywhere performs many different rewrite operations.

If you read the access plans, you frequently find that they do not correspond to a literal interpretation of your
original statement. For example, to make your SQL statements more efficient, the optimizer tries as much
as possible to rewrite subqueries with joins.

In the Query Rewrite phase, SQL Anywhere performs several transformations in search of more efficient
and convenient representations of the query. Because the query may be rewritten into a semantically
equivalent query, the plan may look quite different from a literal interpretation of your original query.
Common manipulations include:

● eliminating of unnecessary DISTINCT conditions

● un-nesting subqueries

● performing a predicate push-down in UNION or GROUPed views and derived tables

● optimizing of OR and IN-list predicates

● optimizing of LIKE predicates

● converting outer joins to inner joins

● eliminating of outer joins and inner joins

● discovering exploitable conditions through predicate inference

● eliminating of unnecessary case translation

● rewriting subqueries as EXISTS predicates

Note
Some query rewrite optimizations cannot be performed on the main query block if the cursor is updatable.
Declare the cursor as read-only to take advantage of the optimizations. See “Choosing cursor types” [SQL
Anywhere Server - Programming], and “DECLARE CURSOR statement [ESQL] [SP]” [SQL Anywhere
Server - SQL Reference].

For an example of an optimization that cannot be performed if the main query block is an updatable cursor,
see “Elimination of unnecessary inner and outer joins” on page 555.

Some of the rewrite optimizations performed during the Query Rewrite phase can be observed in the results
returned by the REWRITE function. See “REWRITE function [Miscellaneous]” [SQL Anywhere Server -
SQL Reference].

Example
Unlike the SQL language definition, some languages mandate strict behavior for AND and OR operations.
Some guarantee that the condition on the left-hand side will be evaluated first. If the truth of the entire
condition can then be determined, the compiler guarantees that the condition on the right-hand side will not
be evaluated.

Semantic query transformations

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 549

This arrangement lets you combine conditions that would otherwise require two nested IF statements into
one. For example, in C you can test whether a pointer is NULL before you use it as follows. The nested
conditions in the first statement can be replaced using the syntax shown in the second statement below:

if (X != NULL) {
 if (X->var != 0) {
 ... statements ...
 }
}
if (X != NULL && X->var != 0) {
 ... statements ...
}

Unlike C, SQL has no such rules concerning execution order. SQL Anywhere is free to rearrange the order
of such conditions as it sees fit. The original and reordered forms are semantically equivalent because the
SQL language specification makes no distinction between one order or another. In particular, a query
optimizer is completely free to reorder predicates in a WHERE, HAVING, or ON clause.

Elimination of unnecessary DISTINCT conditions
Sometimes a DISTINCT condition is unnecessary. For example, the properties of one or more column in
your result may contain a UNIQUE condition, either explicitly or implicitly, because it is a primary key.

Examples
The DISTINCT keyword in the following command is unnecessary because the Products table contains the
primary key p.ID, which is part of the result set.

SELECT DISTINCT p.ID, p.Quantity
FROM Products p;

Products<seq>
The database server executes the semantically-equivalent query:

SELECT p.ID, p.Quantity
FROM Products p;

Similarly, the result of the following query contains the primary keys of both tables, so each row in the result
must be distinct. So, the database server executes this query without performing DISTINCT on the result
set.

SELECT DISTINCT *
FROM SalesOrders o JOIN Customers c
 ON o.CustomerID = c.ID
WHERE c.State = 'NY';

Work[HF[c<seq>] *JH o<seq>]

Un-nesting subqueries
You can express statements as nested queries, given the convenient syntax provided in the SQL language.
However, rewriting nested queries as joins often leads to more efficient execution and more effective

Query optimization and execution

550 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

optimization, since SQL Anywhere can take better advantage of highly selective conditions in a subquery
WHERE clause. In general, subquery un-nesting is always done for correlated subqueries with, at most, one
table in the FROM clause, which are used in ANY, ALL, and EXISTS predicates. A uncorrelated subquery,
or a subquery with more than one table in the FROM clause, is flattened if it can be decided, based on the
query semantics, that the subquery returns at most one row.

Examples
The subquery in the following example can match at most one row for each row in the outer block. Because
it can match at most one row, SQL Anywhere recognizes that it can convert it to an inner join.

SELECT s.*
FROM SalesOrderItems s
WHERE EXISTS
 (SELECT *
 FROM Products p
 WHERE s.ProductID = p.ID
 AND p.ID = 300 AND p.Quantity > 20);

Following conversion, this same statement is expressed internally using join syntax:

SELECT s.*
FROM Products p JOIN SalesOrderItems s
 ON p.ID = s.ProductID
WHERE p.ID = 300 AND p.Quantity > 20;

p<Products> JNL s<FK_ProductID_ID>
Similarly, the following query contains a conjunctive EXISTS predicate in the subquery. This subquery can
match more than one row.

SELECT p.*
FROM Products p
WHERE EXISTS
 (SELECT *
 FROM SalesOrderItems s
 WHERE s.ProductID = p.ID
 AND s.ID = 2001);

SQL Anywhere converts this query to an inner join, with a DISTINCT in the SELECT-list.

SELECT DISTINCT p.*
FROM Products p JOIN SalesOrderItems s
 ON p.ID = s.ProductID
WHERE s.ID = 2001;

Work[DistH[s<FK_ID_ID> JNL p<Products>]]
SQL Anywhere can also eliminate subqueries in comparisons when the subquery matches at most one row
for each row in the outer block. Such is the case in the following query.

SELECT *
FROM Products p
WHERE p.ID =
 (SELECT s.ProductID
 FROM SalesOrderItems s
 WHERE s.ID = 2001
 AND s.LineID = 1);

SQL Anywhere rewrites this query as follows:

Semantic query transformations

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 551

SELECT p.*
FROM Products p, SalesOrderItems s
WHERE p.ID = s.ProductID
 AND s.ID = 2001
 AND s.LineID = 1;

s<SalesOrderItems> JNL p<Products>
The DUMMY table is treated as a special table when subquery un-nesting rewrite optimizations are
performed. Subquery flattening is always done on subqueries of the form SELECT expression FROM
DUMMY, even if the subquery is not correlated.

Predicate push-down in UNION or GROUPed views and
derived tables

It is common for queries to restrict the result of a view so that only a few of the records are returned. In cases
where the view contains GROUP BY or UNION, it is preferable for the database server to only compute the
result for the desired rows. Predicate push-down is performed for a predicate if, and only if, the predicate
refers exclusively to the columns of a single view or derived table. A join predicate, for example, is not
pushed down into the view.

Example
Suppose you have the view ProductSummary defined as follows:

CREATE VIEW ProductSummary(ID,
 NumberOfOrders,
 TotalQuantity) AS
SELECT ProductID, COUNT(*), sum(Quantity)
FROM SalesOrderItems
GROUP BY ProductID;

For each product ordered, the ProductSummary view returns a count of the number of orders that include it,
and the sum of the quantities ordered over all the orders. Now consider the following query over this view:

SELECT *
FROM ProductSummary
WHERE ID = 300;

The query restricts the output to only the row for which the value in the ID column is 300. This query, and
the query in the definition of the view could be combined into the following, semantically-equivalent,
SELECT statement:

SELECT ProductID, COUNT(*), SUM(Quantity)
FROM SalesOrderItems
GROUP BY ProductID
HAVING ProductID = 300;

An unsophisticated execution plan for this query would involve computing the aggregates for each product,
and then restricting the result to only the single row for product ID 300. However, the HAVING predicate
on the ProductID column can be pushed into the query's WHERE clause since it is a grouping column,
yielding the following:

SELECT ProductID, COUNT(*), SUM(Quantity)
FROM SalesOrderItems

Query optimization and execution

552 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

WHERE ProductID = 300
GROUP BY ProductID;

This SELECT statement significantly reduces the computation required. If this predicate is sufficiently
selective, the optimizer could now use an index on ProductID to retrieve only those rows for product 300,
rather than sequentially scanning the SalesOrderItems table.

The same optimization is also used for views involving UNION or UNION ALL.

Optimization of OR and IN-list predicates
The optimizer supports a special optimization for exploiting IN predicates on indexed columns. This
optimization also applies equally to multiple predicates on the same indexed column that are OR'ed together,
since the two are semantically equivalent. To enable the optimization, the IN-list must contain only constants,
or values that are constant during one execution of the query block, such as outer references.

When the optimizer encounters a qualifying IN-list predicate, and the IN-list predicate is sufficiently
selective to consider indexed retrieval, the optimizer converts the IN-list predicate into a nested loops join.
The following example illustrates how the optimization works.

Suppose you have the following query, which lists all the orders for two sales reps:

SELECT *
FROM SalesOrders
WHERE SalesRepresentative = 902 OR SalesRepresentative = 195;

This query is semantically equivalent to:

SELECT *
FROM SalesOrders
WHERE SalesRepresentative IN (195, 902);

The optimizer estimates the combined selectivity of the IN-list predicate to be low enough to warrant indexed
retrieval. So, the optimizer treats the IN-list as a virtual table, and joins this virtual table to the SalesOrders
table on the SalesRepresentative attribute. While the net effect of the optimization is to include an additional
join in the access plan, the join degree of the query is not increased, so optimization time should not be
affected.

There are two main advantages of this optimization. First, the IN-list predicate can be treated as a sargable
predicate and exploited for indexed retrieval. Second, the optimizer can sort the IN-list to match the sort
sequence of the index, leading to more efficient retrieval.

The short form of the access plan for the above query is:

SalesOrders<FK_SalesRepresentative_EmployeeID>

See also
● “InList algorithm (IN)” on page 607

Semantic query transformations

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 553

Optimization of LIKE predicates
LIKE predicates involving patterns that are either literal constants or host variables are very common.
Depending on the pattern, the optimizer may rewrite the LIKE predicate entirely, or augment it with
additional conditions that could be exploited to perform indexed retrieval on the corresponding table.
Additional conditions for LIKE predicates utilize the LIKE_PREFIX predicate, which cannot be specified
directly in a query but appear in long and graphical plans when the query optimizer can apply the
optimization.

Examples
In each of the following examples, assume that the pattern in the LIKE predicate is a literal constant or host
variable, and X is a column in a base table:

● X LIKE '%' is rewritten as X IS NOT NULL.

● X LIKE 'abc%' is augmented with a LIKE_PREFIX predicate that is a sargable predicate (it can be
used for index retrieval) and enforces the condition that any value of X must begin with the characters
abc. The LIKE_PREFIX predicate enforces the correct semantics with multi-byte character sets and
blank-padded databases.

Conversion of outer joins to inner joins
The optimizer generates a left-deep processing tree for its access plans. The only exception to this rule is
the existence of a right-deep nested outer join expression. The query execution engine's algorithms for
computing LEFT or RIGHT OUTER JOINs require that preserved tables must precede null-supplying tables
in any join strategy. So, the optimizer looks for opportunities to convert LEFT or RIGHT outer joins to
INNER JOINs whenever possible, since INNER JOINs are commutable and give the optimizer greater
degrees of freedom when performing join enumeration.

A LEFT or RIGHT OUTER JOIN is converted to an INNER JOIN if one of the following conditions is true:

● a null-intolerant predicate referencing columns of the null-supplying tables is present in the query
WHERE clause. Since this predicate is null-intolerant, any all-NULL row that would be produced by
the OUTER join is eliminated from the result, making the query semantically equivalent to an inner join.

● the null-supplying side of an OUTER JOIN returns exactly one row for each row from the preserved
side. If this condition is true, there are no null-supplied rows and the OUTER JOIN is equivalent to an
INNER join.

This rewrite optimization can apply to an outer join query when the query refers to one or more views that
are written using OUTER JOINs. The query WHERE clause may include conditions that restrict the output
such that all null-supplying rows from one or more table expressions would be eliminated, making this
optimization applicable.

Example 1
For the query below, for each row of the SalesOrderItems table there is exactly one row that matches the
Products table because the ProductID column is declared not NULL and the SalesOrderItems table has the

Query optimization and execution

554 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

following foreign key: "FK_ProductID_ID" ("ProductID") REFERENCING "Products"
("ID").

The following SELECT statements show how the query is rewritten after a rewrite optimization:

SELECT * FROM SalesOrderItems s LEFT OUTER JOIN Products p ON (p.ID =
s.ProductID);
SELECT * FROM SalesOrderItems s JOIN Products p ON (p.ID = s.ProductID);

Example 2
The following query lists products and their corresponding orders for larger quantities; the LEFT OUTER
JOIN ensures that all products are listed, even if they have no orders:

SELECT *
FROM Products p KEY LEFT OUTER JOIN SalesOrderItems s
WHERE s.Quantity > 15;

The problem with this query is that the predicate in the WHERE clause eliminates any product with no orders
from the result because the predicate s.Quantity > 15 is interpreted as FALSE if s.Quantity is
NULL. The query is semantically equivalent to:

SELECT *
FROM Products p KEY JOIN SalesOrderItems s
WHERE s.Quantity > 15;

This rewritten form is the query that the database server optimizes.

In this example, the query is almost certainly written incorrectly; it should instead be:

SELECT *
FROM Products p
 KEY LEFT OUTER JOIN SalesOrderItems s
 ON s.Quantity > 15;

In this way, the test of Quantity is part of the outer join condition. You can demonstrate the difference in the
two queries by inserting some new products into the Products table for which there are no orders and then
executing the queries again.

INSERT INTO Products
SELECT ID + 10, Name, Description,
 'Extra large', Color, 50, UnitPrice, Photo
FROM Products
WHERE Name = 'Tee Shirt';

Elimination of unnecessary inner and outer joins
The join elimination rewrite optimization reduces the join degree of the query by eliminating tables from
the query when it is safe to do so. Typically, this optimization is applied for inner joins defined as primary
key to foreign key joins, or primary key to primary key joins. The join elimination optimization can also be
applied to tables used in outer joins, although the conditions for which the optimization is valid are much
more complex.

This optimization does not eliminate tables that are updatable using UPDATE or DELETE WHERE
CURRENT, even when it is correct to do so. This can negatively impact performance of the query. However,

Semantic query transformations

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 555

if your query is for read only, you can specify FOR READ ONLY in the SELECT statement, to ensure that
the join eliminations are performed. Note that the tables appearing in subqueries or nested derived tables are
inherently non-updatable, even though the tables in the main query block are updatable.

To summarize, there are three main categories of joins for which this rewrite optimization applies:

● The join is a primary key to foreign key join, and only primary key columns from the primary table are
referenced in the query. In this case, the primary key table is eliminated if it is not updatable.

● The join is a primary key to primary key join between two instances of the same table. In this case, one
of the tables is eliminated if it is not updatable.

● The join is an outer join and the null-supplying table expression has the following properties:

○ the null-supplying table expression returns at most one row for each row of the preserved side of the
outer join

○ no expression produced by the null-supplying table expression is needed in the rest of the query
beyond the outer join.

Example
For example, in the query below, the join is a primary key to foreign key join and the primary key table,
Products, can be eliminated:

SELECT s.ID, s.LineID, p.ID
FROM SalesOrderItems s KEY JOIN Products p
FOR READ ONLY;

The query would be rewritten as:

SELECT s.ID, s.LineID, s.ProductID
FROM SalesOrderItems s
WHERE s.ProductID IS NOT NULL
FOR READ ONLY;

The second query is semantically equivalent to the first because any row from the SalesOrderItems table
that has a NULL foreign key to Products does not appear in the result.

In the following query, the OUTER JOIN can be eliminated given that the null-supplying table expression
cannot produce more than one row for any row of the preserved side and none of the columns from Products
is used above the LEFT OUTER JOIN.

SELECT s.ID, s.LineID
FROM SalesOrderItems s LEFT OUTER JOIN Products p ON p.ID = s.ProductID
WHERE s.Quantity > 5
FOR READ ONLY;

The query is rewritten as:

SELECT s.ID, s.LineID
FROM SalesOrderItems s
WHERE s.Quantity > 5
FOR READ ONLY;

Query optimization and execution

556 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Discovery of exploitable conditions through predicate
inference

An efficient access strategy for virtually any query relies on the presence of sargable conditions in the
WHERE, ON, and HAVING clauses. Indexed retrieval is possible only by exploiting sargable conditions
as matching predicates. In addition, hash, merge, and block-nested loops join can only be used when an
equijoin condition is present. For these reasons, SQL Anywhere does detailed analysis of the search
conditions in the original query text to discover simplified or implied conditions that can be exploited by
the optimizer.

As a preprocessing step, several simplifications are made to predicates in the original statement once view
expansion and merging have taken place. For example:

● X = X is rewritten as X IS NOT NULL if X is nullable; otherwise, the predicate is eliminated.

● ISNULL(X,X) is rewritten as X.

● X+0 is rewritten as X if X is a numeric column.

● AND 1=1 is eliminated.

● OR 1=0 is eliminated.

● IN-list predicates that consist of a single element are converted to simple equality conditions.

After this preprocessing step, SQL Anywhere attempts to normalize the original search condition into
conjunctive normal form (CNF). For an expression to be in CNF, each term in the expression must be AND'ed
together. Each term is either made up of a single atomic condition, or a set of conditions OR'ed together.

Converting an arbitrary condition into CNF may yield an expression of similar complexity, but with a much
larger set of conditions. SQL Anywhere recognizes this situation, and refrains from naively converting the
condition into CNF. Instead, SQL Anywhere analyzes the original expression for exploitable predicates that
are implied by the original search condition, and ANDs these inferred conditions to the query. Complete
normalization is also avoided if this requires duplication of an expensive predicate (for example, a quantified
subquery predicate). However, the algorithm merges IN-list predicates together whenever feasible.

Once the search condition has either been completely normalized or the exploitable conditions have been
found, the optimizer performs transitivity analysis to discover transitive equality conditions, primarily
transitive join conditions and conditions with a constant. In doing so, the optimizer increases its degrees of
freedom when performing join enumeration during its cost-based optimization phase, since these transitive
conditions may permit additional alternative join orders.

Example
Suppose the original query is as follows:

SELECT e.Surname, s.ID, s.OrderDate
FROM SalesOrders s, Employees e
WHERE
 (e.EmployeeID = s.SalesRepresentative AND
 (s.SalesRepresentative = 142 OR
 s.SalesRepresentative = 1596)
) OR (

Semantic query transformations

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 557

 e.EmployeeID = s.SalesRepresentative AND
 s.CustomerID = 667);

This query has no conjunctive equijoin condition, and without detailed predicate analysis the optimizer would
fail to discover an efficient access plan. Fortunately, SQL Anywhere is able to convert the entire expression
to CNF, yielding the equivalent query:

SELECT e.Surname, s.ID, s.OrderDate
FROM SalesOrders s, Employees e
WHERE
 e.EmployeeID = s.SalesRepresentative AND
 (s.SalesRepresentative = 142 OR
 s.SalesRepresentative = 1596 OR
 s.CustomerID = 667);

This query can now be efficiently optimized as an inner join query.

Elimination of unnecessary case translation
By default, SQL Anywhere databases support case-insensitive string comparisons. Occasionally the
optimizer may encounter queries where the user is explicitly forcing text conversion through the use of the
UPPER, UCASE, LOWER, or LCASE built-in functions when such conversion is unnecessary. SQL
Anywhere automatically eliminates this unnecessary conversion when the database's collation sequence
permits it. An extra benefit of eliminating the case translations in the predicates is the transformation of some
of these predicates into sargable predicates, which can be used for indexed retrieval of the corresponding
table.

Example
Consider the following query:

SELECT *
FROM Customers
WHERE UPPER(Surname) = 'SMITH';

On a case insensitive database, this query is rewritten internally as follows, so that the optimizer can consider
using an index on Customers.Surname:

SELECT *
FROM Customers
WHERE Surname = 'SMITH';

Rewriting subqueries as EXISTS predicates
The assumptions that underlie the design of SQL Anywhere require that it conserves memory and that by
default it returns the first few results of a cursor as quickly as possible. In keeping with these objectives,
SQL Anywhere rewrites all set-operation subqueries, such as IN, ANY, or SOME predicates, as EXISTS or
NOT EXISTS predicates, if such rewriting is semantically correct. By doing so, SQL Anywhere avoids
creating unnecessary work tables and may more easily identify a suitable index through which to access a
table.

Query optimization and execution

558 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Uncorrelated and correlated subqueries

Uncorrelated subqueries are subqueries that contain no explicit reference to the table or tables contained in
the rest of the higher-level portions of the query.

The following is an ordinary query that contains a uncorrelated subquery. It selects information about all
the customers who did not place an order on January 1, 2001.

SELECT *
FROM Customers c
WHERE c.ID NOT IN
 (SELECT o.CustomerID
 FROM SalesOrders o
 WHERE o.OrderDate = '2001-01-01');

One possible way to evaluate this query is to create a work table of all customers in the SalesOrder table
who placed orders on January 1, 2001, and then query the Customers table and extract one row for each
customer listed in the work table.

However, SQL Anywhere avoids materializing results as work tables. It also gives preference to plans that
return the first few rows of a result most quickly. So, the optimizer rewrites such queries using NOT EXISTS
predicates. In this form, the subquery becomes correlated: the subquery now contains an explicit outside
reference to the ID column of the Customers table.

SELECT *
FROM Customers c
WHERE NOT EXISTS
 (SELECT *
 FROM SalesOrders o
 WHERE o.OrderDate = '2000-01-01'
 AND o.CustomerID = c.ID);

This query is semantically equivalent to the one above, but when expressed in this new syntax, several
advantages become clear:

1. The optimizer can choose to use either the index on the CustomerID attribute or the OrderDate attribute
of the SalesOrders table. However, in the SQL Anywhere sample database, only the ID and CustomerID
columns are indexed.

2. The optimizer has the option of choosing to evaluate the subquery without materializing intermediate
results as work tables.

3. The database server can cache the results of a correlated subquery during execution. This allows the re-
use of previously-computed values of this predicate for the same values of the outside reference c.ID.
In the case of query above, caching does not help because customer identification numbers are unique
in the Customers table. So, the subquery is always computed with different values for the outside
reference c.ID.

Further information about subquery caching is located in “Subquery and function caching” on page 604.

See also
● “Correlated and uncorrelated subqueries” on page 507

Semantic query transformations

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 559

Inlining user-defined functions
Simple user-defined functions are sometimes inlined when called as part of a query. That is, the query is
rewritten to be equivalent to the original query but without the function definition. Temporary functions,
recursive functions, and functions with the NOT DETERMINISTIC clause are never inlined. Also, a function
is never inlined if it is called with a subquery as an argument, or when it is called from inside a temporary
procedure.

User-defined functions can be inlined if they take one of the following forms:

● A function with a single RETURN statement. For example:

CREATE FUNCTION F1(arg1 INT, arg2 INT)
RETURNS INT
BEGIN
 RETURN arg1 * arg2
END;

● A function that declares a single variable, assigns the variable, and returns a single value. For example:

CREATE FUNCTION F2(arg1 INT)
RETURNS INT
BEGIN
 DECLARE result INT;
 SET result = (SELECT ManagerID FROM Employees WHERE EmployeeID=arg1);
 RETURN result;
END;

● A function that declares a single variable, selects into that variable, and returns a single value. For
example:

CREATE FUNCTION F3(arg1 INT)
RETURNS INT
BEGIN
 DECLARE result INT;
 SELECT ManagerID INTO result FROM Employees e1 WHERE EmployeeID=arg1;
 RETURN result;
END;

A user-defined function is inlined by copying the body of the user-defined function, inserting the arguments
from the call, and inserting appropriate CAST functions to ensure that the rewritten form of the query is
equivalent to the original. For example, suppose you created a function similar to the function F1 defined
previously, and then you call the procedure in a FROM clause of a query as follows:

SELECT F1(e.EmployeeID, 2.5) FROM Employees e;

The database server may rewrite the query as follows:

SELECT CAST(e.EmployeeID AS INT) * CAST(2.5 AS INT) FROM Employees e;

See also
● “Introduction to user-defined functions” on page 838
● “CREATE FUNCTION statement (web services)” [SQL Anywhere Server - SQL Reference]
● “CAST function [Data type conversion]” [SQL Anywhere Server - SQL Reference]
● “SELECT statement” [SQL Anywhere Server - SQL Reference]

Query optimization and execution

560 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Inlining simple system procedures
A system procedure defined only as a single SELECT statement in the body is sometimes inlined when
called in the FROM clause of a query. That is, the query is rewritten to be equivalent to the original query
but without the procedure definition. When a procedure is inlined, it is rewritten as a derived table. A
procedure is never inlined if it uses default arguments, or if it contains anything other than a single SELECT
statement in the body.

For example, suppose you create the following procedure:

CREATE PROCEDURE Test1(arg1 INT)
 BEGIN
 SELECT * FROM Employees WHERE EmployeeID=arg1
 END;

Now suppose you call the procedure in a FROM clause of a query as follows:

SELECT * FROM Test1(200);

The database server may rewrite the query as follows:

SELECT * FROM (SELECT * FROM Employees WHERE EmployeeID=CAST(200 AS INT))
AS Test1;

See also
● “Introduction to user-defined functions” on page 838
● “CREATE FUNCTION statement (web services)” [SQL Anywhere Server - SQL Reference]
● “SELECT statement” [SQL Anywhere Server - SQL Reference]

Semantic query transformations

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 561

How the optimizer works
The role of the optimizer is to devise an efficient way to execute SQL statements. To do this, the optimizer
must determine an execution plan for a query. This includes decisions about the access order for tables
referenced in the query, the join operators and access methods used for each table, and whether materialized
views that are not referenced in the query can be used to compute parts of the query. The optimizer attempts
to pick the best plan for executing the query during the join enumeration phase, when possible access plans
for a query are generated and costed. The best access plan is the one that the optimizer estimates will return
the desired result set in the shortest period of time, with the least cost. The optimizer determines the cost of
each enumerated strategy by estimating the number of disk reads and writes required.

In Interactive SQL, you can view the best access plan used to execute a query by clicking the Plan tab in
the Results pane. To change the degree of detail that is displayed, change the setting on the Plan tab of the
Options window (available from the Tools menu). See “Reading graphical plans” on page 613, and
“Reading execution plans” on page 610.

Minimizing the cost of returning the first row
The optimizer uses a generic disk access cost model to differentiate the relative performance differences
between random and sequential retrieval on the database file. It is possible to calibrate a database for a
particular hardware configuration using an ALTER DATABASE statement. See “ALTER DATABASE
statement” [SQL Anywhere Server - SQL Reference].

By default, query processing is optimized towards returning the complete result set. You can change the
default behavior using the optimization_goal option, to minimize the cost of returning the first row quickly.
Note that when the option is set to First-row, the optimizer favors an access plan that is intended to reduce
the time to fetch the first row of the query's result, likely at the expense of total retrieval time. See
“optimization_goal option [database]” [SQL Anywhere Server - Database Administration].

Using semantically equivalent syntax
Most commands can be expressed in many different ways using the SQL language. These expressions are
semantically equivalent in that they do the same task, but may differ substantially in syntax. With few
exceptions, the optimizer devises a suitable access plan based only on the semantics of each statement.

Syntactic differences, although they may appear to be substantial, usually have no effect. For example,
differences in the order of predicates, tables, and attributes in the query syntax have no effect on the choice
of access plan. Neither is the optimizer affected by whether a query contains a non-materialized view.

Reducing the cost of optimizer queries
Ideally, the optimizer would identify the most efficient access plan possible, but this goal is often impractical.
Given a complicated query, a great number of possibilities may exist.

However efficient the optimizer, analyzing each option takes time and resources. The optimizer compares
the cost of further optimization with the cost of executing the best plan it has found so far. If a plan has been
devised that has a relatively low cost, the optimizer stops and allows execution of that plan to proceed.
Further optimization might consume more resources than would execution of an access plan already found.
You can control the amount of effort made by the optimizer by setting a high value for the optimization_level
option. See “optimization_level option [database]” [SQL Anywhere Server - Database Administration].

Query optimization and execution

562 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

In the case of expensive and complicated queries, or when the optimization level is set high, the optimizer
works longer. In the case of very expensive queries, it may run long enough to cause a discernible delay.

Optimizer estimates and column statistics
The optimizer chooses a strategy for processing a statement based on column statistics stored in the database
and on heuristics (educated guesses). For each access plan considered by the optimizer, an estimated result
size (number of rows) must be computed. For example, for each join method or index access based on the
selectivity estimations of the predicates used in the query, an estimated result size is calculated. The estimated
result sizes are used to compute the estimated disk access and CPU cost for each operator such as a join
method, a group by method, or a sequential scan, used in the plan. Column statistics are the primary data
used by the optimizer to compute selectivity estimation of predicates. Therefore, they are vital to estimating
correctly the cost of an access plan.

If column statistics become stale, or are missing, performance can degrade since inaccurate statistics may
result in an inefficient execution plan. If you suspect that poor performance is due to inaccurate column
statistics, you should recreate them. See “Updating column statistics to improve optimizer
performance” on page 565.

How the optimizer uses column statistics
The most important component of the column statistics used by the optimizer are histograms. Histograms
store information about the distribution of values in a column. In SQL Anywhere, a histogram represents
the data distribution for a column by dividing the domain of the column into a set of consecutive value ranges
(also called buckets) and by remembering, for each value range (or bucket), the number of rows in the table
for which the column value falls in the bucket.

SQL Anywhere pays particular attention to single column values that are present in a large number of rows
in the table. Significant single value selectivities are maintained in singleton histogram buckets (for example,
buckets that encompass a single value in the column domain). SQL Anywhere tries to maintain a minimum
number of singleton buckets in each histogram, usually between 10 and 100 depending upon the size of the
table. Additionally, all single values with selectivities greater than 1% are kept as singleton buckets. As a
result, a histogram for a given column remembers the top N single value selectivities for the column where
the value of N is dependent upon the size of the table and the number of single value selectivities that are
greater than 1%.

Once the minimum number of value ranges has been met, low-selectivity frequencies are replaced by large-
selectivity frequencies as they come along. The histogram will only have more than the minimum number
of singleton value ranges after it has seen enough values with a selectivity of greater than 1%.

For more information about column statistics, see “SYSCOLSTAT system view” [SQL Anywhere Server -
SQL Reference].

How the optimizer works

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 563

How the optimizer uses heuristics
For each table in a potential execution plan, the optimizer estimates the number of rows that will form part
of the results. The number of rows depends on the size of the table and the restrictions in the WHERE clause
or the ON clause of the query.

Given the histogram on a column, SQL Anywhere estimates the number of rows satisfying a given query
predicate on the column by adding up the number of rows in all value ranges that overlap the values satisfying
the specified predicate. For value ranges in the histograms that are partially contained in the query result set,
SQL Anywhere uses interpolation within the value range.

Often, the optimizer uses more sophisticated heuristics. For example, the optimizer uses default estimates
only in cases where better statistics are unavailable. As well, the optimizer makes use of indexes and keys
to improve its guess of the number of rows. The following are a few single-column examples:

● Equating a column to a value: estimate one row when the column has a unique index or is the primary
key.

● A comparison of an indexed column to a constant: probe the index to estimate the percentage of rows
that satisfy the comparison.

● Equating a foreign key to a primary key (key join): use relative table sizes in determining an estimate.
For example, if a 5000 row table has a foreign key to a 1000 row table, the optimizer guesses that there
are five foreign key rows for each primary key row.

See also
For information about the distribution of column values, see:

● “ESTIMATE function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “ESTIMATE_SOURCE function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]

How the optimizer uses procedure statistics
Unlike base tables, procedure calls executed in the FROM clause do not have column statistics. Therefore,
the optimizer uses defaults or guesses for all selectivity estimates on data coming from a procedure call. The
execution time of a procedure call, and the total number of rows in its result set, are estimated using statistics
collected from previous calls. These statistics are maintained in the stats column of the ISYSPROCEDURE
system table by the ProCall algorithm. See “SYSPROCEDURE system view” [SQL Anywhere Server - SQL
Reference], and “ProcCall algorithm (PC)” on page 608.

See also
For information about obtaining the selectivities of predicates, see:

● “sa_get_histogram system procedure” [SQL Anywhere Server - SQL Reference]
● “Histogram utility (dbhist)” [SQL Anywhere Server - Database Administration]

Query optimization and execution

564 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Updating column statistics to improve optimizer performance
Column statistics are stored permanently in the database in the ISYSCOLSTAT system table. To continually
improve the optimizer's performance, the database server automatically updates column statistics during the
processing of any SELECT, INSERT, UPDATE, or DELETE statement. It does so by monitoring the number
of rows that satisfy any predicate that references a table or column, comparing that number to the number
of rows estimated, and then, if necessary, updating existing statistics.

With more accurate column statistics available to it, the optimizer can compute better estimates and improve
the performance of subsequent queries.

You can set whether to update column statistics using database options. The update_statistics database option
controls whether to update column statistics during execution of queries, while the
collect_statistics_on_dml_updates database option controls whether to update the statistics during the
execution of data-altering DML statements such as LOAD, INSERT, DELETE, and UPDATE.

If you suspect that performance is suffering because your statistics inaccurately reflect the current column
values, you may want to execute the statements CREATE STATISTICS or DROP STATISTICS. CREATE
STATISTICS deletes old statistics and creates new ones, while DROP STATISTICS only deletes old
statistics.

When you execute the CREATE INDEX statement, statistics are automatically created for the index.

When you execute the LOAD TABLE statement, statistics are automatically created for the table.

See also
● “SYSCOLSTAT system view” [SQL Anywhere Server - SQL Reference]
● “DROP STATISTICS statement” [SQL Anywhere Server - SQL Reference]
● “CREATE STATISTICS statement” [SQL Anywhere Server - SQL Reference]
● “update_statistics option [database]” [SQL Anywhere Server - Database Administration]
● “collect_statistics_on_dml_updates option [database]” [SQL Anywhere Server - Database

Administration]

Automatic performance tuning
One of the most common constraints in a query is equality with a column value. The following example
tests for equality of the Sex column.

SELECT *
FROM Employees
WHERE Sex = 'f';

Queries often optimize differently at the second execution. For the above type of constraint, SQL Anywhere
learns from experience, automatically allowing for columns that have an unusual distribution of values. The
database stores this information permanently unless you explicitly delete it using the DROP STATISTICS
command. Note that subsequent queries with predicates over that column may cause the database server to
recreate a histogram on the column. See “Updating column statistics to improve optimizer
performance” on page 565.

How the optimizer works

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 565

Underlying assumptions of the optimizer
Several assumptions underlie the design direction and philosophy of the SQL Anywhere query optimizer.
You can improve the quality or performance of your own applications through an understanding of the
optimizer's decisions. These assumptions provide a context in which you may understand the information
contained in the remaining sections.

Minimal administration work
Traditionally, high performance database servers have relied heavily on the presence of a knowledgeable,
dedicated, database administrator. This person spent a great deal of time adjusting data storage and
performance controls of all kinds to achieve good database performance. These controls often required
continuing adjustment as the data in the database changed.

SQL Anywhere learns and adjusts as the database grows and changes. Each query betters its knowledge of
the data distribution in the database. SQL Anywhere automatically stores and uses this information to
optimize future queries.

Every query both contributes to this internal knowledge and benefits from it. Every user can benefit from
knowledge that SQL Anywhere has gained through executing another user's query.

Statistics-gathering mechanisms are an integral part of the database server, and require no external
mechanism. Should you find an occasion where it would help, you can provide the database server with
index hints. These hints ensure that certain indexes are used during optimization, thereby overriding the
decisions made by the optimizer based on selectivity estimations. If you encode these into a trigger or
procedure, you then assume responsibility for updating the hints whenever appropriate. See “Updating
column statistics to improve optimizer performance” on page 565, and “Working with
indexes” on page 71.

Optimize for first row or for entire result set
The optimization_goal option allows you to specify whether query processing should be optimized towards
returning the first row quickly, or towards minimizing the cost of returning the complete result set (the default
behavior). See “optimization_goal option [database]” [SQL Anywhere Server - Database Administration].

Optimize for mixed or OLAP workload
The optimization_workload option allows you to specify whether query processing should be optimized
towards databases where updates, deletes, or inserts are commonly executed concurrently with queries
(mixed workload) or whether the main form of update activity in the database is batch-style updates that are
rarely executed concurrently with query execution.

For more information, see “optimization_workload option [database]” [SQL Anywhere Server - Database
Administration].

Query optimization and execution

566 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Statistics are present and correct
The optimizer is self-tuning, storing all the needed information internally. The ISYSCOLSTAT system table
is a persistent repository of data distributions and predicate selectivity estimates. At the completion of each
query, SQL Anywhere uses statistics gathered during query execution to update ISYSCOLSTAT. As a result,
all subsequent queries gain access to more accurate estimates.

The optimizer relies heavily on these statistics and, therefore, the quality of the access plans it generates
depends heavily on them. If you recently inserted a lot of new rows, these statistics may no longer accurately
describe the data. You may find that your subsequent queries execute unusually slowly.

If you have significantly altered your data, and you find that query execution is slow, you may want to
execute DROP STATISTICS and/or CREATE STATISTICS. See “Updating column statistics to improve
optimizer performance” on page 565.

Indexes can be used to satisfy a predicate
Often, SQL Anywhere can evaluate search conditions with the aid of indexes. Using indexes speeds optimizer
access to data and reduces the amount of information read and processed from base tables. For example, if
a query contains a search condition WHERE column-name=value, and an index exists on the column,
an index scan can be used to read only those rows of the table that satisfy the search condition.

Indexes also improve performance dramatically when joining tables.

Whenever possible, the optimizer attempts index-only retrieval to satisfy a query. With index-only retrieval,
the database server uses only the data in the indexes to satisfy the query, and does not need to access rows
in the table.

In the case where there are no indexes for the optimizer to use, a sequential table scan is performed instead,
which can be expensive.

The optimizer automatically chooses to use the indexes it determines will lead to the best performance.
However, you can also use index hints in your query to specify the indexes you want the optimizer to use.
If any of the specified indexes cannot be used, an error is returned. Note that index hinting can result in poor
performance and should only be attempted by experienced users. See “FROM clause” [SQL Anywhere Server
- SQL Reference].

Use the Index Consultant to determine whether additional indexes are recommended for your database. See
“Index Consultant” on page 183.

See also
● “Using predicates in queries” on page 569

Virtual memory is a scarce resource
The operating system and several applications frequently share the memory of a computer. SQL Anywhere
treats memory as a scarce resource. Because it uses memory economically, SQL Anywhere can run on
relatively small computers. This economy is important if you want your database to operate on portable
computers or on older computers.

How the optimizer works

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 567

Reserving extra memory, for example to hold the contents of a cursor, may be expensive. If the buffer cache
is full, one or more pages may have to be written to disk to make room for new pages. Some pages may need
to be re-read to complete a subsequent operation.

In recognition of this situation, SQL Anywhere associates a higher cost with execution plans that require
additional buffer cache overhead. This cost discourages the optimizer from choosing plans that use work
tables.

On the other hand, the optimizer is careful to use memory where it improves performance. For example, it
caches the results of subqueries when they will be needed repeatedly during the processing of the query.

The memory governor
The SQL Anywhere database server utilizes the cache, also called the buffer pool, to temporarily store
(buffer) images of database pages in memory. These pages are typically table pages and index pages, although
there are several other types of physical pages stored in a SQL Anywhere database. In addition to these
pages, the database server utilizes the cache for two other pools of memory. One of these pools is the virtual
memory used for database server data structures, such as those that represent connections, statements, and
cursors. The second pool consists of cache pages that are used as virtual storage for query memory.

Query execution algorithms, such as hash join and sorting, require memory to operate efficiently. SQL
Anywhere uses a memory governor to decide how much query memory each statement can use for query
execution. The memory governor is responsible for allocating a pool of query memory to statements to give
efficient execution of the workload. The QueryMemPages database server property shows the number of
pages in the query memory pool that are available for distribution. The pool size is set to be a proportion of
the maximum cache size for the server; that is, the cache size's upper bound, which can be controlled by the
-ch server option. The QueryMemPercentOfCache database server property gives the proportion of
maximum cache size that can be query memory, which is 50%.

The memory governor grants individual statements a selected number of pages that the statement can then
use for memory-intensive query processing algorithms. Memory in the query memory pool is still available
for other purposes (such as buffering table or index pages) until the query processing algorithm uses the
pages. Memory-intensive query processing algorithms that use query memory include all hash-based
operators, such as hash distinct, hash group by, and hash join, and sorting and window operators.

When a statement begins executing, the memory governor uses the optimizer's estimates to determine how
much memory would be useful to the statement. This estimate appears in the graphical plan as
QueryMemMaxUseful. Query memory for the statement is allocated across the particular memory-intensive
operators used in the access plan for that request. Parallel memory-intensive operators beneath an Exchange
operator each receive their own allocation of query memory. Simple requests do not benefit from large
amounts of memory, but requests that use hash-based operators or sorting can operate more efficiently if
there is enough memory to hold all the needed rows in memory.

Increasing the database server multiprogramming level requires the database server to reserve some amount
of query memory for each additional concurrent task, or request, reducing the amount available to any
particular request. Also, the memory governor limits the number of memory-intensive requests that can
execute concurrently. This maximum value is selected based on the performance characteristics of the
computer running the database server, and the limit is shown with the server property QueryMemActiveMax.
The memory governor also maintains a running estimate of the number of concurrent memory intensive

Query optimization and execution

568 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

requests, and this estimate is available as the database server property and Performance Monitor statistic
QueryMemActiveEst. The memory governor uses this running average to decide how to assign memory
from the query memory pool. If few memory-intensive requests have been executing, then more memory is
assigned to each one. If many have been executing, each one is assigned less to share the query memory
more evenly, taking into account the estimated number of query memory pages useful to each request.

If a memory-intensive statement begins executing and there are already the maximum number of concurrent
memory-intensive requests executing, then incoming statements wait for one of the existing requests to
release its allocated memory. The query_mem_timeout database option controls how long the incoming
request waits for a memory grant. With the default setting of -1, the request waits for a database server-
defined period of time. If no memory grant is available after waiting, then the statement's access plan is
executed with a small amount of memory, which could lead it to perform slowly, possibly with a low-memory
execution strategy if one exists for memory-intensive physical operators in that plan. The database server
property and Performance Monitor statistic QueryMemGrantWaiting shows the current number of requests
that are waiting for a memory request to be granted, and QueryMemGrantWaited shows the total number of
times that a request had to wait before a memory request was granted.

In the graphical plan, the value QueryMemNeedsGrant shows whether the memory governor considers this
to be a simple request (no memory grant needed) or memory intensive (a memory grant is needed). If the
memory governor classifies a request as not needing a memory grant, then the request begins executing
immediately. Otherwise, the request asks to use a proportion of the query memory pool. The graphical plan
value QueryMemLikelyGrant shows an estimate of how many pages are likely to be granted to the request
for execution.

See also
● QueryMemActiveMax property: “Database server properties” [SQL Anywhere Server - Database

Administration]
● QueryMemPages property: “Database server properties” [SQL Anywhere Server - Database

Administration]
● QueryMemPercentOfCache property: “Database server properties” [SQL Anywhere Server - Database

Administration]
● “query_mem_timeout option [database]” [SQL Anywhere Server - Database Administration]
● “Setting the database server's multiprogramming level” [SQL Anywhere Server - Database

Administration]
● “Graphical plan with statistics” on page 614
● “-ch server option” [SQL Anywhere Server - Database Administration]

Using predicates in queries
A predicate is a conditional expression that, combined with the logical operators AND and OR, makes up
the set of conditions in a WHERE, HAVING, or ON clause. In SQL, a predicate that evaluates to
UNKNOWN is interpreted as FALSE.

A predicate that can exploit an index to retrieve rows from a table is called sargable. This name comes from
the phrase search argument-able. Predicates that involve comparisons of a column with constants, other
columns, or expressions may be sargable.

How the optimizer works

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 569

The predicate in the following statement is sargable. SQL Anywhere can evaluate it efficiently using the
primary index of the Employees table.

SELECT *
FROM Employees
WHERE Employees.EmployeeID = 102;

In the plan, this appears as: Employees<Employees>
In contrast, the following predicate is not sargable. Although the EmployeeID column is indexed in the
primary index, using this index does not expedite the computation because the result contains all, or all
except one, row.

SELECT *
FROM Employees
where Employees.EmployeeID <> 102;

In the plan, this appears as: Employees<seq>
Similarly, no index can assist in a search for all employees whose given name ends in the letter k. Again,
the only means of computing this result is to examine each of the rows individually.

Functions
In general, a predicate that has a function on the column name is not sargable. For example, an index would
not be used on the following query:

SELECT *
FROM SalesOrders
WHERE YEAR (OrderDate) ='2000';

To avoid using a function, you can rewrite a query to make it sargable. For example, you can rephrase the
above query:

SELECT *
FROM SalesOrders
WHERE OrderDate > '1999-12-31'
AND OrderDate < '2001-01-01';

A query that uses a function becomes sargable if you store the function values in a computed column and
build an index on this column. A computed column is a column whose values are obtained from other
columns in the table. For example, if you have a column called OrderDate that holds the date of an order,
you can create a computed column called OrderYear that holds the values for the year extracted from the
OrderDate column.

ALTER TABLE SalesOrders
ADD OrderYear INTEGER
COMPUTE (YEAR(OrderDate));

You can then add an index on the column OrderYear in the ordinary way:

CREATE INDEX IDX_year
ON SalesOrders (OrderYear);

If you then execute the following statement, the database server recognizes that there is an indexed column
that holds that information and uses that index to answer the query.

Query optimization and execution

570 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SELECT * FROM SalesOrders
WHERE YEAR(OrderDate) = '2000';

The domain of the computed column must be equivalent to the domain of the COMPUTE expression in
order for the column substitution to be made. In the above example, if YEAR(OrderDate) had returned
a string instead of an integer, the optimizer would not have substituted the computed column for the
expression, and the index IDX_year could not have been used to retrieve the required rows.

For more information about computed columns, see “Working with computed columns” on page 30.

Examples
In each of these examples, attributes x and y are each columns of a single table. Attribute z is contained in
a separate table. Assume that an index exists for each of these attributes.

Sargable Non-sargable

x = 10 x < > 10

x IS NULL x IS NOT NULL

x > 25 x = 4 OR y = 5

x = z x = y

x IN (4, 5, 6) x NOT IN (4, 5, 6)

x LIKE 'pat%' x LIKE '%tern'

x = 20 - 2 x + 2 = 20

Sometimes it may not be obvious whether a predicate is sargable. In these cases, you may be able to rewrite
the predicate so it is sargable. For each example, you could rewrite the predicate x LIKE 'pat%' using the
fact that u is the next letter in the alphabet after t: x >= 'pat' and x < 'pau'. In this form, an index on attribute
x is helpful in locating values in the restricted range. Fortunately, SQL Anywhere makes this particular
transformation for you automatically.

A sargable predicate used for indexed retrieval on a table is a matching predicate. A WHERE clause can
have many matching predicates. The most suitable predicate can depend on the join strategy. The optimizer
re-evaluates its choice of matching predicates when considering alternate join strategies. See “Discovery of
exploitable conditions through predicate inference” on page 557.

Cost-based optimization with MIN and MAX functions
The min/max cost-based optimization is designed to exploit an existing index to compute efficiently the
result of a simple aggregation query involving the MAX or MIN aggregate functions. The goal of this
optimization is to be able to compute the result by retrieving only a few rows from the index. To be a candidate
for this optimization, the query:

● must not contain a GROUP BY clause

How the optimizer works

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 571

● must be over a single table

● must contain only a single aggregate function (MAX or MIN) in the query's SELECT-list

Example
To illustrate this optimization, assume that an index called prod_qty (ShipDate ASC, Quantity ASC) exists
on the SalesOrderItems table. Then the query

SELECT MIN(Quantity)
 FROM SalesOrderItems
 WHERE ShipDate = '2000-03-25';

is rewritten internally as

SELECT MAX(Quantity)
 FROM (SELECT FIRST Quantity
 FROM SalesOrderItems
 WHERE ShipDate = '2000-03-25'
 AND Quantity IS NOT NULL
 ORDER BY ShipDate ASC, Quantity ASC) AS s(Quantity);

The NULL_VALUE_ELIMINATED warning may not be generated for aggregate queries when this
optimization is applied.

The execution plan (short form) for the rewritten query is:

GrByS[RL[SalesOrderItems<prod_qty>]]

Plan caching
Normally, the optimizer selects an execution plan for a query every time the query is executed. Optimizing
at execution time allows the optimizer to choose a plan based on current system state, and the values of
current selectivity estimates and estimates based on the values of host variables. For queries that are executed
frequently, the cost of query optimization can outweigh the benefits of optimizing at execution time. To
reduce the cost of optimizing these statements repeatedly, the SQL Anywhere server considers caching plans
for:

● All statements performed inside stored procedures, user-defined functions, and triggers.

● SELECT, INSERT, UPDATE, or DELETE statements that qualify for bypass optimization. See “Query
processing phases” on page 546.

For INSERT statements, only INSERT...VALUES statements qualify for caching; INSERT...ON
EXISTING statements do not qualify for caching.

For UPDATE and DELETE statements, the WHERE clause must be present and contain search
conditions that use the primary key to identify a row. No extra search conditions are allowed if plan
caching is desired. Also, for UPDATE statements, a SET clause that contains a variable assignment
disqualifies the statement from caching.

After one of these statements has been executed several times by a connection, the optimizer builds a reusable
plan for the statement without knowing the host variable values. The reusable plan may have a higher cost
because host variable values cannot be used for selectivity estimation or semantic query transformations. If

Query optimization and execution

572 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

the reusable plan has the same structure as the plans built in previous executions of the statement, the database
server adds the reusable plan to the plan cache. The execution plan is not cached when the benefit of
optimizing on each execution outweighs the savings from avoiding optimization.

If an execution plan uses a materialized view that was not referenced by the statement, and the
materialized_view_optimization option is set to something other than Stale, then the execution plan is not
cached and the statement is optimized again the next time the stored procedure, user-defined function, or
trigger is called.

The plan cache is a per-connection cache of the data structures used to execute an access plan. Reusing the
cached plan involves looking up the plan in the cache and resetting it to an initial state. Typically, this is
substantially faster than processing the statement through all of the query processing phases. Cached plans
may be stored to disk if they are used infrequently, and they do not increase the cache usage. The optimizer
periodically re-optimizes queries to verify that the cached plan is still efficient.

The maximum number of plans to cache is specified with the max_plans_cached option. The default is 20.
To disable plan caching, set this option to 0. See “max_plans_cached option [database]” [SQL Anywhere
Server - Database Administration].

You can use the QueryCachedPlans statistic to show how many query execution plans are currently cached.
This property can be retrieved using the CONNECTION_PROPERTY function to show how many query
execution plans are cached for a given connection, or the DB_PROPERTY function can be used to count
the number of cached execution plans across all connections. This property can be used in combination with
QueryCachePages, QueryOptimized, QueryBypassed, and QueryReused to help determine the best setting
for the max_plans_cached option. See “Connection properties” [SQL Anywhere Server - Database
Administration].

You can use the database or QueryCachePages connection property to determine the number of pages used
to cache execution plans. These pages occupy space in the temporary file, but are not necessarily resident
in memory.

See also
● “Eligibility to skip query processing phases” on page 547
● “Improving performance with materialized views” on page 574
● “materialized_view_optimization option [database]” [SQL Anywhere Server - Database

Administration]
● “DB_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference]
● “CONNECTION_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference]

How the optimizer works

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 573

Improving performance with materialized views
A materialized view is a view whose result set is stored on disk, much like a base table, but that is computed,
much like a view. Conceptually, a materialized view is both a view (it has a query specification) and a table
(it has persistent materialized rows). So, many operations that you perform on tables can be performed on
materialized views as well. For example, you can build indexes on, and unload from, materialized views.

Defining materialized views
In designing your application, consider defining materialized views for frequently-executed expensive
queries or expensive parts of your queries, such as those involving intensive aggregation and join operations.
Materialized views are designed to improve performance in environments where:

● the database is large

● frequent queries result in repetitive aggregation and join operations on large amounts of data

● changes to underlying data are relatively infrequent

● access to up-to-the-moment data is not a critical requirement

You do not have to change your queries to benefit from materialized views. For example, materialized views
are ideal for use with data warehousing applications where the underlying data doesn't change very often.

The optimizer maintains a list of materialized views to consider as candidates for partially or fully satisfying
a submitted query when optimizing. If the optimizer finds a candidate materialized view that can satisfy all
or part of the query, it includes the view in the recommendations it makes for the enumeration phase of
optimization, where the best plan is determined based on cost. The process used by the optimizer to match
materialized views to queries is called view matching. Before a materialized view can be considered by the
optimizer, the view must satisfy certain conditions. This means that unless a materialized view is explicitly
referenced by the query, there is no guarantee that it will be used by the optimizer. You can, however, make
sure that the conditions are met for the view to be considered.

If the optimizer determines that materialized view usage is allowed, then each candidate materialized view
is examined. A materialized view is considered for use by the View Matching algorithm if:

● the materialized view is enabled for use by the database server. See “Enable and disable materialized
views” on page 65.

● the materialized view is enabled for use in optimization. See “Enable and disable optimizer use of a
materialized view” on page 67.

● the materialized view has been initialized. See “Initialize materialized views” on page 59.

● the materialized view meets all the optimizer requirements for consideration. See “Materialized views
and the View Matching algorithm” on page 576.

● the values of some critical options used to create the materialized views match the options for the
connection executing the query. See “Restrictions on materialized views” on page 55.

Query optimization and execution

574 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● the last refresh of the materialized view does not exceed the staleness threshold set for the
materialized_view_optimization database option. See “Setting the optimizer staleness threshold for
materialized views” on page 68.

If the materialized view meets the above criteria, and it is found to satisfy all or part of the query, the View
Matching algorithm includes the materialized view in its recommendations for the enumeration phase of
optimization, when the best plan is found based on cost. However, this does not mean that the materialized
view will ultimately be used in the final execution plan. For example, materialized views that appear suitable
for computing the result of a query may still not be used if another access plan, which doesn't use the
materialized view, is estimated to be cheaper.

Determining the list of materialized view candidates
At any given time, you can obtain a list of all materialized views that are candidates to be considered by the
optimizer, by executing the following command:

SELECT * FROM sa_materialized_view_info() WHERE AvailForOptimization='Y';

The list returned is specific to the requesting connection, since the optimizer takes into account option settings
when generating the list. A materialized view is not considered a candidate if there is a mismatch between
the options specified for the connection and the options that were in place when the materialized view was
created. For a list of the options that must match, see “Restrictions on materialized views” on page 55.

To obtain a list of all materialized views that are not considered candidates for the connection because of a
mismatch in option settings, execute the following from the connection that will execute the query:

SELECT * FROM sa_materialized_view_info() WHERE AvailForOptimization='O';

Determining if a materialized view was considered
You can see the list of materialized views used for a particular query by looking at the Advanced Details
window of the query's graphical plan in Interactive SQL. See “Reading execution plans” on page 610.

You can also use Application Profiling mode in Sybase Central to determine whether a materialized view
was considered during the enumeration phase of a query, by looking at the access plans enumerated by the
optimizer. To see the access plans enumerated by the optimizer, tracing must be turned on, and must be
configured to include the OPTIMIZATION_LOGGING tracing type. For more information about this
tracing type, see “Application profiling” on page 177, and “Choosing a diagnostic tracing
level” on page 190.

For more information about the enumeration phase of optimization, see “Query processing
phases” on page 546.

Note
When snapshot isolation is in use, the optimizer does not consider materialized views that were refreshed
after the start of the snapshot for the current transaction.

Improving performance with materialized views

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 575

Materialized views and the View Matching algorithm
The View Matching algorithm determines whether materialized views can be used to satisfy a query. This
determination takes place in two steps: a query evaluation step, and a materialized view evaluation step.

The optimizer includes a materialized view in the set of materialized views to be examined by the View
Matching algorithm if the view definition:

● contains only one query block

● contains only one FROM clause

● does not contain any of the following constructs or specifications:

○ GROUPING SETS
○ CUBE
○ ROLLUP
○ subquery
○ derived table
○ UNION
○ EXCEPT
○ INTERSECT
○ materialized views
○ DISTINCT
○ TOP
○ FIRST
○ self-join
○ recursive join
○ FULL OUTER JOIN

The materialized view definition may contain a GROUP BY clause, and a HAVING clause, provided the
HAVING clause does not contain subselects or subqueries.

Note
These restrictions only apply to the materialized views that are considered by the View Matching algorithm.
If a materialized view is explicitly referenced in a query, the view is used by the optimizer as if it was a base
table.

See also
● “Reading execution plans” on page 610
● “Query processing phases” on page 546
● “Application profiling” on page 177

Query evaluation
During query evaluation, the View Matching algorithm examines the query. If any of the following
conditions are true, materialized views are not used to process the query.

Query optimization and execution

576 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● All the tables referenced by the query are updatable.

The optimizer does not consider materialized views for a SELECT statement that is inherently updatable,
or is explicitly declared in an updatable cursor. This situation can occur when using Interactive SQL,
which utilizes updatable cursors by default for SELECT statements.

● The statement is a simple DML statement that uses optimizer bypass and is optimized heuristically.
However, you can force cost-based optimization of any SELECT statement using the FORCE
OPTIMIZATION option of the OPTION clause. See “SELECT statement” [SQL Anywhere Server - SQL
Reference].

● The query's execution plan has been cached, as in the case of queries contained inside stored procedures
and user-defined functions. The database server may cache the execution plans for these queries so that
they can be reused. For this class of queries, the query execution plan is cached after execution. The next
time the query is executed, the plan is retrieved and all the phases up to the execution phase are skipped.
See “Plan caching” on page 572.

Materialized view evaluation
Materialized view evaluation involves determining which of the existing materialized views can be used to
compute all or parts of the query.

Once a materialized view has been matched with parts of a query, a decision is made whether to use the view
in the final query execution plan; this decision is cost-based. The role of the enumeration phase is to generate
plans containing views recommended by the View Matching algorithm and choose, based on the estimated
cost of the plans, the best access plan which may or may not contain some of the materialized views.

If the materialized view is defined as a grouped-select-project-join query (also known as a grouped
query, or a query containing a GROUP BY clause), then the View Matching algorithm can match it with
grouped query blocks. If a materialized view is defined as a select-project-join query (that is, it is not a
grouped query), then the View Matching algorithm can match it to any type of query block.

Listed below are the conditions necessary for the View Matching algorithm to decide if a view, V, matches
part of a query block, QB, belonging to a query, Q. In general, V must contain a subset of the query QB's
tables. The only exception is the extension tables of V. An extension table of V is a table that joins with
exactly one row with the rest of the tables of V. For example, a primary key table is an extension table if its
only predicate is an equijoin between a not-null foreign key column and its primary key column. For an
example of a materialized view that contains an extension table, see “Example 2: Matching grouped-select-
project-join views” on page 581.

● The option values used to create the materialized view V match the option values for the connection
executing the query. For a list of the options that must match, see “Restrictions on materialized
views” on page 55.

● The last refresh of the V materialized view, does not exceed the staleness threshold specified by the
materialized_view_optimization database option, or by the MATERIALIZED VIEW OPTIMIZATION
clause, if specified, in the SELECT statement. See “Setting the optimizer staleness threshold for
materialized views” on page 68.

● All the tables used in V, with possible exceptions of some extension tables of V, are present in the QB.
This set of common tables in the QB is hereinafter referred to as CT.

Improving performance with materialized views

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 577

● No table in CT is updatable in the query Q.

● All tables in CT belong to the same side of an outer join in QB (that is, they are all in the preserved side
of the outer join or all in the null-supplying side of an outer join of QB).

● It can be decided that the predicates in V subsume the subset of the predicates in QB that reference CT
only. In other words, the predicates in V are less restrictive than those in QB. A predicate in QB that
exactly matches one in V is called a matched predicate.

● Any expression of QB referencing tables in CT that is not used in a matched predicate must appear in
the select list of V.

● If both V and QB are grouped, then QB doesn't contain extra tables besides the ones in CT. Additionally,
the set of expressions in the GROUP BY clause of V must be equal to or a superset of the set of expressions
in the GROUP BY clause of QB.

● If both V and QB are grouped on an identical set of expressions, all aggregate functions in QB must be
also computed in V, or it is possible to compute them from V's aggregate functions. For example, if QB
contains AVG(x) then V must contain AVG(x), or it must contain both SUM(x) and COUNT(x).

● If QB's GROUP BY clause is a subset of V's GROUP BY clause, then the simple aggregate functions
of QB must be found among V's aggregate functions, while its composite aggregate functions have to
be computed from simple aggregate functions of V. The simple aggregate functions are:

○ BIT_AND
○ BIT_OR
○ BIT_XOR
○ COUNT
○ LIST
○ MAX
○ MIN
○ SET_BITS
○ SUM
○ XMLAGG

The composite aggregate functions that can be computed from the simple aggregate functions are:

○ SUM(x)
○ COUNT(x)
○ SUM(CAST(x AS DOUBLE))
○ SUM(CAST(x AS DOUBLE) * CAST(x AS DOUBLE))
○ VAR_SAMP(x)
○ VAR_POP(x)
○ VARIANCE(x)
○ STDDEV_SAMP(x)
○ STDDEV_POP(x)
○ STDDEV(x)

Query optimization and execution

578 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The following statistical aggregate functions:

○ COVAR_SAMP(y,x)
○ COVAR_POP(y,x)
○ CORR(y,x)
○ REGR_AVGX(y,x)
○ REGR_AVGY(y,x)
○ REGR_SLOPE(y,x)
○ REGR_INTERCEPT(y,x)
○ REGR_R2(y,x)
○ REGR_COUNT(y,x)
○ REGR_SXX(y,x)
○ REGR_SYY(y,x)
○ REGR_SXY(y,x)

can be computed from the following simple aggregate functions:

○ SUM(y1)
○ SUM(x1)
○ COUNT(x1)
○ COUNT(y1)
○ SUM(x1*y1)
○ SUM(y1*x1)
○ SUM(x1*x1)
○ SUM(y1*y1)

where x1 = CAST(IFNULL(x, x,y) AS DOUBLE)) and y1 = CAST(IFNULL(y,y,x) AS DOUBLE).

View Matching algorithm examples

Example 1: Matching select-project-join views
If a certain partition of a base table is frequently accessed by queries, then it may be beneficial to define a
materialized view to store that partition. For example, the materialized view V_Canada defined below stores
all the customers from the Customer table who live in Canada. As this materialized view is used when the
State column is restricted to certain values, it is advisable to create the index V_Canada_State on the State
column of the V_Canada materialized view.

CREATE MATERIALIZED VIEW V_Canada AS
 SELECT c.ID, c.City, c.State, c.CompanyName
 FROM Customers c
 WHERE c.State IN ('AB', 'BC', 'MB', 'NB', 'NL',
 'NT', 'NS', 'NU', 'ON', 'PE', 'QC', 'SK', 'YT');
REFRESH MATERIALIZED VIEW V_Canada;
CREATE INDEX V_Canada_State on V_Canada(State);

Any query block that requires just a subset of customers living in Canada may benefit from this materialized
view. For example, Query 1 below, which computes the total price of the products for all customers in Ontario
for each company, may use the V_Canada materialized view in its access plans. An access plan for Query
1 using the V_Canada materialized view represents a valid plan as if Query 1 was rewritten as Query 1_v,

Improving performance with materialized views

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 579

which is semantically equivalent to it. Note that the optimizer doesn't rewrite the query using the materialized
views, instead the generated access plans using materialized views can theoretically be seen corresponding
to the rewritten query.

The execution plan of the Query 1 uses the V_Canada materialized view, as shown here:
Work[GrByH[V_Canada<V_Canada_State> JNLO
SalesOrders<FK_CustomerID_ID> JNLO SalesOrderItems<FK_ID_ID> JNLO
Products<ProductsKey>]]
Query 1:

SELECT SUM(SalesOrderItems.Quantity
 * Products.UnitPrice) AS Value
 FROM Customers c
 LEFT OUTER JOIN SalesOrders
 ON(SalesOrders.CustomerID = c.ID)
 LEFT OUTER JOIN SalesOrderItems
 ON(SalesOrderItems.ID = SalesOrders.ID)
 LEFT OUTER JOIN Products
 ON(Products.ID = SalesOrderItems.ProductID)
 WHERE c.State = 'ON'
 GROUP BY c.CompanyName;

Query 1_v:

SELECT SUM(SalesOrderItems.Quantity
 * Products.UnitPrice) AS Value
 FROM V_Canada
 LEFT OUTER JOIN SalesOrders ON(SalesOrders.CustomerID = V_Canada.ID)
 LEFT OUTER JOIN SalesOrderItems ON(SalesOrderItems.ID = SalesOrders.ID)
 LEFT OUTER JOIN Products ON(Products.ID = SalesOrderItems.ProductID)
 WHERE V_Canada.State = 'ON'
 GROUP BY V_Canada.CompanyName;

Query 2 may use this view in both the main query block and the HAVING subquery. Some of the access
plans enumerated by the optimizer using the V_Canada materialized view represent Query 2_v, which is
semantically equivalent to Query 2 where the Customer table was replaced by the V_Canada view.

The execution plan is: Work[GrByH[V_Canada<V_Canada_State> JNLO
SalesOrders<FK_CustomerID_ID> JNLO SalesOrderItems<FK_ID_ID> JNLO
Products<ProductsKey>]] : GrByS[V_Canada<seq> JNLO
SalesOrders<FK_CustomerID_ID> JNLO SalesOrderItems<FK_ID_ID> JNLO
Products<ProductsKey>
Query 2:

SELECT SUM(SalesOrderItems.Quantity
 * Products.UnitPrice) AS Value
 FROM Customers c
 LEFT OUTER JOIN SalesOrders
 ON(SalesOrders.CustomerID = c.ID)
 LEFT OUTER JOIN SalesOrderItems
 ON(SalesOrderItems.ID = SalesOrders.ID)
 LEFT OUTER JOIN Products
 ON(Products.ID = SalesOrderItems.ProductID)
 WHERE c.State = 'ON'
 GROUP BY CompanyName
 HAVING Value >
 (SELECT AVG(SalesOrderItems.Quantity

Query optimization and execution

580 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 * Products.UnitPrice) AS Value
 FROM Customers c1
 LEFT OUTER JOIN SalesOrders
 ON(SalesOrders.CustomerID = c1.ID)
 LEFT OUTER JOIN SalesOrderItems
 ON(SalesOrderItems.ID = SalesOrders.ID)
 LEFT OUTER JOIN Products
 ON(Products.ID = SalesOrderItems.ProductID)
 WHERE c1.State IN ('AB', 'BC', 'MB', 'NB', 'NL', 'NT', 'NS',
 'NU', 'ON', 'PE', 'QC', 'SK', 'YT'));

Query 2_v:

SELECT SUM(SalesOrderItems.Quantity
 * Products.UnitPrice) AS Value
 FROM V_Canada
 LEFT OUTER JOIN SalesOrders
 ON(SalesOrders.CustomerID=V_Canada.ID)
 LEFT OUTER JOIN SalesOrderItems
 ON(SalesOrderItems.ID=SalesOrders.ID)
 LEFT OUTER JOIN Products
 ON(Products.ID=SalesOrderItems.ProductID)
WHERE V_Canada.State = 'ON'
GROUP BY V_Canada.CompanyName
HAVING Value >
 (SELECT AVG(SalesOrderItems.Quantity
 * Products.UnitPrice) AS Value
 FROM V_Canada
 LEFT OUTER JOIN SalesOrders
 ON(SalesOrders.CustomerID = V_Canada.ID)
 LEFT OUTER JOIN SalesOrderItems
 ON(SalesOrderItems.ID = SalesOrders.ID)
 LEFT OUTER JOIN Products
 ON(Products.ID = SalesOrderItems.ProductID)
 WHERE V_Canada.State IN ('AB', 'BC', 'MB',
 'NB', 'NL', 'NT', 'NS', 'NU', 'ON', 'PE', 'QC',
 'SK', 'YT'));

Example 2: Matching grouped-select-project-join views
The grouped materialized views have the potential for the highest performance impact on the grouped
queries. If similar aggregations are used in frequently-executed queries, a materialized view should be
defined to pre-aggregate data on a superset of the group by clauses used in those queries. Composite aggregate
functions of the queries can be computed from the simple aggregates used in the views. So, it is recommended
that only simple aggregate functions are stored in the materialized views.

The materialized view V_quantity, below, pre-computes the sum and count of quantities per product for
each month and year. Query 3, below, can use this view to select only the months of the year 2000 (the short
plan is Work[GrByH[V_quantity<seq>]], corresponding to Query 3_v).

Query 4, which doesn't reference the extension table SalesOrders, can still use V_quantity as the view
contains all the data necessary to compute Query 4 (the short plan is
Work[GrByH[V_quantity<seq>]], corresponding to Query 4_v).

CREATE MATERIALIZED VIEW V_Quantity AS
 SELECT s.ProductID,
 Month(o.OrderDate) AS month,
 Year(o.OrderDate) AS year,
 SUM(s.Quantity) AS q_sum,
 COUNT(s.Quantity) AS q_count
 FROM SalesOrderItems s KEY JOIN SalesOrders o

Improving performance with materialized views

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 581

 GROUP BY s.ProductID, Month(o.OrderDate),
 Year(o.OrderDate);
REFRESH MATERIALIZED VIEW V_Quantity;

Query 3:

SELECT s.ProductID,
 Month(o.OrderDate) AS month,
 AVG(s.Quantity) AS avg,
 SUM(s.Quantity) AS q_sum,
 COUNT(s.Quantity) AS q_count
 FROM SalesOrderItems s KEY JOIN SalesOrders o
 WHERE year(o.OrderDate) = 2000
 GROUP BY s.ProductID, Month(o.OrderDate);

Query 3_v:

SELECT V_Quantity.ProductID,
 V_Quantity.month AS month,
 SUM(V_Quantity.q_sum) / SUM(V_Quantity.q_count)
 AS avg,
 SUM(V_Quantity.q_sum) AS q_sum,
 SUM(V_Quantity.q_count) AS q_count
 FROM V_Quantity
 WHERE V_Quantity.year = 2000
 GROUP BY V_Quantity.ProductID, V_Quantity.month;

Query 4:

SELECT s.ProductID,
 AVG(s.Quantity) AS avg,
 SUM(s.Quantity) AS sum
 FROM SalesOrderItems s
 WHERE s.ProductID IS NOT NULL
 GROUP BY s.ProductID;

Query 4_v

SELECT V_Quantity.ProductID,
 SUM(V_Quantity.q_sum) / SUM(V_Quantity.q_count)
 AS avg,
 SUM(V_Quantity.q_sum) AS sum
 FROM V_Quantity
 WHERE V_Quantity.ProductID IS NOT NULL
 GROUP BY V_Quantity.ProductID;

Example 3: Matching complex queries
The View Matching algorithm is applied per query block, so it is possible to use more than one materialized
view per query block and also more than one materialized view for the whole query. Query 5 below may
use the three materialized views: V_Canada for one of the null-supplying sides of the LEFT OUTER JOIN;
V_ship_date, defined below, for the preserved side of the main query block; and V_quantity for the subquery
block. The execution plan for Query 5_v is:
Work[Window[Sort[V_ship_date<V_Ship_date_date> JNLO
(so<SalesOrdersKey> JH V_Canada<V_Canada_state>)]]] :
GrByS[V_quantity<seq>].

CREATE MATERIALIZED VIEW V_ship_date AS
 SELECT s.ProductID, p.Description,
 s.Quantity, s.ShipDate, s.ID

Query optimization and execution

582 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 FROM SalesOrderItems s KEY JOIN Products p ON (s.ProductId = p.ID)
 WHERE s.ShipDate >= '2000-01-01'
 AND s.ShipDate <= '2001-01-01';
REFRESH MATERIALIZED VIEW V_ship_date;
CREATE INDEX V_ship_date_date ON V_ship_date(ShipDate);

Query 5:

SELECT p.ID, p.Description, s.Quantity,
 s.ShipDate, so.CustomerID, c.CompanyName,
 SUM(s.Quantity) OVER (PARTITION BY s.ProductID
 ORDER BY s.ShipDate
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS cumulative_qty
 FROM SalesOrderItems s JOIN Products p
 ON (s.ProductID = p.ID) LEFT OUTER JOIN (
 SalesOrders so JOIN Customers c
 ON (c.ID = so.CustomerID AND c.State = 'ON'))
 ON (s.ID = so.ID)
 WHERE s.ShipDate >= '2000-01-01'
 AND s.ShipDate <= '2000-12-31'
 AND s.Quantity > (SELECT AVG(s.Quantity) AS avg
 FROM SalesOrderItems s KEY JOIN SalesOrders o
 WHERE year(o.OrderDate) = 2000)
 FOR READ ONLY;

Query 5_v:

SELECT V_ship_date.ID, V_ship_date.Description,
 V_ship_date.Quantity, V_ship_date.ShipDate,
 so.CustomerID, V_Canada.CompanyName,
 SUM(V_ship_date.Quantity) OVER (PARTITION BY V_ship_date.ProductID
 ORDER BY V_ship_date.ShipDate
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS cumulative_qty
 FROM V_ship_date
 LEFT OUTER JOIN (SalesOrders so JOIN V_Canada
 ON (V_Canada.ID = so.CustomerID AND V_Canada.State = 'ON'))
 ON (V_ship_date.ID = so.ID)
 WHERE V_ship_date.ShipDate >= '2000-01-01'
 AND V_ship_date.ShipDate <= '2000-12-31'
 AND V_ship_date.Quantity >
 (SELECT SUM(V_quantity.q_sum) / SUM(V_quantity.q_count)
 FROM V_Quantity
 WHERE V_Quantity.year = 2000)
 FOR READ ONLY;

Example 4: Matching materialized views with OUTER JOINs

The view matching algorithm can match views and queries with OUTER JOINs using similar rules as for
the views with only inner joins. Null-supplying sides of the OUTER JOINs of a materialized view may not
appear in the query as long as all the tables in the null-supplying side are extension tables. The query is
allowed to contain inner joins to match the view's outer joins. Queries 6_v, 7_v, 8_v, and 9_v below illustrate
how a materialized view containing an OUTER JOIN in its definition can be used to answer queries.

Query 6 below matches exactly the materialized view V_SalesOrderItems_2000 and can be evaluated as if
it is Query 6_v.

Query 7 contains some extra predicates on the preserved side of the outer join and it can still be computed
using V_SalesOrderItems_2000. Note that the null-supplying table, Products, is an extension table in the

Improving performance with materialized views

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 583

view V_SalesOrderItems_2000. This means the view can also be matched with Query 8, which does not
contain the Products table.

Query 9 contains only the inner join of the tables SalesOrderItems and Products, and it is matched with the
V_SalesOrderItems_2000 view by selecting only those rows of the view which are not null-supplying rows
from the table Products. The extra predicate, V.Description IS NOT NULL, in Query 9_v is used to select
exactly those rows which are not null-supplied.

CREATE MATERIALIZED VIEW V_SalesOrderItems_2000 AS
 SELECT s.ProductID, p.Description,
 s.Quantity, s.ShipDate, s.ID
 FROM SalesOrderItems s LEFT OUTER JOIN Products p
 ON (s.ProductId = p.ID)
 WHERE s.ShipDate >= '2000-01-01'
 AND s.ShipDate <= '2001-01-01';
REFRESH MATERIALIZED VIEW V_SalesOrderItems_2000;
CREATE INDEX V_SalesOrderItems_shipdate ON V_SalesOrderItems_2000(ShipDate);

Query 6:

SELECT s.ProductID, p.Description,
 s.Quantity, s.ShipDate, s.ID
 FROM SalesOrderItems s LEFT OUTER JOIN Products p
 ON (s.ProductId = p.ID)
 WHERE s.ShipDate >= '2000-01-01'
 AND s.ShipDate <= '2001-01-01'
 FOR READ ONLY;

Query 6_v:

SELECT V.ProductID, V.Description, V.Quantity, V.ShipDate,
 SUM(V.Quantity) OVER (PARTITION BY V.ProductID
 ORDER BY V.ShipDate
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS cumulative_qty
 FROM V_SalesOrderItems_2000 as V
 FOR READ ONLY;

Query 7:

SELECT s.ProductID, p.Description, s.Quantity, s.ShipDate,
 SUM(s.Quantity) OVER (PARTITION BY s.ProductID
 ORDER BY s.ShipDate
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS cumulative_qty
 FROM SalesOrderItems s LEFT OUTER JOIN Products p
 ON (s.ProductID = p.ID)

 WHERE s.ShipDate >= '2000-01-01'
 AND s.ShipDate <= '2001-01-01'
 AND s.Quantity >= 50
 FOR READ ONLY;

Query 7_v:

SELECT V.ProductID, V.Description, V.Quantity, V.ShipDate,
 SUM(V.Quantity) OVER (PARTITION BY V.ProductID
 ORDER BY V.ShipDate
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS cumulative_qty
 FROM V_SalesOrderItems_2000 as V

Query optimization and execution

584 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 WHERE V.Quantity >= 50
 FOR READ ONLY;

Query 8:

SELECT s.ProductID, s.Quantity, s.ShipDate,
 SUM(s.Quantity) OVER (PARTITION BY s.ProductID
 ORDER BY s.ShipDate
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS cumulative_qty
 FROM SalesOrderItems s
 WHERE s.ShipDate >= '2000-01-01'
 AND s.ShipDate <= '2001-01-01'
 AND s.Quantity >= 50
 FOR READ ONLY;

Query 8_v:

SELECT V.ProductID, V.Quantity, V.ShipDate,
 SUM(V.Quantity) OVER (PARTITION BY V.ProductID
 ORDER BY V.ShipDate
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS cumulative_qty
 FROM V_SalesOrderItems_2000 as V
 WHERE V.Quantity >= 50
 FOR READ ONLY;

Query 9:

SELECT s.ProductID, p.Description, s.Quantity, s.ShipDate,
 SUM(s.Quantity) OVER (PARTITION BY s.ProductID
 ORDER BY s.ShipDate
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS cumulative_qty
 FROM SalesOrderItems s JOIN Products p
 ON (s.ProductID = p.ID)

 WHERE s.ShipDate >= '2000-01-01'
 AND s.ShipDate <= '2001-01-01'
 FOR READ ONLY;

Query 9_v:

SELECT V.ProductID, V.Description, V.Quantity, V.ShipDate,
 SUM(V.Quantity) OVER (PARTITION BY V.ProductID
 ORDER BY V.ShipDate
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS cumulative_qty
 FROM V_SalesOrderItems_2000 as V
 WHERE V.Description IS NOT NULL
 FOR READ ONLY;

Improving performance with materialized views

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 585

Query execution algorithms
The function of the optimizer is to translate certain SQL statements (SELECT, INSERT, UPDATE, or
DELETE) into an efficient access plan made up of various relational algebra operators (join, duplicate
elimination, union, and so on). The operators within the access plan may not be structurally equivalent to
the original SQL statement, but the access plan's various operators will compute a result that is semantically
equivalent to that SQL request.

Relational algebra operators in access plans
An access plan consists of a tree of relational algebra operators which, starting at the leaves of the tree,
consume the base inputs to the query (usually rows from a table) and process the rows from bottom to top,
so that the root of the tree yields the final result. Access plans can be viewed graphically for ease of
comprehension. See “Reading execution plans” on page 610, and “Reading graphical
plans” on page 613.

SQL Anywhere supports multiple implementations of these various relational algebra operations. For
example, SQL Anywhere supports three different implementations of inner join: nested loops join, merge
join, and hash join. Each of these operators can be advantageous to use in specific circumstances: some of
the parameters that the query optimizer analyzes to make its choice include the amount of table data in cache,
the characteristics and selectivity of the join predicate, the sortedness of the inputs to the join and the output
from it, the amount of memory available to perform the join, and a variety of other factors.

SQL Anywhere may dynamically, at execution time, switch from the physical algebraic operator chosen by
the optimizer to a different physical algorithm that is logically equivalent to the original. Typically, this
alternative access plan is used in one of two circumstances:

● When the total amount memory used to execute the statement is close to a memory governor threshold,
then a switch is made to a strategy that may execute more slowly, but that frees a substantial amount of
memory for use by other operators (or other requests). When this occurs, the QueryLowMemoryStrategy
property is incremented. This information also appears in the graphical plan for the statement. For
information about the QueryLowMemoryStrategy property, see “Connection properties” [SQL
Anywhere Server - Database Administration].

The amount of memory that can be used by an operator dependent upon the multiprogramming level of
the server, and the number of active connections.

For more information about how the memory governor and the multiprogramming level, see:

○ “Threading in SQL Anywhere” [SQL Anywhere Server - Database Administration]
○ “Setting the database server's multiprogramming level” [SQL Anywhere Server - Database

Administration]
○ “The memory governor” on page 568

● If, at the beginning of its execution, the specific operator (a hash inner join, for example) determines that
its inputs are not of the expected cardinality as that computed by the optimizer at optimization time. In
this case, the operator may switch to a different strategy that will be less expensive to execute. Typically,
this alternative strategy utilizes index nested loops processing. For the case of hash join, the
QueryJHToJNLOptUsed property is incremented when this switch occurs. The occurrence of the join

Query optimization and execution

586 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

method switch is also included in the statement's graphical plan. For information about the
QueryJHToJNLOptUsed property, see “Connection properties” [SQL Anywhere Server - Database
Administration].

Parallelism during query execution
SQL Anywhere supports two different kinds of parallelism for query execution: inter-query, and intra-query.
Inter-query parallelism involves executing different requests simultaneously on separate CPUs. Each request
(task) runs on a single thread and executes on a single processor.

Intra-query parallelism involves having more than one CPU handle a single request simultaneously, so that
portions of the query are computed in parallel on multi-processor hardware. Processing of these portions is
handled by the Exchange algorithm (see “Exchange algorithm (Exchange)” on page 606). Intra-query
parallelism can benefit a workload where the number of simultaneously-executing queries is usually less
than the number of available processors. The maximum degree of parallelism is controlled by the setting of
the max_query_tasks option (see “max_query_tasks option [database]” [SQL Anywhere Server - Database
Administration]).

The optimizer estimates the extra cost of parallelism (extra copying of rows, extra costs for co-ordination
of effort) and chooses parallel plans only if they are expected to improve performance.

Intra-query parallelism is not used for connections with the priority option set to background. See “priority
option [database]” [SQL Anywhere Server - Database Administration].

Intra-query parallelism is not used if the number of server threads that are currently handling a request
(ActiveReq server property) recently exceeded the number of CPU cores on the computer that the database
server is licensed to use. The exact period of time is decided by the server and is normally a few seconds.
See “Database server properties” [SQL Anywhere Server - Database Administration].

Parallel execution
Whether a query can take advantage of parallel execution depends on a variety of factors:

● the available resources in the system at the time of optimization (such as memory, amount of data in
cache, and so on)

● the number of logical processors on the computer

● the number of disk devices used for the storage of the database, and their speed relative to that of the
processor and the computer's I/O architecture.

● the specific algebraic operators required by the request. SQL Anywhere supports five algebraic operators
that can execute in parallel:

○ parallel sequential scan (table scan)
○ parallel index scan
○ parallel hash join, and parallel versions of hash semijoin and anti-semijoin
○ parallel nested loop joins, and parallel versions of nested loop semijoin and anti-semijoin
○ parallel hash filter
○ parallel hash group by

Query execution algorithms

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 587

A query that uses unsupported operators can still execute in parallel in some cases, but the supported operators
must appear below the unsupported ones in the plan (as viewed in dbisql). A query where most of the
unsupported operators can appear near the top is more likely to use parallelism. For example, a sort operator
cannot be parallelized but a query that uses an ORDER BY on the outermost block may be parallelized by
positioning the sort at the top of the plan and all the parallel operators below it. In contrast, a query that uses
a TOP n and ORDER BY in a derived table is less likely to use parallelism since the sort must appear
somewhere other than the top of the plan.

By default, SQL Anywhere assumes that any dbspace resides on a disk subsystem with a single platter. While
there can be advantages to parallel query execution in such an environment, the optimizer's I/O cost model
for a single device makes it difficult for the optimizer to choose a parallel table or index scan unless the table
data is fully resident in the cache. However, by calibrating the I/O subsystem using the ALTER DATABASE
CALIBRATE PARALLEL READ statement, the optimizer can then cost more accurately the benefits of
parallel execution, and in the case of multiple spindles, the optimizer is much more likely to choose execution
plans with some degree of parallelism.

When intra-query parallelism is used for an access plan, the plan contains an Exchange operator whose effect
is to merge (union) the results of the parallel computation of each subtree. The number of subtrees underneath
the Exchange operator is the degree of parallelism. Each subtree, or access plan component, is a database
server task (see “-gn server option” [SQL Anywhere Server - Database Administration]). The database server
kernel schedules these tasks for execution in the same manner as if they were individual SQL requests, based
on the availability of execution threads (or fibers). This architecture means that parallel computation of any
access plan is largely self-tuning, in that work for a parallel execution task is scheduled on a thread (fiber)
as the server kernel allows, and execution of the plan components is performed evenly.

See also
● “max_query_tasks option [database]” [SQL Anywhere Server - Database Administration]
● “Threading in SQL Anywhere” [SQL Anywhere Server - Database Administration]
● “-gtc server option” [SQL Anywhere Server - Database Administration]
● “Setting the database server's multiprogramming level” [SQL Anywhere Server - Database

Administration]
● “Exchange algorithm (Exchange)” on page 606
● “Reading execution plans” on page 610
● “ALTER DATABASE statement” [SQL Anywhere Server - SQL Reference]

Parallelism in queries
A query is more likely to use parallelism if the query processes a lot more rows than are returned. In this
case, the number of rows processed includes the size of all rows scanned plus the size of all intermediate
results. It does not include rows that are never scanned because an index is used to skip most of the table.
An ideal case is a single-row GROUP BY over a large table, which scans many rows and returns only one.
Multi-group queries are also candidates if the size of the groups is large. Any predicate or join condition that
drops a lot of rows is also a good candidate for parallel processing.

Following is a list of circumstances in which a query can not take advantage of parallelism, either at
optimization or execution time:

● the server computer does not have multiple processors

Query optimization and execution

588 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● the server computer is not licensed to use multiple processors. You can check this by looking at the
NumLogicalProcessorsUsed server property. However, note that hyperthreaded processors are not
counted for intra-query parallelism so you must divide the value of NumLogicalProcessorsUsed by two
if the computer is hyperthreaded.

● the max_query_tasks option is set to 1

● the priority option is set to background

● the statement containing the query is not a SELECT statement

● the value of ActiveReq has been greater than, or equal to, the value of NumLogicalProcessorsUsed at
any time in the recent past (divide the number of processors by two if the computer is hyperthreaded)

● there are not enough available tasks.

See also
● “Parallelism during query execution” on page 587
● “Threading in SQL Anywhere” [SQL Anywhere Server - Database Administration]
● “max_query_tasks option [database]” [SQL Anywhere Server - Database Administration]
● “priority option [database]” [SQL Anywhere Server - Database Administration]
● max_query_tasks, priority, NumLogicalProcessorsUsed, and ActiveReq properties: “Database server

properties” [SQL Anywhere Server - Database Administration]
● “CREATE DATABASE statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]

Table access methods
This section explains the various methods used to access tables, with table and index scans being the most
common methods.

IndexScan method
IndexScan uses an index to determine which rows satisfy a search condition. Index scans help reduce the
set of qualifying rows before accessing the table. Index scans also return rows in sorted order.

IndexScan appears in the short plan as correlation-name<index-name>, where correlation-name
is the correlation name specified in the FROM clause, or the table name if none was specified, and index-
name is the name of the index.

Indexes provide an efficient mechanism for reading a few rows from a large table. However, an index scan
can be more expensive than a sequential scan when reading many rows from a table. Index scans cause pages
to be read from the database in random order, which is more expensive than sequential reads. Index scans
may also reference the same table page multiple times if there are several rows on the page that satisfy the
search condition. If only a few pages are matched by the index scan, it is likely that the pages will remain
in cache, and multiple access does not lead to extra I/O. However, if many pages are matched by the search
condition, they may not all fit in cache. This can lead to the index scan reading the same page from disk
multiple times.

Query execution algorithms

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 589

The optimizer uses an index scan to satisfy a search condition if the search condition is sargable, and if the
optimizer's estimate of the selectivity of the search condition is sufficiently low for the index scan to be
cheaper than a sequential table scan.

An index scan can also evaluate non-sargable search conditions after rows are fetched from the index.
Evaluating conditions in the index scan is slightly more efficient than evaluating them in a filter after the
index scan.

Even if there are no search conditions to satisfy, indexes can also be used to satisfy an ordering requirement,
either explicitly defined in an ORDER BY clause, or implicitly needed for a GROUP BY or DISTINCT
clause. Ordered group-by and ordered distinct methods can return initial rows faster than hash-based
grouping and distinct, but they may be slower at returning the entire result set.

The optimizer tends to prefer index scans over sequential table scans if the optimization_goal setting is first-
row. This is because indexes tend to return the first few rows of a query faster than table scans.

When writing a query, you can specify index hints to tell the optimizer which indexes to use and how to use
them. However, index hints override the query optimizer's decision making logic, and so should be used
only by experienced users. Using index hints may lead to suboptimal access plans and poor performance.
See “FROM clause” [SQL Anywhere Server - SQL Reference].

IndexOnlyScan method (IO)
When an index used by the optimizer contains all the data from the underlying table that is required to satisfy
the query, it may be possible to completely avoid reading values from the underlying table and retrieve the
data directly from the indexes. This is referred to as an index-only retrieval. Index-only retrievals reduce
the amount of I/O and cache required to satisfy a query, and improve performance. The optimizer performs
an index only retrieval whenever possible.

See also
● “FROM clause” [SQL Anywhere Server - SQL Reference]
● “Using predicates in queries” on page 569
● “optimization_goal option [database]” [SQL Anywhere Server - Database Administration]
● “Reading execution plans” on page 610

MultipleIndexScan method (MultIdx)
MultipleIndexScan is used when more than one index can or must be used to satisfy a query that contains a
set of search conditions that are combined with the logical operators AND or OR. MultipleIndexScan
combines multiple IndexScan methods with other operators to satisfy the search conditions.

When multiple indexes are used to evaluate predicates combined using an AND operator, MultipleIndexScan
performs an index intersection operation. When used to evaluate predicates combined using an OR operator,
MultipleIndexScan performs an index union operation. However, note that MultipleIndexScan is not
restricted to the union or intersection operations; for example, MultipleIndexScan may perform and index
union by using outer joins.

Query optimization and execution

590 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

You can determine whether a multiple index scan is used for a particular query by examining the execution
plan. In a short plan, a multiple index scan method appears as table-name<MultIdx..., followed by
a list of the indexes that were used.

In long and graphical plans, the use of a multiple index scan is indicated by a MultipleIndexScan node, where
the entries under the node provide details about which indexes were used, and how their results were
combined.

See also
● “FROM clause” [SQL Anywhere Server - SQL Reference]
● “Using predicates in queries” on page 569
● “Reading execution plans” on page 610

ParallelIndexScan method
When ParallelIndexScan is used, individual IndexScan operators work together under an Exchange operator
to do an index scan in parallel. As each IndexScan operator requires rows, it takes the next unprocessed leaf
page and returns rows from the page, one at a time. In this way, pages are divided between the IndexScan
operators to achieve parallel processing. Regardless of how the pages are distributed among the IndexScan
operators, all the rows are visited.

TableScan method (seq)
TableScan reads all the rows in all the pages of a table in the order in which they are stored in the database.
This is known as a sequential table scan.

Sequential table scans appear in the short and long text plan as correlation_name<seq>, where
correlation_name is the correlation name specified in the FROM clause, or the table name if none was
specified.

Sequential table scans are used when it is likely that a majority of table pages have a row that match the
query's search condition or a suitable index is not defined.

Although sequential table scans may read more pages than index scans, the disk I/O can be substantially
cheaper because the pages are read in contiguous blocks from the disk (this performance improvement is
best if the database file is not fragmented on the disk). Sequential I/O reduces disk head movement and
rotational latency. For large tables, sequential table scans also read groups of several pages at a time. This
further reduces the cost of sequential table scans relative to index scans.

Although sequential table scans may take less time than index scans that match many rows, they also cannot
exploit the cache as effectively as index scans if the scan is executed many times. Since index scans are
likely to access fewer table pages, it is more likely that the pages will be available in the cache, resulting in
faster access. Because of this, it is much better to have an index scan for table accesses that are repeated,
such as the right-hand side of a nested loops join.

For transactions executing at isolation level 3, SQL Anywhere acquires a lock on each row that is accessed
—even if it does not satisfy the search condition. At this isolation level, sequential table scans acquire locks
on all the rows in the table, while index scans only acquire locks on the rows that match the search condition.

Query execution algorithms

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 591

This means that sequential table scans may substantially reduce the throughput in multi-user environments.
For this reason, the optimizer strongly prefers indexed access over sequential access at isolation level 3.
Sequential scans can efficiently evaluate simple comparison predicates between table columns and constants
during the scan. Other search conditions that refer only to the table being scanned are evaluated after these
simple comparisons, and this approach is slightly more efficient than evaluating the conditions in a filter
after the sequential scan.

ParallelTableScan method
When ParallelTableScan is used, individual TableScan operators work together under an Exchange operator
to do a sequential table scan in parallel. As each TableScan operator requires rows, it takes the next
unprocessed table page and returns rows from the page, one at a time. In this way, pages are divided between
the TableScan operators to achieve parallel processing. Regardless of how the pages are distributed among
the parallel TableScan operators, all the rows in the table are visited.

HashTableScan method (HTS)
HashTableScan scans the build side of a hash join as if it were an in-memory table, thereby converting a
plan with first structure below, to that of the second structure below, where idx is an index that can be used
to probe the join key values stored in the hash table:

table1<seq>*JH (<operator>... (table2<seq>))
table1<seq>*JF (<operator>... (HTS JNB table2<idx>))
When there are intervening operators between the hash join and the scan, a hash table scan reduces the
number of rows needed that must be processed by other operators. This strategy is most useful when the
index probes are highly selective, for example, when the number of rows in the build side is small compared
to the cardinality of the index.

Note
If the build side of the hash join is large, it is more effective to do a regular sequential scan.

The optimizer computes a threshold build size, similar to how it computes the threshold for the hash join
alternate execution. If the number of rows in the build side exceeds this threshold, HashTableScan is
abandoned and the (HTS JNB table<idx>) is treated as a sequential scan (table<seq>) during
execution.

Note
The sequential strategy is used if the build side of the hash table has to spill to disk.

RowIdScan method (ROWID)
RowIdScan is used to locate a row in a base or temporary table based on an equality comparison predicate
that uses the ROWID function. The comparison predicate may refer to a constant literal, but more commonly

Query optimization and execution

592 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

the ROWID function is used with a row identifier value returned by a system function or procedure call,
such as sa_locks.

RowId scans appear in the short and long text plan as correlation-name<ROWID>, where correlation-
name is the correlation name specified in the FROM clause, or the table name if no correlation name was
specified.

It is impossible for RowIdScan to differentiate between an invalid row identifier for the given table referenced
by the ROWID function, and a situation where the given row identifier no longer exists. So, RowIdScan
returns the empty set if the row identifier specified in the comparison predicate cannot be found in the table.

See also
● “ROWID function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “sa_locks system procedure” [SQL Anywhere Server - SQL Reference]

Types of algorithms
Join algorithms

SQL Anywhere supports a variety of different join implementations that the query optimizer chooses from.
Each of the join algorithms has specific characteristics that make it more or less suitable for a given query
and a given execution environment.

The order of the joins in an access plan may or may not correspond to the ordering of the joins in the original
SQL statement; the query optimizer is responsible for choosing the best join strategy for each query based
on the lowest execution cost. In some situations, query rewrite optimizations may be utilized for complex
statements that either increase, or decrease, the number of joins computed for any particular statement.

There are three classes of join algorithms supported by SQL Anywhere, though each of them has additional
variants:

● Nested Loops Join The most straightforward algorithm is Nested Loops Join. For each row on the
left-hand side, the right-hand side is scanned for a match based on the join condition. Ordinarily, rows
on the right-hand side are accessed through an index to reduce the overall execution cost. This scenario
is frequently referred to as an Index Nested Loops Join.

Nested Loops Join has variants that support LEFT OUTER and FULL OUTER joins. A nested loops
implementation can also be used for semijoins (most often used for processing EXISTS subqueries).

A Nested Loops Join can be utilized no matter what the characteristics of the join condition, although a
join over inequality conditions can be very inefficient to compute.

A Nested Loops FULL OUTER join is very expensive to execute over inputs of any size, and is only
chosen by the query optimizer as a last resort when no other join algorithm is possible.

● Merge Join A Merge Join relies on its two inputs being sorted on the join attributes. The join condition
must contain at least one equality predicate in order for this method to be chosen by the query optimizer.
The basic algorithm is a straightforward merge of the two inputs: when the values of the two join attributes
differ, the algorithm scrolls to the next row of the left or right-hand side, depending on which side has
the lower of the two values. Backtracking may be necessary when there is more than one match.

Query execution algorithms

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 593

There are Merge Join variants to support LEFT OUTER and FULL OUTER joins. Merge Join for FULL
OUTER Joins is considerably more efficient than its nested loops counterpart.

The basic Merge Join algorithm is also used to support the SQL set operators EXCEPT and INTERSECT,
although these variants are explicitly named as EXCEPT or INTERSECT algorithms within an access
plan.

● Hash Join A Hash Join is the most versatile join method supported by the SQL Anywhere database
server. In a nutshell, the Hash Join algorithm builds an in-memory hash table of the smaller of its two
inputs, and then reads the larger input and probes the in-memory hash table to find matches.

Hash Join variants exist to support LEFT OUTER join, FULL OUTER join, semijoin, and anti-semijoin.
In addition, SQL Anywhere supports hash join variants for recursive INNER and LEFT OUTER joins
when a recursive UNION query expression is being used.

The Hash Inner Join, Left Outer Join, Semijoin, and Antisemijoin algorithms can be executed in parallel.

If the in-memory hash table constructed by the algorithm does not fit into available memory, the Hash
Join algorithm splits the input into partitions (possibly recursively for very large inputs) and performs
the join on each partition independently. If there is not enough cache memory to hold all the rows that
have a particular value of the join attributes, then, if possible, each Hash Join dynamically switches to
an index-based nested loops strategy after first discarding the interim results to avoid exhausting the
statement's memory consumption quota.

Variants of Hash Join are also utilized to support the SQL query expressions EXCEPT and INTERSECT,
although these variants are explicitly named as EXCEPT or INTERSECT algorithms within an access
plan.

HashJoin algorithms (JH, JHSP, JHFO, JHAP, JHO, JHPO)

HashJoin builds an in-memory hash table of the smaller of its two inputs, and then reads the larger input and
probes the in-memory hash table to find matches, which are written to a work table. If the smaller input does
not fit into memory, HashJoin partitions both inputs into smaller work tables. These smaller work tables are
processed recursively until the smaller input fits into memory.

HashJoin also:

● computes all the rows in its result before returning the first row

● uses a work table, which provides insensitive semantics unless a value-sensitive cursor has been
requested

● can be executed in parallel

● locks rows in its inputs before they are copied to memory

HashJoin has the best performance if the smaller input fits into memory, regardless of the size of the larger
input. In general, the optimizer chooses hash join if one of the inputs is expected to be substantially smaller
than the other.

If HashJoin executes in an environment where there is not enough cache memory to hold all the rows that
have a particular value of the join attributes, then it is not able to complete. In this case, HashJoin discards

Query optimization and execution

594 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

the interim results and an indexed-based NestedLoopsJoin is used instead. All the rows of the smaller table
are read and used to probe the work table to find matches. This indexed-based strategy is significantly slower
than other join methods, and the optimizer avoids generating access plans using a hash join if it detects that
a low memory situation may occur during query execution.

The amount of memory that can be used by a HashJoin operator is dependent upon the multiprogramming
level of the server, and the number of active connections. See “Threading in SQL Anywhere” [SQL Anywhere
Server - Database Administration], and “Setting the database server's multiprogramming level” [SQL
Anywhere Server - Database Administration].

When the nested loops strategy is needed due to low memory, a performance counter is incremented. You
can read this monitor with the QueryLowMemoryStrategy database or connection property, or in the Query:
Low Memory Strategies counter in the Windows Performance Monitor.

In low memory conditions, HashJoin is disabled on Windows Mobile.

Note
The Windows Performance Monitor may not be available on Windows Mobile.

For more information, see QueryLowMemoryStrategy in “Connection properties” [SQL Anywhere Server -
Database Administration], and “Setting the database server's multiprogramming level” [SQL Anywhere
Server - Database Administration].

RecursiveHashJoin algorithm (JHR)

RecursiveHashJoin is a variant of HashJoin, and is used for recursive union queries. For more information,
see “HashJoin algorithms (JH, JHSP, JHFO, JHAP, JHO, JHPO)” on page 594, and “Recursive common
table expressions” on page 441.

RecursiveLeftOuterHashJoin algorithm (JHRO)

RecursiveLeftOuterHashJoin is a variant of HashJoin, and is used for certain recursive union queries. For
more information, see “HashJoin algorithms (JH, JHSP, JHFO, JHAP, JHO, JHPO)” on page 594, and
“Recursive common table expressions” on page 441.

HashSemijoin algorithm (JHS)

HashSemijoin performs a semijoin between the left-hand side and the right-hand side. The right-hand side
is only used to determine which rows from the left-hand side appear in the result. With HashSemijoin, the
right-hand side is read to form an in-memory hash table which is subsequently probed by each row from the
left-hand side. If a match is found, the left-hand side row is output to the result and the match process starts
again for the next left-hand side row. At least one equality join condition must be present for HashSemijoin
to be considered by the query optimizer. As with NestedLoopsSemijoin, HashSemijoin is utilized in cases
where the join's inputs include table expressions from an existentially-quantified (IN, SOME, ANY,
EXISTS) nested query that has been rewritten as a join. HashSemijoin tends to outperform

Query execution algorithms

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 595

NestedLoopsSemijoin when the join condition includes inequalities, or if a suitable index does not exist to
make indexed retrieval of the right-hand side sufficiently inexpensive.

As with HashJoin, HashSemijoin may revert to a nested loops semijoin strategy if there is insufficient cache
memory to allow the operation to complete. Should this occur, a performance counter is incremented. You
can read this monitor with the QueryLowMemoryStrategy database or connection property, or in the Query:
Low Memory Strategies counter in the Windows Performance Monitor.

The amount of memory that can be used by a HashSemijoin operator is dependent upon the
multiprogramming level of the server, and the number of active connections. See “Threading in SQL
Anywhere” [SQL Anywhere Server - Database Administration], and “Setting the database server's
multiprogramming level” [SQL Anywhere Server - Database Administration].

Note
The Windows Performance Monitor may not be available on Windows Mobile.

For more information, see QueryLowMemoryStrategy in “Connection properties” [SQL Anywhere Server -
Database Administration].

HashAntisemijoin algorithm (JHA)

HashAntisemijoin performs an anti-semijoin between the left-hand side and the right-hand side. The right-
hand side is only used to determine which rows from the left-hand side appear in the result. With
HashAntisemijoin, the right-hand side is read to form an in-memory hash table that is subsequently probed
by each row from the left-hand side. Each left-hand side row is output only if it fails to match any row from
the right-hand side. HashAntisemijoin is used in cases where the join's inputs include table expressions from
a quantified (NOT IN, ALL, NOT EXISTS) nested query that can be rewritten as an antijoin.
HashAntisemijoin tends to outperform the evaluation of the search condition referencing the quantified query
if a suitable index does not exist to make indexed retrieval of the right-hand side sufficiently inexpensive.

As with HashJoin, HashAntisemijoin may revert to a nested loops strategy if there is insufficient cache
memory to allow the operation to complete. Should this occur, a performance counter is incremented. You
can read this monitor with the QueryLowMemoryStrategy database or connection property, or in the Query:
Low Memory Strategies counter in the Windows Performance Monitor.

The amount of memory that can be used by a HashAntisemijoin operator is dependent upon the
multiprogramming level of the server, and the number of active connections. See “Threading in SQL
Anywhere” [SQL Anywhere Server - Database Administration], and “Setting the database server's
multiprogramming level” [SQL Anywhere Server - Database Administration].

Note
The Windows Performance Monitor may not be available on Windows Mobile.

For more information, see QueryLowMemoryStrategy in “Connection properties” [SQL Anywhere Server -
Database Administration].

Query optimization and execution

596 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MergeJoin algorithms (JM, JMFO, JMO)

MergeJoin reads two inputs that are both ordered by the join attributes. For each row of the left input, the
algorithm reads all the matching rows of the right input by accessing the rows in sorted order.

If the inputs are not already ordered by the join attributes (perhaps because of an earlier merge join or because
an index was used to satisfy a search condition), then the optimizer adds a sort to produce the correct row
order. This sort adds cost to the merge join.

One advantage of MergeJoin, as compared to HashJoin, is that the cost of sorting can be amortized over
several joins, provided that the merge joins are over the same attributes. The optimizer chooses MergeJoin
over HashJoin if the sizes of the inputs are likely to be similar, or if it can amortize the cost of the sort over
several operations.

NestedLoopsJoin algorithms (JNL, JNLFO, JNLO)

NestedLoopsJoin computes the join of its left and right-hand sides by completely reading the right-hand side
for each row of the left-hand side. (The syntactic order of tables in the query does not matter because the
optimizer chooses the appropriate join order for each block in the request.)

The optimizer may choose NestedLoopsJoin if the join condition does not contain an equality condition, or
if the statement is being optimized with a first row optimization goal (that is, either the optimization_goal
option is set to First-Row, or FASTFIRSTROW is specified as a table hint in the FROM clause.

Since NestedLoopsJoin reads the right-hand side many times, it is very sensitive to the cost of the right-hand
side. If the right-hand side is an index scan or a small table, then the right-hand side can likely be computed
using cached pages from previous iterations. However, if the right-hand side is a sequential table scan or an
index scan that matches many rows, then the right-hand side needs to be read from disk many times.
Typically, NestedLoopsJoin is less efficient than other join methods. However, NestedLoopsJoin can provide
the first matching row quickly compared to join methods that must compute their entire result before
returning.

NestedLoopsJoin is the only join algorithm that can provide sensitive semantics for queries containing joins.
This means that sensitive cursors on joins can only be executed with NestedLoopsJoin.

See also
● “optimization_goal option [database]” [SQL Anywhere Server - Database Administration]
● “FROM clause” [SQL Anywhere Server - SQL Reference]

NestedLoopsSemijoin algorithm (JNLS)

Similar to NestedLoopsJoin, NestedLoopsSemijoin joins its inputs by scanning the right-hand side for each
row of the left-hand side. As with NestedLoopsJoin, the right-hand side may be read many times, so for
larger inputs an index scan is preferable.

NestedLoopsSemijoin differs from NestedLoopsJoin in two respects. First, NestedLoopsSemijoin only
outputs values from the left-hand side; the right-hand side is used only for restricting which rows of the left-
hand side appear in the result. Second, NestedLoopsSemijoin stops each search of the right-hand side when

Query execution algorithms

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 597

the first match is encountered. NestedLoopsSemijoin can be used when inputs to the join include table
expressions from an existentially-quantified (IN, SOME, ANY, EXISTS) nested query that has been
rewritten as a join.

NestedLoopsAntisemijoin algorithm (JNLA)

Similar to the NestedLoopsJoin algorithm, NestedLoopsAntisemijoin joins its inputs by scanning the right-
hand side for each row of the left-hand side. As with NestedLoopsJoin, the right-hand side may be read many
times, so for larger inputs an index scan is preferable. NestedLoopsAntisemijoin differs from
NestedLoopsJoin in that it only outputs values from the left-hand side; the right-hand side is used only for
restricting which rows of the left-hand side appear in the result. Specifically, values from the left-hand side
are only included if they have no corresponding value on the right-hand side.

Duplicate elimination algorithms
A duplicate elimination operator produces an output that has no duplicate rows. Duplicate elimination nodes
may be introduced by the optimizer, for example, when converting a nested query into a join.

For more information, see “HashDistinct algorithm (DistH)” on page 598, and “OrderedDistinct algorithm
(DistO)” on page 599.

HashDistinct algorithm (DistH)

HashDistinct takes a single input and returns all distinct rows. HashDistinct does this by reading its input,
and building an in-memory hash table. If an input row is found in the hash table, it is ignored; otherwise, it
is written to a work table. If the input does not completely fit into the in-memory hash table, it is partitioned
into smaller work tables, and processed recursively.

HashDistinct also:

● works very well if the distinct rows fit into an in-memory table, irrespective of the total number of rows
in the input.

● uses a work table, and as such can provide insensitive or value sensitive semantics.

● returns a row when it finds one that has not previously been returned. However, the results of a hash
distinct must be fully materialized before returning from the query. If necessary, the optimizer adds a
work table to the execution plan to ensure this.

● locks the rows of its input.

The optimizer avoids generating access plans using the hash distinct algorithm if it detects that a low memory
situation may occur during query execution. If HashDistinct executes in an environment where there is very
little cache memory available, then it is not able to complete. In this case, HashDistinct discards its interim
results, and an internal low memory approach is used instead.

The amount of memory that can be used by a HashDistinct operator is dependent upon the multiprogramming
level of the server, and the number of active connections. See “Threading in SQL Anywhere” [SQL Anywhere

Query optimization and execution

598 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Server - Database Administration], and “Setting the database server's multiprogramming level” [SQL
Anywhere Server - Database Administration].

OrderedDistinct algorithm (DistO)

If the input is ordered by all the columns, then OrderedDistinct can be used. This algorithm reads each row
and compares it to the previous row. If it is the same, it is ignored; otherwise, it is output. OrderedDistinct
is effective if rows are already ordered (perhaps because of an index or a merge join); if the input is not
ordered, the optimizer inserts a sort. No work table is used by the OrderedDistinct itself, but one is used by
any inserted sort.

Grouping algorithms
Grouping algorithms compute a summary of their input. They are applicable only if the query contains a
GROUP BY clause, or if the query contains aggregate functions (such as SELECT COUNT(*) FROM
T).

For more information, see “HashGroupBy algorithm (GrByH)” on page 599, “OrderedGroupBy algorithm
(GrByO)” on page 600, and “SingleRowGroupBy algorithm (GrByS)” on page 601.

HashGroupBy algorithm (GrByH)

HashGroupBy builds an in-memory hash table containing one row per group. As input rows are read, the
associated group is looked up in the work table. The aggregate functions are updated, and the group row is
rewritten to the work table. If no group record is found, a new group record is initialized and inserted into
the work table.

HashGroupBy computes all the rows of its result before returning the first row, and can be used to satisfy a
fully-sensitive or values-sensitive cursor. The results of the hash group by must be fully materialized before
returning from the query. If necessary, the optimizer adds a work table to the execution plan to ensure this.

HashGroupBy can be executed in parallel.

HashGroupBy works very well if the groups fit into memory, regardless of the size of the input. If the hash
table doesn't fit into memory, the input is partitioned into smaller work tables, which are recursively
partitioned until they fit into memory. The optimizer avoids generating access plans using HashGroupBy if
it detects that a low memory situation may occur during query execution. If there is not enough memory for
the partitions, the optimizer discards the interim results from the HashGroupBy, and uses an internal low
memory strategy instead.

The amount of memory that can be used by a HashGroupBy operator is dependent upon the
multiprogramming level of the server, and the number of active connections. See “Threading in SQL
Anywhere” [SQL Anywhere Server - Database Administration], and “Setting the database server's
multiprogramming level” [SQL Anywhere Server - Database Administration].

Query execution algorithms

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 599

ClusteredHashGroupBy algorithm (GrByHClust)
In some cases, values in the grouping columns of the input table are clustered, so that similar values appear
close together. For example, if a table contains a column that is always set to the current date, all rows with
a single date tend to be relatively close within the table. ClusteredHashGroupBy exploits this clustering.

The optimizer may use ClusteredHashGroupBy when grouping tables that are significantly larger than the
available memory. In particular, it is effective when the HAVING predicate returns only a small proportion
of rows.

ClusteredHashGroupBy can lead to significant wasted work on the part of the optimizer if it is chosen in an
environment where data is being updated at the same time that queries are being executed.
ClusteredHashGroupBy is therefore most appropriate for OLAP workloads characterized by occasional
batch-style updates and read-based queries. Set the optimization_workload option to OLAP to instruct the
optimizer that it should include ClusteredHashGroupBy in the possibilities it investigates. See
“optimization_workload option [database]” [SQL Anywhere Server - Database Administration].

When creating an index or foreign key that can be used in an OLAP workload, specify the FOR OLAP
WORKLOAD clause. This clause causes the database server to maintain a statistic used by
ClusteredHashGroupBy regarding the maximum page distance between two rows within the same key. See
“CREATE INDEX statement” [SQL Anywhere Server - SQL Reference], “CREATE TABLE statement”
[SQL Anywhere Server - SQL Reference], and “ALTER TABLE statement” [SQL Anywhere Server - SQL
Reference].

For more information about OLAP workloads, see “OLAP support” on page 453.

HashGroupBySets algorithm (GrByHSets)

A variant of HashGroupBy, HashGroupBySets is used when performing GROUPING SETS queries.

HashGroupBySets cannot be executed in parallel.

For more information, see “HashGroupBy algorithm (GrByH)” on page 599.

OrderedGroupBy algorithm (GrByO)

OrderedGroupBy reads an input that is ordered by the grouping columns. As each row is read, it is compared
to the previous row. If the grouping columns match, then the current group is updated; otherwise, the current
group is output and a new group is started.

OrderedGroupBySets algorithm (GrByOSets)

A variant of OrderedGroupBy, OrderedGroupBySets is used when performing GROUPING SETS queries.
This algorithm requires that the input be sorted by grouping columns. See “OrderedGroupBy algorithm
(GrByO)” on page 600.

Query optimization and execution

600 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SingleRowGroupBy algorithm (GrByS)

When no GROUP BY is specified, SingleRowGroupBy is used to produce a single row aggregate. A single
group row is kept in memory and updated for each input row.

SortedGroupBySets algorithm (GrBySSets)

SortedGroupBySets is used when processing OLAP queries that contain GROUPING SETS.

Query expression algorithms
The query expression algorithms can be broken into the following categories:

● Except algorithms, which include MergeExcept and HashExcept

● Intersect algorithms, which include MergeIntersect and HashIntersect

● Union algorithms, which include Union, UnionAll, and RecursiveUnion

Except algorithms (EAH, EAM, EH, EM)

The SQL Anywhere query optimizer chooses between two physical implementations of the set difference
SQL operator EXCEPT: a sort-based variant, MergeExcept (EM) and a hash-based variant, HashExcept
(EH).

MergeExcept uses MergeJoin to compute the set difference between the two inputs through analyzing row
matches in sorted order. Often, an explicit sort of the two inputs is required. Similarly, HashExcept uses
HashAntisemijoin to compute the set difference between the two inputs, and a left outer hash join to compute
the difference of the two inputs (EXCEPT ALL).

HashExcept may dynamically switch to a nested loops strategy if a memory shortage is detected. When this
occurs, a performance counter is incremented. You can read this monitor with the
QueryLowMemoryStrategy database or connection property, in the QueryLowMemoryStrategy statistic in
the graphical plan (when run with statistics), or in the Query: Low Memory Strategies counter in the Windows
Performance Monitor.

HashExcept is disabled on Windows Mobile in low memory situations.

In the case of EXCEPT, MergeExcept and HashExcept are coupled with one of the DISTINCT algorithms
to ensure that the result does not contain duplicates. For EXCEPT ALL, HashExceptAll and MergeExceptAll
are coupled with RowReplicate, which computes the correct number of duplicate rows in the result.

Query execution algorithms

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 601

See also
● “EXCEPT clause” [SQL Anywhere Server - SQL Reference]
● “Performing set operations on query results with UNION, INTERSECT, and EXCEPT” on page 383
● QueryLowMemoryStrategy connection property: “Connection properties” [SQL Anywhere Server -

Database Administration]
● QueryLowMemoryStrategy database property: “Database properties” [SQL Anywhere Server - Database

Administration]
● Query: Low Memory Strategies statistic: “Performance Monitor statistics” on page 217

Intersect algorithms (IH, IM, IAH, IAM)

The SQL Anywhere query optimizer chooses between two physical implementations of the set intersection
SQL operator INTERSECT: a sort-based variant, MergeIntersect (IM), and a hash-based variant,
HashIntersect (IH).

MergeIntersect uses MergeJoin to compute the set intersection between the two inputs through analyzing
row matches in sorted order. Often, an explicit sort of the two inputs is required. Similarly, HashIntersect
uses HashJoin to compute the set and bag intersection between the two inputs (INTERSECT and
INTERSECT ALL).

If necessary, HashIntersect may dynamically switch to a nested loops strategy if a memory shortage is
detected. When this occurs, a performance counter is incremented. You can read this monitor with the
QueryLowMemoryStrategy database or connection property, in the QueryLowMemoryStrategy statistic in
the graphical plan (when run with statistics), or in the Query: Low Memory Strategies counter in the Windows
Performance Monitor.

HashIntersect is disabled on Windows Mobile in low memory situations.

In the case of INTERSECT, MergeIntersect or HashIntersect is coupled with one of the DISTINCT
algorithms to ensure that the result does not contain duplicates. For INTERSECT ALL operations,
MergeIntersectAll and HashIntersectAll are coupled with RowReplicate, which computes the correct
number of duplicate rows in the result.

See also
● “INTERSECT clause” [SQL Anywhere Server - SQL Reference]
● “Performing set operations on query results with UNION, INTERSECT, and EXCEPT” on page 383
● QueryLowMemoryStrategy connection property: “Connection properties” [SQL Anywhere Server -

Database Administration]
● QueryLowMemoryStrategy database property: “Database properties” [SQL Anywhere Server - Database

Administration]
● Query: Low Memory Strategies statistic: “Performance Monitor statistics” on page 217

RecursiveTable algorithm (RT)

A recursive table is a common table expression constructed as a result of a WITH clause in a query, where
the WITH clause is used for recursive union queries. Common table expressions are temporary views that

Query optimization and execution

602 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

are known only within the scope of a single SELECT statement. See “Common table
expressions” on page 433.

RecursiveUnion algorithm (RU)

RecursiveUnion is employed during the execution of recursive union queries. See “Recursive common table
expressions” on page 441.

RowReplicate algorithm (RR)

RowReplicate is used during the execution of set operations such as EXCEPT ALL and INTERSECT ALL.
It is a feature of such operations that the number of rows in the result set is explicitly related to the number
of rows in the two sets being operated on. RowReplicate ensures that the number of rows in the result set is
correct. See “Performing set operations on query results with UNION, INTERSECT, and
EXCEPT” on page 383.

UnionAll algorithm (UA)

UnionAll reads rows from each of its inputs and outputs them, regardless of duplicates. This algorithm is
used to implement UNION and UNION ALL clauses. In the UNION case, a duplicate elimination algorithm
such as HashDistinct or OrderedDistinct is needed to remove any duplicates generated by UnionAll.

See “HashDistinct algorithm (DistH)” on page 598, and “OrderedDistinct algorithm (DistO)” on page 599.

Sorting algorithms
Sorting algorithms are applicable when the query includes an ORDER BY clause, or when the query's
execution strategy requires a total sort of its input.

For more information, see “Sort algorithm (Sort)” on page 603 and “UnionAll algorithm
(UA)” on page 603.

Sort algorithm (Sort)

Sort reads its input into memory, sorts it in memory, and then outputs the results. If the input does not
completely fit into memory, then several sorted runs are created and then merged together. Sort does not
return any rows until it has read all the input rows. Sort locks its input rows.

If Sort executes in an environment where there is very little cache memory available, it may not be able to
complete. In this case, Sort orders the remainder of the input using an indexed-based sort method. Input rows
are read and inserted into a work table, and an index is built on the ordering columns of the work table. In
this case, rows are read from the work table using a complex index scan. This indexed-based strategy is
significantly slower. The optimizer avoids generating access plans using Sort if it detects that a low memory
situation may occur during query execution. When the index-based strategy is needed due to low memory,

Query execution algorithms

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 603

a performance counter is incremented; you can read this monitor with the QueryLowMemoryStrategy
property, or in the Query: Low Memory Strategies counter in the Windows Performance Monitor.

The amount of memory that can be used by a Sort operator is dependent upon the multiprogramming level
of the server, and the number of active connections. See “Threading in SQL Anywhere” [SQL Anywhere
Server - Database Administration], and “Setting the database server's multiprogramming level” [SQL
Anywhere Server - Database Administration].

Sort performance is affected by the size of the sort key, the row size, and the total size of the input. For large
rows, it may be cheaper to use a VALUES SENSITIVE cursor. In that case, columns in the SELECT-list
are not copied into the work tables used by the sort. While Sort does not write output rows to a work table,
the results of Sort must be materialized before rows are returned to the application. If necessary, the optimizer
adds a work table to ensure this.

SortTopN algorithm (SrtN)

SortTopN is used for queries that contain a TOP N clause and an ORDER BY clause. It is an efficient
algorithm for sorting only those rows required in the result set.

Subquery and function caching
When SQL Anywhere processes a subquery, it caches the result. This caching is done on a request-by-request
basis; cached results are never shared by concurrent requests or connections. Should SQL Anywhere need
to re-evaluate the subquery for the same set of correlation values, it can simply retrieve the result from the
cache. In this way, SQL Anywhere avoids many repetitious and redundant computations. When the request
is completed (the query's cursor is closed), SQL Anywhere releases the cached values.

As the processing of a query progresses, SQL Anywhere monitors the frequency with which cached subquery
values are reused. If the values of the correlated variable rarely repeat, then SQL Anywhere needs to compute
most values only once. In this situation, SQL Anywhere recognizes that it is more efficient to recompute
occasional duplicate values, than to cache numerous entries that occur only once. So, the database server
suspends the caching of this subquery for the remainder of the statement and proceeds to re-evaluate the
subquery for each and every row in the outer query block.

SQL Anywhere also does not cache if the size of the dependent column is more than 255 bytes. In such
cases, you may want to rewrite your query or add another column to your table to make such operations
more efficient.

Function caching

Some built-in and user-defined functions are cached in the same way that subquery results are cached. This
can result in a substantial improvement for expensive functions that are called during query processing with
the same parameters. However, it may mean that a function is called fewer times than would otherwise be
expected.

For a function to be cached, it must satisfy two conditions:

● It must always return the same result for a given set of parameters.

Query optimization and execution

604 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● It must have no side effects on the underlying data.

Functions that satisfy these conditions are called deterministic or idempotent functions. SQL Anywhere
treats all user-defined functions as deterministic (unless they specifically declared NOT DETERMINISTIC
at creation time). That is, the database server assumes that two successive calls to the same function with
the same parameters returns the same result, and does not have any unwanted side-effects on the query
semantics.

Built-in functions are treated as deterministic with a few exceptions. The RAND, NEW_ID, and
GET_IDENTITY functions are treated as non-deterministic, and their results are not cached.

For more information about user-defined functions, see “CREATE FUNCTION statement (web services)”
[SQL Anywhere Server - SQL Reference].

Miscellaneous algorithms
The following are additional algorithms that can be used in an access plan.

DecodePostings (DP)

A text index is stored in compressed chunks in a table. DecodePostings decodes positional information for
the terms in the text index.

See also “Full text searching” on page 311.

DerivedTable algorithm (DT)

A derived table is a SELECT statement included in the FROM clause of a query. The result set of the SELECT
statement is logically treated as if it were a table. The query optimizer may also generate derived tables
during query rewrites, for example in queries including the set based operations UNION, INTERSECT, or
EXCEPT. The graphical plan displays the name of the derived table and the list of columns that were
computed.

A derived table embodies a portion of an access plan that cannot be merged, or flattened, into the other parts
of the statement's access plan without changing the query's result. A derived table is used to enforce the
semantics of derived tables specified in the original statement, and may appear in a plan due to query rewrite
optimizations and a variety of other reasons, particularly when the query involves one or more outer joins.

For more information about derived tables, see “The FROM clause: Specifying tables” on page 291 and
“FROM clause” [SQL Anywhere Server - SQL Reference].

Example
The following query has derived tables in its graphical plan:

SELECT EmployeeID FROM Employees
UNION ALL
SELECT DepartmentID FROM (
 SELECT TOP 5 DepartmentID

Query execution algorithms

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 605

 FROM Departments
 ORDER BY DepartmentName DESC) MyDerivedTable;

Exchange algorithm (Exchange)

Exchange is used to implement intra-query parallelism when processing a SELECT statement. An Exchange
operator has two or more child subtrees, each of which executes in parallel. As each subtree executes, it fills
up buffers of rows that are then consumed by the parent operator of the exchange. The result of an exchange
is the union of the results from its children. Each child of an exchange uses one task, as does the parent.
Therefore, a plan using a single exchange with two children requires three tasks to execute.

Exchange is only used when processing SELECT statements, and when intra-query parallelism is enabled.

For more information about parallelism, see “Threading in SQL Anywhere” [SQL Anywhere Server -
Database Administration].

Filter algorithms (Filter, PreFilter)

Filters apply search conditions including any type of predicate, comparisons involving subselects, and
EXISTS and NOT EXISTS subqueries (and other forms of quantified subqueries). The search conditions
appear in the statement in the WHERE and HAVING clauses, and in the ON conditions of JOINS in the
FROM clause.

The optimizer is free to simplify and alter the set of predicates in the search condition as it sees fit, and to
construct an access plan that applies the conditions in an order different from the order specified in the
original statement. Query rewrite optimizations may make substantial changes to the set of predicates
evaluated in a plan.

In many situations, a predicate in a query may not result in the existence of Filter in the access plan. For
example, various algorithms, such as IndexScan, have the ability to enforce the application of a predicate
without the need for an explicit operator. For example, consider a BETWEEN predicate involving two literal
constants, and the column referenced in the predicate is indexed. The BETWEEN predicate can be enforced
by the lower and upper bounds of the index scan, and the plan for the query will not contain a Filter. Predicates
that are join conditions also do not normally appear in an access plan as a filter.

PreFilter is the same as Filter, except that the expressions used in the predicates of a PreFilter do not depend
on any table or view referenced in the query. As a simple example, the search condition in the clause WHERE
1 = 2 can be evaluated as a pre-filter.

See also
● “The WHERE clause: Specifying rows” on page 293
● “EXISTS search condition” [SQL Anywhere Server - SQL Reference]

Hash filter algorithms (HF, HFP)

A hash filter, sometimes referred to as a bloom filter, is a data structure that represents the distribution of
values in a column or set of columns. The hash filter can be viewed as a (long) bit string where a 1 bit

Query optimization and execution

606 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

indicates the existence of a particular row, and a 0 bit indicates the lack of any row at that bit position. By
hashing the values from a set of rows into bit positions in the filter, the database server can determine whether
there is a matching row of that value (subject to the existence of hash collisions).

For example, consider the plan:

R<idx> *JH S<seq> JH* T<idx>

Here you are joining R to S and T. The database server reads all the rows of R before reading any row from
T. If a hash filter is built using the rows of R returned by the index scan, then the database server can
immediately reject rows of T that can not possibly join with R. This reduces the number of rows that must
be stored in the second hash join.

A hash filter may be used in queries that satisfy both of the following conditions:

● An operation in the query reads its entire input before returning a row to later operations. For example,
a hash join of two tables on a single column requires that all the relevant rows from one of the inputs be
read to form the hash table for the join.

● A subsequent operation in the query's access plan refers to the rows in the result of that operation. For
example, a second join on the same column as the first would use only those rows that satisfied the first
join.

In this circumstance, the hash filter constructed as a result of the first join can substantially improve the
performance of the second join. This is achieved by performing a lookaside operation into the hash filter's
bit string to determine if any row has been previously processed successfully by the first join—if no such
row exists, the hash table probe for the second join can be avoided entirely since the lack of a 1 bit in the
hash filter signifies that the probe would fail to yield a match.

InList algorithm (IN)

InList is used in cases where an IN-list predicate can be satisfied using an index. For example, in the following
query, the optimizer recognizes that it can access the Employees table using its primary key index.

SELECT *
FROM Employees
WHERE EmployeeID IN (102, 105, 129);

To do this, a join is built with a special in-list table on the left-hand side. Rows are fetched from the in-list
table and used to probe the Employees table.

To use InList, each of the elements in the IN list predicate must be a constant, or a value that could be
evaluated to a constant value at optimization time (such as CURRENT DATE, CURRENT TIMESTAMP,
and non-deterministic system and user-defined functions), or a value that is constant within one execution
of a query block (outer references). For example, the following query qualifies for InList.

SELECT *, (
 SELECT FIRST GivenName
 FROM Employees e
 WHERE e.DepartmentID IN (500, d.DepartmentID)
 ORDER BY e.DepartmentID)
FROM Departments d;

Multiple IN-list predicates can be satisfied using the same index.

Query execution algorithms

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 607

OpenString algorithm (OpenString)

OpenString is used in cases where the FROM clause of a SELECT statement contains an OPENSTRING
clause. Rows are fetched from the BLOB or file specified in the OPENSTRING clause. See “FROM clause”
[SQL Anywhere Server - SQL Reference].

An OpenString operator also appears in the plan for a LOAD TABLE statement.

ProcCall algorithm (PC)

ProcCall, used for procedures in a FROM clause, executes the procedure call and returns the rows in its
result set. It is not able to fetch backwards and therefore appears below a work table if this is required by
the cursor type.

Every time ProcCall is called, the database server notes the argument values, the number of rows returned,
and the total time used to fetch all rows. This information is used by the optimizer to estimate the cost and
cardinality of subsequent procedure calls. For each procedure, the database server maintains a moving
average of the number of rows returned and a moving average of the total execution time. The database
server also maintains a limited number of separate moving averages for specific argument values. This
information is stored persistently in the stats column of the SYSPROCEDURE system table, in a binary
format intended only for internal use.

For information about the restrictions on multiple result sets, and schema-matching requirements, see the
procedure clause of the FROM clause, “FROM clause” [SQL Anywhere Server - SQL Reference].

See also
● “SYSPROCEDURE system view” [SQL Anywhere Server - SQL Reference]
● “How the optimizer uses procedure statistics” on page 564

RowConstructor algorithm (ROWS)

RowConstructor is a specialized operator that creates a virtual row for use as the input to other algorithms.
RowConstructor is used in the following two ways:

● With an INSERT ... VALUES statement, the expressions referenced in the VALUES clause (typically
literal constants and/or host variables) form a virtual row to be inserted. In this case, a row constructor
appears in the graphical plan underneath an INSERT.

● Direct or indirect references to the system table SYS.DUMMY are transformed automatically to use
RowConstructor, replacing the need for a table scan of SYS.DUMMY, and eliminating the need to latch
the (single) page of the DUMMY table.

In the case of short or long text plans, the plan string continues to contain a reference to the table
SYS.DUMMY, even though RowConstructor was used instead of performing a table scan of SYS.DUMMY.

Query optimization and execution

608 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “DUMMY system table” [SQL Anywhere Server - SQL Reference]
● “INSERT statement” [SQL Anywhere Server - SQL Reference]
● “Reading execution plans” on page 610

RowLimit algorithm (RL)

RowLimit returns the first n rows of its input and ignores the remaining rows. Row limits are set by the TOP
n or FIRST clause of the SELECT statement. See “SELECT statement” [SQL Anywhere Server - SQL
Reference].

Termbreaker algorithm (TermBreak)

The term breaker algorithm used for full text searching. See the description for how the term breaker is used
in “Text configuration objects” on page 312.

Window algorithm (Window)

Window is used when evaluating OLAP queries that employ window functions. See “Window
functions” on page 466.

Query execution algorithms

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 609

Reading execution plans
An execution plan is the set of steps the database server uses to access information in the database related
to a statement. The execution plan for a statement can be saved and reviewed, regardless of whether it was
just optimized, whether it bypassed the optimizer, or whether its plan was cached from previous executions.
A query execution plan may not correspond exactly to the syntax used in the original statement, and may
use materialized views instead of the base tables explicitly specified in the query. However, the operations
described in the execution plan are semantically equivalent to the original query.

You can view the execution plan in Interactive SQL or using SQL functions. You can choose to retrieve the
execution plan in several different formats:

● Short text plan
● Long text plan
● Graphical plan
● Graphical plan with root statistics
● Graphical plan with full statistics
● UltraLite (short, long, or graphical)

You can also obtain plans for SQL queries with a particular cursor type by using the GRAPHICAL_PLAN
and EXPLANATION functions. See “GRAPHICAL_PLAN function [Miscellaneous]” [SQL Anywhere
Server - SQL Reference], and “EXPLANATION function [Miscellaneous]” [SQL Anywhere Server - SQL
Reference].

Additional reading
For more information about phases a statement goes through until it is executed, see “Query processing
phases” on page 546.

For more information about the rules that the database server follows when rewriting your query, see:

● “Semantic query transformations” on page 549
● “Rewriting subqueries as EXISTS predicates” on page 558
● “Improving performance with materialized views” on page 574

For information about the algorithms and methods that the optimizer uses to implement your query, see
“Query execution algorithms” on page 586.

For more information about how to access a graphical plan, see “Viewing graphical plans” on page 621.

For information about how to read execution plans, see “Reading text plans” on page 610, and “Reading
graphical plans” on page 613.

Reading text plans
There are two types of text representation of a query execution plan: short and long. Use the SQL functions
to access the text plan. See “Viewing short and long text plans” on page 612.

There is also a graphical version of the plan. See “Reading graphical plans” on page 613.

Query optimization and execution

610 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Short text plan
The short text plan is useful when you want to compare plans quickly. It provides the least amount of
information of all the plan formats, but it provides it on a single line.

In the following example, the plan starts with Work[Sort because the ORDER BY clause causes the entire
result set to be sorted. The Customers table is accessed by its primary key index, CustomersKey. An index
scan is used to satisfy the search condition because the column Customers.ID is a primary key. The
abbreviation JNL indicates that the optimizer chose a merge join to process the join between Customers and
SalesOrders. Finally, the SalesOrders table is accessed using the foreign key index FK_CustomerID_ID to
find rows where CustomerID is less than 100 in the Customers table.

SELECT EXPLANATION ('SELECT GivenName, Surname, OrderDate
FROM Customers JOIN SalesOrders
WHERE CustomerID < 100
ORDER BY OrderDate');

Work[Sort[Customers<CustomersKey> JNL
SalesOrders<FK_CustomerID_ID>]]
For more information about code words used in the plan, see “Execution plan
abbreviations” on page 626.

Colons separate join strategies
The following command contains two query blocks: the outer select block referencing the SalesOrders and
SalesOrderItems tables, and the subquery that selects from the Products table.

SELECT EXPLANATION ('SELECT *
FROM SalesOrders AS o
 KEY JOIN SalesOrderItems AS I
WHERE EXISTS
 (SELECT *
 FROM Products p
 WHERE p.ID = 300)');

o<seq> JNL i<FK_ID_ID> : p<ProductsKey>
Colons separate join strategies of the different query blocks. Short plans always list the join strategy for the
main block first. Join strategies for other query blocks follow. The order of join strategies for these other
query blocks may not correspond to the order of the query blocks in your statement, or to the order in which
they execute.

For more information about the abbreviations used in a plan, see “Execution plan
abbreviations” on page 626.

Long text plan
The long text plan provides a little more information than the short text plan, and provides information in a
way that is easy to print and view without scrolling.

In the following example, the first line of the long text plan is Plan[Total Cost Estimate:
6.46e-005] The word Plan indicates the start of a query block. The Total Cost Estimate is the optimizer

Reading execution plans

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 611

estimated time, in milliseconds, for the execution of the plan. The Estimated Cache Pages is the estimated
current cache size available for processing the statement.

The plan indicates that the results are sorted, and that a Nested Loops Join is used. On the same line as the
join operator, there is either the word TRUE or the residual search condition and its selectivity estimate
(which is evaluated for all the rows produced by the join operator). The IndexScan lines indicate that the
Customers and SalesOrders tables are accessed via indexes CustomersKey and FK_CustomerId_ID
respectively.

SELECT PLAN ('SELECT GivenName, Surname, OrderDate, Region, Country
FROM Customers JOIN SalesOrders ON (SalesOrders.CustomerID = Customers.ID)
WHERE CustomerID < 100 AND (Region LIKE ''Eastern''
 OR Country LIKE ''Canada'')
ORDER BY OrderDate');
(Plan [Total Cost Estimate: 6.46e-005, Costed Best Plans: 1, Costed Plans:
10, Optimization Time: 0.0011462,
Estimated Cache Pages: 348]
 (WorkTable
 (Sort
 (NestedLoopsJoin
 (IndexScan Customers CustomersKey[Customers.ID < 100 : 0.0001% Index
| Bounded])
 (IndexScan SalesOrders FK_CustomerID_ID[Customers.ID =
SalesOrders.CustomerID : 0.79365% Statistics]
 [(SalesOrders.CustomerID < 100 : 0.0001% Index | Bounded)
 AND ((((Customers.Country LIKE 'Canada' : 100% Computed)
 AND (Customers.Country = 'Canada' : 5% Guess))
 OR ((SalesOrders.Region LIKE 'Eastern' : 100% Computed)
 AND (SalesOrders.Region = 'Eastern' : 5% Guess))) : 100%
Guess)])
)
)
)
)

For more information about the abbreviations used in a plan, see “Execution plan
abbreviations” on page 626.

Viewing short and long text plans

To view a short text plan (SQL)

1. Connect to a database as a user with DBA authority.

2. Execute the EXPLANATION function. See “EXPLANATION function [Miscellaneous]” [SQL
Anywhere Server - SQL Reference].

To view a long text plan (SQL)

1. Connect to a database as a user with DBA authority.

2. Execute the PLAN function. See “PLAN function [Miscellaneous]” [SQL Anywhere Server - SQL
Reference].

Query optimization and execution

612 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Reading graphical plans
The graphical plan feature in Interactive SQL displays the execution plan for a query in the Plan Viewer
window. The execution plan consists of a tree of relational algebra operators which, starting at the leaves of
the tree, consume the base inputs of the query (usually rows from a table) and process the rows from bottom
to top, so that the root of the tree yields the final result. Nodes in this tree correspond to specific algebraic
operators, though not all query evaluation performed by the server is represented by nodes. For example,
the effects of subquery and function caching are not directly displayed in a graphical plan.

Nodes displayed in the graphical plan are different shapes that indicate the type of operation performed:

● Hexagons represent operations that materialize data.

● Trapezoids represent index scans.

● Rectangles with square corners represent table scans.

● Rectangles with round corners represent operations not listed above.

You can use a graphical plan to diagnose performance issues with specific queries. For example, the
information in the plan can help you decide if a table requires an index to improve the performance of this
specific query. You can save the graphical plan for a query for future reference by pressing the Save button
in the Plan Viewer. SQL Anywhere graphical plans are saved with the extension .saplan.

Possible performance issues are identified by thick lines and red borders in the graphical plan. For example:

● Thicker lines between nodes in a plan indicate a corresponding increase in the number of rows processed.
The presence of a thick line over a table scan may indicate that the creation of an index might be required.

● Red borders around a node indicate that the operation was expensive in comparison with the other
operations in the execution plan.

Node shapes and other graphical components of the plan can be customized within Interactive SQL. See
“Customizing the appearance of graphical plans” on page 620.

You can view either a graphical plan, a graphical plan with a summary or a graphical plan with detailed
statistics. All three plans allow you to view the parts of the plan that are estimated to be the most expensive.
Generating a graphical plan with statistics is more expensive because it provides the actual query execution
statistics as monitored by the database server when the query is executed. Graphical plans with statistics
permits direct comparison between the estimates used by the query optimizer in constructing the access plan
with the actual statistics monitored during execution. Note, however, that the optimizer is often unable to
estimate precisely a query's cost, so expect differences between the estimated and actual values.

To view a graphical plan, see “Viewing graphical plans” on page 621. Graphical plans are also available
using the Application Profiling mode in Sybase Central. For more information about the Application
Profiling features of Sybase Central, see “Application profiling” on page 177.

For more information about text plans, see “Reading text plans” on page 610.

Reading execution plans

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 613

Graphical plan with statistics
The graphical plan provides more information than the short or long text plans. The graphical plan with
statistics, though more expensive to generate, provides the actual query execution statistics as monitored by
the database server when the query is executed, and permits direct comparison between the estimates used
by the optimizer in constructing the access plan with the actual statistics monitored during execution.
Significant differences between actual and estimated statistics might indicate that the optimizer does not
have enough information to correctly estimate the query's cost, which may result an inefficient execution
plan.

To generate a graphical plan with statistics, the database server must execute the statement. The generation
of a graphical plan for long-running statements might take a significant amount of time. If the statement is
an UPDATE, INSERT, or DELETE, only the read-only portion of the statement is executed; table
modifications are not performed. However, if a statement contains user-defined functions, they are executed
as part of the query. If the user-defined functions have side effects (for example, modifying rows, creating
tables, sending messages to the console, and so on), these changes are made when getting the graphical plan
with statistics. In some cases you can undo these side effects by issuing a ROLLBACK statement after getting
the graphical plan with statistics. See “ROLLBACK statement” [SQL Anywhere Server - SQL Reference].

Analyzing performance using the graphical plan with statistics
You can use the graphical plan with statistics to identify database performance issues. For detailed field
descriptions of the graphical plan with statistics, see “Node Statistics field descriptions” on page 622, and
“Optimizer Statistics field descriptions” on page 623.

Identifying query execution issues
You can display database options and other global settings that affect query execution for the root operator
node.

Reviewing selectivity performance

The selectivity of a predicate (conditional expression) is the percentage of rows that satisfy the condition.
The estimated selectivity of predicates provides the information on which the optimizer bases its cost
estimates. Accurate selectivity estimates are critical for the proper operation of the optimizer. For example,
if the optimizer mistakenly estimates a predicate to be highly selective (for example, a selectivity of 5%),
but in reality, the predicate is much less selective (for example, 50%), then performance might suffer.
Although selectivity estimates might not be precise, a significantly large error might indicate a problem.

If you determine that the selectivity information for a key part of your query is inaccurate, you can use
CREATE STATISTICS to generate a new set of statistics for the column(s). In rare cases, you may want to
supply explicit selectivity estimates, although this approach can introduce problems when you later update
the statistics.

Selectivity statistics are not displayed if the query is determined to be a bypass query. For more information
about bypass queries, see “How the optimizer works” on page 562, and “Explicit selectivity estimates” [SQL
Anywhere Server - SQL Reference].

Query optimization and execution

614 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Indicators of poor selectivity occur in the following places:

● RowsReturned, actual and estimated RowsReturned is the number of rows in the result set. The
RowsReturned statistic appears in the table for the root node at the top of the tree. If the estimated row
count is significantly different from the actual row count, the selectivity of predicates attached to this
node or to the subtree may be incorrect.

● Predicate selectivity, actual and estimated Look for the Predicate subheading to see predicate
selectivities. For information about reading the predicate information, see “Viewing selectivity in the
graphical plan” on page 618.

If the predicate is over a base column for which there is no histogram, executing a CREATE STATISTICS
statement to create a histogram may correct the problem. See “CREATE STATISTICS statement” [SQL
Anywhere Server - SQL Reference].

If selectivity error remains a problem, you may want to consider specifying a user estimate of selectivity
along with the predicate in the query text.

● Estimate source The source of selectivity estimates is also listed under the Predicate subheading in
the Statistics pane.

When the source of a predicate selectivity estimate is Guess, the optimizer has no information to use to
determine the filtering characteristics of that predicate, which may indicate a problem (such as a missing
histogram). If the estimate source is Index and the selectivity estimate is incorrect, your problem may
be that the index is unbalanced; you may benefit from defragmenting the index with the REORGANIZE
TABLE statement. See “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference].

Reviewing cache performance

If the number of cache reads (CacheRead field) and cache hits (CacheHits field) are the same, then all the
objects processed for this SQL statement are resident in cache. When cache reads are greater than cache hits,
it indicates that the database server is reading table or index pages from disk as they are not already resident
in the server's cache. In some circumstances, such as hash joins, this is expected. In other circumstances,
such as nested loops joins, a poor cache-hit ratio might indicate there is insufficient cache (buffer pool) to
permit the query to execute efficiently. In this situation, you might benefit from increasing the server's cache
size.

For more information about cache management, see “Increase the cache size” on page 231.

Identifying ineffective indexes
It is often not obvious from query execution plans whether indexes help improve performance. Some of the
scan-based algorithms used in SQL Anywhere provide excellent performance for many queries without using
indexes.

For more information about indexes and performance, see “Use indexes effectively” on page 243 and “Index
Consultant” on page 183.

Identifying data fragmentation problems

The Runtime and FirstRowRunTime actual and estimated values are provided in the root node statistics.
Only RunTime appears in the Subtree Statistics section if it exists for that node.

Reading execution plans

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 615

The interpretation of RunTime depends on the statistics section in which it appears. In Node Statistics,
RunTime is the cumulative time the corresponding operator spent during execution for this node alone. In
Subtree Statistics, RunTime represents the total execution time spent for the entire operator subtree
immediately beneath this node. So, for most operators RunTime and FirstRowRunTime are independent
measures that should be separately analyzed.

FirstRowRunTime is the time required to produce the first row of the intermediate result of this node.

If a node's RunTime is greater than expected for a table scan or index scan, you may improve performance
by executing the REORGANIZE TABLE statement. You can use the sa_table_fragmentation() and the
sa_index_density() system procedures to determine whether the table or index are fragmented.

For more information, see “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference]
and “Reducing table fragmentation” on page 236.

For more information about code words used in the plan, see “Execution plan
abbreviations” on page 626.

Viewing detailed graphical plan node information
To view detailed node information in the graphical plan, in the left pane click the node in the graphical
diagram. Details about the node appear on the right in the Details and Advanced Details panes. In the
Details pane, statistics for the node appear in three sections:

● Node Statistics
● Subtree Statistics
● Optimizer Statistics

Node statistics are statistics related to the execution of the specific node. Leaf nodes have a Details pane
that displays estimated and actual statistics for the operator. When a leaf node appears on the right side of a
parent node, you can fetch rows from the parent operator multiple times. For example, with a nested loop
join the leaf node (a sequential, index, or RowID scan node) contains both per-invocation (average) and
cumulative actual run-time statistics.

When a node is not a leaf node it consumes intermediate result(s) from other nodes and the Details pane
displays the estimated and actual cumulative statistics for this node's entire subtree in the Subtree
Statistics section. Optimizer statistic information representing the entire SQL request is present only for
root nodes. Optimizer statistics values are related specifically to the optimization of the statement, and
include values such as the optimization goal setting, the optimization level setting, the number of plans
considered, and so on.

In the example shown below, the nested loops join (JNL) node is selected and the information displayed
in the right pane pertains only to that node. For example, the Predicates description is TRUE, indicating that
a predicate is not applied. If you click the Customers node, the Predicate value changes to Customers.ID
> 100 : 100% Index; true 126/126 100%.

Query optimization and execution

616 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The information displayed in the Advanced Details pane is dependent on the specific operator. For root
nodes, the Advanced Details pane contains the setting of all connection options in effect when the query
was optimized. With other node types, the Advanced Details pane might contain information about which
indexes or materialized views were considered for the processing of the particular node.

To obtain context-sensitive help for each node in the graphical plan, right-click the node and choose Help.

For more information about the abbreviations used in the plan, see “Execution plan
abbreviations” on page 626.

Note
If a query is recognized as a bypass query, some optimization steps are bypassed and neither the Query
Optimizer section nor the Predicate section appear in the graphical plan. For more information about
bypassed queries, see “How the optimizer works” on page 562.

Reading execution plans

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 617

See also
● “Reading graphical plans” on page 613
● “Viewing graphical plans” on page 621
● “Reading execution plans” on page 610
● “Node Statistics field descriptions” on page 622
● “Optimizer Statistics field descriptions” on page 623

Viewing selectivity in the graphical plan
In the example shown below, the selected node represents a scan of the Departments table, and the statistics
pane shows the Predicate as the search condition, its selectivity estimation, and its real selectivity.

In the Details pane, statistics about an individual node are divided into three sections: Node Statistics,
Subtree Statistics, and Optimizer Statistics.

Node statistics pertain to the execution of this specific node. If the node is not a leaf node in the plan, and
therefore consumes an intermediate result(s) from other nodes, the Details pane shows a Subtree
Statistics section that contains estimated and actual cumulative statistics for this node's entire subtree.
Optimizer statistics information is present only for root nodes, which represent the entire SQL request.

Selectivity information may not be displayed for bypass queries. For more information about bypass queries,
see “How the optimizer works” on page 562.

The access plan depends on the statistics available in the database, which, in turn, depends on what queries
have previously been executed. You may see different statistics and plans from those shown here.

Query optimization and execution

618 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

This predicate description is

Departments.DepartmentName = 'Sales' : 20% Column; true 1/5 20%

This can be read as follows:

● Departments.DepartmentName = 'Sales' is the predicate.

● 20% is the optimizer's estimate of the selectivity. That is, the optimizer is basing its query access selection
on the estimate that 20% of the rows satisfy the predicate.

This is the same output as is provided by the ESTIMATE function. For more information, see
“ESTIMATE function [Miscellaneous]” [SQL Anywhere Server - SQL Reference].

● Column is the source of the estimate. This is the same output as is provided by the
ESTIMATE_SOURCE function. For a complete list of the possible sources of selectivity estimates, see
“ESTIMATE_SOURCE function [Miscellaneous]” [SQL Anywhere Server - SQL Reference].

● true 1/5 20% is the actual selectivity of the predicate during execution. The predicate was evaluated
five times, and was true once, so its real selectivity is 20%.

Reading execution plans

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 619

If the actual selectivity is very different from the estimate, and if the predicate was evaluated a large
number of times, it is possible that the incorrect estimates are causing a significant problem in query
performance. Collecting statistics on the predicate may improve performance by giving the optimizer
better information on which to base its choices.

Note
If you select the graphical plan, but not the graphical plan with statistics, the final two statistics are not
displayed.

Customizing the appearance of graphical plans
After executing the graphical plan you can customize the appearance of items in the plan. To change the
appearance of the graphical plan, right-click the plan in the lower left pane of the Interactive SQL Plan
Viewer, select Customize, and change the settings. Your changes are applied to subsequent graphical plans
that are displayed.

To print a graphical plan, right-clicking the plan and choose Print.

Following is a query presented with its corresponding graphical plan. The diagram is in the form of a tree,
indicating that each node requests rows from the nodes beneath it.

Query optimization and execution

620 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Viewing graphical plans
Use either Interactive SQL or the GRAPHICAL_PLAN function to view graphical plans. To access text
plans, see “Reading text plans” on page 610.

Viewing graphical plans
To view a graphical plan (Interactive SQL)

1. Start Interactive SQL and connect to the SQL Anywhere database.

2. Type a statement in the SQL Statements pane.

3. Choose Tools » Plan Viewer.

4. Select a Statistics level, a Cursor type and an Update status and click Get Plan.

To view a graphical plan (SQL)

Use the GRAPHICAL_PLAN function to view a graphical plan in XML format, as a string.

Reading execution plans

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 621

1. Connect to a database as a user with DBA authority.

2. Execute the GRAPHICAL_PLAN function. See “GRAPHICAL_PLAN function [Miscellaneous]”
[SQL Anywhere Server - SQL Reference].

See also:
● “Execution plan abbreviations” on page 626

Node Statistics field descriptions
Below are descriptions of the fields displayed in the Node Statistics section of a graphical plan.

Field Description

CacheHits The total number of cache read requests by this operator which were satisfied by the buffer
pool that did not require a disk read operation.

CacheRead Total number of attempts made by this operator to read a page of the database file, typically
for table and/or index pages.

CPUTime The CPU time incurred by the processing algorithm represented by this node.

DiskRead The cumulative number of pages that have been read from disk as a result of this node's
processing.

DiskRead-
Time

The cumulative elapsed time required to perform disk reads for database pages required
by this node for processing.

DiskWrite The commutative number of pages that have been written to disk as a result of this node's
processing.

DiskWrite-
Time

The cumulative elapsed time required to perform disk writes for database pages as required
by this node's processing algorithm.

FirstRow-
RunTime

The FirstRowRunTime value is the actual elapsed time required to produce the first row
of the intermediate result of this node.

Invocations The number of times the node was called to compute a result, and return that result to the
parent node. Most nodes are called only once. However, if the parent of a scan node is a
nested loop join, then the node might be executed multiple times, and could possibly return
a different set of rows after each invocation.

PercentTo-
talCost

The RunTime spent computing the result within this particular node, expressed as a per-
centage of the total RunTime for the statement.

Query optimization and execution

622 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Field Description

Query-
MemMax-
Useful

The estimated amount of query memory that is expected to be used for this particular
operator. If the actual amount of query memory used, which is reported as the Actual
statistic, differs significantly then it may indicate a potential problem with result set size
estimation by the query optimizer. A probable cause of this estimation error is inaccurate
or missing predicate selectivity estimates.

RowsRe-
turned

The number of rows returned to the parent node as a result of processing the request.
RowsReturned is often, but not necessarily, identical to the number of rows in the (pos-
sibly derived) object represented by that node. Consider a leaf node that represents a base
table scan. It is possible for the RowsReturned value to be smaller or larger than the
number of rows in the table. RowsReturned are smaller if the parent node fails to request
all the table's rows in computing the final result. RowsReturned may be greater in a case
such as a GROUP BY GROUPING SETS query, where the parent Group By Hash Group-
ing Sets node requires multiple passes over the input to compute the different groups.

A significant difference between the estimated rows returned and the actual number re-
turned could indicate that the optimizer might be operating with poor selectivity informa-
tion.

RunTime This value is a measure of wall clock time, including waits for input/output, row locks,
table locks, internal server concurrency control mechanisms, and actual runtime process-
ing. The interpretation of RunTime depends on the statistics section in which it appears.
In Node Statistics, RunTime is the cumulative time the node's corresponding operator
spent during execution for this node alone. Both estimated and actual values for this sta-
tistic appear in the Node Statistics section.

If a node's RunTime is greater than expected for a table scan or index scan, then further
analysis may help pinpoint the problem. The query may be contending for shared resources
and may block as a result; you can monitor blocked connections using the sa_locks()
system procedure. As another example, the database page layout on the disk may be sub-
optimal, or a table may suffer from internal page fragmentation. You may improve per-
formance by executing the REORGANIZE TABLE statement. You can use the sa_ta-
ble_fragmentation() and the sa_index_density() system procedures to determine whether
the table or index are fragmented.

Optimizer Statistics field descriptions
Below are descriptions of the fields displayed in the Optimizer Statistics section of a graphical plan.
Optimizer Statistics provide information about the state of the database server and about the optimization
of the selected statement.

Reading execution plans

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 623

Field Description

Optimization Method The algorithm used to choose an execution strategy. Values returned:

● Bypass costed
● Bypassed costed simple
● Bypass heuristic
● Bypassed then optimized
● Optimized
● Reused
● Reused (simple)

Costed Best Plans When the query optimizer enumerates different query execution strategies, it
tracks the number of times it finds a strategy whose estimated cost is cheaper
than the best strategy found prior to the current one. It is difficult to predict how
often this will occur for any particular query, but a lower number indicates
significant pruning of the search space by the optimizer's algorithms, and, typ-
ically, faster optimization times. Since the optimizer starts the enumeration
process at least once for each query block in the given statement, Costed Best
Plans represents the cumulative count. See “How the optimizer
works” on page 562.

If the values for Costed Best Plans, Costed Plans, and Optimization time are
0, then the statement was not optimized by the SQL Anywhere optimizer. In-
stead, the database server bypassed the statement and generated the execution
plan without optimizing the statement, or the plan for the statement was cached.
See “Query processing phases” on page 546.

Costed Plans The number of different access plans considered by the optimizer for this re-
quest whose costs were partially or fully estimated. As with Costed Best
Plans, smaller values normally indicate faster optimization times and larger
values indicate more complex SQL queries.

If the values for Costed Best Plans, Costed Plans, and Optimization Time
are 0, then the statement was not optimized. Instead, the database server by-
passed the statement and generated the execution plan without optimizing the
statement. See “Query processing phases” on page 546.

Optimization Time The elapsed time spent optimizing the statement.

If the values for Costed Best Plans, Costed Plans, and Optimization Time
are 0, then the statement was not optimized. Instead, the database server by-
passed the statement and generated the execution plan without optimizing the
statement. See “Query processing phases” on page 546.

Query optimization and execution

624 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Field Description

Estimated Cache Pa-
ges

Estimated current cache size available for processing the statement.

For the purposes of reducing inefficient access plans, the optimizer assumes
that one-half of the current cache size is available for processing the selected
statement.

CurrentCacheSize The database server's cache size in kilobytes at the time of optimization.

QueryMemMaxUse-
ful

The number of pages of query memory that are useful for this request. If the
number is zero, then the statement's execution plan contains no memory-inten-
sive operators and is not subject to control by the server's memory governor.
See “The memory governor” on page 568.

QueryMemNeeds-
Grant

Indicates whether the memory governor must grant memory to one or more
memory-intensive query execution operators that are present in this request's
execution strategy. See “The memory governor” on page 568.

QueryMemLikely-
Grant

The estimated number of pages from the query memory pool that would be
granted to this statement if it were executed immediately. This estimate can vary
depending on the number of memory-intensive operators in the plan, the data-
base server's multiprogramming level, and the number of concurrently-execut-
ing memory-intensive requests. See “The memory governor” on page 568.

QueryMemPages The total amount of memory in the query memory pool that is available for
memory-intensive query execution algorithms for all connections, expressed as
a number of pages. See “The memory governor” on page 568.

QueryMemActive-
Max

The maximum number of tasks that can actively use query memory at any par-
ticular time. See “The memory governor” on page 568.

QueryMemActiveEst The database server's estimate of the steady state average of the number of tasks
actively using query memory. See “The memory governor” on page 568.

isolation_level The isolation level of the statement. The isolation level of the statement may
differ from other statements in the same transaction, and may be further over-
ridden for specific base tables through the use of hints in the FROM clause. See
“isolation_level option [database] [compatibility]” [SQL Anywhere Server -
Database Administration].

optimization_goal Indicates if query processing is optimized for returning the first row quickly, or
minimizing the cost of returning the complete result set. See “optimization_goal
option [database]” [SQL Anywhere Server - Database Administration].

optimization_level Controls amount of effort made by the query optimizer to find an access plan.
See “optimization_level option [database]” [SQL Anywhere Server - Database
Administration].

Reading execution plans

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 625

Field Description

optimization_work-
load

The Mixed or OLAP value of the optimization_workload setting. See “opti-
mization_workload option [database]” [SQL Anywhere Server - Database Ad-
ministration].

max_query_tasks Maximum number of tasks that may be used by a parallel execution plan for a
single query. See “max_query_tasks option [database]” [SQL Anywhere Server
- Database Administration].

user_estimates Controls whether to respect or ignore user estimates that are specified in indi-
vidual predicates in the query text. See “user_estimates option [database]” [SQL
Anywhere Server - Database Administration].

Execution plan abbreviations
Following are the abbreviations that you see in execution plans.

Short text
plan

Long text
plan

Additional information

Costed
Best Plan

The optimizer generates and costs access plans for a given query. During
this process the current best plan maybe replaced by a new best plan found
to have a lower cost estimate. The last best plan is the execution plan used
to execute the statement. Costed Best Plans indicates the number of times
the optimizer found a better plan than the current best plan. A low number
indicates that the best plan was determined early in the enumeration process.
Since the optimizer starts the enumeration process at least once for each
query block in the given statement, Costed Best Plans represents the cumu-
lative count. See “How the optimizer works” on page 562.

Costed
Plans

Many plans generated by the optimizer are found to be too expensive com-
pared to the best plan found so far. Costed Plans represents the number of
partial or complete plans the optimizer considered during the enumeration
processes for a given statement.

DELETE Delete The root node of a DELETE operation. See “DELETE statement” [SQL
Anywhere Server - SQL Reference].

DistH HashDi-
stinct

See “HashDistinct algorithm (DistH)” on page 598.

DistO Ordered-
Distinct

See “OrderedDistinct algorithm (DistO)” on page 599.

Query optimization and execution

626 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Short text
plan

Long text
plan

Additional information

DP Decode-
Postings

See “DecodePostings (DP)” on page 605.

DT DerivedT-
able

See “DerivedTable algorithm (DT)” on page 605.

EAH HashEx-
ceptAll

See “Except algorithms (EAH, EAM, EH, EM)” on page 601.

EAM MergeEx-
ceptAll

See “Except algorithms (EAH, EAM, EH, EM)” on page 601.

EH HashEx-
cept

See “Except algorithms (EAH, EAM, EH, EM)” on page 601.

EM MergeAc-
cept

See “Except algorithms (EAH, EAM, EH, EM)” on page 601.

Exchange Exchange See “Exchange algorithm (Exchange)” on page 606.

Filter Filter See “Filter algorithms (Filter, PreFilter)” on page 606.

GrByH Hash-
GroupBy

See “HashGroupBy algorithm (GrByH)” on page 599.

GrByHClust Hash-
GroupBy-
Clustered

See “ClusteredHashGroupBy algorithm (GrByHClust)” on page 600.

GrByHSets Hash-
GroupBy-
Sets

See “HashGroupBySets algorithm (GrByHSets)” on page 600.

GrByO Ordered-
GroupBy

See “OrderedGroupBy algorithm (GrByO)” on page 600.

GrByOSets Ordered-
GroupBy-
Sets

See “OrderedGroupBySets algorithm (GrByOSets)” on page 600.

GrByS Single-
Row-
GroupBy

See “SingleRowGroupBy algorithm (GrByS)” on page 601.

Reading execution plans

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 627

Short text
plan

Long text
plan

Additional information

GrBySSets Sorted-
GroupBy-
Sets

See “SortedGroupBySets algorithm (GrBySSets)” on page 601.

HF HashFilter See “Hash filter algorithms (HF, HFP)” on page 606.

HFP Parallel-
HashFilter

See “Hash filter algorithms (HF, HFP)” on page 606.

HTS HashTa-
bleScan

See “HashTableScan method (HTS)” on page 592.

IAH HashIn-
tersectAll

See “Intersect algorithms (IH, IM, IAH, IAM)” on page 602.

IAM MergeIn-
tersectAll

See “Intersect algorithms (IH, IM, IAH, IAM)” on page 602.

IH HashIn-
tersect

See “Intersect algorithms (IH, IM, IAH, IAM)” on page 602.

IM MergeIn-
tersect

See “Intersect algorithms (IH, IM, IAH, IAM)” on page 602.

IN InList See “InList algorithm (IN)” on page 607.

table-
name<in-
dex-name>

Index-
Scan, Par-
allelIn-
dexScan

In a graphical plan, an index scan appears as an index name in a trapezoid.
See “IndexScan method” on page 589.

INSENSI-
TIVE

Insensi-
tive

See “Intersect algorithms (IH, IM, IAH, IAM)” on page 602.

INSERT Insert Root node of an insert operation. See “INSERT statement” [SQL Anywhere
Server - SQL Reference].

IO IndexOn-
lyScan,
ParallelIn-
dexOnly-
Scan

See “IndexOnlyScan method (IO)” on page 590, and “ParallelIndexScan
method” on page 591.

JH HashJoin See “HashJoin algorithms (JH, JHSP, JHFO, JHAP, JHO,
JHPO)” on page 594.

Query optimization and execution

628 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Short text
plan

Long text
plan

Additional information

JHS HashSe-
mijoin

See “HashSemijoin algorithm (JHS)” on page 595.

JHSP Parallel-
HashSemi-
join

See “HashJoin algorithms (JH, JHSP, JHFO, JHAP, JHO,
JHPO)” on page 594.

JHFO Full Outer
HashJoin

See “HashJoin algorithms (JH, JHSP, JHFO, JHAP, JHO,
JHPO)” on page 594.

JHA HashAnti-
semijoin

See “HashAntisemijoin algorithm (JHA)” on page 596.

JHAP Parallel-
HashAnti-
semijoin

See “HashJoin algorithms (JH, JHSP, JHFO, JHAP, JHO,
JHPO)” on page 594.

JHO Left Outer
HashJoin

See “HashJoin algorithms (JH, JHSP, JHFO, JHAP, JHO,
JHPO)” on page 594.

JHP Parallel-
HashJoin

See “HashJoin algorithms (JH, JHSP, JHFO, JHAP, JHO,
JHPO)” on page 594.

JHPO Parallel-
LeftOuter-
HashJoin

See “HashJoin algorithms (JH, JHSP, JHFO, JHAP, JHO,
JHPO)” on page 594.

JHR Recursi-
veHash-
Join

See “RecursiveHashJoin algorithm (JHR)” on page 595.

JHRO Recursi-
veLeftOu-
terHash-
Join

See “RecursiveLeftOuterHashJoin algorithm (JHRO)” on page 595.

JM Merge-
Join

See “MergeJoin algorithms (JM, JMFO, JMO)” on page 597.

JMFO Full Outer
Merge-
Join

See “MergeJoin algorithms (JM, JMFO, JMO)” on page 597.

Reading execution plans

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 629

Short text
plan

Long text
plan

Additional information

JMO Left Outer
Merge-
Join

See “MergeJoin algorithms (JM, JMFO, JMO)” on page 597.

JNL Nested-
LoopsJoin

See “NestedLoopsJoin algorithms (JNL, JNLFO, JNLO)” on page 597.

JNLA Nested-
LoopsAn-
tisemijoin

See “NestedLoopsAntisemijoin algorithm (JNLA)” on page 598.

JNLFO Full Outer
Nested-
LoopsJoin

See “NestedLoopsJoin algorithms (JNL, JNLFO, JNLO)” on page 597.

JNLO Left Outer
Nested-
LoopsJoin

See “NestedLoopsJoin algorithms (JNL, JNLFO, JNLO)” on page 597.

JNLS Nested-
LoopsSe-
mijoin

See “NestedLoopsSemijoin algorithm (JNLS)” on page 597.

KEYSET Keyset Indicates a keyset-driven cursor. See “SQL Anywhere cursors” [SQL Any-
where Server - Programming].

LOAD Load Root node of a load operation. See “LOAD TABLE statement” [SQL Any-
where Server - SQL Reference].

MultiIdx Multi-
pleIndexS-
can

See “MultipleIndexScan method (MultIdx)” on page 590.

OpenString Open-
String

See “OpenString algorithm (OpenString)” on page 608.

Optimiza-
tion Time

The total time spent by the optimizer during all enumeration processes for
a given statement.

PC ProcCall Procedure call (table function). See “ProcCall algorithm
(PC)” on page 608.

PreFilter PreFilter See “Filter algorithms (Filter, PreFilter)” on page 606.

RL RowLimit See “RowLimit algorithm (RL)” on page 609.

Query optimization and execution

630 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Short text
plan

Long text
plan

Additional information

ROWID RowIdS-
can

In a graphical plan, a row ID scan appears as a table name in a rectangle.
See “RowIdScan method (ROWID)” on page 592.

ROWS RowCon-
structor

See “RowConstructor algorithm (ROWS)” on page 608.

RR RowRe-
plicate

See “RowReplicate algorithm (RR)” on page 603.

RT Recursi-
veTable

See “RecursiveTable algorithm (RT)” on page 602.

RU Recursi-
veUnion

See “RecursiveUnion algorithm (RU)” on page 603.

SELECT Select Root node of a SELECT operation. See “SELECT statement” [SQL Any-
where Server - SQL Reference].

seq TableS-
can, Paral-
lelTableS-
can

In a graphical plan, table scans appear as a table name in a rectangle. See
“TableScan method (seq)” on page 591, and “ParallelTableScan meth-
od” on page 592.

Sort Sort Indexed or merge sort. See “Sort algorithm (Sort)” on page 603.

SrtN SortTopN See “SortTopN algorithm (SrtN)” on page 604.

TermBreak Term-
Break

The full text search termbreaker algorithm. See “Alter a text in-
dex” on page 330.

UA UnionAll See “UnionAll algorithm (UA)” on page 603.

UPDATE Update The root node of an UPDATE operation. See “UPDATE statement” [SQL
Anywhere Server - SQL Reference].

Window Window See “Window algorithm (Window)” on page 609.

Work Work ta-
ble

An internal node that represents an intermediate result.

Common statistics used in the plan
The following statistics are actual, measured amounts.

Reading execution plans

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 631

Statistic Explanation

Invocations Number of times a row was requested from the sub tree.

RowsReturned Number of rows returned for the current node.

RunTime Time required for execution of the sub-tree, including time for children.

CacheHits Number of successful reads of the cache.

CacheRead Number of database pages that have been looked up in the cache.

CacheReadTable Number of table pages that have been read from the cache.

CacheReadIndLeaf Number of index leaf pages that have been read from the cache.

CacheReadIndInt Number of index internal node pages that have been read from the cache.

DiskRead Number of pages that have been read from disk.

DiskReadTable Number of table pages that have been read from disk.

DiskReadIndLeaf Number of index leaf pages that have been read from disk.

DiskReadIndInt Number of index internal node pages that have been read from disk.

DiskWrite Number of pages that have been written to disk (work table pages or modified table
pages).

IndAdd Number of entries that have been added to indexes.

IndLookup Number of entries that have been looked up in indexes.

FullCompare Number of comparisons that have been performed beyond the hash value in an
index.

Common estimates used in the plan

Statistic Explanation

EstRowCount Estimated number of rows that the node will return each time it is invoked.

AvgRowCount Average number of rows returned on each invocation. This is not an estimate, but
is calculated as RowsReturned / Invocations. If this value is significantly different
from EstRowCount, the selectivity estimates may be poor.

EstRunTime Estimated time required for execution (sum of EstDiskReadTime, EstDiskWrite-
Time, and EstCpuTime).

Query optimization and execution

632 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Statistic Explanation

AvgRunTime Average time required for execution (measured).

EstDiskReads Estimated number of read operations from the disk.

AvgDiskReads Average number of read operations from the disk (measured).

EstDiskWrites Estimated number of write operations to the disk.

AvgDiskWrites Average number of write operations to the disk (measured).

EstDiskReadTime Estimated time required for reading rows from the disk.

EstDiskWriteTime Estimated time required for writing rows to the disk.

EstCpuTime Estimated processor time required for execution.

Items in the plan related to SELECT, INSERT, UPDATE, and DELETE

Item Explanation

Optimi-
zation
Goal

Determines whether query processing is optimized towards returning the first row quickly, or
minimizing the cost of returning the complete result set. See “optimization_goal option [da-
tabase]” [SQL Anywhere Server - Database Administration].

Optimi-
zation
work-
load

Determines whether query processing is optimized towards a workload that is a mix of updates
and reads or a workload that is predominantly read-based. See “optimization_workload option
[database]” [SQL Anywhere Server - Database Administration].

ANSI
update
con-
straints

Controls the range of updates that are permitted (options are Off, Cursors, and Strict). See
“ansi_update_constraints option [compatibility]” [SQL Anywhere Server - Database Admin-
istration]

Optimi-
zation
level

Reserved.

Select
list

List of expressions selected by the query.

Reading execution plans

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 633

Item Explanation

Materi-
alized
views

List of materialized views considered by the optimizer. Each entry in the list is a tuple in the
following format: view-name [view-matching-outcome] [table-
list] where view-matching-outcome reveals the usage of a materialized view; if the value
is COSTED, the view was used during enumeration. The table-list is a list of query tables that
were potentially replaced by this view.

Values for view-matching-outcome include:

● Base table mismatch
● Permissions mismatch
● Predicate mismatch
● Select list mismatch
● Costed
● Stale mismatch
● Snapshot stale mismatch
● Cannot be used by optimizer
● Cannot be used internally by optimizer
● Cannot build definition
● Cannot access
● Disabled
● Options mismatch
● Reached view matching threshold
● View used

For more information about restrictions and conditions that prevent the optimizer from using
a materialized view, see “Improving performance with materialized views” on page 574, and
“Restrictions on materialized views” on page 55.

Items in the plan related to locks

Item Explanation

Locked tables List of all locked tables and their isolation levels.

Items in the plan related to scans

Item Explanation

Table name Actual name of the table.

Correlation name Alias for the table.

Estimated rows Estimated number of rows in the table.

Estimated pages Estimated number of pages in the table.

Query optimization and execution

634 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Item Explanation

Estimated row size Estimated row size for the table.

Page maps YES when a page map is used to read multiple pages.

Items in the plan related to index scans

Item Explanation

Selectivity Estimated number of rows that match the range
bounds.

Index name Name of the index.

Key type Can be one of PRIMARY KEY, FOREIGN KEY,
CONSTRAINT (unique constraint), or UNIQUE
(unique index). The key type does not appear if the
index is a non-unique secondary index.

Depth Height of the index. See “Table and page
sizes” on page 639.

Estimated leaf pages Estimated number of leaf pages.

Sequential Transitions Statistics for each physical index indicating how
clustered the index is.

Random Transitions Statistics for each physical index indicating how
clustered the index is.

Key Values The number of unique entries in the index.

Cardinality Cardinality of the index if it is different from the
estimated number of rows. This applies only to
SQL Anywhere databases version 6.0.0 and earlier.

Direction FORWARD or BACKWARD.

Range bounds Range bounds are shown as a list (col_name=value)
or col_name IN [low, high].

Primary Key Table The primary key table name for a foreign key index
scan.

Primary Key Table Estimated Rows The number of rows in the primary key table for a
foreign key index scan.

Reading execution plans

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 635

Item Explanation

Primary Key Column The primary key column names for a foreign key
index scan.

Items in the plan related to joins, filter, and pre-filter

Item Explanation

Predi-
cate

Search condition that is evaluated in this node, along with selectivity estimates and measure-
ment. See “Viewing selectivity in the graphical plan” on page 618

Items in the plan related to hash filter

Item Explanation

Build values Estimated number of distinct values in the input.

Probe values Estimated number of distinct values in the input when checking the predicate.

Bits Number of bits selected to build the hash map.

Pages Number of pages required to store the hash map.

Items in the plan related to Union

Item Explanation

Union List Columns involved in a UNION statement.

Items in the plan related to GROUP BY

Item Explanation

Aggregates All the aggregate functions.

Group-by list All the columns in the group by clause.

Items in the plan related to DISTINCT

Item Explanation

Distinct list All the columns in the distinct clause.

Query optimization and execution

636 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Items in the plan related to IN LIST

Item Explanation

In List All the expressions in the specified set.

Expression SQL Expressions to compare to the list.

Items in the plan related to SORT

Item Explanation

Order-by List of all expressions to sort by.

Items in the plan related to row limits

Item Explanation

Row limit count Maximum number of rows returned as specified by FIRST or TOP n.

Reading execution plans

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 637

Improving query performance
Storage allocations for each table or entry have a large impact on the efficiency of queries. The following
points are of particular importance because each one influences how fast your queries execute.

Disk allocation for inserted rows
The following section explains how rows in the database are stored on disk.

SQL Anywhere stores rows contiguously, if possible
Every new row that is smaller than the page size of the database file is always stored on a single page. If no
present page has enough free space for the new row, SQL Anywhere writes the row to a new page. For
example, if the new row requires 600 bytes of space but only 500 bytes are available on a partially-filled
page, then SQL Anywhere places the row on a new page.

To make table pages more contiguous on the disk, SQL Anywhere allocates table pages in blocks of eight
pages. For example, when it needs to allocate a page it allocates eight pages, inserts the page in the block,
and then fills up with the block with the next seven pages. In addition, it uses a free page bitmap to find
contiguous blocks of pages within the dbspace, and performs sequential scans by reading groups of 64 KB,
using the bitmap to find relevant pages. This leads to more efficient sequential scans.

SQL Anywhere may store rows in any order
SQL Anywhere locates space on pages and inserts rows in the order it receives them in. It assigns each row
to a page, but the locations it chooses in the table may not correspond to the order they were inserted in. For
example, the database server may have to start a new page to store a long row contiguously. Should the next
row be shorter, it may fit in an empty location on a previous page.

The rows of all tables are unordered. If the order that you receive or process the rows is important, use an
ORDER BY clause in your SELECT statement to apply an ordering to the result. Applications that rely on
the order of rows in a table can fail without warning.

If you frequently require the rows of a table to be in a particular order, consider creating an index on those
columns specified in the query's ORDER BY clause.

Space is not reserved for NULL columns
By default, whenever SQL Anywhere inserts a row, it reserves only the space necessary to store the row
with the values it contains at the time of creation. It reserves no space to store values that are NULL or to
accommodate fields, such as text strings, which may enlarge.

You can force SQL Anywhere to reserve space by using the PCTFREE option when creating the table. For
more information, see “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference].

Once inserted, rows identifiers are immutable
Once assigned a home position on a page, a row never moves from that page. If an update changes any of
the values in the row so that it no longer fits in its assigned page, then the row splits and the extra information
is inserted on another page.

Query optimization and execution

638 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

This characteristic deserves special attention, especially since SQL Anywhere allows no extra space when
you insert the row. For example, suppose you insert a large number of empty rows into a table, then fill in
the values, one column at a time, using UPDATE statements. The result would be that almost every value
in a single row is stored on a separate page. To retrieve all the values from one row, the database server may
need to read several disk pages. This simple operation would become extremely and unnecessarily slow.

You should consider filling new rows with data at the time of insertion. Once inserted, they then have enough
room for the data you expect them to hold.

A database file never shrinks
As you insert and delete rows from the database, SQL Anywhere automatically reuses the space they occupy.
So, SQL Anywhere may insert a row into space formerly occupied by another row.

SQL Anywhere keeps a record of the amount of empty space on each page. When you ask it to insert a new
row, it first searches its record of space on existing pages. If it finds enough space on an existing page, it
places the new row on that page, reorganizing the contents of the page if necessary. If not, it starts a new
page.

Over time, if you delete several rows and do not insert new rows small enough to use the empty space, the
information in the database may become sparse. You can reload the table, or use the REORGANIZE TABLE
statement to defragment the table.

For more information, see “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference].

Table and page sizes
The page size you choose for your database can affect the performance of your database. In general, smaller
page sizes are likely to benefit operations that retrieve a relatively small number of rows from random
locations. By contrast, larger pages tend to benefit queries that perform sequential table scans, particularly
when the rows are stored on pages in the order the rows are retrieved via an index. In this situation, reading
one page into memory to obtain the values of one row may have the side effect of loading the contents of
the next few rows into memory. Often, the physical design of disks permits them to retrieve fewer large
blocks more efficiently than many small ones.

For each table, SQL Anywhere creates a bitmap that reflects the position of each table page in the entire
dbspace file. The database server uses the bitmap to read large blocks (64 KB) of table pages, instead of
single pages at a time. This efficiency, also known as group reads, reduces the total number of I/O operations
to disk, and improves performance. Users cannot control the database server's criteria for bitmap creation
or usage.

Should you choose a larger page size, such as 8 KB, you may want to increase the size of the cache because
fewer large pages can fit into a cache of the same size. For example, 1 MB of memory can hold 512 pages
that are each 2 KB in size, but only 128 pages that are 8 KB in size. Determining the proper page ratio of
page size to cache size depends on your database and the nature of the queries your application performs.
You can conduct performance tests with various cache sizes. If your cache cannot hold enough pages,
performance suffers as the database server begins swapping frequently-used pages to disk. This is important
when using SQL Anywhere on a Windows Mobile device, since larger page sizes may have a greater amount
of internal fragmentation.

Improving query performance

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 639

SQL Anywhere attempts to fill pages as much as possible. Empty space accumulates only when new objects
are too large to fit empty space on existing pages. So, adjusting the page size may not significantly affect
the overall size of your database.

Page size also affects indexes. Each index lookup requires one page read for each of the levels of the index
plus one page read for the table page, and a single query can require several thousand index lookups. Page
size can significantly affect fan-out, in turn affecting the depth of index required for a table. A large fan-out
often means that fewer index levels are required, which can improve searches considerably. For large
databases that have tables with a significant numbers of rows, 8 KB pages may be warranted for the best
performance. It is strongly recommended that you test performance (and other behavior aspects) when
choosing a page size. Then, choose the smallest page size that gives satisfactory results. It is important to
pick the correct and reasonable page size if more than one database is started on the same server.

See also
● “Use an appropriate page size” on page 240
● “Initialization utility (dbinit)” [SQL Anywhere Server - Database Administration]
● “CREATE DATABASE statement” [SQL Anywhere Server - SQL Reference]

Indexes
Indexes can greatly improve the performance of searches on the indexed column(s). However, indexes take
up space within the database and slow down insert, update, and delete operations. This section helps you
determine when you should create an index and how to achieve maximum performance from your index.

There are many situations in which creating an index improves the performance of a database. An index
provides an ordering of a table's rows based on the values in some or all the columns. An index allows SQL
Anywhere to find rows quickly. It permits greater concurrency by limiting the number of database pages
accessed. An index also affords SQL Anywhere a convenient means of enforcing a uniqueness constraint
on the rows in a table.

When creating indexes, the order in which you specify the columns becomes the order in which the columns
appear in the index. Duplicate references to column names in the index definition is not allowed.

The Index Consultant is a tool that assists you in the selection of an appropriate set of indexes for your
database. See “Index Consultant” on page 183.

Index sharing using logical indexes
SQL Anywhere uses physical and logical indexes. A physical index is the actual indexing structure as it is
stored on disk. A logical index is a reference to a physical index. When you create a primary key, secondary
key, foreign key, or unique constraint, the database server ensures referential integrity by creating a logical
index for the constraint. Then, the database server looks to see if a physical index already exists that satisfies
the constraint. If a qualifying physical index already exists, the database server points the logical index to
it. If one does not exist, the database server creates a new physical index and then points the logical index
to it.

Query optimization and execution

640 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

For a physical index to satisfy the requirements of a logical index, the columns, column order and the ordering
(ascending, descending) of data for each column must be identical.

Information about all logical and physical indexes in the database is recorded in the ISYSIDX and
ISYSPHYSIDX system tables, respectively. When you create a logical index, an entry is made in the
ISYSIDX system table to hold the index definition. A reference to the physical index used to satisfy the
logical index is recorded in the ISYSIDX.phys_id column. The physical index is defined in the
ISYSPHYSIDX system table.

For more information about the ISYSIDX and ISYSPHYSIDX system tables, see their corresponding views,
“SYSIDX system view” [SQL Anywhere Server - SQL Reference] and “SYSPHYSIDX system view” [SQL
Anywhere Server - SQL Reference].

Using logical indexes means that the database server does not need to create and maintain duplicate physical
indexes, since more than one logical index can point to a single physical index.

When you delete a logical index, its definition is removed from the ISYSIDX system table. If it was the only
logical index referencing a particular physical index, the physical index is also deleted, and its corresponding
entry in the ISYSPHYSIDX system table.

You should always carefully consider whether an index is required before creating it. See “When to create
an index” on page 642.

Physical indexes are not created for remote tables. For temporary tables, physical indexes are created, but
they are not recorded in ISYSPHYSIDX, and are discarded after use. Also, physical indexes for temporary
tables are not shared.

Determining which logical indexes share a physical index
When you drop an index, you are dropping a logical index; however, you are not always dropping the physical
index to which it refers. If another logical index refers to the same physical index, the physical index is not
deleted. This is important to know, especially if you expect disk space to be freed by dropping the index, or
if you are dropping the index with the intent to physically recreate it.

To determine whether an index for a table is sharing a physical index with any other indexes, select the table
in Sybase Central, and then click the Indexes tab. Note whether the Phys. ID value for the index is also
present for other indexes in the list. Matching Phys. ID values mean that those indexes share the same physical
index. If you want to recreate a physical index, you can use the ALTER INDEX ... REBUILD statement.
Alternatively, you can drop all the indexes, and then recreate them.

Determining tables in which physical indexes are being shared
At any time, you can obtain a list of all tables in which physical indexes are being shared, by executing a
query similar to the following:

SELECT tab.table_name, idx.table_id, phys.phys_index_id, COUNT(*)
 FROM SYSIDX idx JOIN SYSTAB tab ON (idx.table_id = tab.table_id)
 JOIN SYSPHYSIDX phys ON (idx.phys_index_id = phys.phys_index_id
 AND idx.table_id = phys.table_id)
 GROUP BY tab.table_name, idx.table_id, phys.phys_index_id
 HAVING COUNT(*) > 1
ORDER BY tab.table_name;

Improving query performance

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 641

Following is an example result set for the query:

table_name table_id phys_index_id COUNT(*)

ISYSCHECK 57 0 2

ISYSCOLSTAT 50 0 2

ISYSFKEY 6 0 2

ISYSSOURCE 58 0 2

MAINLIST 94 0 3

MAINLIST 94 1 2

The number of rows for each table indicates the number of shared physical indexes for the tables. In this
example, all the tables have one shared physical index, except for the fictitious table, MAINLIST, which
has two. The phys_index_id values identifies the physical index being shared, and the value in the COUNT
column tells you how many logical indexes are sharing the physical index.

You can also use Sybase Central to see which indexes for a given table share a physical index. To do this,
choose the table in the left pane, click the Indexes tab in the right pane, and then look for multiple rows with
the same value in the Phys. ID column. Indexes with the same value in Phys. ID share the same physical
index.

See also
● “Rebuild indexes” on page 76
● “ALTER INDEX statement” [SQL Anywhere Server - SQL Reference]
● “SYSIDX system view” [SQL Anywhere Server - SQL Reference]

When to create an index
There is no simple formula to determine whether an index should be created. You must consider the trade-
off of the benefits of indexed retrieval versus the maintenance overhead of that index. The following factors
may help to determine whether you should create an index:

● Keys and unique columns SQL Anywhere automatically creates indexes on primary keys, foreign
keys, and unique columns. You should not create additional indexes on these columns. The exception is
composite keys, which can sometimes be enhanced with additional indexes.

For more information, see “Composite indexes” on page 644.

● Frequency of search If a particular column is searched frequently, you can achieve performance
benefits by creating an index on that column. Creating an index on a column that is rarely searched may
not be worthwhile.

Query optimization and execution

642 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Size of table Indexes on relatively large tables with many rows provide greater benefits than indexes
on relatively small tables. For example, a table with only 20 rows is unlikely to benefit from an index,
since a sequential scan would not take any longer than an index lookup.

● Number of updates An index is updated every time a row is inserted or deleted from the table and
every time an indexed column is updated. An index on a column slows the performance of inserts, updates
and deletes. A database that is frequently updated should have fewer indexes than one that is read-only.

● Space considerations Indexes take up space within the database. If database size is a primary
concern, you should create indexes sparingly.

● Data distribution If an index lookup returns too many values, it is more costly than a sequential scan.
SQL Anywhere does not make use of the index when it recognizes this condition. For example, SQL
Anywhere would not make use of an index on a column with only two values, such as Employees.Sex
in the SQL Anywhere sample database. For this reason, you should not create an index on a column that
has only a few distinct values.

The Index Consultant is a tool that assists you in the selection of an appropriate set of indexes for your
database. See “Index Consultant” on page 183.

Temporary tables

You can create indexes on both local and global temporary tables. You may want to consider indexing a
temporary table if you expect it will be large and accessed several times in sorted order or in a join. Otherwise,
any improvement in performance for queries is likely to be outweighed by the cost of creating and dropping
the index.

For more information, see “Working with indexes” on page 71.

Improving index performance
If your index is not performing as expected, you may want to consider the following actions:

● Reorganize composite indexes.
● Increase the page size.

These measures are aimed at increasing index selectivity and index fan-out, as explained below.

Index selectivity
Index selectivity refers to the ability of an index to locate a desired index entry without having to read
additional data.

If selectivity is low, additional information must be retrieved from the table page that the index references.
These retrievals are called full compares, and they have a negative effect on index performance.

The FullCompare property function keeps track of the number of full compares that have occurred. You can
also monitor this statistic using the Sybase Central Performance monitor or the Windows Performance
Monitor.

Improving query performance

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 643

Note
The Windows Performance Monitor may not be available on Windows Mobile.

In addition, the number of full compares is provided in the graphical plan with statistics. For more
information, see “Common statistics used in the plan” on page 631.

For more information about the FullCompare function, see “Database properties” [SQL Anywhere Server -
Database Administration].

Index structure and index fan-out
Indexes are organized in several levels, like a tree. The first page of an index, called the root page, branches
into one or more pages at the next level, and each of those pages branch again, until the lowest level of the
index is reached. These lowest level index pages are called leaf pages. To locate a specific row, an index
with n levels requires n reads for index pages and one read for the data page containing the actual row. In
general, fewer than n reads from disk are needed, since index pages that are used frequently tend to be stored
in cache.

The index fan-out is the number of index entries stored on a page. An index with a higher fan-out may have
fewer levels than an index with a lower fan-out. Therefore, higher index fan-out generally means better index
performance. Choosing the correct page size for your database can improve index fan-out. See “Table and
page sizes” on page 639.

You can see the number of levels in an index by using the sa_index_levels system procedure. See
“sa_index_levels system procedure” [SQL Anywhere Server - SQL Reference].

Composite indexes

An index can contain one, two, or more columns. An index on two or more columns is called a composite
index. For example, the following statement creates a two-column composite index:

CREATE INDEX name
ON Employees (Surname, GivenName);

A composite index is useful if the first column alone does not provide high selectivity. For example, a
composite index on Surname and GivenName is useful when many employees have the same surname. A
composite index on EmployeeID and Surname would not be useful because each employee has a unique ID,
so the column Surname does not provide any additional selectivity.

Additional columns in an index can allow you to narrow down your search, but having a two-column index
is not the same as having two separate indexes. A composite index is structured like a telephone book, which
first sorts people by their surnames, and then all the people with the same surname by their given names. A
telephone book is useful if you know the surname, even more useful if you know both the given name and
the surname, but worthless if you only know the given name and not the surname.

Column order
When you create composite indexes, you should think carefully about the order of the columns. Composite
indexes are useful for doing searches on all the columns in the index or on the first columns only; they are
not useful for doing searches on any of the later columns alone.

Query optimization and execution

644 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

If you are likely to do many searches on one column only, that column should be the first column in the
composite index. If you are likely to do individual searches on both columns of a two-column index, you
may want to consider creating a second index that contains the second column only.

For example, suppose you create a composite index on two columns. One column contains employee's given
names, the other their surnames. You could create an index that contains their given name, then their surname.
Alternatively, you could index the surname, then the given name. Although these two indexes organize the
information in both columns, they have different functions.

CREATE INDEX IX_GivenName_Surname
 ON Employees (GivenName, Surname);
CREATE INDEX IX_Surname_GivenName
 ON Employees (Surname, GivenName);

Suppose you then want to search for the given name John. The only useful index is the one containing the
given name in the first column of the index. The index organized by surname then given name is of no use
because someone with the given name John could appear anywhere in the index.

If you are more likely to look up people by given name only or surname only, then you should consider
creating both of these indexes.

Alternatively, you could make two indexes, each containing only one of the columns. Remember, however,
that SQL Anywhere only uses one index to access any one table while processing a single query. Even if
you know both names, it is likely that SQL Anywhere needs to read extra rows, looking for those with the
correct second name.

When you create an index using the CREATE INDEX command, as in the example above, the columns
appear in the order shown in your command.

Composite indexes and ORDER BY

By default, the columns of an index are sorted in ascending order, but they can optionally be sorted in
descending order by specifying DESC in the CREATE INDEX statement.

SQL Anywhere can choose to use an index to optimize an ORDER BY query as long as the ORDER BY
clause contains only columns included in that index. In addition, the columns in the index must be ordered
in exactly the same way, or in exactly the opposite way, as the ORDER BY clause. For single-column
indexes, the ordering is always such that it can be optimized, but composite indexes require slightly more
thought. The table below shows the possibilities for a two-column index.

Index columns Optimizable ORDER BY queries Not optimizable ORDER BY queries

ASC, ASC ASC, ASC or DESC, DESC ASC, DESC or DESC, ASC

ASC, DESC ASC, DESC or DESC, ASC ASC, ASC or DESC, DESC

DESC, ASC DESC, ASC or ASC, DESC ASC, ASC or DESC, DESC

DESC, DESC DESC, DESC or ASC, ASC ASC, DESC or DESC, ASC

An index with more than two columns follows the same general rule as above. For example, suppose you
have the following index:

Improving query performance

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 645

CREATE INDEX idx_example
ON table1 (col1 ASC, col2 DESC, col3 ASC);

In this case, the following queries can be optimized:

SELECT col1, col2, col3 FROM table1
ORDER BY col1 ASC, col2 DESC, col3 ASC;
SELECT col1, col2, col3 FROM example
ORDER BY col1 DESC, col2 ASC, col3 DESC;

The index is not used to optimize a query with any other pattern of ASC and DESC in the ORDER BY
clause. For example, the following statement is not optimized:

SELECT col1, col2, col3 FROM table1
ORDER BY col1 ASC, col2 ASC, col3 ASC;

Other uses for indexes
SQL Anywhere uses indexes to achieve other performance benefits. Having an index allows SQL Anywhere
to enforce column uniqueness, to reduce the number of rows and pages that must be locked, and to better
estimate the selectivity of a predicate.

● Enforce column uniqueness Without an index, SQL Anywhere has to scan the entire table every
time that a value is inserted to ensure that it is unique. For this reason, SQL Anywhere automatically
builds an index on every column with a uniqueness constraint.

● Reduce locks Indexes reduce the number of rows and pages that must be locked during inserts,
updates, and deletes. This reduction is a result of the ordering that indexes impose on a table.

For more information about indexes and locking, see “How locking works” on page 132.

● Estimate selectivity Because an index is ordered, the optimizer can estimate the percentage of values
that satisfy a given query by scanning the upper levels of the index. This action is called a partial index
scan.

B-link indexes
B-link indexes are a variant of B- and B+- tree indexes in which each index page, non-leaf and leaf, contains
the page number of (or a link to) its right sibling. Further, index pages need not appear immediately in a
parent page. The primary advantage of B-link indexes is improved concurrency.

Indexes can be declared as either clustered or unclustered. Only one index on a table can be clustered. If you
determine that an index should be clustered, you do not need to drop and recreate the index: the clustering
characteristic of an index can be removed or added by issuing an ALTER INDEX statement. Clustered
indexes may assist performance by allowing the query optimizer to make more accurate decisions about the
cost of index scans.

To improve fanout, SQL Anywhere stores a compressed form of each indexed value in which the prefix
shared with the immediately preceding value is not stored. To reduce the CPU time when searching within
a page, a small look-aside map of complete index keys (subject to data length restrictions) is also stored. In
particular, SQL Anywhere indexes efficiently handle index values that are identical (or nearly so), so

Query optimization and execution

646 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

common prefixes within the indexed values have negligible impact on storage requirements and
performance.

See also
● “Using clustered indexes” on page 72
● “ALTER INDEX statement” [SQL Anywhere Server - SQL Reference]

Improving query performance

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 647

648

SQL Dialects and Compatibility

This section describes Transact-SQL compatibility and those features of SQL Anywhere that are not commonly
found in other SQL implementations.

SQL dialects ... 651

SQL dialects

Contents
Introduction to SQL Anywhere compliance ... 652
Testing SQL compliance using the SQL Flagger .. 653
Features not found in other SQL implementations .. 655
Watcom-SQL ... 657
Transact-SQL Compatibility ... 658
Adaptive Server Enterprise architectures .. 661
Configuring databases for Transact-SQL compatibility ... 666
Writing compatible SQL statements .. 672
Transact-SQL procedure language overview .. 677
Automatic translation of stored procedures ... 679
Returning result sets from Transact-SQL procedures ... 680
Variables in Transact-SQL procedures ... 681
Error handling in Transact-SQL procedures .. 682

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 651

Introduction to SQL Anywhere compliance
SQL Anywhere complies completely with the SQL-92-based United States Federal Information Processing
Standard Publication (FIPS PUB) 127. With minor exceptions, SQL Anywhere is compliant with the ISO/
ANSI SQL-2003 core specifications. Information about compliance is provided in the reference
documentation for each feature of SQL Anywhere.

SQL dialects

652 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Testing SQL compliance using the SQL Flagger
In SQL Anywhere, the database server and the SQL preprocessor (sqlpp) can identify SQL statements that
are vendor extensions, are not compliant with specific ISO/ANSI SQL standards, or are not supported by
UltraLite. This functionality is called the SQL Flagger, and is part of the SQL/1999 and SQL/2003 ISO/
ANSI SQL standards. The SQL Flagger helps an application developer to identify SQL language constructs
that violate a specified subset of the SQL language. The SQL Flagger can also be used to ensure compliance
with core features of a SQL standard, or compliance with a combination of core and optional features. The
SQL Flagger can also be used when prototyping an UltraLite application with SQL Anywhere, to ensure
that the SQL being used is supported by UltraLite.

The SQL Flagger is intended to provide static, compile-time checking of compliance, although both syntactic
and semantic elements of a SQL statement are candidates for analysis by the SQL Flagger. An example test
of syntactic compliance is the lack of the optional INTO keyword in an INSERT statement (for example,
INSERT Products VALUES(...)), which is a SQL Anywhere grammar extension to the SQL
language. The use of an INSERT statement without the INTO keyword is flagged as a vendor extension
because the ANSI SQL/2003 standard mandates the use of the INTO keyword. Note, however, that the INTO
keyword is optional for UltraLite applications.

Key joins are also flagged as a vendor extension. A key join is used by default when the JOIN keyword is
used without an ON clause. A key join uses existing foreign key relationships to join the tables. Key joins
are not supported by UltraLite. For example, the following query specifies an implicit join condition between
the Products and SalesOrderItems tables. This query is flagged by the SQL Flagger as a vendor extension.

SELECT * FROM Products JOIN SalesOrderItems;

SQL Flagger functionality is not dependent on the execution of a SQL statement; all flagging logic is done
only as a static, compile-time process.

See also
● “SQLFLAGGER function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “Running the SQL preprocessor” [SQL Anywhere Server - Programming]
● “INSERT statement” [SQL Anywhere Server - SQL Reference]
● “Key joins” on page 421

Invoking the SQL Flagger
SQL Anywhere offers several ways to invoke the SQL Flagger to check a SQL statement, or a batch of SQL
statements:

● SQLFLAGGER function The SQLFLAGGER function analyzes a single SQL statement, or batch,
passed as a string argument, for compliance with a given SQL standard. The statement or batch is parsed,
but not executed. See “SQLFLAGGER function [Miscellaneous]” [SQL Anywhere Server - SQL
Reference].

● sa_ansi_standard_packages system procedure The sa_ansi_standard_packages system
procedure analyzes a statement, or batch, for the use of optional packages from the ANSI SQL/2003 or

Testing SQL compliance using the SQL Flagger

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 653

SQL/1999 international standards. The statement or batch is parsed, but not executed. See
“sa_ansi_standard_packages system procedure” [SQL Anywhere Server - SQL Reference].

● sql_flagger_error_level and sql_flagger_warning_level options The sql_flagger_error_level
and sql_flagger_warning_level options invoke the SQL Flagger for any statement prepared or executed
for the connection. If the statement does not comply with the option setting, which is a specific ANSI
standard or UltraLite, the statement either terminates with an error (SQLSTATE 0AW03), or returns a
warning (SQLSTATE 01W07), depending upon the option setting. If the statement complies, statement
execution proceeds normally. See “sql_flagger_error_level option [compatibility]” [SQL Anywhere
Server - Database Administration] and “sql_flagger_warning_level option [compatibility]” [SQL
Anywhere Server - Database Administration].

● SQL preprocessor (sqlpp) The SQL preprocessor (sqlpp) has the ability to flag static SQL
statements in an embedded SQL application at compile time. This feature can be especially useful when
developing an UltraLite application, to verify SQL statements for UltraLite compatibility. See “SQL
preprocessor” [SQL Anywhere Server - Programming], and “Running the SQL preprocessor” [SQL
Anywhere Server - Programming].

See also
● “Introduction to batches” on page 851

Standards and compatibility
The flagging functionality used in the database server and in the SQL preprocessor follows the SQL Flagger
functionality defined in Part 1 (Framework) of the ANSI/ISO SQL/2003 International Standard. To
determine the compliance of SQL constructs, the SQL Flagger uses the following ANSI SQL standards:

● SQL/1992 Entry level, Intermediate level, and Full level
● SQL/1999 Core, and SQL/1999 optional packages
● SQL/2003 Core, and SQL/2003 optional packages

Note
SQL Flagger support for SQL/1992 (all levels) is deprecated.

In addition, the SQL Flagger can identify statements that are not compliant with UltraLite SQL. For example,
UltraLite has only limited abilities to CREATE and ALTER schema objects.

All SQL statements can be analyzed by the SQL Flagger. However, most statements that create or alter
schema objects, including statements that create tables, indexes, materialized views, publications,
subscriptions, and proxy tables, are vendor extensions to the ANSI SQL standards, and are flagged as non-
conforming.

The SET OPTION statement, including its optional components, is never flagged for non-compliance with
any SQL standard, or for compatibility with UltraLite.

See also
● “UltraLite SQL elements” [UltraLite - Database Management and Reference]
● “SET OPTION statement” [SQL Anywhere Server - SQL Reference]

SQL dialects

654 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Features not found in other SQL implementations
The following features of the SQL supported by SQL Anywhere are not found in many other SQL
implementations.

Dates
SQL Anywhere has date, time and timestamp types that includes a year, month and day, hour, minutes,
seconds and fraction of a second. For insertions or updates to date fields, or comparisons with date fields, a
free format date is supported.

In addition, the following operations are allowed on dates:

● date + integer Add the specified number of days to a date.

● date - integer Subtract the specified number of days from a date.

● date - date Compute the number of days between two dates.

● date + time Make a timestamp out of a date and time.

Also, many functions are provided for manipulating dates and times. See “SQL functions” [SQL Anywhere
Server - SQL Reference] for a description of these.

Integrity
SQL Anywhere supports both entity and referential integrity. This has been implemented via the following
two extensions to the CREATE TABLE and ALTER TABLE commands.

PRIMARY KEY (column-name, ...)
[NOT NULL] FOREIGN KEY [role-name]
 [(column-name, ...)]
 REFERENCES table-name [(column-name, ...)]
 [CHECK ON COMMIT]

The PRIMARY KEY clause declares the primary key for the relation. SQL Anywhere then enforces the
uniqueness of the primary key, and ensure that no column in the primary key contains the NULL value.

The FOREIGN KEY clause defines a relationship between this table and another table. This relationship is
represented by a column (or columns) in this table which must contain values in the primary key of another
table. The system then ensures referential integrity for these columns - whenever these columns are modified
or a row is inserted into this table, these columns are checked to ensure that either one or more is NULL or
the values match the corresponding columns in the primary key for some row of the other table. For more
information, see “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference].

Joins
SQL Anywhere allows automatic joins between tables. In addition to the NATURAL and OUTER join
operators supported in other implementations, SQL Anywhere allows KEY joins between tables based on
foreign key relationships. This reduces the complexity of the WHERE clause when performing joins.

Features not found in other SQL implementations

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 655

Updates
SQL Anywhere allows more than one table to be referenced by the UPDATE command. Views defined on
more than one table can also be updated. Many SQL implementations do not allow updates on joined tables.

Altering tables
The ALTER TABLE command has been extended. In addition to changes for entity and referential integrity,
the following types of alterations are allowed:

ADD column data-type
ALTER column data-type
DELETE column
RENAME new-table-name
RENAME old-column TO new-column

The ALTER clause can be used to change the maximum length of a character column and convert from one
data type to another. See “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference].

Subqueries where expressions are allowed
SQL Anywhere allows subqueries to appear wherever expressions are allowed. Many SQL implementations
only allow subqueries on the right side of a comparison operator. For example, the following command is
valid in SQL Anywhere but not valid in most other SQL implementations.

SELECT Surname,
 BirthDate,
 (SELECT DepartmentName
 FROM Departments
 WHERE EmployeeID = Employees.EmployeeID
 AND DepartmentID = 200)
FROM Employees;

Additional functions
SQL Anywhere supports several functions not in the ANSI SQL definition. See “SQL functions” [SQL
Anywhere Server - SQL Reference] for a full list of available functions.

Cursors
When using embedded SQL, cursor positions can be moved arbitrarily on the FETCH statement. Cursors
can be moved forward or backward relative to the current position or a given number of records from the
beginning or end of the cursor.

Alias references
SQL Anywhere permits aliased expressions in the select list of a query to be referenced in other parts of the
query. Most other SQL implementations do not allow this.

SQL dialects

656 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Watcom-SQL
The dialect of SQL supported by SQL Anywhere is referred to as Watcom-SQL. The original version of
SQL Anywhere was called Watcom SQL when it was introduced in 1992. We still use the term Watcom-
SQL to identify the dialect of SQL supported by SQL Anywhere.

SQL Anywhere also supports a large subset of Transact-SQL, the dialect of SQL supported by Sybase
Adaptive Server Enterprise. See “Transact-SQL Compatibility” on page 658.

Watcom-SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 657

Transact-SQL Compatibility
SQL Anywhere supports a large subset of Transact-SQL, the dialect of SQL supported by Sybase Adaptive
Server Enterprise. This section describes compatibility of SQL between SQL Anywhere and Adaptive Server
Enterprise.

Goals
The goals of Transact-SQL support in SQL Anywhere are as follows:

● Application portability Many applications, stored procedures, and batch files can be written for use
with both Adaptive Server Enterprise and SQL Anywhere databases.

● Data portability SQL Anywhere and Adaptive Server Enterprise databases can exchange and
replicate data between each other with minimum effort.

The aim is to write applications to work with both Adaptive Server Enterprise and SQL Anywhere. Existing
Adaptive Server Enterprise applications generally require some changes to run on a SQL Anywhere database.

How Transact-SQL is supported
Transact-SQL support in SQL Anywhere takes the following form:

● Many SQL statements are compatible between SQL Anywhere and Adaptive Server Enterprise.

● For some statements, particularly in the procedure language used in procedures, triggers, and batches, a
separate Transact-SQL statement is supported together with the syntax supported in previous versions
of SQL Anywhere. For these statements, SQL Anywhere supports two dialects of SQL. Those dialects
are called Transact-SQL — the dialect of Adaptive Server Enterprise, and Watcom-SQL — the dialect
of SQL Anywhere.

● A procedure, trigger, or batch is executed in either the Transact-SQL or Watcom-SQL dialect. You must
use control statements from one dialect only throughout the batch or procedure. For example, each dialect
has different flow control statements.

The following diagram illustrates how the two dialects overlap.

SQL dialects

658 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Similarities and differences
SQL Anywhere supports a very high percentage of Transact-SQL language elements, functions, and
statements for working with existing data. For example, SQL Anywhere supports all numeric, aggregate,
and date and time functions, and all but one string function. As another example, SQL Anywhere supports
extended DELETE and UPDATE statements using joins.

Further, SQL Anywhere supports a very high percentage of the Transact-SQL stored procedure language
(CREATE PROCEDURE and CREATE TRIGGER syntax, control statements, and so on) and many, but
not all, aspects of Transact-SQL data definition language statements.

There are design differences in the architectural and configuration facilities supported by each product.
Device management, user management, and maintenance tasks such as backups tend to be system-specific.
Even here, SQL Anywhere provides Transact-SQL system tables as views, where the tables that are not
meaningful in SQL Anywhere have no rows. Also, SQL Anywhere provides a set of system procedures for
some of the more common administrative tasks.

This chapter looks first at some system-level issues where differences are most noticeable, before discussing
data manipulation and data definition language aspects of the dialects where compatibility is high.

Transact-SQL only
Some SQL statements supported by SQL Anywhere are part of one dialect, but not the other. You cannot
mix the two dialects within a procedure, trigger, or batch. For example, SQL Anywhere supports the
following statements, but as part of the Transact-SQL dialect only:

● Transact-SQL control statements IF and WHILE

● Transact-SQL EXECUTE statement

Transact-SQL Compatibility

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 659

● Transact-SQL CREATE PROCEDURE and CREATE TRIGGER statements

● Transact-SQL BEGIN TRANSACTION statement

● SQL statements not separated by semicolons are part of a Transact-SQL procedure or batch

SQL Anywhere only
Adaptive Server Enterprise does not support the following statements:

● control statements CASE, LOOP, and FOR

● SQL Anywhere versions of IF and WHILE

● CALL statement

● SQL Anywhere versions of the CREATE PROCEDURE, CREATE FUNCTION, and CREATE
TRIGGER statements

● SQL statements separated by semicolons

Notes
The two dialects cannot be mixed within a procedure, trigger, or batch. This means that:

● You can include Transact-SQL-only statements together with statements that are part of both dialects in
a batch, procedure, or trigger.

● You can include statements not supported by Adaptive Server Enterprise together with statements that
are supported by both servers in a batch, procedure, or trigger.

● You cannot include Transact-SQL-only statements together with SQL Anywhere-only statements in a
batch, procedure, or trigger.

SQL dialects

660 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Adaptive Server Enterprise architectures
Adaptive Server Enterprise and SQL Anywhere are complementary products, with architectures designed
to suit their distinct purposes.

This section describes architectural differences between Adaptive Server Enterprise and SQL Anywhere. It
also describes the Adaptive Server Enterprise-like tools that SQL Anywhere includes for compatible
database management.

Servers and databases
The relationship between servers and databases is different in Adaptive Server Enterprise and SQL
Anywhere.

In Adaptive Server Enterprise, each database exists inside a server, and each server can contain several
databases. Users can have login rights to the server, and can connect to the server. They can then use each
database on that server for which they have permissions. System-wide system tables, held in a master
database, contain information common to all databases on the server.

No master database in SQL Anywhere
In SQL Anywhere, there is no level corresponding to the Adaptive Server Enterprise master database. Instead,
each database is an independent entity, containing all of its system tables. Users can have connection rights
to a database, not to the server. When a user connects, they connect to an individual database. There is no
system-wide set of system tables maintained at a master database level. Each SQL Anywhere database server
can dynamically load and unload multiple databases, and users can maintain independent connections on
each.

SQL Anywhere provides tools in its Transact-SQL support and in its Open Server support to allow some
tasks to be performed in a manner similar to Adaptive Server Enterprise. For example, SQL Anywhere
provides an implementation of the Adaptive Server Enterprise sp_addlogin system procedure that performs
the nearest equivalent action: adding a user to a database. See “Using SQL Anywhere as an Open Server”
[SQL Anywhere Server - Database Administration].

File manipulation statements

SQL Anywhere does not support the Transact-SQL statements DUMP DATABASE and LOAD
DATABASE for backing up and restoring. Instead, SQL Anywhere has its own BACKUP DATABASE and
RESTORE DATABASE statements with different syntax.

Device management
SQL Anywhere and Adaptive Server Enterprise use different models for managing devices and disk space,
reflecting the different uses for the two products. While Adaptive Server Enterprise sets out a comprehensive
resource management scheme using a variety of Transact-SQL statements, SQL Anywhere manages its own
resources automatically, and its databases are regular operating system files.

Adaptive Server Enterprise architectures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 661

SQL Anywhere does not support Transact-SQL DISK statements, such as DISK INIT, DISK MIRROR,
DISK REFIT, DISK REINIT, DISK REMIRROR, and DISK UNMIRROR.

For information about disk management, see “Working with database files” [SQL Anywhere Server -
Database Administration].

Defaults and rules
SQL Anywhere does not support the Transact-SQL CREATE DEFAULT statement or CREATE RULE
statement. The CREATE DOMAIN statement allows you to incorporate a default and a rule (called a CHECK
condition) into the definition of a domain, and so provides similar functionality to the Transact-SQL
CREATE DEFAULT and CREATE RULE statements.

In SQL Anywhere, a domain can have a default value and a CHECK condition associated with it, which are
applied to all columns defined on that data type. You create the domain using the CREATE DOMAIN
statement.

You can define default values and rules, or CHECK conditions, for individual columns using the CREATE
TABLE statement or the ALTER TABLE statement.

In Adaptive Server Enterprise, the CREATE DEFAULT statement creates a named default. This default can
be used as a default value for columns by binding the default to a particular column or as a default value for
all columns of a domain by binding the default to the data type using the sp_bindefault system procedure.
The CREATE RULE statement creates a named rule that can be used to define the domain for columns by
binding the rule to a particular column or as a rule for all columns of a domain by binding the rule to the
data type. A rule is bound to a data type or column using the sp_bindrule system procedure.

See also
● “CREATE DOMAIN statement” [SQL Anywhere Server - SQL Reference]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Search conditions” [SQL Anywhere Server - SQL Reference]

System tables
In addition to its own system tables, SQL Anywhere provides a set of system views that mimic relevant parts
of the Adaptive Server Enterprise system tables.

For a list and individual descriptions, including descriptions of the system catalogs of the two products, see
“Views for Transact-SQL compatibility” [SQL Anywhere Server - SQL Reference].

The SQL Anywhere system tables rest entirely within each database, while the Adaptive Server Enterprise
system tables rest partly inside each database and partly in the master database. The SQL Anywhere
architecture does not include a master database.

In Adaptive Server Enterprise, the database owner (user dbo) owns the system tables. In SQL Anywhere,
the system owner (user SYS) owns the system tables. The user dbo owns the Adaptive Server Enterprise-
compatible system views provided by SQL Anywhere.

SQL dialects

662 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Administrative roles
Adaptive Server Enterprise has a more elaborate set of administrative roles than SQL Anywhere. In Adaptive
Server Enterprise there is a set of distinct roles, although more than one login account on an Adaptive Server
Enterprise can be granted any role, and one account can possess more than one role.

Adaptive Server Enterprise roles
In Adaptive Server Enterprise distinct roles include:

● System Administrator Responsible for general administrative tasks unrelated to specific
applications; can access any database object.

● System Security Officer Responsible for security-sensitive tasks in Adaptive Server Enterprise, but
has no special permissions on database objects.

● Database Owner Has full permissions on objects inside the database he or she owns, can add users
to a database and grant other users the permission to create objects and execute commands within the
database.

● Data definition statements Permissions can be granted to users for specific data definition
statements, such as CREATE TABLE or CREATE VIEW, enabling the user to create database objects.

● Object owner Each database object has an owner who may grant permissions to other users to access
the object. The owner of an object automatically has all permissions on the object.

In SQL Anywhere, the following database-wide permissions have administrative roles:

● The Database Administrator (DBA authority) has, like the Adaptive Server Enterprise database owner,
full permissions on all objects inside the database (other than objects owned by SYS) and can grant other
users the permission to create objects and execute commands within the database. The default database
administrator is user DBA.

● The RESOURCE authority allows a user to create any kind of object within a database. This is instead
of the Adaptive Server Enterprise scheme of granting permissions on individual CREATE statements.

● SQL Anywhere has object owners in the same way that Adaptive Server Enterprise does. The owner of
an object automatically has all permissions on the object, including the right to grant permissions.

For seamless access to data held in both Adaptive Server Enterprise and SQL Anywhere, you should create
user IDs with appropriate permissions in the database (RESOURCE in SQL Anywhere, or permission on
individual CREATE statements in Adaptive Server Enterprise) and create objects from that user ID. If you
use the same user ID in each environment, object names and qualifiers can be identical in the two databases,
ensuring compatible access.

See also
● “Database permissions and authorities overview” [SQL Anywhere Server - Database Administration]
● “DBA authority” [SQL Anywhere Server - Database Administration]
● “RESOURCE authority” [SQL Anywhere Server - Database Administration]

Adaptive Server Enterprise architectures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 663

Users and groups
There are some differences between the Adaptive Server Enterprise and SQL Anywhere models of users
and groups.

In Adaptive Server Enterprise, users connect to a server. Each user requires a login ID and password to the
server and a user ID for each database they want to access on that server. Each user of a database can only
be a member of one group.

In SQL Anywhere, users connect directly to a database and do not require a separate login ID to the database
server. Instead, each user receives a user ID and password on a database so they can use that database. Users
can be members of many groups, and group hierarchies are allowed.

Both servers support groups, so you can grant permissions to many users at one time. However, there are
differences in the specifics of groups in the two servers. For example, Adaptive Server Enterprise allows
each user to be a member of only one group, while SQL Anywhere has no such restriction. You should
compare the documentation on users and groups in the two products for specific information.

Both Adaptive Server Enterprise and SQL Anywhere have a public group, for defining default permissions.
Every user automatically becomes a member of the public group.

SQL Anywhere supports the following Adaptive Server Enterprise system procedures for managing users
and groups. See “Adaptive Server Enterprise system and catalog procedures” [SQL Anywhere Server - SQL
Reference].

System procedure Description

sp_addlogin In Adaptive Server Enterprise, this adds a user to the server. In SQL Anywhere,
this adds a user to a database.

sp_adduser In Adaptive Server Enterprise and SQL Anywhere, this adds a user to a database.
While this is a distinct task from sp_addlogin in Adaptive Server Enterprise, in
SQL Anywhere, they are the same.

sp_addgroup Adds a group to a database.

sp_changegroup Adds a user to a group, or moves a user from one group to another.

sp_droplogin In Adaptive Server Enterprise, removes a user from the server. In SQL Anywhere,
removes a user from the database.

sp_dropuser Removes a user from the database.

sp_dropgroup Removes a group from the database.

In Adaptive Server Enterprise, login IDs are server-wide. In SQL Anywhere, users belong to individual
databases.

SQL dialects

664 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database object permissions
The Adaptive Server Enterprise and SQL Anywhere GRANT and REVOKE statements for granting
permissions on individual database objects are very similar. Both allow SELECT, INSERT, DELETE,
UPDATE, and REFERENCES permissions on database tables and views, and UPDATE permissions on
selected columns of database tables. Both allow EXECUTE permissions to be granted on stored procedures.

For example, the following statement is valid in both Adaptive Server Enterprise and SQL Anywhere:

GRANT INSERT, DELETE
ON Employees
TO MARY, SALES;

This statement grants permission to use the INSERT and DELETE statements on the Employees table to
user MARY and to the SALES group.

Both SQL Anywhere and Adaptive Server Enterprise support the WITH GRANT OPTION clause, allowing
the recipient of permissions to grant them in turn, although SQL Anywhere does not permit WITH GRANT
OPTION to be used on a GRANT EXECUTE statement. In SQL Anywhere, you can only specify WITH
GRANT OPTION for users. Members of groups do not inherit the WITH GRANT OPTION if it is granted
to a group.

Database-wide permissions
Adaptive Server Enterprise and SQL Anywhere use different models for database-wide user permissions.
SQL Anywhere employs DBA permissions to allow a user full authority within a database. The System
Administrator in Adaptive Server Enterprise enjoys this permission for all databases on a server. However,
DBA authority on a SQL Anywhere database is different from the permissions of an Adaptive Server
Enterprise Database Owner, who must use the Adaptive Server Enterprise SETUSER statement to gain
permissions on objects owned by other users. See “Users and groups” on page 664.

SQL Anywhere employs RESOURCE permissions to allow a user the right to create objects in a database.
A closely corresponding Adaptive Server Enterprise permission is GRANT ALL, used by a Database Owner.

Adaptive Server Enterprise architectures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 665

Configuring databases for Transact-SQL
compatibility

You can eliminate some differences in behavior between SQL Anywhere and Adaptive Server Enterprise
by selecting appropriate options when creating a database or, if you are working on an existing database,
when rebuilding the database. You can control other differences by connection level options using the SET
TEMPORARY OPTION statement in SQL Anywhere or the SET statement in Adaptive Server Enterprise.

Creating a Transact-SQL-compatible database
This section describes choices you must make when creating or rebuilding a database.

Quick start
Here are the steps you need to take to create a Transact-SQL-compatible database. The remainder of the
section describes which options you need to set.

To create a Transact-SQL compatible database (Sybase Central)

1. Start Sybase Central.

2. Choose Tools » SQL Anywhere 11 » Create Database.

3. Follow the instructions in the wizard.

4. When you see the button, Emulate Adaptive Server Enterprise, click it and then click Next.

5. Follow the remaining instructions in the wizard.

To create a Transact-SQL compatible database (Command line)

● Run the following dbinit command:

dbinit -b -c -k db-name.db

For more information about these options, see “Initialization utility (dbinit)” [SQL Anywhere Server -
Database Administration].

To create a Transact-SQL compatible database (SQL)

1. Connect to any SQL Anywhere database.

2. Enter the following statement, for example, in Interactive SQL:

CREATE DATABASE 'dbname.db'
ASE COMPATIBLE
CASE RESPECT
BLANK PADDING ON;

In this statement, ASE COMPATIBLE means compatible with Adaptive Server Enterprise. It prevents
the SYS.SYSCOLUMNS and SYS.SYSINDEXES views from being created.

SQL dialects

666 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Make the database case sensitive
By default, string comparisons in Adaptive Server Enterprise databases are case sensitive, while those in
SQL Anywhere are case insensitive.

When building an Adaptive Server Enterprise-compatible database using SQL Anywhere, choose the case
sensitive option.

● If you are using Sybase Central, this option is in the Create Database Wizard.

● If you are using the dbinit utility, specify the -c option.

Ignore trailing blanks in comparisons
When building an Adaptive Server Enterprise-compatible database using SQL Anywhere, choose the option
to ignore trailing blanks in comparisons.

● If you are using Sybase Central, this option is in the Create Database Wizard.

● If you are using the dbinit utility, specify the -b option.

When you choose this option, Adaptive Server Enterprise and SQL Anywhere considers the following two
strings equal:

'ignore the trailing blanks '
'ignore the trailing blanks'

If you do not choose this option, SQL Anywhere considers the two strings above different.

A side effect of choosing this option is that strings are padded with blanks when fetched by a client
application.

Remove historical system views
Older versions of SQL Anywhere employed two system views whose names conflict with the Adaptive
Server Enterprise system views provided for compatibility. These views include SYSCOLUMNS and
SYSINDEXES. If you are using Open Client or JDBC interfaces, create your database excluding these views.
You can do this with the dbinit -k option.

If you do not use this option when creating your database, executing the statement SELECT * FROM
SYSCOLUMNS; results in the error, Table name 'SYSCOLUMNS' is ambiguous.

Setting options for Transact-SQL compatibility
You set SQL Anywhere database options using the SET OPTION statement. Several database option settings
are relevant to Transact-SQL behavior.

Configuring databases for Transact-SQL compatibility

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 667

Set the allow_nulls_by_default option
By default, Adaptive Server Enterprise disallows NULLs on new columns unless you explicitly define the
column to allow NULLs. SQL Anywhere permits NULL in new columns by default, which is compatible
with the SQL/2003 ISO standard.

To make Adaptive Server Enterprise behave in a SQL/2003-compatible manner, use the sp_dboption system
procedure to set the allow_nulls_by_default option to true.

To make SQL Anywhere behave in a Transact-SQL-compatible manner, set the allow_nulls_by_default
option to Off. You can do this using the SET OPTION statement as follows:

SET OPTION PUBLIC.allow_nulls_by_default = 'Off';

Set the quoted_identifier option
By default, Adaptive Server Enterprise treats identifiers and strings differently than SQL Anywhere, which
matches the SQL/2003 ISO standard.

The quoted_identifier option is available in both Adaptive Server Enterprise and SQL Anywhere. Ensure
the option is set to the same value in both databases, for identifiers and strings to be treated in a compatible
manner. See “quoted_identifier option [compatibility]” [SQL Anywhere Server - Database
Administration].

For SQL/2003 behavior, set the quoted_identifier option to On in both Adaptive Server Enterprise and SQL
Anywhere.

For Transact-SQL behavior, set the quoted_identifier option to Off in both Adaptive Server Enterprise and
SQL Anywhere. If you choose this, you can no longer use identifiers that are the same as keywords, enclosed
in double quotes. As an alternative to setting quoted_identifier to Off, ensure that all strings used in SQL
statements in your application are enclosed in single quotes, not double quotes.

Set the string_rtruncation option
Both Adaptive Server Enterprise and SQL Anywhere support the string_rtruncation option, which affects
error message reporting when an INSERT or UPDATE string is truncated. Ensure that each database has
the option set to the same value. See “string_rtruncation option [compatibility]” [SQL Anywhere Server -
Database Administration].

See “Compatibility options” [SQL Anywhere Server - Database Administration].

Case sensitivity
Case sensitivity in databases refers to:

● Data The case sensitivity of the data is reflected in indexes and so on.

● Identifiers Identifiers include table names, column names, and so on.

● Passwords Passwords are always case sensitive in SQL Anywhere databases.

SQL dialects

668 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Case sensitivity of data
You decide the case-sensitivity of SQL Anywhere data in comparisons when you create the database. By
default, SQL Anywhere databases are case-insensitive in comparisons, although data is always held in the
case in which you enter it.

Adaptive Server Enterprise's sensitivity to case depends on the sort order installed on the Adaptive Server
Enterprise system. Case sensitivity can be changed for single-byte character sets by reconfiguring the
Adaptive Server Enterprise sort order.

Case sensitivity of identifiers
SQL Anywhere does not support case sensitive identifiers. In Adaptive Server Enterprise, the case sensitivity
of identifiers follows the case sensitivity of the data. The default user ID for databases is DBA.

In Adaptive Server Enterprise, domain names are case sensitive. In SQL Anywhere, they are case insensitive,
with the exception of Java data types.

Case sensitivity of passwords
In SQL Anywhere, passwords are always case sensitive. The default password for the DBA user ID is sql
in lowercase letters.

In Adaptive Server Enterprise, the case sensitivity of user IDs and passwords follows the case sensitivity of
the server.

Ensuring compatible object names
Each database object must have a unique name within a certain name space. Outside this name space,
duplicate names are allowed. Some database objects occupy different name spaces in Adaptive Server
Enterprise and SQL Anywhere.

Adaptive Server Enterprise has a more restrictive name space on trigger names than SQL Anywhere. Trigger
names must be unique in the database. For compatible SQL, you should stay within the Adaptive Server
Enterprise restriction and make your trigger names unique in the database.

The special Transact-SQL timestamp column and data type
SQL Anywhere supports the Transact-SQL special timestamp column. The timestamp column, together with
the tsequal system function, checks whether a row has been updated.

Two meanings of timestamp
SQL Anywhere has a TIMESTAMP data type, which holds accurate date and time information. It is distinct
from the special Transact-SQL TIMESTAMP column and data type.

Configuring databases for Transact-SQL compatibility

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 669

Creating a Transact-SQL timestamp column in SQL Anywhere
To create a Transact-SQL timestamp column, create a column that has the (SQL Anywhere) data type
TIMESTAMP and a default setting of timestamp. The column can have any name, although the name
timestamp is common.

For example, the following CREATE TABLE statement includes a Transact-SQL timestamp column:

CREATE TABLE tablename (
 column_1 INTEGER,
 column_2 TIMESTAMP DEFAULT TIMESTAMP
);

The following ALTER TABLE statement adds a Transact-SQL timestamp column to the SalesOrders table:

ALTER TABLE SalesOrders
ADD timestamp TIMESTAMP DEFAULT TIMESTAMP;

In Adaptive Server Enterprise a column with the name timestamp and no data type specified automatically
receives a TIMESTAMP data type. In SQL Anywhere you must explicitly assign the data type yourself.

The data type of a timestamp column
Adaptive Server Enterprise treats a timestamp column as a domain that is VARBINARY(8), allowing NULL,
while SQL Anywhere treats a timestamp column as the TIMESTAMP data type, which consists of the date
and time, with fractions of a second held to six decimal places.

When fetching from the table for later updates, the variable into which the timestamp value is fetched should
correspond to the column description.

In Interactive SQL, you may need to set the timestamp_format option to see the differences in values for the
rows. The following statement sets the timestamp_format option to display all six digits in the fractions of
a second:

SET OPTION timestamp_format='YYYY-MM-DD HH:NN:SS.SSSSSS';

If all six digits are not shown, some timestamp column values may appear to be equal: they are not.

Using tsequal for updates
With the tsequal system function you can tell whether a timestamp column has been updated or not.

For example, an application may SELECT a timestamp column into a variable. When an UPDATE of one
of the selected rows is submitted, it can use the tsequal function to check whether the row has been modified.
The tsequal function compares the timestamp value in the table with the timestamp value obtained in the
SELECT. Identical timestamps means there are no changes. If the timestamps differ, the row has been
changed since the SELECT was performed.

A typical UPDATE statement using the tsequal function looks like this:

UPDATE publishers
SET City = 'Springfield'
WHERE pub_id = '0736'
AND TSEQUAL(timestamp, '2005/10/25 11:08:34.173226');

The first argument to the tsequal function is the name of the special timestamp column; the second argument
is the timestamp retrieved in the SELECT statement. In embedded SQL, the second argument is likely to be
a host variable containing a TIMESTAMP value from a recent FETCH on the column.

SQL dialects

670 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The special IDENTITY column
The IDENTITY column stores sequential numbers, such as invoice numbers or employee numbers, which
are automatically generated. The value of the IDENTITY column uniquely identifies each row in a table.

In Adaptive Server Enterprise, each table in a database can have one IDENTITY column. The data type must
be numeric with scale zero, and the IDENTITY column should not allow nulls.

In SQL Anywhere, the IDENTITY column is a column default setting. You can explicitly insert values that
are not part of the sequence into the column with an INSERT statement. Adaptive Server Enterprise does
not allow INSERTs into identity columns unless the identity_insert option is on. In SQL Anywhere, you
need to set the NOT NULL property yourself and ensure that only one column is an IDENTITY column.
SQL Anywhere allows any numeric data type to be an IDENTITY column. The use of integer data types is
recommended for better performance.

In SQL Anywhere, the IDENTITY column and the AUTOINCREMENT default setting for a column are
identical.

To create an IDENTITY column, use the following CREATE TABLE syntax, where n is large enough to
hold the value of the maximum number of rows that may be inserted into the table.:

CREATE TABLE table-name (
 ...
 column-name numeric(n,0) IDENTITY NOT NULL,
 ...
)

Retrieving IDENTITY column values with @@identity
The first time you insert a row into the table, an IDENTITY column has a value of 1 assigned to it. On each
subsequent insert, the value of the column increases by one. The value most recently inserted into an identity
column is available in the @@identity global variable.

For more information about the behavior of @@identity, see “@@identity global variable” [SQL Anywhere
Server - SQL Reference].

Configuring databases for Transact-SQL compatibility

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 671

Writing compatible SQL statements
This section describes general guidelines for writing SQL for use on more than one database management
system, and discusses compatibility issues between Adaptive Server Enterprise and SQL Anywhere at the
SQL statement level.

General guidelines for writing portable SQL
When writing SQL for use on more than one database management system, make your SQL statements as
explicit as possible. Even if more than one server supports a given SQL statement, it may be a mistake to
assume that default behavior is the same on each system.

In SQL Anywhere, the database server and the SQL preprocessor (sqlpp) can identify SQL statements that
are vendor extensions, are not compliant with specific ISO/ANSI SQL standards, or are not supported by
UltraLite. This functionality is called the SQL Flagger. See “Testing SQL compliance using the SQL
Flagger” on page 653.

General guidelines applicable to writing compatible SQL include:

● Include all the available options, rather than using default behavior.

● Use parentheses to make the order of execution within statements explicit, rather than assuming identical
default order of precedence for operators.

● Use the Transact-SQL convention of an @ sign preceding variable names for Adaptive Server Enterprise
portability.

● Declare variables and cursors in procedures, triggers, and batches immediately following a BEGIN
statement. SQL Anywhere requires this, although Adaptive Server Enterprise allows declarations to be
made anywhere in a procedure, trigger, or batch.

● Avoid using reserved words from either Adaptive Server Enterprise or SQL Anywhere as identifiers in
your databases.

● Assume large namespaces. For example, ensure that each index should have a unique name.

Creating compatible tables
SQL Anywhere supports domains which allow constraint and default definitions to be encapsulated in the
data type definition. It also supports explicit defaults and CHECK conditions in the CREATE TABLE
statement. It does not, however, support named defaults.

NULL
SQL Anywhere and Adaptive Server Enterprise differ in some respects in their treatment of NULL. In
Adaptive Server Enterprise, NULL is sometimes treated as if it were a value.

For example, a unique index in Adaptive Server Enterprise cannot contain rows that hold null and are
otherwise identical. In SQL Anywhere, a unique index can contain such rows.

SQL dialects

672 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

By default, columns in Adaptive Server Enterprise default to NOT NULL, whereas in SQL Anywhere the
default setting is NULL. You can control this setting using the allow_nulls_by_default option. Specify
explicitly NULL or NOT NULL to make your data definition statements transferable.

For information about this option, see “Setting options for Transact-SQL compatibility” on page 667.

Temporary tables
You can create a temporary table by placing a pound sign (#) in front of the table name in a CREATE TABLE
statement. These temporary tables are SQL Anywhere declared temporary tables, and are available only in
the current connection.

Physical placement of a table is performed differently in Adaptive Server Enterprise and in SQL Anywhere.
SQL Anywhere supports the ON segment-name clause, but segment-name refers to a SQL Anywhere
dbspace.

See also
● “Testing SQL compliance using the SQL Flagger” on page 653
● “DECLARE LOCAL TEMPORARY TABLE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]

Writing compatible queries
There are two criteria for writing a query that runs on both SQL Anywhere and Adaptive Server Enterprise
databases:

● The data types, expressions, and search conditions in the query must be compatible.

● The syntax of the SELECT statement itself must be compatible.

This section explains compatible SELECT statement syntax, and assumes compatible data types,
expressions, and search conditions. The examples assume the quoted_identifier setting is Off: the default
Adaptive Server Enterprise setting, but not the default SQL Anywhere setting.

SQL Anywhere supports the following subset of the Transact-SQL SELECT statement:

Syntax
SELECT [ALL | DISTINCT] select-list
...[INTO #temporary-table-name]
...[FROM table-spec [HOLDLOCK | NOHOLDLOCK],
... table-spec [HOLDLOCK | NOHOLDLOCK], ...]
...[WHERE search-condition]
...[GROUP BY column-name, ...]
...[HAVING search-condition]
 [ORDER BY { expression | integer }
 [ASC | DESC], ...]

Parameters
select-list:
 table-name.*

Writing compatible SQL statements

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 673

| *
| expression
| alias-name = expression
| expression as identifier
| expression as string

table-spec:
[owner .]table-name
...[[AS] correlation-name]
 ...[(INDEX index_name [PREFETCH size][LRU | MRU])]

alias-name:
identifier | 'string' | "string"

SQL Anywhere does not support the following keywords and clauses of the Transact-SQL SELECT
statement syntax:

● SHARED keyword
● COMPUTE clause
● FOR BROWSE clause
● FOR UPDATE clause
● GROUP BY ALL clause

Notes

● SQL Anywhere does not support the Transact-SQL extension to the GROUP BY clause allowing
references to columns and expressions that are not used for creating groups. In Adaptive Server
Enterprise, this extension produces summary reports.

● The performance parameters part of the table specification is parsed, but has no effect.

● The HOLDLOCK keyword is supported by SQL Anywhere. With HOLDLOCK, a shared lock on a
specified table or view is more restrictive because the shared lock is not released when the data page is
no longer needed. For the purposes of the table for which the HOLDLOCK is specified, the query is
performed at isolation level 3.

● The HOLDLOCK option applies only to the table or view for which it is specified, and only for the
duration of the transaction defined by the statement in which it is used. Setting the isolation level to 3
applies a holdlock for each select within a transaction. You cannot specify both a HOLDLOCK and
NOHOLDLOCK option in a query.

● The NOHOLDLOCK keyword is recognized by SQL Anywhere, but has no effect.

● Transact-SQL uses the SELECT statement to assign values to local variables:

SELECT @localvar = 42;

The corresponding statement in SQL Anywhere is the SET statement:

SET @localvar = 42;

SQL dialects

674 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Adaptive Server Enterprise does not support the following clauses of the SELECT statement syntax:

○ INTO host-variable-list
○ INTO variable-list
○ Parenthesized queries

● Adaptive Server Enterprise uses join operators in the WHERE clause, rather than the FROM clause and
the ON condition for joins.

See also
● “Testing SQL compliance using the SQL Flagger” on page 653
● “SELECT statement” [SQL Anywhere Server - SQL Reference]
● “OLAP support” on page 453

Compatibility of joins
In Transact-SQL, joins appear in the WHERE clause, using the following syntax:

start of select, update, insert, delete, or subquery
 FROM { table-list | view-list } WHERE [NOT]
 [table-name.| view name.]column-name
 join-operator
 [table-name.| view-name.]column_name
 [{ AND | OR } [NOT]
 [table-name.| view-name.]column_name
 join-operator
 [table-name.| view-name.]column-name]...
end of select, update, insert, delete, or subquery

The join-operator in the WHERE clause may be any of the comparison operators, or may be either of the
following outer-join operators:

● *= Left outer join operator

● =* Right outer join operator

SQL Anywhere supports the Transact-SQL outer join operators as an alternative to the native SQL/2003
syntax. You cannot mix dialects within a query. This rule applies also to views used by a query—an outer-
join query on a view must follow the dialect used by the view-defining query.

Note
Support for Transact-SQL outer join operators *= and =* is deprecated and will be removed in a future
release.

For information about joins in SQL Anywhere and in the ANSI/ISO SQL standards, see “Joins: Retrieving
data from several tables” on page 389, and “FROM clause” [SQL Anywhere Server - SQL Reference].

For more information about Transact-SQL compatibility of joins, see “Transact-SQL outer joins (*= or
=*)” on page 406.

Writing compatible SQL statements

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 675

See also
● “Testing SQL compliance using the SQL Flagger” on page 653

SQL dialects

676 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Transact-SQL procedure language overview
The stored procedure language is the part of SQL used in stored procedures, triggers, and batches.

SQL Anywhere supports a large part of the Transact-SQL stored procedure language in addition to the
Watcom-SQL dialect based on SQL/2003.

Transact-SQL stored procedure overview
Based on the ISO/ANSI draft standard, the SQL Anywhere stored procedure language differs from the
Transact-SQL dialect in many ways. Many of the concepts and features are similar, but the syntax is different.
SQL Anywhere support for Transact-SQL takes advantage of the similar concepts by providing automatic
translation between dialects. However, a procedure must be written exclusively in one of the two dialects,
not in a mixture of the two.

SQL Anywhere support for Transact-SQL stored procedures
There are a variety of aspects to SQL Anywhere support for Transact-SQL stored procedures, including:

● Passing parameters
● Returning result sets
● Returning status information
● Providing default values for parameters
● Control statements
● Error handling
● User-defined functions

Transact-SQL trigger overview
Trigger compatibility requires compatibility of trigger features and syntax. This section provides an overview
of the feature compatibility of Transact-SQL and SQL Anywhere triggers.

Adaptive Server Enterprise supports statement-level AFTER triggers; that is, triggers that execute after the
triggering statement has completed. SQL Anywhere supports row-level BEFORE, AFTER, and INSTEAD
OF triggers, and statement-level AFTER and INSTEAD OF triggers. See “Introduction to
triggers” on page 842.

Row-level triggers are not part of the Transact-SQL compatibility features, and are discussed in “Using
procedures, triggers, and batches” on page 829.

Description of unsupported or different Transact-SQL triggers
Features of Transact-SQL triggers that are either unsupported or different in SQL Anywhere include:

● Triggers firing other triggers Suppose a trigger performs an action that would, if performed directly
by a user, fire another trigger. SQL Anywhere and Adaptive Server Enterprise respond slightly differently
to this situation. By default in Adaptive Server Enterprise, triggers fire other triggers up to a configurable
nesting level, which has the default value of 16. You can control the nesting level with the Adaptive

Transact-SQL procedure language overview

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 677

Server Enterprise nested triggers option. In SQL Anywhere, triggers fire other triggers without limit
unless there is insufficient memory.

● Triggers firing themselves Suppose a trigger performs an action that would, if performed directly
by a user, fire the same trigger. SQL Anywhere and Adaptive Server Enterprise respond slightly
differently to this situation. By default, in SQL Anywhere, non-Transact-SQL triggers fire themselves
recursively, whereas Transact-SQL dialect triggers do not fire themselves recursively. However, for
Transact-SQL dialect triggers, you can use the self_recursion option of the SET statement [T-SQL] to
allow a trigger to call itself recursively. See “SET statement [T-SQL]” [SQL Anywhere Server - SQL
Reference].

By default in Adaptive Server Enterprise, a trigger does not call itself recursively, but you can use the
self_recursion option to allow recursion to occur.

● ROLLBACK statement in triggers Adaptive Server Enterprise permits the ROLLBACK
TRANSACTION statement within triggers, to roll back the entire transaction of which the trigger is a
part. SQL Anywhere does not permit ROLLBACK (or ROLLBACK TRANSACTION) statements in
triggers because a triggering action and its trigger together form an atomic statement.

SQL Anywhere does provide the Adaptive Server Enterprise-compatible ROLLBACK TRIGGER
statement to undo actions within triggers. See “ROLLBACK TRIGGER statement” [SQL Anywhere
Server - SQL Reference].

Transact-SQL batch overview
In Transact-SQL, a batch is a set of SQL statements submitted together and executed as a group, one after
the other. Batches can be stored in command files. Interactive SQL in SQL Anywhere and the Interactive
SQL utility in Adaptive Server Enterprise provide similar capabilities for executing batches interactively.

The control statements used in procedures can also be used in batches. SQL Anywhere supports the use of
control statements in batches and the Transact-SQL-like use of non-delimited groups of statements
terminated with a go statement to signify the end of a batch.

For batches stored in command files, SQL Anywhere supports the use of parameters in command files. See
“PARAMETERS statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference].

SQL dialects

678 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Automatic translation of stored procedures
In addition to supporting Transact-SQL alternative syntax, SQL Anywhere provides aids for translating
statements between the Watcom-SQL and Transact-SQL dialects. Functions returning information about
SQL statements and enabling automatic translation of SQL statements include:

● SQLDialect(statement) Returns Watcom-SQL or Transact-SQL.

● WatcomSQL(statement) Returns the Watcom-SQL syntax for the statement.

● TransactSQL(statement) Returns the Transact-SQL syntax for the statement.

These are functions, and so can be accessed using a select statement from Interactive SQL. For example, the
following statement returns the value Watcom-SQL:

SELECT SQLDialect('SELECT * FROM Employees');

Using Sybase Central to translate stored procedures
Sybase Central has facilities for creating, viewing, and altering procedures and triggers.

To translate a stored procedure using Sybase Central

1. Connect to a database using Sybase Central, either as owner of the procedure you want to change, or as
a DBA user.

2. Open the Procedures & Functions folder.

3. Click the SQL tab in the right pane and then click in the editor.

4. From the File menu, choose one of the Translate To commands, depending on the dialect you want to
use.

The procedure appears in the right pane in the selected dialect. If the selected dialect is not the one in
which the procedure is stored, the server translates it to that dialect. Any untranslated lines appear as
comments.

5. Rewrite any untranslated lines as needed.

6. When finished, choose File » Save to save the translated version to the database. You can also export
the text to a file for editing outside Sybase Central.

Automatic translation of stored procedures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 679

Returning result sets from Transact-SQL procedures
SQL Anywhere uses a RESULT clause to specify returned result sets. In Transact-SQL procedures, the
column names or alias names of the first query are returned to the calling environment.

Example of Transact-SQL procedure
The following Transact-SQL procedure illustrates how Transact-SQL stored procedures returns result sets:

CREATE PROCEDURE ShowDepartment (@deptname varchar(30))
AS
 SELECT Employees.Surname, Employees.GivenName
 FROM Departments, Employees
 WHERE Departments.DepartmentName = @deptname
 AND Departments.DepartmentID = Employees.DepartmentID;

Example of Watcom-SQL procedure
The following is the corresponding SQL Anywhere procedure:

CREATE PROCEDURE ShowDepartment(in deptname varchar(30))
RESULT (LastName char(20), FirstName char(20))
BEGIN
 SELECT Employees.Surname, Employees.GivenName
 FROM Departments, Employees
 WHERE Departments.DepartmentName = deptname
 AND Departments.DepartmentID = Employees.DepartmentID
END;

For more information about procedures and results, see “Returning results from
procedures” on page 860.

SQL dialects

680 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Variables in Transact-SQL procedures
SQL Anywhere uses the SET statement to assign values to variables in a procedure. In Transact-SQL, values
are assigned using either the SELECT statement with an empty table-list, or the SET statement. The following
simple procedure illustrates how the Transact-SQL syntax works:

CREATE PROCEDURE multiply
 @mult1 int,
 @mult2 int,
 @result int output
AS
SELECT @result = @mult1 * @mult2;

This procedure can be called as follows:

CREATE VARIABLE @product int
go
EXECUTE multiply 5, 6, @product OUTPUT
go

The variable @product has a value of 30 after the procedure executes.

For more information about using the SELECT statement to assign variables, see “Writing compatible
queries” on page 673. For more information about using the SET statement to assign variables, see “SET
statement” [SQL Anywhere Server - SQL Reference].

Variables in Transact-SQL procedures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 681

Error handling in Transact-SQL procedures
Default procedure error handling is different in the Watcom-SQL and Transact-SQL dialects. By default,
Watcom-SQL dialect procedures exit when they encounter an error, returning SQLSTATE and SQLCODE
values to the calling environment.

Explicit error handling can be built into Watcom-SQL stored procedures using the EXCEPTION statement,
or you can instruct the procedure to continue execution at the next statement when it encounters an error,
using the ON EXCEPTION RESUME statement.

When a Transact-SQL dialect procedure encounters an error, execution continues at the following statement.
The global variable @@error holds the error status of the most recently executed statement. You can check
this variable following a statement to force return from a procedure. For example, the following statement
causes an exit if an error occurs.

IF @@error != 0 RETURN

When the procedure completes execution, a return value indicates the success or failure of the procedure.
This return status is an integer, and can be accessed as follows:

DECLARE @Status INT
EXECUTE @Status = proc_sample
IF @Status = 0
 PRINT 'procedure succeeded'
ELSE
 PRINT 'procedure failed'

The following table describes the built-in procedure return values and their meanings:

Value Definition SQL Anywhere SQLSTATE

0 Procedure executed without
error

-1 Missing object 42W33, 52W02, 52003, 52W07, 42W05

-2 Data type error 53018

-3 Process was chosen as dead-
lock victim

40001, 40W06

-4 Permission error 42501

-5 Syntax error 42W04

-6 Miscellaneous user error

-7 Resource error, such as out
of space

08W26

-10 Fatal internal inconsistency 40W01

SQL dialects

682 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Value Definition SQL Anywhere SQLSTATE

-11 Fatal internal inconsistency 40000

-13 Database is corrupt WI004

-14 Hardware error 08W17, 40W03, 40W04

When a SQL Anywhere SQLSTATE is not applicable, the default value -6 is returned.

The RETURN statement can be used to return other integers, with their own user-defined meanings.

Using the RAISERROR statement in procedures
You can use the RAISERROR statement to generate user-defined errors. The RAISERROR statement
functions similar to the SIGNAL statement. See “RAISERROR statement” [SQL Anywhere Server - SQL
Reference].

By itself, the RAISERROR statement does not cause an exit from the procedure, but it can be combined
with a RETURN statement or a test of the @@error global variable to control execution following a user-
defined error.

If you set the on_tsql_error database option to Continue, the RAISERROR statement no longer signals an
execution-ending error. Instead, the procedure completes and stores the RAISERROR status code and
message, and returns the most recent RAISERROR. If the procedure causing the RAISERROR was called
from another procedure, the RAISERROR returns after the outermost calling procedure terminates. If you
set the on_tsql_error option to the default (Conditional), the continue_after_raiserror option controls the
behavior following the execution of a RAISERROR statement. If you set the on_tsql_error option to Stop
or Continue, the on_tsql_error setting takes precedence over the continue_after_raiserror setting.

You lose intermediate RAISERROR statuses and codes after the procedure terminates. If, at return time, an
error occurs along with the RAISERROR, then the error information is returned and you lose the
RAISERROR information. The application can query intermediate RAISERROR statuses by examining
@@error global variable at different execution points.

Transact-SQL-like error handling in the Watcom-SQL dialect
You can make a Watcom-SQL dialect procedure handle errors in a Transact-SQL-like manner by supplying
the ON EXCEPTION RESUME clause to the CREATE PROCEDURE statement:

CREATE PROCEDURE sample_proc()
ON EXCEPTION RESUME
BEGIN
 ...
END

The presence of an ON EXCEPTION RESUME clause prevents explicit exception handling code from being
executed, so avoid using these two clauses together.

Error handling in Transact-SQL procedures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 683

684

XML in the Database

This section describes how to use XML in the database.

Using XML in the database .. 687

Using XML in the database

Contents
Storing XML documents in relational databases ... 688
Exporting relational data as XML ... 689
Importing XML documents as relational data .. 690
Obtaining query results as XML .. 697
Using SQL/XML to obtain query results as XML ... 715

Extensible Markup Language (XML) represents structured data in text format. XML was designed
specifically to meet the challenges of large-scale electronic publishing.

XML is a simple markup language, like HTML, but is also flexible, like SGML. XML is hierarchical, and
its main purpose is to describe the structure of data for both humans and computer software to author and
read.

Rather than providing a static set of elements which describe various forms of data, XML lets you define
elements. As a result, many types of structured data can be described with XML. XML documents can
optionally use a document type definition (DTD) or XML schema to define the structure, elements, and
attributes that are used in an XML file.

There are several ways you can use XML with SQL Anywhere:

● Storing XML documents in the database
● Exporting relational data as XML
● Importing XML into the database
● Querying relational data as XML

For more details about XML, see http://www.w3.org/XML/.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 687

http://www.w3.org/XML/

Storing XML documents in relational databases
SQL Anywhere supports two data types that can be used to store XML documents in your database: the
XML data type and the LONG VARCHAR data type. Both of these data types store the XML document as
a string in the database.

The XML data type uses the character set encoding of the database server. The XML encoding attribute
should match the encoding used by the database server. The XML encoding attribute does not specify how
the automatic character set conversion is completed.

You can cast between the XML data type and any other data type that can be cast to or from a string. Note
that there is no checking that the string is well-formed when it is cast to XML.

When you generate elements from relational data, any characters that are invalid in XML are escaped unless
the data is of type XML. For example, suppose you want to generate a <product> element with the following
content so that the element content contains less than and greater than signs:

<hat>bowler</hat>

If you write a query that specifies that the element content is of type XML, then the greater than and less
than signs are not quoted, as follows:

SELECT XMLFOREST(CAST('<hat>bowler</hat>' AS XML)
AS product);

You get the following result:

<product><hat>bowler</hat></product>

However, if the query does not specify that the element content is of type XML, for example:

SELECT XMLFOREST('<hat>bowler</hat>' AS product);

In this case, the less than and greater than signs are replaced with entity references as follows:

<product><hat>bowler</hat></product>

Note that attributes are always quoted, regardless of the data type.

For more information about how element content is escaped, see “Encoding illegal XML
names” on page 699.

For more information about the XML data type, see “XML data type” [SQL Anywhere Server - SQL
Reference].

Using XML in the database

688 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Exporting relational data as XML
SQL Anywhere provides two ways to export your relational data as XML: the Interactive SQL OUTPUT
statement and the ADO.NET DataSet object.

The FOR XML clause and SQL/XML functions allow you to generate a result set as XML from the relational
data in your database. You can then export the generated XML to a file using the UNLOAD statement or
the xp_write_file system procedure.

Exporting relational data as XML from Interactive SQL
The Interactive SQL OUTPUT statement supports an XML format that outputs query results to a generated
XML file.

This generated XML file is encoded in UTF-8 and contains an embedded DTD. In the XML file, binary
values are encoded in character data (CDATA) blocks with the binary data rendered as 2-hex-digit strings.

For more information about exporting XML with the OUTPUT statement, see “OUTPUT statement
[Interactive SQL]” [SQL Anywhere Server - SQL Reference].

The INPUT statement does not accept XML as a file format. However, you can import XML using the
openxml procedure or the ADO.NET DataSet object.

For more information about importing XML, see “Importing XML documents as relational
data” on page 690.

Exporting relational data as XML using the DataSet object
The ADO.NET DataSet object allows you to save the contents of the DataSet in an XML document. Once
you have filled the DataSet (for example, with the results of a query on your database) you can save either
the schema or both the schema and data from the DataSet in an XML file. The WriteXml method saves both
the schema and data in an XML file, while the WriteXmlSchema method saves only the schema in an XML
file. You can fill a DataSet object using the SQL Anywhere ADO.NET data provider.

For information about exporting relational data as XML using a DataSet, see “Inserting, updating, and
deleting rows using the SACommand object” [SQL Anywhere Server - Programming].

Exporting relational data as XML

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 689

Importing XML documents as relational data
SQL Anywhere supports two different ways to import XML into your database:

● using the openxml procedure to generate a result set from an XML document

● using the ADO.NET DataSet object to read the data and/or schema from an XML document into a DataSet

Importing XML using openxml
The openxml procedure is used in the FROM clause of a query to generate a result set from an XML
document. openxml uses a subset of the XPath query language to select nodes from an XML document.

Using XPath expressions

When you use openxml, the XML document is parsed and the result is modeled as a tree. The tree is made
up of nodes. XPath expressions are used to select nodes in the tree. The following list describes some
commonly-used XPath expressions:

● / indicates the root node of the XML document

● // indicates all descendants of the root, including the root node

● . (single period) indicates the current node of the XML document

● .// indicates all descendants of the current node, including the current node

● .. indicates the parent node of the current node

● ./@attributename indicates the attribute of the current node having the name attributename

● ./childname indicates the children of the current node that are elements having the name childname

Consider the following XML document:

<inventory>
 <product ID="301" size="Medium">Tee Shirt
 <quantity>54</quantity>
 </product>
 <product ID="302" size="One Size fits all">Tee Shirt
 <quantity>75</quantity>
 </product>
 <product ID="400" size="One Size fits all">Baseball Cap
 <quantity>112</quantity>
 </product>
</inventory>

The <inventory> element is the root node. You can refer to it using the following XPath expression:

/inventory

Suppose that the current node is a <quantity> element. You can refer to this node using the following XPath
expression:

.

Using XML in the database

690 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To find all the <product> elements that are children of the <inventory> element, use the following XPath
expression:

/inventory/product

If the current node is a <product> element and you want to refer to the size attribute, use the following XPath
expression:

./@size

For a complete list of XPath syntax supported by openxml, see “openxml system procedure” [SQL Anywhere
Server - SQL Reference].

For information about the XPath query language, see http://www.w3.org/TR/xpath.

Generating a result set using openxml
Each match for the first xpath-query argument to openxml generates one row in the result set. The WITH
clause specifies the schema of the result set and how the value is found for each column in the result set. For
example, consider the following query:

SELECT * FROM openxml('<inventory>
 <product>Tee Shirt
 <quantity>54</quantity>
 <color>Orange</color>
 </product>
 <product>Baseball Cap
 <quantity>112</quantity>
 <color>Black</color>
 </product>
 </inventory>',
 '/inventory/product')
WITH (Name CHAR (25) './text()',
 Quantity CHAR(3) 'quantity',
 Color CHAR(20) 'color');

The first xpath-query argument is /inventory/product, and there are two <product> elements in the XML, so
two rows are generated by this query.

The WITH clause specifies that there are three columns: Name, Quantity, and Color. The values for these
columns are taken from the <product>, <quantity> and <color> elements. The query above generates the
following result:

Name Quantity Color

Tee Shirt 54 Orange

Baseball Cap 112 Black

For more information, see “openxml system procedure” [SQL Anywhere Server - SQL Reference].

Using openxml to generate an edge table
The openxml procedure can be used to generate an edge table, a table that contains a row for every element
in the XML document. You may want to generate an edge table so that you can query the data in the result
set using SQL.

Importing XML documents as relational data

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 691

http://www.w3.org/TR/xpath

The following SQL statement creates a variable, x, that contains an XML document. The XML generated
by the query has a root element called <root>, which is generated using the XMLELEMENT function, and
elements are generated for each column in the Employees, SalesOrders, and Customers tables using FOR
XML AUTO with the ELEMENTS modifier specified.

For information about the XMLELEMENT function, see “XMLELEMENT function [String]” [SQL
Anywhere Server - SQL Reference].

For information about FOR XML AUTO, see “Using FOR XML AUTO” on page 702.

CREATE VARIABLE x XML;
SET x=(SELECT XMLELEMENT(NAME root,
 (SELECT * FROM Employees
 KEY JOIN SalesOrders
 KEY JOIN Customers
 FOR XML AUTO, ELEMENTS)));
SELECT x;

The generated XML looks as follows (the result has been formatted to make it easier to read—the result
returned by the query is one continuous string):

<root>
 <Employees>
 <EmployeeID>299</EmployeeID>
 <ManagerID>902</ManagerID>
 <Surname>Overbey</Surname>
 <GivenName>Rollin</GivenName>
 <DepartmentID>200</DepartmentID>
 <Street>191 Companion Ct.</Street>
 <City>Kanata</City>
 <State>CA</State>
 <Country>USA</Country>
 <PostalCode>94608</PostalCode>
 <Phone>5105557255</Phone>
 <Status>A</Status>
 <SocialSecurityNumber>025487133</SocialSecurityNumber>
 <Salary>39300.000</Salary>
 <StartDate>1987-02-19</StartDate>
 <BirthDate>1964-03-15</BirthDate>
 <BenefitHealthInsurance>Y</BenefitHealthInsurance>
 <BenefitLifeInsurance>Y</BenefitLifeInsurance>
 <BenefitDayCare>N</BenefitDayCare>
 <Sex>M</Sex>
 <SalesOrders>
 <ID>2001</ID>
 <CustomerID>101</CustomerID>
 <OrderDate>2000-03-16</OrderDate>
 <FinancialCode>r1</FinancialCode>
 <Region>Eastern</Region>
 <SalesRepresentative>299</SalesRepresentative>
 <Customers>
 <ID>101</ID>
 <Surname>Devlin</Surname>
 <GivenName>Michael</GivenName>
 <Street>114 Pioneer Avenue</Street>
 <City>Kingston</City>
 <State>NJ</State>
 <PostalCode>07070</PostalCode>
 <Phone>2015558966</Phone>
 <CompanyName>The Power Group</CompanyName>
 </Customers>
 </SalesOrders>

Using XML in the database

692 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

</Employees>
...

The following query uses the descendant-or-self (//*) XPath expression to match every element in the above
XML document, and for each element the id metaproperty is used to obtain an ID for the node, and the parent
(../) XPath expression is used with the ID metaproperty to get the parent node. The localname metaproperty
is used to obtain the name of each element. Metaproperty names are case sensitive, so ID or LOCALNAME
cannot be used as metaproperty names.

SELECT * FROM openxml(x, '//*')
 WITH (ID INT '@mp:id',
 parent INT '../@mp:id',
 name CHAR(25) '@mp:localname',
 text LONG VARCHAR 'text()')
ORDER BY ID;

The result set generated by this query shows the ID of each node, the ID of the parent node, and the name
and content for each element in the XML document.

ID parent name text

5 (NULL) root (NULL)

16 5 Employees (NULL)

28 16 EmployeeID 299

55 16 ManagerID 902

79 16 Surname Overbey

...

Using openxml with xp_read_file

So far, XML that was generated with a procedure like XMLELEMENT has been used. You can also read
XML from a file and parse it using the xp_read_file procedure. Suppose the file c:\inventory.xml has the
following contents:

<inventory>
 <product>Tee Shirt
 <quantity>54</quantity>
 <color>Orange</color>
 </product>
 <product>Baseball Cap
 <quantity>112</quantity>
 <color>Black</color>
 </product>
</inventory>

You can use the following statement to read and parse the XML in the file:

CREATE VARIABLE x XML;
SELECT xp_read_file('c:\\inventory.xml')
 INTO x;

Importing XML documents as relational data

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 693

SELECT * FROM openxml(x, '//*')
 WITH (ID INT '@mp:id',
 parent INT '../@mp:id',
 name CHAR(128) '@mp:localname',
 text LONG VARCHAR 'text()')
ORDER BY ID;

Querying XML in a column
If you have a table with a column that contains XML, you can use openxml to query all the XML values in
the column at once. This can be done using a lateral derived table.

The following statements create a table with two columns, ManagerID and Reports. The Reports column
contains XML data generated from the Employees table.

CREATE TABLE test (ManagerID INT, Reports XML);
INSERT INTO test
SELECT ManagerID, XMLELEMENT(NAME reports,
 XMLAGG(XMLELEMENT(NAME e, EmployeeID)))
FROM Employees
GROUP BY ManagerID;

Execute the following query to view the data in the test table:

SELECT * FROM test
ORDER BY ManagerID;

This query produces the following result:

ManagerID Reports

501 <reports>
 <e>102</e>
 <e>105</e>
 <e>160</e>
 <e>243</e>
 ...
</reports>

703 <reports>
 <e>191</e>
 <e>750</e>
 <e>868</e>
 <e>921</e>
 ...
</reports>

902 <reports>
 <e>129</e>
 <e>195</e>
 <e>299</e>
 <e>467</e>
 ...
</reports>

Using XML in the database

694 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ManagerID Reports

1293 <reports>
 <e>148</e>
 <e>390</e>
 <e>586</e>
 <e>757</e>
 ...
</reports>

... ...

The following query uses a lateral derived table to generate a result set with two columns: one that lists the
ID for each manager, and one that lists the ID for each employee that reports to that manager:

SELECT ManagerID, EmployeeID
FROM test, LATERAL(openxml(test.Reports, '//e')
WITH (EmployeeID INT '.')) DerivedTable
ORDER BY ManagerID, EmployeeID;

This query generates the following result:

ManagerID EmployeeID

501 102

501 105

501 160

501 243

... ...

For more information about lateral derived tables, see “FROM clause” [SQL Anywhere Server - SQL
Reference].

Importing XML using the DataSet object
The ADO.NET DataSet object allows you to read the data and/or schema from an XML document into a
DataSet.

● The ReadXml method populates a DataSet from an XML document that contains both a schema and
data.

● The ReadXmlSchema method reads only the schema from an XML document. Once the DataSet is filled
with data from the XML document, you can update the tables in your database with the changes from
the DataSet.

DataSet objects can also be manipulated using the SQL Anywhere ADO.NET data provider.

Importing XML documents as relational data

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 695

For information about using a DataSet to read the data and/or schema from an XML document using the
SQL Anywhere .NET data provider, see “Getting data using the SADataAdapter object” [SQL Anywhere
Server - Programming].

Defining default XML namespaces
You define a default namespace in an element of an XML document with an attribute of the form
xmlns="URI". In the following example, a document has a default namespace bound to the URI http://
www.iAnywhere.com/EmployeeDemo:

<x xmlns="http://www.iAnywhere.com/EmployeeDemo"/>

If the element does not have a prefix in its name, a default namespace applies to the element and to any
descendant of that element where it is defined. A colon separates a prefix from the rest of the element name.
For example, <x/> does not have a prefix, while <p:x/> has the prefix p. You define a namespace that is
bound to a prefix with an attribute of the form xmlns:prefix="URI". In the following example, a
document binds the prefix p to the same URI as the previous example:

<x xmlns:p="http://www.iAnywhere.com/EmployeeDemo"/>

Default namespaces are never applied to attributes. Unless it has a prefix, an attribute is always bound to the
NULL namespace URI. In the following example, the root and child elements have the iAnywhere1
namespace while the x attribute has the NULL namespace URI and the y element has the iAnywhere2
namespace:

<root xmlns="iAnywhere1" xmlns:p="iAnywhere2">
<child x='1' p:y='2' />
</root>

The namespaces defined in the root element of the document are applied in the query when you pass an
XML document as the namespace-declaration argument of an openxml query. All parts of the document
after the root element are ignored. In the following example, p1 is bound to iAnywhere1 in the document
and bound to p2 in the namespace-declaration argument, and the query is able to use the prefix p2:

SELECT *
FROM openxml('<p1:x xmlns:p1="iAnywhere1"> 1 </x>', '/p2:x', 1, '<root
xmlns:p2="iAnywhere1"/>')
WITH (c1 int '.');

When matching an element, you must correctly specify the URI that a prefix is bound to. In the example
above, the x name in the xpath query matches the x element in the document because they both have the
iAnywhere1 namespace.

Do not use a default namespace in the namespace-declaration of the openxml system procedure. Use a
wildcard query of the form /*:x which matches an x element bound to any URI including the NULL
namespace, or bind the URI you want to a specific prefix and use that in the query. For more information
about generating result sets from an XML document, see “openxml system procedure” [SQL Anywhere
Server - SQL Reference].

Using XML in the database

696 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Obtaining query results as XML
SQL Anywhere supports two different ways to obtain query results from your relational data as XML:

● FOR XML clause The FOR XML clause can be used in a SELECT statement to generate an XML
document.

For information about using the FOR XML clause, see “Using the FOR XML clause to retrieve query
results as XML” on page 697 and “SELECT statement” [SQL Anywhere Server - SQL Reference].

● SQL/XML SQL Anywhere supports functions based on the draft SQL/XML standard that generate
XML documents from relational data.

For information about using one or more of these functions in a query, see “Using SQL/XML to obtain
query results as XML” on page 715.

The FOR XML clause and the SQL/XML functions supported by SQL Anywhere give you two alternatives
for generating XML from your relational data. In most cases, you can use either one to generate the same
XML.

For example, this query uses FOR XML AUTO to generate XML:

SELECT ID, Name
FROM Products
WHERE Color='black'
FOR XML AUTO;

The following query uses the XMLELEMENT function to generate XML:

SELECT XMLELEMENT(NAME product,
 XMLATTRIBUTES(ID, Name))
FROM Products
WHERE Color='black';

Both queries generate the following XML (the result set has been formatted to make it easier to read):

<product ID="302" Name="Tee Shirt"/>
<product ID="400" Name="Baseball Cap"/>
<product ID="501" Name="Visor"/>
<product ID="700" Name="Shorts"/>

Tip
If you are generating deeply-nested documents, a FOR XML EXPLICIT query will likely be more efficient
than a SQL/XML query because EXPLICIT mode queries normally use a UNION to generate nesting, while
SQL/XML uses subqueries to generate the required nesting.

Using the FOR XML clause to retrieve query results as XML
SQL Anywhere allows you to execute a SQL query against your database and return the results as an XML
document by using the FOR XML clause in your SELECT statement. The XML document is of type XML.

For information about the XML data type, see “XML data type” [SQL Anywhere Server - SQL Reference].

Obtaining query results as XML

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 697

The FOR XML clause can be used in any SELECT statement, including subqueries, queries with a GROUP
BY clause or aggregate functions, and view definitions.

For examples of how the FOR XML clause can be used, see “FOR XML examples” on page 700.

SQL Anywhere does not generate a schema for XML documents generated by the FOR XML clause.

Within the FOR XML clause, you specify one of three XML modes that control the format of the XML that
is generated:

● RAW represents each row that matches the query as an XML <row> element, and each column as an
attribute.

For more information, see “Using FOR XML RAW” on page 701.

● AUTO returns query results as nested XML elements. Each table referenced in the select-list is
represented as an element in the XML. The order of nesting for the elements is based on the order of the
tables in the select-list.

For more information, see “Using FOR XML AUTO” on page 702.

● EXPLICIT allows you to write queries that contain information about the expected nesting so you can
control the form of the resulting XML.

For more information, see “Using FOR XML EXPLICIT” on page 705.

The following sections describe the behavior of all three modes of the FOR XML clause regarding binary
data, NULL values, and invalid XML names. The section also includes examples of how you can use the
FOR XML clause.

FOR XML and binary data
When you use the FOR XML clause in a SELECT statement, regardless of the mode used, any BINARY,
LONG BINARY, IMAGE, or VARBINARY columns are output as attributes or elements that are
automatically represented in base64-encoded format.

If you are using openxml to generate a result set from XML, openxml assumes that the types BINARY,
LONG BINARY, IMAGE, and VARBINARY, are base64-encoded and decodes them automatically.

For more information about openxml, see “openxml system procedure” [SQL Anywhere Server - SQL
Reference].

FOR XML and NULL values
By default, elements and attributes that contain NULL values are omitted from the result. This behavior is
controlled by the for_xml_null_treatment option.

Consider an entry in the Customers table that contains a NULL company name.

INSERT INTO
 Customers(ID, Surname, GivenName, Street, City, Phone)

Using XML in the database

698 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

VALUES (100,'Robert','Michael',
 '100 Anywhere Lane','Smallville','519-555-3344');

If you execute the following query with the for_xml_null_treatment option set to Omit (the default), then
no attribute is generated for a NULL column value.

SELECT ID, GivenName, Surname, CompanyName
FROM Customers
WHERE GivenName LIKE 'Michael%'
ORDER BY ID
FOR XML RAW;

In this case, no CompanyName attribute is generated for Michael Robert.

<row ID="100" GivenName="Michael" Surname="Robert"/>
<row ID="101" GivenName="Michaels" Surname="Devlin" CompanyName="The Power
Group"/>
<row ID="110" GivenName="Michael" Surname="Agliori" CompanyName="The Pep
Squad"/>

If the for_xml_null_treatment option is set to Empty, then an empty attribute is included in the result:

<row ID="100" GivenName="Michael" Surname="Robert" CompanyName=""/>
<row ID="101" GivenName="Michaels" Surname="Devlin" CompanyName="The Power
Group"/>
<row ID="110" GivenName="Michael" Surname="Agliori" CompanyName="The Pep
Squad"/>

In this case, an empty CompanyName attribute is generated for Michael Robert.

For information about the for_xml_null_treatment option, see “for_xml_null_treatment option [database]”
[SQL Anywhere Server - Database Administration].

Encoding illegal XML names
SQL Anywhere uses the following rules for encoding names that are not legal XML names (for example,
column names that include spaces):

XML has rules for names that differ from rules for SQL names. For example, spaces are not allowed in XML
names. When a SQL name, such as a column name, is converted to an XML name, characters that are not
valid characters for XML names are encoded or escaped.

For each encoded character, the encoding is based on the character's Unicode code point value, expressed
as a hexadecimal number.

● For most characters, the code point value can be represented with 16 bits or four hex digits, using the
encoding _xHHHH_. These characters correspond to Unicode characters whose UTF-16 value is one
16-bit word.

● For characters whose code point value requires more than 16 bits, eight hex digits are used in the encoding
xHHHHHHHH. These characters correspond to Unicode characters whose UTF-16 value is two 16-
bit words. However, the Unicode code point value, which is typically 5 or 6 hex digits, is used for the
encoding, not the UTF-16 value.

For example, the following query contains a column name with a space:

Obtaining query results as XML

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 699

SELECT EmployeeID AS "Employee ID"
FROM Employees
FOR XML RAW;

and returns the following result:

<row Employee_x0020_ID="102"/>
<row Employee_x0020_ID="105"/>
<row Employee_x0020_ID="129"/>
<row Employee_x0020_ID="148"/>
...

● Underscores (_) are escaped if they are followed by the character x. For example, the name Linu_x is
encoded as Linu_x005F_x.

● Colons (:) are not escaped so that namespace declarations and qualified element and attribute names can
be generated using a FOR XML query.

For information about the syntax of the FOR XML clause, see “SELECT statement” [SQL Anywhere Server
- SQL Reference].

Tip
When executing queries that contain a FOR XML clause in Interactive SQL, you may want to increase the
column length by setting the truncation_length option.

For information about setting the truncation length, see “truncation_length option [Interactive SQL]” [SQL
Anywhere Server - Database Administration].

FOR XML examples
The following examples show how the FOR XML clause can be used in a SELECT statement.

● The following example shows how the FOR XML clause can be used in a subquery:

SELECT XMLELEMENT(
 NAME root,
 (SELECT * FROM Employees
 FOR XML RAW));

● The following example shows how the FOR XML clause can be used in a query with a GROUP BY
clause and aggregate function:

SELECT Name, AVG(UnitPrice) AS Price
FROM Products
GROUP BY Name
FOR XML RAW;

● The following example shows how the FOR XML clause can be used in a view definition:

CREATE VIEW EmployeesDepartments
AS SELECT Surname, GivenName, DepartmentName
FROM Employees JOIN Departments
ON Employees.DepartmentID = Departments.DepartmentID
FOR XML AUTO;

Using XML in the database

700 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using FOR XML RAW
When you specify FOR XML RAW in a query, each row is represented as a <row> element, and each column
is an attribute of the <row> element.

Syntax
FOR XML RAW[, ELEMENTS]

Parameters
ELEMENTS tells FOR XML RAW to generate an XML element, instead of an attribute, for each column
in the result. If there are NULL values, the element is omitted from the generated XML document. The
following query generates <EmployeeID> and <DepartmentName> elements:

SELECT Employees.EmployeeID, Departments.DepartmentName
FROM Employees JOIN Departments
 ON Employees.DepartmentID=Departments.DepartmentID
FOR XML RAW, ELEMENTS;

This query gives the following result:

<row>
 <EmployeeID>102</EmployeeID>
 <DepartmentName>R & D</DepartmentName>
</row>
<row>
 <EmployeeID>105</EmployeeID>
 <DepartmentName>R & D</DepartmentName>
</row>
<row>
 <EmployeeID>160</EmployeeID>
 <DepartmentName>R & D</DepartmentName>
</row>
<row>
 <EmployeeID>243</EmployeeID>
 <DepartmentName>R & D</DepartmentName>
</row>
...

Usage
Data in BINARY, LONG BINARY, IMAGE, and VARBINARY columns is automatically returned in
base64-encoded format when you execute a query that contains FOR XML RAW.

By default, NULL values are omitted from the result. This behavior is controlled by the
for_xml_null_treatment option.

For information about how NULL values are returned in queries that contain a FOR XML clause, see “FOR
XML and NULL values” on page 698.

FOR XML RAW does not return a well-formed XML document because the document does not have a
single root node. If a <root> element is required, one way to insert one is to use the XMLELEMENT function.
For example,

SELECT XMLELEMENT(NAME root,
 (SELECT EmployeeID AS id, GivenName AS name
 FROM Employees FOR XML RAW));

Obtaining query results as XML

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 701

For more information about the XMLELEMENT function, see “XMLELEMENT function [String]” [SQL
Anywhere Server - SQL Reference].

The attribute or element names used in the XML document can be changed by specifying aliases. The
following query renames the ID attribute to product_ID:

SELECT ID AS product_ID
FROM Products
WHERE Color='black'
FOR XML RAW;

This query gives the following result:

<row product_ID="302"/>
<row product_ID="400"/>
<row product_ID="501"/>
<row product_ID="700"/>

The order of the results depend on the plan chosen by the optimizer, unless you request otherwise. If you
want the results to appear in a particular order, you must include an ORDER BY clause in the query, for
example:

SELECT Employees.EmployeeID, Departments.DepartmentName
FROM Employees JOIN Departments
 ON Employees.DepartmentID=Departments.DepartmentID
ORDER BY EmployeeID
FOR XML RAW;

Example
Suppose you want to retrieve information about which department an employee belongs to, as follows:

SELECT Employees.EmployeeID, Departments.DepartmentName
FROM Employees JOIN Departments
 ON Employees.DepartmentID=Departments.DepartmentID
FOR XML RAW;

The following XML document is returned:

<row EmployeeID="102" DepartmentName="R & D"/>
<row EmployeeID="105" DepartmentName="R & D"/>
<row EmployeeID="160" DepartmentName="R & D"/>
<row EmployeeID="243" DepartmentName="R & D"/>
...

Using FOR XML AUTO
AUTO mode generates nested elements within the XML document. Each table referenced in the select list
is represented as an element in the generated XML. The order of nesting is based on the order in which tables
are referenced in the select list. When you specify AUTO mode, an element is created for each table in the
select list, and each column in that table is a separate attribute.

Syntax
FOR XML AUTO[, ELEMENTS]

Using XML in the database

702 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Parameters
ELEMENTS tells FOR XML AUTO to generate an XML element, instead of an attribute, for each column
in the result. For example,

SELECT Employees.EmployeeID, Departments.DepartmentName
FROM Employees JOIN Departments
 ON Employees.DepartmentID=Departments.DepartmentID
ORDER BY EmployeeID
FOR XML AUTO, ELEMENTS;

In this case, each column in the result set is returned as a separate element, rather than as an attribute of the
<Employees> element. If there are NULL values, the element is omitted from the generated XML document.

<Employees>
 <EmployeeID>102</EmployeeID>
 <Departments>
 <DepartmentName>R & D</DepartmentName>
 </Departments>
</Employees>
<Employees>
 <EmployeeID>105</EmployeeID>
 <Departments>
 <DepartmentName>R & D</DepartmentName>
 </Departments>
</Employees>
<Employees>
 <EmployeeID>129</EmployeeID>
 <Departments>
 <DepartmentName>Sales</DepartmentName>
 </Departments>
</Employees>
...

Usage
When you execute a query using FOR XML AUTO, data in BINARY, LONG BINARY, IMAGE, and
VARBINARY columns is automatically returned in base64-encoded format. By default, NULL values are
omitted from the result. You can return NULL values as empty attributes by setting the
for_xml_null_treatment option to EMPTY.

For information about setting the for_xml_null_treatment option, see “for_xml_null_treatment option
[database]” [SQL Anywhere Server - Database Administration].

Unless otherwise requested, the database server returns the rows of a table in an order that has no meaning.
If you want the results to appear in a particular order, or for a parent element to have multiple children, you
must include an ORDER BY clause in the query so that all children are adjacent. If you do not specify an
ORDER BY clause, the nesting of the results depends on the plan chosen by the optimizer and you may not
get the nesting you want.

FOR XML AUTO does not return a well-formed XML document because the document does not have a
single root node. If a <root> element is required, one way to insert one is to use the XMLELEMENT function.
For example,

SELECT XMLELEMENT(NAME root,
 (SELECT EmployeeID AS id, GivenName AS name
 FROM Employees FOR XML AUTO));

Obtaining query results as XML

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 703

For more information about the XMLELEMENT function, see “XMLELEMENT function [String]” [SQL
Anywhere Server - SQL Reference].

You can change the attribute or element names used in the XML document by specifying aliases. The
following query renames the ID attribute to product_ID:

SELECT ID AS product_ID
FROM Products
WHERE Color='Black'
FOR XML AUTO;

The following XML is generated:

<Products product_ID="302"/>
<Products product_ID="400"/>
<Products product_ID="501"/>
<Products product_ID="700"/>

You can also rename the table with an alias. The following query renames the table to product_info:

SELECT ID AS product_ID
FROM Products AS product_info
WHERE Color='Black'
FOR XML AUTO;

The following XML is generated:

<product_info product_ID="302"/>
<product_info product_ID="400"/>
<product_info product_ID="501"/>
<product_info product_ID="700"/>

Example
The following query generates XML that contains both <employee> and <department> elements, and the
<employee> element (the table listed first in the select list) is the parent of the <department> element.

SELECT EmployeeID, DepartmentName
FROM Employees AS employee JOIN Departments AS department
 ON Employees.DepartmentID=Departments.DepartmentID
ORDER BY EmployeeID
FOR XML AUTO;

The following XML is generated by the above query:

<employee EmployeeID="102">
 <department DepartmentName="R & D"/>
</employee>
<employee EmployeeID="105">
 <department DepartmentName="R & D"/>
</employee>
<employee EmployeeID="129">
 <department DepartmentName="Sales;"/>
</employee>
<employee EmployeeID="148">
 <department DepartmentName="Finance;"/>
</employee>
...

If you change the order of the columns in the select list as follows:

Using XML in the database

704 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SELECT DepartmentName, EmployeeID
FROM Employees AS employee JOIN Departments AS department
 ON Employees.DepartmentID=Departments.DepartmentID
ORDER BY 1, 2
FOR XML AUTO;

The result is nested as follows:

<department DepartmentName="Finance">
 <employee EmployeeID="148"/>
 <employee EmployeeID="390"/>
 <employee EmployeeID="586"/>
 ...
</department>
<Department name="Marketing">
 <employee EmployeeID="184"/>
 <employee EmployeeID="207"/>
 <employee EmployeeID="318"/>
 ...
</department>
...

Again, the XML generated for the query contains both <employee> and <department> elements, but in this
case the <department> element is the parent of the <employee> element.

Using FOR XML EXPLICIT
FOR XML EXPLICIT allows you to control the structure of the XML document returned by the query. The
query must be written in a particular way so that information about the nesting you want is specified within
the query result. The optional directives supported by FOR XML EXPLICIT allow you to configure the
treatment of individual columns. For example, you can control whether a column appears as element or
attribute content, or whether a column is used only to order the result, rather than appearing in the generated
XML.

For an example of how to write a query using FOR XML EXPLICIT, see “Writing an EXPLICIT mode
query” on page 707.

Parameters

In EXPLICIT mode, the first two columns in the SELECT statement must be named Tag and Parent,
respectively. Tag and Parent are metadata columns, and their values are used to determine the parent-child
relationship, or nesting, of the elements in the XML document that is returned by the query.

● Tag column This is the first column specified in the select list. The Tag column stores the tag number
of the current element. Permitted values for tag numbers are 1 to 255.

● Parent column This column stores the tag number for the parent of the current element. If the value
in this column is NULL, the row is placed at the top level of the XML hierarchy.

For example, consider a query that returns the following result set when FOR XML EXPLICIT is not
specified. (The purpose of the GivenName!1 and ID!2 data columns is discussed in the following section,
“Adding data columns to the query” on page 706.)

Obtaining query results as XML

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 705

Tag Parent GivenName!1 ID!2

1 NULL 'Beth' NULL

2 NULL NULL '102'

In this example, the values in the Tag column are the tag numbers for each element in the result set. The
Parent column for both rows contains the value NULL. This means that both elements are generated at the
top level of the hierarchy, giving the following result when the query includes the FOR XML EXPLICIT
clause:

<GivenName>Beth</GivenName>
<ID>102</ID>

However, if the second row had the value 1 in the Parent column, the result would look as follows:

<GivenName>Beth
 <ID>102</ID>
</GivenName>

For an example of how to write a query using FOR XML EXPLICIT, see “Writing an EXPLICIT mode
query” on page 707.

Adding data columns to the query
In addition to the Tag and Parent columns, the query must also contain one or more data columns. The names
of these data columns control how the columns are interpreted during tagging. Each column name is split
into fields separated by an exclamation mark (!). The following fields can be specified for data columns:

ElementName!TagNumber!AttributeName!Directive

ElementName the name of the element. For a given row, the name of the element generated for the row
is taken from the ElementName field of the first column with a matching tag number. If there are multiple
columns with the same TagNumber, the ElementName is ignored for subsequent columns with the same
TagNumber. In the example above, the first row generates an element called <GivenName>.

TagNumber the tag number of the element. For a row with a given tag value, all columns with the same
value in their TagNumber field will contribute content to the element that corresponds to that row.

AttributeName specifies that the column value is an attribute of the ElementName element. For example,
if a data column had the name productID!1!Color, then Color would appear as an attribute of the <productID>
element.

Directive this optional field allows you to control the format of the XML document further. You can
specify any one of the following values for Directive:

● hide indicates that this column is ignored for the purpose of generating the result. This directive can
be used to include columns that are only used to order the table. The attribute name is ignored and does
not appear in the result.

For an example using the hide directive, see “Using the hide directive” on page 711.

● element indicates that the column value is inserted as a nested element with the name
AttributeName, rather than as an attribute.

Using XML in the database

706 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

For an example using the element directive, see “Using the element directive” on page 710.

● xml indicates that the column value is inserted with no quoting. If the AttributeName is specified, the
value is inserted as an element with that name. Otherwise, it is inserted with no wrapping element. If
this directive is not used, then markup characters are escaped unless the column is of type XML. For
example, the value <a/> would be inserted as <a/>.

For an example using the xml directive, see “Using the xml directive” on page 712.

● cdata indicates that the column value is to be inserted as a CDATA section. The AttributeName is
ignored.

For an example using the cdata directive, see “Using the cdata directive” on page 713.

Usage
Data in BINARY, LONG BINARY, IMAGE, and VARBINARY columns is automatically returned in
base64-encoded format when you execute a query that contains FOR XML EXPLICIT. By default, any
NULL values in the result set are omitted. You can change this behavior by changing the setting of the
for_xml_null_treatment option.

For more information about the for_xml_null_treatment option, see “for_xml_null_treatment option
[database]” [SQL Anywhere Server - Database Administration] and “FOR XML and NULL
values” on page 698.

Writing an EXPLICIT mode query

Suppose you want to write a query using FOR XML EXPLICIT that generates the following XML document:

<employee EmployeeID='129'>
 <customer CustomerID='107' Region='Eastern'/>
 <customer CustomerID='119' Region='Western'/>
 <customer CustomerID='131' Region='Eastern'/>
</employee>
<employee EmployeeID='195'>
 <customer CustomerID='109' Region='Eastern'/>
 <customer CustomerID='121' Region='Central'/>
</employee>

You do this by writing a SELECT statement that returns the following result set in the exact order specified,
and then appending FOR XML EXPLICIT to the query.

Tag Parent employee!1!EmployeeID customer!2!CustomerID customer!2!Region

1 NULL 129 NULL NULL

2 1 129 107 Eastern

2 1 129 119 Western

2 1 129 131 Central

1 NULL 195 NULL NULL

Obtaining query results as XML

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 707

Tag Parent employee!1!EmployeeID customer!2!CustomerID customer!2!Region

2 1 195 109 Eastern

2 1 195 121 Central

When you write your query, only some of the columns for a given row become part of the generated XML
document. A column is included in the XML document only if the value in the TagNumber field (the second
field in the column name) matches the value in the Tag column.

In the example, the third column is used for the two rows that have the value 1 in their Tag column. In the
fourth and fifth columns, the values are used for the rows that have the value 2 in their Tag column. The
element names are taken from the first field in the column name. In this case, <employee> and <customer>
elements are created.

The attribute names come from the third field in the column name, so an EmployeeID attribute is created
for <employee> elements, while CustomerID and Region attributes are generated for <customer> elements.

The following steps explain how to construct the FOR XML EXPLICIT query that generates an XML
document similar to the one found at the beginning of this section using the SQL Anywhere sample database.

To write a FOR XML EXPLICIT query

1. Write a SELECT statement to generate the top-level elements.

In this example, the first SELECT statement in the query generates the <employee> elements. The first
two values in the query must be the Tag and Parent column values. The <employee> element is at the
top of the hierarchy, so it is assigned a Tag value of 1, and a Parent value of NULL.

Note
If you are writing an EXPLICIT mode query that uses a UNION, then only the column names specified
in the first SELECT statement are used. Column names that are to be used as element or attribute names
must be specified in the first SELECT statement because column names specified in subsequent SELECT
statements are ignored.

To generate the <employee> elements for the table above, your first SELECT statement is as follows:

SELECT
 1 AS tag,
 NULL AS parent,
 EmployeeID AS [employee!1!EmployeeID],
 NULL AS [customer!2!CustomerID],
 NULL AS [customer!2!Region]
FROM Employees;

2. Write a SELECT statement to generate the child elements.

The second query generates the <customer> elements. Because this is an EXPLICIT mode query, the
first two values specified in all the SELECT statements must be the Tag and Parent values. The
<customer> element is given the tag number 2, and because it is a child of the <employee> element, it
has a Parent value of 1. The first SELECT statement has already specified that EmployeeID, CustomerID,
and Region are attributes.

Using XML in the database

708 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SELECT
 2,
 1,
 EmployeeID,
 CustomerID,
 Region
FROM Employees KEY JOIN SalesOrders

3. Add a UNION ALL to the query to combine the two SELECT statements together:

SELECT
 1 AS tag,
 NULL AS parent,
 EmployeeID AS [employee!1!EmployeeID],
 NULL AS [customer!2!CustomerID],
 NULL AS [customer!2!Region]
FROM Employees
UNION ALL
SELECT
 2,
 1,
 EmployeeID,
 CustomerID,
 Region
FROM Employees KEY JOIN SalesOrders

4. Add an ORDER BY clause to specify the order of the rows in the result. The order of the rows is the
order that is used in the resulting document.

SELECT
 1 AS tag,
 NULL AS parent,
 EmployeeID AS [employee!1!EmployeeID],
 NULL AS [customer!2!CustomerID],
 NULL AS [customer!2!Region]
FROM Employees
UNION ALL
SELECT
 2,
 1,
 EmployeeID,
 CustomerID,
 Region
FROM Employees KEY JOIN SalesOrders
ORDER BY 3, 1
FOR XML EXPLICIT;

For information about the syntax of EXPLICIT mode, see “Parameters” on page 705.

FOR XML EXPLICIT examples
The following example query retrieves information about the orders placed by employees. In this example,
there are three types of elements: <employee>, <order>, and <department>. The <employee> element has
ID and name attributes, the <order> element has a date attribute, and the <department> element has a name
attribute.

SELECT
 1 tag,
 NULL parent,
 EmployeeID [employee!1!ID],
 GivenName [employee!1!name],
 NULL [order!2!date],

Obtaining query results as XML

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 709

 NULL [department!3!name]
FROM Employees
UNION ALL
SELECT
 2,
 1,
 EmployeeID,
 NULL,
 OrderDate,
 NULL
FROM Employees KEY JOIN SalesOrders
UNION ALL
SELECT
 3,
 1,
 EmployeeID,
 NULL,
 NULL,
 DepartmentName
FROM Employees e JOIN Departments d
 ON e.DepartmentID=d.DepartmentID
ORDER BY 3, 1
FOR XML EXPLICIT;

You get the following result from this query:

<employee ID="102" name="Fran">
 <department name="R & D"/>
</employee>
<employee ID="105" name="Matthew">
 <department name="R & D"/>
</employee>
<employee ID="129" name="Philip">
 <order date="2000-07-24"/>
 <order date="2000-07-13"/>
 <order date="2000-06-24"/>
 <order date="2000-06-08"/>
 ...
 <department name="Sales"/>
</employee>
<employee ID="148" name="Julie">
 <department name="Finance"/>
</employee>
...

Using the element directive

If you want to generate sub-elements rather than attributes, you can add the element directive to the query,
as follows:

SELECT
 1 tag,
 NULL parent,
 EmployeeID [employee!1!id!element],
 GivenName [employee!1!name!element],
 NULL [order!2!date!element],
 NULL [department!3!name!element]
FROM Employees
UNION ALL
SELECT
 2,
 1,

Using XML in the database

710 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 EmployeeID,
 NULL,
 OrderDate,
 NULL
FROM Employees KEY JOIN SalesOrders
UNION ALL
SELECT
 3,
 1,
 EmployeeID,
 NULL,
 NULL,
 DepartmentName
FROM Employees e JOIN Departments d
 ON e.DepartmentID=d.DepartmentID
ORDER BY 3, 1
FOR XML EXPLICIT;

You get the following result from this query:

<employee>
 <id>102</id>
 <name>Fran</name>
 <department>
 <name>R & D</name>
 </department>
</employee>
<employee>
 <id>105</id>
 <name>Matthew</name>
 <department>
 <name>R & D</name>
 </department>
</employee>
<employee>
 <id>129</id>
 <name>Philip</name>
 <order>
 <date>2000-07-24</date>
 </order>
 <order>
 <date>2000-07-13</date>
 </order>
 <order>
 <date>2000-06-24</date>
 </order>
 ...
 <department>
 <name>Sales</name>
 </department>
</employee>
...

Using the hide directive

In the following query, the employee ID is used to order the result, but the employee ID does not appear in
the result because the hide directive is specified:

SELECT
 1 tag,
 NULL parent,
 EmployeeID [employee!1!id!hide],

Obtaining query results as XML

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 711

 GivenName [employee!1!name],
 NULL [order!2!date],
 NULL [department!3!name]
FROM Employees
UNION ALL
SELECT
 2,
 1,
 EmployeeID,
 NULL,
 OrderDate,
 NULL
FROM Employees KEY JOIN SalesOrders
UNION ALL
SELECT
 3,
 1,
 EmployeeID,
 NULL,
 NULL,
 DepartmentName
FROM Employees e JOIN Departments d
 ON e.DepartmentID=d.DepartmentID
ORDER BY 3, 1
FOR XML EXPLICIT;

This query returns the following result:

<employee name="Fran">
 <department name="R & D"/>
</employee>
<employee name="Matthew">
 <department name="R & D"/>
</employee>
<employee name="Philip">
 <order date="2000-04-21"/>
 <order date="2001-07-23"/>
 <order date="2000-12-30"/>
 <order date="2000-12-20"/>
 ...
 <department name="Sales"/>
</employee>
<employee name="Julie">
 <department name="Finance"/>
</employee>
...

Using the xml directive

By default, when the result of a FOR XML EXPLICIT query contains characters that are not valid XML
characters, the invalid characters are escaped (for information, see “Encoding illegal XML
names” on page 699) unless the column is of type XML. For example, the following query generates XML
that contains an ampersand (&):

SELECT
 1 AS tag,
 NULL AS parent,
 ID AS [customer!1!ID!element],
 CompanyName AS [customer!1!CompanyName]
FROM Customers
WHERE ID = '115'
FOR XML EXPLICIT;

Using XML in the database

712 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

In the result generated by this query, the ampersand is escaped because the column is not of type XML:

<Customers CompanyName="Sterling & Co.">
 <ID>115</ID>
</Customers>

The xml directive indicates that the column value is inserted into the generated XML with no quoting. If
you execute the same query as above with the xml directive:

SELECT
 1 AS tag,
 NULL AS parent,
 ID AS [customer!1!ID!element],
 CompanyName AS [customer!1!CompanyName!xml]
FROM Customers
WHERE ID = '115'
FOR XML EXPLICIT;

The ampersand is not quoted in the result:

<customer>
 <ID>115</ID>
 <CompanyName>Sterling & Co.</CompanyName>
</customer>

Note that this XML is not well-formed because it contains an ampersand, which is a special character in
XML. When XML is generated by a query, it is your responsibility to ensure that the XML is well-formed
and valid: SQL Anywhere does not check whether the XML being generated is well-formed or valid.

When you specify the xml directive, the AttributeName field is ignored, and elements are generated rather
than attributes.

Using the cdata directive

The following query uses the cdata directive to return the customer name in a CDATA section:

SELECT
 1 AS tag,
 NULL AS parent,
 ID AS [product!1!ID],
 Description AS [product!1!!cdata]
FROM Products
FOR XML EXPLICIT;

The result produced by this query lists the description for each product in a CDATA section. Data contained
in the CDATA section is not quoted:

<product ID="300">
 <![CDATA[Tank Top]]>
</product>
<product ID="301">
 <![CDATA[V-neck]]>
</product>
<product ID="302">
 <![CDATA[Crew Neck]]>
</product>
<product ID="400">
 <![CDATA[Cotton Cap]]>

Obtaining query results as XML

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 713

</product>
...

Using XML in the database

714 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using SQL/XML to obtain query results as XML
SQL/XML is a draft standard that describes a functional integration of XML into the SQL language: it
describes the ways that SQL can be used in conjunction with XML. The supported functions allow you to
write queries that construct XML documents from relational data.

Invalid names and SQL/XML
In SQL/XML, expressions that are not legal XML names, for example expressions that include spaces, are
escaped in the same manner as the FOR XML clause. Element content of type XML is not quoted.

For more information about quoting invalid expressions, see “Encoding illegal XML names” on page 699.

For information about using the XML data type, see “Storing XML documents in relational
databases” on page 688.

Using the XMLAGG function
The XMLAGG function is used to produce a forest of XML elements from a collection of XML elements.
XMLAGG is an aggregate function, and produces a single aggregated XML result for all the rows in the
query.

In the following query, XMLAGG is used to generate a <name> element for each row, and the <name>
elements are ordered by employee name. The ORDER BY clause is specified to order the XML elements:

SELECT XMLELEMENT(NAME Departments,
 XMLATTRIBUTES (DepartmentID),
 XMLAGG(XMLELEMENT(NAME name,
 Surname)
 ORDER BY Surname)
) AS department_list
FROM Employees
GROUP BY DepartmentID
ORDER BY DepartmentID;

This query produces the following result:

department_list

<Departments DepartmentID="100">
 <name>Breault</name>
 <name>Cobb</name>
 <name>Diaz</name>
 <name>Driscoll</name>
 ...
</Departments>

<Departments DepartmentID="200">
 <name>Chao</name>
 <name>Chin</name>
 <name>Clark</name>
 <name>Dill</name>
 ...
</Departments>

Using SQL/XML to obtain query results as XML

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 715

department_list

<Departments DepartmentID="300">
 <name>Bigelow</name>
 <name>Coe</name>

...

For more information about the XMLAGG function, see “XMLAGG function [Aggregate]” [SQL Anywhere
Server - SQL Reference].

Using the XMLCONCAT function
The XMLCONCAT function creates a forest of XML elements by concatenating all the XML values passed
in. For example, the following query concatenates the <given_name> and <surname> elements for each
employee in the Employees table:

SELECT XMLCONCAT(XMLELEMENT(NAME given_name, GivenName),
 XMLELEMENT(NAME surname, Surname)
) AS "Employee_Name"
FROM Employees;

This query returns the following result:

Employee_Name

<given_name>Fran</given_name>
<surname>Whitney</surname>

<given_name>Matthew</given_name>
<surname>Cobb</surname>

<given_name>Philip</given_name>
<surname>Chin</surname>

<given_name>Julie</given_name>
<surname>Jordan</surname>

...

For more information, see “XMLCONCAT function [String]” [SQL Anywhere Server - SQL Reference].

Using the XMLELEMENT function
The XMLELEMENT function constructs an XML element from relational data. You can specify the content
of the generated element and if you want, you can also specify attributes and attribute content for the element.

Generating nested elements
The following query generates nested XML, producing a <product_info> element for each product, with
elements that provide the name, quantity, and description of each product:

Using XML in the database

716 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SELECT ID,
XMLELEMENT(NAME product_info,
 XMLELEMENT(NAME item_name, Products.name),
 XMLELEMENT(NAME quantity_left, Products.Quantity),
 XMLELEMENT(NAME description, Products.Size || ' ' ||
 Products.Color || ' ' || Products.name)
) AS results
FROM Products
WHERE Quantity > 30;

This query produces the following result:

ID results

301 <product_info>
 <item_name>Tee Shirt
 </item_name>
 <quantity_left>54
 </quantity_left>
 <description>Medium Orange
 Tee Shirt</description>
</product_info>

302 <product_info>
 <item_name>Tee Shirt
 </item_name>
 <quantity_left>75
 </quantity_left>
 <description>One Size fits
 all Black Tee Shirt
 </description>
</product_info>

400 <product_info>
 <item_name>Baseball Cap
 </item_name>
 <quantity_left>112
 </quantity_left>
 <description>One Size fits
 all Black Baseball Cap
 </description>
</product_info>

... ...

Specifying element content
The XMLELEMENT function allows you to specify the content of an element. The following statement
produces an XML element with the content hat.

SELECT ID, XMLELEMENT(NAME product_type, 'hat')
FROM Products
WHERE Name IN ('Baseball Cap', 'Visor');

Generating elements with attributes
You can add attributes to the elements by including the XMLATTRIBUTES argument in your query. This
argument specifies the attribute name and content. The following statement produces an attribute for the
name, Color, and UnitPrice of each item.

Using SQL/XML to obtain query results as XML

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 717

SELECT ID, XMLELEMENT(NAME item_description,
 XMLATTRIBUTES(Name,
 Color,
 UnitPrice)
) AS item_description_element
FROM Products
WHERE ID > 400;

Attributes can be named by specifying the AS clause:

SELECT ID, XMLELEMENT(NAME item_description,
 XMLATTRIBUTES (UnitPrice AS
 price),
 Products.name
) AS products
FROM Products
WHERE ID > 400;

For more information, see “XMLELEMENT function [String]” [SQL Anywhere Server - SQL Reference].

Example
The following example uses XMLELEMENT with an HTTP web service.

ALTER PROCEDURE "DBA"."http_header_example_with_table_proc"()
RESULT (res LONG VARCHAR)
BEGIN
 DECLARE var LONG VARCHAR;
 DECLARE varval LONG VARCHAR;
 DECLARE I INT;
 DECLARE res LONG VARCHAR;
 DECLARE tabl XML;
 SET var = NULL;
loop_h:
 LOOP
 SET var = NEXT_HTTP_HEADER(var);
 IF var IS NULL THEN LEAVE leave loop_h END IF;
 SET varval = http_header(var);
 -- ... do some action for <var,varval> pair...
 SET tabl = tabl ||
 XMLELEMENT(name "tr",
 XMLATTRIBUTES('left' AS "align", 'top' AS
"valign"),
 XMLELEMENT(name "td", var),
 XMLELEMENT(name "td", varval)) ;

 END LOOP;
 SET res = XMLELEMENT(NAME "table",
 XMLATTRIBUTES('' AS "BORDER", '10' as "CELLPADDING", '0' AS
"CELLSPACING"),
 XMLELEMENT(NAME "th",
 XMLATTRIBUTES('left' AS "align", 'top' AS "valign"),
 'Header Name'),

 XMLELEMENT(NAME "th",
 XMLATTRIBUTES('left' AS "align", 'top' AS "valign"),
 'Header Value'),

 tabl) ;
 SELECT res;
END

Using XML in the database

718 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using the XMLFOREST function
XMLFOREST constructs a forest of XML elements. An element is produced for each XMLFOREST
argument.

The following query produces an <item_description> element, with <name>, <color>, and <price> elements:

SELECT ID, XMLELEMENT(NAME item_description,
 XMLFOREST(Name as name,
 Color as color,
 UnitPrice AS price)
) AS product_info
FROM Products
WHERE ID > 400;

The following result is generated by this query:

ID product_info

401 <item_description>
 <name>Baseball Cap</name>
 <color>White</color>
 <price>10.00</price>
</item_description>

500 <item_description>
 <name>Visor</name>
 <color>White</color>
 <price>7.00</price>
</item_description>

501 <item_description>
 <name>Visor</name>
 <color>Black</color>
 <price>7.00</price>
</item_description>

... ...

For more information, see “XMLFOREST function [String]” [SQL Anywhere Server - SQL Reference].

Using the XMLGEN function
The XMLGEN function is used to generate an XML value based on an XQuery constructor.

The XML generated by the following query provides information about customer orders in the SQL
Anywhere sample database. It uses the following variable references:

● {$ID} Generates content for the <ID> element using values from the ID column in the SalesOrders
table.

● {$OrderDate} Generates content for the <date> element using values from the OrderDate column in
the SalesOrders table.

Using SQL/XML to obtain query results as XML

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 719

● {$Customers} Generates content for the <customer> element from the CompanyName column in
the Customers table.

SELECT XMLGEN ('<order>
 <ID>{$ID}</ID>
 <date>{$OrderDate}</date>
 <customer>{$Customers}</customer>
 </order>',
 SalesOrders.ID,
 SalesOrders.OrderDate,
 Customers.CompanyName AS Customers
) AS order_info
FROM SalesOrders JOIN Customers
ON Customers.ID = SalesOrders.CustomerID
ORDER BY SalesOrders.CustomerID;

This query generates the following result:

order_info

<order>
 <ID>2001</ID>
 <date>2000-03-16</date>
 <customer>The Power Group</customer>
</order>

<order>
 <ID>2005</ID>
 <date>2001-03-26</date>
 <customer>The Power Group</customer>
</order>

<order>
 <ID>2125</ID>
 <date>2001-06-24</date>
 <customer>The Power Group</customer>
</order>

<order>
 <ID>2206</ID>
 <date>2000-04-16</date>
 <customer>The Power Group</customer>
</order>

...

Generating attributes
If you want the order ID number to appear as an attribute of the <order> element, you would write query as
follows (note that the variable reference is contained in double quotes because it specifies an attribute value):

SELECT XMLGEN ('<order ID="{$ID}">
 <date>{$OrderDate}</date>
 <customer>{$Customers}</customer>
 </order>',
 SalesOrders.ID,
 SalesOrders.OrderDate,
 Customers.CompanyName AS Customers
) AS order_info
FROM SalesOrders JOIN Customers

Using XML in the database

720 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ON Customers.ID = SalesOrders.CustomerID
ORDER BY SalesOrders.OrderDate;

This query generates the following result:

order_info

<order ID="2131">
 <date>2000-01-02</date>
 <customer>BoSox Club</customer>
</order>

<order ID="2065">
 <date>2000-01-03</date>
 <customer>Bloomfield's</customer>
</order>

<order ID="2126">
 <date>2000-01-03</date>
 <customer>Leisure Time</customer>
</order>

<order ID="2127">
 <date>2000-01-06</date>
 <customer>Creative Customs Inc.</customer>
</order>

...

In both result sets, the customer name Bloomfield's is quoted as Bloomfield's because the apostrophe
is a special character in XML and the column the <customer> element was generated from was not of type
XML.

For more information about quoting of illegal characters in XMLGEN, see “Invalid names and SQL/
XML” on page 715.

Specifying header information for XML documents
The FOR XML clause and the SQL/XML functions supported by SQL Anywhere do not include version
declaration information in the XML documents they generate. You can use the XMLGEN function to
generate header information.

SELECT XMLGEN('<?xml version="1.0"
 encoding="ISO-8859-1" ?>
 <r>{$x}</r>',
 (SELECT GivenName, Surname
 FROM Customers FOR XML RAW) AS x);

This produces the following result:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<r>
 <row GivenName="Michaels" Surname="Devlin"/>
 <row GivenName="Beth" Surname="Reiser"/>
 <row GivenName="Erin" Surname="Niedringhaus"/>
 <row GivenName="Meghan" Surname="Mason"/>
 ...
</r>

Using SQL/XML to obtain query results as XML

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 721

For more information about the XMLGEN function, see “XMLGEN function [String]” [SQL Anywhere
Server - SQL Reference].

Using XML in the database

722 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remote Data and Bulk Operations

This section describes how to load and unload your database, and how to access remote data.

Importing and exporting data ... 725
Accessing remote data .. 775
Server classes for remote data access ... 809

Importing and exporting data

Contents
Performance aspects of bulk operations ... 726
Data recovery issues for bulk operations .. 727
Importing data .. 728
Exporting data ... 745
Accessing data on client computers .. 755
Rebuilding databases .. 758
Extracting databases ... 766
Migrating databases to SQL Anywhere ... 767
Using SQL command files ... 771
Adaptive Server Enterprise compatibility ... 773

The term bulk operations is used to describe the process of importing and exporting data. Bulk operations
must be executed by a user with DBA authority and are not part of typical end-user applications. Bulk
operations may affect concurrency and transaction logs and should be performed when users are not
connected to the database.

The following are typical situations in which data is imported or exported:

● Importing an initial set of data into a new database

● Building new copies of a database, perhaps with a modified structure

● Exporting data from your database for use with other applications, such as spreadsheets

● Creating extractions of a database for replication or synchronization

● Repairing a corrupt database

● Rebuilding a database to improve its performance

● Obtaining a newer version of database software and completing software upgrades

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 725

Performance aspects of bulk operations
The performance of bulk operations depends on several factors, including whether the operation is internal
or external to the database server.

Internal bulk operations

Internal bulk operations, also referred to as server-side bulk operations, are import and export operations
performed by the database server using the LOAD TABLE, and UNLOAD statements.

When performing internal bulk operations, you can load from, and unload to, ASCII text files, or Adaptive
Server Enterprise BCP files. These files can exist on the same computer as the database server, or on a client
computer. The specified path to the file being written or read is relative to the database server. Internal bulk
operations are the fastest method of importing and exporting data into the database.

External bulk operations

External bulk operations, also referred to as client-side bulk operations, are import and export operations
performed by a client such as Interactive SQL, using INPUT and OUTPUT statements. When the client
issues an INPUT statement, an INSERT statement is recorded in the transaction log for each row that is read
when processing the file specified in the INPUT statement. As a result, client-side loading is considerably
slower than server-side loading. As well, INSERT triggers fire during an INPUT.

The OUTPUT statement allows you to write the result set of a SELECT statement to many different file
formats.

For external bulk operations, the specified path to the file being read or written is relative to the computer
on which the client application is running.

See also
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]
● “UNLOAD statement” [SQL Anywhere Server - SQL Reference]
● “INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “Performance tips for importing data” on page 728
● “-b server option” [SQL Anywhere Server - Database Administration]

Importing and exporting data

726 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Data recovery issues for bulk operations
You can run the database server in bulk operations mode (the -b server option). When you use this option,
the database server does not perform certain important functions. Specifically:

Function Implication

Maintain a transaction log There is no record of the changes. Each COMMIT causes a checkpoint.

Lock any records There are no serious implications.

Alternatively, you may also need to ensure that data from bulk loading is still available in the event of
recovery. You can do so by keeping the original data sources intact, and in their original location. You can
also use some of the logging options available for the LOAD TABLE statement that allow bulk-loaded data
to be recorded in the transaction log. See “LOAD TABLE statement” [SQL Anywhere Server - SQL
Reference].

Caution
You should back up the database before and after using bulk operations mode because your database is not
protected against media failure in this mode.

See also
● “-b server option” [SQL Anywhere Server - Database Administration]

Data recovery issues for bulk operations

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 727

Importing data
Importing data is an administrative task that involves reading data into your database as a bulk operation.
Use SQL Anywhere to:

● import entire tables or portions of tables from text files

● import data from a variable

● import several tables consecutively by automating the import procedure with a script

● insert or add data into tables

● replace data in tables

● create a table before the import or during the import

● load data from a file on a client computer

● transfer files between SQL Anywhere and Adaptive Server Enterprise using the BCP format clause

If you are trying to create an entirely new database, consider loading the data using LOAD TABLE for the
best performance.

For more information about unloading and reloading complete databases, see “Rebuilding
databases” on page 758.

See also
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]
● “UNLOAD statement” [SQL Anywhere Server - SQL Reference]
● “INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “Performance tips for importing data” on page 728
● “Performance aspects of bulk operations” on page 726
● “-b server option” [SQL Anywhere Server - Database Administration]
● “Table structures for import” on page 743
● “Accessing data on client computers” on page 755

Performance tips for importing data
Importing large volumes of data can be time consuming. To save time you can:

● Place data files on a separate physical disk drive from the database. This could avoid excessive disk head
movement during the load.

● Extend the size of the database. This command allows a database to be extended in large amounts before
the space is required, rather than in smaller amounts when the space is needed. It also improves
performance when loading large amounts of data, and keeps the database more contiguous within the
file system. See “ALTER DBSPACE statement” [SQL Anywhere Server - SQL Reference].

Importing and exporting data

728 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Use temporary tables to load data. Local or global temporary tables are useful when you need to load a
set of data repeatedly, or when you need to merge tables with different structures.

● Start the database server without the -b option (bulk operations mode) when using the LOAD TABLE
statement.

● Run Interactive SQL or the client application on the same computer as the database server if you are
using the INPUT or OUTPUT statement. Loading data over the network adds extra communication
overhead. You may want to load new data at a time when the database server is not busy.

See also
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]
● “INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “-b server option” [SQL Anywhere Server - Database Administration]

Import data with the Import Wizard
Use the Interactive SQL Import Wizard to select a source, format, and destination table for the data. You
can import data from TEXT and FIXED format files. You can import data into an existing table or a new
table. You can also use the Import Wizard to import data between:

● databases of different types, such as between a SQL Anywhere database and an UltraLite database.

● databases of different versions (as long as you have an ODBC driver for each database), such as between
a SQL Anywhere version 11.0.0 database and a SQL Anywhere version 10.0.0 database.

Use the Interactive SQL Import Wizard when you:

● want to create a table at the same time you import the data

● prefer using a point-and click interface to import data in a format other than text

To import data

1. In Interactive SQL, choose Data » Import.

2. Follow the instructions in the Import Wizard.

To import data from a file into the SQL Anywhere sample database

1. Create and save a text file named import.txt with the following values (on a single line):

100,500,'Chan','Julia',100,'300 Royal Drive',
'Springfield','OR','USA','97015','6175553985',
'A','017239033',55700,'1984-09-29',,'1968-05-05',
1,1,0,'F'

2. In Interactive SQL, choose Data » Import.

3. Select In A Text File and click Next.

Importing data

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 729

4. In the File Name field, type import.txt.

5. Select In An Existing Table.

6. Select Employees and click Next.

7. In the Field Separator list, select Comma(,). Click Next.

8. Click Import.

9. Click Close.

The SQL statement created by the wizard is stored in the command history when the import finishes.

You can view the generated SQL statement; from the SQL menu, choose Previous SQL.

The IMPORT statement generated by the Import Wizard appears in the SQL Statements pane:

-- Generated by the Import Wizard
INPUT INTO "GROUPO"."Employees" from 'C:\\Tobedeleted\\import.txt'
FORMAT TEXT ESCAPES ON ESCAPE CHARACTER '\\' DELIMITED BY ',' ENCODING
'Cp1252'

To import data from the SQL Anywhere sample database into an UltraLite database

1. Connect to an UltraLite database, such as, C:\Documents and Settings\All Users\Documents\SQL
Anywhere 11\Samples\UltraLite\CustDB\custdb.udb.

2. In Interactive SQL, choose Data » Import.

3. Click In A Database. Click Next.

4. In the Database Type list, choose SQL Anywhere

5. On the Identification tab, click ODBC Data Source Name and then type SQL Anywhere 11 Demo.
Click Next.

6. In the Table Name list, select Customers. Click Next.

7. Click In A New Table.

8. In the Owner field, type dba.

9. In the Table Name field, type SQLAnyCustomers.

10. Click Import.

11. Click Close.

12. To view the generated SQL statement, choose SQL » Previous SQL.

The IMPORT statement created and used by the Import Wizard appears in the SQL Statements pane.

-- Generated by the Import Wizard
INPUT USING 'DSN=SQL Anywhere 11 Demo;CON='''''
FROM "GROUPO.Customers" INTO "dba"."SQLAnyCustomers"
CREATE TABLE ON

Importing and exporting data

730 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Import data with the INPUT statement
Use the INPUT statement to import data in different file formats into existing or new tables. If you have the
ODBC drivers for the databases, use the USING clause to import data from different types of databases, and
from different versions of SQL Anywhere databases.

With the INPUT statement, you can import data from TEXT and FIXED formats. To import data from
another file format, use the USING clause with an ODBC data source.

You can use the default input format, or you can specify the file format for each INPUT statement. Because
the INPUT statement is an Interactive SQL command, you cannot use it in any compound statement (such
as an IF statement) or in a stored procedure.

Use the INPUT statement to import data when you want to import data from a file, or from another database.

For more information, see “INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference].

Considerations for materialized views

For immediate views, an error is returned when you attempt to bulk load data into an underlying table. You
must truncate the data in the view first, and then perform the bulk load operation.

For manual views, you can bulk load data into an underlying table. However, the data in the view remains
stale until the next refresh.

Consider truncating data in dependent materialized views before attempting a bulk load operation such as
INPUT on a table. After you have loaded the data, refresh the view. See “TRUNCATE statement” [SQL
Anywhere Server - SQL Reference], and “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere
Server - SQL Reference].

Considerations for text indexes

For immediate text indexes, updating the text index after performing a bulk load operation such as INPUT
on the underlying table can take a while even though the update is automatic. For manual text indexes, even
a refresh can take a while.

Consider dropping dependent text indexes before performing a bulk load operation such as INPUT on a
table. After you have loaded the data, recreate the text index. See “DROP TEXT INDEX statement” [SQL
Anywhere Server - SQL Reference], and “CREATE TEXT INDEX statement” [SQL Anywhere Server - SQL
Reference].

Impact on the database
Changes are recorded in the transaction log when you use the INPUT statement. In the event of a media
failure, there is a detailed record of the changes. However, there are performance impacts associated with
importing large amounts of data with this method since all rows are written to the transaction log.

In comparison, the LOAD TABLE statement does not save each row to the transaction log and so it can be
faster than the INPUT statement. However the INPUT statement is more flexible in terms of the databases
and file formats that it supports.

Importing data

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 731

To import data (INPUT statement)

1. Create and save a text file named new_employees.txt with the following values (on a single line):

101,500,'Chan','Julia',100,'300 Royal Drive',
'Springfield','OR','USA','97015','6175553985',
'A','017239033',55700,'1984-09-29',,'1968-05-05',
1,1,0,'F'

2. Open Interactive SQL and connect to the SQL Anywhere 11 Demo database.

3. Enter an INPUT statement in the SQL Statements pane.

INPUT INTO Employees
FROM c:\new_employees.txt
FORMAT TEXT;
SELECT * FROM Employees;

In this statement, the name of the destination table in the SQL Anywhere 11 Demo database is Employees,
and new_employees.txt is the name of the source file.

4. Execute the statement.

If the import is successful, the Messages tab displays the amount of time it to took to import the data. If
the import is unsuccessful, a message appears indicating why the import was unsuccessful.

To import data from a Microsoft Excel spreadsheet into a SQL Anywhere database

1. Open the spreadsheet in Microsoft Excel.

2. In Microsoft Excel, select the cells you want to import, then choose Insert » Name » Define.

Type a name, such as myData, for the selected cells.

3. Click OK.

4. Save and close the spreadsheet.

5. Create an ODBC data source for the spreadsheet.

● Choose Start » Programs » SQL Anywhere 11 » ODBC Administrator.

● Select the User DSN tab to create a DSN for the current user or select the System DSN tab to create
a system-wide DSN.

● Click Add.

From the list of drivers, choose the Microsoft Excel Driver, and then click Finish.

● Specify the parameters you need, click OK to close the window and create the data source.

For example, type myExcelFile in the Data Source Name field. Click Select Workbook and browse
to find your Excel spreadsheet file.

● Click OK to save the DSN.

6. Open Interactive SQL and connect to a SQL Anywhere database.

Importing and exporting data

732 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

7. Execute the following INPUT statement to import the data from the Excel spreadsheet and to save it in
a new table called t:

INPUT USING 'dsn=myExcelFile;DSN=myExcelFile'
FROM "myData" INTO "t"
CREATE TABLE ON

Import data with the LOAD TABLE statement
Use the LOAD TABLE statement to import data residing on a database server or a client computer into an
existing table in text/ASCII format.

You can also use the LOAD TABLE statement to import data from a column from another table, or from a
value expression (for example, from the results of a function or system procedure).

The LOAD TABLE statement adds rows into a table; it doesn't replace them.

Loading data using the LOAD TABLE statement (without the WITH ROW LOGGING and WITH
CONTENT LOGGING options) is considerably faster than using the INPUT statement.

Triggers do not fire for data loaded using the LOAD TABLE statement.

Considerations for materialized views

For immediate views, an error is returned when you attempt to bulk load data into an underlying table. You
must truncate the data in the view first, and then perform the bulk load operation.

For manual views, you can bulk load data into an underlying table; however, the data in the view becomes
stale until the next refresh.

Consider truncating data in dependent materialized views before attempting a bulk load operation such as
LOAD TABLE on a table. After you have loaded the data, refresh the view. See “TRUNCATE statement”
[SQL Anywhere Server - SQL Reference], and “REFRESH MATERIALIZED VIEW statement” [SQL
Anywhere Server - SQL Reference].

Considerations for text indexes

For immediate text indexes, updating the text index after performing a bulk load operation such as LOAD
TABLE on the underlying table can take a while even though the update is automatic. For manual text
indexes, even a refresh can take a while.

Consider dropping dependent text indexes before performing a bulk load operation such as LOAD TABLE
on a table. After you have loaded the data, recreate the text index. See “DROP TEXT INDEX statement”
[SQL Anywhere Server - SQL Reference], and “CREATE TEXT INDEX statement” [SQL Anywhere Server
- SQL Reference].

Considerations for database recovery and synchronization

By default, when data is loaded from a file (for example, LOAD TABLE table-name FROM
filename;), only the LOAD TABLE statement is recorded in the transaction log, not the actual rows of
data that are being loaded. This presents a problem when trying to recover the database using the transaction

Importing data

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 733

log if the original load file has been changed, moved, or deleted. It also means that databases involved in
synchronization or replication do not get the new data.

To address the recovery and synchronization considerations, two logging options are available for the LOAD
TABLE statement: WITH ROW LOGGING, which creates INSERT statements in the transaction log for
every row that is loaded, and WITH CONTENT LOGGING, which groups the loaded rows into chunks and
records the chunks in the transaction log. These options allow a load operation to be repeated, even when
the source of the loaded data is no longer available. See “LOAD TABLE statement” [SQL Anywhere Server
- SQL Reference].

Considerations for database mirroring

If your database is involved in mirroring, use the LOAD TABLE statement carefully. For example, if you
are loading data from a file, consider whether the file will be available for loading on the mirror server, or
whether data in the source you are loading from will change by the time the mirror database processes the
load. If either of these risks exists, consider specifying either WITH ROW LOGGING or WITH CONTENT
LOGGING as the logging level in the LOAD TABLE statement. That way, the data loaded into the mirror
database is identical to what was loaded in the mirrored database. See “LOAD TABLE statement” [SQL
Anywhere Server - SQL Reference].

See also
● “Accessing data on client computers” on page 755
● “Introduction to database mirroring” [SQL Anywhere Server - Database Administration]
● “INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]

Import data with the INSERT statement
Use the INSERT statement to add rows to the database. Because the import data for your destination table
is included in the INSERT statement, it is considered interactive input. You can also use the INSERT
statement with remote data access to import data from another database rather than a file.

Use the INSERT statement to import data when you:

● want to import small amounts of data into a single table

● are flexible with your file formats

● want to import remote data from an external database rather than from a file

The INSERT statement provides an ON EXISTING clause to specify the action to take if a row you are
inserting is already found in the destination table. However, if you anticipate many rows qualifying for the
ON EXISTING condition, consider using the MERGE statement instead. The MERGE statement provides
more control over the actions you can take for matching rows. It also provides a more sophisticated syntax
for defining what constitutes a match. See “MERGE statement” [SQL Anywhere Server - SQL Reference].

Importing and exporting data

734 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Considerations for materialized views

For immediate views, an error is returned when you attempt to bulk load data into an underlying table. You
must truncate the data in the view first, and then perform the bulk load operation.

For manual views, you can bulk load data into an underlying table; however, the data in the view becomes
stale until the next refresh.

Consider truncating data in dependent materialized views before attempting a bulk load operation such as
INSERT on a table. After you have loaded the data, refresh the view. See “TRUNCATE statement” [SQL
Anywhere Server - SQL Reference], and “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere
Server - SQL Reference].

Considerations for text indexes

For immediate text indexes, updating the text index after performing a bulk load operation such as INSERT
on the underlying table can take a while even though the update is automatic. For manual text indexes, even
a refresh can take a while.

Consider dropping dependent text indexes before performing a bulk load operation such as INSERT on a
table. After you have loaded the data, recreate the text index. See “DROP TEXT INDEX statement” [SQL
Anywhere Server - SQL Reference], and “CREATE TEXT INDEX statement” [SQL Anywhere Server - SQL
Reference].

Impact on the database
Changes are recorded in the transaction log when you use the INSERT statement. This means that if there
is a media failure involving the database file, you can recover information about the changes you made from
the transaction log.

To import data (INSERT statement)

In the following example, data is added to the Departments table of the SQL Anywhere sample database.

1. Ensure that the destination table exists.

2. Execute an INSERT statement. For example,

The following example inserts a new row into the Departments table in the SQL Anywhere sample
database.

INSERT
INTO Departments (DepartmentID, DepartmentName, DepartmentHeadID)
VALUES (700, 'Training', 501)
SELECT * FROM Departments;

Inserting values adds the new data to the existing table.

See also
● “The transaction log” [SQL Anywhere Server - Database Administration]
● “INSERT statement” [SQL Anywhere Server - SQL Reference]
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]
● “INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

Importing data

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 735

Import data with the MERGE statement
Use the MERGE statement to perform an update operation and update large amounts of table data. When
you merge data, you can specify what actions to take when rows from the source data match or do not match
the rows in the target data.

Defining the merge behavior

The following is an abbreviated version of the MERGE statement syntax for the purposes of explanation.
For the full syntax of the MERGE statement, see “MERGE statement” [SQL Anywhere Server - SQL
Reference].

MERGE INTO target-object
USING source-object
ON merge-search-condition
{ WHEN MATCHED | WHEN NOT MATCHED } [...]

When the database performs a merge operation, it compares rows in source-object to rows in target-object
to find rows that either match or do not match according to the definition contained in the ON clause. Rows
in source-object are considered a match if there exists at least one row in target-table such that merge-search-
condition evaluates to true.

source-object can be a base table, view, materialized view, derived table, or the results of a procedure. target-
object can be any of these objects except for materialized views and procedures. For further restrictions on
these object types, see “MERGE statement” [SQL Anywhere Server - SQL Reference].

The ANSI SQL/2003 standard does not allow rows in target-object to be updated by more than one row in
source-object during a merge operation.

Once a row in source-object is considered matching or non-matching, it is evaluated against the respective
matching or non-matching WHEN clauses (WHEN MATCHED or WHEN NOT MATCHED). A WHEN
MATCHED clause defines an action to perform on the row in target-object (for example, WHEN
MATCHED ... UPDATE specifies to update the row in target-object). A WHEN NOT MATCHED clause
defines an action to perform on the target-object using non-matching rows of the source-object.

You can specify unlimited WHEN clauses; they are processed in the order in which you specify them. You
can also use the AND clause within a WHEN clause to specify actions against a subset of rows. For example,
the following WHEN clauses define different actions to perform depending on the value of the Quantity
column for matching rows:

WHEN MATCHED AND myTargetTable.Quantity<=500 THEN SKIP
WHEN MATCHED AND myTargetTable.Quantity>500 THEN UPDATE SET
myTargetTable.Quantity=500

Branches in a merge operation
The grouping of matched and non-matched rows by action is referred to as branching, and each group is
referred to as a branch. A branch is equivalent to a single WHEN MATCHED or WHEN NOT MATCHED
clause. For example, one branch might contain the set of non-matching rows from source-object that must
be inserted. Execution of the branch actions begins only after all branching activities are complete (all rows
in source-object have been evaluated). The database server begins executing the branch actions according
to the order in which the WHEN clauses were specified.

Importing and exporting data

736 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Once a non-matching row from source-object or a pair of matching rows from source-object and target-
object is placed in a branch, it is not evaluated against the succeeding branches. This makes the order in
which you specify WHEN clauses significant.

A row in source-object that is considered a match or non-match, but does not belong to any branch (that is,
it does not satisfy any WHEN clause) is ignored. This can occur when the WHEN clauses contain AND
clauses, and the row does not satisfy any of the AND clause conditions. In this case, the row is ignored since
no action is defined for it.

In the transaction log, actions that modify data are recorded as individual INSERT, UPDATE, and DELETE
statements.

Triggers defined on the target table

Triggers fire normally as each INSERT, UPDATE, and DELETE statement is executed during the merge
operation. For example, when processing a branch that has an UPDATE action defined for it, the database
server:

1. fires all BEFORE UPDATE triggers

2. executes the UPDATE statement on the candidate set of rows while firing any row-level UPDATE
triggers

3. fires the AFTER UPDATE triggers

Triggers on target-table can cause conflicts during a merge operation if it impacts rows that will be updated
in another branch. For example, suppose an action is performed on row A, causing a trigger to fire that deletes
row B. However, row B has an action defined for it that has not yet been performed. When an action cannot
be performed on a row, the merge operation fails, all changes are rolled back, and an error is returned.

A trigger defined with more than one trigger action is treated as if it has been specified once for each of the
trigger actions with the same body (that is, it is equivalent to defining separate triggers, each with a single
trigger action).

Considerations for immediate materialized views

Database server performance might be affected if the MERGE statement updates a large number of rows.
To update numerous rows, consider truncating data in dependent immediate materialized views before
executing the MERGE statement on a table. After executing the MERGE statement, execute a REFRESH
MATERIALIZED VIEW statement. See “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere
Server - SQL Reference] and “TRUNCATE statement” [SQL Anywhere Server - SQL Reference].

Considerations for text indexes

Database server performance might be affected if the MERGE statement updates a large number of rows.
Consider dropping dependent text indexes before executing the MERGE statement on a table. After
executing the MERGE statement, recreate the text index. See “DROP TEXT INDEX statement” [SQL
Anywhere Server - SQL Reference] , and “CREATE TEXT INDEX statement” [SQL Anywhere Server - SQL
Reference].

Importing data

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 737

Example 1
Suppose you own a small business selling jackets and sweaters. Prices on material for the jackets have gone
up by 5% and you want to adjust your prices to match. Using the following CREATE TABLE statement,
you create a small table called myProducts to hold current pricing information for the jackets and sweaters
you sell. The subsequent INSERT statements populate myProducts with data.

CREATE TABLE myProducts (
 product_id NUMERIC(10),
 product_name CHAR(20),
 product_size CHAR(20),
 product_price NUMERIC(14,2));
INSERT INTO myProducts VALUES (1, 'Jacket', 'Small', 29.99);
INSERT INTO myProducts VALUES (2, 'Jacket', 'Medium', 29.99);
INSERT INTO myProducts VALUES (3, 'Jacket', 'Large', 39.99);
INSERT INTO myProducts VALUES (4, 'Sweater', 'Small', 18.99);
INSERT INTO myProducts VALUES (5, 'Sweater', 'Medium', 18.99);
INSERT INTO myProducts VALUES (6, 'Sweater', 'Large', 19.99);
SELECT * FROM myProducts;

product_id product_name product_size product_price

1 Jacket Small 29.99

2 Jacket Medium 29.99

3 Jacket Large 39.99

4 Sweater Small 18.99

5 Sweater Medium 18.99

6 Sweater Large 19.99

Now, use the following statement to create another table called myPrices to hold information about the price
changes for jackets. A SELECT statement is added at the end so that you can see the contents of the myPrices
table before the merge operation is performed.

CREATE TABLE myPrices (
 product_id NUMERIC(10),
 product_name CHAR(20),
 product_size CHAR(20),
 product_price NUMERIC(14,2),
 new_price NUMERIC(14,2));
INSERT INTO myPrices (product_id) VALUES (1);
INSERT INTO myPrices (product_id) VALUES (2);
INSERT INTO myPrices (product_id) VALUES (3);
INSERT INTO myPrices (product_id) VALUES (4);
INSERT INTO myPrices (product_id) VALUES (5);
INSERT INTO myPrices (product_id) VALUES (6);
COMMIT;
SELECT * FROM myPrices;

product_id product_name product_size product_price new_price

1 (NULL) (NULL) (NULL) (NULL)

Importing and exporting data

738 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

product_id product_name product_size product_price new_price

2 (NULL) (NULL) (NULL) (NULL)

3 (NULL) (NULL) (NULL) (NULL)

4 (NULL) (NULL) (NULL) (NULL)

5 (NULL) (NULL) (NULL) (NULL)

6 (NULL) (NULL) (NULL) (NULL)

Use the following MERGE statement to merge data from the myProducts table into the myPrices table.
Notice that the source-object is a derived table that has been filtered to contain only those rows where
product_name is Jacket. Notice also that the ON clause specifies that rows in the target-object and source-
object match if the values in their product_id columns match.

MERGE INTO myPrices p
USING (SELECT
 product_id,
 product_name,
 product_size,
 product_price
 FROM myProducts
 WHERE product_name='Jacket') pp
ON (p.product_id = pp.product_id)
WHEN MATCHED THEN
 UPDATE SET
 p.product_id=pp.product_id,
 p.product_name=pp.product_name,
 p.product_size=pp.product_size,
 p.product_price=pp.product_price,
 p.new_price=pp.product_price * 1.05;
SELECT * FROM myPrices;

product_id product_name product_size product_price new_price

1 Jacket Small 29.99 31.49

2 Jacket Medium 29.99 31.49

3 Jacket Large 39.99 41.99

4 (NULL) (NULL) (NULL) (NULL)

5 (NULL) (NULL) (NULL) (NULL)

6 (NULL) (NULL) (NULL) (NULL)

The column values for product_id 4, 5, and 6 remain NULL because those products did not match any of
the rows in the myProducts table whose products were (product_name='Jacket').

Importing data

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 739

Example 2
The following example merges rows from the mySourceTable and myTargetTable tables, using the primary
key values of myTargetTable to match rows. The row is considered a match if a row in mySourceTable has
the same value as the primary key column of myTargetTable.

MERGE INTO myTargetTable
 USING mySourceTable ON PRIMARY KEY
 WHEN NOT MATCHED THEN INSERT
 WHEN MATCHED THEN UPDATE;

The WHEN NOT MATCHED THEN INSERT clause specifies that rows found in mySourceTable that are
not found in myTargetTable must be added to myTargetTable. The WHEN MATCHED THEN UPDATE
clause specifies that the matching rows of myTargetTable are updated to the values in mySourceTable.

The following syntax is equivalent to the syntax above. It assumes that myTargetTable has the columns (I1,
I2, .. In) and that the primary key is defined on columns (I1, I2). The mySourceTable has the columns (U1,
U2, .. Un).

MERGE INTO myTargetTable (I1, I2, .. ., In)
 USING mySourceTable ON myTargetTable.I1 = mySourceTable.U1
 AND myTargetTable.I2 = mySourceTable.U2
 WHEN NOT MATCHED
 THEN INSERT (I1, I2, .. In)
 VALUES (mySourceTable.U1, mySourceTable.U2, ..., mySourceTable.Un)
 WHEN MATCHED
 THEN UPDATE SET
 myTargetTable.I1 = mySourceTable.U1,
 myTargetTable.I2 = mySourceTable.U2,
 ...
 myTargetTable.In = mySourceTable.Un;

Using the RAISERROR action

One of the actions you can specify for a match or non-match action is RAISERROR. RAISERROR allows
you to fail the merge operation if the condition of a WHEN clause is met.

When you specify RAISERROR, the database server returns SQLSTATE 23510 and SQLCODE -1254, by
default. Optionally, you can customize the SQLCODE that is returned by specifying the error_number
parameter after the RAISERROR keyword. See “MERGE statement” [SQL Anywhere Server - SQL
Reference].

Specifying a custom SQLCODE can be beneficial when, later, you are trying to determine the specific
circumstances that caused the error to be raised.

The custom SQLCODE must be a positive integer greater than 17000, and can be specified either as a number
or a variable.

The following statements provide a simple demonstration of how customizing a custom SQLCODE affects
what is returned:

Create the table targetTable as follows:

CREATE TABLE targetTable(c1 int);
INSERT INTO targetTable VALUES(1);
COMMIT;

The following statement returns an error with SQLSTATE = '23510' and SQLCODE = -1254:

Importing and exporting data

740 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MERGE INTO targetTable
 USING (SELECT 1 c1) AS sourceData
 ON targetTable.c1 = sourceData.c1
 WHEN MATCHED THEN RAISERROR;
SELECT sqlstate, sqlcode;

The following statement returns an error with SQLSTATE = '23510' and SQLCODE = -17001:

MERGE INTO targetTable
 USING (SELECT 1 c1) AS sourceData
 ON targetTable.c1 = sourceData.c1
 WHEN MATCHED THEN RAISERROR 17001
 WHEN NOT MATCHED THEN RAISERROR 17002;
SELECT sqlstate, sqlcode;

The following statement returns an error with SQLSTATE = '23510' and SQLCODE = -17002:

MERGE INTO targetTable
 USING (SELECT 2 c1) AS sourceData
 ON targetTable.c1 = sourceData.c1
 WHEN MATCHED THEN RAISERROR 17001
 WHEN NOT MATCHED THEN RAISERROR 17002;
SELECT sqlstate, sqlcode;

Import data with proxy tables
A proxy table is a local table containing metadata used to access a table on a remote database server as if it
were a local table. These let you import data directly.

Use proxy tables to import data when you:

● have access to remote data

● want to import data directly from another database

Impact on the database
Changes are recorded in the transaction log when you import using proxy tables. This means that if there is
a media failure involving the database file, you can recover information about the changes you made from
the transaction log.

How to use proxy tables
Create a proxy table, and then use an INSERT statement with a SELECT clause to insert data from the remote
database into a permanent table in your database.

For more information about remote data access, see “Accessing remote data” on page 775.

For more information about INSERT statements, see “INSERT statement” [SQL Anywhere Server - SQL
Reference].

Importing data

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 741

Handling conversion errors during import
When you load data from external sources, there may be errors in the data. For example, there may be invalid
dates and numbers. Use the conversion_error database option to ignore conversion errors and convert invalid
values to NULL values.

For more information about setting database options, see “SET OPTION statement” [SQL Anywhere Server
- SQL Reference], and “conversion_error option [compatibility]” [SQL Anywhere Server - Database
Administration].

Import tables

To import a table

1. Ensure that the table you want to place the data in exists.

2. In Interactive SQL, from the Data menu choose Import.

3. Select In A Text File and click Next.

4. In the File Name field, click Browse to add the file.

5. Select In An Existing Table.

6. Click Next.

7. For ASCII files, specify the way the ASCII file is read and click Next.

8. Click Import.

9. Click Close.

To import a table (Interactive SQL SQL Statements pane)

1. Use the CREATE TABLE statement to create the destination table. For example:

CREATE TABLE GROUPO.Departments (
DepartmentID integer NOT NULL,
DepartmentName char(40) NOT NULL,
DepartmentHeadID integer NULL,
CONSTRAINT DepartmentsKey PRIMARY KEY (DepartmentID));

2. Execute a LOAD TABLE statement. For example,

LOAD TABLE Departments
FROM 'departments.csv';

3. To keep trailing blanks in your values, use the STRIP OFF clause in your LOAD TABLE statement.
The default setting (STRIP ON) strips trailing blanks from values before inserting them.

The LOAD TABLE statement adds the contents of the file to the existing rows of the table; it does not
replace the existing rows in the table. You can use the TRUNCATE TABLE statement to remove all the
rows from a table.

Importing and exporting data

742 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Neither the TRUNCATE TABLE statement nor the LOAD TABLE statement fires triggers or perform
referential integrity actions, such as cascaded deletes.

See also
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]

Table structures for import
The structure of the source data does not need to match the structure of the destination table itself. For
example, the column data types may be different or in a different order, or there may be extra values in the
import data that do not match columns in the destination table.

Rearranging the table or data
If you know that the structure of the data you want to import does not match the structure of the destination
table, you can:

● provide a list of column names to be loaded in the LOAD TABLE statement

● rearrange the import data to fit the table with a variation of the INSERT statement and a global temporary
table

● use the INPUT statement to specify a specific set or order of columns

Allowing columns to contain NULL values

If the file you are importing contains data for a subset of the columns in a table, or if the columns are in a
different order, you can also use the LOAD TABLE statement DEFAULTS option to fill in the blanks and
merge non-matching table structures.

● If DEFAULTS is OFF, any column not present in the column list is assigned NULL. If DEFAULTS is
OFF and a non-nullable column is omitted from the column list, the database server attempts to convert
the empty string to the column's type.

● If DEFAULTS is ON and the column has a default value, that value is used.

For example, you can define a default value for the City column in the Customers table and then load new
rows into the Customers table from a fictitious file called new_customers.txt using a LOAD TABLE
statement like this:

ALTER TABLE Customers
ALTER City DEFAULT 'Waterloo';
LOAD TABLE Customers (Surname, GivenName, Street, State, Phone)
FROM 'new_customers.txt'
DEFAULTS ON;

Since a value is not provided for the City column, the default value is supplied. If DEFAULTS OFF had
been specified, the City column would have been assigned the empty string.

Importing data

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 743

Merge different table structures
Use a variation of the INSERT statement and a global temporary table to rearrange the import data to fit the
table.

To load data with a different structure using a global temporary table

1. In the SQL Statements pane, create a global temporary table with a structure matching that of the input
file.

You can use the CREATE TABLE statement to create the global temporary table.

2. Use the LOAD TABLE statement to load your data into the global temporary table.

When you close the database connection, the data in the global temporary table disappears. However,
the table definition remains. You can use it the next time you connect to the database.

3. Use the INSERT statement with a SELECT clause to extract and summarize data from the temporary
table and copy the data into one or more permanent database tables.

See also
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]

Importing binary files
You can import binary files, such as JPEG, bitmap, or Microsoft Word files, into your database using the
xp_read_file system procedure. See “Inserting documents and images” on page 536.

Importing and exporting data

744 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Exporting data
Exporting data is an administrative task that involves writing data out of your database. Exporting data is a
useful if you need to share large portions of your database, or extract portions of your database according
to particular criteria. Use SQL Anywhere to:

● export individual tables, query results, or table schema

● create scripts that automate exporting so that you can export several tables consecutively

● export to many different file formats

● export data to a file on a client computer

● export files between SQL Anywhere and Adaptive Server Enterprise using the BCP FORMAT clause

Before exporting data, determine what resources you have and the type of information you want to export
from your database.

For performance reasons, if you want to export an entire database, unload the database instead of exporting
the data. See “Rebuilding databases” on page 758.

See also
● “UNLOAD statement” [SQL Anywhere Server - SQL Reference]
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “Performance aspects of bulk operations” on page 726
● “Use the OUTPUT statement to output NULLs” on page 752
● “Accessing data on client computers” on page 755

Export data with the Export Wizard
Use the Export Wizard to export query results in a specific format to a file or database.

To export result sets data using Interactive SQL

1. Execute a query.

2. In Interactive SQL, choose Data » Export.

3. Follow the instructions in the Export Wizard wizard.

To export result sets data to an UltraLite database using Interactive SQL

1. Execute the following query while connected to the SQL Anywhere sample database.

SELECT * FROM Employees
WHERE State = 'GA';

The result set includes a list of all employees who live in Georgia.

2. Choose Data » Export.

Exporting data

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 745

3. Click In A Database.

4. In the Database Type list, select UltraLite.

5. In the User Id field, type dba.

6. In the Password field, type sql.

7. Click the Database tab.

8. In the Database File field, type C:\Documents and Settings\All Users\Documents\SQL Anywhere
11\Samples\UltraLite\CustDB\custdb.udb.

9. Click Next.

10. Click In A New Table.

11. In the Owner field, type dba.

12. In the Table Name field, type NewTable.

13. Click Export.

14. Choose SQL » Previous SQL.

The IMPORT statement created and used by the Import Wizard appears in the SQL Statements pane:

-- Generated by the Export Wizard
OUTPUT USING 'driver=UltraLite 11;UID=dba;PWD=sql;
DBF=C:\Documents and Settings\All Users\Documents\SQL Anywhere 11\Samples
\UltraLite\CustDB\custdb.udb'
INTO "dba"."NewTable"
CREATE TABLE ON

Export data with the OUTPUT statement
Use the OUTPUT statement to export query results, tables, or views from your database.

The OUTPUT statement is useful when compatibility is an issue because it can write out the result set of a
SELECT statement in several different file formats. You can use the default output format, or you can specify
the file format on each OUTPUT statement. Interactive SQL can execute a command file containing multiple
OUTPUT statements.

The default Interactive SQL output format is specified on the Import/Export tab of the Interactive SQL
Options window (accessed by choosing Tools » Options in Interactive SQL).

Use the Interactive SQL OUTPUT statement when you want to:

● export all or part of a table or view in a format other than text

● automate the export process using a command file

Impact on the database
If you have a choice between using the OUTPUT statement, UNLOAD statement, or UNLOAD TABLE
statement, choose the UNLOAD TABLE statement for performance reasons.

Importing and exporting data

746 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

There are performance impacts associated with exporting large amounts of data with the OUTPUT statement.
Use the OUTPUT statement on the same computer as the server if possible to avoid sending large amounts
of data across the network.

For more information, see “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL
Reference].

Example
The following example exports the data from the Employees table in the SQL Anywhere sample database
to a .txt file named Employees.txt.

SELECT *
FROM Employees;
OUTPUT TO Employees.txt
FORMAT TEXT;

The following example exports data from the Employees table in the SQL Anywhere sample database to a
new table in a SQL Anywhere database named mydatabase.db

SELECT *
FROM Employees;
OUTPUT USING 'driver=SQL Anywhere 11;UID=dba;PWD=sql;DBF=C:\Tobedeleted
\mydatabase.db;CON='''''
INTO "dba"."newcustomers"
CREATE TABLE ON

Export data with the UNLOAD TABLE statement
The UNLOAD TABLE statement lets you export data efficiently in text formats only. The UNLOAD
TABLE statement exports one row per line, with values separated by a comma delimiter. To make reloading
faster, the data is exported in order by primary key values.

Use the UNLOAD TABLE statement when you:

● want to export entire tables in text format

● are concerned about database performance

● export data to a file on a client computer

Impact on the database
The UNLOAD TABLE statement places an exclusive lock on the whole table while you are unloading it.

If you have a choice between using the OUTPUT statement, UNLOAD statement, or UNLOAD TABLE
statement, choose the UNLOAD TABLE statement for performance reasons.

Example
Using the SQL Anywhere sample database, you can unload the Employees table to a text file named
employee_data.csv by executing the following command:

UNLOAD TABLE Employees TO 'employee_data.csv';

Exporting data

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 747

Because it is the database server that unloads the table, employee_data.csv specifies a file on the database
server computer.

See also
● “Accessing data on client computers” on page 755
● “UNLOAD statement” [SQL Anywhere Server - SQL Reference]
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

Export data with the UNLOAD statement
The UNLOAD statement is similar to the OUTPUT statement in that they both export query results to a file.
However, the UNLOAD statement exports data more efficiently in a text format. The UNLOAD statement
exports with one row per line, with values separated by a comma delimiter.

Use the UNLOAD statement to unload data when you want to:

● export query results if performance is an issue

● store output in text format

● embed an export command in an application

● export data to a file on a client computer

Impact on the database
If you have a choice between using the OUTPUT statement, UNLOAD statement, or UNLOAD TABLE
statement, choose the UNLOAD TABLE statement for performance reasons.

To use the UNLOAD statement, the user must the permissions required to execute the SELECT that is
specified as part of the statement.

For more information about controlling who can use the UNLOAD statement, see “-gl server option” [SQL
Anywhere Server - Database Administration].

The UNLOAD statement is executed at the current isolation level.

Example
Using the SQL Anywhere sample database, you can unload a subset of the Employees table to a text file
named employee_data.csv by executing the following command:

UNLOAD
SELECT * FROM Employees
WHERE State = 'GA'
TO 'employee_data.csv';

Because it is the database server that unloads the result set, employee_data.csv specifies a file on the database
server computer.

Importing and exporting data

748 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Accessing data on client computers” on page 755
● “UNLOAD statement” [SQL Anywhere Server - SQL Reference]
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

Export data with the dbunload utility
Use the dbunload utility to export one, many, or all the database tables. You can export table data, and table
schemas. To rearrange your database tables, you can also use the dbunload utility to create the necessary
command files and modify them as needed. You can unload tables with structure only, data only, or with
both structure and data.

You can also extract one or many tables with or without command files. These files can be used to create
identical tables in different databases.

Note
The dbunload utility is functionally equivalent to the Sybase Central Unload Database Wizard. You can
use either one interchangeably to produce the same results.

Use the dbunload utility when you:

● need to rebuild or extract your database

● want to export data in text format

● need to process large amounts of data quickly

● have flexible file format requirements

For more information about the dbunload utility, see “Unload utility (dbunload)” [SQL Anywhere Server -
Database Administration].

Export data with the Unload Database Wizard
Use the Unload Database Wizard to unload an existing database into a new database.

When using the Unload Database Wizard to unload your database, you can choose to unload all the objects
in a database, or a subset of tables from the database. Only tables for users selected in the Configure Owner
Filter window appear in the Unload Database Wizard. If you want to view tables belonging to a particular
database user, right-click the database you are unloading, choose Configure Owner Filter, and then select
the user in the resulting window.

Note
When you unload only tables, the user IDs that own the tables are not unloaded. You must create the user
IDs that own the tables in the new database before reloading the tables.

Exporting data

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 749

You can also use the Unload Database Wizard to unload an entire database in text comma-delimited format
and to create the necessary Interactive SQL command files to completely recreate your database. This is
useful for creating SQL Remote extractions or building new copies of your database with the same or a
slightly modified structure. The Unload Database Wizard is useful for exporting SQL Anywhere files
intended for reuse within SQL Anywhere.

The Unload Database Wizard also gives you the option to reload into an existing database or a new database,
rather than into a reload file.

The dbunload utility is functionally equivalent to the Unload Database Wizard. You can use either one
interchangeably to produce the same results.

Note
If the database you want to unload is already running, and you start the Unload Database Wizard, the SQL
Anywhere plug-in automatically stops the database before you can unload it.

For information about special considerations when unloading a database, see “Unload utility (dbunload)”
[SQL Anywhere Server - Database Administration].

To unload a database file or a running database (Sybase Central)

1. Choose Tools » SQL Anywhere 11 » Unload Database.

2. Follow the instructions in the Unload Database Wizard.

Export data with the Unload Data window
You can use the Unload Data window in Sybase Central to unload one or more tables in a database. This
functionality is also available with either the Unload Database Wizard or the Unload utility (dbunload),
but this window allows you to unload tables in one step, instead of completing the entire Unload Database
Wizard.

To unload tables using the Unload Data window

1. Connect to the database as a user with DBA authority.

2. Double-click Tables.

3. Right-click the table you want to export data from, and choose Unload Data.

4. Complete the Unload Data window. Click OK.

Export query results
Use the Data menu, the OUTPUT statement, or the UNLOAD statement to export queries (including queries
on views) to a file.

Importing and exporting data

750 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Use the BCP FORMAT clause to import and export files between SQL Anywhere and Adaptive Server
Enterprise. For more information, see “Adaptive Server Enterprise compatibility” on page 773.

To export query results (Interactive SQL Data menu)

1. Enter your query in the SQL Statements pane of Interactive SQL.

2. Choose SQL » Execute.

3. Choose Data » Export.

4. Specify a location for the results and click Next.

5. For text, HTML, and XML files, type a file name in the File Name field and click Export.

For an ODBC database:

a. Select a database and click Next.

b. Select a location to save the data and click Export.

6. Click Close.

To export query results (Interactive SQL OUTPUT statement)

1. Enter your query in the SQL Statements pane of Interactive SQL.

2. At the end of the query, type OUTPUT TO 'filename'. For example, to export the entire Employees
table to the file employees.txt, enter the following query:

SELECT *
FROM Employees;
OUTPUT TO 'employees.txt';

3. To export query results and append the results to another file, use the APPEND clause.

SELECT * FROM Employees;
OUTPUT TO 'employees.txt'
APPEND;

To export query results and include messages, use the VERBOSE clause.

SELECT * FROM Employees;
OUTPUT TO 'employees.txt'
VERBOSE;

4. Choose SQL » Execute.

If the export is successful, the Messages tab displays the amount of time it to took to export the query
result set, the file name and path of the exported data, and the number of rows written. If the export is
unsuccessful, a message appears indicating that the export was unsuccessful.

For more information about exporting query results using the OUTPUT statement, see “OUTPUT
statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference].

Exporting data

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 751

Tips
You can combine the APPEND and VERBOSE clauses to append both results and messages to an existing
file.

For example, type OUTPUT TO 'filename' APPEND VERBOSE.

The OUTPUT statement with its clauses APPEND and VERBOSE are equivalent to the >#, >>#, >&, and
>>& operators of earlier versions of Interactive SQL. You can still use these operators to redirect data, but
the new Interactive SQL statements allow for more precise output and easier to read code.

For more information about APPEND and VERBOSE, see “OUTPUT statement [Interactive SQL]” [SQL
Anywhere Server - SQL Reference].

To export query results (UNLOAD statement)

1. In the SQL Statements pane, enter the UNLOAD statement. For example,

UNLOAD
SELECT *
FROM Employees
TO 'employee_data.csv';

2. Choose SQL » Execute.

If the export is successful, the Messages tab displays the amount of time it to took to export the query
result set, the file name and path of the exported data, and the number of rows written. If the export is
unsuccessful, a message appears indicating that the export was unsuccessful.

Use the OUTPUT statement to output NULLs
You may want to extract data for use in other software products. Because the other software products may
not understand NULL values, there are two ways to specify how NULL values appear when using the
OUTPUT statement from Interactive SQL:

● the output_nulls option lets you specify the output value used by the OUTPUT statement

● the IFNULL function lets you apply the output value to a particular instance or query

Both options allow you to output a specific value in place of a NULL value. By specifying how NULL values
are output, you have greater compatibility with other software products.

To specify a NULL value output (Interactive SQL)

● Execute a SET OPTION statement that changes the value of the output_nulls option. The following
example changes the value that appears for NULL values to (unknown):

SET OPTION output_nulls = '(unknown)';

For more information about setting Interactive SQL options, see “SET OPTION statement” [SQL Anywhere
Server - SQL Reference].

Importing and exporting data

752 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To change the value that appears in place of a NULL value on the Results pane (Interactive
SQL)

1. Choose Tools » Options.

2. Click SQL Anywhere.

3. Click the Results tab.

4. In the Display Null Values As field, type Value.

5. Click OK.

Export databases

Note
If the database you want to unload is already running, and you start the Unload Database Wizard, the SQL
Anywhere plug-in automatically stops the database before you can unload it.

To unload all or part of a database (Sybase Central)

1. Choose Tools » SQL Anywhere 11 » Unload Database.

2. Follow the instructions in the Unload Database Wizard.

To unload all or part of a database (Command line)

● Run the dbunload utility, and use the -c option to specify the connection parameters.

To unload the entire database to the directory c:\DataFiles on the server computer:

dbunload -c "DBN=demo;UID=DBA;PWD=sql" c:\DataFiles

The statements required to recreate the schema and reload the tables are written to reload.sql in the local
current directory.

To export data only, use -d. For example:

dbunload -c "DBN=demo;UID=DBA;PWD=sql" -d c:\DataFiles

The statements required to reload the tables are written to reload.sql in the local current directory.

To export schema only, use -n. For example:

dbunload -c "DBN=demo;UID=DBA;PWD=sql" -n

The statements required to recreate the schema are written to reload.sql in the local current directory.

For more information, see “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration].

Exporting data

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 753

Export tables
You can also export a table by selecting all the data in a table and exporting the query results. See “Export
query results” on page 750.

Use the same procedures to export views.

To export a table (Command line)

● Run the following command:

dbunload -c "DBN=demo;UID=DBA;PWD=sql"
-t Employees c:\DataFiles

In this command, -c specifies the database connection parameters and -t specifies the name of the table
or tables you want to export. This dbunload command unloads the data from the SQL Anywhere sample
database (assumed to be running on the default database server with the default database name) into a
set of files in the c:\DataFiles directory on the server computer. A command file to rebuild the tables
from the data files is created with the default name reload.sql in the local current directory.

You can unload more than one table by separating the table names with a comma (,) delimiter.

To export a table (SQL)

● Execute an UNLOAD TABLE statement. For example,

UNLOAD TABLE Departments
TO 'departments.csv';

This statement unloads the Departments table from the SQL Anywhere sample database into the file
departments.csv in the database server's current working directory. If you are running against a network
database server, the command unloads the data into a file on the server computer, not the client computer.
Also, the file name passes to the server as a string. Using escape backslash characters in the file name
prevents misinterpretation if a directory or file name begins with an n (\n is a newline character) or any
other special characters.

Each row of the table is output on a single line of the output file, and no column names are exported.
The columns are delimited by a comma. The delimiter character can be changed using the DELIMITED
BY clause. The fields are not fixed-width fields. Only the characters in each entry are exported, not the
full width of the column.

See also
● “Export query results” on page 750
● “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration]
● “UNLOAD statement” [SQL Anywhere Server - SQL Reference]

Importing and exporting data

754 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Accessing data on client computers
SQL Anywhere allows you to load data from, and unload data to, a file on a client computer using SQL
statements and functions, without requiring copying files to the database server computer. To do this, the
database server initiates the transfer using a Command Sequence communication protocol (CmdSeq) file
handler. The CmdSeq file handler is invoked after the database server receives a request from the client
application requiring a transfer of data to or from the client computer, and before sending the response. The
file handler supports simultaneous and interleaved transfer of multiple files from the client at any given time.
For example, the database server can initiate the transfer of multiple files simultaneously if the statement
executed by the client application requires it.

Using a CmdSeq file handler to achieve transfer of client data means that applications do not require any
new specialized code and can start benefitting immediately from the feature using the SQL components
listed below:

● READ_CLIENT_FILE function The READ_CLIENT_FILE function reads data from the specified
file on the client computer, and returns a LONG BINARY value representing the contents of the file.
This function can be used anywhere in SQL code that a BLOB can be used. The data returned by the
READ_CLIENT_FILE function is not materialized in memory when possible, unless the statement
explicitly causes materialization to take place. For example, the LOAD TABLE statement streams the
data from the client file without materializing it. Assigning the value returned by the
READ_CLIENT_FILE function to a connection variable causes the database server to retrieve and
materialize the client file contents. See “READ_CLIENT_FILE function [String]” [SQL Anywhere
Server - SQL Reference].

● WRITE_CLIENT_FILE function The WRITE_CLIENT_FILE function writes data to the specified
file on the client computer. See “WRITE_CLIENT_FILE function [String]” [SQL Anywhere Server -
SQL Reference].

● READCLIENTFILE authority READCLIENTFILE authority allows you to read from a file on a
client computer. See “READCLIENTFILE authority” [SQL Anywhere Server - Database
Administration].

● WRITECLIENTFILE authority WRITECLIENTFILE authority allows you to write to a file on a
client computer. See “WRITECLIENTFILE authority” [SQL Anywhere Server - Database
Administration].

● LOAD TABLE ... USING CLIENT FILE clause The USING CLIENT FILE clause allows you to
load a table using data in a file located on the client computer. For example, LOAD TABLE ... USING
CLIENT FILE 'my-file.txt'; loads a file called my-file.txt from the client computer. See
“LOAD TABLE statement” [SQL Anywhere Server - SQL Reference].

● LOAD TABLE ... USING VALUE clause The USING VALUE clause allows you to specify a BLOB
expression as a value. The BLOB expression can make use of the READ_CLIENT_FILE function to
load a BLOB from a file on a client computer. For example, LOAD TABLE ... USING VALUE
READ_CLIENT_FILE('my-file'), where my-file is a file on the client computer. See “LOAD
TABLE statement” [SQL Anywhere Server - SQL Reference].

Accessing data on client computers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 755

● UNLOAD TABLE ... INTO CLIENT FILE clause The INTO CLIENT FILE clause allows you to
specify a file on the client computer to unload data into. See “UNLOAD statement” [SQL Anywhere
Server - SQL Reference].

● UNLOAD TABLE ... INTO VARIABLE clause The INTO VARIABLE clause allows you to specify
a variable to unload data into. See “UNLOAD statement” [SQL Anywhere Server - SQL Reference].

● read_client_file and write_client_file secure features The read_client_file and write_client_file
secure features control the use of statements that can cause a client file to be read from, or written to.
See “Specifying secured features” [SQL Anywhere Server - Database Administration], and “-sf server
option” [SQL Anywhere Server - Database Administration].

Client-side data security
SQL Anywhere provides means to ensure that the transfer of client files does not permit the unauthorized
transfer of data residing on the client computer, which is often in a different location than the database server
computer.

To do this, the database server tracks the origin of each executed statement, and determines if the statement
was received directly from the client application. When initiating the transfer of a new file from the client,
the database server includes information about the origin of the statement. The CmdSeq file handler then
allows the transfer of files for statements sent directly by the client application. If the statement was not sent
directly by the client application, the application must register a verification callback. If no callback is
registered, the transfer is denied and the statement fails with an error.

Also, the transfer of client data is not allowed until after the connection has been successfully established.
This restriction prevents unauthorized access using connection strings or login procedures.

To protect against attempts to gain access to a system by users posing as an authorized user, consider
encrypting the data that is being transferred.

SQL Anywhere also provides the following security mechanisms to control access at various levels:

● Server level security The read_client_file and write_client_file secured features allow you to disable
all client-side transfers on a server-wide basis. See “-sf server option” [SQL Anywhere Server - Database
Administration].

● Application and DBA level security The allow_read_client_file and allow_write_client_file
database options provide access control at the database, user, or connection level. For example, an
application could set this database option to OFF after connecting to prevent itself from being used for
any client-side transfers. See “allow_read_client_file option [database]” [SQL Anywhere Server -
Database Administration].

● User level security READCLIENTFILE and WRITECLIENTFILE authority provides user level
access control for reading data from, and writing data to, a client computer, respectively. See
“READCLIENTFILE authority” [SQL Anywhere Server - Database Administration], and
“WRITECLIENTFILE authority” [SQL Anywhere Server - Database Administration].

Importing and exporting data

756 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Planning for recovery when loading client-side data
In the event that you need to recover a LOAD TABLE statement from your transaction log, files on the client
computer that you used to load data are likely no longer available to SQL Anywhere, or have changed, so
the original data is no longer available. To prevent this situation from occurring, make sure that logging is
not turned off. Then, specify either the WITH ROW LOGGING or WITH CONTENT LOGGING clauses
when loading the data. These clauses cause the data you are loading to be recorded in the transaction log,
so that they can be replayed later in the event of a recovery.

The WITH ROW LOGGING causes each inserted row to be recorded as an INSERT statement in the
transaction log. The WITH CONTENT LOGGING causes the inserted data to be recorded in the transaction
log in chunks for the database server to process during recovery. Both methods are suitable for ensuring that
the client-side data is available for loading during recovery. However, you cannot use WITH CONTENT
LOGGING when loading data into a database that is involved in synchronization.

When you specify any of the following LOAD TABLE statements, but do not specify a logging level, WITH
CONTENT LOGGING is the default behavior:

● LOAD TABLE ... USING CLIENT FILE client-filename-expression

● LOAD TABLE ... USING VALUE value-expression

● LOAD TABLE ... USING COLUMN column-expression

For more information about how to record loaded data in the transaction log during a load operation, see
“LOAD TABLE statement” [SQL Anywhere Server - SQL Reference].

Accessing data on client computers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 757

Rebuilding databases
Rebuilding a database is a specific type of import and export involving unloading and reloading your entire
database. The rebuild (unload/load) and extract procedures are used to rebuild databases, to create new
databases from part of an existing one, and to eliminate unused free pages.

If you are rebuilding your database to upgrade it to a newer version of SQL Anywhere, see “Upgrading SQL
Anywhere” [SQL Anywhere 11 - Changes and Upgrading].

You can rebuild your database from Sybase Central or by using the dbunload utility.

Note
It is good practice to make backups of your database before rebuilding, especially if you choose to replace
the original database with the rebuilt database.

For more information, see “Backup and data recovery” [SQL Anywhere Server - Database
Administration].

With importing and exporting, the destination of the data is either into your database or out of your database.
Importing reads data into your database. Exporting writes data out of your database. Often the information
is either coming from or going to another non-SQL Anywhere database.

If you specify the encryption options -ek, -ep, or -et, the LOAD TABLE statements in the reload.sql file
must include the encryption key. Hard-coding the key compromises security, so a parameter in the
reload.sql file specifies the encryption key. When you execute the reload.sql file with Interactive SQL, you
must specify the encryption key as a parameter. If you do not specify the key in the READ statement,
Interactive SQL prompts for the key. See “Interactive SQL utility (dbisql)” [SQL Anywhere Server -
Database Administration].

Loading and unloading takes data and schema out of a SQL Anywhere database and then places the data
and schema back into a SQL Anywhere database. The unloading procedure produces data files and a
reload.sql file which contains table definitions required to recreate the table exactly. Running the
reload.sql script recreates the tables and loads the data back into them.

Rebuilding a database can be a time-consuming operation, and can require a large amount of disk space. As
well, the database is unavailable for use while being unloaded and reloaded. For these reasons, rebuilding a
database is not advised in a production environment unless you have a definite goal in mind.

From one SQL Anywhere database to another

Rebuilding generally copies data out of a SQL Anywhere database and then reloads that data back into a
SQL Anywhere database. Unloading and reloading are related since you usually perform both tasks, rather
than just one or the other.

Rebuilding versus exporting

Rebuilding is different from exporting in that rebuilding exports and imports table definitions and schema
in addition to the data. The unload portion of the rebuild process produces text format data files and a
reload.sql file that contains table and other definitions. You can run the reload.sql script to recreate the tables
and load the data into them.

Importing and exporting data

758 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

For more information, see “Internal versus external unloads and reloads” [SQL Anywhere Server - Database
Administration].

Consider extracting a database (creating a new database from an old database) if you are using SQL Remote
or MobiLink. See “Extracting databases” on page 766.

Rebuilding replicating databases
The procedure for rebuilding a database depends on whether the database is involved in replication or not.
If the database is involved in replication, you must preserve the transaction log offsets across the operation,
as the Message Agent and Replication Agent require this information. If the database is not involved in
replication, the process is simpler.

See also
● “Minimize downtime when rebuilding a database” on page 764
● “Rebuild databases involved in synchronization or replication” on page 761
● “Rebuild databases not involved in synchronization or replication” on page 760
● “Changing a database from one collation to another” [SQL Anywhere Server - Database

Administration]
● “Refresh manual views” on page 60

Reasons to rebuild databases
There are several reasons to consider rebuilding your database. You might rebuild your database if you want
to do any of the following:

● Upgrade your database file format Some new features are made available by applying the Upgrade
utility, but others require a database file format upgrade, which is performed by unloading and reloading
the database. To determine if an unload and reload is required to obtain a new feature, see “Upgrading
to SQL Anywhere 11” [SQL Anywhere 11 - Changes and Upgrading].

New versions of the SQL Anywhere database server can be used without upgrading your database. If
you want to use features of the new version that require access to new system tables or database options,
you must use the Upgrade utility to upgrade your database. The Upgrade utility does not unload or reload
any data.

If you want to use the new version of SQL Anywhere that relies on changes in the database file format,
you must unload and reload your database. You should back up your database before rebuilding the
database.

Note
If you are upgrading from version 9 or earlier, you must rebuild the database file. If you are upgrading
from version 10.0.0 or later, you can use the Upgrade utility or rebuild your database.

For more information about upgrading your database, see “Upgrading SQL Anywhere” [SQL Anywhere
11 - Changes and Upgrading].

Rebuilding databases

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 759

For information about upgrading SQL Anywhere or rebuilding a database involved in a database
mirroring system, see “Upgrading SQL Anywhere software and databases in a database mirroring
system” [SQL Anywhere 11 - Changes and Upgrading].

● Reclaim disk space Databases do not shrink if you delete data. Instead, any empty pages are simply
marked as free so they can be used again. They are not removed from the database unless you rebuild it.
Rebuilding a database can reclaim disk space if you have deleted a large amount of data from your
database and do not anticipate adding more.

● Improve database performance Rebuilding databases can improve performance. Since the
database can be unloaded and reloaded in order by primary keys, access to related information can be
faster as related rows may appear on the same or adjacent pages.

Note
If you detect that performance is poor because a table is highly fragmented, you can reorganize the table.
See “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference].

See also
● “Upgrade utility (dbupgrad)” [SQL Anywhere Server - Database Administration]
● “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration]

Rebuild databases not involved in synchronization or
replication

The following procedures should be used only if your database is not involved in synchronization or
replication.

To rebuild a database not involved in synchronization or replication (Command line)

1. Run the dbunload utility, specifying one of the following options:

To do this... Use this option... Example

Rebuild to a new data-
base

-an dbunload -c
"DBF=demo.db;UID=DBA;PWD=sql"
 -an DemoBackup.db

Reload to an existing
database

-ac dbunload -c
"DBF=demo.db;UID=DBA;PWD=sql"
 -ac "UID=DBA;PWD=sql;DBF=NewDemo.db"

Replace an existing da-
tabase

-ar dbunload -c
"DBF=demo.db;UID=DBA;PWD=sql"
 -ar

If you use one of these options, no interim copy of the data is created on disk, so you do not need to
specify an unload directory on the command line. This provides greater security for your data. The -ar
and -an options should also execute more quickly than the Unload Database Wizard in Sybase Central,
but -ac is slower than the Unload Database Wizard.

Importing and exporting data

760 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

2. Shut down the database and archive the transaction log before using the reloaded database.

Notes
The -an and -ar options only apply to connections to a personal server, or connections to a network server
over shared memory.

There are additional options available for the dbunload utility that allow you to tune the unload and
connection parameter options that allow you to specify a running or non-running database and database
parameters.

Rebuild databases involved in synchronization or
replication

This section applies to SQL Anywhere MobiLink clients (clients using dbmlsync), SQL Remote, and the
Replication Agent.

If a database is participating in synchronization or replication, particular care needs to be taken if you want
to rebuild the database. Synchronization and replication are based on the offsets in the transaction log. When
you rebuild a database, the offsets in the old transaction log are different than the offsets in the new log,
making the old log unavailable. For this reason, good backup practices are especially important when
participating in synchronization or replication.

There are two ways of rebuilding a database involved in synchronization or replication. The first method
uses the dbunload utility -ar option to make the unload and reload occur in a way that does not interfere with
synchronization or replication. The second method is a manual method of doing the same task.

All subscriptions must be synchronized before rebuilding a database participating in MobiLink
synchronization.

To rebuild a database involved in synchronization or replication (dbunload utility)

1. Shut down the database.

2. Perform a full off-line backup by copying the database and transaction log files to a secure location.

3. Run the following dbunload command to rebuild the database:

dbunload -c connection-string -ar directory

The connection-string is a connection with DBA authority, and directory is the directory used in your
replication environment for old transaction logs. There can be no other connections to the database.

The -ar option only applies to connections to a personal server, or connections to a network server over
shared memory.

For more information, see “Unload utility (dbunload)” [SQL Anywhere Server - Database
Administration].

4. Shut down the new database and then perform the validity checks that you would usually perform after
restoring a database.

Rebuilding databases

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 761

For more information about validity checking, see “Validate a database” [SQL Anywhere Server -
Database Administration].

5. Start the database using any production options you need. You can now allow user access to the reloaded
database.

Notes
There are additional options available for the dbunload utility that allow you to tune the unload and
connection parameter options that allow you to specify a running or non-running database and database
parameters. See “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration].

If the above procedure does not meet your needs, you can manually adjust the transaction log offsets. The
following procedure describes how to perform that operation.

To rebuild a database involved in synchronization or replication, with manual intervention

1. Shut down the database.

2. Perform a full off-line backup by copying the database and transaction log files to a secure location.

3. Run the dbtran utility to display the starting offset and ending offset of the database's current transaction
log file.

Note the ending offset for use in Step 8.

4. Rename the current transaction log file so that it is not modified during the unload process, and place
this file in the dbremote off-line logs directory.

5. Rebuild the database.

For information about this step, see “Rebuilding databases” on page 758.

6. Shut down the new database.

7. Erase the current transaction log file for the new database.

8. Use dblog on the new database with the ending offset noted in Step 3 as the -z parameter, and also set
the relative offset to zero.

dblog -x 0 -z 0000698242 -il -ir -is database-name.db
9. When you run the Message Agent, provide it with the location of the original off-line directory on its

command line.

10. Start the database. You can now allow user access to the reloaded database.

Using the dbunload utility to rebuild databases
The dbunload and dbisql utilities let you unload an entire database in text comma-delimited format and create
the necessary Interactive SQL command files to completely recreate your database. This may be useful for
creating SQL Remote extractions or building new copies of your database with the same or a slightly modified
structure. This utility is useful for exporting SQL Anywhere files intended for reuse within SQL Anywhere.

Importing and exporting data

762 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Note
The dbunload utility and the Unload Database Wizard are functionally equivalent. You can use them
interchangeably to produce the same results.

Use the dbunload utility when you:

● want to rebuild your database or extract data from your database

● want to export in text format

● need to process large amounts of data quickly

● have flexible file format requirements

For more information, see:

● “Rebuild databases not involved in synchronization or replication” on page 760
● “Rebuild databases involved in synchronization or replication” on page 761

Using the UNLOAD TABLE statement to rebuild databases
The UNLOAD TABLE statement lets you export data efficiently in a specific character encoding. Consider
using the UNLOAD TABLE statement to rebuild databases when you want to export data in text format.

Impact on the database
The UNLOAD TABLE statement places an exclusive lock on the entire table.

For more information, see “UNLOAD statement” [SQL Anywhere Server - SQL Reference].

Export table data or table schema
The Unload utility has options that allow you to unload only table data or the table schema.

The dbunload commands in these examples unload the data or schema from the SQL Anywhere sample
database table (assumed to be running on the default database server with the default database name) into a
file in the c:\DataFiles directory on the server computer. The statements required to recreate the schema and
reload the specified tables are written to reload.sql in the local current directory.

To export table data (Command line)

● Run the dbunload command, specifying: connection parameters using the -c option, table(s) you want
to export data for using the -t option, and whether you want to unload only data by specifying the -d
option.

For example, to export the data from the Employees table, run the following command:

dbunload -c "DBN=demo;UID=DBA;PWD=sql" -d -t Employees c:\DataFiles

Rebuilding databases

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 763

You can unload more than one table by separating the table names with a comma delimiter.

To export table schema (Command line)

● Run the dbunload command, specifying: connection parameters using the -c option, the table(s) you want
to export data for using the -t option, and whether you want to unload only the schema by specifying the
-n option.

For example, to export the schema for the Employees table, execute the following command:

dbunload -c "DBN=demo;UID=DBA;PWD=sql" -n -t Employees

You can unload more than one table by separating the table names with a comma delimiter.

Reload a database
Reloading involves creating an empty database file and using the reload.sql file to create the schema and
insert all the data unloaded from another SQL Anywhere database into the newly created tables. You reload
databases from the command line.

To reload a database (Command line)

1. Run the dbinit utility to create a new empty database file.

For example, the following command creates a file named newdemo.db.

dbinit newdemo.db
2. Execute the reload.sql script.

For example, the following command loads and runs the reload.sql script in the current directory.

dbisql -c "DBF=newdemo.db;UID=DBA;PWD=sql" reload.sql

Minimize downtime when rebuilding a database
The following steps help you rebuild a database while minimizing downtime. This can be especially useful
if your database is in operation 24 hours a day.

It is wise to do a practice run of steps 1-4, and determine the times required for each step, prior to beginning
the actual rebuild. You may also want to save copies of your files at various points during the rebuild.

Caution
Make sure that no other scheduled backups rename the production database's log. If this happens in error,
you will need to apply the transactions from these renamed logs to the rebuilt database in the correct order.

To minimize the downtime during a rebuild

1. Using dbbackup -r, create a backup of the database and log, and rename the log.

Importing and exporting data

764 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

For more information, see “Backup utility (dbbackup)” [SQL Anywhere Server - Database
Administration].

2. Rebuild the backed up database on another computer.

3. Perform another dbbackup -r on the production server to rename the transaction log.

4. Run dbtran on the transaction log and apply the transactions to the rebuilt server.

For more information, see “Log Translation utility (dbtran)” [SQL Anywhere Server - Database
Administration].

You now have a rebuilt database that contains all transactions up to the end of the backup in Step 3.

5. Shut down the production server and make copies of the database and log.

6. Copy the rebuilt database onto the production server.

7. Run dbtran on the log from Step 5.

This should be a relatively small file.

8. Start the server on the rebuilt database, but do not allow users to connect.

9. Apply the transactions from Step 8.

10. Allow users to connect.

Rebuilding databases

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 765

Extracting databases
Database extraction is used by SQL Remote. Extracting creates a remote SQL Anywhere database from a
consolidated SQL Anywhere database.

You can use the Sybase Central Extract Database Wizard or the Extraction utility to extract databases.
The Extraction utility (dbxtract) is the recommended way of creating remote databases from a consolidated
database for use in SQL Remote replication.

For more information about how to perform database extractions, see:

● “Extraction utility (dbxtract)” [SQL Remote]
● “Extracting remote databases” [SQL Remote]
● “Deploying remote databases” [MobiLink - Client Administration]

Importing and exporting data

766 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Migrating databases to SQL Anywhere
Use the sa_migrate system procedures or the Migrate Database Wizard, to import tables from the following
sources:

● SQL Anywhere
● UltraLite
● Sybase ASE
● IBM DB/2
● Microsoft SQL Server
● Microsoft Access
● Oracle
● MySQL
● Advantage Database Server
● generic ODBC driver that connects to a remote server

Before you can migrate data using the Migrate Database Wizard, or the sa_migrate set of system
procedures, you must first create a target database. The target database is the database into which data is
migrated.

For information about creating a database, see “Creating a database” [SQL Anywhere Server - Database
Administration].

Use the Migrate Database Wizard
You can create a remote server to connect to the remote database, and an external login (if required) to
connect the current user to the remote database using the Migrate Database Wizard.

To import remote tables (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Choose Tools » SQL Anywhere 11 » Migrate Database.

3. Click Next.

4. Select the target database, and click Next.

5. Select the remote server you want to use to connect to the remote database, and then click Next.

If you have not created a remote server, click Create Remote Server Now and follow the instructions
in the Create Remote Server Wizard. For more information about creating a remote server, see “Create
remote servers using the CREATE SERVER statement” on page 780.

You can also create an external login for the remote server. By default, SQL Anywhere uses the user ID
and password of the current user when it connects to a remote server on behalf of that user. However, if
the remote server does not have a user defined with the same user ID and password as the current user,
you must create an external login. The external login assigns an alternate login name and password for
the current user so that user can connect to the remote server.

Migrating databases to SQL Anywhere

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 767

6. Select the tables that you want to migrate, and then click Next.

You cannot migrate system tables, so no system tables appear in this list.

7. Select the user that will own the tables on the target database, and then click Next.

If you have not created a user, click Create User Now and follow the instructions in the Create User
Wizard. For more information, see “Creating new users” [SQL Anywhere Server - Database
Administration].

8. Select whether you want to migrate the data and/or the foreign keys from the remote tables and whether
you want to keep the proxy tables that are created for the migration process, and then click Next.

9. Click Finish.

Use the sa_migrate system procedures
Use the sa_migrate system procedures to migrate remote data. Use the extended method if you want to
remove tables or foreign key mappings.

Migrating all tables using the sa_migrate system procedures

Supplying NULL for both the table-name and owner-name parameters migrates all the tables in the database,
including system tables. As well, tables that have the same name, but different owners, in the remote database
all belong to one owner in the target database. For these reasons, you should migrate tables associated with
one owner at a time.

Migrating all tables for a remote user

1. Create a target database. See “Creating a database” [SQL Anywhere Server - Database
Administration].

2. From Interactive SQL, connect to the target database.

3. Create a remote server to connect to the remote database. See “Create remote servers using the CREATE
SERVER statement” on page 780.

4. Create an external login to connect to the remote database. This is only required when the user has
different passwords on the target and remote databases, or when you want to login using a different user
ID on the remote database than the one you are using on the target database. See “Create external
logins” on page 788.

5. Create a local user who will own the migrated tables in the target database. See “Creating new users” [SQL
Anywhere Server - Database Administration].

6. In the SQL Statements pane, run the sa_migrate system procedure. For example,

CALL sa_migrate('local_user1', 'rmt_server1', NULL, 'remote_user1', NULL,
1, 1, 1);

This procedure calls several procedures in turn and migrates all the remote tables belonging to the user
remote_user1 using the specified criteria.

Importing and exporting data

768 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

If you do not want all the migrated tables to be owned by the same user on the target database, you must run
the sa_migrate procedure for each owner on the target database, specifying the local-table-owner and owner-
name arguments.

For more information, see “sa_migrate system procedure” [SQL Anywhere Server - SQL Reference].

Migrating individual tables using the sa_migrate system procedures
Do not supply NULL for both the table-name and owner-name parameters. Doing so migrates all the tables
in the database, including system tables. As well, tables that have the same name but different owners in the
remote database all belong to one owner in the target database. It is recommended that you migrate tables
associated with one owner at a time.

To import remote tables (with modifications)

1. Create a target database. See “Creating a database” [SQL Anywhere Server - Database
Administration].

2. From Interactive SQL, connect to the target database.

3. Create a remote server to connect to the remote database. See “Create remote servers using the CREATE
SERVER statement” on page 780.

4. Create an external login to connect to the remote database. This is only required when the user has
different passwords on the target and remote databases, or when you want to login using a different user
ID on the remote database than the one you are using on the target database. See “Create external
logins” on page 788.

5. Create a local user who will own the migrated tables in the target database. See “Creating new users” [SQL
Anywhere Server - Database Administration].

6. Run the sa_migrate_create_remote_table_list system procedure. For example,

CALL sa_migrate_create_remote_table_list('rmt_server1',
 NULL, 'remote_user1', 'mydb');

You must specify a database name for Adaptive Server Enterprise and Microsoft SQL Server databases.

This populates the dbo.migrate_remote_table_list table with a list of remote tables to migrate. You can
delete rows from this table for remote tables that you do not want to migrate.

For more information, see “sa_migrate_create_remote_table_list system procedure” [SQL Anywhere
Server - SQL Reference].

7. Run the sa_migrate_create_tables system procedure. For example:

CALL sa_migrate_create_tables('local_user1');

This procedure takes the list of remote tables from dbo.migrate_remote_table_list and creates a proxy
table and a base table for each remote table listed. This procedure also creates all primary key indexes
for the migrated tables.

For more information, see “sa_migrate_create_tables system procedure” [SQL Anywhere Server - SQL
Reference].

Migrating databases to SQL Anywhere

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 769

8. If you want to migrate the data from the remote tables into the base tables on the target database, run the
sa_migrate_data system procedure. For example,

Execute the following statement:

CALL sa_migrate_data('local_user1');

This procedure migrates the data from each remote table into the base table created by the
sa_migrate_create_tables procedure.

For more information, see “sa_migrate_data system procedure” [SQL Anywhere Server - SQL
Reference].

If you do not want to migrate the foreign keys from the remote database, you can skip to step 10.

9. Run the sa_migrate_create_remote_fks_list system procedure. For example,

CALL sa_migrate_create_remote_fks_list('rmt_server1');

This procedure populates the table dbo.migrate_remote_fks_list with the list of foreign keys associated
with each of the remote tables listed in dbo.migrate_remote_table_list.

You can remove any foreign key mappings you do not want to recreate on the local base tables.

For more information, see “sa_migrate_create_remote_fks_list system procedure” [SQL Anywhere
Server - SQL Reference].

10. Run the sa_migrate_create_fks system procedure. For example,

CALL sa_migrate_create_fks('local_user1');

This procedure creates the foreign key mappings defined in dbo.migrate_remote_fks_list on the base
tables.

For more information, see “sa_migrate_create_fks system procedure” [SQL Anywhere Server - SQL
Reference].

11. If you want to drop the proxy tables that were created for migration purposes, run the
sa_migrate_drop_proxy_tables system procedure. For example,

CALL sa_migrate_drop_proxy_tables('local_user1');

This procedure drops all proxy tables created for migration purposes and completes the migration
process.

For more information, see “sa_migrate_drop_proxy_tables system procedure” [SQL Anywhere Server -
SQL Reference].

Importing and exporting data

770 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using SQL command files
This section describes how to process files consisting of a set of commands. Command files are text files
that contain SQL statements, and are useful if you want to run the same SQL statements repeatedly.

Creating command files

You can use any text editor that you like to create command files. You can include comment lines along
with the SQL statements to be executed. Command files are also commonly called scripts. See “Comments”
[SQL Anywhere Server - SQL Reference].

Opening SQL command files in Interactive SQL

You can make Interactive SQL the default editor for .sql files on a Windows operating system. When you
double-click the file, the file contents appear in the SQL Statements pane of Interactive SQL.

For more information, see “Setting Interactive SQL as the default editor for .sql files” [SQL Anywhere Server
- Database Administration].

Run SQL command files in Interactive SQL
You can execute command files in any of the following ways:

● You can run a command file without loading it into the SQL Statements pane.

To run a command file immediately

1. In Interactive SQL, choose File » Run Script.

2. Locate the file, and click Open.

The contents of the specified file are run immediately. A Status window appears to show the
execution progress.

The Run Script menu item is the equivalent of a READ statement. See below for an example of the
READ statement.

● You can also run a command file without loading it into the SQL Statements pane with the Interactive
SQL READ statement.

To run a command file using the Interactive SQL READ statement

● In the SQL Statements pane, type the following command:

READ 'c:\\filename.sql';

In this statement, c:\filename.sql is the path, name, and extension of the file. Single quotation marks
(as shown) are required only if the path contains spaces.

Using SQL command files

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 771

For more information, see “READ statement [Interactive SQL]” [SQL Anywhere Server - SQL
Reference].

● You can supply a command file as a command line argument for Interactive SQL.

To run a command file in batch mode (Command prompt)

● Run the dbisql utility and supply a command file as a command line argument.

For example, the following command runs the command file myscript.sql against the SQL Anywhere
sample database.

dbisql -c "DSN=SQL Anywhere 11 Demo" myscript.sql
● You can load a command file into the SQL Statements pane and execute it directly from there.

To load commands from a file into the SQL Statements pane

1. Choose File » Open.

2. Locate the file, and click Open.

The commands are displayed in the SQL Statements pane where you read, edit, or execute them.

On Windows platforms you can make Interactive SQL the default editor for .sql command files. This
lets you double-click the file so that its contents appears in the SQL Statements pane of Interactive SQL.
See “Setting Interactive SQL as the default editor for .sql files” [SQL Anywhere Server - Database
Administration].

● You can also a load command file into the SQL Statements pane from your favorites.

See “Using favorites” [SQL Anywhere Server - Database Administration].

Writing database output to a file
In Interactive SQL, the result set data for each command remains on the Results tab in the Results pane
only until the next command is executed. To keep a record of your data, you can save the output of each
statement to a separate file. If statement1 and statement2 are two SELECT statements, then you can output
them to file1 and file2, respectively, as follows:

statement1; OUTPUT TO file1;
statement2; OUTPUT TO file2;

For example, the following command saves the result of a query to a file named Employees.txt:

SELECT * FROM Employees;
OUTPUT TO 'C:\\My Documents\\Employees.txt';

For more information, see “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL
Reference].

Importing and exporting data

772 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Adaptive Server Enterprise compatibility
You can import and export files between SQL Anywhere and Adaptive Server Enterprise using the BCP
FORMAT clause. Simply ensure that the BCP output is in delimited text format. If you are exporting BLOB
data from SQL Anywhere for use in Adaptive Server Enterprise, use the BCP format clause with the
UNLOAD TABLE statement.

For more information about BCP and the FORMAT clause, see “LOAD TABLE statement” [SQL Anywhere
Server - SQL Reference], or “UNLOAD statement” [SQL Anywhere Server - SQL Reference].

Adaptive Server Enterprise compatibility

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 773

774

Accessing remote data

Contents
Remote table mappings ... 777
Server classes ... 778
Accessing remote data from PowerBuilder DataWindows .. 779
Working with remote servers ... 780
Using directory access servers .. 785
Working with external logins .. 788
Working with proxy tables .. 790
Join remote tables ... 794
Join tables from multiple local databases .. 796
Send native statements to remote servers .. 797
Using remote procedure calls (RPCs) ... 798
Transaction management and remote data ... 801
Internal operations ... 802
Troubleshooting remote data access .. 805

SQL Anywhere remote data access gives you access to data in other data sources. You can use this feature
to migrate data into a SQL Anywhere database. You can also use the feature to query data across databases.

With remote data access you can:

● Use SQL Anywhere to move data from one location to another using insert-select.

● Access data in relational databases such as Sybase, Oracle, and DB2.

● Access desktop data such as Excel spreadsheets, Microsoft Access databases, FoxPro, and text files.

● Access any other data source that supports an ODBC interface.

● Perform joins between local and remote data, although performance is much slower than if all the data
is in a single SQL Anywhere database.

● Perform joins between tables in separate SQL Anywhere databases. Performance limitations here are
the same as with other remote data sources.

● Use SQL Anywhere features on data sources that would normally not have that ability. For instance, you
could use a Java function against data stored in Oracle, or perform a subquery on spreadsheets. SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 775

Anywhere compensates for features not supported by a remote data source by operating on the data after
it is retrieved.

● Access remote servers directly using passthrough mode.

● Execute remote procedure calls to other servers.

SQL Anywhere allows access to the following external data sources:

● SQL Anywhere
● Adaptive Server Enterprise
● Advantage Database Server
● Oracle
● IBM DB2
● Microsoft SQL Server
● Microsoft Access
● MySQL
● UltraLite
● Other ODBC data sources

For platform availability, see http://www.sybase.com/detail?id=1002288.

Accessing remote data

776 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1002288

Remote table mappings
SQL Anywhere presents tables to a client application as if all the data in the tables were stored in the database
to which the application is connected. Internally, when a query involving remote tables is executed, the
storage location is determined, and the remote location is accessed so that data can be retrieved.

To have remote tables appear as local tables to the client, you create local proxy tables that map to the remote
data.

To create a proxy table

1. Define the server where the remote data is located. This specifies the type of server and location of the
remote server. See “Working with remote servers” on page 780.

2. Map the local user login information to the remote server user login information if the logins on the two
servers are different. See “Working with external logins” on page 788.

3. Create the proxy table definition. This specifies the mapping of a local proxy table to the remote table.
This includes the server where the remote table is located, the database name, owner name, table name,
and column names of the remote table.

For more information, see “Working with proxy tables” on page 790.

Administering remote table mappings
To manage remote table mappings and remote server definitions, you can use Sybase Central or you can use
a tool such as Interactive SQL to execute the SQL statements.

Caution
Some remote servers, such as Microsoft Access, Microsoft SQL Server, and Sybase Adaptive Server
Enterprise do not preserve cursors across COMMITs and ROLLBACKS. With these remote servers, you
cannot use the Data tab in the SQL Anywhere plug-in to view or modify the contents of a proxy table.
However, you can still use Interactive SQL to view and edit the data in these proxy tables as long as
autocommit is turned off (this is the default behavior in Interactive SQL). Other RDBMSs, including Oracle,
DB/2, and SQL Anywhere do not have this limitation.

Remote table mappings

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 777

Server classes
A server class specifies the access method used to interact with the server. A server class is assigned to each
remote server. Different types of remote servers require different access methods. The server class provides
SQL Anywhere detailed server capability information. SQL Anywhere adjusts its interaction with the remote
server based on those capabilities.

There are two groups of server classes. The first is ODBC-based, and the second is JDBC-based.

The ODBC-based server classes are:

● saodbc for SQL Anywhere.

● ulodbc for UltraLite.

● aseodbc for Sybase SQL Server and Adaptive Server Enterprise (version 10 and later).

● adsodbc for Advantage Database Server.

● db2odbc for IBM DB2.

● mssodbc for Microsoft SQL Server.

● oraodbc for Oracle servers (version 8.0 and later).

● mysqlodbc for MySQL.

● msaccessodbc for Microsoft Access.

● odbc for all other ODBC data sources.

Note
When using remote data access, if you use an ODBC driver that does not support Unicode, then character
set conversion is not performed on data coming from that ODBC driver.

The JDBC-based server classes are:

● sajdbc for SQL Anywhere.

● asejdbc for Sybase SQL Server and Adaptive Server Enterprise (version 10 and later).

Note
The JDBC classes have a significant performance impact and should only be used in situations where the
ODBC classes cannot be used.

For a full description of remote server classes, see “Server classes for remote data access” on page 809.

Accessing remote data

778 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Accessing remote data from PowerBuilder
DataWindows

Set the DBParm Block parameter to 1 on connect to access remote data from a PowerBuilder DataWindow.

● In the design environment, you can set the Block parameter by accessing the Transaction tab in the
Database Profile Setup window and setting the Retrieve Blocking Factor to 1.

● In a connection string, use the following parameter:

DBParm="Block=1"

Accessing remote data from PowerBuilder DataWindows

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 779

Working with remote servers
Before you can map remote objects to a local proxy table, you must define the remote server where the
remote object is located. When you define a remote server, an entry is added to the ISYSSERVER system
table for the remote server.

Create remote servers using the CREATE SERVER
statement

Use the CREATE SERVER statement to set up remote server definitions. To use Sybase Central to create
remote server definitions, see “Create remote servers using Sybase Central” on page 781.

For ODBC connections, each remote server corresponds to an ODBC data source. For some systems,
including SQL Anywhere, each data source describes a database, so a separate remote server definition is
needed for each database.

You must have RESOURCE authority to create a remote server.

On Unix platforms, you need to reference the ODBC driver manager as well.

For a full description of the CREATE SERVER statement, see “CREATE SERVER statement” [SQL
Anywhere Server - SQL Reference].

Example 1
The following statement creates an entry in the ISYSSERVER system table for the Adaptive Server
Enterprise server called RemoteASE:

CREATE SERVER RemoteASE
CLASS 'ASEJDBC'
USING 'rimu:6666';

● RemoteASE is the name of the remote server.

● ASEJDBC is a keyword indicating that the remote server is Adaptive Server Enterprise and the
connection to it is JDBC-based.

● rimu:6666 is the computer name and the TCP/IP port number where the remote server is located.

Example 2
The following statement creates an entry in the ISYSSERVER system table for the ODBC-based SQL
Anywhere server named RemoteSA:

CREATE SERVER RemoteSA
CLASS 'SAODBC'
USING 'test4';

● RemoteSA is the name by which the remote server is known within this database.

● SAODBC is a keyword indicating that the server is SQL Anywhere and the connection to it uses
ODBC.

Accessing remote data

780 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● test4 is the ODBC Data Source Name (DSN).

Example 3
On Unix platforms, the following statement creates an entry in the ISYSSERVER system table for the
ODBC-based SQL Anywhere server named RemoteSA:

CREATE SERVER RemoteSA
CLASS 'SAODBC'
USING 'driver=SQL Anywhere 11;dsn=my_sa_dsn';

● RemoteSA is the name by which the remote server is known within this database.

● SAODBC is a keyword indicating that the server is SQL Anywhere and the connection to it uses
ODBC.

● USING is the reference to the ODBC driver manager.

Example 4
On Unix platforms the following statement creates an entry in the ISYSSERVER system table for the ODBC-
based Adaptive Server Enterprise server named RemoteASE:

CREATE SERVER RemoteASE
CLASS 'ASEODBC'
USING '/opt/sybase/ase_odbc_1500/DataAccess/ODBC/lib/
libsybdrvodb.so;dsn=my_ase_dsn';

● RemoteASE is the name by which the remote server is known within this database.

● ASEODBC is a keyword indicating that the server is Adaptive Server Enterprise and the connection
to it uses ODBC.

● USING is the reference to the ODBC driver manager.

Create remote servers using Sybase Central

To create a remote server (Sybase Central)

1. Connect to the host database as a user with DBA authority.

2. In the left pane, double-click Remote Servers.

3. From the File menu, choose New » Remote Server.

4. In the What Do You Want To Name The New Remote Server field, type a name for the remote server,
and then click Next.

5. Select a remote server type, and then click Next.

6. Select a connection type, and in the What Is The Connection Information field type the connection
information:

● For ODBC, supply a data source name or specify the ODBC Driver= parameter.

● For JDBC, supply a URL in the form computer-name:port-number.

Working with remote servers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 781

The data access method (JDBC or ODBC) is the method used by SQL Anywhere to access the remote
database. This is not related to the method used by Sybase Central to connect to your database.

7. Click Next.

8. Specify whether you want the remote server to be read-only and then click Next.

9. Click Create An External Login For The Current User and complete the required fields.

By default, SQL Anywhere uses the user ID and password of the current user when it connects to a
remote server on behalf of that user. However, if the remote server does not have a user defined with the
same user ID and password as the current user, you must create an external login. The external login
assigns an alternate login name and password for the current user so that user can connect to the remote
server. See “CREATE EXTERNLOGIN statement” [SQL Anywhere Server - SQL Reference].

10. Click Test Connection to test the remote server connection.

11. Click Finish.

Delete remote servers
You can use Sybase Central or a DROP SERVER statement to delete a remote server from the ISYSSERVER
system table. All remote tables defined on that server must already be dropped for this action to succeed.

To delete a remote server (Sybase Central)

1. Connect to the host database as a user with DBA authority.

2. In the left pane, double-click Remote Servers.

3. Select the remote server, and then choose File » Delete.

To delete a remote server (SQL)

1. Connect to the host database as a user with DBA authority.

2. Execute a DROP SERVER statement.

For more information, see “DROP SERVER statement” [SQL Anywhere Server - SQL Reference].

Example
The following statement drops the server named RemoteSA:

DROP SERVER RemoteSA;

Alter remote servers
Changes to the remote server do not take effect until the next connection to the remote server.

Accessing remote data

782 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To alter the properties of a remote server (Sybase Central)

1. Connect to the host database as a user with RESOURCE authority.

2. In the left pane, double-click Remote Servers.

3. Select the remote server, and then choose File » Properties.

4. Alter the remote server settings, and then click OK.

To alter the properties of a remote server (SQL)

1. Connect to the host database as a user with DBA authority.

2. Execute an ALTER SERVER statement.

Example
The following statement changes the server class of the server named RemoteASE to aseodbc. In this
example, the Data Source Name for the server is RemoteASE.

ALTER SERVER RemoteASE
CLASS 'aseodbc';

The ALTER SERVER statement can also be used to enable or disable a server's known capabilities. See
“ALTER SERVER statement” [SQL Anywhere Server - SQL Reference].

List the remote tables on a server
When configuring SQL Anywhere to get a list of the remote tables available on a particular server, it may
be helpful to use the sp_remote_tables system procedure. The sp_remote_tables procedure returns a list of
the tables on a remote server.

sp_remote_tables(
@server-name
[, @table-name
[, @table-owner
[, @table-qualifier
[, @with-table-type]]]]
)

If you specify table-name or table-owner, the list of tables is limited to only those that match.

For example, to get a list of all the Microsoft Excel worksheets available from a remote server named excel:

CALL sp_remote_tables excel;

Or to get a list of all the tables in the production database in an Adaptive Server Enterprise server named
asetest, owned by fred:

CALL sp_remote_tables asetest, null, fred, production;

For more information, see “sp_remote_tables system procedure” [SQL Anywhere Server - SQL Reference].

Working with remote servers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 783

List remote server capabilities
The sp_servercaps system procedure displays information about a remote server's capabilities. SQL
Anywhere uses this capability information to determine how much of a SQL statement can be passed to a
remote server.

You can also view capability information for remote servers by querying the SYSCAPABILITY and
SYSCAPABILITYNAME system views. These system views are empty until after SQL Anywhere first
connects to a remote server.

When using the sp_servercaps system procedure, the server-name specified must be the same server-
name used in the CREATE SERVER statement.

Execute the stored procedure sp_servercaps as follows:

CALL sp_servercaps server-name;

See also
● “sp_servercaps system procedure” [SQL Anywhere Server - SQL Reference]
● “SYSCAPABILITY system view” [SQL Anywhere Server - SQL Reference]
● “SYSCAPABILITYNAME system view” [SQL Anywhere Server - SQL Reference]
● “CREATE SERVER statement” [SQL Anywhere Server - SQL Reference]

Accessing remote data

784 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using directory access servers
A directory access server is a remote server that gives you access to the local file structure of the computer
running the database server. Once you are connected to the directory access server, you use proxy tables to
access any subdirectories on the computer. Database users must have an external login to use the directory
access server.

You cannot alter a directory access server after it is created. If you need to change a directory access server,
you must drop it and recreate it with different settings.

Create directory access servers
You use the CREATE SERVER statement or Create Directory Access Server Wizard in Sybase Central
to create a directory access server.

When you create a directory access server, you can control the number of subdirectories that can be accessed
and whether the directory access server can be used to modify existing files.

The following steps are required to set up a directory access server:

1. Create a remote server for the directory (requires DBA authority).

2. Create external logins for the database users who can use the directory access server (requires DBA
authority).

3. Create proxy tables to access the directories on the computer (requires RESOURCE authority).

To create and configure a directory access server (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, double-click Directory Access Servers.

3. From the File menu, choose New » Directory Access Server.

4. Follow the instructions in the Create Directory Access Server Wizard.

To create and configure a directory access server (SQL)

1. Connect to the host database as a user with DBA authority.

2. Create a remote server using the CREATE SERVER statement.

For example:

CREATE SERVER my_dir_tree
CLASS 'directory'
USING 'root=c:\Program Files';

3. Create an external login using the CREATE EXTERNLOGIN statement.

For example:

CREATE EXTERNLOGIN DBA TO my_dir_tree;

Using directory access servers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 785

4. Create a proxy table for the directory using the CREATE EXISTING TABLE statement.

For example:

CREATE EXISTING TABLE my_program_files AT 'my_dir_tree;;;.';

In this example, my_program_files is the name of the directory, and my_dir_tree is the name of the
directory access server.

Example
The following statements create a new directory access server named directoryserver3 that can be used to
access up to three levels of subdirectories, create an external login to the directory access server for the DBA
user, and create a proxy table named diskdir3.

CREATE SERVER directoryserver3
CLASS 'DIRECTORY'
USING 'ROOT=c:\mydir;SUBDIRS=3';
CREATE EXTERNLOGIN DBA TO directoryserver3;
CREATE EXISTING TABLE diskdir3 AT 'directoryserver3;;;.';

Using the sp_remote_tables system procedure, you can see all the subdirectories located in c:\mydir on the
computer running the database server:

CALL sp_remote_tables('directoryserver3');

Using the following SELECT statement, you can view the contents of the file c:\mydir\myfile.txt:

SELECT contents
FROM diskdir3
WHERE file_name = 'myfile.txt';

Alternatively, you can select data from the directories:

-- Get the list of directories in this disk directory tree.
SELECT permissions, file_name, size
FROM diskdir3
WHERE PERMISSIONS LIKE 'd%';
-- Get the list of files.
SELECT permissions, file_name, size
FROM diskdir3
WHERE PERMISSIONS NOT LIKE 'd%';

See also
● “CREATE SERVER statement” [SQL Anywhere Server - SQL Reference]
● “CREATE EXTERNLOGIN statement” [SQL Anywhere Server - SQL Reference]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE EXISTING TABLE statement” [SQL Anywhere Server - SQL Reference]

Drop directory access servers
You cannot alter an existing directory access server: you must drop the existing directory access server using
a DROP SERVER statement, and then create a new one.

Accessing remote data

786 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Dropping directory access servers
To drop a directory access server (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, double-click Directory Access Servers.

3. Select the directory access server, and then choose Edit » Delete.

To drop a directory access server (SQL)

1. Connect to the host database as a user with DBA authority.

2. Execute a DROP SERVER statement.

For example:

DROP SERVER my_directory_server;

Dropping proxy tables
Use the DROP TABLE statement to drop a proxy table used by the directory access server.

To drop a proxy table (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, double-click Directory Access Servers.

3. In the right pane, click the Proxy Tables tab.

4. Select the proxy table, and then choose Edit » Delete.

5. Click Yes.

To drop a proxy table (SQL)

1. Connect to the host database as a user with DBA authority.

2. Execute a DROP TABLE statement.

For example:

DROP TABLE my_files;

See also
● “DROP SERVER statement” [SQL Anywhere Server - SQL Reference]
● “DROP TABLE statement” [SQL Anywhere Server - SQL Reference]

Using directory access servers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 787

Working with external logins
By default, SQL Anywhere uses the names and passwords of its clients whenever it connects to a remote
server on behalf of those clients. However, this default can be overridden by creating external logins. External
logins are alternate login names and passwords to be used when communicating with a remote server.

For more information, see “Using integrated logins” [SQL Anywhere Server - Database Administration].

Create external logins
Use one of the following procedures to create an external login.

To create an external login (Sybase Central)

1. Connect to the host database as a user with DBA authority or as the owner of the external login.

2. In the left pane, double-click Remote Servers.

3. Select the remote server, and in the right pane click the External Logins tab.

4. From the File menu, choose New » External Login.

5. Follow the instructions in the Create External Login Wizard.

To create an external login (SQL)

1. Connect to the host database as a user with DBA authority or as the owner of the external login.

2. Execute a CREATE EXTERNLOGIN statement.

Example
The following statement allows the local user fred to gain access to the server RemoteASE, using the remote
login frederick with password banana.

CREATE EXTERNLOGIN fred
TO RemoteASE
REMOTE LOGIN frederick
IDENTIFIED BY banana;

For more information, see “CREATE EXTERNLOGIN statement” [SQL Anywhere Server - SQL
Reference].

Drop external logins
Use one of the following procedures to delete an external login from the SQL Anywhere system tables.

To delete an external login (Sybase Central)

1. Connect to the host database as a user with DBA authority or as the owner of the external login.

Accessing remote data

788 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

2. In the left pane, double-click Remote Servers.

3. Select the remote server, and in the right pane click the External Logins tab.

4. Select the external login, and then choose File » Delete.

5. Click Yes.

To delete an external login (SQL)

1. Connect to the host database as a user with DBA authority or as the owner of the external login.

2. Execute a DROP EXTERNLOGIN statement.

Example
The following statement drops the external login for the local user fred created in the example above:

DROP EXTERNLOGIN fred TO RemoteASE;

See also
● “DROP EXTERNLOGIN statement” [SQL Anywhere Server - SQL Reference]

Working with external logins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 789

Working with proxy tables
Location transparency of remote data is enabled by creating a local proxy table that maps to the remote
object. You can use a proxy table to access any object (including tables, views, and materialized views) that
the remote database exports as a candidate for a proxy table. Use one of the following statements to create
a proxy table:

● If the table already exists at the remote storage location, use the CREATE EXISTING TABLE statement.
This statement defines the proxy table for an existing table on the remote server.

● If the table does not exist at the remote storage location, use the CREATE TABLE statement. This
statement creates a new table on the remote server, and also defines the proxy table for that table.

Note
You cannot modify data in a proxy table when you are within a savepoint. See “Savepoints within
transactions” on page 112.

When a trigger is fired on a proxy table, the permissions used are those of the user who caused the trigger
to fire, not those of the proxy table owner.

Specify proxy table locations
The AT keyword is used with both CREATE TABLE and CREATE EXISTING TABLE to define the
location of an existing object. This location string has four components, each separated by either a period
or a semicolon. The semicolon delimiter allows file names and extensions to be used in the database and
owner fields.

The syntax of the AT clause is

... AT 'server.database.owner.table-name'

● server This is the name by which the server is known in the current database, as specified in the
CREATE SERVER statement. This field is mandatory for all remote data sources.

● database The meaning of the database field depends on the data source. In some cases this field does
not apply and should be left empty. The delimiter is still required, however.

If the data source is Adaptive Server Enterprise, database specifies the database where the table exists.
For example master or pubs2.

If the data source is SQL Anywhere, this field does not apply; leave it empty.

If the data source is Excel, Lotus Notes, or Access, you must include the name of the file containing the
table. If the file name includes a period, use the semicolon delimiter.

● owner If the database supports the concept of ownership, this field represents the owner name. This
field is only required when several owners have tables with the same name.

Accessing remote data

790 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● table-name This field specifies the name of the table. In the case of an Excel spreadsheet, this is the
name of the sheet in the workbook. If table-name is left empty, the remote table name is assumed to be
the same as the local proxy table name.

Examples:
The following examples illustrate the use of location strings:

● SQL Anywhere:

'RemoteSA..GROUPO.Employees'

● Adaptive Server Enterprise:

'RemoteASE.pubs2.dbo.publishers'

● Excel:

'excel;d:\pcdb\quarter3.xls;;sheet1$'

● Access:

'access;\\server1\production\inventory.mdb;;parts'

Create proxy tables (Sybase Central)
Use one of the following procedures to create a proxy table. You cannot create proxy tables for system tables.

The CREATE EXISTING TABLE statement creates a proxy table that maps to an existing table on the
remote server. SQL Anywhere derives the column attributes and index information from the object at the
remote location.

For information about the CREATE EXISTING TABLE statement, see “CREATE EXISTING TABLE
statement” [SQL Anywhere Server - SQL Reference].

To create a proxy table (Sybase Central)

1. Connect to the host database as a user with DBA authority.

2. In the left pane, double-click Remote Servers.

3. Select a remote server, and in the right pane click the Proxy Tables tab.

4. From the File menu choose New » Proxy Table.

5. Follow the instructions in the Create Proxy Table Wizard.

Working with proxy tables

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 791

Create proxy tables with the CREATE EXISTING TABLE
statement

The CREATE EXISTING TABLE statement creates a proxy table that maps to an existing table on the
remote server. SQL Anywhere derives the column attributes and index information from the object at the
remote location.

To create a proxy table with the CREATE EXISTING TABLE statement (SQL)

1. Connect to the host database as a user with DBA authority.

2. Execute a CREATE EXISTING TABLE statement.

For more information, see “CREATE EXISTING TABLE statement” [SQL Anywhere Server - SQL
Reference].

Example 1
To create a proxy table called p_Employees on the current server to a remote table named Employees on the
server named RemoteSA, use the following syntax:

CREATE EXISTING TABLE p_Employees
AT 'RemoteSA..GROUPO.Employees';

Example 2
The following statement maps the proxy table a1 to the Microsoft Access file mydbfile.mdb. In this example,
the AT keyword uses the semicolon (;) as a delimiter. The server defined for Microsoft Access is named
access.

CREATE EXISTING TABLE a1
AT 'access;d:\mydbfile.mdb;;a1';

Accessing remote data

792 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Create a proxy table with the CREATE TABLE statement
The CREATE TABLE statement creates a new table on the remote server, and defines the proxy table for
that table when you use the AT option. Columns are defined using SQL Anywhere data types. SQL Anywhere
automatically converts the data into the remote server's native types.

If you use the CREATE TABLE statement to create both a local and remote table, and then subsequently
use the DROP TABLE statement to drop the proxy table, the remote table is also dropped. You can, however,
use the DROP TABLE statement to drop a proxy table created using the CREATE EXISTING TABLE
statement. In this case, the remote table is not dropped.

For more information, see “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference] and
“CREATE EXISTING TABLE statement” [SQL Anywhere Server - SQL Reference].

Example
The following statement creates a table named Employees on the remote server RemoteSA, and creates a
proxy table named Members that maps to the remote table:

CREATE TABLE Members
(membership_id INTEGER NOT NULL,
member_name CHAR(30) NOT NULL,
office_held CHAR(20) NULL)
AT 'RemoteSA..GROUPO.Employees';

List the columns on a remote table
Before you execute a CREATE EXISTING TABLE statement, it may be helpful to get a list of the columns
that are available on a remote table. The sp_remote_columns system procedure produces a list of the columns
on a remote table and a description of those data types. The following is the syntax for the sp_remote_columns
system procedure:

sp_remote_columns servername, tablename [, owner]
[, database]

If a table name, owner, or database name is given, the list of columns is limited to only those that match.

For example, the following returns a list of the columns in the sysobjects table in the production database
on an Adaptive Server Enterprise server named asetest:

CALL sp_remote_columns asetest, sysobjects, null, production;

For more information, see “sp_remote_columns system procedure” [SQL Anywhere Server - SQL
Reference].

Working with proxy tables

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 793

Join remote tables
The following figure illustrates proxy tables on a local database server mapped to the remote tables
Employees and Departments of the SQL Anywhere sample database on the remote server RemoteSA
mapped.

You can use joins between tables on different SQL Anywhere databases. The following example is a simple
case using just one database to illustrate the principles.

To perform a join between two remote tables (SQL)

1. Create a new database named empty.db.

This database holds no data. It is used only to define the remote objects, and to access the SQL Anywhere
sample database.

2. Start a database server running the empty.db. You can do this using the following command line:

dbeng11 empty
3. From Interactive SQL, connect to empty.db as user DBA.

4. In the new database, create a remote server named RemoteSA. Its server class is saodbc, and the
connection string refers to the DSN SQL Anywhere 11 Demo:

CREATE SERVER RemoteSA
CLASS 'saodbc'
USING 'SQL Anywhere 11 Demo';

5. In this example, you use the same user ID and password on the remote database as on the local database,
so no external logins are needed.

In some cases you must provide a user ID and password when connecting to the database at the remote
server. In the new database, you could create an external login to the remote server. For simplicity in
our example, the local login name and the remote user ID are both DBA:

Accessing remote data

794 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

CREATE EXTERNLOGIN DBA
TO RemoteSA
REMOTE LOGIN DBA
IDENTIFIED BY sql;

6. Define the p_Employees proxy table:

CREATE EXISTING TABLE p_Employees
AT 'RemoteSA..GROUPO.Employees';

7. Define the p_Departments proxy table:

CREATE EXISTING TABLE p_Departments
AT 'RemoteSA..GROUPO.Departments';

8. Use the proxy tables in the SELECT statement to perform the join.

SELECT GivenName, Surname, DepartmentName
FROM p_Employees JOIN p_Departments
ON p_Employees.DepartmentID = p_Departments.DepartmentID
ORDER BY Surname;

Join remote tables

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 795

Join tables from multiple local databases
A SQL Anywhere server may have several local databases running at one time. By defining tables in other
local SQL Anywhere databases as remote tables, you can perform cross-database joins.

For more information about specifying multiple databases, see “USING parameter in the CREATE SERVER
statement” on page 824.

Example
Suppose you are using database db1, and you want to access data in tables in database db2. You need to set
up proxy table definitions that point to the tables in database db2. For example, on a SQL Anywhere server
named RemoteSA, you might have three databases available, db1, db2, and db3.

1. If you are using ODBC, create an ODBC data source name for each database you will be accessing.

2. Connect to one of the databases from which you will be performing. For example, connect to db1.

3. Perform a CREATE SERVER statement for each other local database you will be accessing. This sets
up a loopback connection to your SQL Anywhere server.

CREATE SERVER remote_db2
CLASS 'saodbc'
USING 'RemoteSA_db2';
CREATE SERVER remote_db3
CLASS 'saodbc'
USING 'RemoteSA_db3';

Alternatively, using JDBC:

CREATE SERVER remote_db2
CLASS 'sajdbc'
USING 'mypc1:2638/db2';
CREATE SERVER remote_db3
CLASS 'sajdbc'
USING 'mypc1:2638/db3';

4. Create proxy table definitions by executing CREATE EXISTING TABLE statements for the tables in
the other databases you want to access.

CREATE EXISTING TABLE Employees
AT 'remote_db2...Employees';

Accessing remote data

796 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Send native statements to remote servers
Use the FORWARD TO statement to send one or more statements to the remote server in its native syntax.
This statement can be used in two ways:

● To send a statement to a remote server.

● To place SQL Anywhere into passthrough mode for sending a series of statements to a remote server.

The FORWARD TO statement can be used to verify that a server is configured correctly. If you send a
statement to the remote server and SQL Anywhere does not return an error message, the remote server is
configured correctly.

The FORWARD TO statement cannot be used within procedures or batches.

If a connection cannot be made to the specified server, a message is returned to the user. If a connection is
made, any results are converted into a form that can be recognized by the client program.

For more information, see “FORWARD TO statement” [SQL Anywhere Server - SQL Reference].

Example 1
The following statement verifies connectivity to the server named RemoteASE by selecting the version
string:

FORWARD TO RemoteASE {SELECT @@version};

Example 2
The following statements show a passthrough session with the server named RemoteASE:

FORWARD TO RemoteASE
SELECT * FROM titles
SELECT * FROM authors
FORWARD TO;

Send native statements to remote servers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 797

Using remote procedure calls (RPCs)
SQL Anywhere users can issue procedure calls to remote servers that support the feature.

This functionality is supported by SQL Anywhere, Adaptive Server Enterprise, Oracle, and DB2. Issuing a
remote procedure call is similar to using a local procedure call.

SQL Anywhere supports fetching result sets from remote procedures, including fetching multiple result sets.
As well, remote functions can be used to fetch return values from remote procedures and functions. Remote
procedures can be used in the FROM clause of a SELECT statement.

Create remote procedures
Use one of the following procedures to issue a remote procedure call.

Remote procedures accept input parameters up to 254 bytes in length, and return up to 254 characters in
output variables.

If a remote procedure can return a result set, even if it does not return one in all cases, then the local procedure
definition must contain a RESULT clause.

To create a remote procedure (Sybase Central)

1. Connect to the host database as a user with DBA authority.

2. In the left pane, double-click Remote Servers.

3. Select the remote server, and in the right pane click the Remote Procedures tab.

4. From the File menu, choose New » Remote Procedure.

5. Follow the instructions in the Create Remote Procedure Wizard.

To create a remote procedure (SQL)

1. Connect to the database as a user with DBA authority.

2. Define the procedure to SQL Anywhere.

The syntax is the same as a local procedure definition, except instead of using SQL statements to make
up the body of the procedure, a location string is given defining the location where the procedure resides.

CREATE PROCEDURE remotewho()
AT 'bostonase.master.dbo.sp_who';

For more information, see “CREATE PROCEDURE statement (web services)” [SQL Anywhere Server -
SQL Reference].

To issue a remote procedure call (SQL)

1. Connect to the database as a user with DBA authority.

Accessing remote data

798 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

2. Execute the procedure as follows:

CALL remotewho();

Example
This example specifies a parameter when calling a remote procedure:

CREATE PROCEDURE remoteuser (IN uname CHAR(30))
AT 'bostonase.master.dbo.sp_helpuser';
CALL remoteuser('joe');

Data types for remote procedures
The following data types are allowed for RPC parameters:

● [UNSIGNED] SMALLINT
● [UNSIGNED] INT
● [UNSIGNED] BIGINT
● TINYINT
● REAL
● DOUBLE
● CHAR
● BIT
● NUMERIC and DECIMAL data types are allowed for IN parameters, but not for OUT or INOUT

parameters

Drop remote procedures
Use one of the following procedures to delete a remote procedure.

To delete a remote procedure (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, double-click Remote Servers.

3. Select the remote server, and in the right pane click the Remote Procedures tab.

4. Select the remote procedure, and then choose File » Delete.

5. Click Yes.

To delete a remote procedure (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a DROP PROCEDURE statement.

For more information, see “DROP PROCEDURE statement” [SQL Anywhere Server - SQL Reference].

Using remote procedure calls (RPCs)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 799

Example
Delete a remote procedure called remoteproc.

DROP PROCEDURE remoteproc;

Accessing remote data

800 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Transaction management and remote data
Transactions provide a way to group SQL statements so that they are treated as a unit—either all work
performed by the statements is committed to the database, or none of it is.

For the most part, transaction management with remote tables is the same as transaction management for
local tables in SQL Anywhere, but there are some differences. They are discussed in the following section.

For a general discussion of transactions, see “Using transactions and isolation levels” on page 107.

Remote transaction management overview
The method for managing transactions involving remote servers uses a two-phase commit protocol. SQL
Anywhere implements a strategy that ensures transaction integrity for most scenarios. However, when more
than one remote server is invoked in a transaction, there is still a chance that a distributed unit of work will
be left in an undetermined state. Even though two-phase commit protocol is used, no recovery process is
included.

The general logic for managing a user transaction is as follows:

1. SQL Anywhere prefaces work to a remote server with a BEGIN TRANSACTION notification.

2. When the transaction is ready to be committed, SQL Anywhere sends a PREPARE TRANSACTION
notification to each remote server that has been part of the transaction. This ensures that the remote server
is ready to commit the transaction.

3. If a PREPARE TRANSACTION request fails, all remote servers are instructed to roll back the current
transaction.

If all PREPARE TRANSACTION requests are successful, the server sends a COMMIT
TRANSACTION request to each remote server involved with the transaction.

Any statement preceded by BEGIN TRANSACTION can begin a transaction. Other statements are sent to
a remote server to be executed as a single, remote unit of work.

Restrictions on transaction management
Restrictions on transaction management are as follows:

● Savepoints are not propagated to remote servers.

● If nested BEGIN TRANSACTION and COMMIT TRANSACTION statements are included in a
transaction that involves remote servers, only the outermost set of statements is processed. The innermost
set, containing the BEGIN TRANSACTION and COMMIT TRANSACTION statements, is not
transmitted to remote servers.

Transaction management and remote data

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 801

Internal operations
This section describes the underlying steps that SQL Anywhere performs on remote servers on behalf of
client applications.

Query parsing
When a statement is received from a client, the database server parses it. The database server raises an error
if the statement is not a valid SQL Anywhere SQL statement.

Query normalization
Referenced objects in the query are verified and some data type compatibility is checked.

For example, consider the following query:

SELECT *
FROM t1
WHERE c1 = 10;

The query normalization stage verifies that table t1 with a column c1 exists in the system tables. It also
verifies that the data type of column c1 is compatible with the value 10. If the column's data type is datetime,
for example, this statement is rejected.

Query preprocessing
Query preprocessing prepares the query for optimization. It may change the representation of a statement
so that the SQL statement that SQL Anywhere generates for passing to a remote server is syntactically
different from the original statement, even though it is semantically equivalent.

Preprocessing performs view expansion so that a query can operate on tables referenced by the view.
Expressions may be reordered and subqueries may be transformed to improve processing efficiency. For
example, some subqueries may be converted into joins.

Server capabilities
The previous steps are performed on all queries, both local and remote.

The following steps depend on the type of SQL statement and the capabilities of the remote servers involved.

In SQL Anywhere, each remote server has a set of capabilities defined for it. These capabilities are stored
in the ISYSCAPABILITIES system table, and are initialized during the first connection to a remote server.

The generic server class odbc relies strictly on information returned from the ODBC driver to determine
these capabilities. Other server classes such as db2odbc have more detailed knowledge of the capabilities
of a remote server type and use that knowledge to supplement what is returned from the driver.

Accessing remote data

802 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Once a server is added to ISYSCAPABILITIES, the capability information is retrieved only from the system
table.

Since a remote server may not support all the features of a given SQL statement, SQL Anywhere must break
the statement into simpler components to the point that the query can be given to the remote server. SQL
features not passed off to a remote server must be evaluated by SQL Anywhere itself.

For example, a query may contain an ORDER BY statement. If a remote server cannot perform ORDER
BY, the statement is sent to the remote server without it and SQL Anywhere performs the ORDER BY on
the result returned, before returning the result to the user. The result is that the user can employ the full range
of SQL Anywhere supported SQL without concern for the features of a particular back end.

Complete passthrough of the statement
For efficiency, SQL Anywhere passes off as much of the statement as possible to the remote server. Often,
this is the complete statement originally given to SQL Anywhere.

SQL Anywhere will hand off the complete statement when:

● Every table in the statement resides on the same remote server.

● The remote server is capable of processing all the syntax in the statement.

In rare conditions, it may actually be more efficient to let SQL Anywhere do some of the work instead of
the remote server doing it. For example, SQL Anywhere may have a better sorting algorithm. In this case,
you may consider altering the capabilities of a remote server using the ALTER SERVER statement.

For more information, see “ALTER SERVER statement” [SQL Anywhere Server - SQL Reference].

Partial passthrough of the statement
If a statement contains references to multiple servers, or uses SQL features not supported by a remote server,
the query is decomposed into simpler parts.

SELECT
SELECT statements are broken down by removing portions that cannot be passed on and letting SQL
Anywhere perform the work. For example, suppose a remote server can not process the ATAN2 function in
the following statement:

SELECT a,b,c
WHERE ATAN2(b, 10) > 3
AND c = 10;

The statement sent to the remote server would be converted to:

SELECT a,b,c WHERE c = 10;

Then, SQL Anywhere locally applies WHERE ATAN2(b, 10) > 3 to the intermediate result set.

Internal operations

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 803

Joins
When two tables are joined, one table is selected to be the outer table. The outer table is scanned based on
the WHERE conditions that apply to it. For every qualifying row found, the other table, known as the inner
table is scanned to find a row that matches the join condition.

This same algorithm is used when remote tables are referenced. Since the cost of searching a remote table
is usually much higher than a local table (due to network I/O), every effort is made to make the remote table
the outermost table in the join.

UPDATE and DELETE
When a qualifying row is found, if SQL Anywhere cannot pass off an UPDATE or DELETE statement
entirely to a remote server, it must change the statement into a table scan containing as much of the original
WHERE clause as possible, followed by a positioned UPDATE or DELETE statement that specifies
WHERE CURRENT OF cursor-name.

For example, when the function ATAN2 is not supported by a remote server:

UPDATE t1
SET a = atan2(b, 10)
WHERE b > 5;

Would be converted to the following:

SELECT a,b
FROM t1
WHERE b > 5;

Each time a row is found, SQL Anywhere would calculate the new value of a and issue:

UPDATE t1
SET a = 'new value'
WHERE CURRENT OF CURSOR;

If a already has a value that equals the new value, a positioned UPDATE would not be necessary, and would
not be sent remotely.

To process an UPDATE or DELETE statement that requires a table scan, the remote data source must support
the ability to perform a positioned UPDATE or DELETE (WHERE CURRENT OF cursor-name). Some
data sources do not support this capability.

Temporary tables cannot be updated
An UPDATE or DELETE cannot be performed if an intermediate temporary table is required. This occurs
in queries with ORDER BY and some queries with subqueries.

Accessing remote data

804 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Troubleshooting remote data access
This section provides some hints for troubleshooting access to remote servers.

Features not supported for remote data
The following SQL Anywhere features are not supported on remote data:

● ALTER TABLE statement against remote tables

● triggers defined on proxy tables

● SQL Remote

● foreign keys that refer to remote tables

● READTEXT, WRITETEXT, and TEXTPTR functions

● positioned UPDATE and DELETE statements

● UPDATE and DELETE statements requiring an intermediate temporary table

● backward scrolling on cursors opened against remote data. Fetch statements must be NEXT or
RELATIVE 1

● calls to functions that contain an expression that references a proxy table

● If a column on a remote table has a name that is a keyword on the remote server, you cannot access data
in that column. You can execute a CREATE EXISTING TABLE statement, and import the definition
but you cannot select that column.

Case sensitivity
The case sensitivity setting of your SQL Anywhere database should match the settings used by any remote
servers accessed.

SQL Anywhere databases are created case insensitive by default. With this configuration, unpredictable
results may occur when selecting from a case-sensitive database. Different results will occur depending on
whether ORDER BY or string comparisons are pushed off to a remote server, or evaluated by the local SQL
Anywhere server.

Connectivity tests
Take the following steps to be sure you can connect to a remote server:

● Determine that you can connect to a remote server using a client tool such as Interactive SQL before
configuring SQL Anywhere.

Troubleshooting remote data access

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 805

● Perform a simple passthrough statement to a remote server to check your connectivity and remote login
configuration. For example:

FORWARD TO RemoteSA {SELECT @@version};
● Turn on remote tracing for a trace of the interactions with remote servers. For example:

SET OPTION cis_option = 7;

Once you have turned on remote tracing, the tracing information appears in the database server messages
window. You can log this output to a file by specifying the -o server option when you start the database
server.

For more information about the cis_option option, see “cis_option option [database]” [SQL Anywhere
Server - Database Administration].

For more information about the -o server option, see “-o server option” [SQL Anywhere Server - Database
Administration].

General problems with queries
If SQL Anywhere is having difficulty handling a query against a remote table, it is usually helpful to
understand how SQL Anywhere is executing the query. You can display remote tracing, and a description
of the query execution plan:

SET OPTION cis_option = 7;

Once you have turned on remote tracing, the tracing information appears in the database server messages
window. You can log this output to a file by specifying the -o server option when you start the database
server.

For more information about using the cis_option option for debugging queries when using remote data
access, see “cis_option option [database]” [SQL Anywhere Server - Database Administration].

For more information about the -o server option, see “-o server option” [SQL Anywhere Server - Database
Administration].

Queries blocked on themselves
You must have enough threads available to support the individual tasks that are being run by a query. Failure
to provide the number of required tasks can lead to a query becoming blocked on itself. See “Transaction
blocking and deadlock” on page 128.

Managing remote data access connections via ODBC
If you access remote databases via ODBC, the connection to the remote server is given a name. You can use
the name to drop the connection to cancel a remote request.

Accessing remote data

806 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The connections are named ASACIS_conn-name, where conn-name is the connection ID of the local
connection. The connection ID can be obtained from the sa_conn_info stored procedure. See “sa_conn_info
system procedure” [SQL Anywhere Server - SQL Reference].

Troubleshooting remote data access

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 807

808

Server classes for remote data access

Contents
ODBC-based server classes ... 810
JDBC-based server classes .. 824

The server class you specify in the CREATE SERVER statement determines the behavior of a remote
connection. The server classes give SQL Anywhere detailed server capability information. SQL Anywhere
formats SQL statements specific to a server's capabilities.

There are two categories of server classes:

● ODBC-based server classes
● JDBC-based server classes

Each server class has a set of unique characteristics that database administrators and programmers need to
know to configure the server for remote data access.

You should refer both to information generic to the server class category (JDBC-based or ODBC-based),
and to the information specific to the individual server class.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 809

ODBC-based server classes
The ODBC-based server classes include:

● saodbc
● aseodbc
● db2odbc
● mssodbc
● oraodbc
● msaccessodbc
● mysqlodbc
● ulodbc
● adsodbc
● odbc

Note
When using remote data access, if you use an ODBC driver that does not support Unicode, then character
set conversion is not performed on data coming from that ODBC driver.

Defining ODBC external servers
The most common way of defining an ODBC-based server is to base it on an ODBC data source. To do this,
you can create a data source using the ODBC Administrator.

For more information, see “Creating ODBC data sources” [SQL Anywhere Server - Database
Administration].

Once you have defined the data source, the USING clause in the CREATE SERVER statement should match
the ODBC data source name.

For example, to configure a DB2 server named mydb2 whose data source name is also mydb2, use:

CREATE SERVER mydb2
CLASS 'db2odbc'
USING 'mydb2';

For more information, see “CREATE SERVER statement” [SQL Anywhere Server - SQL Reference].

Using connection strings instead of data sources
An alternative, which avoids using data sources, is to supply a connection string in the USING clause of the
CREATE SERVER statement. To do this, you must know the connection parameters for the ODBC driver
you are using. For example, a connection to a SQL Anywhere database may be as follows:

CREATE SERVER TestSA
CLASS 'saodbc'
USING 'DRIVER=SQL Anywhere 11;ENG=TestSA;DBN=sample;LINKS=tcpip()';

This defines a connection to a SQL Anywhere database server named TestSA and a database named sample
using the TCP/IP protocol.

Server classes for remote data access

810 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
For information specific to particular ODBC server classes, see:

● “Server class saodbc” on page 811
● “Server class ulodbc” on page 811
● “Server class aseodbc” on page 811
● “Server class db2odbc” on page 814
● “Server class oraodbc” on page 816
● “Server class mssodbc” on page 818
● “Server class msaccessodbc” on page 820
● “Server class mysqlodbc” on page 819
● “Server class adsodbc” on page 814
● “Server class odbc” on page 821

Server class saodbc
A server with server class saodbc is a SQL Anywhere database server. No special requirements exist for the
configuration of a SQL Anywhere data source.

To access SQL Anywhere database servers that support multiple databases, create an ODBC data source
name defining a connection to each database. Issue a CREATE SERVER statement for each of these ODBC
data source names. See “USING parameter in the CREATE SERVER statement” on page 824.

Server class ulodbc
A server with server class ulodbc is an UltraLite database. Create an ODBC data source name defining a
connection to the UltraLite database. Issue a CREATE SERVER statement for the ODBC data source name.

There is a one to one mapping between the UltraLite and SQL Anywhere data types because UltraLite
supports a subset of the data types available in SQL Anywhere. See “Data types in UltraLite” [UltraLite -
Database Management and Reference].

Server class aseodbc
A server with server class aseodbc is a Sybase SQL Server and Adaptive Server Enterprise (version 10 and
later) database server. SQL Anywhere requires the installation of the Adaptive Server Enterprise ODBC
driver and Open Client connectivity libraries to connect to a remote Adaptive Server Enterprise server with
class aseodbc, but the performance is better than with the asejdbc class.

Notes
● Open Client should be version 11.1.1, EBF 7886 or later. Install Open Client and verify connectivity to

the Adaptive Server Enterprise server before you install ODBC and configure SQL Anywhere. The
Sybase ODBC driver should be version 11.1.1, EBF 7911 or later.

ODBC-based server classes

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 811

● The local setting of the quoted_identifiers option controls the use of quoted identifiers for Adaptive
Server Enterprise. For example, if you set the quoted_identifiers option to Off locally, then quoted
identifiers are turned off for Adaptive Server Enterprise.

● Configure a user data source in the Configuration Manager with the following attributes:

○ General tab Type any value for Data Source Name. This value is used in the USING clause of
the CREATE SERVER statement.

The server name should match the name of the server in the Sybase interfaces file.

For more information about the interfaces file, see “The interfaces file” [SQL Anywhere Server -
Database Administration].

○ Advanced tab Select the Application Using Threads and Enable Quoted Identifiers options.

○ Connection tab Set the charset field to match your SQL Anywhere character set.

Set the language field to your preferred language for error messages.

○ Performance tab Set the Prepare Method to 2-Full.

Set the Fetch Array Size as large as possible for the best performance. This increases memory
requirements since this is the number of rows that must be cached in memory. Adaptive Server
Enterprise recommends using a value of 100.

Set Select Method to 0-Cursor.

Set Packet Size to as large a value as possible. Adaptive Server Enterprise recommends using a value
of -1.

Set Connection Cache to 1.

Data type conversions: ODBC and Adaptive Server Enterprise

When you issue a CREATE TABLE statement, SQL Anywhere automatically converts the data types to the
corresponding Adaptive Server Enterprise data types. The following table describes the SQL Anywhere to
Adaptive Server Enterprise data type conversions.

SQL Anywhere data type Adaptive Server Enterprise default data type

BIT bit

TINYINT tinyint

SMALLINT smallint

INT int

INTEGER integer

DECIMAL [defaults p=30, s=6] numeric(30,6)

DECIMAL(128,128) not supported

Server classes for remote data access

812 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere data type Adaptive Server Enterprise default data type

NUMERIC [defaults p=30 s=6] numeric(30,6)

NUMERIC(128,128) not supported

FLOAT real

REAL real

DOUBLE float

SMALLMONEY numeric(10,4)

MONEY numeric(19,4)

DATE datetime

TIME datetime

TIMESTAMP datetime

SMALLDATETIME datetime

DATETIME datetime

CHAR(n) varchar(n)

CHARACTER(n) varchar(n)

VARCHAR(n) varchar(n)

CHARACTER VARYING(n) varchar(n)

LONG VARCHAR text

TEXT text

BINARY(n) binary(n)

LONG BINARY image

IMAGE image

BIGINT numeric(20,0)

ODBC-based server classes

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 813

Server class adsodbc
When you issue a CREATE TABLE statement, SQL Anywhere automatically converts the data types to the
corresponding Advantage Database Server data types using the following data type conversions.

SQL Anywhere data type ADS default data type

BIT Logical

TINYINT, SMALLINT, INT, INTEGER Integer

BIGINT Numeric(32)

DECIMAL(p,s), NUMERIC(p,s) Numeric(p+3)

DATE Date

TIME Time

DATETIME, TIMESTAMP TimeStamp

MONEY, SMALLMONEY Money

FLOAT, REAL Double

CHAR(n), VARCHAR(n), LONG VARCHAR Char(n)

BINARY(n), VARBINARY(n), LONG BINARY Blob

Server class db2odbc
A server with server class db2odbc is IBM DB2.

Notes
● Sybase certifies the use of IBM's DB2 Connect version 5, with fix pack WR09044. Configure and test

your ODBC configuration using the instructions for that product. SQL Anywhere has no specific
requirements for the configuration of DB2 data sources.

● The following is an example of a CREATE EXISTING TABLE statement for a DB2 server with an
ODBC data source named mydb2:

CREATE EXISTING TABLE ibmcol
AT 'mydb2..sysibm.syscolumns';

Server classes for remote data access

814 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Data type conversions: DB2

When you issue a CREATE TABLE statement, SQL Anywhere automatically converts the data types to the
corresponding DB2 data types. The following table describes the SQL Anywhere to DB2 data type
conversions.

SQL Anywhere data type DB2 default data type

BIT smallint

TINYINT smallint

SMALLINT smallint

INT int

INTEGER int

BIGINT decimal(20,0)

CHAR(1-254) varchar(n)

CHAR(255-4000) varchar(n)

CHAR(4001-32767) long varchar

CHARACTER(1-254) varchar(n)

CHARACTER(255-4000) varchar(n)

CHARACTER(4001-32767) long varchar

VARCHAR(1-4000) varchar(n)

VARCHAR(4001-32767) long varchar

CHARACTER VARYING(1-4000) varchar(n)

CHARACTER VARYING(4001-32767) long varchar

LONG VARCHAR long varchar

TEXT long varchar

BINARY(1-4000) varchar for bit data

BINARY(4001-32767) long varchar for bit data

LONG BINARY long varchar for bit data

ODBC-based server classes

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 815

SQL Anywhere data type DB2 default data type

IMAGE long varchar for bit data

DECIMAL [defaults p=30, s=6] decimal(30,6)

NUMERIC [defaults p=30 s=6] decimal(30,6)

DECIMAL(128, 128) NOT SUPPORTED

NUMERIC(128, 128) NOT SUPPORTED

REAL real

FLOAT float

DOUBLE float

SMALLMONEY decimal(10,4)

MONEY decimal(19,4)

DATE date

TIME time

SMALLDATETIME timestamp

DATETIME timestamp

TIMESTAMP timestamp

Server class oraodbc
A server with server class oraodbc is Oracle version 8.0 or later.

Notes
● Sybase certifies the use of version 8.0.03 of Oracle's ODBC driver. Configure and test your ODBC

configuration using the instructions for that product.

● The following is an example of a CREATE EXISTING TABLE statement for an Oracle server named
myora:

CREATE EXISTING TABLE employees
AT 'myora.database.owner.employees';

● As a result of Oracle ODBC driver restrictions, you cannot issue a CREATE EXISTING TABLE
statement for system tables. A message returns stating that the table or columns cannot be found.

Server classes for remote data access

816 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Data type conversions: Oracle

When you issue a CREATE TABLE statement, SQL Anywhere automatically converts the data types to the
corresponding Oracle data types using the following data type conversions.

SQL Anywhere data type Oracle data type

BIT number(1,0)

TINYINT number(3,0)

SMALLINT number(5,0)

INT number(11,0)

BIGINT number(20,0)

DECIMAL(prec, scale) number(prec, scale)

NUMERIC(prec, scale) number(prec, scale)

FLOAT float

REAL real

SMALLMONEY numeric(13,4)

MONEY number(19,4)

DATE date

TIME date

TIMESTAMP date

SMALLDATETIME date

DATETIME date

CHAR(n) if (n > 255) long else varchar(n)

VARCHAR(n) if (n > 2000) long else varchar(n)

LONG VARCHAR long or clob

BINARY(n) if (n > 255) long raw else raw(n)

VARBINARY(n) if (n > 255) long raw else raw(n)

LONG BINARY long raw

ODBC-based server classes

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 817

Server class mssodbc
A server with server class mssodbc is Microsoft SQL Server version 6.5, Service Pack 4.

Notes
● Sybase certifies the use of version 3.60.0319 of Microsoft SQL Server's ODBC driver (included in the

MDAC 2.0 release). Configure and test your ODBC configuration using the instructions for that product.

● The following is an example of a CREATE EXISTING TABLE statement for a Microsoft SQL Server
named mymssql:

CREATE EXISTING TABLE accounts,
AT 'mymssql.database.owner.accounts';

● The local setting of the quoted_identifiers option controls the use of quoted identifiers for Microsoft
SQL Server. For example, if you set the quoted_identifiers option to Off locally, then quoted identifiers
are turned off for Microsoft SQL Server.

Data type conversions: Microsoft SQL Server

When you issue a CREATE TABLE statement, SQL Anywhere automatically converts the data types to the
corresponding Microsoft SQL Server data types using the following data type conversions.

SQL Anywhere data type Microsoft SQL Server default data type

BIT bit

TINYINT tinyint

SMALLINT smallint

INT int

BIGINT numeric(20,0)

DECIMAL [defaults p=30, s=6] decimal(prec, scale)

NUMERIC [defaults p=30 s=6] numeric(prec, scale)

FLOAT if (prec) float(prec) else float

REAL real

SMALLMONEY smallmoney

MONEY money

DATE datetime

TIME datetime

Server classes for remote data access

818 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere data type Microsoft SQL Server default data type

TIMESTAMP datetime

SMALLDATETIME datetime

DATETIME datetime

CHAR(n) if (length > 255) text else varchar(length)

CHARACTER(n) char(n)

VARCHAR(n) if (length > 255) text else varchar(length)

LONG VARCHAR text

BINARY(n) if (length > 255) image else binary(length)

LONG BINARY image

DOUBLE float

UNIQUEIDENTIFIERSTR uniqueidentifier

Server class mysqlodbc
When you issue a CREATE TABLE statement, SQL Anywhere automatically converts the data types to the
corresponding MySQL data types using the following data type conversions.

SQL Anywhere data type MySQL default data type

BIT bit(1)

TINYINT tinyint unsigned

SMALLINT smallint

INT, INTEGER int

BIGINT bigint

DECIMAL(p,s), NUMERIC(p,s) decimal(p,s)

DATE date

TIME time

ODBC-based server classes

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 819

SQL Anywhere data type MySQL default data type

DATETIME, TIMESTAMP datetime

MONEY decimal(19,4)

SMALLMONEY decimal(10,4)

FLOAT float

REAL real

CHAR(n) char(n) if n is less than 254

varchar(n) if n is greater than or equal to 254 but less than 4000

longtext if n is greater than or equal to 4000

VARCHAR(n) varchar(n) if n is less than 4000

longtext if n is greater than or equal to 4000

LONG VARCHAR longtext

BINARY(n), VARBINARY(n) varbinary(n) if n is less than 4000

longblob if n is greater than or equal to 4000

LONG BINARY longblob

Server class msaccessodbc
Access databases are stored in a .mdb file. Using the ODBC manager, create an ODBC data source and map
it to one of these files. A new .mdb file can be created through the ODBC manager. This database file becomes
the default if you don't specify a different default when you create a table through SQL Anywhere.

Assuming an ODBC data source named access, you can use any of the following statements to access data:

● CREATE TABLE tab1 (a int, b char(10))
AT 'access...tab1';

● CREATE TABLE tab1 (a int, b char(10))
AT 'access;d:\pcdb\data.mdb;;tab1';

● CREATE EXISTING TABLE tab1
AT 'access;d:\pcdb\data.mdb;;tab1';

Access does not support the owner name qualification; leave it empty.

Server classes for remote data access

820 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Data type conversions: Microsoft Access

SQL Anywhere data type Microsoft Access default data type

BIT, TINYINT TINYINT

SMALLINT SMALLINT

INT, INTEGER INTEGER

BIGINT DECIMAL(19,0)

DECIMAL(p,s), NUMERIC(p,s) DECIMAL(p,s)

DATE, TIME, DATETIME, TIMESTAMP DATETIME

MONEY, SMALLMONEY MONEY

FLOAT FLOAT

REAL REAL

CHAR(n), VARCHAR(n) CHARACTER(n) if n is less than 254

TEXT if n is greater than or equal to 254

LONG VARCHAR TEXT

BINARY, VARBINARY BINARY(n) if n is less than 4000

IMAGE if n is greater than or equal to 4000

LONG BINARY IMAGE

Server class odbc
ODBC data sources that do not have their own server class use server class odbc. You can use any ODBC
driver. Sybase certifies the following ODBC data sources:

● “Microsoft Excel (Microsoft 3.51.171300)” on page 822
● “Microsoft FoxPro (Microsoft 3.51.171300)” on page 822
● “Lotus Notes SQL 2.0” on page 823

The latest versions of Microsoft ODBC drivers can be obtained through the Microsoft Data Access
Components (MDAC) distribution found at the Microsoft Download Center. The Microsoft driver versions
listed above are part of MDAC 2.0.

ODBC-based server classes

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 821

Microsoft Excel (Microsoft 3.51.171300)
With Excel, each Excel workbook is logically considered to be a database holding several tables. Tables are
mapped to sheets in a workbook. When you configure an ODBC data source name in the ODBC driver
manager, you specify a default workbook name associated with that data source. However, when you issue
a CREATE TABLE statement, you can override the default and specify a workbook name in the location
string. This allows you to use a single ODBC DSN to access all of your excel workbooks.

In this example, an ODBC data source named excel was created. To create a workbook named work1.xls
with a sheet (table) called mywork:

CREATE TABLE mywork (a int, b char(20))
AT 'excel;d:\work1.xls;;mywork';

To create a second sheet (or table) execute a statement such as:

CREATE TABLE mywork2 (x float, y int)
AT 'excel;d:\work1.xls;;mywork2';

You can import existing worksheets into SQL Anywhere using CREATE EXISTING, under the assumption
that the first row of your spreadsheet contains column names.

CREATE EXISTING TABLE mywork
AT'excel;d:\work1;;mywork';

If SQL Anywhere reports that the table is not found, you may need to explicitly state the column and row
range you want to map to. For example:

CREATE EXISTING TABLE mywork
AT 'excel;d:\work1;;mywork$';

Adding the $ to the sheet name indicates that the entire worksheet should be selected.

Note in the location string specified by AT that a semicolon is used instead of a period for field separators.
This is because periods occur in the file names. Excel does not support the owner name field so leave this
blank.

Deletes are not supported. Also some updates may not be possible since the Excel driver does not support
positioned updates.

Microsoft FoxPro (Microsoft 3.51.171300)
You can store FoxPro tables together inside a single FoxPro database file (.dbc), or, you can store each table
in its own separate .dbf file. When using .dbf files, be sure the file name is filled into the location string;
otherwise the directory that SQL Anywhere was started in is used.

CREATE TABLE fox1 (a int, b char(20))
AT 'foxpro;d:\pcdb;;fox1';

This statement creates a file named d:\pcdb\fox1.dbf when you choose the Free Table Directory option in
the ODBC Driver Manager.

Server classes for remote data access

822 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Lotus Notes SQL 2.0
You can obtain this driver from the Lotus web site, http://www.lotus.com/. Read the documentation that is
included with it for an explanation of how Notes data maps to relational tables. You can easily map SQL
Anywhere tables to Notes forms.

Here is how to set up SQL Anywhere to access the Address sample file.

● Create an ODBC data source using the NotesSQL driver. The database will be the sample names file:
c:\notes\data\names.nsf. The Map Special Characters option should be turned on. For this example,
the Data Source Name is my_notes_dsn.

● Create a server in SQL Anywhere:

CREATE SERVER names
CLASS 'odbc'
USING 'my_notes_dsn';

● Map the Person form into a SQL Anywhere table:

CREATE EXISTING TABLE Person
AT 'names...Person';

● Query the table

SELECT * FROM Person;

Avoiding password prompts
Lotus Notes does not support sending a user name and password through the ODBC API. If you try to access
Lotus notes using a password protected ID, a window appears on the computer where SQL Anywhere is
running, and prompts you for a password. Avoid this behavior in multi-user server environments.

To access Lotus Notes unattended, without ever receiving a password prompt, you must use a non-password-
protected ID. You can remove password protection from your ID by clearing it (choose File » Tools » User
ID » Clear Password), unless your Domino administrator required a password when your ID was created.
In this case, you will not be able to clear it.

ODBC-based server classes

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 823

http://www.lotus.com/

JDBC-based server classes
JDBC-based server classes are used when SQL Anywhere internally uses a Java Virtual Machine and
jConnect 5.5 to connect to the remote server. The JDBC-based server classes are:

● sajdbc SQL Anywhere.

● asejdbc Sybase SQL Server and Adaptive Server Enterprise (version 10 and later).

Configuration notes for JDBC classes
When you access remote servers defined with JDBC-based classes, consider that:

● For optimum performance, an ODBC-based class is recommended (saodbc or aseodbc).

● Any remote server that you access using the asejdbc or sajdbc server class must be set up to handle a
jConnect 6.x-based client.

● If a JDBC remote server connection is disconnected or lost, you only find out that the server is unavailable
if you attempt to use the JDBC remote server to access a proxy object, such as a proxy table or proxy
procedure. ODBC does not have this limitation.

Server class sajdbc
A server with server class sajdbc is a SQL Anywhere server. No special requirements exist for the
configuration of a SQL Anywhere data source.

USING parameter in the CREATE SERVER statement
You must run a separate CREATE SERVER statement for each SQL Anywhere database you intend to
access. For example, if a SQL Anywhere server named TestSA is running on the computer banana and owns
three databases (db1, db2, db3), you would configure the local SQL Anywhere database server similar to
this:

CREATE SERVER TestSAdb1
CLASS 'sajdbc'
USING 'banana:2638/db1'
CREATE SERVER TestSAdb2
CLASS 'sajdbc'
USING 'banana:2638/db2'
CREATE SERVER TestSAdb3
CLASS 'sajdbc'
USING 'banana:2638/db3';

If you do not specify a /database-name value, the remote connection uses the remote SQL Anywhere default
database.

For more information, see “CREATE SERVER statement” [SQL Anywhere Server - SQL Reference].

Server classes for remote data access

824 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Server class asejdbc
A server with server class asejdbc is a Sybase SQL Server and Adaptive Server Enterprise (version 10 and
later) server. No special requirements exist for the configuration of an Adaptive Server Enterprise data
source.

Notes
● The local setting of the quoted_identifiers option controls the use of quoted identifiers for Adaptive

Server Enterprise. For example, if you set the quoted_identifiers option to Off locally, then quoted
identifiers are turned off for Adaptive Server Enterprise.

Data type conversions: JDBC and Adaptive Server Enterprise

When you issue a CREATE TABLE statement, SQL Anywhere automatically converts the data types to the
corresponding Adaptive Server Enterprise data types using the following data type conversions.

SQL Anywhere data type Adaptive Server Enterprise default data type

BIT bit

TINYINT tinyint

SMALLINT smallint

INT int

INTEGER integer

DECIMAL [defaults p=30, s=6] numeric(30,6)

DECIMAL(128,128) not supported

NUMERIC [defaults p=30 s=6] numeric(30,6)

NUMERIC(128,128) not supported

FLOAT real

REAL real

DOUBLE float

SMALLMONEY numeric(10,4)

MONEY numeric(19,4)

DATE datetime

TIME datetime

JDBC-based server classes

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 825

SQL Anywhere data type Adaptive Server Enterprise default data type

TIMESTAMP datetime

SMALLDATETIME datetime

DATETIME datetime

CHAR(n) varchar(n)

CHARACTER(n) varchar(n)

VARCHAR(n) varchar(n)

CHARACTER VARYING(n) varchar(n)

LONG VARCHAR text

TEXT text

BINARY(n) binary(n)

LONG BINARY image

IMAGE image

BIGINT numeric(19,0)

Server classes for remote data access

826 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Stored Procedures and Triggers

This section describes how to build logic into your database using SQL stored procedures and triggers. Storing
logic in the database makes it available automatically to all applications, providing consistency, performance, and
security benefits. This section also describes how to use the SQL Anywhere debugger—a powerful tool for
debugging all kinds of logic.

Using procedures, triggers, and batches .. 829
Debugging procedures, functions, triggers, and events .. 881

Using procedures, triggers, and batches

Contents
Procedure and trigger overview ... 830
Benefits of procedures and triggers ... 831
Introduction to procedures ... 832
Introduction to user-defined functions ... 838
Introduction to triggers ... 842
Introduction to batches .. 851
Control statements .. 854
The structure of procedures and triggers .. 857
Returning results from procedures .. 860
Using cursors in procedures and triggers .. 865
Errors and warnings in procedures and triggers .. 868
Using the EXECUTE IMMEDIATE statement in procedures 875
Transactions and savepoints in procedures and triggers .. 876
Tips for writing procedures .. 877
Statements allowed in procedures, triggers, events, and batches 879
Hiding the contents of procedures, functions, triggers and views 880

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 829

Procedure and trigger overview
Procedures and triggers store procedural SQL statements in a database for use by all applications. They can
include control statements that allow repetition (LOOP statement) and conditional execution (IF statement
and CASE statement) of SQL statements. Batches are sets of SQL statements submitted to the database
server as a group. Many features available in procedures and triggers, such as control statements, are also
available in batches.

Procedures are invoked with a CALL statement, and use parameters to accept values and return values to
the calling environment. SELECT statements can also operate on procedure result sets by including the
procedure name in the FROM clause.

Procedures can return result sets to the caller, call other procedures, or fire triggers. For example, a user-
defined function is a type of stored procedure that returns a single value to the calling environment. User-
defined functions do not modify parameters passed to them, but rather, they broaden the scope of functions
available to queries and other SQL statements.

Triggers are associated with specific database tables. They fire automatically whenever someone inserts,
updates or deletes rows of the associated table. Triggers can call procedures and fire other triggers, but they
have no parameters and cannot be invoked by a CALL statement.

SQL Anywhere debugger
You can debug stored procedures and triggers using the SQL Anywhere debugger. See “Debugging
procedures, functions, triggers, and events” on page 881.

You can profile stored procedures to analyze performance characteristics in Sybase Central. See “Procedure
profiling using system procedures” on page 208.

Using procedures, triggers, and batches

830 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Benefits of procedures and triggers
Procedures and triggers enhance the security, efficiency, and standardization of databases.

Definitions for procedures and triggers appear in the database, separately from any one database application.
This separation provides several advantages.

Standardization
Procedures and triggers standardize actions performed by more than one application program. By coding
the action once and storing it in the database for future use, applications need only call the procedure or fire
the trigger to achieve the desired result repeatedly. And since changes occur in only one place, all applications
using the action automatically acquire the new functionality if the implementation of the action changes.

Efficiency
Procedures and triggers used in a network database server environment can access data in the database
without requiring network communication. This means they execute faster and with less impact on network
performance than if they had been implemented in an application on one of the client machines.

When you create a procedure or trigger, it is automatically checked for correct syntax, and then stored in the
system tables. The first time any application calls or fires a procedure or trigger, it is compiled from the
system tables into the server's virtual memory and executed from there. Since one copy of the procedure or
trigger remains in memory after the first execution, repeated executions of the same procedure or trigger
happen instantly. As well, several applications can use a procedure or trigger concurrently, or one application
can use it recursively.

Security
Procedures and triggers provide security by allowing users limited access to data in tables that they cannot
directly examine or modify.

Triggers, for example, execute under the table permissions of the owner of the associated table, but any user
with permissions to insert, update or delete rows in the table can fire them. Similarly, procedures (including
user-defined functions) execute with permissions of the procedure owner, but any user granted permissions
can call them. This means that procedures and triggers can (and usually do) have different permissions than
the user ID that invoked them.

Benefits of procedures and triggers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 831

Introduction to procedures

Creating procedures
In Sybase Central, the Create Procedure Wizard provides the option of using procedure templates.
Alternatively, you can use Interactive SQL to execute a CREATE PROCEDURE statement to create a
procedure. You must have DBA or RESOURCE authority to create procedure.

To create a new procedure (Sybase Central)

1. Connect to the database as a user with DBA or Resource authority.

2. In the left pane, double-click Procedures & Functions.

3. Choose File » New » Procedure.

4. Follow the instructions in the Create Procedure Wizard.

5. In the right pane, click the SQL tab to complete the procedure code.

The new procedure appears in Procedures & Functions.

Example
The following simple example creates the procedure NewDepartment, which performs an INSERT into the
Departments table of the SQL Anywhere sample database, creating a new department.

CREATE PROCEDURE NewDepartment(
 IN id INT,
 IN name CHAR(35),
 IN head_id INT)
BEGIN
 INSERT
 INTO Departments (DepartmentID,
 DepartmentName, DepartmentHeadID)
 VALUES (id, name, head_id);
END;

The body of a procedure is a compound statement. The compound statement starts with a BEGIN statement
and concludes with an END statement. In the case of NewDepartment, the compound statement is a single
INSERT bracketed by BEGIN and END statements.

Parameters to procedures can be marked as one of IN, OUT, or INOUT. By default, parameters are INOUT
parameters. All parameters to the NewDepartment procedure are IN parameters, as they are not changed by
the procedure. You should set parameters to IN if they are not used to return values to the caller.

Temporary procedures

To create a temporary procedure, you must use the CREATE TEMPORARY PROCEDURE statement, an
extension of the CREATE PROCEDURE statement. Temporary procedures are not permanently stored in
the database. Instead, they are dropped at the end of a connection, or when specifically dropped, whichever

Using procedures, triggers, and batches

832 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

occurs first. See “CREATE PROCEDURE statement (web services)” [SQL Anywhere Server - SQL
Reference].

Remote procedures
To create a remote procedure, you must have at least one remote server. See:

● “Create remote procedures” on page 798
● “Create remote servers using Sybase Central” on page 781

See also
● “SQL Anywhere database connections” [SQL Anywhere Server - Database Administration]
● “CREATE PROCEDURE statement (web services)” [SQL Anywhere Server - SQL Reference]
● “ALTER PROCEDURE statement” [SQL Anywhere Server - SQL Reference]
● “Using compound statements” on page 855
● “Create remote procedures” on page 798

Altering procedures
You can modify an existing procedure using either Sybase Central or Interactive SQL. You must have DBA
authority or be the owner of the procedure.

In Sybase Central, you cannot rename an existing procedure directly. Instead, you must create a new
procedure with the new name, copy the previous code to it, and then delete the old procedure.

In Interactive SQL, you can execute an ALTER PROCEDURE statement to modify an existing procedure.
You must include the entire new procedure in this statement (in the same syntax as in the CREATE
PROCEDURE statement that created the procedure).

To alter the code of a procedure (Sybase Central)

1. Connect to the database as a user with DBA or Resource authority.

2. In the left pane, double-click Procedures & Functions.

3. Select the procedure.

4. Use one of the following methods to edit the procedure:

● In the right pane, click the SQL tab.

● Right-click the procedure and choose Edit In New Window.

Tip
You can open a separate window for each procedure and copy code between procedures.

● To add or edit a procedure comment, right-click the procedure and choose Properties.

If you use the Database Documentation Generator to document your SQL Anywhere database,
you will have the option to include these comments in the output. See “Documenting a database” [SQL
Anywhere Server - Database Administration].

Introduction to procedures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 833

See also
● “Set properties for database objects” on page 16
● “Granting permissions on procedures” [SQL Anywhere Server - Database Administration]
● “Revoking user permissions and authorities” [SQL Anywhere Server - Database Administration]
● “ALTER PROCEDURE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE PROCEDURE statement (web services)” [SQL Anywhere Server - SQL Reference]
● “Creating procedures” on page 832
● “Using Sybase Central to translate stored procedures” on page 679

Calling procedures
CALL statements invoke procedures. Procedures can be called by an application program, or by other
procedures and triggers.

The following statement calls the NewDepartment procedure to insert an Eastern Sales department:

CALL NewDepartment(210, 'Eastern Sales', 902);

After this call, you may want to check the Departments table to see that the new department has been added.

All users who have been granted EXECUTE permissions for the procedure can call the NewDepartment
procedure, even if they have no permissions on the Departments table.

Another way of calling a procedure that returns a result set is to call it in a query. You can execute queries
on result sets of procedures and apply WHERE clauses and other SELECT features to limit the result set.

SELECT t.ID, t.QuantityOrdered AS q
FROM ShowCustomerProducts(149) t;

See also
● “Database permissions and authorities overview” [SQL Anywhere Server - Database Administration]
● “CALL statement” [SQL Anywhere Server - SQL Reference]
● “GRANT statement” [SQL Anywhere Server - SQL Reference]
● “FROM clause” [SQL Anywhere Server - SQL Reference]

Copying procedures in Sybase Central
To copy procedures between databases in Sybase Central, select the procedure in the left pane and drag it
to Procedures & Functions of another connected database. A new procedure is then created, and the original
procedure's code is copied to it.

Only the procedure code is copied to the new procedure and the other procedure properties (permissions,
and so on) are not copied. A procedure can be copied to the same database, provided you give it a new name.

Using procedures, triggers, and batches

834 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Deleting procedures
Once you create a procedure, it remains in the database until someone explicitly removes it. Only the owner
of the procedure or a user with DBA authority can drop the procedure from the database.

To delete a procedure (Sybase Central)

1. Connect to the database as a DBA user or as the owner of the procedure.

2. In the left pane, double-click Procedures & Functions.

3. Select the procedure and choose Edit » Delete.

4. Click Yes.

To delete a procedure (SQL)

1. Connect to a database as a user with DBA authority or as the owner of the procedure.

2. Execute a DROP PROCEDURE statement.

Example
The following statement removes the procedure NewDepartment from the database:

DROP PROCEDURE NewDepartment;

See also
● “SQL Anywhere database connections” [SQL Anywhere Server - Database Administration]
● “DROP PROCEDURE statement” [SQL Anywhere Server - SQL Reference]

Returning procedure results in parameters
Procedures return results to the calling environment in one of the following ways:

● Individual values are returned as OUT or INOUT parameters.

● Result sets can be returned.

● Procedures can return a single result using a RETURN statement.

To create and run a procedure, and display its output (SQL)

1. Using Interactive SQL, connect to the SQL Anywhere sample database as the DBA.

2. In the SQL Statements pane, type the following to create a procedure (AverageSalary) that returns the
average salary of employees as an OUT parameter:

CREATE PROCEDURE AverageSalary(OUT avgsal NUMERIC(20,3))
BEGIN
 SELECT AVG(Salary)
 INTO avgsal

Introduction to procedures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 835

 FROM Employees;
END;

3. Create a variable to hold the procedure output. In this case, the output variable is numeric, with three
decimal places, so create a variable as follows:

CREATE VARIABLE Average NUMERIC(20,3);
4. Call the procedure using the created variable to hold the result:

CALL AverageSalary(Average);

If the procedure was created and run properly, the Interactive SQL Messages tab does not display any
errors.

5. To inspect the value of the variable, execute the following statement:

SELECT Average;

Look at the value of the output variable Average. The Results tab in the Results pane displays the value
49988.623 for this variable, the average employee salary.

See also
● “SQL Anywhere database connections” [SQL Anywhere Server - Database Administration]

Returning procedure results in result sets
In addition to returning results to the calling environment in individual parameters, procedures can return
information in result sets. A result set is typically the result of a query. The following procedure returns a
result set containing the salary for each employee in a given department:

CREATE PROCEDURE SalaryList(IN department_id INT)
RESULT ("Employee ID" INT, Salary NUMERIC(20,3))
BEGIN
 SELECT EmployeeID, Salary
 FROM Employees
 WHERE Employees.DepartmentID = department_id;
END;

If Interactive SQL calls this procedure, the names in the RESULT clause are matched to the results of the
query and used as column headings in the displayed results.

To test this procedure from Interactive SQL, you can CALL it, specifying one of the departments of the
company. In Interactive SQL, the results appear on the Results tab in the Results pane.

Example
To list the salaries of employees in the R & D department (department ID 100), type the following:

CALL SalaryList(100);

Employee ID Salary

102 45700.000

Using procedures, triggers, and batches

836 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Employee ID Salary

105 62000.000

160 57490.000

243 72995.000

... ...

Interactive SQL can only return multiple result sets if you have this option enabled on the Results tab of the
Options window. Each result set appears on a separate tab in the Results pane.

See also
● “Returning multiple result sets from procedures” on page 863

Introduction to procedures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 837

Introduction to user-defined functions
User-defined functions are a class of procedures that return a single value to the calling environment. This
section introduces creating, using, and dropping user-defined functions.

Note
SQL Anywhere does not make any assumptions about whether user-defined functions are thread-safe. This
is the responsibility of the application developer.

Creating user-defined functions
You use the CREATE FUNCTION statement to create user-defined functions. You must have RESOURCE
authority to execute this statement.

The following simple example creates a function that concatenates two strings, together with a space, to
form a full name from a first name and a last name.

CREATE FUNCTION FullName(FirstName CHAR(30),
 LastName CHAR(30))
RETURNS CHAR(61)
BEGIN
 DECLARE name CHAR(61);
 SET name = FirstName || ' ' || LastName;
 RETURN (name);
END;

The CREATE FUNCTION syntax differs slightly from that of the CREATE PROCEDURE statement. The
following are distinctive differences:

● No IN, OUT, or INOUT keywords are required, as all parameters are IN parameters.

● The RETURNS clause is required to specify the data type being returned.

● The RETURN statement is required to specify the value being returned.

You can also create user-defined functions from Sybase Central.

To create a user-defined function (Sybase Central)

1. Connect to the database as a user with DBA or Resource authority.

2. In the left pane, click Procedures & Functions.

3. Choose File » New » Function.

4. Follow the instructions in the Create Function Wizard.

5. In the right pane, click the SQL tab to complete the procedure code.

The new function appears in Procedures & Functions.

Using procedures, triggers, and batches

838 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “CREATE FUNCTION statement (web services)” [SQL Anywhere Server - SQL Reference]

Calling user-defined functions
A user-defined function can be used, subject to permissions, in any place you would use a built-in non-
aggregate function.

The following statement in Interactive SQL returns a full name from two columns containing a first and last
name:

SELECT FullName(GivenName, Surname)
 AS "Full Name"
 FROM Employees;

Full Name

Fran Whitney

Matthew Cobb

Philip Chin

...

The following statement in Interactive SQL returns a full name from a supplied first and last name:

SELECT FullName('Jane', 'Smith')
 AS "Full Name";

Full Name

Jane Smith

Any user who has been granted EXECUTE permissions for the function can use the FullName function.

Example
The following user-defined function illustrates local declarations of variables.

The Customers table includes Canadian and US customers. The user-defined function Nationality forms a
3-letter country code based on the Country column.

CREATE FUNCTION Nationality(CustomerID INT)
RETURNS CHAR(3)
BEGIN
 DECLARE nation_string CHAR(3);
 DECLARE nation country_t;
 SELECT DISTINCT Country INTO nation
 FROM Customers
 WHERE ID = CustomerID;
 IF nation = 'Canada' THEN
 SET nation_string = 'CDN';

Introduction to user-defined functions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 839

 ELSE IF nation = 'USA' OR nation = ' ' THEN
 SET nation_string = 'USA';
 ELSE
 SET nation_string = 'OTH';
 END IF;
 END IF;
RETURN (nation_string);
END;

This example declares a variable nation_string to hold the nationality string, uses a SET statement to set a
value for the variable, and returns the value of the nation_string string to the calling environment.

The following query lists all Canadian customers in the Customers table:

SELECT *
FROM Customers
WHERE Nationality(ID) = 'CDN';

Declarations of cursors and exceptions are discussed in later sections.

Notes
While this function is useful for illustration, it may perform very poorly if used in a SELECT involving
many rows. For example, if you used the function in the SELECT list of a query on a table containing 100,000
rows, of which 10,000 are returned, the function will be called 10,000 times. If you use it in the WHERE
clause of the same query, it would be called 100,000 times.

Dropping user-defined functions
Once you create a user-defined function, it remains in the database until someone explicitly removes it. Only
the owner of the function or a user with DBA authority can drop a function from the database.

The following statement removes the function FullName from the database:

DROP FUNCTION FullName;

Permissions to execute user-defined functions
Ownership of a user-defined function belongs to the user who created it, and that user can execute it without
permission. The owner of a user-defined function can grant permissions to other users with the GRANT
EXECUTE command.

For example, the creator of the function FullName could allow another user to use FullName with the
statement:

GRANT EXECUTE ON Nationality TO BobS;

The following statement revokes permissions to use the function:

REVOKE EXECUTE ON Nationality FROM BobS;

See “Granting permissions on procedures” [SQL Anywhere Server - Database Administration].

Using procedures, triggers, and batches

840 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Advanced information on user-defined functions
SQL Anywhere treats all user-defined functions as idempotent unless they are declared NOT
DETERMINISTIC. Idempotent functions return a consistent result for the same parameters and are free of
side effects. Two successive calls to an idempotent function with the same parameters return the same result,
and have no unwanted side-effects on the query's semantics.

For more information about non-deterministic and deterministic functions, see “Function
caching” on page 604.

Introduction to user-defined functions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 841

Introduction to triggers
A trigger is a special form of stored procedure that is executed automatically when a statement that modifies
data is executed. You use triggers whenever referential integrity and other declarative constraints are
insufficient. See “Ensuring data integrity” on page 79, and “CREATE TABLE statement” [SQL Anywhere
Server - SQL Reference].

You may want to enforce a more complex form of referential integrity involving more detailed checking, or
you may want to enforce checking on new data, but allow legacy data to violate constraints. Another use for
triggers is in logging the activity on database tables, independent of the applications using the database.

Note
There are three special statements that triggers do not fire after: LOAD TABLE, TRUNCATE, and
WRITETEXT. See “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference], “TRUNCATE
statement” [SQL Anywhere Server - SQL Reference], and “WRITETEXT statement [T-SQL]” [SQL
Anywhere Server - SQL Reference].

Trigger execution permissions
Triggers execute with the permissions of the owner of the associated table or view, not the user ID whose
actions cause the trigger to fire. A trigger can modify rows in a table that a user could not modify directly.

You can prevent triggers from being fired by specifying the -gf server option, or by setting the fire_triggers
option. See:

● “-gf server option” [SQL Anywhere Server - Database Administration]
● “fire_triggers option [compatibility]” [SQL Anywhere Server - Database Administration]

Trigger types

SQL Anywhere supports the following trigger types:

● BEFORE trigger A BEFORE trigger fires before a triggering action is performed. BEFORE triggers
can be defined for tables, but not views.

● AFTER trigger An AFTER trigger fires after the triggering action is complete. AFTER triggers can
be defined for tables, but not views.

● INSTEAD OF trigger An INSTEAD OF trigger is a conditional trigger that fires instead of the
triggering action. INSTEAD OF triggers can be defined for tables and views (except materialized views).
See “INSTEAD OF triggers” on page 849.

For a full description of the syntax for defining a trigger, see “CREATE TRIGGER statement” [SQL
Anywhere Server - SQL Reference].

Trigger events
Triggers can be defined on one or more of the following triggering events:

Using procedures, triggers, and batches

842 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Action Description

INSERT Invokes the trigger whenever a new row is inserted into the table associated with
the trigger.

DELETE Invokes the trigger whenever a row of the associated table is deleted.

UPDATE Invokes the trigger whenever a row of the associated table is updated.

UPDATE OF col-
umn-list

Invokes the trigger whenever a row of the associated table is updated such that
a column in the column-list is modified.

You can write separate triggers for each event that you need to handle or, if you have some shared actions
and some actions that depend on the event, you can create a trigger for all events and use an IF statement to
distinguish the action taking place. See “Trigger operation conditions” [SQL Anywhere Server - SQL
Reference].

Trigger times
Triggers can be either row-level or statement-level:

● A row-level trigger executes once for each row that is changed. Row-level triggers execute BEFORE or
AFTER the row is changed.

Column values for the new and old images of the affected row are made available to the trigger via
variables.

● A statement-level trigger executes after the entire triggering statement is completed. Rows affected by
the triggering statement are made available to the trigger via temporary tables representing the new and
old images of the rows. SQL Anywhere does not support statement-level BEFORE triggers.

Flexibility in trigger execution time is useful for triggers that rely on referential integrity actions such as
cascaded updates or deletes being performed (or not) as they execute.

If an error occurs while a trigger is executing, the operation that fired the trigger fails. INSERT, UPDATE,
and DELETE are atomic operations. When they fail, all effects of the statement (including the effects of
triggers and any procedures called by triggers) revert back to their pre-operation state. See “Atomic
compound statements” on page 855.

Creating triggers
You create triggers using either Sybase Central or Interactive SQL. In Sybase Central, you can use a wizard
to provide necessary information. In Interactive SQL, you can use a CREATE TRIGGER statement. For
both tools, you must have DBA or RESOURCE authority to create a trigger and you must have ALTER
permissions on the table associated with the trigger.

The body of a trigger consists of a compound statement: a set of semicolon-delimited SQL statements
bracketed by a BEGIN and an END statement.

Introduction to triggers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 843

You cannot use COMMIT and ROLLBACK and some ROLLBACK TO SAVEPOINT statements within
a trigger.

To create a trigger for a given table (Sybase Central)

1. Connect to the database as a user with DBA or Resource authority.

2. In the left pane, click Triggers.

3. Choose File » New » Trigger.

4. Follow the instructions in the Create Trigger Wizard.

5. To complete the code, in the right pane click the SQL tab.

To create a trigger for a given table (SQL)

1. Connect to a database as a user with DBA authority. You must also have ALTER permissions on the
table associated with the trigger.

2. Execute a CREATE TRIGGER statement.

Example 1: A row-level INSERT trigger
The following trigger is an example of a row-level INSERT trigger. It checks that the birth date entered for
a new employee is reasonable:

CREATE TRIGGER check_birth_date
 AFTER INSERT ON Employees
REFERENCING NEW AS new_employee
FOR EACH ROW
BEGIN
 DECLARE err_user_error EXCEPTION
 FOR SQLSTATE '99999';
 IF new_employee.BirthDate > 'June 6, 2001' THEN
 SIGNAL err_user_error;
 END IF;
END;

Note
You may already have a trigger with the name check_birth_date in your SQL Anywhere sample database.
If so, and you attempt to run the above SQL statement, an error is returned indicating that the trigger definition
conflicts with existing triggers.

This trigger fires after any row is inserted into the Employees table. It detects and disallows any new rows
that correspond to birth dates later than June 6, 2001.

The phrase REFERENCING NEW AS new_employee allows statements in the trigger code to refer to the
data in the new row using the alias new_employee.

Signaling an error causes the triggering statement, and any previous trigger effects, to be undone.

For an INSERT statement that adds many rows to the Employees table, the check_birth_date trigger fires
once for each new row. If the trigger fails for any of the rows, all effects of the INSERT statement roll back.

Using procedures, triggers, and batches

844 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

You can specify that the trigger fires before the row is inserted, rather than after, by changing the second
line of the example to say :

BEFORE INSERT ON Employees

The REFERENCING NEW clause refers to the inserted values of the row; it is independent of the timing
(BEFORE or AFTER) of the trigger.

You may find it easier in some cases to enforce constraints using declarative referential integrity or CHECK
constraints, rather than triggers. For example, implementing the above example with a column check
constraint proves more efficient and concise:

CHECK (@col <= 'June 6, 2001')

Example 2: A row-level DELETE trigger example
The following CREATE TRIGGER statement defines a row-level DELETE trigger:

CREATE TRIGGER mytrigger
BEFORE DELETE ON Employees
REFERENCING OLD AS oldtable
FOR EACH ROW
BEGIN
 ...
END;

The REFERENCING OLD clause is independent of the timing (BEFORE or AFTER) of the trigger, and
enables the delete trigger code to refer to the values in the row being deleted using the alias oldtable.

Example 3: A statement-level UPDATE trigger example
The following CREATE TRIGGER statement is appropriate for statement-level UPDATE triggers:

CREATE TRIGGER mytrigger AFTER UPDATE ON Employees
REFERENCING NEW AS table_after_update
 OLD AS table_before_update
FOR EACH STATEMENT
BEGIN
 ...
END;

The REFERENCING NEW and REFERENCING OLD clause allows the UPDATE trigger code to refer to
both the old and new values of the rows being updated. The table alias table_after_update refers to columns
in the new row and the table alias table_before_update refers to columns in the old row.

The REFERENCING NEW and REFERENCING OLD clause has a slightly different meaning for statement-
level and row-level triggers. For statement-level triggers the REFERENCING OLD or NEW aliases are table
aliases, while in row-level triggers they refer to the row being altered.

See also
● “SQL Anywhere database connections” [SQL Anywhere Server - Database Administration]
● “COMMIT statement” [SQL Anywhere Server - SQL Reference]
● “ROLLBACK TO SAVEPOINT statement” [SQL Anywhere Server - SQL Reference]
● “CREATE TRIGGER statement” [SQL Anywhere Server - SQL Reference]
● “Using compound statements” on page 855

Introduction to triggers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 845

Executing triggers
Triggers execute automatically whenever an INSERT, UPDATE, or DELETE operation is performed on
the table named in the trigger. A row-level trigger fires once for each row affected, while a statement-level
trigger fires once for the entire statement.

When an INSERT, UPDATE, or DELETE fires a trigger, the order of operation is as follows, depending on
the trigger type (BEFORE or AFTER):

1. BEFORE triggers fire.

2. The operation itself is performed.

3. Referential actions are performed.

4. AFTER triggers fire.

Note
When creating a trigger using the CREATE TRIGGER statement, if a trigger-type is not specified, the default
is AFTER.

If any of the steps encounter an error not handled within a procedure or trigger, the preceding steps are
undone, the subsequent steps are not performed, and the operation that fired the trigger fails.

Altering triggers
You can modify an existing trigger using either Sybase Central or Interactive SQL. You must be the owner
of the table on which the trigger is defined, or be DBA, or have ALTER permissions on the table and have
RESOURCE authority.

In Sybase Central, you cannot rename an existing trigger directly. Instead, you must create a new trigger
with the new name, copy the previous code to it, and then delete the old trigger.

Alternatively, you can use an ALTER TRIGGER statement to modify an existing trigger. You must include
the entire new trigger in this statement (in the same syntax as in the CREATE TRIGGER statement that
created the trigger).

To alter the code of a trigger (Sybase Central)

1. Connect to the database as a user with DBA authority or as the owner of the trigger.

2. In the left pane, double-click Triggers.

3. Select the trigger.

4. Use one of the following methods to alter the trigger:

● In the right pane, click the SQL tab.

● Right-click the trigger and choose Edit In New Window.

Using procedures, triggers, and batches

846 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Tip
You can open a separate window for each procedure and copy code between triggers.

● To add or edit a procedure comment, right-click the trigger and choose Properties.

If you use the Database Documentation Generator to document your SQL Anywhere database,
you will have the option to include these comments in the output. See “Documenting a database” [SQL
Anywhere Server - Database Administration].

To alter the code of a trigger (SQL)

1. Connect to the database as a user with DBA authority or as the owner of the trigger.

2. Execute an ALTER TRIGGER statement. Include the entire new trigger in this statement.

See also
● “Set properties for database objects” on page 16
● “SQL Anywhere database connections” [SQL Anywhere Server - Database Administration]
● “Using Sybase Central to translate stored procedures” on page 679
● “ALTER TRIGGER statement” [SQL Anywhere Server - SQL Reference]

Dropping triggers
Once you create a trigger, it remains in the database until someone explicitly removes it. You must have
ALTER permissions on the table associated with the trigger to drop the trigger.

To delete a trigger (Sybase Central)

1. Connect to the database as a user with DBA authority or as the owner of the trigger.

2. In the left pane, double-click Triggers.

3. Select the trigger and choose Edit » Delete.

4. Click Yes.

To delete a trigger (SQL)

1. Connect to a database as a user with DBA authority or as the owner of the trigger.

2. Execute a DROP TRIGGER statement.

Example
The following statement removes the mytrigger trigger from the database:

DROP TRIGGER mytrigger;

Introduction to triggers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 847

See also
● “SQL Anywhere database connections” [SQL Anywhere Server - Database Administration]
● “DROP TRIGGER statement” [SQL Anywhere Server - SQL Reference]

Trigger execution permissions
You cannot grant permissions to execute a trigger, since users cannot execute triggers: SQL Anywhere fires
them in response to actions on the database. Nevertheless, a trigger does have permissions associated with
it as it executes, defining its right to perform certain actions.

Triggers execute using the permissions of the owner of the table on which they are defined, not the
permissions of the user who caused the trigger to fire, and not the permissions of the user who created the
trigger.

When a trigger refers to a table, it uses the group memberships of the table creator to locate tables with no
explicit owner name specified. For example, if a trigger on user_1.Table_A references Table_B and does
not specify the owner of Table_B, then either Table_B must have been created by user_1 or user_1 must be
a member of a group (directly or indirectly) that is the owner of Table_B. If neither condition is met, the
database server returns a message, when the trigger fires, indicating that the table cannot be found.

Also, user_1 must have permissions to perform the operations specified in the trigger.

See also
● “Database permissions and authorities overview” [SQL Anywhere Server - Database Administration]

Advanced information on triggers
One aspect of triggers that can be difficult to understand is the order in which triggers fire if several triggers
are impacted by the same triggering action. Whether competing triggers are fired, and the order in which
they are fired, depends on two things: trigger type (BEFORE, INSTEAD OF, or AFTER), and trigger scope
(row-level or statement-level).

For row-level triggers, BEFORE triggers fire before INSTEAD OF triggers, which fire before AFTER
triggers. All row-level triggers for a given row fire before any triggers fire for a subsequent row.

For statement-level triggers, INSTEAD OF triggers fire before AFTER triggers. Statement-level BEFORE
triggers are not supported.

If there are competing statement-level and row-level AFTER triggers, the statement-level AFTER triggers
fire after all row-level triggers have completed.

If there are competing statement-level and row-level INSTEAD OF triggers, the row-level triggers do not
fire.

Using procedures, triggers, and batches

848 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

INSTEAD OF triggers
INSTEAD OF triggers differ from BEFORE and AFTER triggers because when an INSTEAD OF trigger
fires, the triggering action is skipped and the specified action is performed instead.

The following is a list of capabilities and restrictions that are unique to INSTEAD OF triggers:

● There can only be one INSTEAD OF trigger for each trigger event on a given table.

● INSTEAD OF triggers can be defined for a table or a view. However, INSTEAD OF triggers cannot be
defined on materialized views since you cannot execute DML operations, such as INSERT, DELETE,
and UPDATE statements, on materialized views.

● You cannot specify the ORDER or WHEN clauses when defining an INSTEAD OF trigger.

● You cannot define an INSTEAD OF trigger for an UPDATE OF column-list trigger event. See “CREATE
TRIGGER statement” [SQL Anywhere Server - SQL Reference].

● Whether an INSTEAD OF trigger performs recursion depends on whether the target of the trigger is a
base table or a view. Recursion occurs for views, but not for base tables. That is, if an INSTEAD OF
trigger performs DML operations on the base table on which the trigger is defined, those operations do
not cause triggers to fire (including BEFORE or AFTER triggers). If the target is a view, all triggers fire
for the operations performed on the view.

● If a table has an INSTEAD OF trigger defined on it, you cannot execute an INSERT statement with an
ON EXISTING clause against the table. Attempting to do so returns a SQLE_INSTEAD_TRIGGER
error.

● You cannot execute an INSERT statement against a view that was defined with the WITH CHECK
OPTION (or is nested inside another view that was defined this way), and that has an INSTEAD OF
INSERT trigger defined against it. This is true for UPDATE and DELETE statements as well. Attempting
to do so returns a SQLE_CHECK_TRIGGER_CONFLICT error.

● If an INSTEAD OF trigger is fired as a result of a positioned update, positioned delete, PUT statement,
or wide insert operation, a SQLE_INSTEAD_TRIGGER_POSITIONED error is returned.

Updating non-updatable views using INSTEAD OF triggers

INSTEAD OF triggers allow you to execute INSERT, UPDATE, or DELETE statements against a view that
is not inherently updatable. The body of the trigger defines what it means to execute the corresponding
INSERT, UPDATE, or DELETE statement. For example, suppose you create the following view:

CREATE VIEW V1 (Surname, GivenName, State)
 AS SELECT DISTINCT Surname, GivenName, State
 FROM Contacts;

You cannot delete rows from V1 because the DISTINCT keyword makes V1 not inherently updatable. In
other words, the database server cannot unambiguously determine what it means to delete a row from V1.
However, you could define an INSTEAD OF DELETE trigger that implements a delete operation on V1.
For example, the following trigger deletes all rows from Contacts with a given Surname, GivenName, and
State when that row is deleted from V1:

CREATE TRIGGER V1_Delete
 INSTEAD OF DELETE ON V1

Introduction to triggers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 849

 REFERENCING OLD AS old_row
 FOR EACH ROW
BEGIN
 DELETE FROM Contacts
 WHERE Surname = old_row.Surname
 AND GivenName = old_row.GivenName
 AND State = old_row.State
END;

Once the V1_Delete trigger is defined, you can delete rows from V1. You can also define other INSTEAD
OF triggers to allow INSERT and UPDATE statements to be performed on V1.

If a view with an INSTEAD OF DELETE trigger is nested in another view, it is treated like a base table for
the purposes of checking updatability for a DELETE. This is true for INSERT and UPDATE operations as
well. Continuing from the previous example, create another view:

CREATE VIEW V2 (Surname, GivenName) AS
 SELECT Surname, GivenName from V1;

Without the V1_Delete trigger, you cannot delete rows from V2 because V1 is not inherently updatable, so
neither is V2. However, if you define an INSTEAD OF DELETE trigger on V1, you can delete rows from
V2. Each row deleted from V2 results in a row being deleted from V1, which causes the V1_Delete trigger
to fire.

Be careful when defining an INSTEAD OF trigger on a nested view, since the firing of the trigger can have
unintended consequences. To make the intended behavior explicit, define the INSTEAD OF triggers on any
view referencing the nested view.

The following trigger could be defined on V2 to cause the desired behavior for a DELETE statement:

CREATE TRIGGER V2_Delete
 INSTEAD OF DELETE ON V2
 REFERENCING OLD AS old_row
 FOR EACH ROW
BEGIN
 DELETE FROM Contacts
 WHERE Surname = old_row.Surname
 AND GivenName = old_row.GivenName
END;

The V2_Delete trigger ensures that the behavior of a delete operation on V2 remains the same, even if the
INSTEAD OF DELETE trigger on V1 is removed or changed.

Using procedures, triggers, and batches

850 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Introduction to batches
A batch is a set of SQL statements submitted together and executed as a group, one after the other. The
control statements used in procedures (CASE, IF, LOOP, and so on) can also be used in batches. If the batch
consists of a compound statement enclosed in a BEGIN/END, then it can also contain host variables, local
declarations for variables, cursors, temporary tables and exceptions. Host variable references are permitted
within batches with the following restrictions:

● only one statement in the batch can refer to host variables

● the statement which uses host variables cannot be preceded by a statement which returns a result set

Use of BEGIN/END is recommended to clearly indicate when a batch is being used.

Statements within the batch may be delimited with semi-colons, in which case the batch is conforming to
the Watcom-SQL dialect. A multi-statement batch that does not use semi-colons to delimit statements
conforms to the Transact-SQL dialect. The dialect of the batch determines which statements are permitted
within the batch, and also determines how errors within the batch are handled. For more information about
Transact-SQL batches, see “Transact-SQL batch overview” on page 678.

In many ways, batches are similar to stored procedures; however, there are some differences:

● batches do not have names

● batches do not accept parameters

● batches are not stored persistently in the database

● batches cannot be shared by different connections

A simple batch consists of a set of SQL statements with no delimiters followed by a separate line with just
the word go on it. The following example creates an Eastern Sales department and transfers all sales reps
from Massachusetts to that department. It is an example of a Transact-SQL batch.

INSERT
INTO Departments (DepartmentID, DepartmentName)
VALUES (220, 'Eastern Sales')
UPDATE Employees
SET DepartmentID = 220
WHERE DepartmentID = 200
AND State = 'MA'
COMMIT
go

The word go is recognized by Interactive SQL and causes it to send the previous statements as a single batch
to the server. See “Executing multiple SQL statements” [SQL Anywhere Server - Database
Administration].

The following example, while similar in appearance, is handled quite differently by Interactive SQL. This
example does not use the Transact-SQL dialect. Each statement is delimited by a semicolon. Interactive SQL
sends each semicolon-delimited statement separately to the server. It is not treated as a batch.

Introduction to batches

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 851

INSERT
INTO Departments (DepartmentID, DepartmentName)
VALUES (220, 'Eastern Sales');
UPDATE Employees
SET DepartmentID = 220
WHERE DepartmentID = 200
AND State = 'MA';
COMMIT;

To have Interactive SQL treat it as a batch, it can be changed into a compound statement using BEGIN ...
END. The following is a revised version of the previous example. The three statements in the compound
statement are sent as a batch to the server.

BEGIN
 INSERT
 INTO Departments (DepartmentID, DepartmentName)
 VALUES (220, 'Eastern Sales');
 UPDATE Employees
 SET DepartmentID = 220
 WHERE DepartmentID = 200
 AND State = 'MA';
 COMMIT;
END

In this particular example, it makes no difference to the end result whether a batch or individual statements
are executed by the server. There are situations, though, where it can make a difference. Consider the
following example.

DECLARE @CurrentID INTEGER;
SET @CurrentID = 207;
SELECT Surname FROM Employees
 WHERE EmployeeID=@CurrentID;

If you execute this example using Interactive SQL, the database server returns an error indicating that the
variable cannot be found. This happens because Interactive SQL sends three separate statements to the server.
They are not executed as a batch. As you have already seen, the remedy is to use a compound statement to
force Interactive SQL to send these statements as a batch to the server. The following example accomplishes
this.

BEGIN
 DECLARE @CurrentID INTEGER;
 SET @CurrentID = 207;
 SELECT Surname FROM Employees
 WHERE EmployeeID=@CurrentID;
END

Putting a BEGIN and END around a set of statements forces Interactive SQL to treat them as a batch.

The IF statement is another example of a compound statement. Interactive SQL sends the following
statements as a single batch to the server.

IF EXISTS(SELECT *
 FROM SYSTAB
 WHERE table_name='Employees')
THEN

Using procedures, triggers, and batches

852 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 SELECT Surname AS LastName,
 GivenName AS FirstName
 FROM Employees;
 SELECT Surname, GivenName
 FROM Customers;
 SELECT Surname, GivenName
 FROM Contacts;
ELSE
 MESSAGE 'The Employees table does not exist'
 TO CLIENT;
END IF

This situation does not arise when using other techniques to prepare and execute SQL statements. For
example, an application that uses ODBC can prepare and execute a series of semicolon-separated statements
as a batch.

Care must be exercised when mixing Interactive SQL statements with SQL statements intended for the
server. The following is an example of how mixing Interactive SQL statements and SQL statements can be
an issue. In this example, since the Interactive SQL OUTPUT statement is embedded in the compound
statement, it is sent along with all the other statements to the server as a batch, and results in a syntax error.

IF EXISTS(SELECT *
 FROM SYSTAB
 WHERE table_name='Employees')
THEN
 SELECT Surname AS LastName,
 GivenName AS FirstName
 FROM Employees;
 SELECT Surname, GivenName
 FROM Customers;
 SELECT Surname, GivenName
 FROM Contacts;
 OUTPUT TO 'c:\\temp\\query.txt';
ELSE
 MESSAGE 'The Employees table does not exist'
 TO CLIENT;
END IF

The correct placement of the OUTPUT statement is shown below.

IF EXISTS(SELECT *
 FROM SYSTAB
 WHERE table_name='Employees')
THEN
 SELECT Surname AS LastName,
 GivenName AS FirstName
 FROM Employees;
 SELECT Surname, GivenName
 FROM Customers;
 SELECT Surname, GivenName
 FROM Contacts;
ELSE
 MESSAGE 'The Employees table does not exist'
 TO CLIENT;
END IF;
OUTPUT TO 'c:\\temp\\query.txt';

Introduction to batches

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 853

Control statements
There are several control statements for logical flow and decision making in the body of the procedure or
trigger, or in a batch. Available control statements include:

Control statement Syntax

Compound statements

See “BEGIN statement” [SQL Anywhere Server - SQL Refer-
ence].

BEGIN [ATOMIC]
 Statement-list
END

Conditional execution: IF

See “IF statement” [SQL Anywhere Server - SQL Reference].

IF condition THEN
 Statement-list
ELSEIF condition THEN
 Statement-list
ELSE
 Statement-list
END IF

Conditional execution: CASE

See “CASE statement” [SQL Anywhere Server - SQL Refer-
ence].

CASE expression
WHEN value THEN
 Statement-list
WHEN value THEN
 Statement-list
ELSE
 Statement-list
END CASE

Repetition: WHILE, LOOP

See “LOOP statement” [SQL Anywhere Server - SQL Refer-
ence].

WHILE condition LOOP
 Statement-list
END LOOP

Repetition: FOR cursor loop

See “FOR statement” [SQL Anywhere Server - SQL Reference].

FOR loop-name
 AS cursor-name CURSOR
FOR
 select-statement
DO
 Statement-list
END FOR

Break: LEAVE

See “LEAVE statement” [SQL Anywhere Server - SQL Refer-
ence].

LEAVE label

CALL

See “CALL statement” [SQL Anywhere Server - SQL Refer-
ence].

CALL procname(arg, ...)

Using procedures, triggers, and batches

854 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using compound statements
A compound statement starts with the keyword BEGIN and concludes with the keyword END. The body of
a procedure or trigger is a compound statement. Compound statements can also be used in batches.
Compound statements can be nested, and combined with other control statements to define execution flow
in procedures and triggers or in batches.

A compound statement allows a set of SQL statements to be grouped together and treated as a unit. Delimit
SQL statements within a compound statement with semicolons.

For more information about compound statements, see “BEGIN statement” [SQL Anywhere Server - SQL
Reference].

Declarations in compound statements
Local declarations in a compound statement immediately follow the BEGIN keyword. These local
declarations exist only within the compound statement. Within a compound statement you can declare:

● Variables

● Cursors

● Temporary tables

● Exceptions (error identifiers)

Local declarations can be referenced by any statement in that compound statement, or in any compound
statement nested within it. Local declarations are not visible to other procedures called from the compound
statement.

Atomic compound statements
An atomic statement is a statement that is executed completely or not at all. For example, an UPDATE
statement that updates thousands of rows might encounter an error after updating many rows. If the statement
does not complete, all changed rows revert back to their original state. The UPDATE statement is atomic.

All non-compound SQL statements are atomic. You can make a compound statement atomic by adding the
keyword ATOMIC after the BEGIN keyword.

BEGIN ATOMIC
 UPDATE Employees
 SET ManagerID = 501
 WHERE EmployeeID = 467;
 UPDATE Employees
 SET BirthDate = 'bad_data';
END

In this example, the two update statements are part of an atomic compound statement. They must either
succeed or fail as one. The first update statement would succeed. The second one causes a data conversion
error since the value being assigned to the BirthDate column cannot be converted to a date.

Control statements

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 855

The atomic compound statement fails and the effect of both UPDATE statements is undone. Even if the
currently executing transaction is eventually committed, neither statement in the atomic compound statement
takes effect.

If an atomic compound statement succeeds, the changes made within the compound statement take effect
only if the currently executing transaction is committed. In the case when an atomic compound statement
succeeds but the transaction in which it occurs gets rolled back, the atomic compound statement also gets
rolled back. A savepoint is established at the start of the atomic compound statement. Any errors within the
statement result in a rollback to that savepoint.

When an atomic compound statement is executed in autocommit (unchained) mode, the commit mode
changes to manual (chained) until statement execution is complete. In manual mode, DML statements
executed within the atomic compound statement do not cause an immediate COMMIT or ROLLBACK. If
the atomic compound statement completes successfully, a COMMIT statement is executed; otherwise, a
ROLLBACK statement is executed. For more information about autocommit behavior, see “Setting
autocommit or manual commit mode” [SQL Anywhere Server - Programming] and “Controlling autocommit
behavior” [SQL Anywhere Server - Programming].

You cannot use COMMIT and ROLLBACK and some ROLLBACK TO SAVEPOINT statements within
an atomic compound statement. See “Transactions and savepoints in procedures and
triggers” on page 876.

There is a case where some, but not all, statements within an atomic compound statement are executed. This
happens when an exception handler within the compound statement deals with an error.

For more information, see “Using exception handlers in procedures and triggers” on page 872.

Using procedures, triggers, and batches

856 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The structure of procedures and triggers
The body of a procedure or trigger consists of a compound statement as discussed in “Using compound
statements” on page 855. A compound statement consists of a BEGIN and an END, enclosing a set of SQL
statements. Semicolons delimit each statement.

Declaring parameters for procedures
Procedure parameters appear as a list in the CREATE PROCEDURE statement. Parameter names must
conform to the rules for other database identifiers such as column names. They must have valid data types
(see “SQL data types” [SQL Anywhere Server - SQL Reference]), and can be prefixed with one of the
keywords IN, OUT or INOUT. By default, parameters are INOUT parameters. These keywords have the
following meanings:

● IN The argument is an expression that provides a value to the procedure.

● OUT The argument is a variable that could be given a value by the procedure.

● INOUT The argument is a variable that provides a value to the procedure, and could be given a new
value by the procedure.

You can assign default values to procedure parameters in the CREATE PROCEDURE statement. The default
value must be a constant, which may be NULL. For example, the following procedure uses the NULL default
for an IN parameter to avoid executing a query that would have no meaning:

CREATE PROCEDURE CustomerProducts(
 IN customer_ID
 INTEGER DEFAULT NULL)
RESULT (product_ID INTEGER,
 quantity_ordered INTEGER)
BEGIN
 IF customer_ID IS NULL THEN
 RETURN;
 ELSE
 SELECT Products.ID,
 sum(SalesOrderItems.Quantity)
 FROM Products,
 SalesOrderItems,
 SalesOrders
 WHERE SalesOrders.CustomerID = customer_ID
 AND SalesOrders.ID = SalesOrderItems.ID
 AND SalesOrderItems.ProductID = Products.ID
 GROUP BY Products.ID;
 END IF;
END;

The following statement assigns the DEFAULT NULL, and the procedure RETURNs instead of executing
the query.

CALL CustomerProducts();

The structure of procedures and triggers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 857

Passing parameters to procedures
You can take advantage of default values of stored procedure parameters with either of two forms of the
CALL statement.

If the optional parameters are at the end of the argument list in the CREATE PROCEDURE statement, they
may be omitted from the CALL statement. As an example, consider a procedure with three INOUT
parameters:

CREATE PROCEDURE SampleProcedure(
 INOUT var1 INT DEFAULT 1,
 INOUT var2 int DEFAULT 2,
 INOUT var3 int DEFAULT 3)
...

This example assumes that the calling environment has set up three variables to hold the values passed to
the procedure:

CREATE VARIABLE V1 INT;
CREATE VARIABLE V2 INT;
CREATE VARIABLE V3 INT;

The procedure SampleProcedure may be called supplying only the first parameter as follows:

CALL SampleProcedure(V1);

in which case the default values are used for var2 and var3.

A more flexible method of calling procedures with optional arguments is to pass the parameters by name.
The SampleProcedure procedure may be called as follows:

CALL SampleProcedure(var1 = V1, var3 = V3);

or as follows:

CALL SampleProcedure(var3 = V3, var1 = V1);

Passing parameters to functions
User-defined functions are not invoked with the CALL statement, but are used in the same manner that built-
in functions are. For example, the following statement uses the FullName function defined in “Creating user-
defined functions” on page 838 to retrieve the names of employees:

To list the names of all employees

● In Interactive SQL, type the following:

SELECT FullName(GivenName, Surname) AS Name
 FROM Employees;

Using procedures, triggers, and batches

858 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Name

Fran Whitney

Matthew Cobb

Philip Chin

Julie Jordan

...

Notes
● Default parameters can be used in calling functions. However, parameters cannot be passed to functions

by name.

● Parameters are passed by value, not by reference. Even if the function changes the value of the parameter,
this change is not returned to the calling environment.

● Output parameters cannot be used in user-defined functions.

● User-defined functions cannot return result sets.

The structure of procedures and triggers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 859

Returning results from procedures
Procedures can return results in the form of a single row of data, or multiple rows. Results consisting of a
single row of data can be passed back as arguments to the procedure. Results consisting of multiple rows of
data are passed back as result sets. Procedures can also return a single value given in the RETURN statement.

For simple examples of how to return results from procedures, see “Introduction to
procedures” on page 832.

Returning a value using the RETURN statement
The RETURN statement returns a single integer value to the calling environment, causing an immediate exit
from the procedure. The RETURN statement takes the form:

RETURN expression

The value of the supplied expression is returned to the calling environment. To save the return value in a
variable, use an extension of the CALL statement:

CREATE VARIABLE returnval INTEGER;
returnval = CALL myproc();

Returning results as procedure parameters
Procedures can return results to the calling environment in the parameters to the procedure.

Within a procedure, parameters and variables can be assigned values using:

● the SET statement.

● a SELECT statement with an INTO clause.

Using the SET statement
The following procedure returns a value in an OUT parameter assigned using a SET statement:

CREATE PROCEDURE greater(
 IN a INT,
 IN b INT,
 OUT c INT)
BEGIN
 IF a > b THEN
 SET c = a;
 ELSE
 SET c = b;
 END IF ;
END;

Using single-row SELECT statements
Single-row queries retrieve at most one row from the database. This type of query uses a SELECT statement
with an INTO clause. The INTO clause follows the select list and precedes the FROM clause. It contains a

Using procedures, triggers, and batches

860 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

list of variables to receive the value for each select list item. There must be the same number of variables as
there are select list items.

When a SELECT statement executes, the server retrieves the results of the SELECT statement and places
the results in the variables. If the query results contain more than one row, the server returns an error. For
queries returning more than one row, you must use cursors. For information about returning more than one
row from a procedure, see “Returning result sets from procedures” on page 861.

If the query results in no rows being selected, a warning is returned.

The following procedure returns the results of a single-row SELECT statement in the procedure parameters.

To return the number of orders placed by a given customer

● Type the following:

CREATE PROCEDURE OrderCount(
 IN customer_ID INT,
 OUT Orders INT)
BEGIN
 SELECT COUNT(SalesOrders.ID)
 INTO Orders
 FROM Customers
 KEY LEFT OUTER JOIN SalesOrders
 WHERE Customers.ID = customer_ID;
END;

You can test this procedure in Interactive SQL using the following statements, which show the number of
orders placed by the customer with ID 102:

CREATE VARIABLE orders INT;
CALL OrderCount (102, orders);
SELECT orders;

Notes
● The customer_ID parameter is declared as an IN parameter. This parameter holds the customer ID passed

in to the procedure.

● The Orders parameter is declared as an OUT parameter. It holds the value of the orders variable returned
to the calling environment.

● No DECLARE statement is necessary for the Orders variable, as it is declared in the procedure argument
list.

● The SELECT statement returns a single row and places it into the variable Orders.

Returning result sets from procedures
Result sets allow a procedure to return more than one row of results to the calling environment.

The following procedure returns a list of customers who have placed orders, together with the total value of
the orders placed. The procedure does not list customers who have not placed orders.

CREATE PROCEDURE ListCustomerValue()
RESULT ("Company" CHAR(36), "Value" INT)

Returning results from procedures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 861

BEGIN
 SELECT CompanyName,
 CAST(sum(SalesOrderItems.Quantity *
 Products.UnitPrice)
 AS INTEGER) AS value
 FROM Customers
 INNER JOIN SalesOrders
 INNER JOIN SalesOrderItems
 INNER JOIN Products
 GROUP BY CompanyName
 ORDER BY value DESC;
END;

● Type the following:

CALL ListCustomerValue ();

Company Value

The Hat Company 5016

The Igloo 3564

The Ultimate 3348

North Land Trading 3144

Molly's 2808

... ...

Notes
● The number of variables in the RESULT list must match the number of the SELECT list items. Automatic

data type conversion is performed where possible if data types do not match.

● The RESULT clause is part of the CREATE PROCEDURE statement, and does not have a command
delimiter.

● The names of the SELECT list items do not need to match those of the RESULT list.

● When testing this procedure, Interactive SQL displays only the first result set by default. You can
configure Interactive SQL to display more than one result set by setting the Show Multiple Result
Sets option on the Results tab of the Options window.

● You can modify procedure result sets, unless they are generated from a view. The user calling the
procedure requires the appropriate permissions on the underlying table to modify procedure results. This
is different than the usual permissions for procedure execution, where the procedure owner must have
permissions on the table. See “Editing result sets in Interactive SQL” [SQL Anywhere Server - Database
Administration].

● If a stored procedure or user-defined function returns a result set, it cannot also set output parameters or
return a return value.

Using procedures, triggers, and batches

862 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Returning multiple result sets from procedures
Before Interactive SQL can return multiple result sets, you need to enable this option on the Results tab of
the Options window. By default, this option is disabled. If you change the setting, it takes effect in newly
created connections (such as new windows).

To enable multiple result set functionality (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, select the database and choose File » Open Interactive SQL.

3. In Interactive SQL, choose Tools » Options.

4. Click SQL Anywhere.

5. On the Results tab, select Show All Result Sets.

6. Click OK.

After you enable this option, a procedure can return more than one result set to the calling environment. If
a RESULT clause is employed, the result sets must be compatible: they must have the same number of items
in the SELECT lists, and the data types must all be of types that can be automatically converted to the data
types listed in the RESULT list.

Example
The following procedure lists the names of all employees, customers, and contacts listed in the database:

CREATE PROCEDURE ListPeople()
RESULT (Surname CHAR(36), GivenName CHAR(36))
BEGIN
 SELECT Surname, GivenName
 FROM Employees;
 SELECT Surname, GivenName
 FROM Customers;
 SELECT Surname, GivenName
 FROM Contacts;
END;

To test this procedure and view multiple result sets in Interactive SQL, enter the following statement in the
SQL Statements pane:

CALL ListPeople ();

Returning variable result sets from procedures
The RESULT clause is optional in procedures. Omitting the result clause allows you to write procedures
that return different result sets, with different numbers or types of columns, depending on how they are
executed.

If you do not use the variable result sets feature, you should use a RESULT clause for performance reasons.

Returning results from procedures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 863

For example, the following procedure returns two columns if the input variable is Y, but only one column
otherwise:

CREATE PROCEDURE Names(IN formal char(1))
BEGIN
 IF formal = 'y' THEN
 SELECT Surname, GivenName
 FROM Employees
 ELSE
 SELECT GivenName
 FROM Employees
 END IF
END;

The use of variable result sets in procedures is subject to some limitations, depending on the interface used
by the client application.

● Embedded SQL To get the proper shape of result set, you must DESCRIBE the procedure call after
the cursor for the result set is opened, but before any rows are returned.

For more information about the DESCRIBE statement, see “DESCRIBE statement [Interactive SQL]”
[SQL Anywhere Server - SQL Reference].

● ODBC Variable result set procedures can be used by ODBC applications. The SQL Anywhere ODBC
driver performs the proper description of the variable result sets.

● Open Client applications Open Client applications can use variable result set procedures. SQL
Anywhere performs the proper description of the variable result sets.

Using procedures, triggers, and batches

864 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using cursors in procedures and triggers
Cursors retrieve rows one at a time from a query or stored procedure with multiple rows in its result set. A
cursor is a handle or an identifier for the query or procedure, and for a current position within the result set.

Cursor management overview
Managing a cursor is similar to managing a file in a programming language. The following steps manage
cursors:

1. Declare a cursor for a particular SELECT statement or procedure using the DECLARE statement.

2. Open the cursor using the OPEN statement.

3. Use the FETCH statement to retrieve results one row at a time from the cursor.

4. The warning Row Not Found signals the end of the result set.

5. Close the cursor using the CLOSE statement.

By default, cursors are automatically closed at the end of a transaction (on COMMIT or ROLLBACK
statements). Cursors opened using the WITH HOLD clause will stay open for subsequent transactions until
explicitly closed.

For more information about positioning cursors, see “Cursor positioning” [SQL Anywhere Server -
Programming].

Using cursors on SELECT statements in procedures
The following procedure uses a cursor on a SELECT statement. Based on the same query used in the
ListCustomerValue procedure described in “Returning result sets from procedures” on page 861, it illustrates
several features of the stored procedure language.

CREATE PROCEDURE TopCustomerValue(
 OUT TopCompany CHAR(36),
 OUT TopValue INT)
BEGIN
 -- 1. Declare the "row not found" exception
 DECLARE err_notfound
 EXCEPTION FOR SQLSTATE '02000';
 -- 2. Declare variables to hold
 -- each company name and its value
 DECLARE ThisName CHAR(36);
 DECLARE ThisValue INT;
 -- 3. Declare the cursor ThisCompany
 -- for the query
 DECLARE ThisCompany CURSOR FOR
 SELECT CompanyName,
 CAST(sum(SalesOrderItems.Quantity *
 Products.UnitPrice) AS INTEGER)
 AS value
 FROM Customers

Using cursors in procedures and triggers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 865

 INNER JOIN SalesOrders
 INNER JOIN SalesOrderItems
 INNER JOIN Products
 GROUP BY CompanyName;
 -- 4. Initialize the values of TopValue
 SET TopValue = 0;
 -- 5. Open the cursor
 OPEN ThisCompany;
 -- 6. Loop over the rows of the query
 CompanyLoop:
 LOOP
 FETCH NEXT ThisCompany
 INTO ThisName, ThisValue;
 IF SQLSTATE = err_notfound THEN
 LEAVE CompanyLoop;
 END IF;
 IF ThisValue > TopValue THEN
 SET TopCompany = ThisName;
 SET TopValue = ThisValue;
 END IF;
 END LOOP CompanyLoop;
 -- 7. Close the cursor
 CLOSE ThisCompany;
END;

Notes
The TopCustomerValue procedure has the following notable features:

● The Row Not Found exception is declared. This exception signals, later in the procedure, when a
loop over the results of a query completes.

For more information about exceptions, see “Errors and warnings in procedures and
triggers” on page 868.

● Two local variables ThisName and ThisValue are declared to hold the results from each row of the query.

● The cursor ThisCompany is declared. The SELECT statement produces a list of company names and the
total value of the orders placed by that company.

● The value of TopValue is set to an initial value of 0, for later use in the loop.

● The ThisCompany cursor opens.

● The LOOP statement loops over each row of the query, placing each company name in turn into the
variables ThisName and ThisValue. If ThisValue is greater than the current top value, TopCompany and
TopValue are reset to ThisName and ThisValue.

● The cursor closes at the end of the procedure.

● You can also write this procedure without a loop by adding an ORDER BY value DESC clause to the
SELECT statement. Then, only the first row of the cursor needs to be fetched.

The LOOP construct in the TopCompanyValue procedure is a standard form, exiting after the last row is
processed. You can rewrite this procedure in a more compact form using a FOR loop. The FOR statement
combines several aspects of the above procedure into a single statement.

CREATE PROCEDURE TopCustomerValue2(
 OUT TopCompany CHAR(36),
 OUT TopValue INT)

Using procedures, triggers, and batches

866 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

BEGIN
 -- 1. Initialize the TopValue variable
 SET TopValue = 0;
 -- 2. Do the For Loop
 FOR CompanyFor AS ThisCompany
 CURSOR FOR
 SELECT CompanyName AS ThisName,
 CAST(sum(SalesOrderItems.Quantity *
 Products.UnitPrice) AS INTEGER)
 AS ThisValue
 FROM Customers
 INNER JOIN SalesOrders
 INNER JOIN SalesOrderItems
 INNER JOIN Products
 GROUP BY ThisName
 DO
 IF ThisValue > TopValue THEN
 SET TopCompany = ThisName;
 SET TopValue = ThisValue;
 END IF;
 END FOR;
END;

Updating a cursor inside a stored procedure
The following procedure uses an updatable cursor on a SELECT statement. It illustrates how to perform an
UPDATE on a row using the stored procedure language.

CREATE PROCEDURE UpdateSalary(
 IN employeeIdent INT,
 IN salaryIncrease NUMERIC(10,3))
BEGIN
-- Procedure to increase (or decrease) an employee's salary
 DECLARE err_notfound
 EXCEPTION FOR SQLSTATE '02000';
 DECLARE oldSalary NUMERIC(20,3);
 DECLARE employeeCursor
 CURSOR FOR SELECT Salary from Employees
 WHERE EmployeeID = employeeIdent
 FOR UPDATE;
 OPEN employeeCursor;
 FETCH employeeCursor INTO oldSalary FOR UPDATE;
 IF SQLSTATE = err_notfound THEN
 MESSAGE 'No such employee' TO CLIENT;
 ELSE
 UPDATE Employees SET Salary = oldSalary + salaryIncrease
 WHERE CURRENT OF employeeCursor;
 END IF;
 CLOSE employeeCursor;
END;

The following statement calls the above stored procedure:

CALL UpdateSalary(105, 220.00);

Using cursors in procedures and triggers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 867

Errors and warnings in procedures and triggers
After an application program executes a SQL statement, it can examine a status code. This status code (or
return code) indicates whether the statement executed successfully or failed and gives the reason for the
failure. You can use the same mechanism to indicate the success or failure of a CALL statement to a
procedure.

Error reporting uses either the SQLCODE or SQLSTATE status descriptions. For full descriptions of
SQLCODE and SQLSTATE error and warning values and their meanings, see Error Messages.

Whenever a SQL statement executes, a value appears in special procedure variables called SQLSTATE and
SQLCODE. The special value indicates whether there were any unusual conditions encountered when the
statement was executed. You can check the value of SQLSTATE or SQLCODE in an IF statement following
a SQL statement, and take actions depending on whether the statement succeeded or failed.

For example, the SQLSTATE variable can be used to indicate if a row is successfully fetched. The
TopCustomerValue procedure presented in section “Using cursors on SELECT statements in
procedures” on page 865 used the SQLSTATE test to detect that all rows of a SELECT statement had been
processed.

Default error handling in procedures and triggers
This section describes how SQL Anywhere handles errors that occur during a procedure execution, if you
have no error handling built in to the procedure.

For different behavior, you can use exception handlers, described in “Using exception handlers in procedures
and triggers” on page 872.

Warnings are handled in a slightly different manner from errors: for a description, see “Default handling of
warnings in procedures and triggers” on page 871.

There are two ways of handling errors without using explicit error handling:

● Default error handling The procedure or trigger fails and returns an error code to the calling
environment.

● ON EXCEPTION RESUME If the ON EXCEPTION RESUME clause appears in the CREATE
PROCEDURE statement, the procedure carries on executing after an error, resuming at the statement
following the one causing the error.

The precise behavior for procedures that use ON EXCEPTION RESUME is dictated by the on_tsql_error
option setting. See “on_tsql_error option [compatibility]” [SQL Anywhere Server - Database
Administration].

Default error handling
Generally, if a SQL statement in a procedure or trigger fails, the procedure or trigger stops executing and
control returns to the application program with an appropriate setting for the SQLSTATE and SQLCODE
values. This is true even if the error occurred in a procedure or trigger invoked directly or indirectly from

Using procedures, triggers, and batches

868 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

the first one. In the case of a trigger, the operation causing the trigger is also undone and the error is returned
to the application.

The following demonstration procedures show what happens when an application calls the procedure
OuterProc, and OuterProc in turn calls the procedure InnerProc, which then encounters an error.

CREATE PROCEDURE OuterProc()
BEGIN
 MESSAGE 'Hello from OuterProc.' TO CLIENT;
 CALL InnerProc();
 MESSAGE 'SQLSTATE set to ',
 SQLSTATE,' in OuterProc.' TO CLIENT
END;
CREATE PROCEDURE InnerProc()
 BEGIN
 DECLARE column_not_found
 EXCEPTION FOR SQLSTATE '52003';
 MESSAGE 'Hello from InnerProc.' TO CLIENT;
 SIGNAL column_not_found;
 MESSAGE 'SQLSTATE set to ',
 SQLSTATE, ' in InnerProc.' TO CLIENT;
END;
CALL OuterProc();

The Interactive SQL Messages tab displays the following:

Hello from OuterProc.
Hello from InnerProc.

The DECLARE statement in InnerProc declares a symbolic name for one of the predefined SQLSTATE
values associated with error conditions already known to the server.

The MESSAGE statement sends a message to the Interactive SQL Messages tab.

The SIGNAL statement generates an error condition from within the InnerProc procedure.

None of the statements following the SIGNAL statement in InnerProc execute: InnerProc immediately passes
control back to the calling environment, which in this case is the procedure OuterProc. None of the statements
following the CALL statement in OuterProc execute. The error condition returns to the calling environment
to be handled there. For example, Interactive SQL handles the error by displaying a message window
describing the error.

The TRACEBACK function provides a list of the statements that were executing when the error occurred.
You can use the TRACEBACK function from Interactive SQL by entering the following statement:

SELECT TRACEBACK();

Error handling with ON EXCEPTION RESUME
If the ON EXCEPTION RESUME clause appears in the CREATE PROCEDURE statement, the procedure
checks the following statement when an error occurs. If the statement handles the error, then the procedure
continues executing, resuming at the statement after the one causing the error. It does not return control to
the calling environment when an error occurred.

Errors and warnings in procedures and triggers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 869

The behavior for procedures that use ON EXCEPTION RESUME can be modified by the on_tsql_error
option setting. See “on_tsql_error option [compatibility]” [SQL Anywhere Server - Database
Administration].

Error-handling statements include the following:

● IF
● SELECT @variable =
● CASE
● LOOP
● LEAVE
● CONTINUE
● CALL
● EXECUTE
● SIGNAL
● RESIGNAL
● DECLARE
● SET VARIABLE

The following demonstration procedures show what happens when an application calls the procedure
OuterProc; and OuterProc in turn calls the procedure InnerProc, which then encounters an error. These
demonstration procedures are based on those used earlier in this section:

DROP PROCEDURE OuterProc;
DROP PROCEDURE InnerProc;
CREATE PROCEDURE OuterProc()
ON EXCEPTION RESUME
BEGIN
 DECLARE res CHAR(5);
 MESSAGE 'Hello from OuterProc.' TO CLIENT;
 CALL InnerProc();
 SET res=SQLSTATE;
 IF res='52003' THEN
 MESSAGE 'SQLSTATE set to ',
 res, ' in OuterProc.' TO CLIENT;
 END IF
END;
CREATE PROCEDURE InnerProc()
ON EXCEPTION RESUME
BEGIN
 DECLARE column_not_found
 EXCEPTION FOR SQLSTATE '52003';
 MESSAGE 'Hello from InnerProc.' TO CLIENT;
 SIGNAL column_not_found;
 MESSAGE 'SQLSTATE set to ',
 SQLSTATE, ' in InnerProc.' TO CLIENT;
END;
CALL OuterProc();

The Interactive SQL Messages tab then displays the following:

Hello from OuterProc.
Hello from InnerProc.
SQLSTATE set to 52003 in OuterProc.

Using procedures, triggers, and batches

870 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The execution path taken is as follows:

1. OuterProc executes and calls InnerProc.

2. In InnerProc, the SIGNAL statement signals an error.

3. The MESSAGE statement is not an error-handling statement, so control is passed back to OuterProc and
the message is not displayed.

4. In OuterProc, the statement following the error assigns the SQLSTATE value to the variable named
res. This is an error-handling statement, and so execution continues and the OuterProc message appears.

Default handling of warnings in procedures and triggers
Errors and warnings are handled differently. While the default action for errors is to set a value for the
SQLSTATE and SQLCODE variables, and return control to the calling environment in the event of an error,
the default action for warnings is to set the SQLSTATE and SQLCODE values and continue execution of
the procedure.

The following demonstration procedures illustrate default handling of warnings. These demonstration
procedures are based on those used in “Default error handling in procedures and triggers” on page 868.

In this case, the SIGNAL statement generates a row not found condition, which is a warning rather
than an error.

DROP PROCEDURE OuterProc;
DROP PROCEDURE InnerProc;
CREATE PROCEDURE OuterProc()
BEGIN
 MESSAGE 'Hello from OuterProc.' TO CLIENT;
 CALL InnerProc();
 MESSAGE 'SQLSTATE set to ',
 SQLSTATE,' in OuterProc.' TO CLIENT;
END;
CREATE PROCEDURE InnerProc()
BEGIN
 DECLARE row_not_found
 EXCEPTION FOR SQLSTATE '02000';
 MESSAGE 'Hello from InnerProc.' TO CLIENT;
 SIGNAL row_not_found;
 MESSAGE 'SQLSTATE set to ',
 SQLSTATE, ' in InnerProc.' TO CLIENT;
END;
CALL OuterProc();

The Interactive SQL Messages tab then displays the following:

Hello from OuterProc.
Hello from InnerProc.
SQLSTATE set to 02000 in InnerProc.
SQLSTATE set to 00000 in OuterProc.

The procedures both continued executing after the warning was generated, with SQLSTATE set by the
warning (02000).

Errors and warnings in procedures and triggers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 871

Execution of the second MESSAGE statement in InnerProc resets the warning. Successful execution of any
SQL statement resets SQLSTATE to 00000 and SQLCODE to 0. If a procedure needs to save the error
status, it must do an assignment of the value immediately after execution of the statement which caused the
error or warning.

Using exception handlers in procedures and triggers
It is often desirable to intercept certain types of errors and handle them within a procedure or trigger, rather
than pass the error back to the calling environment. This is done through the use of an exception handler.

You define an exception handler with the EXCEPTION part of a compound statement. See “Using compound
statements” on page 855.

Whenever an error occurs in the compound statement, the exception handler executes. Unlike errors,
warnings do not cause exception handling code to be executed. Exception handling code also executes if an
error appears in a nested compound statement or in a procedure or trigger invoked anywhere within the
compound statement.

An exception handler for the interrupt error SQL_INTERRUPT, SQLSTATE 57014 should only contain
non-interruptible statements such as ROLLBACK and ROLLBACK TO SAVEPOINT. If the exception
handler contains interruptible statements that are invoked when the connection is interrupted, the database
server stops the exception handler at the first interruptible statement and returns the interrupt error.

The demonstration procedures used to illustrate exception handling are based on those used in “Default error
handling in procedures and triggers” on page 868.

In this example, additional code handles the column not found error in the InnerProc procedure.

DROP PROCEDURE OuterProc;
DROP PROCEDURE InnerProc;
CREATE PROCEDURE OuterProc()
BEGIN
 MESSAGE 'Hello from OuterProc.' TO CLIENT;
 CALL InnerProc();
 MESSAGE 'SQLSTATE set to ',
 SQLSTATE,' in OuterProc.' TO CLIENT
END;
CREATE PROCEDURE InnerProc()
BEGIN
 DECLARE column_not_found
 EXCEPTION FOR SQLSTATE '52003';
 MESSAGE 'Hello from InnerProc.' TO CLIENT;
 SIGNAL column_not_found;
 MESSAGE 'Line following SIGNAL.' TO CLIENT;
 EXCEPTION
 WHEN column_not_found THEN
 MESSAGE 'Column not found handling.' TO CLIENT;
 WHEN OTHERS THEN
 RESIGNAL ;
END;
CALL OuterProc();

The Interactive SQL Messages tab then displays the following:

Using procedures, triggers, and batches

872 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Hello from OuterProc.
Hello from InnerProc.
Column not found handling.
SQLSTATE set to 00000 in OuterProc.

The EXCEPTION clause declares the exception handler. The lines following EXCEPTION do not execute
unless an error occurs. Each WHEN clause specifies an exception name (declared with a DECLARE
statement) and the statement or statements to be executed in the event of that exception. The WHEN
OTHERS THEN clause specifies the statement(s) to be executed when the exception that occurred does not
appear in the preceding WHEN clauses.

In this example, the statement RESIGNAL passes the exception on to a higher-level exception handler.
RESIGNAL is the default action if WHEN OTHERS THEN is not specified in an exception handler.

Additional notes
● The EXCEPTION handler executes, rather than the lines following the SIGNAL statement in InnerProc.

● As the error encountered was a column not found error, the MESSAGE statement included to handle
the error executes, and SQLSTATE resets to zero (indicating no errors).

● After the exception handling code executes, control passes back to OuterProc, which proceeds as if no
error was encountered.

● You should not use ON EXCEPTION RESUME together with explicit exception handling. The
exception handling code is not executed if ON EXCEPTION RESUME is included.

● If the error handling code for the column not found exception is simply a RESIGNAL statement, control
passes back to the OuterProc procedure with SQLSTATE still set at the value 52003. This is just as if
there were no error handling code in InnerProc. Since there is no error handling code in OuterProc, the
procedure fails.

Exception handling and atomic compound statements
When an exception is handled inside a compound statement, the compound statement completes without an
active exception and the changes before the exception are not reversed. This is true even for atomic compound
statements. If an error occurs within an atomic compound statement and is explicitly handled, some, but not
all, the statements in the atomic compound statement are executed.

Nested compound statements and exception handlers
The code following a statement that causes an error executes only if an ON EXCEPTION RESUME clause
appears in a procedure definition.

You can use nested compound statements to give you more control over which statements execute following
an error and which do not.

The following example illustrates how nested compound statements can be used to control flow. The
procedure is based on that used as an example in “Default error handling in procedures and
triggers” on page 868.

DROP PROCEDURE OuterProc;
DROP PROCEDURE InnerProc;

Errors and warnings in procedures and triggers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 873

CREATE PROCEDURE InnerProc()
BEGIN
 BEGIN
 DECLARE column_not_found
 EXCEPTION FOR SQLSTATE VALUE '52003';
 MESSAGE 'Hello from InnerProc' TO CLIENT;
 SIGNAL column_not_found;
 MESSAGE 'Line following SIGNAL' TO CLIENT
 EXCEPTION
 WHEN column_not_found THEN
 MESSAGE 'Column not found handling' TO
 CLIENT;
 WHEN OTHERS THEN
 RESIGNAL;
 END;
 MESSAGE 'Outer compound statement' TO CLIENT;
END;
CALL InnerProc();

The Interactive SQL Messages tab then displays the following:

Hello from InnerProc
Column not found handling
Outer compound statement

When the SIGNAL statement that causes the error is encountered, control passes to the exception handler
for the compound statement, and the Column not found handling message prints. Control then
passes back to the outer compound statement and the Outer compound statement message prints.

If an error other than column not found is encountered in the inner compound statement, the exception
handler executes the RESIGNAL statement. The RESIGNAL statement passes control directly back to the
calling environment, and the remainder of the outer compound statement is not executed.

Using procedures, triggers, and batches

874 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using the EXECUTE IMMEDIATE statement in
procedures

The EXECUTE IMMEDIATE statement allows statements to be constructed inside procedures using a
combination of literal strings (in quotes) and variables. For example, the following procedure includes an
EXECUTE IMMEDIATE statement that creates a table.

CREATE PROCEDURE CreateTableProcedure(
 IN tablename char(128))
BEGIN
 EXECUTE IMMEDIATE 'CREATE TABLE '
 || tablename
 || '(column1 INT PRIMARY KEY)'
END;

The EXECUTE IMMEDIATE statement can be used with queries that return result sets. For example:

CREATE PROCEDURE DynamicResult(
 IN Columns LONG VARCHAR,
 IN TableName CHAR(128),
 IN Restriction LONG VARCHAR DEFAULT NULL)
BEGIN
 DECLARE Command LONG VARCHAR;
 SET Command = 'SELECT ' || Columns || ' FROM ' || TableName;
 IF ISNULL(Restriction,'') <> '' THEN
 SET Command = Command || ' WHERE ' || Restriction;
 END IF;
 EXECUTE IMMEDIATE WITH RESULT SET ON Command;
END;

The following statement calls this procedure:

CALL DynamicResult(
 'table_id,table_name',
 'SYSTAB',
 'table_id <= 10');

table_id table_name

1 ISYSTAB

2 ISYSTABCOL

3 ISYSIDX

... ...

In ATOMIC compound statements, you cannot use an EXECUTE IMMEDIATE statement that causes a
COMMIT, as COMMITs are not allowed in that context.

See “EXECUTE IMMEDIATE statement [SP]” [SQL Anywhere Server - SQL Reference].

Using the EXECUTE IMMEDIATE statement in procedures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 875

Transactions and savepoints in procedures and
triggers

SQL statements in a procedure or trigger are part of the current transaction. You can call several procedures
within one transaction or have several transactions in one procedure.

COMMIT and ROLLBACK are not allowed within any atomic statement. Note that triggers are fired due
to an INSERT, UPDATE, or DELETE which are atomic statements. COMMIT and ROLLBACK are not
allowed in a trigger or in any procedures called by a trigger.

Savepoints can be used within a procedure or trigger, but a ROLLBACK TO SAVEPOINT statement can
never refer to a savepoint before the atomic operation started. Also, all savepoints within an atomic operation
are released when the atomic operation completes.

See also
● “Using transactions and isolation levels” on page 107
● “Atomic compound statements” on page 855
● “Savepoints within transactions” on page 112

Using procedures, triggers, and batches

876 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Tips for writing procedures
This section provides some pointers for developing procedures.

Check if you need to change the command delimiter

You do not need to change the command delimiter in Interactive SQL or Sybase Central when you write
procedures. However, if you create and test procedures and triggers from some other browsing tool, you
may need to change the command delimiter from the semicolon to another character.

Each statement within the procedure ends with a semicolon. For some browsing applications to parse the
CREATE PROCEDURE statement itself, you need the command delimiter to be something other than a
semicolon.

If you are using an application that requires changing the command delimiter, a good choice is to use two
semicolons as the command delimiter (;;) or a question mark (?) if the system does not permit a multi-
character delimiter.

Remember to delimit statements within your procedure

You should end each statement within the procedure with a semicolon. Although you can leave off
semicolons for the last statement in a statement list, it is good practice to use semicolons after each statement.

The CREATE PROCEDURE statement itself contains both the RESULT specification and the compound
statement that forms its body. No semicolon is needed after the BEGIN or END keywords, or after the
RESULT clause.

Use fully-qualified names for tables in procedures

If a procedure has references to tables in it, you should always preface the table name with the name of the
owner (creator) of the table.

When a procedure refers to a table, it uses the group memberships of the procedure creator to locate tables
with no explicit owner name specified. For example, if a procedure created by user_1 references Table_B
and does not specify the owner of Table_B, then either Table_B must have been created by user_1 or user_1
must be a member of a group (directly or indirectly) that is the owner of Table_B. If neither condition is
met, a table not found message results when the procedure is called.

You can minimize the inconvenience of long fully qualified names by using a correlation name to provide
a convenient name to use for the table within a statement. Correlation names are described in “FROM clause”
[SQL Anywhere Server - SQL Reference].

Specifying dates and times in procedures

When dates and times are sent to the database from procedures, they are sent as strings. The date part of the
string is interpreted according to the current setting of the date_order database option. As different
connections may set this option to different values, some strings may be converted incorrectly to dates, or
the database may not be able to convert the string to a date.

Tips for writing procedures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 877

You should use the unambiguous date format yyyy-mm-dd or yyyy/mm/dd when using date strings within
procedures. The server interprets these strings unambiguously as dates, regardless of the date_order database
option setting. See “Date and time data types” [SQL Anywhere Server - SQL Reference].

Verifying that procedure input arguments are passed correctly

One way to verify input arguments is to display the value of the parameter on the Interactive SQL Messages
tab using the MESSAGE statement. For example, the following procedure simply displays the value of the
input parameter var:

CREATE PROCEDURE message_test(IN var char(40))
BEGIN
 MESSAGE var TO CLIENT;
END;

You can also use the debugger to verify that procedure input arguments were passed correctly. See “Lesson
2: Debug a stored procedure” on page 884.

Using procedures, triggers, and batches

878 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Statements allowed in procedures, triggers, events,
and batches

Most SQL statements are acceptable in batches, with the exception of the following:

● ALTER DATABASE (syntax 3 and 4)
● CONNECT
● CREATE DATABASE
● CREATE DECRYPTED FILE
● CREATE ENCRYPTED FILE
● DISCONNECT
● DROP CONNECTION
● DROP DATABASE
● FORWARD TO
● Interactive SQL commands such as INPUT or OUTPUT
● PREPARE TO COMMIT
● STOP ENGINE

You can use COMMIT, ROLLBACK, and SAVEPOINT statements within procedures, triggers, events, and
batches with certain restrictions. See “Transactions and savepoints in procedures and
triggers” on page 876.

For more information, see the Usage for each SQL statement in “SQL statements” [SQL Anywhere Server
- SQL Reference].

Using SELECT statements in batches
You can include one or more SELECT statements in a batch. For example:

IF EXISTS(SELECT *
 FROM SYSTAB
 WHERE table_name='Employees')
THEN
 SELECT Surname AS LastName,
 GivenName AS FirstName
 FROM Employees;
 SELECT Surname, GivenName
 FROM Customers;
 SELECT Surname, GivenName
 FROM Contacts;
END IF;

The alias for the result set is necessary only in the first SELECT statement, as the server uses the first SELECT
statement in the batch to describe the result set.

A RESUME statement is necessary following each query to retrieve the next result set.

Statements allowed in procedures, triggers, events, and batches

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 879

Hiding the contents of procedures, functions,
triggers and views

In some cases, you may want to distribute an application and a database without disclosing the logic contained
within procedures, functions, triggers and views. As an added security measure, you can obscure the contents
of these objects using the SET HIDDEN clause of the ALTER PROCEDURE, ALTER FUNCTION, ALTER
TRIGGER, and ALTER VIEW statements.

The SET HIDDEN clause obfuscates the contents of the associated objects and makes them unreadable,
while still allowing the objects to be used. You can also unload and reload the objects into another database.

The modification is irreversible, and deletes the original text of the object. Preserving the original source
for the object outside the database is required.

Debugging using the debugger will not show the procedure definition, nor will procedure profiling display
the source.

Running one of the above statements on an object that is already hidden has no effect.

To hide the text for all objects of a particular type, you can use a loop similar to the following:

BEGIN
 FOR hide_lp as hide_cr cursor FOR
 SELECT proc_name, user_name
 FROM SYS.SYSPROCEDURE p, SYS.SYSUSER u
 WHERE p.creator = u.user_id
 AND p.creator NOT IN (0,1,3)
 DO
 MESSAGE 'altering ' || proc_name;
 EXECUTE IMMEDIATE 'ALTER PROCEDURE "' ||
 user_name || '"."' || proc_name
 || '" SET HIDDEN'
 END FOR
END;

See also
● “ALTER FUNCTION statement” [SQL Anywhere Server - SQL Reference]
● “ALTER PROCEDURE statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TRIGGER statement” [SQL Anywhere Server - SQL Reference]
● “ALTER VIEW statement” [SQL Anywhere Server - SQL Reference]

Using procedures, triggers, and batches

880 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Debugging procedures, functions, triggers,
and events

Contents
Introduction to the SQL Anywhere debugger .. 882
Tutorial: Getting started with the debugger ... 883
Working with breakpoints .. 887
Working with variables ... 890
Working with connections .. 892

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 881

Introduction to the SQL Anywhere debugger
You can use the SQL Anywhere debugger during the development of SQL stored procedures, triggers, event
handlers, and user-defined functions.

You can perform many tasks with the SQL Anywhere debugger, including:

● Debug procedures and triggers You can debug SQL stored procedures or triggers.

● Debug event handlers Event handlers are an extension of SQL stored procedures. The material in
this chapter about debugging stored procedures applies equally to debugging event handlers.

● Browse stored procedures and classes You can browse the source code of SQL procedures.

● Trace execution Step line by line through the code of a stored procedure. You can also look up and
down the stack of functions that have been called.

● Set breakpoints Run the code until you hit a breakpoint, and stop at that point in the code.

● Set break conditions Breakpoints include lines of code, but you can also specify conditions when
the code is to break. For example, you can stop at a line the tenth time it is executed, or only if a variable
has a particular value.

● Inspect and modify local variables When execution is stopped at a breakpoint, you can inspect
the values of local variables and alter their value.

● Inspect and break on expressions When execution is stopped at a breakpoint, you can inspect the
value of a wide variety of expressions.

● Inspect and modify row variables Row variables are the OLD and NEW values of row-level
triggers. You can inspect and modify these values.

● Execute queries You can execute queries when execution is stopped at a breakpoint in a SQL
procedure. This permits you to look at intermediate results held in temporary tables, check values in base
tables, and to view the query execution plan.

Tip
By default, SOAP connections time out after 60 seconds before they time out. You can specify -xs http(kto=0)
so that the connection does not time out when you are trying to debug SOAP functions and procedures. See
“-xs server option” [SQL Anywhere Server - Database Administration].

Requirements for using the debugger
To use the debugger, you must either have DBA authority or be granted permissions in the SA_DEBUG
group. This group is added to all databases when they are created. Only one user can debug a database at a
time.

Debugging procedures, functions, triggers, and events

882 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Tutorial: Getting started with the debugger
This tutorial describes how to connect to a database, how start the debugger, and how to debug a simple
stored procedure.

Lesson 1: Connect to a database and start the debugger

To start the debugger

1. Create a directory to hold the copy of the sample database you will use in this tutorial, for example c:
\demodb.

2. Copy and rename the sample database from samples-dir\demo.db to c:\demodb.

For information about samples-dir, see “Samples directory” [SQL Anywhere Server - Database
Administration].

3. Click Start » Programs » SQL Anywhere 11 » Sybase Central.

4. Choose Connections » Connect With SQL Anywhere 11.

5. In the ODBC Data Source Name field, type the name of your sample database.

6. Click OK.

7. Choose Mode » Debug.

8. In the Which User Would You Like To Debug field, type * and click OK.

If you want to debug a different user, you must exit Debug mode, and then re-enter Debug mode.

The Debugger Details pane appears at the bottom of Sybase Central and the Sybase Central toolbar
displays a set of debugger tools.

When you provide a user name, information for connections with that user name is captured and appears
on the Connections tab.

Tutorial: Getting started with the debugger

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 883

Lesson 2: Debug a stored procedure
This lesson illustrates how to use the debugger to identify errors in stored procedures. To set the stage, you
introduce a deliberate error into the debugger_tutorial, which is part of the SQL Anywhere sample database.

The debugger_tutorial procedure should return a result set that contains the name of the company that has
placed the highest value of orders, and the value of their orders. It computes these values by looping over
the result set of a query that lists companies and orders. (This result could be achieved without adding the
logic into the procedure by using a SELECT FIRST query. The procedure is used to create a convenient
example.) The procedure has an intentional bug in it. In this tutorial you diagnose and fix the bug.

Debugging procedures, functions, triggers, and events

884 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Run the debugger_tutorial procedure
The debugger_tutorial procedure should return a result set consisting of the top company and the value of
products they have ordered. As a result of a bug, it does not return this result set. In this lesson, you run the
stored procedure.

To run the debugger_tutorial stored procedure

1. In the left pane of Sybase Central, double-click Procedures & Functions.

2. Right-click Debugger_Tutorial (GROUPO) and choose Execute From Interactive SQL.

Interactive SQL opens and the following result set appears:

top_company top_value

(NULL) (NULL)

This is an incorrect result. The remainder of the tutorial diagnoses the error that produced this result.

3. Close Interactive SQL.

Diagnose the bug
To diagnose the bug in the procedure, set breakpoints in the procedure and step through the code, watching
the value of variables as the procedure is executed.

Here, you set a breakpoint at the first executable statement in the procedure.

To diagnose the bug

1. Choose Mode » Debug.

2. In the right pane, double-click Debugger_Tutorial (GROUPO).

3. In the right pane, locate the following statement:

OPEN cursor_this_customer;
4. To add a breakpoint, click the vertical gray area to the left of the statement. The breakpoint appears as

a red circle.

5. In the left pane, right-click Debugger_Tutorial (GROUPO) and choose Execute From Interactive
SQL.

In the Connections tab of Sybase Central, a yellow arrow indicating the breakpoint appears.

6. In the Debugger Details window, click the Local tab to display a list of local variables in the procedure
together with their current value and data type. The top_company, top_value, this_value, and
this_company variables are all uninitialized and are therefore NULL.

7. Press F11 to scroll through the procedure. The value of the variables changes when you reach the
following line:

Tutorial: Getting started with the debugger

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 885

IF this_value > top_value THEN
8. Press F11 once more to determine which branch the execution takes. The yellow arrow moves back to

the following text:

customer_loop: loop

The IF test did not return true. The test failed because a comparison of any value to NULL returns
NULL. A value of NULL fails the test and the code inside the IF...END IF statement is not executed.

At this point, you may realize that the problem is the fact that top_value is not initialized.

Confirm the diagnosis and fix the bug
You can test the hypothesis that the problem is the lack of initialization for top_value right in the debugger,
without changing the procedure code.

To test the hypothesis

1. In the Debugger Details window, click the Local tab.

2. Click the Top_Value variable and type 3000 in the Value field.

3. Press F11 repeatedly until the Value field of the This_Value variable is greater than 3000.

4. Click the breakpoint so that it turns gray.

5. Press F5 to execute the procedure.

The Interactive SQL window appears again. It shows the correct results.

top_company top_value

Chadwicks 8076

The hypothesis is confirmed. The problem is that the top_value is not initialized.

To fix the bug

1. Choose Mode » Design.

2. In the right pane, locate the following statement:

OPEN cursor_this_customer;
3. Type a new line that initializes the top_value variable:

SET top_value = 0;
4. Choose File » Save.

5. Execute the procedure again, and confirm that Interactive SQL displays the correct results.

You have now completed the lesson. Close any open Interactive SQL windows.

Debugging procedures, functions, triggers, and events

886 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Working with breakpoints
Breakpoints control when the debugger interrupts execution of your source code.

When you are running in Debug mode, and a connection hits a breakpoint, the behavior changes depending
on the connection that is selected:

● If you do not have a connection selected, the connection is automatically selected and the source for the
procedure is shown to debug it.

● If you already have a connection selected and it is the same connection that hit the breakpoint, the source
for the procedure is shown to debug it.

● If you already have a connection selected, but it is not the connection that hit the breakpoint, a window
appears that prompts you to change to the connection that encountered the breakpoint.

Setting breakpoints
A breakpoint instructs the debugger to interrupt execution at a specified line. By default, a breakpoint applies
to all connections.

To set a breakpoint

1. Connect to the database as a user with DBA authority.

2. In the left pane, double-click Procedures & Functions.

3. Select a procedure.

4. Choose Mode » Debug.

5. In the Which User Would You Like To Debug field, type * to debug all users, or type the name of the
database user you want to debug.

6. In the right pane, click the line where you want to insert the breakpoint.

A cursor appears in the line where you clicked

7. Press F9.

A red circle appears to the left of the line of code.

To set a breakpoint (Debug menu)

1. Choose Debug » Breakpoints.

2. Click New.

3. In the Procedure list, select a procedure.

4. If required, complete the Condition and Count fields.

Working with breakpoints

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 887

The Condition is a SQL expression that must evaluate to true for the breakpoint to interrupt execution.
For example, you can set a breakpoint to apply to a connection made by a specified user, by entering the
following condition:

CURRENT USER = 'user-name'

The Count is the number of times the breakpoint is hit before it stops execution. A value of 0 means that
the breakpoint always stops execution.

5. Click OK. The breakpoint is set on the first executable statement in the procedure.

Disabling and enabling breakpoints
You can change the status of a breakpoint from the Sybase Central right pane or from the Breakpoints
window.

To change the status of a breakpoint

1. Connect to the database as a user with DBA authority.

2. In the left pane, double-click Procedures & Functions.

3. Select a procedure.

4. Choose Mode » Debug.

5. In the right pane, click the breakpoint indicator to the left of the line you want to edit. The breakpoint
changes from active to inactive.

To change the status of a breakpoint (Breakpoints window)

1. Connect to the database as a user with DBA authority.

2. In the left pane, double-click Procedures & Functions.

3. Select a procedure.

4. Choose Mode » Debug.

5. Choose Debug » Breakpoints.

6. Select the breakpoint and click Edit, Disable or Remove.

7. Click Close.

Editing breakpoint conditions
You can add conditions to breakpoints to instruct the debugger to interrupt execution at that breakpoint only
when a certain condition or count is satisfied. For procedures and triggers, it must be a SQL search condition.

For example, to make a breakpoint apply to a specific connection only, set a condition on the breakpoint.

Debugging procedures, functions, triggers, and events

888 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To set a condition or count on a breakpoint

1. Connect to the database as a user with DBA authority.

2. In the left pane, double-click Procedures & Functions.

3. Select a procedure.

4. Choose Mode » Debug.

5. Choose Debug » Breakpoints.

6. Select the breakpoint you want to edit and then click Edit.

7. In the Condition list, click a condition. For example, to set the breakpoint so that it applies only to
connections from a specific user ID, enter the following condition:

CURRENT USER='user-name'

In this condition, user-name is the user ID for which the breakpoint is to be active.

8. Click OK and then click Close.

Working with breakpoints

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 889

Working with variables
The debugger lets you view and edit the behavior of your variables while stepping through your code. The
debugger provides a Debugger Details pane to display the different kinds of variables used in stored
procedures. The Debugger Details pane appears at the bottom of Sybase Central when Sybase Central is
running in Debug mode.

Viewing variable values

To view variable values

1. Connect to the database as a user with DBA authority.

2. In the left pane, double-click Procedures & Functions.

3. Select a procedure.

4. Choose Mode » Debug.

5. In the Which User Would You Like To Debug field, type * to debug all users, or type the name of the
database user you want to debug.

6. In the right pane, click the line where you want to insert the breakpoint.

A cursor appears in the line where you clicked

7. Press F9.

A red circle appears to the left of the line of code.

8. In the Debugger Details pane, click the Local tab.

9. In the left pane, right-click the procedure and choose Execute From Interactive SQL. The variables,
along with their values, appear on the Local tab.

Viewing global variables
Global variables are defined by SQL Anywhere and hold information about the current connection, database,
and other settings. They appear in the Debugger Details pane on the Global tab.

For a list of global variables, see “Global variables” [SQL Anywhere Server - SQL Reference].

Row variables are used in triggers to hold the values of rows affected by the triggering statement. They
appear in the Debugger Details pane on the Row tab.

For more information about triggers, see “Introduction to triggers” on page 842.

Static variables are used in Java classes. They are appear on the Statics tab.

Debugging procedures, functions, triggers, and events

890 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Displaying the call stack
It is useful to examine the sequence of calls that has been made when you are debugging nested procedures.
You can view a listing of the procedures on the Call Stack tab.

To display the call stack

1. Connect to the database as a user with DBA authority.

2. In the left pane, double-click Procedures & Functions.

3. Select a procedure.

4. Choose Mode » Debug.

5. In the Which User Would You Like To Debug field, type * to debug all users, or type the name of the
database user you want to debug.

6. In the right pane, click the line where you want to insert the breakpoint.

A cursor appears in the line where you clicked

7. Press F9.

A red circle appears to the left of the line of code.

8. In the Debugger Details pane, click the Local tab.

9. In the left pane, right-click the procedure and choose Execute From Interactive SQL.

10. In the Debugger Details pane, click the Call Stack tab.

The names of the procedures appear on the Calls Stack tab. The current procedure is shown at the top
of the list. The procedure that called it is immediately below.

Working with variables

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 891

Working with connections
The Connections tab displays the connections to the database. At any time, multiple connections may be
running. Some may be stopped at a breakpoint, and others may not.

To switch connections, double-click a connection on the Connections tab.

A useful technique is to set a breakpoint so that it interrupts execution for a single user ID. You can do this
by setting a breakpoint condition of the following form:

CURRENT USER = 'user-name'

The SQL special value CURRENT USER holds the user ID of the connection.

For more information, see “Editing breakpoint conditions” on page 888, and “CURRENT USER special
value” [SQL Anywhere Server - SQL Reference].

Debugging procedures, functions, triggers, and events

892 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Glossary

Glossary .. 895

Glossary

Adaptive Server Anywhere (ASA)
The relational database server component of SQL Anywhere Studio, intended for use in mobile and
embedded environments or as a server for small and medium-sized businesses. In version 10.0.0, Adaptive
Server Anywhere was renamed SQL Anywhere Server, and SQL Anywhere Studio was renamed SQL
Anywhere.

See also: “SQL Anywhere” on page 919.

agent ID

See also: “client message store ID” on page 897.

article

In MobiLink or SQL Remote, an article is a database object that represents a whole table, or a subset of the
columns and rows in a table. Articles are grouped together in a publication.

See also:

● “replication” on page 917
● “publication” on page 914

atomic transaction

A transaction that is guaranteed to complete successfully or not at all. If an error prevents part of an atomic
transaction from completing, the transaction is rolled back to prevent the database from being left in an
inconsistent state.

base table

Permanent tables for data. Tables are sometimes called base tables to distinguish them from temporary
tables and views.

See also:

● “temporary table” on page 921
● “view” on page 923

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 895

bit array

A bit array is a type of array data structure that is used for efficient storage of a sequence of bits. A bit array
is similar to a character string, except that the individual pieces are 0s (zeros) and 1s (ones) instead of
characters. Bit arrays are typically used to hold a string of Boolean values.

business rule

A guideline based on real-world requirements. Business rules are typically implemented through check
constraints, user-defined data types, and the appropriate use of transactions.

See also:

● “constraint” on page 899
● “user-defined data type” on page 923

carrier

A MobiLink object, stored in MobiLink system tables or a Notifier properties file, that contains information
about a public carrier for use by server-initiated synchronization.

See also: “server-initiated synchronization” on page 918.

character set

A character set is a set of symbols, including letters, digits, spaces, and other symbols. An example of a
character set is ISO-8859-1, also known as Latin1.

See also:

● “code page” on page 897
● “encoding” on page 903
● “collation” on page 897

check constraint

A restriction that enforces specified conditions on a column or set of columns.

See also:

● “constraint” on page 899
● “foreign key constraint” on page 904
● “primary key constraint” on page 914
● “unique constraint” on page 922

checkpoint

The point at which all changes to the database are saved to the database file. At other times, committed
changes are saved only to the transaction log.

Glossary

896 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

checksum

The calculated number of bits of a database page that is recorded with the database page itself. The checksum
allows the database management system to validate the integrity of the page by ensuring that the numbers
match as the page is being written to disk. If the counts match, it's assumed that page was successfully written.

client message store

In QAnywhere, a SQL Anywhere database on the remote device that stores messages.

client message store ID

In QAnywhere, a MobiLink remote ID that uniquely identifies a client message store.

client/server

A software architecture where one application (the client) obtains information from and sends information
to another application (the server). The two applications often reside on different computers connected by
a network.

code page

A code page is an encoding that maps characters of a character set to numeric representations, typically an
integer between 0 and 255. An example of a code page is Windows code page 1252. For the purposes of this
documentation, code page and encoding are interchangeable terms.

See also:

● “character set” on page 896
● “encoding” on page 903
● “collation” on page 897

collation

A combination of a character set and a sort order that defines the properties of text in the database. For SQL
Anywhere databases, the default collation is determined by the operating system and language on which the
server is running; for example, the default collation on English Windows systems is 1252LATIN1. A
collation, also called a collating sequence, is used for comparing and sorting strings.

See also:

● “character set” on page 896
● “code page” on page 897
● “encoding” on page 903

command file

A text file containing SQL statements. Command files can be built manually, or they can be built
automatically by database utilities. The dbunload utility, for example, creates a command file consisting of
the SQL statements necessary to recreate a given database.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 897

communication stream

In MobiLink, the network protocol used for communication between the MobiLink client and the MobiLink
server.

concurrency

The simultaneous execution of two or more independent, and possibly competing, processes. SQL Anywhere
automatically uses locking to isolate transactions and ensure that each concurrent application sees a
consistent set of data.

See also:

● “transaction” on page 921
● “isolation level” on page 907

conflict resolution

In MobiLink, conflict resolution is logic that specifies what to do when two users modify the same row on
different remote databases.

connection ID

A unique number that identifies a given connection between a client application and the database. You can
determine the current connection ID using the following SQL statement:

SELECT CONNECTION_PROPERTY('Number');

connection-initiated synchronization

A form of MobiLink server-initiated synchronization in which synchronization is initiated when there are
changes to connectivity.

See also: “server-initiated synchronization” on page 918.

connection profile

A set of parameters that are required to connect to a database, such as user name, password, and server name,
that is stored and used as a convenience.

consolidated database

In distributed database environments, a database that stores the master copy of the data. In case of conflict
or discrepancy, the consolidated database is considered to have the primary copy of the data.

See also:

● “synchronization” on page 921
● “replication” on page 917

Glossary

898 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

constraint

A restriction on the values contained in a particular database object, such as a table or column. For example,
a column may have a uniqueness constraint, which requires that all values in the column be different. A table
may have a foreign key constraint, which specifies how the information in the table relates to data in some
other table.

See also:

● “check constraint” on page 896
● “foreign key constraint” on page 904
● “primary key constraint” on page 914
● “unique constraint” on page 922

contention

The act of competing for resources. For example, in database terms, two or more users trying to edit the
same row of a database contend for the rights to edit that row.

correlation name

The name of a table or view that is used in the FROM clause of a query—either its original name, or an
alternate name, that is defined in the FROM clause.

creator ID

In UltraLite Palm OS applications, an ID that is assigned when the application is created.

cursor

A named linkage to a result set, used to access and update rows from a programming interface. In SQL
Anywhere, cursors support forward and backward movement through the query results. Cursors consist of
two parts: the cursor result set, typically defined by a SELECT statement; and the cursor position.

See also:

● “cursor result set” on page 899
● “cursor position” on page 899

cursor position

A pointer to one row within the cursor result set.

See also:

● “cursor” on page 899
● “cursor result set” on page 899

cursor result set

The set of rows resulting from a query that is associated with a cursor.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 899

See also:

● “cursor” on page 899
● “cursor position” on page 899

data cube

A multi-dimensional result set with each dimension reflecting a different way to group and sort the same
results. Data cubes provide complex information about data that would otherwise require self-join queries
and correlated subqueries. Data cubes are a part of OLAP functionality.

data definition language (DDL)

The subset of SQL statements for defining the structure of data in the database. DDL statements create,
modify, and remove database objects, such as tables and users.

data manipulation language (DML)

The subset of SQL statements for manipulating data in the database. DML statements retrieve, insert, update,
and delete data in the database.

data type

The format of data, such as CHAR or NUMERIC. In the ANSI SQL standard, data types can also include a
restriction on size, character set, and collation.

See also: “domain” on page 902.

database

A collection of tables that are related by primary and foreign keys. The tables hold the information in the
database. The tables and keys together define the structure of the database. A database management system
accesses this information.

See also:

● “foreign key” on page 904
● “primary key” on page 914
● “database management system (DBMS)” on page 901
● “relational database management system (RDBMS)” on page 916

database administrator (DBA)

The user with the permissions required to maintain the database. The DBA is generally responsible for all
changes to a database schema, and for managing users and groups. The role of database administrator is
automatically built into databases as user ID DBA with password sql.

Glossary

900 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

database connection

A communication channel between a client application and the database. A valid user ID and password are
required to establish a connection. The privileges granted to the user ID determine the actions that can be
carried out during the connection.

database file

A database is held in one or more database files. There is an initial file, and subsequent files are called
dbspaces. Each table, including its indexes, must be contained within a single database file.

See also: “dbspace” on page 902.

database management system (DBMS)

A collection of programs that allow you to create and use databases.

See also: “relational database management system (RDBMS)” on page 916.

database name

The name given to a database when it is loaded by a server. The default database name is the root of the
initial database file.

See also: “database file” on page 901.

database object

A component of a database that contains or receives information. Tables, indexes, views, procedures, and
triggers are database objects.

database owner (dbo)

A special user that owns the system objects not owned by SYS.

See also:

● “database administrator (DBA)” on page 900
● “SYS” on page 921

database server

A computer program that regulates all access to information in a database. SQL Anywhere provides two
types of servers: network servers and personal servers.

DBA authority

The level of permission that enables a user to do administrative activity in the database. The DBA user has
DBA authority by default.

See also: “database administrator (DBA)” on page 900.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 901

dbspace

An additional database file that creates more space for data. A database can be held in up to 13 separate files
(an initial file and 12 dbspaces). Each table, together with its indexes, must be contained in a single database
file. The SQL command CREATE DBSPACE adds a new file to the database.

See also: “database file” on page 901.

deadlock

A state where a set of transactions arrives at a place where none can proceed.

device tracking

In MobiLink server-initiated synchronization, functionality that allows you to address messages using the
MobiLink user name that identifies a device.

See also: “server-initiated synchronization” on page 918.

direct row handling

In MobiLink, a way to synchronize table data to sources other than the MobiLink-supported consolidated
databases. You can implement both uploads and downloads with direct row handling.

See also:

● “consolidated database” on page 898
● “SQL-based synchronization” on page 919

domain

Aliases for built-in data types, including precision and scale values where applicable, and optionally
including DEFAULT values and CHECK conditions. Some domains, such as the monetary data types, are
pre-defined in SQL Anywhere. Also called user-defined data type.

See also: “data type” on page 900.

download

The stage in synchronization where data is transferred from the consolidated database to a remote database.

dynamic SQL

SQL that is generated programmatically by your program before it is executed. UltraLite dynamic SQL is
a variant designed for small-footprint devices.

EBF

Express Bug Fix. An express bug fix is a subset of the software with one or more bug fixes. The bug fixes
are listed in the release notes for the update. Bug fix updates may only be applied to installed software with
the same version number. Some testing has been performed on the software, but the software has not

Glossary

902 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

undergone full testing. You should not distribute these files with your application unless you have verified
the suitability of the software yourself.

embedded SQL

A programming interface for C programs. SQL Anywhere embedded SQL is an implementation of the ANSI
and IBM standard.

encoding

Also known as character encoding, an encoding is a method by which each character in a character set is
mapped onto one or more bytes of information, typically represented as a hexadecimal number. An example
of an encoding is UTF-8.

See also:

● “character set” on page 896
● “code page” on page 897
● “collation” on page 897

event model

In MobiLink, the sequence of events that make up a synchronization, such as begin_synchronization and
download_cursor. Events are invoked if a script is created for them.

external login

An alternate login name and password used when communicating with a remote server. By default, SQL
Anywhere uses the names and passwords of its clients whenever it connects to a remote server on behalf of
those clients. However, this default can be overridden by creating external logins. External logins are
alternate login names and passwords used when communicating with a remote server.

extraction

In SQL Remote replication, the act of unloading the appropriate structure and data from the consolidated
database. This information is used to initialize the remote database.

See also: “replication” on page 917.

failover

Switching to a redundant or standby server, system, or network on failure or unplanned termination of the
active server, system, or network. Failover happens automatically.

FILE

In SQL Remote replication, a message system that uses shared files for exchanging replication messages.
This is useful for testing and for installations without an explicit message-transport system.

See also:“replication” on page 917.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 903

file-based download

In MobiLink, a way to synchronize data in which downloads are distributed as files, allowing offline
distribution of synchronization changes.

file-definition database

In MobiLink, a SQL Anywhere database that is used for creating download files.

See also: “file-based download” on page 904.

foreign key

One or more columns in a table that duplicate the primary key values in another table. Foreign keys establish
relationships between tables.

See also:

● “primary key” on page 914
● “foreign table” on page 904

foreign key constraint

A restriction on a column or set of columns that specifies how the data in the table relates to the data in some
other table. Imposing a foreign key constraint on a set of columns makes those columns the foreign key.

See also:

● “constraint” on page 899
● “check constraint” on page 896
● “primary key constraint” on page 914
● “unique constraint” on page 922

foreign table

The table containing the foreign key.

See also: “foreign key” on page 904.

full backup

A backup of the entire database, and optionally, the transaction log. A full backup contains all the information
in the database and provides protection in the event of a system or media failure.

See also: “incremental backup” on page 906.

gateway

A MobiLink object, stored in MobiLink system tables or a Notifier properties file, that contains information
about how to send messages for server-initiated synchronization.

See also: “server-initiated synchronization” on page 918.

Glossary

904 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

generated join condition

A restriction on join results that is automatically generated. There are two types: key and natural. Key joins
are generated when you specify KEY JOIN or when you specify the keyword JOIN but do not use the
keywords CROSS, NATURAL, or ON. For a key join, the generated join condition is based on foreign key
relationships between tables. Natural joins are generated when you specify NATURAL JOIN; the generated
join condition is based on common column names in the two tables.

See also:

● “join” on page 908
● “join condition” on page 908

generation number

In MobiLink, a mechanism for forcing remote databases to upload data before applying any more download
files.

See also: “file-based download” on page 904.

global temporary table

A type of temporary table for which data definitions are visible to all users until explicitly dropped. Global
temporary tables let each user open their own identical instance of a table. By default, rows are deleted on
commit, and rows are always deleted when the connection is ended.

See also:

● “temporary table” on page 921
● “local temporary table” on page 908

grant option

The level of permission that allows a user to grant permissions to other users.

hash

A hash is an index optimization that transforms index entries into keys. An index hash aims to avoid the
expensive operation of finding, loading, and then unpacking the rows to determine the indexed value, by
including enough of the actual row data with its row ID.

histogram

The most important component of column statistics, histograms are a representation of data distribution.
SQL Anywhere maintains histograms to provide the optimizer with statistical information about the
distribution of values in columns.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 905

iAnywhere JDBC driver

The iAnywhere JDBC driver provides a JDBC driver that has some performance benefits and feature benefits
compared to the pure Java jConnect JDBC driver, but which is not a pure-Java solution. The iAnywhere
JDBC driver is recommended in most cases.

See also:

● “JDBC” on page 907
● “jConnect” on page 907

identifier

A string of characters used to reference a database object, such as a table or column. An identifier may
contain any character from A through Z, a through z, 0 through 9, underscore (_), at sign (@), number sign
(#), or dollar sign ($).

incremental backup

A backup of the transaction log only, typically used between full backups.

See also: “transaction log” on page 921.

index

A sorted set of keys and pointers associated with one or more columns in a base table. An index on one or
more columns of a table can improve performance.

InfoMaker

A reporting and data maintenance tool that lets you create sophisticated forms, reports, graphs, cross-tabs,
and tables, and applications that use these reports as building blocks.

inner join

A join in which rows appear in the result set only if both tables satisfy the join condition. Inner joins are the
default.

See also:

● “join” on page 908
● “outer join” on page 912

integrated login

A login feature that allows the same single user ID and password to be used for operating system logins,
network logins, and database connections.

Glossary

906 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

integrity

Adherence to rules that ensure that data is correct and accurate, and that the relational structure of the database
is intact.

See also: “referential integrity” on page 916.

Interactive SQL

A SQL Anywhere application that allows you to query and alter data in your database, and modify the
structure of your database. Interactive SQL provides a pane for you to enter SQL statements, and panes that
return information about how the query was processed and the result set.

isolation level

The degree to which operations in one transaction are visible to operations in other concurrent transactions.
There are four isolation levels, numbered 0 through 3. Level 3 provides the highest level of isolation. Level
0 is the default setting. SQL Anywhere also supports three snapshot isolation levels: snapshot, statement-
snapshot, and readonly-statement-snapshot.

See also: “snapshot isolation” on page 919.

JAR file

Java archive file. A compressed file format consisting of a collection of one or more packages used for Java
applications. It includes all the resources necessary to install and run a Java program in a single compressed
file.

Java class

The main structural unit of code in Java. It is a collection of procedures and variables grouped together
because they all relate to a specific, identifiable category.

jConnect

A Java implementation of the JavaSoft JDBC standard. It provides Java developers with native database
access in multi-tier and heterogeneous environments. However, the iAnywhere JDBC driver is the preferred
JDBC driver for most cases.

See also:

● “JDBC” on page 907
● “iAnywhere JDBC driver” on page 906

JDBC

Java Database Connectivity. A SQL-language programming interface that allows Java applications to access
relational data. The preferred JDBC driver is the iAnywhere JDBC driver.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 907

See also:

● “jConnect” on page 907
● “iAnywhere JDBC driver” on page 906

join

A basic operation in a relational system that links the rows in two or more tables by comparing the values
in specified columns.

join condition

A restriction that affects join results. You specify a join condition by inserting an ON clause or WHERE
clause immediately after the join. In the case of natural and key joins, SQL Anywhere generates a join
condition.

See also:

● “join” on page 908
● “generated join condition” on page 905

join type

SQL Anywhere provides four types of joins: cross join, key join, natural join, and joins using an ON clause.

See also: “join” on page 908.

light weight poller
In MobiLink server-initiated synchronization, a device application that polls for push notifications from a
MobiLink server.

See also: “server-initiated synchronization” on page 918.

Listener

A program, dblsn, that is used for MobiLink server-initiated synchronization. Listeners are installed on
remote devices and configured to initiate actions on the device when they receive push notifications.

See also: “server-initiated synchronization” on page 918.

local temporary table

A type of temporary table that exists only for the duration of a compound statement or until the end of the
connection. Local temporary tables are useful when you need to load a set of data only once. By default,
rows are deleted on commit.

See also:

● “temporary table” on page 921
● “global temporary table” on page 905

Glossary

908 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

lock

A concurrency control mechanism that protects the integrity of data during the simultaneous execution of
multiple transactions. SQL Anywhere automatically applies locks to prevent two connections from changing
the same data at the same time, and to prevent other connections from reading data that is in the process of
being changed.

You control locking by setting the isolation level.

See also:

● “isolation level” on page 907
● “concurrency” on page 898
● “integrity” on page 907

log file

A log of transactions maintained by SQL Anywhere. The log file is used to ensure that the database is
recoverable in the event of a system or media failure, to improve database performance, and to allow data
replication using SQL Remote.

See also:

● “transaction log” on page 921
● “transaction log mirror” on page 922
● “full backup” on page 904

logical index

A reference (pointer) to a physical index. There is no indexing structure stored on disk for a logical index.

LTM

Log Transfer Manager (LTM) also called Replication Agent. Used with Replication Server, the LTM is the
program that reads a database transaction log and sends committed changes to Sybase Replication Server.

See: “Replication Server” on page 917.

maintenance release

A maintenance release is a complete set of software that upgrades installed software from an older version
with the same major version number (version number format is major.minor.patch.build). Bug fixes and
other changes are listed in the release notes for the upgrade.

materialized view

A materialized view is a view that has been computed and stored on disk. Materialized views have
characteristics of both views (they are defined using a query specification), and of tables (they allow most
table operations to be performed on them).

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 909

See also:

● “base table” on page 895
● “view” on page 923

message log

A log where messages from an application such as a database server or MobiLink server can be stored. This
information can also appear in a messages window or be logged to a file. The message log includes
informational messages, errors, warnings, and messages from the MESSAGE statement.

message store

In QAnywhere, databases on the client and server device that store messages.

See also:

● “client message store” on page 897
● “server message store” on page 919

message system

In SQL Remote replication, a protocol for exchanging messages between the consolidated database and a
remote database. SQL Anywhere includes support for the following message systems: FILE, FTP, and
SMTP.

See also:

● “replication” on page 917
● “FILE” on page 903

message type

In SQL Remote replication, a database object that specifies how remote users communicate with the publisher
of a consolidated database. A consolidated database may have several message types defined for it; this
allows different remote users to communicate with it using different message systems.

See also:

● “replication” on page 917
● “consolidated database” on page 898

metadata

Data about data. Metadata describes the nature and content of other data.

See also: “schema” on page 918.

mirror log

See also: “transaction log mirror” on page 922.

Glossary

910 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink

A session-based synchronization technology designed to synchronize UltraLite and SQL Anywhere remote
databases with a consolidated database.

See also:

● “consolidated database” on page 898
● “synchronization” on page 921
● “UltraLite” on page 922

MobiLink client

There are two kinds of MobiLink clients. For SQL Anywhere remote databases, the MobiLink client is the
dbmlsync command line utility. For UltraLite remote databases, the MobiLink client is built in to the
UltraLite runtime library.

MobiLink Monitor

A graphical tool for monitoring MobiLink synchronizations.

MobiLink server

The computer program that runs MobiLink synchronization, mlsrv11.

MobiLink system table

System tables that are required by MobiLink synchronization. They are installed by MobiLink setup scripts
into the MobiLink consolidated database.

MobiLink user

A MobiLink user is used to connect to the MobiLink server. You create the MobiLink user on the remote
database and register it in the consolidated database. MobiLink user names are entirely independent of
database user names.

network protocol

The type of communication, such as TCP/IP or HTTP.

network server

A database server that accepts connections from computers sharing a common network.

See also: “personal server” on page 913.

normalization

The refinement of a database schema to eliminate redundancy and improve organization according to rules
based on relational database theory.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 911

Notifier

A program that is used by MobiLink server-initiated synchronization. Notifiers are integrated into the
MobiLink server. They check the consolidated database for push requests, and send push notifications.

See also:

● “server-initiated synchronization” on page 918
● “Listener” on page 908

object tree

In Sybase Central, the hierarchy of database objects. The top level of the object tree shows all products that
your version of Sybase Central supports. Each product expands to reveal its own sub-tree of objects.

See also: “Sybase Central” on page 920.

ODBC

Open Database Connectivity. A standard Windows interface to database management systems. ODBC is
one of several interfaces supported by SQL Anywhere.

ODBC Administrator

A Microsoft program included with Windows operating systems for setting up ODBC data sources.

ODBC data source

A specification of the data a user wants to access via ODBC, and the information needed to get to that data.

outer join

A join that preserves all the rows in a table. SQL Anywhere supports left, right, and full outer joins. A left
outer join preserves the rows in the table to the left of the join operator, and returns a null when a row in the
right table does not satisfy the join condition. A full outer join preserves all the rows from both tables.

See also:

● “join” on page 908
● “inner join” on page 906

package

In Java, a collection of related classes.

parse tree

An algebraic representation of a query.

PDB

A Palm database file.

Glossary

912 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

performance statistic

A value reflecting the performance of the database system. The CURRREAD statistic, for example,
represents the number of file reads issued by the database server that have not yet completed.

personal server

A database server that runs on the same computer as the client application. A personal database server is
typically used by a single user on a single computer, but it can support several concurrent connections from
that user.

physical index

The actual indexing structure of an index, as it is stored on disk.

plug-in module

In Sybase Central, a way to access and administer a product. Plug-ins are usually installed and registered
automatically with Sybase Central when you install the respective product. Typically, a plug-in appears as
a top-level container, in the Sybase Central main window, using the name of the product itself; for example,
SQL Anywhere.

See also: “Sybase Central” on page 920.

policy

In QAnywhere, the way you specify when message transmission should occur.

polling

In MobiLink server-initiated synchronization, the way a light weight poller, such as the MobiLink Listener,
requests push notifications from a Notifier.

See also: “server-initiated synchronization” on page 918.

PowerDesigner

A database modeling application. PowerDesigner provides a structured approach to designing a database or
data warehouse. SQL Anywhere includes the Physical Data Model component of PowerDesigner.

PowerJ

A Sybase product for developing Java applications.

predicate

A conditional expression that is optionally combined with the logical operators AND and OR to make up
the set of conditions in a WHERE or HAVING clause. In SQL, a predicate that evaluates to UNKNOWN
is interpreted as FALSE.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 913

primary key

A column or list of columns whose values uniquely identify every row in the table.

See also: “foreign key” on page 904.

primary key constraint

A uniqueness constraint on the primary key columns. A table can have only one primary key constraint.

See also:

● “constraint” on page 899
● “check constraint” on page 896
● “foreign key constraint” on page 904
● “unique constraint” on page 922
● “integrity” on page 907

primary table

The table containing the primary key in a foreign key relationship.

proxy table

A local table containing metadata used to access a table on a remote database server as if it were a local
table.

See also: “metadata” on page 910.

publication

In MobiLink or SQL Remote, a database object that identifies data that is to be synchronized. In MobiLink,
publications exist only on the clients. A publication consists of articles. SQL Remote users can receive a
publication by subscribing to it. MobiLink users can synchronize a publication by creating a synchronization
subscription to it.

See also:

● “replication” on page 917
● “article” on page 895
● “publication update” on page 914

publication update

In SQL Remote replication, a list of changes made to one or more publications in one database. A publication
update is sent periodically as part of a replication message to the remote database(s).

See also:

● “replication” on page 917
● “publication” on page 914

Glossary

914 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

publisher

In SQL Remote replication, the single user in a database who can exchange replication messages with other
replicating databases.

See also: “replication” on page 917.

push notification

In QAnywhere, a special message delivered from the server to a QAnywhere client that prompts the client
to initiate a message transmission. In MobiLink server-initiated synchronization, a special message delivered
from a Notifer to a device that contains push request data and internal information.

See also:

● “QAnywhere” on page 915
● “server-initiated synchronization” on page 918

push request

In MobiLink server-initiated synchronization, a row of values in a result set that a Notifier checks to
determine if push notifications need to be sent to a device.

See also: “server-initiated synchronization” on page 918.

QAnywhere

Application-to-application messaging, including mobile device to mobile device and mobile device to and
from the enterprise, that permits communication between custom programs running on mobile or wireless
devices and a centrally located server application.

QAnywhere agent

In QAnywhere, a process running on the client device that monitors the client message store and determines
when message transmission should occur.

query

A SQL statement or group of SQL statements that access and/or manipulate data in a database.

See also: “SQL” on page 919.

Redirector

A web server plug-in that routes requests and responses between a client and the MobiLink server. This
plug-in also implements load-balancing and failover mechanisms.

reference database

In MobiLink, a SQL Anywhere database used in the development of UltraLite clients. You can use a single
SQL Anywhere database as both reference and consolidated database during development. Databases made
with other products cannot be used as reference databases.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 915

referencing object

An object, such as a view, whose definition directly references another object in the database, such as a table.

See also: “foreign key” on page 904.

referenced object

An object, such as a table, that is directly referenced in the definition of another object, such as a view.

See also: “primary key” on page 914.

referential integrity

Adherence to rules governing data consistency, specifically the relationships between the primary and
foreign key values in different tables. To have referential integrity, the values in each foreign key must
correspond to the primary key values of a row in the referenced table.

See also:

● “primary key” on page 914
● “foreign key” on page 904

regular expression

A regular expression is a sequence of characters, wildcards, and operators that defines a pattern to search
for within a string.

relational database management system (RDBMS)

A type of database management system that stores data in the form of related tables.

See also: “database management system (DBMS)” on page 901.

remote database

In MobiLink or SQL Remote, a database that exchanges data with a consolidated database. Remote databases
may share all or some of the data in the consolidated database.

See also:

● “synchronization” on page 921
● “consolidated database” on page 898

REMOTE DBA authority

In SQL Remote, a level of permission required by the Message Agent (dbremote). In MobiLink, a level of
permission required by the SQL Anywhere synchronization client (dbmlsync). When the Message Agent
(dbremote) or synchronization client connects as a user who has this authority, it has full DBA access. The
user ID has no additional permissions when not connected through the Message Agent (dbremote) or
synchronization client (dbmlsync).

See also: “DBA authority” on page 901.

Glossary

916 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

remote ID

A unique identifier in SQL Anywhere and UltraLite databases that is used by MobiLink. The remote ID is
initially set to NULL and is set to a GUID during a database's first synchronization.

replication

The sharing of data among physically distinct databases. Sybase has three replication technologies:
MobiLink, SQL Remote, and Replication Server.

Replication Agent

See: “LTM” on page 909.

replication frequency

In SQL Remote replication, a setting for each remote user that determines how often the publisher's message
agent should send replication messages to that remote user.

See also: “replication” on page 917.

replication message

In SQL Remote or Replication Server, a communication sent between a publishing database and a subscribing
database. Messages contain data, passthrough statements, and information required by the replication system.

See also:

● “replication” on page 917
● “publication update” on page 914

Replication Server

A Sybase connection-based replication technology that works with SQL Anywhere and Adaptive Server
Enterprise. It is intended for near-real time replication between a few databases.

See also: “LTM” on page 909.

role

In conceptual database modeling, a verb or phrase that describes a relationship from one point of view. You
can describe each relationship with two roles. Examples of roles are "contains" and "is a member of."

role name

The name of a foreign key. This is called a role name because it names the relationship between the foreign
table and primary table. By default, the role name is the table name, unless another foreign key is already
using that name, in which case the default role name is the table name followed by a three-digit unique
number. You can also create the role name yourself.

See also: “foreign key” on page 904.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 917

rollback log

A record of the changes made during each uncommitted transaction. In the event of a ROLLBACK request
or a system failure, uncommitted transactions are reversed out of the database, returning the database to its
former state. Each transaction has a separate rollback log, which is deleted when the transaction is complete.

See also: “transaction” on page 921.

row-level trigger

A trigger that executes once for each row that is changed.

See also:

● “trigger” on page 922
● “statement-level trigger” on page 920

schema

The structure of a database, including tables, columns, and indexes, and the relationships between them.

script

In MobiLink, code written to handle MobiLink events. Scripts programmatically control data exchange to
meet business needs.

See also: “event model” on page 903.

script-based upload

In MobiLink, a way to customize the upload process as an alternative to using the log file.

script version

In MobiLink, a set of synchronization scripts that are applied together to create a synchronization.

secured feature

A feature specified by the -sf option when a database server is started, so it is not available for any database
running on that database server.

server-initiated synchronization

A way to initiate MobiLink synchronization from the MobiLink server.

server management request

A QAnywhere message that is formatted as XML and sent to the QAnywhere system queue as a way to
administer the server message store or monitor QAnywhere applications.

Glossary

918 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

server message store

In QAnywhere, a relational database on the server that temporarily stores messages until they are transmitted
to a client message store or JMS system. Messages are exchanged between clients via the server message
store.

service

In Windows operating systems, a way of running applications when the user ID running the application is
not logged on.

session-based synchronization

A type of synchronization where synchronization results in consistent data representation across both the
consolidated and remote databases. MobiLink is session-based.

snapshot isolation

A type of isolation level that returns a committed version of the data for transactions that issue read requests.
SQL Anywhere provides three snapshot isolation levels: snapshot, statement-snapshot, and readonly-
statement-snapshot. When using snapshot isolation, read operations do not block write operations.

See also: “isolation level” on page 907.

SQL

The language used to communicate with relational databases. ANSI has defined standards for SQL, the latest
of which is SQL-2003. SQL stands, unofficially, for Structured Query Language.

SQL Anywhere

The relational database server component of SQL Anywhere that is intended for use in mobile and embedded
environments or as a server for small and medium-sized businesses. SQL Anywhere is also the name of the
package that contains the SQL Anywhere RDBMS, the UltraLite RDBMS, MobiLink synchronization
software, and other components.

SQL-based synchronization

In MobiLink, a way to synchronize table data to MobiLink-supported consolidated databases using
MobiLink events. For SQL-based synchronization, you can use SQL directly or you can return SQL using
the MobiLink server APIs for Java and .NET.

SQL Remote

A message-based data replication technology for two-way replication between consolidated and remote
databases. The consolidated and remote databases must be SQL Anywhere.

SQL statement

A string containing SQL keywords designed for passing instructions to a DBMS.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 919

See also:

● “schema” on page 918
● “SQL” on page 919
● “database management system (DBMS)” on page 901

statement-level trigger

A trigger that executes after the entire triggering statement is completed.

See also:

● “trigger” on page 922
● “row-level trigger” on page 918

stored procedure

A stored procedure is a group of SQL instructions stored in the database and used to execute a set of operations
or queries on a database server

string literal

A string literal is a sequence of characters enclosed in single quotes.

subquery

A SELECT statement that is nested inside another SELECT, INSERT, UPDATE, or DELETE statement,
or another subquery.

There are two types of subquery: correlated and nested.

subscription

In MobiLink synchronization, a link in a client database between a publication and a MobiLink user, allowing
the data described by the publication to be synchronized.

In SQL Remote replication, a link between a publication and a remote user, allowing the user to exchange
updates on that publication with the consolidated database.

See also:

● “publication” on page 914
● “MobiLink user” on page 911

Sybase Central

A database management tool that provides SQL Anywhere database settings, properties, and utilities in a
graphical user interface. Sybase Central can also be used for managing other Sybase products, including
MobiLink.

Glossary

920 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

synchronization

The process of replicating data between databases using MobiLink technology.

In SQL Remote, synchronization is used exclusively to denote the process of initializing a remote database
with an initial set of data.

See also:

● “MobiLink” on page 911
● “SQL Remote” on page 919

SYS

A special user that owns most of the system objects. You cannot log in as SYS.

system object

Database objects owned by SYS or dbo.

system table

A table, owned by SYS or dbo, that holds metadata. System tables, also known as data dictionary tables, are
created and maintained by the database server.

system view

A type of view, included in every database, that presents the information held in the system tables in an
easily understood format.

temporary table

A table that is created for the temporary storage of data. There are two types: global and local.

See also:

● “local temporary table” on page 908
● “global temporary table” on page 905

transaction

A sequence of SQL statements that comprise a logical unit of work. A transaction is processed in its entirety
or not at all. SQL Anywhere supports transaction processing, with locking features built in to allow
concurrent transactions to access the database without corrupting the data. Transactions end either with a
COMMIT statement, which makes the changes to the data permanent, or a ROLLBACK statement, which
undoes all the changes made during the transaction.

transaction log

A file storing all changes made to a database, in the order in which they are made. It improves performance
and allows data recovery in the event the database file is damaged.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 921

transaction log mirror

An optional identical copy of the transaction log file, maintained simultaneously. Every time a database
change is written to the transaction log file, it is also written to the transaction log mirror file.

A mirror file should be kept on a separate device from the transaction log, so that if either device fails, the
other copy of the log keeps the data safe for recovery.

See also: “transaction log” on page 921.

transactional integrity

In MobiLink, the guaranteed maintenance of transactions across the synchronization system. Either a
complete transaction is synchronized, or no part of the transaction is synchronized.

transmission rule

In QAnywhere, logic that determines when message transmission is to occur, which messages to transmit,
and when messages should be deleted.

trigger

A special form of stored procedure that is executed automatically when a user runs a query that modifies the
data.

See also:

● “row-level trigger” on page 918
● “statement-level trigger” on page 920
● “integrity” on page 907

UltraLite

A database optimized for small, mobile, and embedded devices. Intended platforms include cell phones,
pagers, and personal organizers.

UltraLite runtime

An in-process relational database management system that includes a built-in MobiLink synchronization
client. The UltraLite runtime is included in the libraries used by each of the UltraLite programming interfaces,
and in the UltraLite engine.

unique constraint

A restriction on a column or set of columns requiring that all non-null values are different. A table can have
multiple unique constraints.

See also:

● “foreign key constraint” on page 904
● “primary key constraint” on page 914
● “constraint” on page 899

Glossary

922 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

unload

Unloading a database exports the structure and/or data of the database to text files (SQL command files for
the structure, and ASCII comma-separated files for the data). You unload a database with the Unload utility.

In addition, you can unload selected portions of your data using the UNLOAD statement.

upload

The stage in synchronization where data is transferred from a remote database to a consolidated database.

user-defined data type

See “domain” on page 902.

validate

To test for particular types of file corruption of a database, table, or index.

view

A SELECT statement that is stored in the database as an object. It allows users to see a subset of rows or
columns from one or more tables. Each time a user uses a view of a particular table, or combination of tables,
it is recomputed from the information stored in those tables. Views are useful for security purposes, and to
tailor the appearance of database information to make data access straightforward.

window

The group of rows over which an analytic function is performed. A window may contain one, many, or all
rows of data that has been partitioned according to the grouping specifications provided in the window
definition. The window moves to include the number or range of rows needed to perform the calculations
for the current row in the input. The main benefit of the window construct is that it allows additional
opportunities for grouping and analysis of results, without having to perform additional queries.

Windows

The Microsoft Windows family of operating systems, such as Windows Vista, Windows XP, and Windows
200x.

Windows CE
See “Windows Mobile” on page 923.

Windows Mobile

A family of operating systems produced by Microsoft for mobile devices.

work table

An internal storage area for interim results during query optimization.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 923

924

Index
Symbols
* (asterisk)

(see also asterisks)
SELECT statement, 283

*=
Transact-SQL outer joins, 406

-im option
performance improvement tips, 242

<
comparison operator, 294

=*
Transact-SQL outer joins, 406

>
comparison operator, 294

@@error global variable
return values, 682

@@identity global variable
IDENTITY column, 671

A
abbreviations used in execution plans

about, 626
Access (see Microsoft Access)
access plans

about, 562
explanation of statistics, 631

accessing data on client computers
about, 755

accessing remote data
about, 775
basic concepts, 775
PowerBuilder DataWindows, 779

accessing tables
table access algorithms, 589

actions
CASCADE, 102
RESTRICT, 101
SET DEFAULT, 101
SET NULL, 101

Adaptive Server Enterprise
architecture, 661
compatibility, 658
compatibility in data import/export, 773
data type conversions, 812

emulating, 666
ensuring compatible object names, 669
migrating to SQL Anywhere, 767
server class, 811
special IDENTITY column, 671

Adaptive Server Enterprise compatibility
about, 773

adding
data to databases, 728

adding data
(see also importing data)
(see also inserting data)
about, 533
using INSERT, 533

adding statistics
Performance Monitor, 214

administrator roles
Adaptive Server Enterprise, 663

adsodbc server class
about, 814

Advantage Database Server
ODBC server class, 814

agent IDs
glossary definition, 895

aggregate functions
about, 368
applying to grouped data, 307
data types, 370
DISTINCT keyword, 371
equivalent formulas for OLAP, 500
GROUP BY clause, 376
introduction, 307
multiple levels, 438
NULL, 371
OLAP, 474
order by and group by, 382
outer references, 369
scalar aggregates, 369
vector aggregates, 373
windows (OLAP), 473

aggregates
item in execution plans, 636

algorithms
(see also query execution algorithms)
query execution, 586
relational algebra operators, 586

aliases
about, 286

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 925

correlation names, 291
for calculated columns, 287

ALL
keyword and UNION clause, 383
subquery tests, 518

ALL operator
about, 518
notes, 518
subquery tests, 518

All-rows optimization goal
choosing the optimizer goal, 230
performance, 250

allow_nulls_by_default option
setting for Transact-SQL compatibility, 667

allow_snapshot_isolation option
using, 117

alphabetical order
ORDER BY clause, 304

ALTER INDEX statement
unavailable with snapshot isolation, 116

ALTER SERVER statement
altering remote servers, 782

ALTER statement
automatic commit, 109

ALTER TABLE statement
CHECK constraints, 92
concurrency, 170
examples, 21
foreign keys, 27
primary keys, 24
unavailable with snapshot isolation, 116

altering
CHECK constraints, 95
columns using SQL, 21
columns using Sybase Central, 20
computed column expressions, 31
procedures using Sybase Central, 833
regular views, 43
regular views using SQL, 44
regular views using Sybase Central, 44
remote servers, 782
tables that have dependent materialized views, 38
tables using SQL, 21
tables using Sybase Central, 20
tables with view dependencies, 19
text indexes, 329
triggers, 846

altering procedures

about, 833
analyzing procedure profiling results

about, 181
AND

using logical operators, 301
annotation phase

query processing, 546
ANSI

non-ANSI joins, 396
SQL standards and inconsistencies, 121

ANSI compliance
(see also SQL standards)

ANSI update constraints
execution plans, 633

ANY operator
about, 516
problems, 517
subquery tests, 516

apostrophes
character strings, 298

application profiling
about, 177
creating a tracing session, 199
detecting whether CPU is a limiting factor, 202
detecting whether I/O bandwidth is a limiting factor,
202
detecting whether memory is a limiting factor, 202
Index consultant, 183
procedure profiling, 178
production database, 188
request trace analysis, 203
tracing database, 188
tutorials, 253

application profiling mode
using, 177

application profiling wizard
about, 177
enabling and disabling automatic start, 177
starting, 177
tutorials, 253

apply
CROSS APPLY and OUTER APPLY joins, 414

apply expressions
about, 414
examples, 415

architectures
Adaptive Server Enterprise, 661

arithmetic

Index

926 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

expressions and operator precedence, 288
operations, 368

articles
glossary definition, 895

AS keyword
aliases, 286

ascending order
ORDER BY clause, 380

asejdbc server class
about, 825

aseodbc server class
about, 811

assigning
data types to columns, 96
domains to columns, 96

asterisks
SELECT statement, 283
used for prefix searching in full text searches, 336

AT clause
CREATE EXISTING TABLE statement, 790

atomic compound statements
about, 855

atomic transactions
about, 107
glossary definition, 895

attributes
obtaining query results as XML, 697
SQLCA.lock, 124

AUTO mode
using, 702

auto_commit option
grouping changes in Interactive SQL, 109

autocommit
performance, 240
transactions, 109

AUTOINCREMENT
default, 88
IDENTITY column, 671
negative numbers, 89
signed data types, 89
UltraLite applications, 89
when to use, 169

automatic commit
ALTER statement, 109
COMMENT statement, 109
data definition statements, 109
DROP statement, 109

automatic joins

foreign keys, 655
automatic_timestamp option

setting for Transact-SQL compatibility, 667
automation

generating unique keys, 169
Avail IO statistic

description, 228
AVG function

equivalent mathematical formula, 500
usage, 474

AvgDiskReads
estimate in access plans, 632

AvgDiskReadTime
estimate in access plans, 632

AvgDiskWrites
estimate in access plans, 632

AvgRowCount
estimate in access plans, 632

AvgRunTime
estimate in access plans, 632

B
B-link indexes

about, 646
B-trees indexes

about, 646
base tables

creating, 18
glossary definition, 895
quick comparison with regular and materialized
views, 36

baselining
using procedure profiling, 271

baselining using a profiling log file
about, 271

basic aggregate functions
OLAP, 474

basic concepts to access remote data
overview, 775

batch mode
Interactive SQL, 771

batch operations
Interactive SQL, 771

batches
about, 851
compared to stored procedures, 851
compound statements, 852

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 927

control statements, 851
OUTPUT statement, 853
SQL statements allowed, 879
statements allowed, 879
Transact-SQL, 678
using SELECT statements, 879
writing, 851

BCP format
import/export with ASE, 773

BEGIN TRANSACTION statement
remote data access, 801
restrictions on transaction management, 801

benefits
Index Consultant results, 185

BETWEEN keyword
range queries, 295

binary files
importing, 744

binary large objects
inserting, 536

bit arrays
glossary definition, 896

bitmaps
scanning, 639

bits
item in execution plans, 636

BLOBs
about, 5
inserting, 536
sharing, 5
storing in the database, 5

blocking
about, 128
deadlock, 128
example, 157
transactions, 128
troubleshooting, 129

blocking option
using, 128

bloom filters (see Hash filters)
book materialized views (see book views)
boolean searching

full text search, 340
break conditions

setting, 887
breakpoints

about, 887
conditions, 889

counts, 889
disabling, 888
enabling, 888
individual connections, 889
individual users, 889
setting, 887
status, 888

browsing
regular views, 47
table data, 23

browsing databases
isolation levels, 147

buckets
histograms, 563

bugs
providing feedback, xvii

build values
item in execution plans, 636

bulk loading
performance, 726

bulk operations
about, 725
issues for recovering data, 727
performance impacts, 726
performance improvement tips, 242

business rules
glossary definition, 896

bypass queries
(see also simple queries)
bypassing optimizer, 547
defined, 547
not appearing in graphical plan, 616

bypassing optimization
bypass queries, 547

C
cache

dynamic sizing, 246
encrypted databases require larger cache, 231
execution plans, 572
increasing cache size to improve performance, 231
initial, min, and max size, 244
monitoring size, 248
read-hit ratio, 615
statement level caching, 572
statements in stored procedures, 572
statements that bypass query optimization, 572

Index

928 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Unix, 247
use the cache to improve performance, 244
warming, 248

Cache Hits/sec statistic
description, 217

Cache Pages Allocated Structures statistic
description, 223

Cache Pages File Dirty statistic
description, 223

Cache Pages File statistic
description, 223

Cache Pages Free statistic
description, 223

Cache Pages Pinned statistic
description, 223

Cache Panics statistic
description, 223

Cache Reads Index Interior/sec statistic
description, 217

Cache Reads Index Leaf/sec statistic
description, 217

Cache Reads Table/sec statistic
description, 217

Cache Reads Total Pages/sec statistic
description, 217

Cache Reads Work Table
description, 217

Cache Replacements: Total Pages/sec statistic
description, 223

Cache Scavenge Visited statistic
description, 223

Cache Scavenges statistic
description, 223

cache size
considerations for Windows Mobile, 639
initial, min, and max size, 244
monitoring, 248
page sizes, 639
performance considerations, 639
Unix, 247
Windows, 246
Windows Mobile, 246

Cache Size Current statistic
description, 217

Cache Size Maximum statistic
description, 217

Cache Size Minimum statistic
description, 217

Cache Size Peak statistic
description, 217

cache sizing
performance, 246

cache statistics
list, 217

cache warming
about, 248

cached plans
optimizer bypass, 547

CacheHits property
Node Statistics field descriptions, 622
statistic in access plans, 631

CacheRead property
Node Statistics field descriptions, 622
statistic in access plans, 631

CacheReadIndLeaf property
statistic in access plans, 631

CacheReadTable property
statistic in access plans, 631

caching
execution plans, 572
statements that bypass query optimization, 572
subqueries, 604
user-defined functions, 604

call stack
debugger, 891

CALL statement
about, 830
control statements, 854
examples, 834
parameters, 858

calling procedures
about, 834

canceling changes
about, 531

canceling requests
remote data access, 806

candidate indexes
about, 185
Index Consultant, 185

cardinality
item in execution plans, 635

carriers
glossary definition, 896

Cartesian products
about, 401

CASCADE action

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 929

about, 102
case sensitivity

creating ASE-compatible databases, 667
data, 669
databases, 668
domains, 669
identifiers, 669
passwords, 669
remote access, 805
sort order, 381
SQL, 281
table names, 281
Transact-SQL compatibility, 668
user IDs, 669

CASE statement
control statements, 854

catalog
Adaptive Server Enterprise compatibility, 662
finding dependency information, 39
index information, 77

cdata directive
using, 713

changing data
INSERT statement, 539
permissions, 530
UPDATE statement, 537
updating data using more than one table, 538

changing diagnostic tracing settings when a tracing
session is in progress

about, 199
changing the isolation level

about, 123
character data

searching for, 298
character set conversion

remote date access, 778
character sets

glossary definition, 896
character strings

quotes, 298
select list using, 287
usage, 298

CHECK conditions
Transact-SQL, 662

CHECK constraints
altering, 95
choosing, 7
columns, 92

domains, 93
dropping, 95
glossary definition, 896
tables, 93
using in domains, 97

checking referential integrity at commit
about, 143

Checkpoint Flushes/sec statistic
description, 218

checkpoint log
performance, 233

checkpoint log statistic
description, 218

checkpoint statistics
list, 218

Checkpoint Urgency statistic
description, 218

checkpoints
glossary definition, 896

Checkpoints/sec statistic
description, 218

checksums
glossary definition, 897

ChkptLog Bitmap size statistic
description, 218

ChkptLog Commit to disk/sec statistic
description, 218

ChkptLog Log size statistic
description, 218

ChkptLog Page images saved/sec statistic
description, 218

ChkptLog Pages in use statistic
description, 218

ChkptLog Relocate pages statistic
description, 218

ChkptLog Save preimage/sec statistic
description, 218

ChkptLog Write pages/sec statistic
description, 218

ChkptLog Writes to bitmap/sec statistic
description, 218

ChkptLog Writes/sec statistic
description, 218

choosing constraints
about, 7

choosing isolation levels
about, 146

classes

Index

930 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

remote servers, 809
clauses

about, 280
COMPUTE, 674
FOR BROWSE, 674
FOR READ ONLY, 674
FOR UPDATE, 674
GROUP BY ALL, 674
INTO, 860
ON EXCEPTION RESUME, 683, 873

client files
importing from, and exporting to, client computers,
755

client message store IDs
glossary definition, 897

client message stores
glossary definition, 897

client side data
preventing loss of data loaded from a client, 757

client side loading
about, 726

client/server
glossary definition, 897

CLOSE statement
cursor management procedures, 865

clustered indexes
implementing Index Consultant results, 186
Index Consultant results, 185
using, 72

ClusteredHashGroupBy algorithm
about, 600

ClusteredHashGroupBy plan item
abbreviations in the plan, 626

code pages
glossary definition, 897

collations
glossary definition, 897

colons separate join strategies
about, 611

column attributes
AUTOINCREMENT, 169
generating default values, 169
NEWID, 169

column CHECK constraints from domains
inheriting, 93

column compression
about, 6

column constraints

UNIQUE, 94
column defaults

modifying and dropping, 87
column order

results reflect order in select list, 285
column statistics

(see also histograms)
about, 563
updating, 565

columns
allowing NULL values, 5
altering using SQL, 21
altering using Sybase Central, 20
assigning data types and domains, 96
calculated, 287
CHECK constraints, 95
choosing the data type, 4
compression, 6
constraints, 7
copying tables within or between databases, 32
defaults, 86
GROUP BY clause, 373
IDENTITY, 671
managing column constraints, 94
naming, 4
select list, 284
SELECT statements, 285
timestamp, 669

Comm Bytes Received /sec statistic
description, 219

Comm Bytes Received Uncompressed/sec statistic
description, 219

Comm Bytes Sent Uncompressed/sec statistic
description, 219

Comm Bytes Sent/sec statistic
description, 219

Comm Free Buffers statistic
description, 219

Comm Multi-packets Received/sec statistic
description, 219

Comm Multi-packets Sent/sec statistic
description, 219

Comm Packets Received Uncompressed/sec statistic
description, 219

Comm Packets Received/sec statistic
description, 219

Comm Packets Sent Uncompressed/sec statistic
description, 219

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 931

Comm Packets Sent/sec statistic
description, 219

Comm Requests Received statistic
description, 219

Comm Send Fails/sec statistic
description, 219

Comm TotalBuffers statistic
description, 219

Comm Unique Client Addresses statistic
description, 219

command delimiter
setting, 877

command files
about, 771
building, 771
creating, 771
executing, 771
glossary definition, 897
opening in Interactive SQL, 771
overview, 771
running, 771
SQL Statements pane, 771
writing output, 772

command prompts
conventions, xv
curly braces, xv
environment variables, xv
parentheses, xv
quotes, xv

command shells
conventions, xv
curly braces, xv
environment variables, xv
parentheses, xv
quotes, xv

commands
loading in Interactive SQL, 772

commas
star joins, 410
table expression lists, 401
when joining table expressions, 424

COMMENT statement
automatic commit, 109

comments
altering procedures using Sybase Central, 833

COMMIT statement
about, 530
compound statements, 855

procedures and triggers, 876
remote data access, 801
transactions, 109
verify referential integrity, 143

COMMIT TRANSACTION statement
restrictions on transaction management, 801

commits
wait_for_commit option, 143

common statistics used in the plan
about, 631

common table expressions
about, 433
common applications, 438
data types in recursive, 447
examples, 434
exploring hierarchical data structures, 442
least distance problems, 448
multiple aggregation levels, 438
parts explosion problems, 444
restrictions on recursive, 443
storing constant sets, 440
where permitted, 437

communication streams
glossary definition, 898

communications statistics
list, 219

comparison operators
NULL values, 300
subqueries, 522
symbols, 294

comparison test
subqueries, 514

comparisons
introduction, 302
NULL values, 300
sort order, 294
trailing blanks, 294

compatibility
Adaptive Server Enterprise with Transact SQL,
658
automatic translation of stored procedures, 679
case sensitivity, 668
configuring databases for Transact-SQL
compatibility, 666
GROUP BY clause, 377
import/export with ASE, 773
joins in Transact-SQL, 675
non-ANSI joins, 396

Index

932 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

outputting NULLs, 752
servers and databases, 661
setting options for Transact-SQL compatibility,
667
SQL Anywhere compatibility with Transact-SQL,
658
Transact-SQL, 658
writing compatible SQL statements, 672

competing triggers
execution order, 848

complete passthrough of the statement
remote data access, 803

completing transactions
about, 109

complex outer joins
about, 404

compliance with SQL standards
(see also SQL standards)

composite indexes
about, 644
effect of column order, 644
ORDER BY clause, 645

compound statements
atomic, 855
declarations, 855
using, 855

compressed B-trees
indexes, 646

compressed columns
about, 6

compression
columns, 6

COMPUTE clause
CREATE TABLE, 30
Transact-SQL SELECT statement syntax
unsupported, 674

computed columns
altering computed column expressions, 31
indexes, 74
inserting and updating, 31
limitations, 32
making queries using sargable functions, 570
recalculating, 32
triggers, 31
working with computed columns, 30

concatenating strings
NULL, 301

concurrency

about, 111
benefits, 111
consistency, 121
DDL statements, 170
glossary definition, 898
how locking works, 132
improving, 148
improving using indexes, 149
inconsistencies, 121
ISO SQL standard, 121
performance, 111
primary keys, 169

concurrent transactions
blocking, 128
blocking example, 157

conditions
connecting with logical operators, 301
GROUP BY clause, 309
pattern matching, 296

configuring
diagnostic tracing, 190
diagnostic tracing settings, 198

configuring diagnostic tracing
about, 190

configuring UNIQUE constraints
about, 94

conflict resolution
glossary definition, 898

conflicts
cyclical blocking, 129
locking, 138
snapshot isolation, 120
table locks, 136
transaction blocking, 128
transaction blocking example, 157

conformance with SQL standards
(see also SQL standards)

Connection Count statistic
description, 228

connection IDs
glossary definition, 898

connection locks
duration, 132

connection options
impact on materialized views, 55

connection profiles
glossary definition, 898

connection-initiated synchronization

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 933

glossary definition, 898
CONNECTION_PROPERTY function

about, 212
connections

debugger, 892
debugging, 883
loopback, 796
materialized view candidacy, 575
remote, 801

connectivity problems
remote data access, 805

consistency
about, 107
assuring using locks, 132
correctness and scheduling, 147
dirty reads, 121
dirty reads and locking, 139
dirty reads tutorial, 150
during transactions, 121
effects of unserializable schedules, 147
example of non-repeatable read, 155
ISO SQL standard, 121
isolation level 0, 140
isolation levels, 113
phantom rows, 121
phantom rows and locking, 140
phantom rows tutorial, 159
practical locking implications, 165
repeatable reads, 121
repeatable reads and locking, 140
repeatable reads tutorial, 154
snapshot isolation, 141
versus isolation levels, 121
versus typical transactions, 147

consolidated databases
glossary definition, 898

constant expression defaults
about, 91

constraints
CHECK constraints, 93
columns and tables, 7
glossary definition, 899
in Sybase Central, 94
introduction, 83
unique constraints, 94

contention
glossary definition, 899

contiguous storage of rows

about, 638
control statements

in batches, 851
list, 854

conventions
command prompts, xv
command shells, xv
documentation, xiv
file names in documentation, xiv

conversion errors during import
about, 742

conversion_error option
impact on text indexes, 317

converting subqueries in the WHERE clause to joins
about, 521

copying
copying tables or columns within or between
databases, 32
data with INSERT, 535
procedures, 834
regular views, 41

correlated subqueries
about, 507, 520
defined, 507
outer references, 507

correlation function
OLAP, 489

correlation names
about, 422
glossary definition, 899
in self-joins, 409
restrictions, 291
star joins, 410
table names, 291
using with common table expressions, 435

cost models
about, 562

cost-based optimization
about, 562
bypassing, 547

Costed Best Plans
Optimizer Statistics field descriptions, 623

Costed Plans
Optimizer Statistics field descriptions, 623

costs
Index Consultant results, 186

COUNT function
about, 370

Index

934 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

applying aggregate functions to grouped data, 307
NULL, 371

COVAR_POP function
equivalent mathematical formula, 500

COVAR_SAMP function
equivalent mathematical formula, 500

CPUTime
Node Statistics field descriptions, 622

create column check constraint wizard
accessing, 94

create database wizard
creating Transact-SQL compatible databases, 666

CREATE DEFAULT statement
unsupported, 662

create directory access server wizard
using, 785

CREATE DOMAIN statement
Transact-SQL compatibility, 662
using domains, 96

create domain wizard
using, 96

CREATE EXISTING TABLE statement
creating proxy tables for directory access servers,
785
specifying proxy table location, 790
using, 792

create external login wizard
using, 788

CREATE EXTERNLOGIN statement
creating external logins for directory access servers,
785
using, 788

create foreign key wizard
using, 26

CREATE FUNCTION statement
about, 838

create function wizard
accessing, 838

create global temporary table wizard
accessing, 34

CREATE INDEX statement
concurrency, 170
unavailable with snapshot isolation, 116

create index wizard
using, 74

create materialized view wizard
accessing, 58

CREATE PROCEDURE statement

examples, 832
parameters, 857
using, 798

create procedure wizard
using, 832

create proxy table wizard
using, 791

create remote procedure wizard
using, 798

create remote server wizard
using, 781

CREATE RULE statement
unsupported, 662

CREATE SERVER statement
creating directory access servers, 785
creating remote servers, 780
DB2 data type conversions, 815
JDBC and Adaptive Server Enterprise, 825
Microsoft SQL Server data type conversions, 818
ODBC and ASE data type conversions, 812
Oracle data type conversions, 817
remote servers, 824

create table check constraint wizard
accessing, 94

CREATE TABLE statement
about, 34
concurrency, 170
creating proxy tables for directory access servers,
785
creating tables, 18
creating Transact-SQL-compatible tables, 672
foreign keys, 27
primary keys, 24
proxy tables, 793
specifying proxy table location, 790

create table wizard
accessing, 18

create text configuration object wizard
settings defined, 312

CREATE TEXT CONFIGURATION statement
using, 312

CREATE TEXT INDEX statement
using, 328

create text index wizard
using, 328

CREATE TRIGGER statement
about, 843

create trigger wizard

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 935

using, 844
create unique constraint wizard

accessing, 94
CREATE VIEW statement

WITH CHECK OPTION clause, 41
create view wizard

using, 43
creating

column defaults, 86
data types using SQL, 97
data types using Sybase Central, 96
databases tutorial, 8
diagnostic tracing session, 199
directory access servers, 785
domains using SQL, 97
domains using Sybase Central, 96
external logins, 788
external tracing database, 204
indexes, 74
manual materialized views, 57
materialized views, 57
procedures, 832
proxy tables from Sybase Central, 791
regular views, 43
remote procedures, 798
remote servers, 780
tables, 18
temporary procedures, 832
temporary tables, 34
text indexes, 326
Transact-SQL-compatible tables, 672
triggers, 843
user-defined functions, 838

creating databases
external tracing, 204
Transact-SQL-compatible database, 666

creator ID
glossary definition, 899

CROSS APPLY clause
about, 414
example, 415

cross joins
about, 401

cross products
about, 401

CUBE clause
about, 462
using as a shortcut to GROUPING SETS, 460

CUME_DIST function
equivalent mathematical formula, 500
usage, 496

Current Active statistic
description, 223

CurrentCacheSize property
Optimizer Statistics field descriptions, 623

cursor instability
about, 122

cursor positions
glossary definition, 899

cursor result sets
glossary definition, 899

cursor stability
about, 122

cursors
glossary definition, 899
instability, 122
LOOP statement, 865
procedures, 865
procedures and triggers, 865
SELECT statements, 865
stability, 122
updating in joins, 396

Cursors Open statistic
description, 226

Cursors statistic
description, 226

customizing
graphical plan appearance, 620

customizing graphical plans
about, 613

cyclical blocking conflict
about, 129

D
data

adding, changing, and deleting, 529
case sensitivity, 669
consistency, 121
export tools, 745
exporting, 745
exporting as XML, 689
importing, 728
importing and exporting, 725
integrity and correctness, 147
invalid, 80

Index

936 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

permissions required to modify data, 530
populating materialized views, 59
refreshing manual views, 60
searching, 71
viewing data in tables, 23

data consistency
assuring using locks, 132
correctness, 147
dirty reads, 121
dirty reads and locking, 139
dirty reads tutorial, 150
ISO SQL standard, 121
isolation level 0, 140
phantom rows, 121
phantom rows and locking, 140
phantom rows tutorial, 159
practical locking implications, 165
repeatable reads, 121
repeatable reads and locking, 140
repeatable reads tutorial, 154
snapshot isolation, 141

data cube
glossary definition, 900

data definition language (see DDL)
data definition statements (see DDL)
data entry

isolation levels, 147
data integrity

about, 79
checking, 102
column constraints, 7
column defaults, 86
constraints , 85, 92
effects of unserializable schedules on, 147
enforcing, 99
ensuring, 79
information in the system tables, 106
losing, 101
tools, 83

data manipulation language
glossary definition, 900

data organization
physical, 638

data recovery
importing and exporting, 727
transactions, 531

data sources
external servers, 810

data tab
restrictions on remote tables, 777
SQL Anywhere plug-in, 23

data type conversions
DB2, 815
Microsoft SQL Server, 818
ODBC and ASE, 812
Oracle, 817

data types
aggregate functions, 370
assigning columns, 96
choosing, 4
creating using SQL, 97
creating using Sybase Central, 96
dropping, 98
EXCEPT statement, 383
glossary definition, 900
INTERSECT statement, 383
recursive subqueries, 447
remote procedures, 799
Transact-SQL timestamp, 669
UNION statement, 383
user-defined, 96

database administrator
glossary definition, 900
roles, 663

database connections
glossary definition, 901

database files
file fragmentation, 236
fragmentation, 235
glossary definition, 901
performance, 233

database names
glossary definition, 901

database objects
direct references, 39
editing properties, 16
glossary definition, 901
indirect references, 39
working with database objects, 15

database options
impact on materialized views, 55
Index Consultant, 186
setting for Transact-SQL compatibility, 667
text configuration object settings, 317

database owner
glossary definition, 901

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 937

database pages
Index Consultant results, 185

database servers
glossary definition, 901

database threads
blocked, 129

database tracing wizard
tutorials, 253
using, 199

databases
case sensitivity, 668
case sensitivity in ASE-compatible databases, 667
copying tables or columns within or between
databases, 32
design considerations, 4
designing, 3
displaying system objects, 17
exporting, 753
extracting for SQL Remote, 766
glossary definition, 900
importing XML, 690
joining tables from multiple, 796
migrating to SQL Anywhere, 767
rebuilding databases not involved in
synchronization, 760
reloading, 764
storing XML, 688
Transact-SQL compatibility, 666
unloading, 753
unloading and reloading, 764
unloading and reloading databases involved in
synchronization, 761
unloading and reloading databases not involved in
synchronization, 760
upgrading database file format, 758
viewing and editing properties, 16
working with objects, 15

DataSet
using to export relational data as XML, 689
using to import XML, 695

DataWindows
remote data access, 779

date and time defaults
about, 87

date_format option
impact on text indexes, 317

dates
entry rules, 298

procedures and triggers, 877
search conditions introduction, 302
searching for, 298

DB2
data type conversions, 815

DB2 remote data access
about, 814

db2odbc server class
about, 814

DB_PROPERTY function
about, 212

DBA authority
glossary definition, 901

dbisql utility
rebuilding databases, 758

DBMS
glossary definition, 901

dbo user
Adaptive Server Enterprise, 662

dbspaces
glossary definition, 902
managing, 661

dbunload utility
exporting data, 749
rebuild tools, 758
using, 753

dbxtract utility
extracting data, 766

DCX
about, xii

DDL
about, 15
automatic commit, 109
concurrency, 170
glossary definition, 900
statements disallowed in snapshot isolation
transactions, 116

deadlock reporting
about, 129

Deadlock system event
using, 129

deadlocks
about, 128
Application Profiling tutorial, 254
diagnosing, 129
glossary definition, 902
reasons for, 129
reporting, 129

Index

938 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

transaction blocking, 128
tutorial: diagnosing deadlocks, 254

debug mode
using, 882

debugger
about, 881
connecting, 883
debugging stored procedures, 884
examining variables, 890
features, 882
getting started, 883
requirements, 882
SOAP functions, 882
starting, 883
tutorial, 883
working with breakpoints, 887
working with connections, 892

debugger_tutorial procedure
about, 885

debugging
about, 881
permissions, 882
requirements, 882
SOAP procedures, 882
stored procedures, 884
tutorial, 884
using the SQL Anywhere debugger, 881

debugging application logic
about, 203

decision support
isolation levels, 147

DECLARE statement
compound statements, 855
cursor management procedures, 865
procedures, 869

DecodePostings (DP)
about, 605

decrypting
materialized views, 63

default handling of warnings in procedures and triggers
about, 871

default_char
default CHAR text configuration object, 318
text configuration objects, 312

default_nchar
default NCHAR text configuration object, 318
text configuration objects, 312

defaults

AUTOINCREMENT, 88
column, 86
constant expressions, 91
creating, 86
creating in Sybase Central, 87
current date and time, 87
GLOBAL AUTOINCREMENT, 89
INSERT statement and, 534
introduction, 83
NEWID, 90
NULL, 91
string and number, 91
Transact-SQL, 662
user ID, 88
using in domains, 97
with transactions and locks, 169

defining the merge behavior
about, 736

defragmenting
about, 235
all tables in a database, 236
hard disk, 236
individual tables in a database, 236

delayed_commits option
performance improvement tips, 242

delaying commits
performance improvement tips, 242

delaying referential integrity checks
about, 143

DELETE statement
errors, 103
locking during, 144
referential integrity check on DELETE, 103
using, 540

deleting
directory access servers, 786
materialized views, 69
procedures, 835
regular views, 45
remote servers, 782
tables, 22
triggers, 847

deleting data
DELETE statement, 540
TRUNCATE TABLE statement, 541

demo.db file
schema, 391

DENSE_RANK function

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 939

equivalent mathematical formula, 500
usage, 494

dependencies
view dependencies, 37

depth
item in execution plans, 635

derived tables
about, 291
DerivedTable algorithm, 605
joins, 414
key joins, 429
natural joins, 420
outer joins, 405

DerivedTable algorithm (DT)
about, 605

DerivedTable plan item
abbreviations in the plan, 626

descending order
ORDER BY clause, 380

designing
databases, 3
databases, considerations, 4

designing databases
about, 3

detecting slow statements
tutorial: diagnosing slow statements, 260

deterministic functions
defined, 604
side-effects, 604

developer community
newsgroups, xvii

device tracking
glossary definition, 902

devices
managing, 661

diagnostic tracing
about, 188
changing tracing settings during a tracing session,
199
configure tracing settings, 198
configuring, 190
creating a tracing session, 199
creating an external tracing database, 204
database properties related to tracing, 190
determining tracing settings, 197
interpreting information, 201
production database, 188
sa_diagnostic_tracing_level table, 190

sa_save_trace_data system procedure, 190
sa_set_tracing_level system procedure, 190
tracing conditions, 196
tracing database, 188
tracing levels, 191
tracing scopes, 192
tracing types, 193

diagnostic tracing conditions
about, 196

diagnostic tracing levels
about, 191
deciding which diagnostic tracing level to use, 190
setting, 198

diagnostic tracing scopes
about, 192
descriptions of, 192

diagnostic tracing session
creating, 199

diagnostic tracing types
about, 193
OPTIMIZATION_LOGGING, 193
OPTIMIZATION_LOGGING_WITH_PLANS,
193

direct references
database objects, 39

direct row handling
glossary definition, 902

directed graphs
about, 448

direction
item in execution plans, 635

directory access servers
about, 785
altering, 786
creating, 785
deleting, 786
deleting proxy tables, 786

dirty reads
inconsistencies, 121
locking during queries, 139
tutorial, 150
versus isolation levels, 121

disabled
materialized view statuses, 52

disabling
materialized views, 65
regular views, 45

disabling breakpoints

Index

940 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

about, 888
enabling, 888

disabling procedure profiling
about, 180

disk access cost models
about, 562

Disk Active I/Os statistic
description, 221

disk I/O statistics
list, 221

Disk Maximum I/Os statistic
description, 221

disk read statistics
list, 221

Disk Reads Active statistic
description, 221

Disk Reads Index interior/sec statistic
description, 221

Disk Reads Index leaf/sec statistic
description, 221

Disk Reads Maximum Active statistic
description, 221

Disk Reads Table/sec statistic
description, 221

Disk Reads Total Pages/sec statistic
description, 221

Disk Reads Work Table statistics
description, 221

DISK statements
unsupported, 661

disk write statistics
list, 222

Disk Writes Active statistic
description, 222

Disk Writes Commit Files/sec statistic
description, 222

Disk Writes Database Extends/sec statistic
description, 222

Disk Writes Maximum Active statistic
description, 222

Disk Writes Pages/sec statistic
description, 222

Disk Writes Temp Extends/sec statistic
description, 222

Disk Writes Transaction Log/sec statistic
description, 222

DiskRead property
Node Statistics field descriptions, 622

statistic in access plans, 631
DiskReadIndInt property

statistic in access plans, 631
DiskReadIndLeaf property

statistic in access plans, 631
DiskReadTable property

statistic in access plans, 631
DiskReadTime

Node Statistics field descriptions, 622
DiskWrite property

Node Statistics field descriptions, 622
statistic in access plans, 631

DiskWriteTime
Node Statistics field descriptions, 622

DistH plan item
abbreviations in the plan, 626

DISTINCT clause
eliminating duplicate results, 290
unnecessary distinct elimination, 550

distinct elimination
about, 550

DISTINCT keyword
aggregate functions, 371

distinct list
item in execution plans, 636

DistO plan item
abbreviations in the plan, 626

DML
about, 530
glossary definition, 900
permissions, 530

DocCommentXchange (DCX)
about, xii

documentation
conventions, xiv
SQL Anywhere, xii

documents
inserting, 536

domains
assigning columns, 96
case sensitivity, 669
CHECK constraints, 93
creating using SQL, 97
creating using Sybase Central, 96
dropping, 98
examples of uses, 96
glossary definition, 902
using, 96

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 941

double quotes
character strings, 298

downloads
glossary definition, 902

drop
indexes, 77

DROP DATABASE statement
Adaptive Server Enterprise, 661

DROP EXTERNLOGIN statement
using, 788

DROP INDEX statement
unavailable with snapshot isolation, 116

drop indexes
indexes, 77

DROP PROCEDURE statement
using, 799

DROP SERVER statement
deleting directory access servers, 786
deleting remote servers, 782

DROP statement
automatic commit, 109
concurrency, 170

DROP TABLE statement
dropping proxy tables from directory access servers,
786
example, 23

DROP TRIGGER statement
about, 847

dropping
CHECK constraints, 95
column defaults, 87
data types, 98
directory access servers, 786
domains, 98
external logins, 788
materialized views, 69
procedures, 835
regular views, 45
remote procedures, 799
remote servers, 782
tables, 22
triggers, 847
user-defined data types, 98

dropping connections
remote data access, 806

DT plan item
abbreviations in the plan, 626

DUMP DATABASE statement

unsupported, 661
DUMP TRANSACTION statement

unsupported, 661
duplicate elimination

query execution algorithms, 598
duplicate elimination algorithms

HashDistinct, 598
OrderedDistinct, 599

duplicate results
eliminating, 290

duplicate rows
removing with UNION, 383

duration
locks, 132

dynamic cache sizing
about Unix, 247
performance improvement tips, 246
Windows, 246
Windows Mobile, 246

dynamic SQL
glossary definition, 902

E
EAH plan item

abbreviations in the plan, 626
EAM plan item

abbreviations in the plan, 626
early release of locks

exceptions, 145
transactions, 148

EBFs
glossary definition, 902

editing
properties of database objects, 16

effects of
transaction scheduling, 147
unserializable transaction scheduling, 147

efficiency
improving and locks, 149
saving time when importing data, 728

EH plan item
abbreviations in the plan, 626

element directive
using, 710

elements
generating XML from relational data, 689
obtaining query results as XML, 697

Index

942 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

storing XML in databases, 688
EM plan item

abbreviations in the plan, 626
embedded SQL

glossary definition, 903
enabled

materialized view statuses, 52
enabling

materialized views, 65
procedure profiling in Sybase Central, 179
regular views, 45

enabling breakpoints
about, 888

enabling snapshot isolation
about, 117

encoding
glossary definition, 903
XML, 688

encoding illegal XML names
about, 699

encrypting
materialized views, 63

encryption
cache size, 231
hiding objects, 880
materialized views, 63

ending transactions
about, 109

enforcing column uniqueness
about, 646

enforcing referential integrity
about, 100

ensuring data integrity
about, 79

entities
forcing integrity, 99

entity integrity
breached by client application, 99
introduction, 83
primary keys, 655

enumeration phase
query processing, 546

environment variables
command prompts, xv
command shells, xv

equals operator
comparison operator, 294

equijoins

about, 399
erasing

CHECK constraints, 95
tables, 22

error handling
ON EXCEPTION RESUME, 869
procedures and triggers, 868

errors
conversion, 742
procedures and triggers, 868
Transact-SQL, 682, 683

errors on DELETE or UPDATE
about, 103

EstCpuTime
estimate in access plans, 632

EstDiskReads
estimate in access plans, 632

EstDiskReadTime
estimate in access plans, 632

EstDiskWrites
estimate in access plans, 632

Estimated Active statistic
description, 223

Estimated Cache Pages
Optimizer Statistics field descriptions, 623

estimated leaf pages
item in execution plans, 635

estimated pages
item in execution plans, 634

estimated row size
item in execution plans, 634

estimated rows
item in execution plans, 634

EstRowCount
estimate in access plans, 632

EstRunTime
estimate in access plans, 632

event model
glossary definition, 903

events
generating and reviewing profiling results, 178
statements allowed, 879

examining variables
debugger, 890

example string interpretations
full text search, 320

example text configuration objects
full text search, 319

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 943

examples
dirty reads, 150
implications of locking, 165
non-repeatable reads, 154
phantom locks, 165
phantom rows, 159

Excel
importing data into a SQL Anywhere database, 732
remote data access, 822

Except algorithm
supported by hash join algorithm, 594
supported by merge join algorithm, 594

Except algorithms (EAH, EAM, EH, EM)
about, 601

EXCEPT statement
combining queries, 383
NULL, 386
rules, 384
using, 384

exception handlers
nested compound statements, 873
procedures and triggers, 872

exceptions
declaring, 869

Exchange algorithm (Exchange)
about, 606

Exchange plan item
abbreviations in the plan, 626

exclusive locks
about, 134, 135

exclusive table locks
about, 137

EXECUTE IMMEDIATE statement
procedures, 875

executing
queries more than once, 306
triggers, 846

execution phase
query processing, 547

execution plans
abbreviations, 626
caching, 572
context sensitive help, 616
customizing the appearance, 620
graphical plans, 613
long text plans, 611
printing, 620
reading, 610

short text plans, 611
view matching outcomes, 633
viewing without executing a query, 610

existence test
about, 519
negation of, 520

EXISTS operator
about, 519

EXISTS predicates
rewriting subqueries as, 558

explicit join conditions
about, 393

EXPLICIT mode
syntax, 705
using, 705
using the cdata directive, 713
using the element directive, 710
using the hide directive, 711
using the xml directive, 712
writing queries, 707

export tools
about, 745
dbunload utility, 749
Interactive SQL export wizard, 745
OUTPUT statement, 746
UNLOAD statement, 748
UNLOAD TABLE statement, 747

export wizard
using, 745

exporting
about, 745
ASE compatibility, 773
NULL values, 752
NULLs, 752
query results, 750
relational data as XML, 689
schemas, 763
tables, 754

exporting data
about, 725, 745
backing up the database, 727
considerations, 745
dbunload utility, 749
Interactive SQL export wizard, 745
OUTPUT statement, 746
query results, 750
schemas, 763
to a file, 748, 772

Index

944 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

tools, 745
UNLOAD statement, 748
UNLOAD TABLE statement, 747
XML, 689

exporting databases
about, 753

exporting query results
about, 750

exporting relational data as XML
about, 689

exporting tables
about, 754
schemas, 763

exporting views
about, 754

expression SQL
item in execution plans, 637

expressions
apply expressions, 414
NULL values, 301

Extensible Markup Language (see XML)
external loading

about, 726
external logins

about, 788
creating, 788
dropping, 788
glossary definition, 903
remote servers, 788

external servers
ODBC, 810

Extra Available statistic
description, 223

extract database wizard
SQL Remote, 766

extracting
databases for SQL Remote, 766

extraction
glossary definition, 903

F
failover

glossary definition, 903
FALSE conditions

NULL, 301
fan-out

indexes, 644

FASTFIRSTROW table hint
choosing the optimizer goal, 230
NestedLoopsJoin algorithm, 597

Federal Information Processing Standard Publication
compliance

(see also SQL standards)
feedback

documentation, xvii
providing, xvii
reporting an error, xvii
requesting an update, xvii

FETCH statement
cursor management procedures, 865

fetchtst
about, 232

FILE
glossary definition, 903

file fragmentation
about, 236

FILE message type
glossary definition, 903

file-based downloads
glossary definition, 904

file-definition database
glossary definition, 904

files
fragmentation, 235
graphical plan, 613

Filter algorithms (Filter, PreFilter)
about, 606

Filter plan item
abbreviations in the plan, 626

filters
filter algorithms, 606
hash filter algorithms, 606

finding out more and requesting technical assistance
technical support, xvii

finishing transactions
about, 109

FIPS compliance
(see also SQL standards)

FIRST clause
about, 381

First-Row optimization goal
NestedLoopsJoin algorithm, 597

First-row optimization goal
choosing the optimizer goal, 230

FIRST_VALUE function

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 945

examples, 483
usage, 474

FirstRowRunTime
Node Statistics field descriptions, 622

FOR BROWSE clause
Transact-SQL SELECT statement syntax
unsupported, 674

FOR clause
obtaining query results as XML, 697
using FOR XML AUTO, 702
using FOR XML EXPLICIT, 705
using FOR XML RAW, 701

FOR OLAP WORKLOAD option
ClusteredHashGroupBy algorithm, 600

FOR READ ONLY clause
ignored, 674

FOR statement
control statements, 854

FOR UPDATE clause
Transact-SQL SELECT statement syntax
unsupported, 674

FOR XML AUTO
using, 702

FOR XML clause
BINARY data type, 698
EXPLICIT mode syntax, 705
IMAGE data type, 698
LONG BINARY data type, 698
obtaining query results as XML, 697
restrictions, 698
usage, 698
using AUTO mode, 702
using EXPLICIT mode, 705
using RAW mode, 701
VARBINARY data type, 698

FOR XML EXPLICIT
syntax, 705
using, 705
using the cdata directive, 713
using the element directive, 710
using the hide directive, 711
using the xml directive, 712

FOR XML RAW
using, 701

FORCE NO OPTIMIZATION clause
eligibility to skip query processing phases, 548

FORCE OPTIMIZATION clause
eligibility to skip query processing phases, 548

foreign key constraints
glossary definition, 904

foreign keys
creating in Sybase Central, 26
creating using SQL, 27
deleting in Sybase Central, 26
displaying in Sybase Central, 26
generated indexes, 642
glossary definition, 904
inserts, 103
integrity, 655
key joins, 421
managing, 26
mandatory/optional, 100
modifying using SQL, 27
performance, 243
referential integrity, 100
role name, 422

foreign tables
glossary definition, 904

formulas
OLAP aggregate functions, 500

FORWARD TO statement
native statements, 797
sending native statements to remote servers, 797

FoxPro
remote data access, 822

fragmentation
about, 235
file, 236
indexes, 237
indexes, application profiling tutorial, 265
of files, tables, and indexes, 235
tables, 236
tables, application profiling tutorial, 268

FROM clause
derived tables in, 291
explanation of joins, 392
introduction, 291
isolation levels, 113
stored procedures in, 292

full backups
glossary definition, 904

full compares
about, 643
statistic in access plans, 631

full outer joins
about, 402

Index

946 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

full text search
about, 311
altering text indexes, 329
boolean searching, 340
Chinese, Japanese, and Korean (CJK) data, 311
DecodePostings algorithm, 605
example string interpretations, 320
example text configuration objects, 319
forbidden keywords and wildcards, 332
forming a full text query, 311
grouping terms and expressions, 332
impact of database options on text indexes, 317
listing text configuration objects, 318
listing text indexes, 326, 331
maximum term length, 312
minimum term length, 312
obtaining scores for search results, 344
phrase searching, 335
prefix searching, 336
proximity searching, 338
searches for unindexed terms, 343
searching across multiple columns, 342
searching multiple columns, 332
stoplists, 312, 314
term and phrase searching, 332
term breaker algorithm, 312
text configuration objects, 312
text indexes, 326
tutorial: performing a full text on an NGRAM text
index, 356
tutorial: performing a fuzzy full text search, 353
tutorial: performing a non-fuzzy full text search,
347
types of full text searches, 332

FullCompare property
statistic in access plans, 631

FullOuterHashJoin plan item
abbreviations in the plan, 626

functions
caching, 604
create function wizard, 838
generating and reviewing profiling results, 178
idempotent or deterministic, 604
SOUNDEX function, 303
TRACEBACK, 869
tsequal, 670
user-defined, 838
window, 473

window ranking (OLAP), 491
fuzzy

how the database server interprets a fuzzy search,
318
performing fuzzy searches on text indexes, 343
tutorial: performing a fuzzy full text search, 353

G
gateways

glossary definition, 904
general problems with queries

remote data access, 806
generated join conditions

about, 393
glossary definition, 905

generating
unique keys, 169

generation numbers
glossary definition, 905

GENERIC text indexes
prefix searches, 337

getting help
technical support, xvii

GLOBAL AUTOINCREMENT
default, 89

global autoincrement
compared to GUIDs and UUIDs, 90

global temporary tables
about, 33
glossary definition, 905
merging table structures, 744
sharing, 33

global variables
debugger, 890

glossary
list of SQL Anywhere terminology, 895

go
batch statement delimiter, 851

grant options
glossary definition, 905

GRANT statement
concurrency, 170
Transact-SQL, 664

graphical plans
abbreviations, 626
about, 613
accessing using SQL functions, 621

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 947

bypass queries, 616
bypassing optimization, 616
context sensitive help, 616
customizing appearance, 620
Node Statistics field descriptions, 622
Optimizer Statistics field descriptions, 623
predicate, 618
printing, 614, 620
reading execution plans, 613
statistics, 614
viewing detailed node information, 616
viewing in Interactive SQL, 621
viewing without executing a query, 610

graphing
using the Performance Monitor, 213

GrByH plan item
abbreviations in the plan, 626

GrByHClust plan item
abbreviations in the plan, 626

GrByHSets plan item
abbreviations in the plan, 626

GrByO plan item
abbreviations in the plan, 626

GrByOSets plan item
abbreviations in the plan, 626

GrByS plan item
abbreviations in the plan, 626

GrBySSets plan item
abbreviations in the plan, 626

greater than
comparison operator, 294
range specification, 295

greater than or equal to
comparison operator, 294

GROUP BY ALL clause
Transact-SQL SELECT statement syntax
unsupported, 674

GROUP BY clause
about, 373
aggregate functions, 376
applying aggregate functions to grouped data, 307
errors, 308
execution, 373
extensions, 456
order by and, 382
SQL standard compliance, 377
SQL/2003 standard, 377
using with the WHERE and HAVING clauses, 373

WHERE clause, 376
group by multiple columns

about, 375
group reads

tables, 639
group-by list

item in execution plans, 636
grouped data

about, 307
grouping

full text search, 342
using multiple columns, 375

grouping algorithms
ClusteredHashGroupBy, 600
HashGroupBy, 599
HashGroupBySets, 600
OrderedGroupBy, 600
OrderedGroupBySets, 600
query execution algorithms, 599
SingleRowGroupBy, 601
SortedGroupBySets, 601

grouping changes into transactions
about, 109

GROUPING function
detecting NULL placeholders, 464
used with a CUBE clause (OLAP), 462
used with a ROLLUP clause (OLAP), 460

groups
Adaptive Server Enterprise, 664

GUIDs
compared to global autoincrement, 90
default column value, 90
generating, 169

H
hash

glossary definition, 905
Hash filter algorithms (HF, HFP)

about, 606
hash filters

hash filter algorithms, 606
hash joins

HashAntisemijoin algorithm, 596
HashJoin algorithms, 594
HashSemijoin algorithm, 595
RecursiveHashJoin algorithm, 595
RecursiveLeftOuterHashJoin algorithm, 595

Index

948 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

hash maps
hash filter algorithms, 606

HashAntisemijoin algorithm
about, 596

HashAntisemijoin plan item
abbreviations in the plan, 626

HashDistinct algorithm
about, 598

HashDistinct plan item
abbreviations in the plan, 626

HashExcept algorithm
Windows Mobile, 601

HashExcept plan item
abbreviations in the plan, 626

HashExceptAll plan item
abbreviations in the plan, 626

HashFilter plan item
abbreviations in the plan, 626

HashGroupBy algorithm
about, 599

HashGroupBy plan item
abbreviations in the plan, 626

HashGroupBySets algorithm
about, 600

HashGroupBySets plan item
abbreviations in the plan, 626

HashIntersect plan item
abbreviations in the plan, 626

HashIntersectAll plan item
abbreviations in the plan, 626

HashJoin algorithms
about, 594

HashJoin plan item
abbreviations in the plan, 626

HashSemijoin algorithm
about, 595

HashSemijoin plan item
abbreviations in the plan, 626

HashTableScan method (HTS)
about, 592

HashTableScan plan item
abbreviations in the plan, 626

HAVING clause
logical operators, 379
performance, 569
selecting groups of data, 378
subqueries, 512
using with GROUP BY clause, 378

using with the GROUP BY clause, 373
WHERE clause and, 309
with and without aggregates, 378

Heaps Carver statistic
description, 223

Heaps Query Processing statistic
description, 223

Heaps Relocatable Locked statistic
description, 223

Heaps Relocatable statistic
description, 223

help
technical support, xvii

heuristics
query optimization, 564

HF plan item
abbreviations in the plan, 626

HFP plan item
abbreviations in the plan, 626

hide directive
using, 711

hiding
materialized views, 69

hierarchical data structures
exploring hierarchical data structures, 442
parts explosion problems, 444

hinting
about index hints, 72
index hints, 71

histograms
about, 563
glossary definition, 905
updating, 565

HOLDLOCK keyword
Transact-SQL, 674

host variables
in batches, 851

HTS plan item
abbreviations in the plan, 626

I
I/O

scanning bitmaps, 639
IAH plan item

abbreviations in the plan, 626
IAM plan item

abbreviations in the plan, 626

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 949

iAnywhere developer community
newsgroups, xvii

iAnywhere JDBC driver
glossary definition, 906

IBM DB2
migrating to SQL Anywhere, 767
remote data access to DB2, 814

icons
used in this Help, xvi

id
metaproperty name, 693

idempotent functions
defined, 604

identifiers
case sensitivity, 669
glossary definition, 906
qualifying, 281
uniqueness, 669
using in domains, 97

IDENTITY column
retrieving values, 671
special IDENTITY, 671

Idle Actives/sec statistic
description, 218

Idle Checkpoint Time statistic
description, 218

Idle Checkpoints/sec statistic
description, 218

Idle Writes/sec statistic
description, 218

IF statement
control statements, 854

IGNORE NULLS clause
usage in LAST_VALUE function, 484

IH plan item
abbreviations in the plan, 626

IM plan item
abbreviations in the plan, 626

images
inserting, 536

immediate materialized views (see immediate views)
immediate views

about, 50
changing to a manual view, 62
creating, 61
materialized views with immediate refresh type, 50
only changed rows updated during a refresh, 50
restrictions when creating, 56

import tools
about, 728
INPUT statement, 731
INSERT statement, 734
Interactive SQL import wizard, 729
LOAD TABLE statement, 733
MERGE statement, 736
proxy tables, 741

import wizard
about, 729

importing
about, 728
ASE compatibility, 773
tools, 728
using temporary tables, 33

importing and exporting data
about, 725

importing binary files
about, 744

importing data
(see also inserting data)
about, 725
backing up the database, 727
binary files, 744
considerations, 728
conversion errors, 742
DEFAULTS option, 743
from other databases, 741
images, 744
import wizard, 729
INPUT statement, 731
INSERT statement, 734
into databases, 728
LOAD TABLE statement, 733, 742
MERGE statement, 736
non-matching table structures, 743
NULL values, 743
performance, 726
performance tips, 728
proxy tables, 741
situations for import/export, 725
tables, 742
temporary tables, 743
tools, 728
using INSERT statement, 533
XML documents , 690
XML using openxml , 690
XML using the DataSet object, 695

Index

950 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

XML using xp_read_file system procedure, 693
xp_read_file system procedure, 693

importing tables
about, 742
DEFAULTS option, 743
merging table structures, 744
non-matching table structures, 743
NULL values, 743
temporary tables, 743

importing XML
about, 690
using openxml, 690
using the DataSet object, 695

improving performance
about, 229
acquire adequate hardware, 229
bulk operations, 726
cache, 231
checking for concurrency issues, 229
choosing the optimizer goal, 230
consider collecting statistics on small tables, 231
declare constraints, 231
indexes, 643
materialized views, 574
place different files on different devices, 233
reduce primary key width, 238
review the order of columns in tables, 233
transaction log, 229

IN conditions
subqueries, 515

IN keyword
matching lists, 296

In List
item in execution plans, 637
optimization, 553

in memory mode
performance improvement tips, 242

IN parameters
defined, 857

IN plan item
abbreviations in the plan, 626

in-lists
InList algorithm, 607

inconsistencies
avoiding using locks, 132
dirty reads, 121
dirty reads and locking, 139
dirty reads tutorial, 150

effects of unserializable schedules, 147
example of non-repeatable read, 155
ISO SQL standard, 121
non-repeatable reads, 121
phantom rows, 121
phantom rows and locking, 140
phantom rows tutorial, 159
practical locking implications, 165

inconsistencies non-repeatable reads
about, 140, 154

incremental backups
glossary definition, 906

IndAdd property
statistic in access plans, 631

Index Adds/sec statistic
description, 223

Index Consultant
about, 183
assessing results, 186
connecting to a version 9 database server, 183
connection state, 186
DBA or PROFILE authority required to run, 183
implementing results, 186
introduction, 71
obtaining recommendations for a database, 184
obtaining recommendations for a query, 183
server state, 186
understanding recommendations, 184
understanding results, 185
using for a database, 184
using for a query, 183

index fan-out
about, 644

index fragmentation
about, 237
application profiling tutorial, 265

Index Full Compares/sec statistic
description, 223

index functions
row numbering, 499

index hints
about, 72

Index Lookups/sec statistic
description, 223

index name
item in execution plans, 635

index only retrieval
IndexOnlyScan method, 590

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 951

index scans
IndexOnlyScan, 590
IndexScan, 589
MultipleIndexScan method, 590
ParallelIndexScan method, 591

index selectivity
about, 643

index-only retrieval
about, 72

indexes
about, 640
B-link, 646
benefits and locking, 149
candidate, 185
clustered and unclustered, 646
clustering, 72
composite, 644
computed columns, 74
correlations between, 187
costs and benefits, 183
create, 74
deciding what indexes to create, 71
determining shared physical indexes, 641
drop, 77
effect of column order, 644
fan-out and page sizes, 640
fragmentation, 237
generated, 642
glossary definition, 906
HAVING clause performance, 569
improving performance, 643
index hints, 72
index information in the catalog, 77
index-only retrievals, 590
introduction, 306
leaf pages, 644
logical, 640
optimization, 640
performance, 233
performance impacts, 71
physical, 640
predicate analysis, 569
querying a view using a text index, 344
rebuild, 76
recommended page sizes, 640
restrictions and considerations, 640
sargable predicates, 569
skew, 237

statistics list, 223
structure, 644
temporary tables, 643
text indexes overview, 326
Transact-SQL, 669
types of, 646
understanding Index Consultant recommendations,
184
unused, 186
use on frequently-searched columns, 71
used to satisfy a predicate, 567
using the Index Consultant, 183
validate, 75
virtual, 185
when to use, 71
WHERE clause performance, 569
working with indexes, 71

IndexOnlyScan method (IO)
about, 590

IndexOnlyScan plan item
abbreviations in the plan, 626

IndexScan method
about, 589

IndexScan plan item
abbreviations in the plan, 626

indirect references
database objects, 39

IndLookup property
statistic in access plans, 631

inequalities
testing for inequality, 302

InfoMaker
glossary definition, 906

initial cache size
about, 244

initializing
materialized views, 59

inlining
simple system procedures, 561
user-defined functions, 560

InList algorithm (IN)
about, 607

InList plan item
abbreviations in the plan, 626

inner and outer joins
about, 402

inner joins
about, 402

Index

952 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

converting from outer joins, 554
glossary definition, 906
join elimination rewrite optimization, 555

INOUT parameters
defined, 857

INPUT statement
about, 731
considerations for materialized views, 731
considerations for text indexes, 731
using, 731, 732

inputting data (see importing data)
insert locks

about, 138
INSERT statement

about, 533, 734
considerations for materialized views, 735
considerations for text indexes, 735
duplicate data, 102
locking during, 142
referential integrity check on INSERT, 102
SELECT, 533
using, 734
using to change data, 539

INSERT triggers
fire as a result of INPUT statements, 726

inserting
NULLs, behavior for unspecified columns, 534

inserting data
(see also importing data)
behavior for unspecified columns, 534
BLOBs, 536
column data INSERT statement, 534
constraints, 534
defaults, 534
INPUT statement, 731
INSERT statement, 734
into all columns, 533
MERGE statement, 736
using INSERT, 533
with SELECT, 535

install-dir
documentation usage, xiv

INSTEAD OF triggers
about, 849
recursion, 849
using to update views, 849

instest
about, 232

integrated logins
glossary definition, 906

integrity
about, 79
checking, 102
column defaults, 86
constraints, 92
enforcing, 99
glossary definition, 907
implementing integrity constraints, 85
information in the system tables, 106
losing, 101
tools, 83
using triggers to maintain, 84

intent locks
about, 135
snapshot isolation, 136

inter-query parallelism
(see also intra-query parallelism)
about, 587
intra- vs. inter-query parallelism, 587

Interactive SQL
batch mode, 771
batch operations, 771
command delimiter, 877
command files, 771
default editor for .sql files, 771
displaying a list of tables, 390
exiting, 109
exporting query results, 750
exporting relational data as XML, 689
glossary definition, 907
grouping changes into transactions, 109
Index Consultant, 183
loading commands, 772
rebuilding databases, 758
running scripts, 771
viewing graphical plans, 621

interference between transactions
about, 128
example, 157

interleaving transactions
about, 147

internal loading
about, 726

internal operations
remote data access, 802

Intersect algorithm

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 953

supported by hash join algorithm, 594
supported by merge join algorithm, 594

intersect algorithms
Windows Mobile, 602

Intersect algorithms (IH, IM, IAH, IAM)
about, 602

INTERSECT statement
combining queries, 383
NULL, 386
rules, 384
using, 384

INTO clause
using, 860

INTO CLIENT FILE clause
importing from, and exporting to, client computers,
756

INTO VARIABLE clause
importing from, and exporting to, client computers,
756

intra-query parallelism
(see also inter-query parallelism)
about, 587
exchange algorithm, 587
intra- vs. inter-query parallelism, 587
uses the exchange algorithm, 606

invalid data
about, 80

investigating deadlocks
about, 254

Invocations
Node Statistics field descriptions, 622
statistic in access plans, 631

IO plan item
abbreviations in the plan, 626

IS NULL keyword
about, 301

ISNULL function
about, 301

ISO compliance
(see also SQL standards)

ISO SQL standards
concurrency, 121
typical inconsistencies, 121

isolation level 0
about, 113
example, 150
SELECT statement locking, 140

isolation level 1

about, 113
example, 154
SELECT statement locking, 140

isolation level 2
about, 113
example, 159, 165
SELECT statement locking, 140

isolation level 3
about, 113
example, 161
SELECT statement locking, 140
sequential table scans, 591

isolation level read committed
about, 113

isolation level read uncommitted
about, 113

isolation level readonly-statement-snapshot
about, 113

isolation level repeatable read
about, 113

isolation level serializable
about, 113

isolation level snapshot
about, 113

isolation level statement-snapshot
about, 113

isolation levels
about, 113
changing within a transaction, 126
choosing, 146
choosing a snapshot isolation level, 146
choosing types of locking tutorial, 157
glossary definition, 907
implementation at level 0, 140
implementation at level 1, 140
implementation at level 2, 140
implementation at level 3, 140
improving concurrency at levels 2 and 3, 148
ODBC, 124
setting, 123
tutorials, 150
typical transactions for each, 148
versus typical inconsistencies, 121, 159, 165
versus typical transactions, 147
viewing, 127

isolation levels and consistency
about, 113

isolation_level option

Index

954 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Optimizer Statistics field descriptions, 623
ISYSFKEY

system table usage, 78
ISYSIDX

system table usage, 77, 641
ISYSIDX system table
ISYSIDXCOL

system table usage, 78
ISYSPHYSIDX

system table usage, 78, 641
ISYSPHYSIDX system table

J
JAR files

glossary definition, 907
Java classes

glossary definition, 907
jConnect

glossary definition, 907
JDBC

glossary definition, 907
materialized view candidacy, 575

JDBC classes
configuration notes, 824
limitations, 824

JDBC-based server classes
about, 824

JH plan item
abbreviations in the plan, 626

JHA plan item
abbreviations in the plan, 626

JHAP plan item
abbreviations in the plan, 626

JHFO plan item
abbreviations in the plan, 626

JHO plan item
abbreviations in the plan, 626

JHPO plan item
abbreviations in the plan, 626

JHR plan item
abbreviations in the plan, 626

JHRO plan item
abbreviations in the plan, 626

JHS plan item
abbreviations in the plan, 626

JHSP plan item
abbreviations in the plan, 626

JM plan item
abbreviations in the plan, 626

JMFO plan item
abbreviations in the plan, 626

JMO plan item
abbreviations in the plan, 626

JNL plan item
abbreviations in the plan, 626

JNLA plan item
abbreviations in the plan, 626

JNLFO plan item
abbreviations in the plan, 626

JNLO plan item
abbreviations in the plan, 626

JNLS plan item
abbreviations in the plan, 626

join algorithms
about, 593
hash, merge, and nested loops join variants, 593
HashAntisemijoin, 596
HashJoin, 594
HashSemijoin, 595
MergeJoin, 597
NestedLoopsAntisemijoin, 598
NestedLoopsJoin, 597
NestedLoopsSemijoin, 597
RecursiveHashJoin, 595
RecursiveLeftOuterHashJoin, 595

join conditions
glossary definition, 908
types, 399

join operators
Transact-SQL, 675

join types
glossary definition, 908

joining tables
more than two tables, 395
two tables, 395

joins
about, 389, 392
automatic, 655
Cartesian product, 401
commas, 401
compatibility with Transact-SQL, 675
conversion of outer joins to inner joins, 554
converting subqueries into, 521
converting subqueries to joins, 521
CROSS APPLY and OUTER APPLY joins, 414

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 955

cross joins, 401
data type conversion, 396
default is KEY JOIN, 394
delete, update and insert statements, 396
derived tables, 414
duplicate correlation names, 410
equijoins, 399
FROM clause, 392
glossary definition, 908
HashAntisemijoin algorithm, 596
HashJoin algorithm, 594
HashSemijoin algorithm, 595
how an inner join is computed, 395
inner, 402
inner and outer, 402
join conditions, 393
join elimination rewrite optimization, 555
joined tables, 394
joining remote tables, 794
joining tables from multiple local databases, 796
key, 655
key joins, 421
MergeJoin algorithm, 597
more than two tables, 395
natural, 655
natural joins, 417
NestedLoopsAntisemijoin algorithm, 598
NestedLoopsJoin algorithm, 597
NestedLoopsSemijoin algorithm, 597
nesting, 395
non-ANSI joins, 396
null-supplying tables, 402
ON clause, 397
or subqueries, 509
outer, 402
preserved tables, 402
query execution algorithms, 593
RecursiveHashJoin algorithm, 595
RecursiveLeftOuterHashJoin algorithm, 595
resulting from apply expressions, 414
retrieving Data from Several Tables, 389
search conditions, 399
self-joins, 409
star joins, 410
table expressions, 395
Transact-SQL outer and NULL values, 408
Transact-SQL outer and views, 408
Transact-SQL restrictions on outer, 407

two tables, 395
updating cursors, 396
WHERE clause, 399

K
key joins

about, 421
glossary definition, 905
if more than one foreign key, 422
lists and table expressions that do not contain
commas, 427
ON clause, 398
rules, 431
table expression lists, 426
table expressions, 424
table expressions that do not contain commas, 425
views and derived tables, 429
with an ON clause, 421

key type
item in execution plans, 635

key values
item in execution plans, 635

keys
performance, 243

keywords
HOLDLOCK, 674
NOHOLDLOCK, 674
remote servers, 805

L
LAST_VALUE function

examples, 483
usage, 474

leaf pages
about, 644

least distance problems
about, 448

LEAVE statement
control statements, 854

left outer joins
about, 402

LeftOuterHashJoin plan item
abbreviations in the plan, 626

less than
comparison operator, 294
range specification, 295

less than or equal to

Index

956 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

comparison operator, 294
LIKE search condition

introduction, 296
optimizations, 554
wildcards, 297

limitations
JDBC classes, 824
remote data access character set conversion, 778

limiting rows
FIRST clause, 381
TOP clause, 381

line breaks
SQL, 281

linear regression functions
OLAP, 489

Listeners
glossary definition, 908

LOAD DATABASE statement
unsupported, 661

LOAD statement
about, 733
using, 733

LOAD TABLE statement
considerations for materialized views, 733
considerations for text indexes, 733
using, 742

LOAD TRANSACTION statement
unsupported, 661

loading
commands in Interactive SQL, 772
considerations for database recovery, 733
considerations for mirroring, 734
considerations for synchronization, 733

loading data
conversion errors, 742

local temporary tables
about, 33
glossary definition, 908

local variables
debugger, 890

localname
metaproperty name, 693

Lock Count statistic
description, 226

lockable objects
about, 132

locked tables
item in access plans, 634

locking
(see also locks)
about, 132
conflicts, 138
duration, 132
during deletes, 144
during inserts, 142
during queries, 139
during updates, 143
exclusive table locks, 137
insert locks, 138
intent locks, 135
intent to write table locks, 137
phantom locks, 138
position table locks, 137
reducing through indexes, 646
shared table locks, 136
tables, 136

locks
(see also locking)
about, 132
blocking, 128
blocking example, 157
choosing isolation levels tutorial, 157
conflict handling, 128, 157
conflicting types, 136
conflicts, 138
deadlock, 128
duration, 132
early release of, 148
early release of read locks, 145
exclusive, 135
exclusive schema, 134
exclusive table, 137
glossary definition, 909
implementation at isolation level 0, 140
implementation at isolation level 1, 140
implementation at isolation level 2, 140
implementation at isolation level 3, 140
inconsistencies versus typical isolation levels, 121
insert, 138
intent, 135
intent to write table, 137
isolation levels, 113
objects that can be locked, 132
orphans and referential integrity, 143
phantom, 138
phantom rows versus isolation levels, 159, 165

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 957

position table, 137
procedure for deletes, 144
procedure for inserts, 142
procedure for updates, 143
read, 134
reducing the impact through indexes, 149
row, 134
schema, 134
shared schema, 134
shared table, 136
table, 136
transaction blocking and deadlock, 128
typical transactions versus isolation levels, 147
viewing in Sybase Central, 133
viewing information, 133
viewing using the sa_locks system procedure, 133
write, 135

log files
glossary definition, 909

log tab
Index Consultant results, 186

logical indexes
about, 640
determining shared physical indexes, 641
glossary definition, 909

logical operators
connecting conditions, 301
HAVING clauses, 379

logs
rollback log, 112

long text plans
about, 611
viewing using SQL functions, 612

LONG VARCHAR data type
storing XML, 688

long-term read locks
about, 135

lookup table name window
displaying a list of tables, 390

LOOP statement
control statements, 854
procedures, 865

loopback connections
about, 796

Lotus Notes
passwords, 823
remote data access, 823

LTM

glossary definition, 909

M
Main Heap Bytes statistic

description, 228
maintenance

performance, 229
maintenance releases

glossary definition, 909
making changes permanent

about, 530
managing remote data access connections

about, 806
managing text indexes

about, 326
mandatory

foreign keys, 100
manual views

about, 49
converting to an immediate view, 61
creating, 57
materialized views with manual refresh type, 49
refreshing, 60
restrictions when converting to manual views, 56
staleness, 49

Map physical memory/sec statistic
description, 223

master database
unsupported, 661

materialized view statuses and properties
about, 52

materialized views
about, 49, 574
changing a manual view to an immediate view, 61
changing an immediate view to a manual view, 62
changing the refresh type, 61
column statistics, 49
connections and option mismatches, 575
COSTED view matching outcome, 633
creating, 57
creating a manual view, 57
creating an immediate view, 61
data freshness and consistency, 49
database options consideration, 55
deciding when to use materialized views, 51
dependencies that block table alterations, 38
determining candidate list for the connection, 575

Index

958 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

determining database option settings, 50
determining whether considered by optimizer, 575
disk space considerations, 49
dropping, 69
enabling and disabling, 65
enabling and disabling use in optimization, 67
encrypting and decrypting, 63
evaluating whether to use, 574
evaluation by view matching algorithm, 576
glossary definition, 909
hiding, 69
improving performance with materialized views,
574
initializing, 59
maintenance costs, 49
manual and immediate, compared, 49
optimizer consideration, 51
plan caching, 572
populating with data, 59
properties overview, 53
quick comparison with regular views and base tables,
36
refreshing manual views, 60
restrictions when creating immediate views, 56
restrictions when managing materialized views, 55
retrieving information about materialized views, 50
setting the optimizer staleness threshold for
materialized views, 68
status and properties diagram, 53
statuses, 52
using view matching with snapshot isolation, 116
view dependencies, 38

materialized_view_optimization option
using, 68

materializing result sets
query processing, 250

MAX function
equivalent mathematical formula, 500
rewrite optimization, 571
usage, 474

max_query_tasks option
controlling intra-query parallelism, 587
Optimizer Statistics field descriptions, 623

max_recursive_iterations option
selecting hierarchical data, 442
usage, 442

maximum
cache size, 244

MAXIMUM TERM LENGTH setting
defined, 314
recommended size for n-grams, 314

Mem Pages Carver statistic
description, 223

Mem Pages Lock Table statistic
description, 225

Mem Pages Locked Heap statistic
description, 225

Mem Pages Main Heap statistic
description, 225

Mem Pages Map Pages statistic
description, 225

Mem Pages Pinned Cursor statistic
description, 223

Mem Pages Procedure Definitions statistic
description, 225

Mem Pages Query Processing statistic
description, 223

Mem Pages Relocatable statistic
description, 225

Mem Pages Relocations/sec statistic
description, 225

Mem Pages Rollback Log statistic
description, 225

Mem Pages Trigger Definitions statistic
description, 225

Mem Pages View Definitions statistic
description, 225

memory governor
about, 568

memory pages statistics
list, 225

merge joins
MergeJoin algorithm, 597

MERGE statement
considerations for materialized views, 737
considerations for text indexes, 737
using, 736
using the RAISERROR action, 740

MergeExcept plan item
abbreviations in the plan, 626

MergeExceptAll plan item
abbreviations in the plan, 626

MergeIntersect plan item
abbreviations in the plan, 626

MergeIntersectAll plan item
abbreviations in the plan, 626

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 959

MergeJoin algorithms
about, 597

MergeJoin plan item
abbreviations in the plan, 626

merging
behavior with triggers, 737

merging table structures
about, 744

message log
glossary definition, 910

MESSAGE statement
procedures, 869

message stores
glossary definition, 910

message systems
glossary definition, 910

message types
glossary definition, 910

metadata
glossary definition, 910

metaproperty names
id, 693
localname, 693

Microsoft Access
migrating to SQL Anywhere, 767
remote data access, 820

Microsoft Excel
importing data into a SQL Anywhere database, 732
remote data access, 822

Microsoft FoxPro
remote data access, 822

Microsoft SQL Server
migrating to SQL Anywhere, 767

migrate database wizard
about, 767

migrating databases
about, 767
migrate database wizard, 767
using sa_migrate system procedures, 768

MIN function
equivalent mathematical formula, 500
rewrite optimization, 571

minimum cache size
about, 244

MINIMUM TERM LENGTH setting
defined, 313

mirror logs
glossary definition, 910

miscellaneous statistics
list, 228

MobiLink
glossary definition, 911
rebuilding databases, 761

MobiLink clients
glossary definition, 911

MobiLink Monitor
glossary definition, 911

MobiLink server
glossary definition, 911

MobiLink system tables
glossary definition, 911

MobiLink users
glossary definition, 911

modifying
column defaults, 87

Monitor
(see also Performance Monitor)

monitoring and improving performance
about, 175

monitoring cache size
about, 248

monitoring performance
abbreviations used in execution plans, 626
Performance Monitor statistics, 217
reading execution plans, 610
tools to measure queries, 232

moving data
(see also exporting data)
(see also importing data)
(see also inserting data)
exporting, 745
importing, 728

msaccessodbc server class
about, 820

msodbc server class
about, 818

Multi-Page Allocations statistic
description, 223

MultIdx plan item
abbreviations in the plan, 626

multiple databases
joins, 796

multiple row subqueries
about, 504

multiple transactions
concurrency, 111

Index

960 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MultipleIndexScan method (MultIdx)
about, 590

MultipleIndexScan plan item
abbreviations in the plan, 626

MySQL
ODBC server class, 819

mysqlodbc server class
about, 819

N
n-grams

defined, 312
how n-grams are generated, 318
recommended size, 314
two-step process to generate, 318
understanding how terms are broken up, 312

name spaces
indexes, 669
triggers, 669

namespaces
defining in XML, 696

naming
tables and columns, 4

naming savepoints
about, 112

native statements
sending to remote servers, 797

natural joins
about, 417
errors, 418
glossary definition, 905
of table expressions, 419
of views and derived tables, 420
with an ON clause, 418

nested compound statements and exception handlers
about, 873

nested loops
NestedLoopsJoin algorithm, 597
NestedLoopsSemijoin algorithm, 597

nested loops joins
NestedLoopsAntisemijoin algorithm, 598

nested subqueries
about, 508

NestedLoopsAntisemijoin algorithm
about, 598

NestedLoopsAntisemijoin plan item
abbreviations in the plan, 626

NestedLoopsJoin algorithms
about, 597

NestedLoopsJoin plan item
abbreviations in the plan, 626

NestedLoopsSemijoin algorithm
about, 597

NestedLoopsSemijoin plan item
abbreviations in the plan, 626

nesting
derived tables in joins, 414
joins, 395
outer joins, 404

nesting savepoints
about, 112

network protocols
glossary definition, 911

network server
glossary definition, 911

NEWID function
default column value, 90
when to use, 169

newsgroups
technical support, xvii

NGRAM term breaker
tutorial: performing a fuzzy full text search, 353

NGRAM text indexes
prefix searches, 338
tutorial: performing a full text on an NGRAM text
index, 356

ngrams
tutorial: performing a fuzzy full text search, 353

NOHOLDLOCK keyword
ignored, 674

non-ANSI joins
about, 396

non-deterministic functions
side-effects, 604

non-dirty reads
tutorial, 150

non-repeatable reads
about, 121
example, 155
isolation levels, 121
tutorial, 154

normalization
glossary definition, 911
performance benefits, 233

NOT

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 961

using logical operators, 301
NOT BETWEEN keyword

range queries, 295
not equal to

comparison operator, 294
not greater than

comparison operator, 294
NOT keyword

example, 294
not less than

comparison operator, 294
Notes and remote access

about, 823
Notifiers

glossary definition, 912
NULL

about, 299
aggregate functions, 371
allowing in columns, 5
as different from zeros or blanks, 299
column default, 667
column definition, 301
comparing, 300
default, 91
default parameters, 300
DISTINCT clause, 290
EXCEPT statement, 386
INTERSECT statement, 386
output, 752
placeholder in OLAP, 464
properties, 301
results in UNKNOWN when used in comparison,
300
set operators, 386
sort order, 381
Transact-SQL compatibility, 672
Transact-SQL outer joins, 408
UNION statement, 386

NULL values
ignoring conversion errors, 742
importing data, 743
inserting, 534

null-supplying tables
in outer joins, 402

Number of Grant Fails statistic
description, 223

Number of Grant Requests statistic
description, 223

Number of Grant Waits statistic
description, 223

O
object trees

glossary definition, 912
objects

hiding, 880
lockable objects, 132

ODBC
applications, and locking, 124
external servers, 810
glossary definition, 912
materialized view candidacy, 575
setting isolation levels, 124

ODBC Administrator
glossary definition, 912

ODBC data sources
glossary definition, 912

ODBC server classes
about, 810, 821
Adaptive Server Enterprise, 811
Advantage Database Server, 814
DB2, 814
Lotus Notes SQL 2.0, 823
Microsoft Access, 820
Microsoft Excel, 822
Microsoft FoxPro, 822
MySQL, 819
Oracle, 816
SQL Anywhere, 811
SQL Server, 818
UltraLite, 811

odbcfet
about, 232

OLAP
about, 453
basic aggregate functions, 474
correlation functions, 489
CUBE clause, 462
GROUP BY clause extensions, 456
improving OLAP performance, 455
introduction, 453
linear regression functions, 489
ROLLUP clause, 460
row numbering functions, 499
standard deviation functions, 485

Index

962 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

variance functions, 485
window aggregate functions, 473
window functions, 473
window ranking functions, 491
WITH CUBE clause, 463
WITH ROLLUP clause, 461

OLAP functions
formulas, 500

OMNI (see remote data access)
ON clause

introduction, 397
joins, 397
referencing tables, 397

ON EXCEPTION RESUME clause
about, 869
not with exception handling, 873
stored procedures, 868
Transact-SQL, 683

online analytical processing (see OLAP)
online books

PDF, xii
OPEN statement

cursor management procedures, 865
OpenString algorithm (OpenString)

about, 608
OPENSTRING clause

OpenString algorithm, 608
OpenString plan item

abbreviations in the plan, 626
openxml system procedure

using, 690
using with xp_read_file, 693

operators
arithmetic, 288
connecting conditions, 301
NOT keyword, 294
precedence, 288

optimization
about, 562
cost based, 562
reading execution plans, 610

optimization goal
execution plans, 633

Optimization Method
Optimizer Statistics field descriptions, 623

optimization of queries
about, 562
assumptions, 566

phases of, 546
reading execution plans, 610
rewriting subqueries as EXISTS predicates, 558

optimization phase
query processing, 546

Optimization Time
Optimizer Statistics field descriptions, 623

optimization_goal option
Optimizer Statistics field descriptions, 623
using, 566

optimization_level option
Optimizer Statistics field descriptions, 623

optimization_workload option
ClusteredHashGroupBy algorithm, 600
Optimizer Statistics field descriptions, 623
using, 566

optimizer
about, 562
assumptions, 566
bypass, 547
minimal administration work, 566
phases of query processing, 546
predicate analysis, 569
semantic transformations, 549
using materialized views, 67

optimizer estimates
about, 563

optional foreign keys
about, 100

options
blocking, 128
DEFAULTS, 743
isolation_level, 123

OR
using logical operators, 301

Oracle
data type conversions, 817
migrating to SQL Anywhere, 767

Oracle and remote access
about, 816

oraodbc server class
about, 816

ORDER BY and GROUP BY
about, 382

ORDER BY clause
composite indexes, 645
examples, 304
GROUP BY, 382

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 963

impact on partially defined windows (OLAP), 468
including in materialized view definitions, 56
limiting results, 381
performance, 239
regular view definition restrictions, 40
required to ensure rows always appear in same order,
306
sorting query results, 380
using indexes to improve performance, 306

order-by
item in execution plans, 637

OrderedDistinct algorithm
about, 599

OrderedDistinct plan item
abbreviations in the plan, 626

OrderedGroupBy algorithm
about, 600

OrderedGroupBy plan item
abbreviations in the plan, 626

OrderedGroupBySets algorithm
about, 600

OrderedGroupBySets plan item
abbreviations in the plan, 626

ordering of transactions
about, 147

organization
of data, physical, 638

organizing query results
into groups, 373

orphan and referential integrity
about, 143

OUT parameters
defined, 857

OUTER APPLY clause
about, 414
example, 415

outer joins
about, 402
and join conditions, 403
complex, 404
converting to inner joins, 554
glossary definition, 912
join elimination rewrite optimization, 555
restrictions, 407
star join example, 412
Transact-SQL, 406, 675
Transact-SQL and views, 408
Transact-SQL restrictions on, 407

views and derived tables, 405
outer references

about, 507
aggregate functions, 369
defined, 507
HAVING clause, 512

output redirection
about, 750

OUTPUT statement
about, 746
exporting query results, 750
using to export data as XML, 689

outputting
(see also exporting data)

outputting data (see exporting data)
outputting NULLs

about, 752

P
packages

glossary definition, 912
page maps

item in execution plans, 634
scanning, 639

page sizes
about, 639
and indexes, 640
considerations for Windows Mobile, 639
disk allocation for inserted rows, 638
performance, 240
performance considerations, 639

pages
disk allocation for inserted rows, 638
item in execution plans, 636

Pages Granted statistic
description, 223

parallel table scans
about, 592

ParallelHashAntisemijoin plan item
abbreviations in the plan, 626

ParallelHashFilter plan item
abbreviations in the plan, 626

ParallelHashSemijoin plan item
abbreviations in the plan, 626

ParallelIndexScan method
about, 591

ParallelIndexScan plan item

Index

964 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

abbreviations in the plan, 626
parallelism

about, 587
in queries, 588

ParallelLeftOuterHashJoin plan item
abbreviations in the plan, 626

ParallelTableScan method
about, 592

ParallelTableScan plan item
abbreviations in the plan, 626

parameters
to functions, 307

parentheses
in arithmetic statements, 288
UNION operators, 383

parse trees
glossary definition, 912
query processing, 546

partial index scan
about, 646

partial passthrough of the statement
remote data access, 803

parts explosion problems
about, 444

passing parameters
to functions, 858
to procedures, 858

passwords
case sensitivity, 669
Lotus Notes, 823

pattern matching
introduction, 296

PC plan item
abbreviations in the plan, 626

PCTFREE setting
reducing table fragmentation, 236

PDB
glossary definition, 912

PDF
documentation, xii

PERCENT_RANK function
equivalent mathematical formula, 500
usage, 497

PercentTotalCost
Node Statistics field descriptions, 622

performance
about, 229
advanced application profiling, 188

All-rows optimization goal, 250
application profiling, 177
automatic tuning, 565
bulk loading, 726
cache read-hit ratio, 615
comparing optimizer estimates and actual statistics,
614
estimate source, 615
file fragmentation, 236
improving, 71, 72
improving versus locks, 149
indexes, 71, 243
keys, 243
list of improvement tips, 229
measuring query speed, 232
minimize cascading referential actions, 232
monitoring, 212, 217
monitoring using the Performance Monitor, 213
monitoring using Windows Performance Monitor,
215
optimizer workload, 230
page sizes, 240
predicate analysis, 569
reading execution plans, 610
rebuild your database, 235
recommended page sizes, 639
runtime actual and estimated, 615
scattered reads, 241
selectivity, 614
statistics in Windows Performance Monitor, 215
table and page sizes, 639
tools for monitoring and improving performance,
175
WITH EXPRESS CHECK, 249
work tables, 250

performance improvement tips
monitor query performance, 232
reduce fragmentation, 235
reducing table fragmentation, 236

Performance Monitor
about, 213
adding and removing statistics, 214
list of supported statistics, 217
opening in Sybase Central, 214
overview, 213
Sybase Central, 213
Windows Performance Monitor, 215

performance statistics

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 965

glossary definition, 913
performance tools

graphical plans, 613
procedure profiling system procedures, 208
timing utilities, 211

PerformanceFetch
about, 232

PerformanceInsert
about, 232

PerformanceTraceTime
about, 232

PerformanceTransaction
about, 232

permissions
Adaptive Server Enterprise, 664
data modification, 530
debugging, 882
procedure result sets, 861
triggers, 848
user-defined functions, 840

personal server
glossary definition, 913

phantom locks
about, 138, 165

phantom rows
data inconsistencies, 121
preventing with isolation level 2, 140
tutorial, 159
versus isolation levels, 121, 165

phases
query processing phases, 546

phrases
full text search, 335
special characters in full text search, 335

phrases, full text searching
about, 332

physical indexes
about, 640
determining shared physical indexes, 641
glossary definition, 913

plan building phase
query processing, 547

plan caching
about, 572

plan viewer
accessing, 621
Node Statistics field descriptions, 622
Optimizer Statistics field descriptions, 623

planning for capacity
about, 202

plans
abbreviations used in, 626
caching, 572
context sensitive help, 616
customizing graphical plans, 620
graphical plans, 613
long text plans, 611
printing, 620
reading, 610
short text plans, 611
viewing without executing a query, 610

plug-in modules
glossary definition, 913

plus operator
NULL values, 301

policies
glossary definition, 913

polling
glossary definition, 913

portable SQL
writing, 672

position locks
about, 132
duration, 132

position table locks
about, 137
insert locks, 138
phantom locks, 138

PowerBuilder
remote data access, 779

PowerDesigner
glossary definition, 913

PowerJ
glossary definition, 913

pre-optimization phase
query processing, 546

predicate
item in execution plans, 636

predicate analysis
about, 569

predicates
glossary definition, 913
optimizer, 569
optimizing IN-lists, 553
optimizing LIKE, 554
performance, 569

Index

966 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

reading in execution plans, 618
usage, 293

PreFilter plan item
abbreviations in the plan, 626

prefix searches
on GENERIC text indexes, 337
on NGRAM text indexes, 338

prefix searching
full text search, 336
unexpected results on n-gram text indexes, 336

prefix term
about, 336

prefixes, full text searching
about, 332

PREPARE statement
remote data access, 801

PREPARE TRANSACTION statement
remote data access, 801

preserved tables
in outer joins, 402

primary key column
item in execution plans, 635

primary key constraints
glossary definition, 914

primary key table
item in execution plans, 635

primary key table estimated rows
item in execution plans, 635

primary keys
AUTOINCREMENT, 88
concurrency, 169
creating in Sybase Central, 24
creating using SQL, 24
entity integrity, 99
generated indexes, 642
generation, 169
GLOBAL AUTOINCREMENT, 89
glossary definition, 914
integrity, 655
managing, 24
modifying in Sybase Central, 24
modifying using SQL, 24
performance, 243
using NEWID to create UUIDs, 90

primary tables
glossary definition, 914

probe values
item in execution plans, 636

ProcCall algorithm (PC)
about, 608

ProcCall plan item
abbreviations in the plan, 626

procedure calls
ProcCall algorithm, 608

procedure language
overview, 677

procedure profiling
baselining, 271
disabling, 180
enabling, 179
in Sybase Central, 178
objects you can profile, 181
performing using system procedures, 208
resetting, 180
understanding profiling results, 181
using sa_server_option to disable, 209
using sa_server_option to reset profiling, 209
using sa_server_option to set profiling filters, 208
using system procedures to retrieve profiling data,
210

procedures
about, 829
altering using Sybase Central, 833
benefits of, 831
caching statements, 572
calling, 834
command delimiter, 877
considerations when referencing temporary tables,
34
copying, 834
create procedure wizard, 832
creating, 832
creating remote procedures, 798
cursors, 865
dates, 877
default error handling, 868
deleting, 835
dropping remote procedures, 799
error handling, 682, 683, 868
exception handlers, 872
EXECUTE IMMEDIATE statement, 875
generating and reviewing profiling results, 178
multiple result sets from, 863
overview, 830
parameters, 857, 858
permissions for result sets, 861

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 967

ProcCall algorithm (PC), 608
result sets, 836, 861
return values, 682
returning results, 860
returning results from, 835
savepoints, 876
security, 831
statements allowed, 879
statistics, 564
structure, 857
table names, 877
times, 877
tips for writing, 877
Transact-SQL, 679
Transact-SQL overview, 677
translation, 679
using, 832
using cursors in, 865
using in the FROM clause, 292
variable result sets from, 863
verifying input, 878
warnings, 871

production database
about, 188

profiling applications
about, 177

profiling database
creating internally vs. externally, 189

program variables
common table expression, 438

projections
about, 284

properties
setting database object properties, 16

properties of NULL
about, 301

PROPERTY function
about, 212

proximity searching
full text search, 338

proxy tables
about, 790
creating, 777, 792
creating from Sybase Central, 791
creating using SQL, 792
creating using the CREATE TABLE statement,
793
deleting from directory access servers, 786

glossary definition, 914
importing data, 741
specifying proxy table location, 790

publication updates
glossary definition, 914

publications
glossary definition, 914

publisher
glossary definition, 915

push notifications
glossary definition, 915

push requests
glossary definition, 915

Q
QAnywhere

glossary definition, 915
QAnywhere Agent

glossary definition, 915
QOG

query processing, 546
qualifications

about, 293
qualified names

database objects, 281
quantified comparison test

about, 523
subqueries, 514

queries
about, 279
bypass queries defined, 547
common table expressions, 433
elimination of unnecessary case translation, 558
elimination of unnecessary inner and outer joins,
555
execution plans, 610
exporting, 750
glossary definition, 915
optimization, 562
optimizer bypass, 547
optimizing without executing, 610
parallelism in, 588
phases of processing, 546
SELECT statement, 280
selecting data from a table, 279
semantic transformations, 549
set operations, 383

Index

968 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

types of semantic transformations, 549
writing Transact-SQL-compatible queries, 673

queries blocked on themselves
remote data access, 806

queries that are eligible to skip query processing phases
about, 547

queries that bypass optimization
about, 547
eligibility to skip query processing phases, 547

query algorithms
abbreviations used in execution plans, 626

query bypass (see bypassing optimization)
query execution

about, 587
parallelism, 587
view matching, 574

query execution algorithms
about, 586
ClusteredHashGroupBy, 600
DecodePostings, 605
DerivedTable, 605
duplicate elimination, 598
except and intersect, 601
Exchange algorithm, 606
Filter, 606
grouping algorithms, 599
HashAntisemijoin, 596
HashDistinct, 598
HashExcept, 601
HashExceptAll, 601
HashFilter, 606
HashGroupBy, 599
HashGroupBySets, 600
HashIntersect, 602
HashIntersectAll, 602
HashJoin, 594
HashSemijoin, 595
HashTableScan, 592
IndexOnlyScan, 590
IndexScan, 589
InList, 607
joins, 593
MergeExcept, 601
MergeExceptAll, 601
MergeIntersect, 602
MergeIntersectAll, 602
MergeJoin, 597
MultipleIndexScan, 590

NestedLoopsAntisemijoin, 598
NestedLoopsJoin , 597
NestedLoopsSemijoin, 597
OpenString, 608
OrderedDistinct, 599
OrderedGroupBy, 600
OrderedGroupBySets, 600
ParallelHashFilter, 606
ParallelIndexScan, 591
ParallelTableScan, 592
PreFilter, 606
ProcCall algorithm (PC), 608
RecursiveHashJoin, 595
RecursiveLeftOuterHashJoin, 595
RecursiveTable, 602
RecursiveUnion, 603
RowConstructor, 608
RowIdScan, 592
RowLimit, 609
RowReplicate, 603
SingleRowGroupBy, 601
Sort, 603
SortedGroupBySets, 601
sorting and unions, 603
SortTopN, 604
TableScan, 591
TermBreaker, 609
UnionAll, 603
Window algorithm, 609

query expression algorithms
about, 601
HashExcept, 601
HashExceptAll, 601
HashIntersect, 602
HashIntersectAll, 602
MergeExcept, 601
MergeExceptAll, 601
MergeIntersect, 602
MergeIntersectAll, 602
RecursiveTable, 602
RecursiveUnion, 603
RowReplicate, 603
UnionAll, 603

Query Low memory strategies statistic
description, 228

query memory
about, 568

query normalization

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 969

remote data access, 802
query optimization

(see also optimizer)
IN-list predicates, 553
LIKE predicates, 554
optimizer bypass, 547

query optimizer
(see also optimizer)
about, 562

query parsing
remote data access, 802

query performance
cache reads and hits, 615
estimate sources, 614
identifying data fragmentation problems, 615
lack of effective indexes, 615
predicate selectivity, 614
reading execution plans, 610
RowsReturned statistic, 614
selectivity statistics, 614

Query Plan cache pages statistic
description, 228

query preprocessing
remote data access, 802

query processing
phases, 546

query processing phases
about, 546

query results
exporting, 750

Query Rows materialized/sec statistic
description, 228

query semantic transformation phase
query processing, 546

query transformations
inlining of simple system procedures, 561
inlining of user-defined functions, 560

QueryMemActiveEst property
Optimizer Statistics field descriptions, 623

QueryMemActiveMax property
Optimizer Statistics field descriptions, 623

QueryMemLikelyGrant
Optimizer Statistics field descriptions, 623

QueryMemMaxUseful
Node Statistics field descriptions, 622

QueryMemMaxUseful property
Optimizer Statistics field descriptions, 623

QueryMemNeedsGrant

Optimizer Statistics field descriptions, 623
QueryMemPages property

Optimizer Statistics field descriptions, 623
quotation marks

Adaptive Server Enterprise, 298
character strings, 298

quoted_identifier option
about, 298
setting for Transact-SQL compatibility, 667

R
RAISERROR action

using for a merge operation, 740
RAISERROR statement

ON EXCEPTION RESUME, 683
Transact-SQL, 683

random transitions
item in execution plans, 635

range bounds
item in execution plans, 635

RANGE clause
defaults when window only partially defined, 468
using, 468

range queries
about, 295

RANK function
equivalent mathematical formula, 500
usage, 491

rank functions
finding top and bottom percentiles, 498

ranking
using with aggregation, 495

ranking functions
examples, 491

ranking functions with windows
about, 491

RAW mode
using, 701

RDBMS
glossary definition, 916

read committed
introduction, 113
SELECT statements, 139
setting for ODBC, 124
types of inconsistency, 121

read locks
about, 134

Index

970 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

long-term, 135
READ statement

executing command files, 771
read uncommitted

introduction, 113
SELECT statements, 139
setting for ODBC, 124
types of inconsistency, 121

READ_CLIENT_FILE function
importing from, and exporting to, client computers,
755

READCLIENTFILE authority
importing from, and exporting to, client computers,
755

READCOMMITTED table hint
(see also read committed)

reading execution plans
about, 610

readonly-statement-snapshot isolation level
SELECT statement locking, 141
using, 146

READUNCOMMITTED table hint
(see also read uncommitted)

rebuild and reload tools
about, 758

rebuild tools
about, 758
dbisql utility, 762
dbunload utility, 762
UNLOAD TABLE statement, 763

rebuilding
databases, 758
indexes, 76
minimizing downtime, 764
purpose, 758
tools, 758

rebuilding database
performance improvement tips, 235

rebuilding databases
about, 758
command line, 764
compared to exporting, 758
considerations, 758
MobiLink, 761
non-replicating databases, 760
reasons, 759
reducing table fragmentation, 236
replicating databases, 761

tools, 758
UNLOAD TABLE statement, 763
using dbunload for databases involved in
synchronization, 761

recalculating
computed columns, 32

ReceivingTracingFrom
tracing configuration, 190

recommended indexes tab
Index Consultant results, 185

recovery
import/export, 727
loading client side data, 757

Recovery I/O Estimate statistic
description, 218

recovery statistics
list, 218

Recovery Urgency statistic
description, 218

recursion
max_recursive_iterations option, 442

recursive queries
restrictions, 443

recursive subqueries
about, 441
data type declarations in, 447
least distance problems, 448
multiple aggregation levels, 438
parts explosion problems, 444

RecursiveHashJoin algorithm
about, 595

RecursiveHashJoin plan item
abbreviations in the plan, 626

RecursiveLeftOuterHashJoin algorithm
about, 595

RecursiveLeftOuterHashJoin plan item
abbreviations in the plan, 626

RecursiveTable algorithm (RT)
about, 602

RecursiveTable plan item
abbreviations in the plan, 626

RecursiveUnion algorithm (RU)
about, 603

RecursiveUnion plan item
abbreviations in the plan, 626

redirecting
output to files, 750

Redirector

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 971

glossary definition, 915
reference databases

glossary definition, 915
referenced object

glossary definition, 916
references

displaying references from other tables, 26
referencing object

glossary definition, 916
referential integrity

about, 79
actions, 101
breached by client application, 101
CHECK constraints, 92
check performed during DELETE, 103
check performed during INSERT, 102
checking, 102
column defaults, 86
constraints, 85, 92
enforcing, 99, 100
foreign keys, 100
glossary definition, 916
information in the system tables, 106
introduction, 83
losing, 101
orphans, 143
primary keys, 655
system triggers, 101
tools, 83
verification at commit, 143

referential integrity actions
implemented by system triggers, 102

REFRESH MATERIALIZED VIEW statement
unavailable with snapshot isolation, 116

REFRESH TEXT INDEX statement
using, 329

refresh type
changing for a materialized view, 61

refresh types
for text indexes, 326
manual and immediate views, 49

refreshing
choosing a type for refreshing text indexes, 326
manual views, 60
text indexes, 329

REGR_AVGX function
equivalent mathematical formula, 500

REGR_AVGY function

equivalent mathematical formula, 500
REGR_COUNT function

equivalent mathematical formula, 500
REGR_INTERCEPT function

equivalent mathematical formula, 500
REGR_R2 function

equivalent mathematical formula, 500
REGR_SLOPE function

equivalent mathematical formula, 500
REGR_SXX function

equivalent mathematical formula, 500
REGR_SXY function

equivalent mathematical formula, 500
REGR_SYY function

equivalent mathematical formula, 500
regular expressions

glossary definition, 916
regular views

about, 40
altering, 43
browsing data in views, 47
creating regular views, 43
disabling regular views, 45
enabling regular views, 45
quick comparison with materialized views and base
tables, 36

relational data
exporting as XML, 689

relative benefit
Index Consultant results, 185

reload.sql
about, 758
exporting table data, 763
exporting tables, 754
rebuilding databases, 758
rebuilding remote databases, 758
reloading databases, 764

reloading databases
(see also rebuilding databases)
about, 758
command line, 764

remote data
accessing, 775
features not supported for remote data, 805
remote table mappings, 777
specifying proxy table location, 790
unsupported features, 805

remote data access

Index

972 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

case sensitivity, 805
character set conversion limitation, 778
complete passthrough of the statement, 803
connection names, 806
connectivity problems, 805
general problems with queries, 806
internal operations, 802
introduction, 775
Lotus Notes SQL 2.0, 823
Microsoft Access, 820
Microsoft Excel, 822
Microsoft FoxPro, 822
partial passthrough of the statement, 803
passthrough mode, 797
performance limitations, 775
PowerBuilder DataWindows, 779
queries blocked on themselves, 806
query normalization, 802
query parsing, 802
query preprocessing, 802
remote servers, 780
server capabilities, 802
troubleshooting, 805

remote databases
glossary definition, 916

REMOTE DBA authority
glossary definition, 916

remote IDs
glossary definition, 917

remote procedure calls
about, 798

remote procedures
calls, 798
creating, 798
data types, 799
dropping, 799

remote servers
Advantage Database Server, 814
altering, 782
ASE JDBC, 825
ASE ODBC, 811
classes, 809
creating, 780
creating in Sybase Central, 781
creating using the create remote server wizard, 781
DB2, 814
deleting, 782
dropping, 782

external logins, 788
JDBC, 824
JDBC limitations, 824
listing capabilities on a remote server, 784
listing properties, 784
listing the tables on a remote server, 783
Lotus Notes SQL 2.0, 823
Microsoft Access, 820
Microsoft Excel, 822
Microsoft FoxPro, 822
MySQL, 819
ODBC, 821
Oracle, 816
sending native statements, 797
SQL Anywhere JDBC, 824
SQL Anywhere ODBC, 811
SQL Server, 818
transaction management, 801
UltraLite, 811
working with remote servers, 780

remote tables
about, 777
accessing, 775
joins, 794
listing, 783
listing columns, 793

remote transaction management
overview, 801

removing statistics
Performance Monitor, 214

REORGANIZE TABLE statement
unavailable with snapshot isolation, 116

reorganizing tables
reducing table fragmentation, 236

repeatable reads
improving concurrency, 148
introduction, 113
SELECT statements, 139
setting for ODBC, 124
tutorial, 154
types of inconsistency, 121

REPEATABLEREAD table hint
(see also repeatable reads)

replace expensive triggers
performance improvement tips, 239

replication
glossary definition, 917
rebuilding databases, 761

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 973

rebuilding databases involved in synchronization,
761

Replication Agent
glossary definition, 917

replication frequency
glossary definition, 917

replication messages
glossary definition, 917

Replication Server
glossary definition, 917

request log
about, 206
security, 206

request logging
about, 206

request trace analysis
about, 203
performing, 203

request-level logging (see request logging)
requests

reducing number of, 239
Requests Active statistic

description, 226
Requests Exchange statistic

description, 226
Requests GET DATA/sec statistic

description, 228
Requests statistic

description, 226
requests tab

Index Consultant results, 186
Requests Unscheduled statistic

description, 226
Requests Waiting statistic

description, 223
requirements

SQL Anywhere debugger, 882
reserved words

remote servers, 805
resetting procedure profiling

about, 180
RESIGNAL statement

about, 873
RESTRICT action

about, 101
restrictions

about, 284
changing manual views to immediate views, 56

remote data access, 805
result sets

executing a query more than once, 306
limiting the number of rows, 381
multiple, 863
permissions, 861
procedures, 836, 861
remote procedures, 798
saving to a file, 772
Transact-SQL, 680
troubleshooting, 306
variable, 863

results
understanding Index Consultant, 185

retrieving
index-only retrievals, 590

RETURN statement
about, 860

return values
procedures, 682

returning results from procedures
about, 860

REVOKE statement
concurrency, 170
Transact-SQL, 664

rewrite optimization
about, 549

right outer joins
about, 402

RL plan item
abbreviations in the plan, 626

role names
about, 422
glossary definition, 917

roles
Adaptive Server Enterprise, 663
glossary definition, 917

rollback logs
data recovery, 727
glossary definition, 918
savepoints, 112

ROLLBACK statement
about, 531
compound statements, 855
procedures and triggers, 876
transactions, 109
triggers, 678

rolling back

Index

974 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

transactions, 109
ROLLUP clause

about, 460
using as a shortcut to GROUPING SETS, 460

ROLLUP operation
understanding GROUP BY, 374

row limit count
item in execution plans, 637

row locks
about, 132, 134
exclusive, 135
intent, 135
read, 134
write, 135

row numbering functions with windows
about, 491, 499

row versions
about, 116

row-level triggers
glossary definition, 918

ROW_NUMBER function
usage, 499

RowConstructor algorithm (ROWS)
about, 608

RowConstructor plan item
abbreviations in the plan, 626

ROWID function
used by the RowIdScan method, 592

ROWID plan item
abbreviations in the plan, 626

RowIdScan method (ROWID)
about, 592

RowIdScan plan item
abbreviations in the plan, 626

RowLimit algorithm (RL)
about, 609

RowLimit plan item
abbreviations in the plan, 626

RowReplicate algorithm (RR)
about, 603

RowReplicate plan item
abbreviations in the plan, 626

rows
copying with INSERT, 535
deleting, 540
impact of deleting, 639
intent locks, 135
locks, 134

selecting, 293
ROWS clause

defaults when window only partially defined, 468
using, 468

ROWS plan item
abbreviations in the plan, 626

RowsReturned
Node Statistics field descriptions, 622
statistic in access plans, 631

RR plan item
abbreviations in the plan, 626

RT plan item
abbreviations in the plan, 626

RU plan item
abbreviations in the plan, 626

rules
Transact-SQL, 662

running
command files, 771
SQL scripts, 771

running SQL command files
about, 771

RunTime
Node Statistics field descriptions, 622
statistic in access plans, 631

S
sa_ansi_standard_packages system procedure

SQL Flagger usage, 653
SA_DEBUG group

debugger, 882
sa_dependent_views system procedure

using, 39
sa_locks system procedure

using, 133
sa_migrate system procedure

using, 768
sa_migrate_create_fks system procedure

using, 769
sa_migrate_create_remote_fks_list system procedure

using, 769
sa_migrate_create_remote_table_list system procedure

using, 769
sa_migrate_create_tables system procedure

using, 769
sa_migrate_data system procedure

using, 769

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 975

sa_migrate_drop_proxy_tables system procedure
using, 769

sa_procedure_profile system procedure
obtaining in-depth profiling information, 210

sa_procedure_profile_summary system procedure
obtaining summary profiling information, 210

sa_report_deadlocks system procedure
using, 129

sa_server_option system procedure
disabling procedure profiling, 209
enabling procedure profiling, 208
resetting procedure profiling, 209
setting filters on procedure profiling, 208

SA_SQL_TXN_READONLY_STATEMENT_SNAP
SHOT

isolation level, 124
SA_SQL_TXN_SNAPSHOT

isolation level, 124
SA_SQL_TXN_STATEMENT_SNAPSHOT

isolation level, 124
sajdbc server class

about, 824
sample database

schema for demo.db, 391
samples-dir

documentation usage, xiv
saodbc server class

about, 811
saplan files

about, 613
sargable predicates

about, 569
SATMP environment variable

temporary file location, 234
savepoints

naming, 112
nesting, 112
procedures and triggers, 876
within transactions, 112

saving
result sets, 772
transaction results, 109

saving transaction results
about, 109

scalar aggregate functions
defined, 376

scalar aggregates
about, 369

scattered reads
performance, 241

schedules
effects of serializability, 147
effects of unserializable, 147
serializable, 147
serializable versus early release of locks, 145

scheduling of transactions
about, 147

schema
locks, 134

schema locks
about, 134
exclusive, 134
shared, 134

schemas
exporting, 763
glossary definition, 918

scopes
diagnostic tracing, 192

scoring
full text search, 344

script versions
glossary definition, 918

script-based uploads
glossary definition, 918

scripts
about command files, 771
creating command files, 771
glossary definition, 918
loading command files, 772
running in Interactive SQL, 771

search conditions
date comparisons, 302
example with NOT keyword, 294
GROUP BY clause, 309
pattern matching, 296
subqueries, 503
usage, 293

searching
Chinese, Japanese, and Korean (CJK) data, 311
full text search, 311

secured features
glossary definition, 918

security
hiding objects, 880
importing from, and exporting to, client computers,
756

Index

976 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

procedures, 831
request log, 206

select list
about, 283
aliases, 286
calculated columns, 287
column order impacts order in results, 285
EXCEPT statements, 383
execution plans, 633
INTERSECT statements, 383
UNION statement, 384
UNION statements, 383

SELECT statement
about, 279
aliases, 286
character data, 298
column headings, 286
column order, 285
cursors, 865
INSERT from, 533
INTO clause, 860
keys and query access, 243
restrictions in regular views, 40
specifying rows, 293
strings in display, 286
subqueries, 503
Transact-SQL compatibility, 673
variables, 674

select-list (see select list)
selecting data

using subqueries, 503
selectivity

item in execution plans, 635
reading in execution plans, 618
reading the execution plan, 614

selectivity estimates
reading in execution plans, 618
using a partial index scan, 646

selectivity in the plan
about, 618

selectivity statistics
about, 614

self-joins
about, 409

self_recursion option
Adaptive Server Enterprise, 678

semantic transformations
about, 549

semicolons
command delimiter, 877

SendingTracingTo
tracing configuration, 190

seq plan item
abbreviations in the plan, 626

sequential scans
disk allocation and performance, 638

sequential table scans
about, 591
disk allocation and performance, 638

sequential transitions
item in execution plans, 635

serializable
improving concurrency, 148
introduction, 113
schedules, 147
SELECT statements, 139
setting for ODBC, 124
types of inconsistency, 121

serializable schedules
about, 147
effect of, 147
versus early release of locks, 145

SERIALIZABLE table hint
(see also serializable)

server capabilities
remote data access, 802

server classes
about, 778
Advantage Database Server, 814
asejdbc, 825
aseodbc, 811
db2odbc, 814, 820
defining, 777
msodbc, 818
MySQL, 819
ODBC, 810, 821
oraodbc, 816
sajdbc, 824
saodbc, 811
ulodbc, 811

server management requests
glossary definition, 918

server message stores
glossary definition, 919

server side loading
about, 726

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 977

server state
Index Consultant, 186

server-initiated synchronization
glossary definition, 918

servers
graphing with the Performance Monitor, 213
working with remote servers, 780

servers and databases
compatibility, 661

services
glossary definition, 919

session-based synchronization
glossary definition, 919

SET clause
UPDATE statement, 537

SET DEFAULT action
about, 101

set membership test
=ANY, 516
about, 525
negation of, 516

SET NULL action
about, 101

set operations
about, 383
NULL, 386
rules, 384

SET OPTION statement
ignored by the SQL Flagger, 654
Transact-SQL, 667

set primary key wizard
accessing, 24

setting
diagnostic tracing levels, 198

setting breakpoints
debugger, 887

SHARED keyword
Transact-SQL SELECT statement syntax
unsupported, 674

shared locks
about, 134

shared table locks
about, 136

sharing indexes
about, 640

short text plans
about, 611
viewing using SQL functions, 612

SIGNAL statement
procedures, 869
Transact-SQL, 683

simple queries
(see also bypass queries)
about, 547

single row subqueries
about, 504

SingleRowGroupBy algorithm
about, 601

SingleRowGroupBy plan item
abbreviations in the plan, 626

Snapshot Count statistic
description, 226

snapshot isolation
about, 115
avoiding update conflicts, 120
changing levels within a transaction, 126
choosing a level, 146
enabling, 117
glossary definition, 919
intent locks, 136
materialized view matching, 116
performance implications, 146
row versions, 116
SELECT statement locking, 141
transactions, 117

snapshot isolation level
using, 146

SnapshotIsolationState property
using, 118

SOAP functions
debugging, 882

SOAP services
debugging, 882

sort
Sort algorithm, 603

Sort algorithm (Sort)
about, 603

sort order
comparisons, 294
ORDER BY clause, 380

Sort plan item
abbreviations in the plan, 626

SortedGroupBySets algorithm
about, 601

SortedGroupBySets plan item
abbreviations in the plan, 626

Index

978 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sorting
query execution algorithms, 603
query results, 304
Sort algorithm, 603
SortTopN algorithm, 604
with an index, 239

sorting algorithms
Sort, 603
SortTopN, 604

SortTopN algorithm (SrtN)
about, 604

SortTopN plan item
abbreviations in the plan, 626

SOUNDEX function
about, 303

source code
setting breakpoints, 887

sp_addgroup system procedure
Transact-SQL, 664

sp_addlogin system procedure
support, 661
Transact-SQL, 664

sp_adduser system procedure
Transact-SQL, 664

sp_bindefault procedure
Transact-SQL, 662

sp_bindrule procedure
Transact-SQL, 662

sp_changegroup system procedure
Transact-SQL, 664

sp_dboption system procedure
Transact-SQL, 667

sp_dropgroup system procedure
Transact-SQL, 664

sp_droplogin system procedure
Transact-SQL, 664

sp_dropuser system procedure
Transact-SQL, 664

sp_remote_columns system procedure
using, 793

sp_remote_tables system procedure
using, 783

sp_servercaps system procedure
using, 784

specialized joins
about, 409

SQL
differences from other SQL dialects, 655

entering, 281
glossary definition, 919

SQL Anywhere
DB2 data type conversions, 815
differences from other SQL dialects, 655
documentation, xii
glossary definition, 919
Microsoft SQL Server data type conversions, 818
ODBC and ASE data type conversions, 812
Oracle data type conversions, 817
server class, 811

SQL Anywhere debugger (see debugger)
SQL command files

about, 771
creating, 771
executing, 771
opening in Interactive SQL, 771
running, 771
writing output, 772

SQL Flagger
about, 653
invoking, 653
standards and compatibility, 654
testing SQL compliance with UltraLite SQL, 653

SQL preprocessor
SQL Flagger usage, 653

SQL queries
about, 281

SQL Remote
features not supported for remote data, 805
glossary definition, 919

SQL Server
data type conversions, 818
remote access, 818

SQL standards
about, 654
compliance, 651
GROUP BY clause, 377
non-ANSI joins, 396

SQL statements
disallowed in snapshot isolation transactions, 116
executing in Interactive SQL, 771
glossary definition, 919
writing compatible SQL statements, 672

SQL-based synchronization
glossary definition, 919

SQL/1999
testing compliance of SQL statements, 653

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 979

SQL/2003
testing compliance of SQL statements, 653

SQL/2003 compliance
(see also SQL standards)

SQL/XML
about, 697

sql_flagger_error_level option
SQL Flagger usage, 653

sql_flagger_warning_level option
SQL Flagger usage, 653

SQL_TXN_ISOLATION
about, 125

SQL_TXN_READ_COMMITTED
isolation level, 124

SQL_TXN_READ_UNCOMMITTED
isolation level, 124

SQL_TXN_REPEATABLE_READ
isolation level, 124

SQL_TXT_SERIALIZABLE
isolation level, 124

SQLCA.lock
selecting isolation levels, 124
versus isolation levels, 121

SQLCODE variable
introduction, 868

SQLFLAGGER function
SQL Flagger usage, 653

SQLSetConnectOption
about, 125

SQLSTATE variable
introduction, 868

SQLX (see SQL/XML)
SrtN plan item

abbreviations in the plan, 626
stale data

refreshing in manual views, 60
staleness

manual views, 49
standard deviation functions

OLAP, 485
standard output

redirecting to files, 750
standards

(see also SQL standards)
standards and compatibility

(see also SQL standards)
star joins

about, 410

starting
transactions, 109

Statement Cache Hits statistic
description, 226

Statement Cache Misses statistic
description, 226

Statement Prepares statistic
description, 226

statement-level triggers
glossary definition, 920
Transact-SQL, 677

statement-snapshot isolation level
SELECT statement locking, 141
using, 146

statements
compound, 855
detecting slow statements, 260
optimization, 562
unsupported Transact-SQL statements, 661

statements allowed in batches
about, 879

Statements statistic
description, 226

statistics
(see also histograms)
access plans, 631
adding to the Performance Monitor, 214
alphabetical list of cache statistics, 217
alphabetical list of checkpoint and recovery
statistics, 218
alphabetical list of communications statistics, 219
alphabetical list of disk I/O statistics, 221
alphabetical list of disk read statistics, 221
alphabetical list of disk write statistics, 222
alphabetical list of index statistics, 223
alphabetical list of memory diagnostic statistics,
223
alphabetical list of memory pages statistics, 225
alphabetical list of miscellaneous statistics, 228
alphabetical list of request statistics, 226
cache, 217
checkpoint and recovery, 218
communications, 219
disk I/O, 221
disk read, 221
disk write, 222
execution plans, 610
index, 223

Index

980 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

list, 217
memory pages, 225
miscellaneous, 228
monitoring, 212
monitoring performance, 217
monitoring using the Performance Monitor, 213
ProcCall algorithm, 608
procedures, 608
removing from the Performance Monitor, 214
updating column statistics, 565

STDDEV function
equivalent mathematical formula, 500
see STDDEV_SAMP function, 486

STDDEV_POP function
equivalent mathematical formula, 500
example, 486
usage, 486

STDDEV_SAMP function
equivalent mathematical formula, 500
example, 488
usage, 488

steps in optimization
about, 546

STOPLIST setting
defined, 314

stoplists
about, 312
behavior when searching for stoplist terms, 343
cautions when using, 314
full text search, 312

stored procedure language
overview, 677

stored procedures
caching statements, 572
common table expressions in, 438
compared to batches, 851
debugging, 884
generating and reviewing profiling results, 178
glossary definition, 920
Transact-SQL stored procedure overview, 677
using in the FROM clause, 292
using Sybase Central to translate stored procedures,
679

storing BLOBs in the database
about, 5

storing values
common table expressions, 440

string and number defaults

about, 91
string literal

glossary definition, 920
strings

matching, 296
quotation marks, 298, 299
searching the database using full text search, 311

subqueries
about, 503
ALL test, 518
ANY operator, 517
ANY test, 516
caching of, 604
categorization of, 503
comparison operators, 522
comparison test, 514
converting to joins, 521
correlated, 507
correlated subqueries, 507
existence test, 514, 519
glossary definition, 920
GROUP BY, 512
HAVING clause, 512
IN keyword, 296
introduction, 503
multiple row subqueries, 504
nested, 508
or joins, 509
outer references, 512
quantified comparison test, 514
rewriting as EXISTS predicates, 558
rewriting as joins, 521
row group selection, 512
row selection, 511
set membership test, 514, 515
single row subqueries, 504
types of operators, 514
un-nesting, 550
WHERE clause, 511, 521

subqueries and joins
about, 521

subquery tests
about, 514

subquery transformations during optimization
about, 549

subscriptions
glossary definition, 920

substituting a value for NULL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 981

about, 301
subtotaling results

CUBE clause, 462
ROLLUP clause, 460
WITH CUBE clause, 463
WITH ROLLUP clause, 461

subtransactions
procedures and triggers, 876
savepoints, 112

SUM function
equivalent mathematical formula, 500
usage, 474

summary tab
Index Consultant results, 185

summary values
about, 368, 373

support
newsgroups, xvii

surrogate rows
about, 143

swap space
database cache, 247

Sybase Central
altering tables, 20
altering text configuration objects, 316
altering text indexes, 330
altering views, 44
column constraints, 94
column defaults, 87
copying tables, 32
creating indexes, 74
creating regular views, 43
creating tables, 18
creating temporary tables, 34
creating text configuration objects, 312
creating text indexes, 328
disabling materialized views, 65
disabling optimizer use of a materialized view, 67
disabling regular views, 46
displaying system object contents, 17
displaying system objects, 17
dropping materialized views, 70
dropping regular views, 45
dropping tables, 22
enabling materialized views, 66
enabling optimizer use of a materialized view, 67
enabling regular views, 46
glossary definition, 920

managing foreign keys, 26
managing primary keys, 24
profiling applications, 177
rebuilding databases, 758
refreshing text indexes, 329
table constraints, 94
translating procedures, 679
unloading databases, 749
using the application profiling wizard, 177
validating indexes, 75

symbols
string comparisons, 297

synchronization
glossary definition, 921
rebuilding databases, 761

syntax-independent optimization
about, 562

SYS
glossary definition, 921

SYSCOLSTAT
system view, updating column statistics, 565

SYSCOLUMNS
Transact-SQL name conflicts, 667

SYSINDEXES
Transact-SQL name conflicts, 667

SYSSERVER
system view, remote servers, 780

SYSTAB
compatibility view information, 47

system administrator
Adaptive Server Enterprise, 663

system catalog
Adaptive Server Enterprise, 662

system failures
transactions, 531

system functions
tsequal, 670

system objects
displaying system objects in a database, 17
glossary definition, 921
querying for a list of system objects by owner, 17
viewing contents, 17

system procedures
generating and reviewing profiling results, 178
inlining as part of query transformation, 561
procedure profiling using system procedures, 208

system security officer
Adaptive Server Enterprise, 663

Index

982 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

system tables
Adaptive Server Enterprise, 662
glossary definition, 921
information about referential integrity, 106
owner, 662
querying for a list of system tables by owner, 17
Transact-SQL name conflicts, 667
viewing contents, 17
viewing system table data, 47
views, 47

system triggers
enforcing referential integrity, 101
generating and reviewing profiling results, 178
implementing referential integrity actions, 102

system views
glossary definition, 921
indexes, 77
information about referential integrity, 106
querying for a list of views tables by owner, 17

SYSVIEWS
consolidated view information, 47

T
table access algorithms

about, 589
table access methods

HashTableScan, 592
IndexOnlyScan, 590
MultipleIndexScan, 590
ParallelIndexScan, 591
ParallelTableScan, 592
RowIdScan, 592
TableScan, 591

table constraints
UNIQUE, 94

table expressions
how they are joined, 395
key joins, 424
syntax, 392

table fragmentation
about, 236
application profiling tutorial, 268

table hints
corresponding isolation levels, 113

table locks
about, 132, 136
conflicts, 136

exclusive, 137
insert, 138
intent to write, 137
phantom, 138
position, 137
shared, 136

table locks tab
Sybase Central, 133

table names
fully qualified in procedures, 877
identifying, 281
procedures and triggers, 877

table scans
about, 591
disk allocation and performance, 638
HashTableScan method, 592
ParallelTableScan method, 592
RowIdScan method, 592
TableScan method, 591

table size
about, 639
performance considerations, 639

table structures for import
about, 743

tables
adding foreign keys in Sybase Central, 26
adding foreign keys using SQL, 27
adding primary keys in Sybase Central, 24
adding primary keys using SQL, 24
altering if referenced by a materialized view, 38
altering using SQL, 21
altering using Sybase Central, 20
bitmaps, 639
browsing table data, 23
browsing the data held in tables, 23
CHECK constraints, 95
considerations when altering, 19
constraints, 7
copying rows, 535
copying tables within or between databases, 32
correlation names, 291
creating, 18
creating proxy tables from Sybase Central, 791
creating proxy tables in SQL, 792, 793
creating temporary tables, 34
creating Transact-SQL-compatible tables, 672
defragmenting all tables in a database, 236
defragmenting individual tables in a database, 236

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 983

displaying primary keys in Sybase Central, 24
displaying references from other tables, 26
drop, 22
editing data in Interactive SQL, 23
editing data in Sybase Central, 23
editing table data, 23
exclusive locks, 137
exporting, 754
exporting data, 763
fragmentation, 236
group reads, 639
importing, 742
insert locks, 138
intent to write locks, 137
joining from multiple databases, 796
listing the remote tables on a server, 783
locks, 136
managing foreign keys, 26, 27
managing primary keys, 24
managing table constraints, 94
naming, 4
naming in queries, 291
phantom locks, 138
position locks, 137
remote access, 775
shared locks, 136
unloading from Sybase Central, 750
view dependencies, 22
viewing system table contents, 17
work tables, 250
working with proxy tables, 790
working with tables, 18

TableScan method (seq)
about, 591

TableScan plan item
abbreviations in the plan, 626

technical support
newsgroups, xvii

TEMP environment variable
temporary file location, 234

temporary files
work tables, 233

temporary procedures
creating, 832

Temporary Table Pages statistic
description, 228

temporary tables
benefits of non-transactional, 33

considerations when referencing from within
procedures, 34
creating, 18, 34
glossary definition, 921
importing data, 743
indexes, 643
local and global, 33
making non-transactional, 33
merging table structures, 744
Transact-SQL compatibility, 673
work tables in query processing, 250
working with temporary tables, 33

term and phrase searching
full text search, 332

term breaker
full text search, 312

term breaker algorithm
full text search, 312

TERM BREAKER setting
defined, 312

term length
setting term lengths for text indexes, 312

term lengths
full text search, 312

TermBreaker algorithm (Termbreak)
about, 609

terms
searching the database using full text search, 311

terms, full text searching
about, 332

text configuration objects
altering, 316
creating, 316
default_char settings, 312
default_nchar settings, 312
determining if used by text indexes, 318
examples, 319
settings for default_char and default_nchar, 318
viewing settings for text configuration objects, 318

text indexes
about, 326
altering, 329
altering refresh type, 330
cannot change the text configuration object, 329
choosing a refresh type for a text index, 326
creating, 326
determining the text configuration object used, 326,
331

Index

984 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

full text search, 326
impact of database options on creating and
refreshing, 317
not allowed on views or temporary tables, 326
querying views, 344
refreshing, 326
renaming, 330
require storage space, 311
settings in underlying text configuration objects,
312
staleness and refreshing, 326

text plans
reading execution plans, 610

thread safety
user-defined functions, 838

threads
deadlock when none available, 129

time-saving strategies
importing data, 728

time_format option
impact on text indexes, 317

times
procedures and triggers, 877

TIMESTAMP data type
Transact-SQL, 669

timestamp_format option
impact on text indexes, 317

timing utilities
about, 211

tips
improving performance, 229

tips for writing procedures
about, 877
remember to delimit statements within your
procedure, 877
use fully-qualified names for tables in procedures,
877

TMP environment variable
temporary file location, 234

TMPDIR environment variable
temporary file location, 234

tools
exporting data, 745
importing data, 728
rebuilding databases, 758
reloading data, 758
unloading data, 745

TOP clause

about, 381
top performance tips

list of, 229
topics

graphic icons, xvi
total benefits

Index Consultant results, 185
total cost benefit

Index Consultant results, 186
TRACEBACK function

about, 869
tracing

(see also diagnostic tracing)
about, 188
application profiling using database tracing, 188
tracing database, 188

tracing data
about, 188
not unloaded as part of an unload operation, 188

tracing databases
about, 188

tracing session
about, 188

trailing blanks
comparisons, 294
creating databases, 667
Transact-SQL, 667

Transact-SQL
batches, 678
compatibility overview, 658
Configuring databases for Transact-SQL
compatibility, 666
creating databases, 666
emulating Adaptive Server Enterprise, 666
error handling in Transact-SQL procedures, 682
IDENTITY column, 671
joins, 675
NULL, 672
NULL values and joins, 408
outer join limitations, 407
outer joins, 406
outer joins and views, 408
overview of batches, 678
procedure language overview, 677
procedures, 677
result sets, 680
returning result sets from Transact-SQL procedures,
680

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 985

setting options for Transact-SQL compatibility,
667
special Transact-SQL timestamp column and data
type, 669
stored procedure overview, 677
trailing blanks, 667
triggers, 677
unsupported file manipulation statements, 661
using the RAISERROR statement in procedures,
683
using WITH ROLLUP, 461
variables, 681
writing compatible SQL statements, 672
writing portable SQL, 672

Transact-SQL compatibility
databases, 668
SELECT statement, 673, 674
setting database options, 667

transaction blocking
about, 128

Transaction Commits statistic
description, 226

transaction locks
duration, 132

transaction log
data recovery, 727
dbmlsync, 761
glossary definition, 921
performance improvement tips, 242
performance tip, 229
replication, 761

transaction log mirror
glossary definition, 922

transaction management and remote data
about, 801

transaction processing
data recovery, 531
effects of scheduling, 147
performance, 111
scheduling, 147
serializable scheduling, 147

Transaction Rollbacks statistic
description, 226

transaction scheduling
effects of, 147

transactional integrity
glossary definition, 922

transactions

about, 107
beginning in snapshot isolation, 117
blocking, 128
blocking and deadlock, 128
blocking example, 157
changing isolation levels, 126
completing, 109
concurrency, 111
data modification, 530
data recovery, 531
deadlock, 128
glossary definition, 921
interference between, 128, 157
multiple, 111
procedures and triggers, 876
remote data access, 801
restrictions on transaction management, 801
savepoints, 112
starting, 109
sub-transactions and savepoints, 112
typical isolation levels, 147
using, 109

transactions and isolation levels
about, 107

transactions processing
blocking, 128
blocking example, 157

transferring data
(see also exporting data)

transformations
rewrite optimization, 549

Translog Group Commits statistic
description, 222

transmission rules
glossary definition, 922

trantest
about, 232

trigger conditions
order in which triggers fire, 848

triggers
about, 829
AFTER triggers, 842
altering , 846
BEFORE triggers, 842
benefits of, 831
command delimiter, 877
create trigger wizard, 844
creating, 843

Index

986 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

cursors, 865
dates, 877
deleting, 847
error handling, 868
exception handlers, 872
executing, 846
execution permissions, 848
firing order, 848
generating and reviewing profiling results, 178
glossary definition, 922
INPUT statement causes INSERT triggers to fire,
726
INSTEAD OF triggers, 849
order in which triggers fire, 848
overview, 830
recursion, 678
ROLLBACK statement, 678
savepoints, 876
statement-level, 677
statements allowed, 879
structure, 857
times, 877
Transact-SQL, 669, 677
types, 842
using, 842
warnings, 871

troubleshooting
ANY operator, 517
application profiling, 201
deadlocks, 129
GROUP BY clause, 308
natural joins, 418
newsgroups, xvii
performance, 229
remote data access, 805
result set appears to change, 306

TRUNCATE TABLE statement
about, 541
using with snapshot isolation, 116

tsequal function
syntax, 670

tutorials
application profiling, 253
baselining with procedure profiling, 271
creating a database, 8
debugger, 883
diagnosing deadlocks, 254
diagnosing index fragmentation, 265

diagnosing slow statements, 260
diagnosing table fragmentation, 268
dirty reads, 150
Getting started with the debugger, 883
implications of locking, 165
isolation levels, 150
non-repeatable reads, 154
performing a full text on an NGRAM text index,
356
performing a fuzzy full text search, 353
performing a non-fuzzy full text search, 347
phantom rows, 159
practical locking implications, 165

types of full text searches
about, 332

U
UA plan item

abbreviations in the plan, 626
ulodbc server class

about, 811
UltraLite

glossary definition, 922
server class, 811
testing compliance of SQL statements, 653

UltraLite runtime
glossary definition, 922

UltraLite SQL
testing whether a SQL Anywhere statement
complies with UltraLite SQL, 653

un-nesting subqueries
about, 550

uncorrelated subqueries
about, 507, 559

understanding group by
about, 373

union list
item in execution plans, 636

UNION statement
combining queries, 383
NULL, 386
rules, 384

UnionAll algorithm (UA)
about, 603

UnionAll plan item
abbreviations in the plan, 626

unions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 987

query execution algorithms, 603
unique constraints

about, 94
generated indexes, 642
glossary definition, 922

unique identifiers
tables, 24

unique keys
generating and concurrency, 169

unique results
limiting, 290

uniqueness
enforcing with an index, 646

Unix
initial cache size, 244
maximum cache size, 244
minimum cache size, 244

UNKNOWN
NULL, 301

unknown values
about, 299

unload
glossary definition, 923

unload data window
using, 750

unload database wizard
using, 749

UNLOAD statement
about, 748

UNLOAD TABLE statement
about, 747

unload tools
about, 745
unload data window, 750
unload database wizard, 749

unloading
about, 758

unloading and reloading
databases, 764
databases involved in synchronization, 761
databases not involved in synchronization, 760

unloading databases
about, 753, 758
from Sybase Central, 749
in comma-delimited format, 762

unnecessary distinct elimination
about, 550

unserializable transaction scheduling

effects of, 147
unused indexes tab

Index Consultant results, 186
updatable views

about, 40
UPDATE conflicts

snapshot isolation, 120
UPDATE statement

errors, 104
examples, 104
locking during, 143
using, 537

updates tab
Index Consultant results, 186

updating column statistics
about, 565

updating the database
overview, 529

upgrading
database file format, 759

upgrading databases
about, 759

uploads
glossary definition, 923

user defined functions (see user-defined functions)
see user-defined functions, 838

user IDs
Adaptive Server Enterprise, 664
case sensitivity, 669
default, 88

user-defined data types
about, 96
CHECK constraints, 93
creating, 96
creating using SQL, 97
dropping, 98
glossary definition, 923

user-defined functions
about, 838
caching, 604
calling, 839
creating, 838
dropping, 840
execution permissions, 840
generating and reviewing profiling results, 178
inlining as part of query transformation, 560
parameters, 858
thread safety, 838

Index

988 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

user_estimates option
Optimizer Statistics field descriptions, 623

USING CLIENT FILE clause
importing from, and exporting to, client computers,
755

USING VALUE clause
importing from, and exporting to, client computers,
755

UUIDs
compared to global autoincrement, 90
default column value, 90
generating, 169

V
validate

glossary definition, 923
validating

indexes, 75
tables using WITH EXPRESS CHECK, 249
XML, 713

validation
column constraints, 7
XML, 713

ValuePtr parameter
about, 124

VAR_POP function
equivalent mathematical formula, 500
example, 488
usage, 488

VAR_SAMP function
equivalent mathematical formula, 500
example, 489
usage, 489

variables
assigning, 674
local, 674
SELECT statement, 674
SET statement, 674
Transact-SQL, 681

VARIANCE function
equivalent mathematical formula, 500
see VAR_SAMP function, 488

variance functions
OLAP, 485

vector aggregate functions
about, 373
defined, 376

Version Store Pages statistic
description, 228

VersionStorePages property
using, 116

view dependencies
about, 37
finding dependency information, 39
information in the catalog, 39
regular view status, 42
schema changes, 38

view matching
about, 576
algorithm examples, 579
algorithm requirements, 576
execution plan outcomes, 633
materialized view evaluation, 577
materialized views with OUTER JOIN, 583
query evaluation, 576
query execution, 574
using with snapshot isolation, 116
view matching algorithm, about, 576
view matching algorithm, execution plan outcomes,
633

view status
determining, 42
disabled, 42
invalid, 42
regular views, 42
understanding, 42
valid, 42

view statuses
materialized view statuses, 52

viewing
procedure profiling results, 181
regular view data, 47

viewing the isolation level
about, 127

views
altering and view dependencies, 44
altering regular views using SQL, 44
altering regular views using Sybase Central, 44
altering regular views, considerations, 43
browsing data in regular views, 47
check option and regular views, 41
common table expressions, 433
copying regular views, 41
creating regular views, 43
DISABLED status for regular views, 42

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 989

disabling regular views, 45
dropping regular views, 45
enabling regular views, 45
exporting, 746
FROM clause, 291
glossary definition, 923
INVALID status for regular views, 42
key joins, 429
natural joins, 420
outer joins, 405
querying using a text index, 344
referencing program variables, 438
regular view status, 42
SELECT statement restrictions for regular views,
40
updating, 40
updating using INSTEAD OF triggers, 849
using regular views, 40
VALID status for regular views, 42
working with view dependencies, 37
working with views, 36

virtual indexes
about, 185
Index Consultant, 185

virtual memory
scarce resource, 567

W
wait_for_commit option

using, 143
waiting

to access locked rows, 157
to verify referential integrity, 143

waiting to access locked rows
deadlock, 128

warming
cache, 248

warnings
procedures and triggers, 871

Watcom-SQL
about, 657
dialect, 658
writing compatible SQL statements, 672

when to use indexes
about, 71

WHERE clause
about, 293

compared to HAVING, 378
date comparisons introduction, 302
GROUP BY clause, 376
HAVING clause and, 309
joins, 399
modifying rows in a table, 537
NULL values, 300
pattern matching, 296
performance, 239, 569
string comparisons, 297
subqueries, 511
UPDATE statement, 538
using with the GROUP BY clause, 373

WHILE statement
control statements, 854

wildcards
LIKE search condition, 297
pattern matching, 296
string comparisons, 297

window (OLAP)
glossary definition, 923

window aggregate functions
about, 473
list of supported functions, 473
OLAP, 473

Window algorithm (Window)
about, 609

WINDOW clause
inlining and the WINDOW clause, 470
using in the SELECT statement, 466

window functions
about, 466
aggregate, list of, 473
ranking, list of, 491
row numbering, 499

Window plan item
abbreviations in the plan, 626

Windows
glossary definition, 923
initial cache size, 244
maximum cache size, 244
minimum cache size, 244

windows (OLAP)
defaults when window only partially defined, 468
defining inline windows, 466
impact of ORDER BY clause on defaults, 468
inlining and the WINDOW clause, 470
order of evaluation of clauses, 466

Index

990 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

size, 468
sizing using RANGE clause, 468
sizing using ROWS clause, 468
WINDOW clause of the SELECT statement, 466

Windows Mobile
cache and page size considerations, 639
glossary definition, 923
hashexcept algorithm, 601
intersect algorithms, 602

Windows Performance Monitor
about, 215
running multiple copies, 215
starting, 215

WITH CHECK OPTION clause
using in the CREATE VIEW statement, 41

WITH clause
common table expressions, 433
RecursiveTable algorithm, 602
RecursiveUnion algorithm, 603

WITH CUBE clause
about, 463

WITH EXPRESS CHECK
performance, 249

WITH ROLLUP clause
about, 461

work tables
about, 250
glossary definition, 923
performance tips, 233
query processing, 250

write locks
about, 135

WRITE_CLIENT_FILE function
importing from, and exporting to, client computers,
755

WRITECLIENTFILE authority
importing from, and exporting to, client computers,
755

writing an EXPLICIT mode query
about, 707

writing database output to a file
about, 772

X
XML

default namespaces, 696
defined, 687

encoding, 688
exporting data as from Interactive SQL, 689
exporting data as using the DataSet object, 689
exporting relational data as, 689
importing as relational data, 690
importing using openxml, 690
importing using the DataSet object, 695
obtaining query results as XML, 697
obtaining query results as XML from relational data,
697
storing in relational databases, 688
using FOR XML AUTO, 702
using FOR XML EXPLICIT, 705
using FOR XML RAW, 701
using in SQL Anywhere databases, 687

XML and SQL Anywhere
about, 687

XML data type
using, 688

xml directive
using, 712

XMLAGG function
using, 715

XMLCONCAT function
using, 716

XMLELEMENT function
using, 716

XMLFOREST function
using, 719

XMLGEN function
using, 719

xp_read_file system procedure
importing XML, 693

XPath
using, 690

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 991

992

	SQL Anywhere® Server - SQL Usage
	Contents
	About this book
	About the SQL Anywhere documentation
	About the books in the documentation set
	Documentation conventions
	Graphic icons
	Contacting the documentation team
	Finding out more and requesting technical support

	Creating Databases
	Creating databases in SQL Anywhere
	Design considerations
	Choosing object names
	Choosing column data types
	Deciding between NULL and NOT NULL
	Storing BLOBs

	Choosing whether to compress columns
	Choosing constraints

	Tutorial: Creating a SQL Anywhere database
	Lesson 1: Create a database file
	Lesson 2: Connect to the database
	Lesson 3: Add tables to the database
	Lesson 4: Set a NOT NULL constraint on a column
	Lesson 5: Create a foreign key

	Working with database objects
	Set properties for database objects
	View system objects in a database
	Working with tables
	Create tables
	Altering tables
	Alter tables (Sybase Central)
	Alter tables (SQL)

	Drop tables
	Browsing the data held in tables

	Managing primary keys
	Manage primary keys (Sybase Central)
	Manage primary keys (SQL)

	Managing foreign keys
	Manage foreign keys (Sybase Central)
	Manage foreign keys (SQL)

	Working with computed columns
	Altering computed column expressions
	Inserting and updating computed columns
	Recalculating computed columns
	Copying tables or columns within or between databases

	Working with temporary tables
	Create temporary tables
	Referencing temporary tables within procedures

	Working with views
	Documentation conventions
	Comparing regular views, materialized views, and base tables
	Benefits of using views
	View dependencies
	Dependencies and schema-altering changes
	View dependency information in the catalog

	Working with regular views
	Regular view statuses
	Create regular views
	Alter regular views
	Drop regular views
	Enable and disable regular views
	Browsing data in regular views
	View system table data

	Working with materialized views
	Manual and immediate materialized views
	Retrieving materialized view information from the database
	When to use materialized views
	Materialized view statuses and properties
	Restrictions on materialized views
	Create materialized views
	Initialize materialized views
	Refresh manual views
	Change a manual view to an immediate view
	Encrypt and decrypt materialized views
	Enable and disable materialized views
	Enable and disable optimizer use of a materialized view
	Setting the optimizer staleness threshold for materialized views
	Hide materialized views
	Drop materialized views

	Working with indexes
	When to use indexes
	Deciding what indexes to create
	Indexes on frequently-searched columns
	Index hints
	Using clustered indexes
	Using SQL statements to cluster the index
	Creating clustered indexes in Sybase Central
	Reordering rows to match a clustered index
	Create indexes
	Validate indexes
	Rebuild indexes
	Drop indexes
	Index information in the catalog

	Ensuring data integrity
	How your data can become invalid
	Building integrity constraints into your database
	How the contents of your database change
	Tools for maintaining data integrity
	SQL statements for implementing integrity constraints
	Using column defaults
	Creating column defaults
	Altering and dropping column defaults
	Working with column defaults in Sybase Central
	Current date and time defaults
	The user ID defaults
	The AUTOINCREMENT default
	The GLOBAL AUTOINCREMENT default
	The NEWID default
	The NULL default
	String and number defaults
	Constant expression defaults

	Using table and column constraints
	Using CHECK constraints on columns
	Using CHECK constraints on tables
	Inheriting column CHECK constraints from domains
	Managing constraints
	Managing UNIQUE constraints
	Altering and dropping CHECK constraints

	Using domains
	Creating domains (Sybase Central)
	Creating domains (SQL)
	Dropping domains

	Enforcing entity and referential integrity
	Enforcing entity integrity
	If a client application breaches entity integrity
	Primary keys enforce entity integrity
	Enforcing referential integrity
	Foreign keys enforce referential integrity
	Losing referential integrity
	If a client application breaches referential integrity
	Referential integrity actions
	Referential integrity checking
	Integrity checks on INSERT
	Integrity checks on DELETE or UPDATE

	Integrity rules in the system tables

	Using transactions and isolation levels
	Using transactions
	Introduction to concurrency
	Savepoints within transactions
	Isolation levels and consistency
	Snapshot isolation
	Enabling snapshot isolation
	Snapshot isolation example
	Update conflicts and snapshot isolation

	Typical types of inconsistency
	Cursor instability

	Set the isolation level
	Setting the isolation level from an ODBC-enabled application
	Changing isolation levels within a transaction

	Viewing the isolation level

	Transaction blocking and deadlock
	Transaction blocking
	The blocking option
	Deadlock
	Determining who is blocked
	Viewing deadlocks from Sybase Central

	How locking works
	Objects that can be locked
	Obtaining information about locks
	Schema locks
	Row locks
	Read locks
	Write locks
	Intent locks

	Table locks
	Shared table locks
	Intent to write table locks
	Exclusive locks

	Position locks
	Phantom locks
	Insert locks

	Locking conflicts
	Locking during queries
	Locking during inserts
	Locking during updates
	Locking during deletes
	Early release of read locks

	Choosing isolation levels
	Serializable schedules
	Typical transactions at various isolation levels
	Improving concurrency at isolation levels 2 and 3
	Reducing the impact of locking

	Isolation level tutorials
	Tutorial: Dirty reads
	Tutorial: Non-repeatable reads
	Tutorial: Phantom rows
	Tutorial: Practical locking implications

	Primary key generation and concurrency
	Data definition statements and concurrency
	Summary

	Monitoring and Improving Database Performance
	Improving database performance
	Application profiling
	Application Profiling Wizard
	Procedure profiling in Application Profiling mode
	Enable procedure profiling
	Reset procedure profiling
	Disable procedure profiling
	Analyze procedure profiling results

	Index Consultant
	Obtain Index Consultant recommendations for a query
	Obtain Index Consultant recommendations for a database
	Understanding Index Consultant recommendations
	Understanding Index Consultant results
	Implementing Index Consultant results

	Advanced application profiling using diagnostic tracing
	Tracing session data
	Configuring diagnostic tracing
	Choosing a diagnostic tracing level
	Diagnostic tracing levels
	Diagnostic tracing scopes
	Diagnostic tracing types
	Diagnostic tracing conditions
	Determine current diagnostic tracing settings
	Change the diagnostic tracing configuration settings
	Change diagnostic tracing settings when a tracing session is in progress
	Create a diagnostic tracing session
	Analyzing diagnostic tracing information
	Troubleshooting performance problems
	Detecting when hardware resources are a limiting factor
	Debugging application logic
	Perform request trace analysis
	Creating an external tracing database

	Other diagnostic tools and techniques
	Request logging
	Procedure profiling using system procedures
	Enable profiling using sa_server_option
	Reset profiling using sa_server_option
	Disable profiling using sa_server_option
	Retrieve profiling information using system procedures
	Timing utilities

	Monitoring database performance
	Monitoring statistics using SQL functions
	Monitoring statistics using Sybase Central Performance Monitor
	Open the Sybase Central Performance Monitor
	Add and remove statistics
	Monitor statistics using Windows Performance Monitor

	Performance Monitor statistics
	Cache statistics
	Checkpoint and recovery statistics
	Communications statistics
	Disk I/O statistics
	Disk read statistics
	Disk write statistics
	Index statistics
	Memory diagnostic statistics
	Memory pages statistics
	Request statistics
	Miscellaneous statistics

	Performance improvement tips
	Acquire adequate hardware
	Always use a transaction log
	Check for concurrency issues
	Choose the optimizer goal
	Collect statistics on small tables
	Declare constraints
	Increase the cache size
	Minimize cascading referential actions
	Monitor query performance
	Normalize your table structure
	Review the order of columns in tables
	Place different files on different devices
	Rebuild your database
	Reducing fragmentation
	Reducing file fragmentation
	Reducing table fragmentation
	Reducing index fragmentation and skew
	Reduce primary key width
	Reduce table widths
	Reduce requests between client and server
	Reduce expensive user-defined functions
	Replace expensive triggers
	Strategic sorting of query results
	Specify the correct cursor type
	Supply explicit selectivity estimates sparingly
	Turn off autocommit mode
	Use an appropriate page size
	Use appropriate data types
	Use AUTOINCREMENT to create primary keys
	Use bulk operations methods
	Use delayed commits
	Use in-memory mode
	Use indexes effectively
	Use keys to improve query performance
	Using the cache to improve performance
	Limiting cache memory use
	Dynamic cache sizing
	Dynamic cache sizing on Windows
	Dynamic cache sizing on Unix
	Monitoring cache size
	Using cache warming
	Use the compression features
	Use the WITH EXPRESS CHECK option when validating tables
	Use work tables in query processing (use All-rows optimization goal)

	Application profiling tutorials
	Tutorial: Diagnosing deadlocks
	Lesson 1: Creating the test database
	Lesson 2: Creating a deadlock
	Lesson 3: Capturing deadlock data
	Lesson 4: Reviewing blocked connection data
	Lesson 5: Viewing deadlock data

	Tutorial: Diagnosing slow statements
	Lesson 1: Creating a diagnostic tracing session
	Lesson 2: Reviewing statements processed by the database server

	Tutorial: Diagnosing index fragmentation
	Lesson 1: Setting up index fragmentation
	Lesson 2: Identifying index fragmentation
	Lesson 3: Checking the index density of a table

	Tutorial: Diagnosing table fragmentation
	Lesson 1: Setting up table fragmentation
	Lesson 2: Identifying table fragmentation
	Lesson 3: Checking for table fragmentation

	Tutorial: Baselining with procedure profiling
	Lesson 1: Creating a baseline procedure
	Lesson 2: Running an updated procedure against the baseline procedure
	Lesson 3: Comparing the procedure profiling results

	Querying and Modifying Data
	Querying data
	Querying and the SELECT statement
	SQL queries
	The select list: Specifying columns
	Selecting all columns from a table
	Selecting specific columns from a table
	Renaming columns in query results
	Character strings in query results
	Computing values in the SELECT list
	Eliminating duplicate query results

	The FROM clause: Specifying tables
	The WHERE clause: Specifying rows
	Using comparison operators in the WHERE clause
	Using ranges in the WHERE clause
	Using lists in the WHERE clause
	Matching character strings in the WHERE clause
	Character strings and quotation marks
	Unknown Values: NULL
	Testing a column for NULL
	Properties of NULL
	Connecting conditions with logical operators
	Comparing dates in search conditions
	Matching rows by sound

	The ORDER BY clause: Ordering results
	Using indexes to improve ORDER BY performance

	Aggregate functions
	Applying aggregate functions to grouped data
	Restricting groups
	Combining WHERE and HAVING clauses

	Full text searching
	Performing a full text query

	Text configuration objects
	Text configuration object settings
	Create a text configuration object
	Alter a text configuration object
	Database options and text configuration objects
	View text configuration objects in the database
	Example text configuration objects

	Text indexes
	Text index refresh types
	Create a text index
	Refresh a text index
	Altering text indexes overview
	Alter a text index
	View text indexes in the database

	Types of full text searches
	Term and phrase searching
	Prefix searching
	Proximity searching
	Boolean searching
	Fuzzy searches
	Terms dropped from the index
	View searching
	Scoring full text search results
	Tutorial: Performing a full text search on a GENERIC text index
	Tutorial: Performing a fuzzy full text search
	Tutorial: Performing a full text search on a NGRAM text index

	Summarizing, grouping, and sorting query results
	Summarizing query results using aggregate functions
	Where you can use aggregate functions
	Aggregate functions and data types
	Using COUNT(*)
	Using aggregate functions with DISTINCT
	Aggregate functions and NULL

	The GROUP BY clause: Organizing query results into groups
	How queries with GROUP BY are executed
	Using GROUP BY with multiple columns
	WHERE clause and GROUP BY
	Using GROUP BY with aggregate functions
	GROUP BY and the SQL/2003 standard

	The HAVING clause: selecting groups of data
	The ORDER BY clause: sorting query results
	Explicitly limiting the number of rows returned by a query
	ORDER BY and GROUP BY

	Performing set operations on query results with UNION, INTERSECT, and EXCEPT
	Combining sets with the UNION statement
	Using EXCEPT and INTERSECT
	Rules for set operations
	Set operators and NULL

	Joins: Retrieving data from several tables
	Displaying a list of tables
	Sample database schema
	How joins work
	The FROM clause
	Join conditions
	Joined tables
	Joining two tables
	Joining more than two tables
	Join compatible data types
	Using joins in delete, update, and insert statements
	Non-ANSI joins

	Explicit join conditions (the ON clause)
	Referencing tables in an ON clause
	Generated joins and the ON clause
	Types of explicit join conditions
	Using the WHERE clause for join conditions

	Cross joins
	Commas

	Inner and outer joins
	Inner joins
	Outer joins
	Outer joins and join conditions
	Understanding complex outer joins
	Outer joins of views and derived tables

	Transact-SQL outer joins (*= or =*)
	Transact-SQL outer join limitations
	Using views with Transact-SQL outer joins
	How NULL affects Transact-SQL joins

	Specialized joins
	Self-joins
	Duplicate correlation names in joins (star joins)
	Joins involving derived tables
	Joins resulting from apply expressions

	Natural joins
	Errors using NATURAL JOIN
	Natural joins with an ON clause
	Natural joins of table expressions
	Natural joins of views and derived tables

	Key joins
	Key joins with an ON clause
	Key joins when there are multiple foreign key relationships
	Key joins of table expressions
	Key joins of table expressions that do not contain commas
	Key joins of table expression lists
	Key joins of lists and table expressions that do not contain commas

	Key joins of views and derived tables
	Rules describing the operation of key joins

	Common table expressions
	Using common table expressions
	Specifying multiple correlation names
	Using multiple table expressions
	Where common table expressions are permitted
	Typical applications of common table expressions
	Multiple aggregate functions
	Views that reference program variables
	Views that store values

	Recursive common table expressions
	Selecting hierarchical data
	Restrictions on recursive common table expressions

	Parts explosion problems
	Data type declarations in recursive common table expressions
	Least distance problem
	Using multiple recursive common table expressions

	OLAP support
	Improving OLAP performance
	GROUP BY clause extensions
	GROUP BY GROUPING SETS

	Using ROLLUP and CUBE as a shortcut to GROUPING SETS
	Using ROLLUP
	Using CUBE
	Detecting placeholder NULLs using the GROUPING function

	Window functions
	Defining a window
	Window definition: inlining and the WINDOW clause

	Window functions in SQL Anywhere
	Window aggregate functions
	Basic aggregate functions
	SUM function example
	AVG function example
	MAX function example
	FIRST_VALUE and LAST_VALUE function examples

	Standard deviation and variance functions
	Correlation and linear regression functions
	Window ranking functions
	RANK function
	DENSE_RANK function
	CUME_DIST function
	PERCENT_RANK function

	Row numbering functions
	ROW_NUMBER function
	Mathematical formulas for the aggregate functions

	Using subqueries
	Single-row and multiple-row subqueries
	Correlated and uncorrelated subqueries
	Nested subqueries
	Using subqueries instead of joins
	Subqueries in the WHERE clause
	Subqueries in the HAVING clause
	Testing subqueries
	Subquery comparison test
	Subqueries and the IN test
	Subqueries and the ANY test
	Subqueries and the ALL test
	Subqueries and the EXISTS test

	Optimizer automatic conversion of subqueries to joins
	Subquery that follows a comparison operator
	Subquery that follows ANY, ALL or SOME
	Subquery that follows IN
	Subquery that follows EXISTS

	Adding, changing, and deleting data
	Data modification statements
	Permissions for data modification
	Transactions and data modification
	Making changes permanent
	Canceling changes
	Transactions and data recovery
	Referential integrity

	Adding data using INSERT
	Inserting values into all columns of a row
	Inserting values into specific columns
	Adding new rows with SELECT
	Inserting documents and images

	Changing data using UPDATE
	Changing data using INSERT
	Deleting data using DELETE
	Deleting all rows from a table

	Query Processing
	Query optimization and execution
	Query processing phases
	Eligibility to skip query processing phases

	Semantic query transformations
	Elimination of unnecessary DISTINCT conditions
	Un-nesting subqueries
	Predicate push-down in UNION or GROUPed views and derived tables
	Optimization of OR and IN-list predicates
	Optimization of LIKE predicates
	Conversion of outer joins to inner joins
	Elimination of unnecessary inner and outer joins
	Discovery of exploitable conditions through predicate inference
	Elimination of unnecessary case translation
	Rewriting subqueries as EXISTS predicates
	Inlining user-defined functions
	Inlining simple system procedures

	How the optimizer works
	Optimizer estimates and column statistics
	How the optimizer uses column statistics
	How the optimizer uses heuristics
	How the optimizer uses procedure statistics
	Updating column statistics to improve optimizer performance

	Automatic performance tuning
	Underlying assumptions of the optimizer
	Minimal administration work
	Optimize for first row or for entire result set
	Optimize for mixed or OLAP workload
	Statistics are present and correct
	Indexes can be used to satisfy a predicate
	Virtual memory is a scarce resource
	The memory governor

	Using predicates in queries
	Cost-based optimization with MIN and MAX functions
	Plan caching

	Improving performance with materialized views
	Defining materialized views
	Determining the list of materialized view candidates
	Determining if a materialized view was considered
	Materialized views and the View Matching algorithm
	Query evaluation
	Materialized view evaluation
	View Matching algorithm examples

	Query execution algorithms
	Relational algebra operators in access plans
	Parallelism during query execution
	Parallelism in queries

	Table access methods
	IndexScan method
	IndexOnlyScan method (IO)
	MultipleIndexScan method (MultIdx)
	ParallelIndexScan method
	TableScan method (seq)
	ParallelTableScan method
	HashTableScan method (HTS)
	RowIdScan method (ROWID)

	Types of algorithms
	Join algorithms
	HashJoin algorithms (JH, JHSP, JHFO, JHAP, JHO, JHPO)
	RecursiveHashJoin algorithm (JHR)
	RecursiveLeftOuterHashJoin algorithm (JHRO)
	HashSemijoin algorithm (JHS)
	HashAntisemijoin algorithm (JHA)
	MergeJoin algorithms (JM, JMFO, JMO)
	NestedLoopsJoin algorithms (JNL, JNLFO, JNLO)
	NestedLoopsSemijoin algorithm (JNLS)
	NestedLoopsAntisemijoin algorithm (JNLA)

	Duplicate elimination algorithms
	HashDistinct algorithm (DistH)
	OrderedDistinct algorithm (DistO)

	Grouping algorithms
	HashGroupBy algorithm (GrByH)
	ClusteredHashGroupBy algorithm (GrByHClust)
	HashGroupBySets algorithm (GrByHSets)
	OrderedGroupBy algorithm (GrByO)
	OrderedGroupBySets algorithm (GrByOSets)
	SingleRowGroupBy algorithm (GrByS)
	SortedGroupBySets algorithm (GrBySSets)

	Query expression algorithms
	Except algorithms (EAH, EAM, EH, EM)
	Intersect algorithms (IH, IM, IAH, IAM)
	RecursiveTable algorithm (RT)
	RecursiveUnion algorithm (RU)
	RowReplicate algorithm (RR)
	UnionAll algorithm (UA)

	Sorting algorithms
	Sort algorithm (Sort)
	SortTopN algorithm (SrtN)

	Subquery and function caching
	Miscellaneous algorithms
	DecodePostings (DP)
	DerivedTable algorithm (DT)
	Exchange algorithm (Exchange)
	Filter algorithms (Filter, PreFilter)
	Hash filter algorithms (HF, HFP)
	InList algorithm (IN)
	OpenString algorithm (OpenString)
	ProcCall algorithm (PC)
	RowConstructor algorithm (ROWS)
	RowLimit algorithm (RL)
	Termbreaker algorithm (TermBreak)
	Window algorithm (Window)

	Reading execution plans
	Reading text plans
	Short text plan
	Long text plan
	Viewing short and long text plans

	Reading graphical plans
	Graphical plan with statistics
	Analyzing performance using the graphical plan with statistics
	Viewing detailed graphical plan node information
	Viewing selectivity in the graphical plan
	Customizing the appearance of graphical plans
	Viewing graphical plans
	Node Statistics field descriptions
	Optimizer Statistics field descriptions

	Execution plan abbreviations

	Improving query performance
	Disk allocation for inserted rows
	Table and page sizes
	Indexes
	Index sharing using logical indexes
	Determining which logical indexes share a physical index
	When to create an index
	Improving index performance
	Composite indexes

	Other uses for indexes
	B-link indexes

	SQL Dialects and Compatibility
	SQL dialects
	Introduction to SQL Anywhere compliance
	Testing SQL compliance using the SQL Flagger
	Invoking the SQL Flagger
	Standards and compatibility

	Features not found in other SQL implementations
	Watcom-SQL
	Transact-SQL Compatibility
	Adaptive Server Enterprise architectures
	Servers and databases
	Device management
	Defaults and rules
	System tables
	Administrative roles
	Users and groups

	Configuring databases for Transact-SQL compatibility
	Creating a Transact-SQL-compatible database
	Setting options for Transact-SQL compatibility
	Case sensitivity
	Ensuring compatible object names
	The special Transact-SQL timestamp column and data type
	The special IDENTITY column
	Retrieving IDENTITY column values with @@identity

	Writing compatible SQL statements
	General guidelines for writing portable SQL
	Creating compatible tables
	Writing compatible queries
	Compatibility of joins

	Transact-SQL procedure language overview
	Transact-SQL stored procedure overview
	Transact-SQL trigger overview
	Transact-SQL batch overview

	Automatic translation of stored procedures
	Using Sybase Central to translate stored procedures

	Returning result sets from Transact-SQL procedures
	Variables in Transact-SQL procedures
	Error handling in Transact-SQL procedures
	Using the RAISERROR statement in procedures
	Transact-SQL-like error handling in the Watcom-SQL dialect

	XML in the Database
	Using XML in the database
	Storing XML documents in relational databases
	Exporting relational data as XML
	Exporting relational data as XML from Interactive SQL
	Exporting relational data as XML using the DataSet object

	Importing XML documents as relational data
	Importing XML using openxml
	Importing XML using the DataSet object
	Defining default XML namespaces

	Obtaining query results as XML
	Using the FOR XML clause to retrieve query results as XML
	FOR XML and binary data
	FOR XML and NULL values
	Encoding illegal XML names
	FOR XML examples

	Using FOR XML RAW
	Using FOR XML AUTO
	Using FOR XML EXPLICIT

	Using SQL/XML to obtain query results as XML
	Using the XMLAGG function
	Using the XMLCONCAT function
	Using the XMLELEMENT function
	Using the XMLFOREST function
	Using the XMLGEN function

	Remote Data and Bulk Operations
	Importing and exporting data
	Performance aspects of bulk operations
	Data recovery issues for bulk operations
	Importing data
	Performance tips for importing data
	Import data with the Import Wizard
	Import data with the INPUT statement
	Import data with the LOAD TABLE statement
	Import data with the INSERT statement
	Import data with the MERGE statement
	Import data with proxy tables
	Handling conversion errors during import
	Import tables
	Table structures for import
	Merge different table structures
	Importing binary files

	Exporting data
	Export data with the Export Wizard
	Export data with the OUTPUT statement
	Export data with the UNLOAD TABLE statement
	Export data with the UNLOAD statement
	Export data with the dbunload utility
	Export data with the Unload Database Wizard
	Export data with the Unload Data window
	Export query results
	Use the OUTPUT statement to output NULLs
	Export databases
	Export tables

	Accessing data on client computers
	Client-side data security
	Planning for recovery when loading client-side data

	Rebuilding databases
	Reasons to rebuild databases
	Rebuild databases not involved in synchronization or replication
	Rebuild databases involved in synchronization or replication
	Using the dbunload utility to rebuild databases
	Using the UNLOAD TABLE statement to rebuild databases
	Export table data or table schema
	Reload a database
	Minimize downtime when rebuilding a database

	Extracting databases
	Migrating databases to SQL Anywhere
	Use the Migrate Database Wizard
	Use the sa_migrate system procedures

	Using SQL command files
	Run SQL command files in Interactive SQL
	Writing database output to a file

	Adaptive Server Enterprise compatibility

	Accessing remote data
	Remote table mappings
	Server classes
	Accessing remote data from PowerBuilder DataWindows
	Working with remote servers
	Create remote servers using the CREATE SERVER statement
	Create remote servers using Sybase Central
	Delete remote servers
	Alter remote servers
	List the remote tables on a server
	List remote server capabilities

	Using directory access servers
	Create directory access servers
	Drop directory access servers

	Working with external logins
	Create external logins
	Drop external logins

	Working with proxy tables
	Specify proxy table locations
	Create proxy tables (Sybase Central)
	Create proxy tables with the CREATE EXISTING TABLE statement
	Create a proxy table with the CREATE TABLE statement
	List the columns on a remote table

	Join remote tables
	Join tables from multiple local databases
	Send native statements to remote servers
	Using remote procedure calls (RPCs)
	Create remote procedures
	Drop remote procedures

	Transaction management and remote data
	Remote transaction management overview
	Restrictions on transaction management

	Internal operations
	Query parsing
	Query normalization
	Query preprocessing
	Server capabilities
	Complete passthrough of the statement
	Partial passthrough of the statement

	Troubleshooting remote data access
	Features not supported for remote data
	Case sensitivity
	Connectivity tests
	General problems with queries
	Queries blocked on themselves
	Managing remote data access connections via ODBC

	Server classes for remote data access
	ODBC-based server classes
	Defining ODBC external servers
	Server class saodbc
	Server class ulodbc
	Server class aseodbc
	Server class adsodbc
	Server class db2odbc
	Server class oraodbc
	Server class mssodbc
	Server class mysqlodbc
	Server class msaccessodbc
	Server class odbc
	Microsoft Excel (Microsoft 3.51.171300)
	Microsoft FoxPro (Microsoft 3.51.171300)
	Lotus Notes SQL 2.0

	JDBC-based server classes
	Configuration notes for JDBC classes
	Server class sajdbc
	USING parameter in the CREATE SERVER statement

	Server class asejdbc

	Stored Procedures and Triggers
	Using procedures, triggers, and batches
	Procedure and trigger overview
	Benefits of procedures and triggers
	Introduction to procedures
	Creating procedures
	Altering procedures
	Calling procedures
	Copying procedures in Sybase Central
	Deleting procedures
	Returning procedure results in parameters
	Returning procedure results in result sets

	Introduction to user-defined functions
	Creating user-defined functions
	Calling user-defined functions
	Dropping user-defined functions
	Permissions to execute user-defined functions
	Advanced information on user-defined functions

	Introduction to triggers
	Creating triggers
	Executing triggers
	Altering triggers
	Dropping triggers
	Trigger execution permissions
	Advanced information on triggers
	INSTEAD OF triggers

	Introduction to batches
	Control statements
	Using compound statements
	Declarations in compound statements
	Atomic compound statements

	The structure of procedures and triggers
	Declaring parameters for procedures
	Passing parameters to procedures
	Passing parameters to functions

	Returning results from procedures
	Returning a value using the RETURN statement
	Returning results as procedure parameters
	Returning result sets from procedures
	Returning multiple result sets from procedures
	Returning variable result sets from procedures

	Using cursors in procedures and triggers
	Cursor management overview
	Using cursors on SELECT statements in procedures
	Updating a cursor inside a stored procedure

	Errors and warnings in procedures and triggers
	Default error handling in procedures and triggers
	Error handling with ON EXCEPTION RESUME
	Default handling of warnings in procedures and triggers
	Using exception handlers in procedures and triggers
	Nested compound statements and exception handlers

	Using the EXECUTE IMMEDIATE statement in procedures
	Transactions and savepoints in procedures and triggers
	Tips for writing procedures
	Statements allowed in procedures, triggers, events, and batches
	Using SELECT statements in batches

	Hiding the contents of procedures, functions, triggers and views

	Debugging procedures, functions, triggers, and events
	Introduction to the SQL Anywhere debugger
	Requirements for using the debugger

	Tutorial: Getting started with the debugger
	Lesson 1: Connect to a database and start the debugger
	Lesson 2: Debug a stored procedure
	Run the debugger_tutorial procedure
	Diagnose the bug
	Confirm the diagnosis and fix the bug

	Working with breakpoints
	Setting breakpoints
	Disabling and enabling breakpoints
	Editing breakpoint conditions

	Working with variables
	Viewing variable values
	Viewing global variables
	Displaying the call stack

	Working with connections

	Glossary
	Glossary

	Index

