
SQL Anywhere® Server
Database Administration

February 2009

Version 11.0.1

Copyright and trademarks
Copyright © 2009 iAnywhere Solutions, Inc. Portions copyright © 2009 Sybase, Inc. All rights reserved.

This documentation is provided AS IS, without warranty or liability of any kind (unless provided by a separate written agreement between
you and iAnywhere).

You may use, print, reproduce, and distribute this documentation (in whole or in part) subject to the following conditions: 1) you must retain
this and all other proprietary notices, on all copies of the documentation or portions thereof, 2) you may not modify the documentation, 3) you
may not do anything to indicate that you or anyone other than iAnywhere is the author or source of the documentation.

iAnywhere®, Sybase®, and the marks listed at http://www.sybase.com/detail?id=1011207 are trademarks of Sybase, Inc. or its subsidiaries.
® indicates registration in the United States of America.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.sybase.com/detail?id=1011207

Contents

About this book ... xi

About the SQL Anywhere documentation .. xii

Starting and Connecting to Your Database ... 1

Tutorial: Using the sample database .. 3
Lesson 1: Make a copy of the sample database ... 4
Lesson 2: Start the SQL Anywhere database server ... 5
Lesson 3: Display the database server messages window 6
Lesson 4: Stop the database server .. 8
Summary ... 9

Working with database files ... 11
Overview of database files ... 12
Pre-defined dbspaces .. 13
The transaction log .. 14
Creating a database .. 21
Using additional dbspaces ... 25
Using the utility database ... 30
Erasing a database .. 34

Running the database server ... 37
Introduction to running SQL Anywhere database servers 38
Starting the database server .. 42
Some common options .. 46
Stopping the database server .. 58
Starting and stopping databases ... 59
Running the server outside the current session .. 62
Troubleshooting server startup .. 74
Running authenticated SQL Anywhere applications .. 76
Running SQL Anywhere Web Edition applications .. 82
Error reporting in SQL Anywhere ... 83

SQL Anywhere database connections .. 85
Connection parameters ... 86
Connecting with SQL Anywhere APIs ... 89

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 iii

Connecting from desktop applications to a Windows Mobile database 91
Connecting from Sybase Central, Interactive SQL, or the SQL Anywhere
Console utility .. 92
Creating ODBC data sources .. 97
Connecting to a database using OLE DB .. 104
Using integrated logins .. 106
Kerberos authentication ... 114
Sample SQL Anywhere database connections ... 124
Troubleshooting connections ... 132
Disconnecting from a database ... 140

Client/server communications .. 141
Supported network protocols ... 142
Using the TCP/IP protocol ... 143
Adjusting communication compression settings to improve performance 149
Troubleshooting network communications .. 151

The database server ... 155
The SQL Anywhere database server ... 156
Database server options .. 165
Database options ... 248

Connection parameters and network protocol options ... 261
Connection parameters ... 262
Network protocol options ... 301

SQL Anywhere for Windows Mobile ... 327
Installing SQL Anywhere on a Windows Mobile device 328
Using the Windows Mobile sample applications .. 331
Connecting to a database running on a Windows Mobile device 336
Configuring Windows Mobile databases .. 339
Running the database server on Windows Mobile .. 348
Using the administration utilities on Windows Mobile .. 349
SQL Anywhere feature support on Windows Mobile ... 356

Configuring Your Database ... 363

SQL Anywhere environment variables .. 365
Introduction to SQL Anywhere environment variables 366
DYLD_LIBRARY_PATH environment variable [Mac OS X] 368
LD_LIBRARY_PATH environment variable [Linux and Solaris] 369

SQL Anywhere® Server - Database Administration

iv Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

LIBPATH environment variable [AIX] ... 370
ODBCHOME environment variable [Unix] ... 371
ODBCINI and ODBC_INI environment variables [Unix] 372
PATH environment variable ... 373
SACHARSET environment variable .. 374
SADIAGDIR environment variable ... 375
SALANG environment variable .. 377
SALOGDIR environment variable .. 378
SATMP environment variable .. 379
SHLIB_PATH environment variable [HP-UX] .. 381
SQLANY11 environment variable .. 382
SQLANYSAMP11 environment variable .. 383
SQLCONNECT environment variable ... 384
SQLPATH environment variable .. 385
SQLREMOTE environment variable .. 386
SYBASE environment variable .. 387
TMP, TEMPDIR, and TEMP environment variables .. 388

File locations and installation settings ... 389
Installation directory structure .. 390
How SQL Anywhere locates files ... 392
Registry and INI files .. 396

International languages and character sets ... 399
Localized versions of SQL Anywhere .. 400
Understanding character sets .. 407
Understanding locales ... 413
Understanding collations ... 416
International language and character set tasks ... 424
Character set and collation reference information ... 429

Managing user IDs, authorities, and permissions .. 439
Managing login policies overview .. 440
Database permissions and authorities overview ... 446
Managing user permissions and authorities overview 455
Managing connected users .. 467
Managing groups ... 468
Database object names and prefixes .. 475
Using views and procedures for extra security .. 477

SQL Anywhere® Server - Database Administration

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 v

Changing ownership on nested objects ... 480
How user permissions are assessed ... 482
Managing the resources connections use ... 483
Users and permissions in the catalog .. 484

Database options .. 487
Introduction to database options .. 488

Connection, database, and database server properties ... 597
Connection properties .. 598
Database server properties ... 624
Database properties .. 639

Physical limitations ... 653
SQL Anywhere size and number limitations .. 654

Administering Your Database ... 657

SQL Anywhere graphical administration tools ... 659
Using Sybase Central .. 660
Using Interactive SQL .. 676
Using text completion .. 725
Using the fast launcher option ... 728
Using the SQL Anywhere Console utility ... 729
Checking for software updates .. 732

Database administration utilities ... 735
Administration utilities overview ... 737
Backup utility (dbbackup) ... 740
Broadcast Repeater utility (dbns11) .. 745
Certificate Creation utility (createcert) ... 747
Certificate Viewer utility (viewcert) ... 750
Data Source utility (dbdsn) .. 752
dbisqlc utility (deprecated) ... 764
Erase utility (dberase) .. 766
File Hiding utility (dbfhide) ... 768
Histogram utility (dbhist) .. 770
Information utility (dbinfo) .. 772
Initialization utility (dbinit) ... 774
Interactive SQL utility (dbisql) .. 786

SQL Anywhere® Server - Database Administration

vi Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Key Pair Generator utility (createkey) .. 790
Language Selection utility (dblang) .. 791
Log Transfer Manager utility (dbltm) .. 794
Log Translation utility (dbtran) ... 799
Ping utility (dbping) .. 804
Rebuild utility (rebuild) ... 807
Script Execution utility (dbrunsql) .. 808
Server Enumeration utility (dblocate) ... 810
Server Licensing utility (dblic) .. 813
Service utility (dbsvc) for Linux .. 816
Service utility (dbsvc) for Windows .. 820
SQL Anywhere Console utility (dbconsole) ... 827
Start Server in Background utility (dbspawn) ... 829
Stop Server utility (dbstop) .. 831
Support utility (dbsupport) .. 833
Transaction Log utility (dblog) .. 842
Unload utility (dbunload) .. 845
Upgrade utility (dbupgrad) ... 860
Validation utility (dbvalid) ... 862
Version Diagnostic utility (dbversion) ... 865

Maintaining Your Database ... 867

Backup and data recovery ... 869
Backup quick start ... 871
Types of backup .. 872
Choosing a backup format ... 877
Backup and recovery restrictions ... 879
Making a server-side backup ... 880
Making a client-side backup .. 886
Validating backups ... 888
Recovering your database ... 889
Designing a backup and recovery plan .. 900
Backing up databases involved in synchronization and replication 904
The internal backup process .. 909

Validating databases ... 915

SQL Anywhere® Server - Database Administration

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 vii

Introduction to validation .. 916
Using checksums to detect corruption ... 917
Improving performance when validating databases .. 920

Automating tasks using schedules and events .. 921
Introduction to using schedules and events ... 922
Understanding events .. 923
Understanding schedules .. 924
Understanding system events ... 926
Understanding event handlers ... 930
Schedule and event internals .. 932
Event handling tasks .. 934

SQL Anywhere high availability .. 937
Introduction to database mirroring ... 938
Tutorial: Using database mirroring ... 945
Tutorial: Using database mirroring with multiple databases sharing an arbiter
server ... 949
Setting up database mirroring .. 954
Using the SQL Anywhere Veritas Cluster Server agents 965

Monitoring Your Database ... 971

SQL Anywhere Monitor ... 973
Introducing the SQL Anywhere Monitor ... 974
Monitor quick start ... 977
Tutorial: Using the Monitor ... 978
Start the Monitor .. 983
Exit the Monitor .. 984
Connect to the Monitor .. 985
Disconnect from the Monitor .. 986
Monitoring resources ... 987
Administering resources .. 995
Working with Monitor users ... 1002
Alerts .. 1006
Installed objects ... 1010
Installing the SQL Anywhere Monitor on a separate computer 1011
Troubleshooting the Monitor .. 1012

SQL Anywhere® Server - Database Administration

viii Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The SQL Anywhere SNMP Extension Agent ... 1015
Introduction to the SQL Anywhere SNMP Extension Agent 1016
Understanding SNMP .. 1017
Using the SQL Anywhere SNMP Extension Agent .. 1021
SQL Anywhere MIB reference ... 1029
RDBMS MIB reference .. 1055

Security ... 1061

Keeping your data secure .. 1063
Introduction to security features ... 1064
Security tips ... 1066
Controlling database access .. 1068
Auditing database activity .. 1074
Running the database server in a secure fashion ... 1081
Encrypting and decrypting a database .. 1082
Keeping your Windows Mobile database secure ... 1093

Transport-layer security ... 1095
Introduction to transport-layer security .. 1096
Setting up transport-layer security ... 1099
Creating digital certificates ... 1101
Encrypting SQL Anywhere client/server communications 1107
Encrypting SQL Anywhere web services ... 1112
Encrypting MobiLink client/server communications ... 1113
Certificate utilities ... 1120

Replication .. 1121

Using SQL Anywhere as an Open Server ... 1123
Open Clients, Open Servers, and TDS .. 1124
Setting up SQL Anywhere as an Open Server .. 1126
Configuring Open Servers ... 1128
Characteristics of Open Client and jConnect connections 1133

Replicating data with Replication Server ... 1135
Introduction to using SQL Anywhere with Replication Server 1136
Tutorial: Replicate data using Replication Server .. 1139
Configuring databases for Replication Server ... 1148

SQL Anywhere® Server - Database Administration

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 ix

Using the LTM ... 1151

Glossary .. 1161

Glossary .. 1163

Index .. 1193

SQL Anywhere® Server - Database Administration

x Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

About this book
Subject

This book describes how to run, manage, and configure SQL Anywhere databases. It describes database
connections, the database server, database files, backup procedures, security, high availability, replication
with the Replication Server, and administration utilities and options.

Audience
This book is for all users of SQL Anywhere. It is to be used in conjunction with other books in the
documentation set.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 xi

About the SQL Anywhere documentation
The complete SQL Anywhere documentation is available in four formats that contain identical information.

● HTML Help The online Help contains the complete SQL Anywhere documentation, including the
books and the context-sensitive help for SQL Anywhere tools.

If you are using a Microsoft Windows operating system, the online Help is provided in HTML Help
(CHM) format. To access the documentation, choose Start » Programs » SQL Anywhere 11 »
Documentation » Online Books.

The administration tools use the same online documentation for their Help features.

● Eclipse On Unix platforms, the complete online Help is provided in Eclipse format. To access the
documentation, run sadoc from the bin32 or bin64 directory of your SQL Anywhere 11 installation.

● DocCommentXchange DocCommentXchange is a community for accessing and discussing SQL
Anywhere documentation.

Use DocCommentXchange to:

○ View documentation

○ Check for clarifications users have made to sections of documentation

○ Provide suggestions and corrections to improve documentation for all users in future releases

Visit http://dcx.sybase.com.

● PDF The complete set of SQL Anywhere books is provided as a set of Portable Document Format
(PDF) files. You must have a PDF reader to view information. To download Adobe Reader, visit http://
get.adobe.com/reader/.

To access the PDF documentation on Microsoft Windows operating systems, choose Start »
Programs » SQL Anywhere 11 » Documentation » Online Books - PDF Format.

To access the PDF documentation on Unix operating systems, use a web browser to open install-dir/
documentation/en/pdf/index.html.

About the books in the documentation set
The SQL Anywhere documentation consists of the following books:

● SQL Anywhere 11 - Introduction This book introduces SQL Anywhere 11, a comprehensive
package that provides data management and data exchange, enabling the rapid development of database-
powered applications for server, desktop, mobile, and remote office environments.

● SQL Anywhere 11 - Changes and Upgrading This book describes new features in SQL Anywhere
11 and in previous versions of the software.

● SQL Anywhere Server - Database Administration This book describes how to run, manage, and
configure SQL Anywhere databases. It describes database connections, the database server, database

About this book

xii Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://dcx.sybase.com/
http://get.adobe.com/reader/
http://get.adobe.com/reader/

files, backup procedures, security, high availability, replication with the Replication Server, and
administration utilities and options.

● SQL Anywhere Server - Programming This book describes how to build and deploy database
applications using the C, C++, Java, PHP, Perl, Python, and .NET programming languages such as Visual
Basic and Visual C#. A variety of programming interfaces such as ADO.NET and ODBC are described.

● SQL Anywhere Server - SQL Reference This book provides reference information for system
procedures, and the catalog (system tables and views). It also provides an explanation of the SQL
Anywhere implementation of the SQL language (search conditions, syntax, data types, and functions).

● SQL Anywhere Server - SQL Usage This book describes how to design and create databases; how
to import, export, and modify data; how to retrieve data; and how to build stored procedures and triggers.

● MobiLink - Getting Started This book introduces MobiLink, a session-based relational-database
synchronization system. MobiLink technology allows two-way replication and is well suited to mobile
computing environments.

● MobiLink - Client Administration This book describes how to set up, configure, and synchronize
MobiLink clients. MobiLink clients can be SQL Anywhere or UltraLite databases. This book also
describes the Dbmlsync API, which allows you to integrate synchronization seamlessly into your C++
or .NET client applications.

● MobiLink - Server Administration This book describes how to set up and administer MobiLink
applications.

● MobiLink - Server-Initiated Synchronization This book describes MobiLink server-initiated
synchronization, a feature that allows the MobiLink server to initiate synchronization or perform actions
on remote devices.

● QAnywhere This book describes QAnywhere, which is a messaging platform for mobile, wireless,
desktop, and laptop clients.

● SQL Remote This book describes the SQL Remote data replication system for mobile computing,
which enables sharing of data between a SQL Anywhere consolidated database and many SQL Anywhere
remote databases using an indirect link such as email or file transfer.

● UltraLite - Database Management and Reference This book introduces the UltraLite database
system for small devices.

● UltraLite - C and C++ Programming This book describes UltraLite C and C++ programming
interfaces. With UltraLite, you can develop and deploy database applications to handheld, mobile, or
embedded devices.

● UltraLite - M-Business Anywhere Programming This book describes UltraLite for M-Business
Anywhere. With UltraLite for M-Business Anywhere you can develop and deploy web-based database
applications to handheld, mobile, or embedded devices, running Palm OS, Windows Mobile, or
Windows.

● UltraLite - .NET Programming This book describes UltraLite.NET. With UltraLite.NET you can
develop and deploy database applications to computers, or handheld, mobile, or embedded devices.

● UltraLiteJ This book describes UltraLiteJ. With UltraLiteJ, you can develop and deploy database
applications in environments that support Java. UltraLiteJ supports BlackBerry smartphones and Java
SE environments. UltraLiteJ is based on the iAnywhere UltraLite database product.

About the SQL Anywhere documentation

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 xiii

● Error Messages This book provides a complete listing of SQL Anywhere error messages together
with diagnostic information.

Documentation conventions
This section lists the conventions used in this documentation.

Operating systems
SQL Anywhere runs on a variety of platforms. In most cases, the software behaves the same on all platforms,
but there are variations or limitations. These are commonly based on the underlying operating system
(Windows, Unix), and seldom on the particular variant (AIX, Windows Mobile) or version.

To simplify references to operating systems, the documentation groups the supported operating systems as
follows:

● Windows The Microsoft Windows family includes Windows Vista and Windows XP, used primarily
on server, desktop, and laptop computers, and Windows Mobile used on mobile devices.

Unless otherwise specified, when the documentation refers to Windows, it refers to all Windows-based
platforms, including Windows Mobile.

● Unix Unless otherwise specified, when the documentation refers to Unix, it refers to all Unix-based
platforms, including Linux and Mac OS X.

Directory and file names

In most cases, references to directory and file names are similar on all supported platforms, with simple
transformations between the various forms. In these cases, Windows conventions are used. Where the details
are more complex, the documentation shows all relevant forms.

These are the conventions used to simplify the documentation of directory and file names:

● Uppercase and lowercase directory names On Windows and Unix, directory and file names
may contain uppercase and lowercase letters. When directories and files are created, the file system
preserves letter case.

On Windows, references to directories and files are not case sensitive. Mixed case directory and file
names are common, but it is common to refer to them using all lowercase letters. The SQL Anywhere
installation contains directories such as Bin32 and Documentation.

On Unix, references to directories and files are case sensitive. Mixed case directory and file names are
not common. Most use all lowercase letters. The SQL Anywhere installation contains directories such
as bin32 and documentation.

The documentation uses the Windows forms of directory names. In most cases, you can convert a mixed
case directory name to lowercase for the equivalent directory name on Unix.

● Slashes separating directory and file names The documentation uses backslashes as the directory
separator. For example, the PDF form of the documentation is found in install-dir\Documentation\en
\PDF (Windows form).

About this book

xiv Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

On Unix, replace the backslash with the forward slash. The PDF documentation is found in install-dir/
documentation/en/pdf.

● Executable files The documentation shows executable file names using Windows conventions, with
a suffix such as .exe or .bat. On Unix, executable file names have no suffix.

For example, on Windows, the network database server is dbsrv11.exe. On Unix, it is dbsrv11.

● install-dir During the installation process, you choose where to install SQL Anywhere. The
environment variable SQLANY11 is created and refers to this location. The documentation refers to this
location as install-dir.

For example, the documentation may refer to the file install-dir\readme.txt. On Windows, this is
equivalent to %SQLANY11%\readme.txt. On Unix, this is equivalent to $SQLANY11/readme.txt or $
{SQLANY11}/readme.txt.

For more information about the default location of install-dir, see “SQLANY11 environment
variable” on page 382.

● samples-dir During the installation process, you choose where to install the samples included with
SQL Anywhere. The environment variable SQLANYSAMP11 is created and refers to this location. The
documentation refers to this location as samples-dir.

To open a Windows Explorer window in samples-dir, from the Start menu, choose Programs » SQL
Anywhere 11 » Sample Applications And Projects.

For more information about the default location of samples-dir, see “SQLANYSAMP11 environment
variable” on page 383.

Command prompts and command shell syntax

Most operating systems provide one or more methods of entering commands and parameters using a
command shell or command prompt. Windows command prompts include Command Prompt (DOS prompt)
and 4NT. Unix command shells include Korn shell and bash. Each shell has features that extend its
capabilities beyond simple commands. These features are driven by special characters. The special characters
and features vary from one shell to another. Incorrect use of these special characters often results in syntax
errors or unexpected behavior.

The documentation provides command line examples in a generic form. If these examples contain characters
that the shell considers special, the command may require modification for the specific shell. The
modifications are beyond the scope of this documentation, but generally, use quotes around the parameters
containing those characters or use an escape character before the special characters.

These are some examples of command line syntax that may vary between platforms:

● Parentheses and curly braces Some command line options require a parameter that accepts
detailed value specifications in a list. The list is usually enclosed with parentheses or curly braces. The
documentation uses parentheses. For example:

-x tcpip(host=127.0.0.1)

Where parentheses cause syntax problems, substitute curly braces:

-x tcpip{host=127.0.0.1}

About the SQL Anywhere documentation

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 xv

If both forms result in syntax problems, the entire parameter should be enclosed in quotes as required
by the shell:

-x "tcpip(host=127.0.0.1)"
● Quotes If you must specify quotes in a parameter value, the quotes may conflict with the traditional

use of quotes to enclose the parameter. For example, to specify an encryption key whose value contains
double-quotes, you might have to enclose the key in quotes and then escape the embedded quote:

-ek "my \"secret\" key"

In many shells, the value of the key would be my "secret" key.

● Environment variables The documentation refers to setting environment variables. In Windows
shells, environment variables are specified using the syntax %ENVVAR%. In Unix shells, environment
variables are specified using the syntax $ENVVAR or ${ENVVAR}.

Graphic icons
The following icons are used in this documentation.

● A client application.

● A database server, such as Sybase SQL Anywhere.

● A database. In some high-level diagrams, the icon may be used to represent both the database and the
database server that manages it.

● Replication or synchronization middleware. These assist in sharing data among databases. Examples are
the MobiLink server and the SQL Remote Message Agent.

About this book

xvi Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● A programming interface.

Contacting the documentation team
We would like to receive your opinions, suggestions, and feedback on this Help.

To submit your comments and suggestions, send an email to the SQL Anywhere documentation team at
iasdoc@sybase.com. Although we do not reply to emails, your feedback helps us to improve our
documentation, so your input is welcome.

DocCommentXchange
You can also leave comments directly on help topics using DocCommentXchange. DocCommentXchange
(DCX) is a community for accessing and discussing SQL Anywhere documentation. Use
DocCommentXchange to:

● View documentation

● Check for clarifications users have made to sections of documentation

● Provide suggestions and corrections to improve documentation for all users in future releases

Visit http://dcx.sybase.com.

Finding out more and requesting technical support
Additional information and resources are available at the Sybase iAnywhere Developer Community at http://
www.sybase.com/developer/library/sql-anywhere-techcorner.

If you have questions or need help, you can post messages to the Sybase iAnywhere newsgroups listed below.

When you write to one of these newsgroups, always provide details about your problem, including the build
number of your version of SQL Anywhere. You can find this information by running the following command:
dbeng11 -v.

The newsgroups are located on the forums.sybase.com news server.

About the SQL Anywhere documentation

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 xvii

mailto:iasdoc@sybase.com
http://dcx.sybase.com/
http://www.sybase.com/developer/library/sql-anywhere-techcorner
http://www.sybase.com/developer/library/sql-anywhere-techcorner

The newsgroups include the following:

● sybase.public.sqlanywhere.general
● sybase.public.sqlanywhere.linux
● sybase.public.sqlanywhere.mobilink
● sybase.public.sqlanywhere.product_futures_discussion
● sybase.public.sqlanywhere.replication
● sybase.public.sqlanywhere.ultralite
● ianywhere.public.sqlanywhere.qanywhere

For web development issues, see http://groups.google.com/group/sql-anywhere-web-development.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information, or ideas on its newsgroups, nor is
iAnywhere Solutions obliged to provide anything other than a systems operator to monitor the service and
ensure its operation and availability.

iAnywhere Technical Advisors, and other staff, assist on the newsgroup service when they have time. They
offer their help on a volunteer basis and may not be available regularly to provide solutions and information.
Their ability to help is based on their workload.

About this book

xviii Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
http://groups.google.com/group/sql-anywhere-web-development

Starting and Connecting to Your
Database

This section describes how to start the SQL Anywhere database server, and how to connect to your database from
a client application.

Tutorial: Using the sample database .. 3
Working with database files ... 11
Running the database server ... 37
SQL Anywhere database connections .. 85
Client/server communications .. 141
The database server ... 155
Connection parameters and network protocol options ... 261
SQL Anywhere for Windows Mobile ... 327

Tutorial: Using the sample database

Contents
Lesson 1: Make a copy of the sample database ... 4
Lesson 2: Start the SQL Anywhere database server .. 5
Lesson 3: Display the database server messages window ... 6
Lesson 4: Stop the database server .. 8
Summary ... 9

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 3

Lesson 1: Make a copy of the sample database
This tutorial focuses on the sample database. The sample database represents a small company that makes
a limited range of sports clothing. It contains internal information about the company (employees,
departments, and financial data), product information (products) and sales information (sales orders,
customers, and contacts). All information in the sample database is fictional. See “About the sample
database” [SQL Anywhere 11 - Introduction].

Before you begin, make a copy of the sample database so that you can restore it after you have made changes.

To copy the sample database

1. Create a directory to hold the copy of the sample database you will use in this tutorial, for example c:
\demodb.

2. Copy the sample database from samples-dir\demo.db to c:\demodb.

For information about samples-dir, see “Samples directory” on page 390.

Tutorial: Using the sample database

4 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Lesson 2: Start the SQL Anywhere database server
To start a personal database server running the sample database (Command prompt)

● Run the following command to start the personal database server, name the server mydemo11 using the
-n server option, and connect to the copy of the sample database:

dbeng11 -n mydemo11 c:\demodb\demo.db

On Windows, the database server appears as an icon in the system tray.

For more information about starting the network database server, see “Connect to a server on a
network” on page 128.

See also
● “Running the database server” on page 37
● “The database server” on page 155

Lesson 2: Start the SQL Anywhere database server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 5

Lesson 3: Display the database server messages
window

You have successfully started a personal database server running the sample database. However, you cannot
see or manipulate the data in the database yet.

The SQL Anywhere personal server icon is the only visible indication that anything has happened. You can
display the database server messages window in Windows by double-clicking the SQL Anywhere personal
server icon in the system tray.

The database server messages window displays useful information, including:

● The server name The name in the title bar (in this case mydemo11) is the server name. In this
tutorial, you assigned the server name using the -n server option. If you don't provide a server name, the

Tutorial: Using the sample database

6 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

database server is given the name of the first database started. This name can be used by applications
when they connect to a database. See “Naming the server and the databases” on page 46.

● The version and build numbers The numbers following the server name (for example,
11.0.0.1083) are the version and build numbers. The version number represents the specific release of
SQL Anywhere, and the build number relates to the specific instance of the software that was compiled.

● Startup information When a database server starts, it sets aside some memory that it uses when
processing database requests. This reserved memory is called the cache. The amount of cache memory
appears in the window. The cache is organized in fixed-size pages, and the page size also appears in the
window.

● Database information The names of the database file and its transaction log file appear in the
window.

In this case, the startup cache size and page size are the default values. For many purposes, including
those of this tutorial, the default startup options are fine.

Lesson 3: Display the database server messages window

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 7

Lesson 4: Stop the database server
You can now stop the database server you just started.

In Windows, you can stop a database server by clicking Shut Down on the database server messages window.

To stop the database server running the sample database (Windows)

1. Double-click the SQL Anywhere icon in the system tray.

2. Click Shut Down.

To stop the database server running the sample database (Command prompt)

● Run the following command to stop the personal database server running the sample database:

dbstop mydemo11

The Stop Server utility (dbstop) can only be run at a command prompt. See “Stop Server utility
(dbstop)” on page 831.

Tutorial cleanup
Once you have shut down the database server, you can delete the c:\demodb directory and its contents.

Tutorial: Using the sample database

8 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Summary
In this tutorial, you learned how to make a copy of the sample database, how to start a database server running
the sample database, and how to view the contents of the database server messages window. You also learned
how to stop the database server.

See also
● “Starting Interactive SQL” on page 677
● “Connecting from Sybase Central, Interactive SQL, or the SQL Anywhere Console

utility” on page 92
● “Running the database server” on page 37

Summary

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 9

10

Working with database files

Contents
Overview of database files .. 12
Pre-defined dbspaces .. 13
The transaction log .. 14
Creating a database .. 21
Using additional dbspaces ... 25
Using the utility database .. 30
Erasing a database .. 34

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 11

Overview of database files
Each database has the following files associated with it:

● The database file This file holds the database information. It typically has the extension .db.

● The transaction log This file holds a record of the changes made to the database, and is necessary
for recovery and synchronization. It typically has the extension .log. See “The transaction
log” on page 14.

● The temporary file The database server uses the temporary file to hold information needed during a
database session. The database server discards this file once the database shuts down—even if the server
remains running. The file has a server-generated name with the extension .tmp.

The location of the temporary file can be specified when starting the database server using the -dt server
option. If you do not specify the location of the temporary file when starting the database server, the
following environment variables are checked, in order:

○ SATMP environment variable
○ TMP environment variable
○ TMPDIR environment variable
○ TEMP environment variable

If none of these environment variables are defined, SQL Anywhere places its temporary file in the current
directory on Windows operating systems, or in the /tmp directory on Unix.

The database server creates, maintains, and removes the temporary file. You only need to ensure that
there is enough free space available for the temporary file. You can obtain information about the space
available for the temporary file using the sa_disk_free_space procedure. See “sa_disk_free_space system
procedure” [SQL Anywhere Server - SQL Reference].

● Pre-defined dbspace files These files store your data and other files used by the database. See “Pre-
defined dbspaces” on page 13.

Additional files
Other files can also be part of a database system, including:

● Dbspace files You can spread your data over several separate files, in addition to the database file.
See “CREATE DBSPACE statement” [SQL Anywhere Server - SQL Reference].

For information about dbspaces, see “Using additional dbspaces” on page 25.

● Transaction log mirror files For additional security, you can create a mirror copy of the transaction
log. This file typically has the extension .mlg. See “Transaction log mirrors” on page 15.

Working with database files

12 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Pre-defined dbspaces
SQL Anywhere uses the following pre-defined dbspaces for its databases:

Dbspace Name

Main database file system

Temporary file temporary or temp

Transaction log file translog

Transaction log mirror translogmirror

You cannot create user-defined dbspaces with these names and you cannot drop the pre-defined dbspaces.

If you upgrade a version 10.0.0 or earlier database with user-defined dbspaces that use the pre-defined
dbspace names, then all references to these dbspaces in SQL statements are assumed to be referring to the
user-defined dbspaces, and not the pre-defined dbspaces. The only way that you can refer to the pre-defined
dbspaces is by dropping the user-defined dbspaces, or renaming them to not use the same names as the pre-
defined dbspaces.

The ALTER DBSPACE statement supports the pre-defined dbspace names so you can add more space to
them. See “ALTER DBSPACE statement” [SQL Anywhere Server - SQL Reference].

The DB_EXTENDED_PROPERTY function also accepts the pre-defined dbspace names. See
“DB_EXTENDED_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference].

Pre-defined dbspaces

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 13

The transaction log
The transaction log is a separate file from the database file. It stores all changes to the database. Inserts,
updates, deletes, commits, rollbacks, and database schema changes are all logged. The transaction log is also
called the forward log or the redo log.

The transaction log is a key component of backup and recovery, and is also essential for data synchronization
using MobiLink, for data replication using SQL Remote or the Replication Agent, or for database mirroring.

By default, all databases use transaction logs. Using a transaction log is optional, but you should always use
a transaction log unless you have a specific reason not to. Running a database with a transaction log provides
greater protection against failure, better performance, and the ability to replicate data.

It is recommended that you store the database files and the transaction log on separate disks on the computer.
If the dbspace(s) and the transaction log are on the same disk, and a disk failure occurs, everything is lost.
However, if the database and transaction log are stored on different disks, then most, if not all, the data can
be recovered in the event of a disk failure because you have the full database or the transaction log (from
which the database can be recovered).

See “Protecting against media failure” on page 903.

Caution
The database file and the transaction log file must be located on the same physical computer as the database
server or accessed via a SAN or iSCSI configuration. Database files and transaction log files located on a
remote network directory can lead to poor performance, data corruption, and server instability.

For more information, see http://www.sybase.com/detail?id=1034790.

When changes are forced to disk

Like the database file, the transaction log is organized into pages: fixed size areas of memory. When a change
is recorded in the transaction log, it is made to a page in memory. The change is forced to disk when the
earlier of the following operations happens:

● The page is full.
● A COMMIT is executed.

Completed transactions are guaranteed to be stored on disk, while performance is improved by avoiding a
write to the disk on every operation.

Configuration options are available to allow advanced users to tune the precise behavior of the transaction
log. See “cooperative_commits option [database]” on page 521 and “delayed_commits option
[database]” on page 528.

See also
● “Controlling transaction log size” on page 17
● “-m server option” on page 205
● “-m database option” on page 253
● “sa_disk_free_space system procedure” [SQL Anywhere Server - SQL Reference]
● “delete_old_logs option [MobiLink client] [SQL Remote] [Replication Agent]” on page 529

Working with database files

14 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1034790

Transaction log mirrors
A transaction log mirror is an identical copy of the transaction log, maintained at the same time as the
transaction log. If a database has a transaction log mirror, every database change is written to both the
transaction log and the transaction log mirror. By default, databases do not have transaction log mirrors.

A transaction log mirror provides extra protection for critical data. It enables complete data recovery in the
case of media failure on the transaction log. A transaction log mirror also enables a database server to perform
automatic validation of the transaction log on database startup.

It is recommended that you use a transaction log mirror when running high-volume or critical applications.
For example, at a consolidated database in a SQL Remote setup, replication relies on the transaction log,
and if the transaction log is damaged or becomes corrupt, data replication can fail.

If you are using a transaction log mirror, and an error occurs while trying to write to one of the logs (for
example, if the disk is full), the database server stops. The purpose of a transaction log mirror is to ensure
complete recoverability in the case of media failure on either log device; this purpose would be lost if the
server continued with a single transaction log.

You can specify the -fc option when starting the database server to implement a callback function when the
database server encounters a file system full condition. See “-fc server option” on page 185.

Where to store the transaction log mirror
There is a performance penalty for using a transaction log mirror because each database log write operation
must be performed twice. The performance penalty depends on the nature and volume of database traffic
and on the physical configuration of the database and logs.

A transaction log mirror should be kept on a separate device from the transaction log. This improves
performance, and if either device fails, the other copy of the log keeps the data safe for recovery.

Alternatives to a transaction log mirror
Alternatives to a transaction log mirror are to use the following configurations:

● database mirroring. See “Introduction to database mirroring” on page 938.

● a disk controller that provides hardware mirroring. Generally, hardware mirroring is more expensive
than operating-system level software mirroring, but it provides better performance.

● operating-system level software mirroring, as provided by Microsoft Windows.

Live backups provide additional protection with some similarities to using a transaction log mirror. See
“Differences between live backups and transaction log mirrors” on page 875.

For information about creating a database with a transaction log mirror, see “Initialization utility
(dbinit)” on page 774.

For information about changing an existing database to use a transaction log mirror, see “Transaction Log
utility (dblog)” on page 842.

The transaction log

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 15

Changing the location of a transaction log
The database cannot be running when you change the location of the transaction log.

For more information about how to choose the location of a transaction log, see “The transaction
log” on page 14.

To change the location of a transaction log (Sybase Central)

1. From the Tools menu, choose SQL Anywhere 11 » Change Log File Settings.

2. Follow the instructions in the Change Log File Settings Wizard.

To change the location of a transaction log mirror for an existing database (command line)

1. Ensure that the database is not running.

2. Run the following command:

dblog -t new-transaction-log-file database-file

See also
● “Transaction Log utility (dblog)” on page 842

Starting a transaction log mirror for an existing database
Using the Transaction Log utility, you can maintain the transaction log mirror for an existing database any
time the database is not running.

To start a transaction log mirror for an existing database (Sybase Central)

1. From the Tools menu, choose SQL Anywhere 11 » Change Log File Settings.

2. Follow the instructions in the Change Log File Settings Wizard.

To start a transaction log mirror for an existing database (command line)

1. Ensure that the database is not running.

2. Run the following command:

dblog -m mirror-file database-file

You can also use the dblog utility and Sybase Central to stop a database from using a transaction log mirror.

See also
● “Transaction Log utility (dblog)” on page 842

Working with database files

16 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Controlling transaction log size
The size of the transaction log can also affect recovery times. You can control transaction log file growth
by ensuring that all your tables have compact primary keys. If you perform updates or deletes on tables that
do not have a primary key or a unique index not allowing NULL, the entire contents of the affected rows
are entered in the transaction log. If a primary key is defined, the database server needs to store only the
primary key column values to uniquely identify a row. If the table contains many columns or wide columns,
the transaction log pages fill up much faster if no primary key is defined. In addition to taking up disk space,
this extra writing of data affects performance.

If a primary key does not exist, the server looks for a UNIQUE NOT NULL index on the table (or a UNIQUE
constraint). A UNIQUE index that allows NULL is not enough.

See also
● “-m server option” on page 205
● “-m database option” on page 253
● “sa_disk_free_space system procedure” [SQL Anywhere Server - SQL Reference]
● “delete_old_logs option [MobiLink client] [SQL Remote] [Replication Agent]” on page 529

Determine which connection has an outstanding
transaction

If you are performing a backup that renames or deletes the transaction log, incomplete transactions are carried
forward to the new transaction log.

You can use a system procedure to determine which user has outstanding transactions. If there are not too
many connections, you can also use the SQL Anywhere Console utility to determine which connection has
outstanding transactions. If necessary, you can disconnect the user with a DROP CONNECTION statement.

To determine which connection has an outstanding transaction (SQL)

1. Connect to the database from Interactive SQL.

2. Execute the sa_conn_info system procedure:

CALL sa_conn_info;
3. Inspect the UncommitOps column to see which connection has uncommitted operations.

See “sa_conn_info system procedure” [SQL Anywhere Server - SQL Reference].

To determine which connection has an outstanding transaction (SQL Anywhere Console
utility)

1. Connect to the database from the SQL Anywhere Console utility.

For example, the following command connects to the default database using user ID DBA and password
sql:

dbconsole -c "UID=DBA;PWD=sql"

The transaction log

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 17

See “SQL Anywhere Console utility (dbconsole)” on page 827.

2. Double-click each connection, and inspect the Uncommitted Ops entry to see which users have
uncommitted operations. If necessary, you can disconnect the user to enable the backup to finish.

Understanding the checkpoint log
The database file is composed of pages: fixed size portions of hard disk. The checkpoint log is located at
the end of the database file and is stored in the system dbspace. Pages are added to the checkpoint log as
necessary during a session, and the entire checkpoint log is deleted at the end of the session.

Before any page is updated (made dirty), the database server performs the following operations:

● It reads the page into memory, where it is held in the database cache.

● It makes a copy of the original page. These copied pages are the checkpoint log.

Changes made to the page are applied to the copy in the cache. For performance reasons they are not written
immediately to the database file on disk.

Working with database files

18 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

When the cache is full, the changed page may get written out to disk. The copy in the checkpoint log remains
unchanged.

Understanding checkpoints

A checkpoint is a point at which all dirty pages are written to disk and therefore represents a known consistent
state of the database on disk. Following a checkpoint, the contents of the checkpoint log are deleted. The
empty checkpoint log pages remain in the checkpoint log within a given session and can be reused for new
checkpoint log data. As the checkpoint log increases in size, so does the database file.

At a checkpoint, all the data in the database is held on disk in the database file. The information in the
database file matches that in the transaction log. During recovery, the database is first recovered to the most
recent checkpoint, and then changes since that checkpoint are applied.

The transaction log

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 19

The entire checkpoint log, including all empty checkpoint log pages, is deleted at the end of each session.
Deleting the checkpoint log causes the database to shrink in size.

The database server can initiate a checkpoint and perform other operations while it takes place. However,
if a checkpoint is already in progress, then any operation like an ALTER TABLE or CREATE INDEX that
initiates a new checkpoint must wait for the current checkpoint to finish.

See also
● “Backup and recovery restrictions” on page 879
● “Understanding backups” on page 909
● “How the database server decides when to checkpoint” on page 910

Working with database files

20 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Creating a database
You can use Sybase Central, Interactive SQL, or the command line to create or initialize a SQL Anywhere
database. After creating the database, you can connect to it and build tables and other objects.

Other application design systems, such as Sybase PowerDesigner Physical Data Model, contain tools for
creating database objects. These tools construct SQL statements that are submitted to the database server,
typically through its ODBC interface. If you are using one of these tools, you do not need to construct SQL
statements to create tables, assign permissions, and so on. See “About PowerDesigner Physical Data Model”
[SQL Anywhere 11 - Introduction].

For more information about database design, see “Creating databases in SQL Anywhere” [SQL Anywhere
Server - SQL Usage].

Transaction log
When you create a database, you must decide where to place the transaction log. This log stores all changes
made to a database, in the order in which they are made. In the event of a media failure on a database file,
the transaction log is essential for database recovery. It also makes your work more efficient. By default, it
is placed in the same directory as the database file, but this is not recommended for production use.

For more information about placing the transaction log, see “The transaction log” on page 14.

Database file compatibility
A SQL Anywhere database is an operating system file. It can be copied to other locations just as any other
file is copied.

Database files are compatible among all operating systems, except where file system file size limitations or
SQL Anywhere support for large files apply. See “SQL Anywhere size and number
limitations” on page 654.

A database created from any operating system can be used from another operating system by copying the
database file(s). Similarly, a database created with a personal database server can be used with a network
database server. SQL Anywhere database servers can manage databases created with earlier versions of the
software, but old servers cannot manage newer databases.

Create a database (Sybase Central)
You can create a database in Sybase Central using the Create Database Wizard. See “Create a database
(SQL)” on page 22, and “Create a database (command line)” on page 23.

To create a new database (Sybase Central)

1. Start Sybase Central.

2. Choose Tools » SQL Anywhere 11 » Create Database.

3. Follow the instructions in the Create Database Wizard.

Creating a database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 21

Tip
You can also access the Create Database Wizard from within Sybase Central using the following methods:

● Selecting a server, and choosing File » Create Database.
● Right-clicking a server, and choosing Create Database.

Creating databases for Windows Mobile
For information about creating databases for Windows Mobile, see “Creating a Windows Mobile
database” on page 340.

Create a database (SQL)
In Interactive SQL, use the CREATE DATABASE statement to create databases. You need to connect to
an existing database before you can use this statement.

To create a new database (SQL)

1. Start a database server named sample.

dbeng11 -n sample
2. Start Interactive SQL.

3. Connect to an existing database. If you don't have a database, you can connect to the utility database
utility_db. See “Connecting to the utility database” on page 31.

4. Execute a CREATE DATABASE statement.

See “CREATE DATABASE statement” [SQL Anywhere Server - SQL Reference].

Example
Create a database file in the c:\temp directory with the file name temp.db.

CREATE DATABASE 'c:\\temp\\temp.db';

The directory path is relative to the database server. You set the permissions required to execute this statement
on the server command line, using the -gu option. The default setting requires DBA authority.

The backslash is an escape character in SQL, and must be doubled in some cases. The \x and \n sequences
can be used to specifying hexadecimal and newline characters. Letters other than n and x do not have any
special meaning if they are preceded by a backslash. Here are some examples where this is important.

CREATE DATABASE 'c:\\temp\\\x41\x42\x43xyz.db';

The initial \\ sequence represents a backslash. The \x sequences represent the characters A, B, and C,
respectively. The file name here is ABCxyz.db.

CREATE DATABASE 'c:\temp\\nest.db';

To avoid having the \n sequence interpreted as a newline character, the backslash is doubled.

Working with database files

22 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See “Escape sequences” [SQL Anywhere Server - SQL Reference].

Create a database (command line)
You can create a database from a command line with the Initialization utility (dbinit). With this utility, you
can include command line options to specify different settings for the database.

To create a new database (command line)

● Run a dbinit command.

For example, to create a database called company.db with a 4 KB page size, run the following command:

dbinit -p 4k company.db

See also
● “Initialization utility (dbinit)” on page 774

Create a database with a transaction log mirror
You can choose to maintain a transaction log mirror when you create a database. This option is available
from the CREATE DATABASE statement, from Sybase Central, or from the dbinit utility.

For more information about why you may want to use a transaction log mirror, see “Transaction log
mirrors” on page 15.

To create a database that uses a transaction log mirror (Sybase Central)

1. From the Tools menu, choose SQL Anywhere 11 » Create Database.

2. Follow the instructions in the Create Database Wizard.

To create a database that uses a transaction log mirror (SQL)

● Use the CREATE DATABASE statement, with the TRANSACTION LOG and MIRROR clauses. For
example:

CREATE DATABASE 'c:\\mydb'
TRANSACTION LOG ON mydb.log
MIRROR 'd:\\mydb.mlg';

See “CREATE DATABASE statement” [SQL Anywhere Server - SQL Reference].

To create a database that uses a transaction log mirror (command line)

● Use the dbinit utility with the -m option. For example, the following command (which should be entered
on one line) initializes a database named company.db, with a transaction log kept on a different device
and a mirror on a third device.

Creating a database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 23

dbinit -t d:\log-dir\company.log -m
e:\mirr-dir\company.mlg c:\db-dir\company.db

See “Initialization utility (dbinit)” on page 774.

Working with database files

24 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using additional dbspaces
Typically needed for large databases
For most databases, a single database file is enough. However, for users of large databases, additional
database files are sometimes necessary. Additional database files are also convenient tools for clustering
related information in separate files.

When you initialize a database, it contains one database file. This first database file is called the main file
or the system dbspace. By default, all database objects and all data are placed in the main file.

A dbspace is an additional database file that creates more space for data. A database can be held in up to 13
separate files (the main file and 12 dbspaces). Each table, together with its indexes, must be contained in a
single database file. The SQL command CREATE DBSPACE adds a new file to the database.

Temporary tables are only created in the temporary dbspace.

There are several ways to specify the dbspace where a base table or other database object is created. In the
following lists, the location specified by methods occurring earlier in the list take precedence over those
occurring later in the list.

1. IN DBSPACE clause (if specified)

2. default_dbspace option (if set)

3. system dbspace

If a dbspace name contains a period and is not quoted, the database server generates an error for the name.

Each database file has a maximum allowable size of 228 (approximately 268 million) database pages. For
example, a database file created with a database page size of 4 KB can grow to a maximum size of one
terabyte (228*4 KB). However, in practice, the maximum file size allowed by the physical file system in
which the file is created affects the maximum allowable size significantly.

While some older file systems restrict file size to a maximum of 2 GB, many file systems, such as Windows
using the NTFS file system, allow you to exploit the full database file size. In scenarios where the amount
of data placed in the database exceeds the maximum file size, it is necessary to divide the data into more
than one database file. As well, you may want to create multiple dbspaces for reasons other than size
limitations, for example, to cluster related objects.

For information about the maximum file size allowed on the supported operating systems, see “SQL
Anywhere size and number limitations” on page 654.

You can use the sa_disk_free system procedure to obtain information about space available for a dbspace.
See “sa_disk_free_space system procedure” [SQL Anywhere Server - SQL Reference].

The SYSDBSPACE system view contains information about all the dbspaces for a database. See
“SYSDBSPACE system view” [SQL Anywhere Server - SQL Reference].

Splitting existing databases
If you want to split existing database objects among multiple dbspaces, you must unload your database and
modify the generated command file (named reload.sql by default) for rebuilding the database. In the

Using additional dbspaces

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 25

reload.sql file, add IN clauses to the CREATE TABLE statements to specify the dbspace for each table you
do not want to place in the main file.

Permissions on dbspaces

SQL Anywhere supports permissions on dbspaces. Only the CREATE permission is supported. The
CREATE permission allows a user to create database objects in the specified dbspace. You can grant
CREATE permission for a dbspace by executing a GRANT CREATE statement. See “GRANT statement”
[SQL Anywhere Server - SQL Reference].

Dbspace permissions behave as follows:

● A user trying to create a new object with underlying data must have CREATE permission on the dbspace
where the data is being placed.

● Even if a GRANT CREATE ON statement was issued, the user (grantee) must have RESOURCE
authority to create new database objects.

● The current list of objects that can be placed in specific dbspaces, and that require the CREATE
permission, includes tables, indexes, text indexes, and materialized views. Note that objects such as
normal views and procedures do not have any underlying data and do not require the CREATE
permission.

● A user can be granted the CREATE permission directly, or they can inherit the permission through
membership in a group that has been granted the permission.

● It is possible to grant PUBLIC the CREATE permission on a specific dbspace, in which case any user
who also has RESOURCE authority can create objects on the dbspace.

● A newly-created dbspace automatically grants CREATE permission on itself to PUBLIC.

● It is possible to revoke permissions, for example when trying to secure a dbspace. Permissions on the
internal dbspaces system and temporary can also be managed to control access.

● Creating local temporary tables does not require any permissions; dbspace permissions do not affect the
creation of local temporary tables. However, the creation of global temporary tables requires
RESOURCE authority and CREATE permission on the temporary dbspace.

See also
● “CREATE DBSPACE statement” [SQL Anywhere Server - SQL Reference]
● “DB_EXTENDED_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “UNLOAD statement” [SQL Anywhere Server - SQL Reference]

Creating dbspaces
You create a new database file, or dbspace, either from Sybase Central, or using the CREATE DBSPACE
statement. The database file for a new dbspace can be located on the same disk drive as the main file or on
another disk drive. You must have DBA authority to create dbspaces.

Working with database files

26 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

For each database, you can create up to twelve dbspaces in addition to the main dbspace. A newly-created
dbspace is empty. When you create a new table or index you can place it in a specific dbspace with an IN
clause in the CREATE statement or set the default_dbspace option before creating the table. If you don't
specify an IN clause, and don't change the setting of the default_dbspace option, the table is created in the
system dbspace.

Each table is contained entirely in the dbspace it is created in. By default, indexes appear in the same dbspace
as their table, but you can place them in a separate dbspace by supplying an IN clause as part of the CREATE
statement.

See also
● “default_dbspace option [database]” on page 526
● “CREATE DBSPACE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]“CREATE TABLE statement”

[SQL Anywhere Server - SQL Reference]
● “CREATE INDEX statement” [SQL Anywhere Server - SQL Reference]

Create a dbspace

To create a dbspace (Sybase Central)

1. Open the Dbspaces folder for the database.

2. Choose File » New » Dbspace.

3. Follow the instructions in the Create Dbspace Wizard.

The new dbspace appears in the Dbspaces folder.

To create a dbspace (SQL)

● Execute a CREATE DBSPACE statement.

Examples
The following command creates a new dbspace called MyLibrary in the file library.db in the same directory
as the main file:

CREATE DBSPACE MyLibrary
AS 'library.db';

The following command creates a table LibraryBooks and places it in the MyLibrary dbspace.

CREATE TABLE LibraryBooks (
title CHAR(100),
author CHAR(50),
isbn CHAR(30)
) IN MyLibrary;

The following commands create a new dbspace named MyLibrary, set the default dbspace to the MyLibrary
dbspace, and then create the LibraryBooks table in the MyLibrary dbspace.

Using additional dbspaces

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 27

CREATE DBSPACE MyLibrary
AS 'e:\\dbfiles\\library.db';
SET OPTION default_dbspace = 'MyLibrary';
CREATE TABLE LibraryBooks (
 title CHAR(100),
 author CHAR(50),
 isbn CHAR(30),
);

See also
● “CREATE DBSPACE statement” [SQL Anywhere Server - SQL Reference]
● “default_dbspace option [database]” on page 526
● “Working with tables” [SQL Anywhere Server - SQL Usage]
● “CREATE INDEX statement” [SQL Anywhere Server - SQL Reference]

Pre-allocating space for database files
When you create a new database file, you can pre-allocate database space using the DATABASE SIZE
clause of the CREATE DATABASE statement or by specifying the dbinit -dbs option. See “CREATE
DATABASE statement” [SQL Anywhere Server - SQL Reference], and “Initialization utility
(dbinit)” on page 774.

As you use the database, SQL Anywhere automatically grows database files as needed. Rapidly-changing
database files can lead to excessive file fragmentation on the disk, resulting in potential performance
problems. As well, many small allocations are slower than one large allocation. If you are working with a
database with a high rate of change, you can pre-allocate disk space for dbspaces or for transaction logs
using either Sybase Central or the ALTER DBSPACE statement.

You must have DBA authority to alter the properties of a database file.

Performance tip
Running a disk defragmentation utility after pre-allocating disk space helps ensure that the database file is
not fragmented over many disjointed areas of the disk drive. Performance can suffer if there is excessive
fragmentation of database files.

To pre-allocate space (Sybase Central)

1. Open the Dbspaces folder.

2. Right-click the dbspace and choose Pre-allocate Space.

3. Enter the amount of space to add to the dbspace. You can add space in units of pages, bytes, kilobytes
(KB), megabytes (MB), gigabytes (GB), or terabytes (TB).

4. Click OK.

To pre-allocate space (SQL)

1. Connect to a database.

2. Execute an ALTER DBSPACE statement.

Working with database files

28 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Examples
Increase the size of the system dbspace by 200 pages.

ALTER DBSPACE system
ADD 200;

Increase the size of the system dbspace by 400 megabytes.

ALTER DBSPACE system
ADD 400 MB;

See also
● “Creating dbspaces” on page 26
● “ALTER DBSPACE statement” [SQL Anywhere Server - SQL Reference]

Delete a dbspace
You can delete a dbspace using either Sybase Central or the DROP DBSPACE statement. Before you can
delete a dbspace, you must delete all tables and indexes that use the dbspace. You must have DBA authority
to delete a dbspace.

To delete a dbspace (Sybase Central)

1. Open the Dbspaces folder.

2. Right-click the dbspace and choose Delete.

To delete a dbspace (SQL)

1. Connect to a database.

2. Execute a DROP DBSPACE statement.

See also
● “Drop tables” [SQL Anywhere Server - SQL Usage]
● “DROP DBSPACE statement” [SQL Anywhere Server - SQL Reference]

Using additional dbspaces

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 29

Using the utility database
The utility database is a phantom database with no physical representation. This feature allows you to
execute database file administration statements such as CREATE DATABASE without first connecting to
an existing physical database. The utility database has no database file, and therefore it cannot contain data.

The utility database is named utility_db. If you attempt to create or start a database with this name, the
operation fails.

Executing the following statement after connecting to the utility database creates a database named
new.db in the directory c:\temp.

CREATE DATABASE 'c:\\temp\\new.db';

See “CREATE DATABASE statement” [SQL Anywhere Server - SQL Reference].

You can also retrieve values of connection properties and server properties using the utility database.

For example, executing the following statement against the utility database returns the default collation
sequence, which will be used when creating a database:

SELECT PROPERTY('DefaultCollation');

For information about connection and database server properties, see:

● “Connection properties” on page 598
● “Database server properties” on page 624

Allowed statements for the utility database
The following are the only statements that you can execute when connected to the utility database:

● ALTER DATABASE dbfile ALTER TRANSACTION LOG (see “ALTER DATABASE statement”
[SQL Anywhere Server - SQL Reference])

● “CREATE DATABASE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE DECRYPTED DATABASE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE DECRYPTED FILE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE ENCRYPTED DATABASE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE ENCRYPTED FILE statement” [SQL Anywhere Server - SQL Reference]
● “DROP DATABASE statement” [SQL Anywhere Server - SQL Reference]
● CREATE USER DBA IDENTIFIED BY new-password (see “CREATE USER statement” [SQL

Anywhere Server - SQL Reference])
● “RESTORE DATABASE statement” [SQL Anywhere Server - SQL Reference]
● REVOKE CONNECT FROM DBA (see “REVOKE statement” [SQL Anywhere Server - SQL

Reference])
● SELECT statement without a FROM or WHERE clause (see “SELECT statement” [SQL Anywhere

Server - SQL Reference])
● “START DATABASE statement” [SQL Anywhere Server - SQL Reference]
● “STOP DATABASE statement” [SQL Anywhere Server - SQL Reference]
● “STOP ENGINE statement” [SQL Anywhere Server - SQL Reference]

Working with database files

30 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connecting to the utility database
You can start the utility database on a database server by specifying utility_db as the database name when
connecting to the server. You can use the -su server option to set the utility database password for the DBA
user, or to disable connections to the utility database. If the -su option is not specified when starting the
utility database, then the user ID and password requirements are different for the personal server and the
network server.

For the personal database server, if -su is not specified, then there are no security restrictions for connecting
to the utility database. For the personal server, you must specify the user ID DBA. You must also specify a
password, but it can be any password. It is assumed that anybody who can connect to the personal database
server can access the file system directly so no attempt is made to screen users based on passwords.

To avoid typing the utility database password in plain text, when using the -su option, you can create a file
that contains the password and then obfuscate it using the dbfhide utility. For example, suppose the file
named util_db_pwd.cfg contains the utility database password. You could obfuscate this file using dbfhide
and rename it to util_db_pwd_hide.cfg:

dbfhide util_db_pwd.cfg util_db_pwd_hide.cfg

The util_db_pwd_hide.cfg file can then be used to specify the utility database password:

dbsrv11 -su @util_db_pwd_hide.cfg -n my_server c:\mydb.db

See “File Hiding utility (dbfhide)” on page 768.

For the network server, if -su is not specified, then you must specify the user ID DBA, and the password
that is held in the util_db.ini file, stored in the same directory as the database server executable file. As this
directory is on the server, you can control access to the file, and thereby control who has access to the
password. The password is case sensitive.

Note
The util_db.ini file is deprecated. You should use the -su server option to specify the password for the utility
database's DBA user. See “-su server option” on page 224.

To connect to the utility database on the personal server (Interactive SQL)

1. Start a database server with the following command:

dbeng11 -n TestEng

For additional security, the -su option can be used to specify the utility database password.

2. Start Interactive SQL.

3. In the Connect window, type DBA for the User ID, and type any non-blank password. The password
itself is not checked, but the field must not be empty.

4. On the Database tab, enter utility_db as the Database Name and TestEng as the Server Name.

5. Click OK to connect.

Interactive SQL connects to the utility database on the personal server named TestEng.

Using the utility database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 31

To connect to the utility database on the network server (Interactive SQL)

1. Start a database server with the following command:

dbsrv11 -n TestEng -su 9Bx231K
2. Start Interactive SQL.

3. In the Connect window, type DBA for the User ID, and type the password specified by the -su option.

4. On the Database tab, enter utility_db as the Database Name and TestEng as the Server Name.

5. Click OK to connect.

Interactive SQL connects to the utility database on the network server named TestEng.

See “SQL Anywhere database connections” on page 85 and “-su server option” on page 224.

Note
When you are connected to the utility database, executing REVOKE CONNECT FROM DBA disables
future connections to the utility database. This means that no future connections can be made to the utility
database unless you use a connection that existed before the REVOKE CONNECT was done, or restart the
database server. See “REVOKE statement” [SQL Anywhere Server - SQL Reference].

Using util_db.ini with network database servers (deprecated)

Note
Because the use of the util_db.ini file is deprecated, it is recommended that you use the -su server option to
specify the DBA user's password for the utility database.

Using util_db.ini relies on the physical security of the computer hosting the database server since the
util_db.ini file can be easily read using a text editor.

For the network server, by default you cannot connect to the utility database without specifying -su or using
util_db.ini. If you use util_db.ini, the file holds the password and is located in the same directory as the
database server executable and contains the text:

[UTILITY_DB]
PWD=password

To protect the contents of the util_db.ini file from casual direct access, you can add simple encryption to the
file using the File Hiding utility (dbfhide). You can also use operating system features to limit access to the
server file system.

For more information about obfuscating .ini files, see “Hiding the contents of .ini files” on page 768.

Working with database files

32 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Specifying the permissions required to execute file
administration statements

The -gu database server option controls who can execute file administration statements. You can use this
option to specify which users are able to execute certain administration tasks. See “-gu server
option” on page 198.

There are four levels of permission for the use of file administration statements:

-gu option Effect Applies to

all Anyone can execute file adminis-
tration statements

Any database including utility
database

none No one can execute file adminis-
tration statements

Any database including utility
database

DBA Only users with DBA authority can
execute file administration state-
ments

Any database including utility
database

utility_db Only the users who can connect to
the utility database can execute file
administration statements

Only the utility database

Examples
To prevent the use of the file administration statements, start the database server using the none permission
level of the -gu option. The following command starts a database server and names it TestSrv. It loads the
mytestdb.db database, but prevents anyone from using that server to create or delete a database, or execute
any other file administration statement regardless of their resource creation rights, or whether they can load
and connect to the utility database.

dbsrv11 -n TestSrv -gu none c:\mytestdb.db

To permit only the users knowing the utility database password to execute file administration statements,
start the server by running the following command.

dbsrv11 -n TestSrv -su secret -gu utility_db

The following command starts Interactive SQL as a client application, connects to the server named TestSrv,
loads the utility database, and connects the user.

dbisql -c "UID=DBA;PWD=secret;DBN=utility_db;ENG=TestSrv"

Having executed the above command successfully, the user connects to the utility database, and can execute
file administration statements.

Using the utility database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 33

Erasing a database
Erasing a database deletes all tables and data from disk, including the transaction log that records alterations
to the database. All database files are read-only to prevent accidental modification or deletion of database
files. By default, you need DBA authority to erase a database. You can change the required permissions by
using the database server -gu option. See “-gu server option” on page 198.

In Sybase Central, you can erase a database using the Erase Database Wizard.

In Interactive SQL, you can erase a database using the DROP DATABASE statement.

You can also erase a database from a command line with the dberase utility. However, the dberase utility
does not erase dbspaces. If you want to erase a dbspace, you can do so with the DROP DATABASE statement
or using the Erase Database Wizard in Sybase Central.

The database to be erased must not be running when the dberase utility, the Erase Database Wizard, or
DROP DATABASE statement is used. You must be connected to a database to drop another database.

For information about connecting to the utility database, see “Connecting to the utility
database” on page 31.

Windows Mobile databases must be erased manually. See “Erase a Windows Mobile
database” on page 347.

To erase a database (Sybase Central)

1. Choose Tools » SQL Anywhere 11 » Erase Database.

2. Follow the instructions in the wizard.

Tip
You can also access the Erase Database Wizard from within Sybase Central by using any of the following
methods:

● Selecting a database server, and choosing File » Erase Database.

● Right-clicking a server, and choosing Erase Database.

To erase a database (SQL)

1. Connect to a database other than the one you want to erase. For example, connect to the utility database.

2. Execute a DROP DATABASE statement.

For example, the following DROP DATABASE statement erases a database named temp.

DROP DATABASE 'c:\\temp\\temp.db';

See “DROP DATABASE statement” [SQL Anywhere Server - SQL Reference].

Working with database files

34 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To erase a database (command line)

● Run the dberase utility.

For example, the following command removes the temp database.

dberase c:\temp\temp.db

See “Erase utility (dberase)” on page 766.

Erasing a database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 35

36

Running the database server

Contents
Introduction to running SQL Anywhere database servers ... 38
Starting the database server ... 42
Some common options .. 46
Stopping the database server .. 58
Starting and stopping databases ... 59
Running the server outside the current session .. 62
Troubleshooting server startup .. 74
Running authenticated SQL Anywhere applications ... 76
Running SQL Anywhere Web Edition applications .. 82
Error reporting in SQL Anywhere .. 83

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 37

Introduction to running SQL Anywhere database
servers

SQL Anywhere provides two versions of the database server:

● The personal database server This executable does not support client/server communications
across a network. Although the personal database server is provided for single-user, same-computer use
—for example, as an embedded database server—it is also useful for development work.

On Windows operating systems, except Windows Mobile, the name of the personal server executable is
dbeng11.exe. On Unix operating systems its name is dbeng11. Only the network server is supported on
Windows Mobile.

● The network database server This executable supports client/server communications across a
network, and is intended for multi-user use.

On Windows operating systems, including Windows Mobile, the name of the network server executable
is dbsrv11.exe. On Linux and Unix operating systems, the name is dbsrv11.

Server differences

The request-processing engine is identical in both the personal and network servers. Each one supports
exactly the same SQL, and exactly the same database features. A database created with a personal database
server can be used with a network database server and vice versa. The main differences include:

● Network protocol support Only the network server supports communications across a network.

● Number of connections The personal server has a limit of ten simultaneous connections. The limit
for the network server depends on your license. See “Server Licensing utility (dblic)” on page 813.

● Number of CPUs With per-seat licensing, the network database server uses all CPUs available on
the computer (the default). With CPU-based licensing, the network database server uses only the number
of processors you are licensed for. The number of CPUs that the network database server can use may
also be affected by your SQL Anywhere edition or the -gt server option. The personal database server
is limited to a single processor. See:

○ “Editions and licensing” [SQL Anywhere 11 - Introduction]
○ “-gt server option” on page 196

● Startup defaults To reflect their use as a personal server and a network server for many users, the
startup defaults are slightly different for each.

Network software requirements

If you are running a SQL Anywhere network server, you must have appropriate networking software installed
and running.

The SQL Anywhere network server is available for Windows, Linux, and Unix operating systems.

SQL Anywhere supports the TCP/IP network protocol.

Running the database server

38 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

First steps
You can start a personal server running a single database in several ways:

● On Windows, from the Start menu, choose Programs » SQL Anywhere 11 » SQL Anywhere »
Personal Server Sample.

● Execute the following command in the directory where demo.db is located to start both a personal server
and a database called demo.db:

dbeng11 demo
● Use a database file name in a connection string.

See “Connecting to an embedded database” on page 126.

Where to specify commands
You can specify commands in several ways, depending on your operating system:

● Run the command at a command prompt.

● Place the command in a shortcut or desktop icon.

● Run the command in a batch file.

● Include the command as a StartLine (START) connection parameter in a connection string. See
“StartLine connection parameter [START]” on page 297.

There are slight variations in how you specify the basic command from platform to platform.

Start the database server
The way you start the database server varies slightly depending on the operating system you use. This section
describes how to specify commands for the simple case of running a single database with default settings
on each supported operating system.

Notes
● Except where otherwise noted, these commands start the personal server (dbeng11). To start a network

server, replace dbeng11 with dbsrv11.

● If the database file is in the starting directory for the command, you do not need to specify path.

● If you do not specify a file extension in database-file, the extension .db is assumed.

To start the personal database server using default options (Windows except Windows
Mobile)

● Run the following command:

dbeng11 path\database-file

Introduction to running SQL Anywhere database servers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 39

If you omit the database file, the Server Startup Options window appears where you can locate a
database file by clicking Browse.

For more information about starting a database server on Windows Mobile, see “Connecting to a database
running on a Windows Mobile device” on page 336.

To start the personal database server using default options (Unix)

● Run the following command:

dbeng11 path/database-file

What else is there to it?
Although you can start a personal server in the simple way described in the previous section, there are many
other aspects to running a database server in a production environment. For example,

● You can choose from many options to specify such features as how much memory to use as cache, how
many CPUs to use (on multi-processor computers running a network database server), and which network
protocols to use (network server only). Options are one of the major ways of tuning SQL Anywhere
behavior and performance. See “The SQL Anywhere database server” on page 156.

● You can run the server as a Windows service. When you run the server as a service, the server continues
running even when you log off the computer. See “Running the server outside the current
session” on page 62.

● You can start the personal server from an application and shut it down when the application has finished
with it. This configuration is typical when using the database server as an embedded database. See
“Connecting to an embedded database” on page 126.

Running SQL Anywhere on Windows Vista
SQL Anywhere supports the Windows Vista operating system. Following are some considerations relating
to running SQL Anywhere software on Vista:

● Vista security Vista incorporates a new security model called User Account Control (UAC). UAC
is enabled by default and may affect the behavior of programs that expect to be able to write files,
especially when the computer supports more than one user. Depending on where and how files and
directories are created, a file created by one user may have permissions that do not allow another user
to read or write to that file. If you install SQL Anywhere into the default directories, then files and
directories that require read/write access for multiple users are set up appropriately.

● SQL Anywhere elevated operations agent In Vista, certain actions require privilege elevation to
execute when run under UAC. The following programs may require elevation in SQL Anywhere:

Running the database server

40 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

○ dbdsn.exe
○ dbelevate11.exe
○ dblic.exe
○ dbsvc.exe
○ installULNet.exe
○ mlasinst.exe
○ SetupVSPackage.exe
○ ulcond11.exe

The following DLLs require elevation when they are registered or unregistered:

○ dbctrs11.dll
○ dbodbc11.dll
○ dboledb11.dll
○ dboledba11.dll

On a Vista system with UAC activated, you may receive an elevation prompt for the SQL Anywhere
elevated operations agent. The prompt is issued by the Vista User Account Control system to confirm
that you want to continue running the identified program (if logged on as an administrator) or to provide
administrator credentials (if logged on as a non-administrator).

● Deployment considerations The program dbelevate11.exe is used internally by SQL Anywhere
components to perform operations that require elevated privileges. This executable must be included in
deployments of SQL Anywhere.

● ActiveSync support The Microsoft ActiveSync utility is not supported in Vista. It is replaced by
the Windows Mobile Device Center. You can use the SQL Anywhere ActiveSync Provider Installation
utility with Windows Mobile Device Center.

● SQL Anywhere executables signed SQL Anywhere executables on Vista are signed by iAnywhere
Solutions, Inc.

● Windows services Vista-compliant services are not allowed to interact with the desktop. On
Windows Vista, no SQL Anywhere services interact with the desktop (even if Allow Service To Interact
With Desktop is enabled in the service definition). SQL Anywhere database servers can be monitored
from Sybase Central or the dbconsole utility. See “SQL Anywhere Console utility
(dbconsole)” on page 827.

Sybase Central disables the option to allow services to interact with desktop when running on Windows
Vista.

● Using an AWE cache To use an AWE cache on Vista, you must run the database server as
administrator. Starting a non-elevated database server with an AWE cache results in a warning that the
database server must be run as an administrator to use AWE. See “-cw server option” on page 176.

Introduction to running SQL Anywhere database servers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 41

Starting the database server
The general form for the server command is as follows:

executable [server-options] [database-file [database-options], ...]

If you supply no options and no database file, then on Windows operating systems a window appears,
allowing you to browse to your database file.

The elements of the database server command include the following:

● Executable The personal server (dbeng11) or the network server (dbsrv11).

For more information about the executable names on different operating systems, see “Introduction to
running SQL Anywhere database servers” on page 38.

● Server options These options control the behavior of the database server for all running databases.

● Database file You can specify zero, one, or more database file names. Each of these databases starts
and remains available for applications.

Caution
The database file and the transaction log file must be located on the same physical computer as the
database server or accessed via a SAN or iSCSI configuration. Database files and transaction log files
located on a remote network directory can lead to poor performance, data corruption, and server
instability.

For more information, see http://www.sybase.com/detail?id=1034790.

For best results, the transaction log should be kept on a different disk from the database files. See “The
transaction log” on page 14.

● Database options For each database file you start, you can provide database options that control
certain aspects of its behavior. See “The SQL Anywhere database server” on page 156.

Case sensitivity
Database and server options are generally case sensitive. You should enter all options in lowercase.

Listing available options
To list the database server options

● Run the following command:

dbeng11 -?

Running the database server

42 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1034790

Logging database server actions
The database server message log contains informational messages, errors, warnings, and messages from
the MESSAGE statement. Logging the actions that the server takes during the development process and
when troubleshooting is useful.

These messages can appear in the following locations:

● the database server messages window (a system tray icon on Windows)
● the Sybase Central Server Messages And Executed SQL pane
● the SQL Anywhere Console utility
● the database server message log file
● a command prompt window or shell when running the database server as a command line application
● the Unix Syslog

See also
● “-o server option” on page 208
● “-oe server option” on page 208
● “-on server option” on page 209
● “-os server option” on page 210
● “-ot server option” on page 210

Logging database server messages to a file
By default, database server messages are sent to the database server messages window. In addition, you can
send the output to a log file using the -o option. The following command sends output to a log file named
mydbserver_messages.txt:

dbsrv11 -o mydbserver_messages.txt -c ...

You can control the size of the database server message log file, and specify what you want done when a
file reaches its maximum size:

● Use the -o option to specify that a database server message log file should be used and to provide a name.

● Use the -ot option to specify that a database server message log file should be used and provide a name
when you want the previous contents of the file to be deleted before messages are sent to it.

● In addition to -o or -ot, use the -on option to specify the size at which the database server message log
file is renamed with the extension .old and a new file is started with the original name.

● In addition to -o or -ot, use the -os option to specify the size at which a new database server message log
file is started with a new name based on the date and a sequential number.

You can specify a separate file where startup errors, fatal errors, and assertions are logged using the -oe
option.

It is recommended that you do not end the database server message log file name with .log because this can
create problems for utilities that perform operations using the transaction log.

Starting the database server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 43

See also
● “-o server option” on page 208
● “-oe server option” on page 208
● “-on server option” on page 209
● “-os server option” on page 210
● “-ot server option” on page 210

Logging SQL statements in Sybase Central
As you work with a database in Sybase Central, the application automatically generates SQL statements
depending on your actions. You can keep track of these statements in a separate pane, called Server Messages
And Executed SQL, or save the information to a file. The Server Messages And Executed SQL pane has
a tab for each database and database server. The tab for database servers contains the same information as
the database server messages window.

When you work with Interactive SQL, you can also log statements that you execute. See “Logging
commands” on page 687.

To log SQL statements generated by Sybase Central

1. Choose View » Server Messages And Executed SQL.

2. In the Server Messages And Executed SQL pane, click the tab with the database icon.

3. Right-click and choose Options.

4. Edit the logging options.

5. Click Save.

6. Choose a location to save the file and click OK.

7. Click OK.

Suppressing Windows event log messages
You can suppress Windows event log entries by setting a registry entry. The registry entry is Software\Sybase
\SQL Anywhere\11.0. This entry can be placed in either the HKEY_CURRENT_USER or
HKEY_LOCAL_MACHINE hive.

To control event log entries, set the EventLogMask key, which is of type REG_DWORD. The value is a bit
mask containing the internal bit values for the different types of event messages:

errors EVENTLOG_ERROR_TYPE 0x0001
warnings EVENTLOG_WARNING_TYPE 0x0002
information EVENTLOG_INFORMATION_TYPE 0x0004

For example, if the EventLogMask key is set to 0, no messages appear. When you set this key to 1,
informational and warning messages do not appear, but errors do. The default setting (no entry present) is
for all message types to appear.

Running the database server

44 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

When changing the setting of the EventLogMask key, you must restart the database server for the change
to take effect.

See also
● “Network protocol options” on page 301

Starting the database server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 45

Some common options
Some of the most commonly used options control the following settings:

● Using configuration files
● Naming the server and the databases
● Performance
● Permissions
● Maximum page size
● Special modes
● Threading
● Network communications (network server only)

Using configuration files to store server startup options
If you use an extensive set of options, you can store them in a configuration file and invoke that file in a
server command. The configuration file can contain options on several lines. For example, the following
configuration file starts the personal database server and the sample database. It sets a cache of 10 MB, and
names this instance of the personal server Elora. Lines with # as the first character in the line are treated as
comments.

Configuration file for server Elora
-n Elora
-c 10M
samples-dir\demo.db

In the example, samples-dir is the name of your SQL Anywhere samples directory. On Unix, you would use
a forward slash instead of the backslash in the file path.

For information about samples-dir, see “Samples directory” on page 390.

If you name the file sample.cfg, you could use these options as follows:

dbeng11 @sample.cfg

See also
● “@data server option” on page 165
● “Using configuration files” on page 737
● “Using conditional parsing in configuration files” on page 738

Naming the server and the databases
You can use -n as a server option (to name the server) or as a database option (to name the database).

The server and database names are among the connection parameters that client applications may use when
connecting to a database. The server name appears on the desktop icon and in the title bar of the database
server messages window.

Running the database server

46 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Naming the server
Providing a database server name helps avoid conflicts with other server names on your network. It also
provides a meaningful name for users of client applications. The server keeps its name for its lifetime (until
it is shut down). If you don't provide a server name, the server is given the name of the first database started.

You can name the server by supplying a -n option before the first database file. For example, the following
command starts a server on the sample database and gives the server the name Cambridge:

dbeng11 -n Cambridge samples-dir\demo.db

If you supply a server name, you can start a database server without starting a database. The following
command starts a server named Galt with no database started:

dbeng11 -n Galt

The maximum length of the server name is 250 bytes.

For more information about starting databases on a running server, see “Starting and stopping
databases” on page 59.

Note
On Windows and Unix, version 9.0.2 and earlier clients cannot connect to version 10.0.0 and later database
servers with names longer than the following lengths:

● 40 bytes for Windows shared memory
● 31 bytes for Unix shared memory
● 40 bytes for TCP/IP

Naming databases
You may want to provide a meaningful database name for users of client applications. The database is
identified by that name until it is stopped. The maximum length for database names is 250 bytes.

If you don't provide a database name, the default name is the root of the database file name (the file name
without the .db extension). For example, in the following command the first database is named mydata, and
the second is named mysales.

dbeng11 c:\mydata.db c:\sales\mysales.db

You can name databases by supplying a -n option following the database file. For example, the following
command starts the sample database and names it MyDB:

dbeng11 samples-dir\demo.db -n MyDB

Case sensitivity
Server names and database names are case insensitive as long as the character set is single-byte. See
“Connection strings and character sets” on page 410.

Some common options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 47

Controlling performance and memory from the command
line

Several options can have a major impact on database server performance, including:

● Cache size The amount of cache memory available to the database server can be a key factor in
affecting performance. The database server takes an initial amount of cache memory that is either
specified by the -c option or is a default value.

The -c option controls the amount of memory that SQL Anywhere uses as a cache.

Generally speaking, the more memory made available to the database server, the faster it performs. The
cache holds information that may be required more than once. Accessing information in cache is many
times faster than accessing it from disk. The default initial cache size is computed based on the amount
of physical memory, the operating system, and the size of the database files. On Windows and Unix
operating systems, the database server automatically grows the cache when the available cache is
exhausted.

The database server messages window displays the size of the cache at startup, and you can use the
following statement to obtain the current size of the cache:

SELECT PROPERTY('CacheSize');

For more information about performance tuning, see “Improving database performance” [SQL Anywhere
Server - SQL Usage].

For more information about controlling cache size, see “-c server option” on page 167.

On Windows and Unix, the database server automatically takes more memory for use in the cache as
needed, as determined by a heuristic algorithm. See “Using the cache to improve performance” [SQL
Anywhere Server - SQL Usage].

You can use database options to configure the upper cache limit. See “-ch server option” on page 170.

As well, you can force the cache to remain at its initial amount. See “-ca server option” on page 169.

● Multiprogramming level The database server's multiprogramming level is the maximum number of
server tasks that can execute concurrently. In general, a higher multiprogramming level increases the
overall throughput of the server by permitting more requests to execute simultaneously. However, if the
requests compete for the same resources, increasing the multiprogramming level can lead to additional
contention and actually increase transaction response time.

In some cases, increasing the multiprogramming level can even lower the system's throughput. You can
set the server's multiprogramming level with the -gn option. See “-gn server option” on page 193 and
“Setting the database server's multiprogramming level” on page 53.

● Number of processors If you are running on a multi-processor computer using a network database
server, you can set the number of processors with the -gt option. See “-gt server option” on page 196
and “Threading in SQL Anywhere” on page 50.

The number of CPUs that the database server can use may also be affected by your license or SQL
Anywhere edition. See “Editions and licensing” [SQL Anywhere 11 - Introduction].

Running the database server

48 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Other performance-related options There are several options available for tuning network
performance, including -gb (database process priority), and -u (buffered disk I/O). See “The SQL
Anywhere database server” on page 156.

Controlling permissions from the command line
Some options control the permissions required to perform certain global operations, including permissions
to start and stop databases, load and unload data, and create and delete database files. See “Running the
database server in a secure fashion” on page 1081.

Setting a maximum page size
The database server cache is arranged in pages—fixed-size areas of memory. Since the server uses a single
cache for its lifetime (until it is shut down), all pages must have the same size.

A database file is also arranged in pages, with a size that is specified on the command line. Every database
page must fit into a cache page. By default, the server page size is the same as the largest page size of the
databases on the command line. Once the server starts, you cannot start a database with a larger page size
than the server.

To allow databases with larger page sizes to be started after startup, you can force the server to start with a
specified page size using the -gp option. If you use larger page sizes, remember to increase your cache size.
A cache of the same size accommodates only a fraction of the number of the larger pages, leaving less
flexibility in arranging the space.

The following command starts a server that reserves a 64 MB cache and can accommodate databases of page
sizes up to 8192 bytes.

dbsrv11 -gp 8192 -c 64M -n myserver

Running in special modes
You can run SQL Anywhere in special modes for particular purposes.

● Read-only You can run databases in read-only mode by supplying the -r option. Databases that have
auditing turned on cannot be started in read-only mode. See “-r server option” on page 216, and “-r
database option” on page 255.

● In-memory mode You can run databases entirely in memory by specifying the -im option. When
you run in checkpoint mode only (-im c), the database server does not use a transaction log, but the
database can be recovered to the most recent checkpoint. When you run the database in never write mode
(-im nw), committed transactions are not written to the database file on disk, and all changes are lost
when you shut down the database. Using either in-memory mode, your application can still make changes
to the database or access it while the database is active. See “-im server option” on page 199.

Some common options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 49

Separately licensed component required
In-memory mode requires a separate license. See “Separately licensed components” [SQL Anywhere 11
- Introduction].

● Bulk load This is useful when loading large quantities of data into a database using the Interactive
SQL INPUT command. Do not use the -b option if you are using LOAD TABLE to bulk load data. See
“-b server option” on page 166, and “Importing and exporting data” [SQL Anywhere Server - SQL
Usage].

● Starting without a transaction log Use the -f database option for recovery—either to force the
database server to start after the transaction log has been lost, or to force the database server to start using
a transaction log it would otherwise not find. Note that -f is a database option, not a server option.

Once the recovery is complete, you should stop your server and restart without the -f option. See “-f
recovery option” on page 184.

● Operating quietly The database server supports quiet mode. You determine how quiet you want the
server to operate, ranging from suppressing messages or the icon in the system tray, to complete silence.
To operate a completely silent database server on Windows, specify the -qi, -qs, and -qw options. With
these options set, there is no visual indication that the server is running as all icons and all possible startup
error messages are suppressed. If you run the database server in quiet mode, you can use either (or both)
the -o or -oe options to diagnose errors.

Note that the -qi and -qs options do not suppress windows caused by the -v (version) and -ep (prompt
for database encryption password) server options.

Threading in SQL Anywhere
To understand the SQL Anywhere threading model, you must also understand the basic terminology and
concepts of threading and request processing:

● Request A request is a unit of work, such as a query or SQL statement, sent to the database server
over a connection. The lifetime of a request spans the time from when the request is first received by the
database server to the time that the last of the results are returned, cursors are closed, or the request is
canceled.

● Task A task is a unit of activity that is performed within the database server, and is the smallest unit
of work that is scheduled by the server. Within the database server, each user request becomes at least
one task, and possibly more if intra-query parallelism is involved. In addition to user requests, the
database server can also schedule its own tasks to perform internal housekeeping chores, such as running
the cleaner or processing timers. The maximum number of active tasks that can execute concurrently is
set by the -gn option. If more tasks arrive at the database server than can be concurrently processed, they
are queued for execution. If an active task, or a task for which processing has already begun, needs to
block for some reason during its processing, such as while waiting for a lock, or for I/O to complete, it
is still considered to be active. It therefore counts against the upper bound place by the value of the -gn
option.

● Thread A thread is an operating system construct that represents an executing thread-of-control
within an application. Every operating system process, including the database server, is executed by at

Running the database server

50 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

least one, and possibly many threads. A thread is scheduled outside the application by the operating
system, and ultimately, all of an application's execution is performed by its threads. Tasks, within a SQL
Anywhere database server, execute on an operating system thread. At startup, SQL Anywhere creates a
fixed number of threads, controlled by the -gtc option (on Windows and Linux), or the -gn option (on
Unix).

See also
● “Controlling threading behavior” on page 52
● “Parallelism during query execution” [SQL Anywhere Server - SQL Usage]
● “-gn server option” on page 193
● “-gtc server option” on page 197
● “sa_clean_database system procedure” [SQL Anywhere Server - SQL Reference]
● “Transaction blocking and deadlock” [SQL Anywhere Server - SQL Usage]

Tasks on Unix
On Unix, a task is executed directly on an operating system thread. On these platforms, the value of the -gn
option sets the number of operating system threads created when the database server starts; all tasks are
serviced from this set of threads. When a thread becomes available, it picks up the next available task that
requires processing. Once processing a task, a thread remains with that task until it has been completed. If
the task needs to block for some reason, perhaps because it is pending an I/O operation, or while waiting for
a lock, the thread voluntarily relinquishes control of the CPU back to the operating system scheduler allowing
other threads to run on that CPU.

In addition to voluntarily relinquishing the CPU, a thread may be preempted by the operating system
scheduler. Each application thread within a process is given a series of time slices in which to run, the length
of which is determined by its priority and other system factors. When a thread reaches the end of its current
time slice it is preempted by the operating system and scheduled to run again at a later time. The operating
system scheduler then chooses another thread to execute for a time slice. This preemptive scheduling does
not affect the processing of tasks in any visible way; when a thread is scheduled to run again, the task is
picked up at the point where it left off.

Once processing of the active task is completed, the thread checks to see if any other tasks have come
available for processing. If so, it picks up the next available task and continues. Otherwise, it relinquishes
the CPU and waits for a new task to arrive at the database server.

See also
● “-gn server option” on page 193

Tasks on Windows and Linux
On Windows and Linux, tasks are executed on lightweight threads known as fibers. Fibers allow tasks
running on threads to schedule amongst themselves co-operatively, rather than relying on the operating
system thread scheduler. The result is that a context switch between fibers is much less expensive than a
thread context switch as there is no interaction with the operating system kernel or scheduler. In multi-

Some common options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 51

threaded applications that otherwise do frequent thread context switching, the use of fibers can dramatically
improve performance and scalability.

Because fibers do not rely on the operating system scheduler, a fiber must explicitly yield control to another
fiber when it is waiting for some other activity to complete. For example, if a task that is executing on a fiber
needs to block while waiting for an I/O operation to complete, it will relinquish control to another fiber. The
thread hosting the original fiber is free to pick up another fiber immediately and begin its execution without
a kernel context switch. If a fiber blocks and does not yield control, it blocks the thread that is hosting it and
prevents other fibers from running on that thread. If more than one thread is hosting fibers, only the thread
that is hosting the waiting fiber is blocked: other threads are still free to run fibers.

On platforms that support fibers, there are at least as many fibers created as required by the maximum
concurrency setting of the server, as specified by the -gn option. The server may create more than this value
so there is always a fiber available to service internal server tasks. See “-gn server option” on page 193.

Controlling threading behavior
There are five main factors that control threading behavior, each of which are governed by a server option.
Not all of these options are supported on every platform.

● Multiprogramming level (-gn server option) The -gn option controls the server's
multiprogramming level. This value determines the maximum number of tasks that may be active at one
time. Each database request uses at least one task, and possibly more if intra-query parallelism is involved.
Additionally, the server will occasionally schedule tasks to perform internal housekeeping activities.
When the number of tasks in the server exceeds the multiprogramming level, the outstanding tasks must
wait until a currently-running, or active task completes. By default, a maximum of 20 tasks can execute
concurrently for the network database server and the personal database server. See “-gn server
option” on page 193, and “Setting the database server's multiprogramming level” on page 53.

● Stack size per internal execution thread (-gss server option) You can set the stack size per
internal execution thread in the server using the -gss option. The -gss option allows lowering the memory
usage of the database server, which may be useful in environments with limited memory. The only
Windows operating system that supports this option is Windows Mobile. See “-gss server
option” on page 195.

● Number of processors (-gt server option) If you have more than one processor, you can control
how many processors the threads exploit by specifying the -gt option. See “-gt server
option” on page 196.

● Processor concurrency (-gtc server option) You can specify the maximum number of threads
that can run concurrently on a CPU. By default, the database server runs on all hyperthreads and cores
of each licensed physical processors. See “-gtc server option” on page 197.

Threading tips
● Increasing -gn can reduce the chance of thread deadlock occurring. See “-gn server

option” on page 193.

● Setting -gt to 1 can help work around concurrency problems. See “-gt server option” on page 196.

Running the database server

52 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Investigating the Performance Monitor readings for Requests: Active and Requests: Unscheduled can
help you determine an appropriate value for -gn on Windows. If the number of active requests is always
less than -gn, you can lower -gn. If the number of total requests (active + unscheduled) is often larger
than -gn, then you might want to increase the value for -gn. See “Performance Monitor statistics” [SQL
Anywhere Server - SQL Usage], and “-gn server option” on page 193.

Processor use and threading example
The following example explains how the database server selects CPUs based on the settings of -gt and -gtc.
For the purpose of the following examples, assume you have a system with 4 processors, with 2 cores on
each processor. The physical processors are identified with letters, and the cores with numbers, so this system
has processing units A0, A1, B0, B1, C0, C1, D0, and D1.

Scenario Network database server settings

A single CPU license or -gt 1 specified ● -gt 1
● -gtc 2
● -gn 20

Threads can execute on A0 and A1.

No licensing restrictions on the CPU with -gtc 5
specified

● -gt 4
● -gtc 5
● -gn 20

Threads can execute on A0, A1, B0, C0, and D0.

A database server with a 3 CPU license and -gtc 5
specified

● -gt 3
● -gtc 5
● -gn 20

Threads can execute on A0, A1, B0, B1, and C0.

No licensing restrictions on the CPU with -gtc 1
specified

● -gt 4
● -gtc 1
● -gn 20

Threads can execute only on A0.

Setting the database server's multiprogramming level
The database server's multiprogramming level is the maximum number of tasks that can be active at a time,
and is controlled by the -gn server option. An active task is one that is currently being executed by a thread
(or fiber) in the database server. An active task may be executing an access plan operator, or performing
some other useful work, but may also be blocked, waiting for a resource (such as an I/O operation, or a lock
on a row). An unscheduled task is one that is ready to execute, but is waiting for an available thread or fiber.
The number of active tasks that can execute simultaneously depends on the number of database server threads
and the number of logical processors in use on the computer.

Some common options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 53

The multiprogramming level remains constant during server execution, and applies to all databases on that
server. The default is 20 active tasks for the network database server and for the personal database server,
except on Windows Mobile where the default is 3.

Raising the multiprogramming level

It can be difficult to determine when to raise or lower the multiprogramming level. For example, if a database
application makes use of Java stored procedures, or if intra-query parallelism is enabled, then the additional
server tasks created to process these requests may exceed the multiprogramming limit, and execution of
these tasks will wait until another request completes. In this case, raising the multiprogramming level may
be appropriate. Often, increases to the multiprogramming level will correspondingly increase the database
server's overall throughput, as doing so permits additional tasks (requests) to execute concurrently. However,
there are tradeoffs in raising the multiprogramming level that should be considered. They include the
following:

● Increased contention By increasing the number of concurrent tasks, you may increase the
probability of contention between active requests. The contention can involve resources such as schema
or row locks, or on data structures and/or synchronization primitives internal to the database server. Such
a situation may actually decrease server throughput.

● Additional server overhead Each active task requires the allocation and maintenance of a thread
(in the case of Windows and Linux, a lightweight thread called a fiber) and additional bookkeeping
structures to control its scheduling. In addition, each active task requires the preallocation of address
space for its execution stack. The size of the stack varies by platform, but is roughly 1 MB on 32-bit
platforms, and larger on 64-bit platforms. On Windows systems, the allocation of stack space affects the
address space of the server process, but the stack memory is allocated on demand. On Unix platforms,
including Linux, the backing memory for the stack is allocated immediately. So, setting a higher
multiprogramming level increases the server's memory footprint, and reduces the amount of memory
available for the cache because the amount of available address space is reduced.

● Thrashing The database server can reach a state when it uses significant resources simply to manage
its execution overhead, rather than doing useful work for a specific request. This state is commonly called
thrashing. Thrashing can occur, for example, when too many active requests are competing for space in
the database cache, but the cache is not large enough to accommodate the working set of database pages
used by the set of active requests. This situation can result in page stealing, in a manner similar to that
which can occur with operating systems.

● Impact on query processing The database server selects a maximum number of memory-intensive
requests that can be processed concurrently. Even if you increase the database server's multiprogramming
level, requests may need to wait for memory to become available. See “The memory governor” [SQL
Anywhere Server - SQL Usage].

● Memory for data structures The database server uses resources to parse and optimize statements.
For very complex statements or small cache sizes, the memory consumed for server data structures can
exceed the amount that is available. A memory governor limits the amount of memory used for each
task's server data structures. Each task has the following limit:

(3/4 maximum cache size) / (number of currently active tasks)

If this limit is exceeded, the statement fails with an error.

Running the database server

54 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Lowering the multiprogramming level

Reducing the database server's multiprogramming level by lowering the number of concurrently-executing
tasks usually lowers the server's throughput. However, lowering the multiprogramming level may improve
the response time of individual requests because there are fewer requests to compete for resources, and there
is a lower probability of lock contention.

In SQL Anywhere, threads (fibers) execute tasks in a cooperative fashion. Once a task has completed, the
thread (fiber) is free to pick up the next task awaiting execution. However, if a task is blocked, for example
when waiting for row lock, the thread (fiber) is also blocked.

When the multiprogramming level is set too low, thread deadlock can occur. Suppose that the database
server has n threads (fibers). Thread deadlock occurs when n-1 threads are blocked, and the last thread is
about to block. The database server's kernel cannot permit this last thread to block, since doing so would
result in all threads being blocked, and the server would hang. Rather, the database server ends the task that
is about to block the last thread with SQLSTATE 40W06.

If the multiprogramming level is at a reasonable level for the workload, the occurrence of thread deadlock
is symptomatic of an application design problem that results in substantial contention, and as a result, impairs
scalability. One example is a table that every application must modify when inserting new data to the
database. This technique is often used as part of a scheme to generate primary keys. However, the result is
that it effectively serializes all the application's insert transactions. When the rate of insert transactions
becomes higher than what the server can service because of the serialization on the shared table, thread
deadlock usually occurs.

Choosing the multiprogramming level

It is recommended that you experiment with your application's workload to analyze the effects of the server's
multiprogramming level on server throughput and request response time. Various performance counters are
available as either property functions, or through the Windows Performance Monitor on Windows, to help
you analyze database server behavior when testing your application. The performance counters related to
active and unscheduled requests are important to this analysis.

If the number of active requests is always less than the value of the -gn database server option, you can
consider lowering the multiprogramming level, but you must take into account the effects of intra-query
parallelism, which adds additional tasks to the server's execution queues. If the effect of intra-query
parallelism is marginal, lowering the multiprogramming level can be done safely without reducing overall
system throughput. However, if the number of total requests (active + unscheduled) is often larger than -gn,
then an increase in the multiprogramming level may be warranted, subject to the tradeoffs outlined above.
Note that the Performance Monitor is not available for Unix or Linux.

Selecting communications protocols
Any communication between a client application and a database server requires a communications protocol.
SQL Anywhere supports a set of communications protocols for communications across networks and for
same-computer communications.

Some common options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 55

By default, the database server starts all available protocols. You can limit the protocols available to a
database server using the -x option. On the client side, many of the same options can be controlled using the
CommLinks (LINKS) connection parameter.

For more information about running the server using these options, see “Supported network
protocols” on page 142.

Available protocols for the personal server
The personal database server (dbeng11.exe) supports the following protocols:

● Shared memory This protocol is for same-computer communications, and always remains available.
It is available on most platforms, see http://www.sybase.com/detail?id=1061806.

For same-computer communications, Shared Memory tends to provide better performance than TCP/IP.

● TCP/IP This protocol is for same-computer communications from TDS clients, Open Client, or the
jConnect JDBC driver. You must not disable TCP/IP if you want to connect from Open Client or
jConnect.

For more information about TDS clients, see “Using SQL Anywhere as an Open Server” on page 1123.

Available protocols for the network server
The network database server (dbsrv11.exe) supports the following protocols:

● Shared memory This protocol is for same-computer communications, and always remains available.
It is available on all platforms.

● TCP/IP This protocol is supported on most platforms, see http://www.sybase.com/detail?
id=1061806.

Shared memory and terminal services
When using terminal services, shared memory clients can only find database servers running in the same
terminal. If you use terminal services with a database server that is running as a service, only clients running
on the console can connect. Clients running on non-console terminals cannot connect over shared memory.
In these situations, you can use TCP/IP instead of shared memory to allow clients to connect.

For information about securing shared memory connections on Unix, see “Security tips” on page 1066.

Specifying protocols
By using the -x option, you can instruct a database server to use only some of the available network protocols.
The following command starts the sample database using the TCP/IP protocol:

dbsrv11 -x "tcpip" samples-dir\demo.db

Although not strictly required in this example, the quotes are necessary if there are spaces in any of the
arguments to -x.

You can add additional parameters to tune the behavior of the server for each protocol. For example, the
following command (typed all on one line) instructs the server to use two network cards, one with a specified
port number.

Running the database server

56 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1061806
http://www.sybase.com/detail?id=1061806
http://www.sybase.com/detail?id=1061806

dbsrv11 -x "tcpip(MyIP=192.75.209.12:2367,192.75.209.32)" samples-dir\demo.db

For more information about available network protocol options that can be used with the -x option, see
“Network protocol options” on page 301.

Some common options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 57

Stopping the database server
You can stop the database server by:

● Clicking Shut Down on the database server messages window.

● Using the dbstop utility.

The dbstop utility is useful in batch files, or for stopping a server on another computer. It requires a
connection string in its command. See “Stop Server utility (dbstop)” on page 831.

● Letting it shut down automatically by default when the application disconnects.

● Pressing Q when the database server messages window has the focus on Unix.

Example
To stop a server using the dbstop utility

1. Start a server. For example, the following command executed from the SQL Anywhere installation
directory starts a server named Ottawa using the sample database:

dbsrv11 -n Ottawa samples-dir\demo.db
2. Stop the server using dbstop:

dbstop -c "ENG=Ottawa;UID=DBA;PWD=sql"

Who can stop the server?
When you start a server, you can use the -gk option to set the level of permissions required for users to stop
the server with dbstop. For personal database servers, the default is all. The default level of permissions
required is DBA for network database servers, but you can also set the value to all or none. (However, anyone
at the computer can click Shut Down on the database server messages window.)

Shutting down operating system sessions
If you close an operating system session where a database server is running, or if you use an operating system
command to stop the database server, the server shuts down, but not cleanly. The next time the database
loads, recovery is required, and happens automatically.

For more information about recovery, see “Backup and data recovery” on page 869.

It is better to stop the database server explicitly before closing the operating system session.

Examples of commands that do not stop a server cleanly include:

● Stopping the process in the Windows Task Manager
● Using a Unix slay or kill command

Running the database server

58 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Starting and stopping databases
A database server can have more than one database loaded at a time. You can start databases and start the
server at the same time, as follows:

dbeng11 demo sample

Caution
The database file must be on the same computer as the database server. Managing a database file that is
located on a network drive can lead to file corruption.

Starting a database on a running server
You can also start databases after starting a server in one of the following ways:

● Connect to a database using a DatabaseFile (DBF) connection parameter while connected to a server.
The DatabaseFile (DBF) connection parameter specifies a database file for a new connection. The
database file is started on the current server.

See “Connecting to an embedded database” on page 126, or “DatabaseFile connection parameter
[DBF]” on page 272.

● Use the START DATABASE statement, or choose Start Database from the File menu in Sybase Central
when you have a server selected.

See “START DATABASE statement” [SQL Anywhere Server - SQL Reference].

Limitations
● The server holds database information in memory using pages of a fixed size. Once a server has been

started, you cannot start a database that has a larger page size than the server.

See “Setting a maximum page size” on page 49.

● The -gd server option decides the permissions required to start databases.

Starting a database
With both Sybase Central and Interactive SQL, you can start a database without connecting to it.

To start a database on a server without connecting (Sybase Central)

1. Select the server and then choose File » Start Database.

2. In the Start Database window, enter the required values.

The database appears under the database server as a disconnected database.

To start a database on a server without connecting (SQL)

● Execute a START DATABASE statement.

Starting and stopping databases

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 59

See “START DATABASE statement” [SQL Anywhere Server - SQL Reference].

Start the database file c:\temp\temp.db on the database server named sample.

START DATABASE 'c:\\temp\\temp.db'
AS tempdb ON 'sample'
AUTOSTOP OFF;

You must be connected to a database to start another database.

The AUTOSTOP OFF prevents the database from being stopped automatically when all connections have
been disconnected. It is used here to illustrate a point later on in the discussion.

For more details about starting a database, see “Running the database server” on page 37.

Stopping a database
You can stop a database by:

● Disconnecting from a database started by a connection string. Unless you explicitly set the AutoStop
(ASTOP) connection parameter to NO, this happens automatically.

See “AutoStop connection parameter [ASTOP]” on page 265.

● Using the STOP DATABASE statement from Interactive SQL or embedded SQL.

See “STOP DATABASE statement” [SQL Anywhere Server - SQL Reference].

With both Sybase Central and Interactive SQL, you can stop a database running on a database server. You
cannot stop a database you are currently connected to. You must first disconnect from the database, and then
stop it. You must be connected to another database on the same database server to stop a database.

For more details about stopping a database, see “Running the database server” on page 37.

To stop a database on a server after disconnecting (Sybase Central)

1. Make sure you are connected to at least one other database on the same database server. If there is no
other database running on the server, you can connect to the utility database.

2. Select the database you want to stop and choose File » Stop Database.

When disconnecting from the database, the database may disappear from the left pane. This occurs if your
connection was the only remaining connection, and if AUTOSTOP was specified when the database was
started. AUTOSTOP causes the database to be stopped automatically when the last connection disconnects.

To stop a database on a server after disconnecting (SQL)

1. If you aren't connected to any database on the server, then connect to a database such as the utility
database.

2. Execute a STOP DATABASE statement.

Running the database server

60 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
The following statements connect to the utility database and stops the tempdb database.

CONNECT to 'TestEng' DATABASE utility_db
AS conn2
USER 'DBA'
IDENTIFIED BY 'sql';
STOP DATABASE tempdb;

You must be connected to a database to stop another database.

See also
● “Connecting to the utility database” on page 31

Starting and stopping databases

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 61

Running the server outside the current session
When you log on to a computer using a user ID and a password, you establish a session. When you start a
database server, or any other application, it runs within that session. When you log off the computer, all
applications associated with the session shut down.

It is common to require database servers to be available all the time. You can run SQL Anywhere for Windows
and for Unix so that when you log off the computer, the database server remains running.

● Windows service You can run the Windows database server as a service. This configuration can be
convenient for running high availability servers. See “Understanding Windows services” on page 64.

● Unix daemon You can run the Unix database server as a daemon using the -ud option, enabling the
database server to run in the background, and to continue running after you log off. See “Running the
Unix database server as a daemon” on page 62.

● Linux service You can run the Linux database server as a service. This configuration has many
convenient properties for running high availability servers. See “Service utility (dbsvc) for
Linux” on page 816.

In addition to creating services for SQL Anywhere database servers, you can also create Windows services
for the following executables:

● SQL Anywhere Log Transfer Manager (LTM)
● SQL Remote Message Agent (dbremote)
● MobiLink server (mlsrv11)
● MobiLink synchronization client (dbmlsync)
● rshost utility (rshost)
● RSOE
● SQL Anywhere Broadcast Repeater (dbns11)
● Listener utility (dblsn)

See also
● “Service utility (dbsvc) for Windows” on page 820

Running the Unix database server as a daemon
To run the Unix database server in the background, and to enable it to run independently of the current
session, you run it as a daemon.

Running the database server

62 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Do not use '&' to run the database server in the background
If you use the Unix & (ampersand) command to run the database server in the background, it will not work
—the server will either immediately shut down or stop responding. You must instead run the database server
as a daemon.

As well, attempting to start a server in the background from within a program using the typical fork()-
exec() sequence will not work. If you need to do this, add the -ud option to the list of database server
options.

You can run the Unix database server as a daemon in one of the following ways:

1. Use the -ud option when starting the database server. For example:

dbsrv11 -ud demo
2. Use the dbspawn tool to start the database server. For example:

dbspawn dbsrv11 demo

One advantage of using dbspawn is that the dbspawn process does not shut down until it has confirmed
that the daemon has started and is ready to accept requests. If for any reason the daemon fails to start,
the exit code for dbspawn will be non-zero.

When you start the daemon directly using the -ud option, the dbeng11 and dbsrv11 commands create
the daemon process and return immediately (exiting and allowing the next command to be executed)
before the daemon initializes itself or attempts to open any of the databases specified in the command.

If you want to ensure that a daemon is running one or more applications that will use the database server,
you can use dbspawn to ensure that the daemon is running before starting the applications. The following
is an example of how to test this using a csh script.

#!/bin/csh
start the server as a daemon and ensure that it is
running before you start any applications
dbspawn dbsrv11 demo
if ($status != 0) then
 echo Failed to start demo server
 exit
endif
ok, now you can start the applications
...

This example uses an sh script to test whether the daemon is running before starting the applications.

#!/bin/sh
start the server as a daemon and ensure that it is
running before you start any applications
dbspawn dbsrv11 demo
if [$? != 0]; then
 echo Failed to start demo server
 exit
fi
ok, now you can start the applications
...

3. Spawn a daemon from within a C program, for example:

Running the server outside the current session

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 63

...
if(fork() == 0) {
 /* child process = start server daemon */
 execl("/opt/sqlanywhere11/bin/dbsrv11",
"dbsrv11", "-ud", "demo");
 exit(1);
}
/* parent process */
...

Note that the -ud option is used.

See also
● “-ud server option” on page 229
● “Start Server in Background utility (dbspawn)” on page 829

Understanding Windows services
You can run the database server like a Microsoft Windows program rather than a service. However, there
are limitations running it as a standard program and in multi-user environments.

Limitations of running as a standard executable
When you start a program, it runs under your Windows login session, which means that if you log off the
computer, the program shuts down. This configuration restricts the use of the computer if you want to keep
a program running most of the time, as is commonly the case with database servers. You must stay logged
on to the computer running the database server for the database server to keep running. This configuration
can also present a security risk as the Windows computer must be left in a logged on state.

Advantages of services
Installing an application as a Windows service enables it to run even when you log off.

When you start a service, it logs on using a special system account called LocalSystem (or another account
that you specify). Since the service is not tied to the user ID of the person starting it, the service remains
open even when the person who started it logs off. You can also configure a service to start automatically
when the Windows computer starts, before a user logs on.

Managing services
Sybase Central provides a more convenient and comprehensive way of managing SQL Anywhere services
than the Windows services manager. You can also use the dbsvc utility to create and modify services. See
“Service utility (dbsvc) for Windows” on page 820.

Running the database server

64 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Programs that can be run as Windows services
You can run the following programs as services:

● Network database server (dbsrv11.exe)
● Personal database server (dbeng11.exe)
● SQL Remote Message Agent (dbremote.exe)
● Log Transfer Manager utility (dbltm.exe)
● MobiLink server (mlsrv11.exe)
● MobiLink synchronization client (dbmlsync.exe)
● MobiLink Relay Server (rshost.exe)
● MobiLink Relay Server Outbound Enabler (rsoe.exe)
● MobiLink Listener utility (dblsn.exe)
● SQL Anywhere Broadcast Repeater utility (dbns11.exe)
● SQL Anywhere Volume Shadow Copy Service (dbvss11.exe)

Not all of these applications are supplied in all editions of SQL Anywhere.

See also
● “Creating Windows services” on page 65

Managing Windows services
You can perform the following Windows service management tasks from the command line, or on the
Services tab in Sybase Central:

● Create, edit, and delete services
● Start and stop services
● Modify the parameters governing a service
● Add databases to a service so that you can run several databases at one time

The service icons in Sybase Central display the current state of each service using an icon that indicates
whether the service is running or stopped.

Creating Windows services
This section describes how to set up services using Sybase Central and the Service utility.

To create a new service (Sybase Central)

1. In the left pane, select SQL Anywhere 11.

2. In the right pane, click the Services tab.

3. Choose File » New » Service.

4. Follow the instructions in the Create Service Wizard.

Running the server outside the current session

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 65

Tip
You can also create services for the MobiLink plug-in. See “Running the MobiLink server outside the current
session” [MobiLink - Server Administration].

To create a new service (Command line)

● Run a dbsvc command that includes the -w option.

For example, to create a personal server service called myserv where the database server runs as the
LocalSystem user, enter the following command:

dbsvc -as -w myserv "c:\Program Files\SQL Anywhere 11\bin32\dbeng11.exe"
 -n william -c 8m "c:\temp\sample.db"

See “Service utility (dbsvc) for Windows” on page 820.

Notes
● Service names must be unique within the first eight characters.

● If you choose to start a service automatically, it starts whenever the computer starts Windows. If you
choose to start the service manually, you need to start the service from Sybase Central each time. You
may want to select Disabled if you are setting up a service for future use.

● When creating a service in Sybase Central, type options for the executable, without the executable name
itself, in the window. For example, if you want a network server to run using the sample database with
a cache size of 20 MB and the name myserver, you would type the following in the Parameters text
box of the Create Service Wizard in Sybase Central:

-c 20M
-n myserver samples-dir\demo.db

Line breaks are optional.

● Choose the account under which the service will run: the special LocalSystem account or another user
ID.

For more information about this choice, see “Setting the account options” on page 69.

● If you want the service to be accessible from the Windows desktop, select Allow Service To Interact
With Desktop. If this option is cleared, no icon appears in the system tray and neither do any windows
appear on the desktop.

See “Configuring Windows services” on page 67.

Deleting Windows services
Deleting a service removes the service name from the list of services. Deleting a service does not remove
any software from your hard disk.

If you want to re-install a service you previously deleting, you need to re-type the options.

Running the database server

66 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To delete a Windows service (Sybase Central)

1. In the left pane, select SQL Anywhere 11.

In the right pane, click the Services tab.

2. In the right pane, select the service you want to remove and from the File menu, choose Delete.

To delete a Windows service (Command line)

● Run the dbsvc utility with the -d option.

For example, to delete the service called myserv, without prompting for confirmation, type the following
command:

dbsvc -y -d myserv

See also
● “Service utility (dbsvc) for Windows” on page 820

Configuring Windows services
A service runs a database server or other application with a set of options.

In addition to the options, services accept other parameters that specify the account under which the service
runs and the conditions under which it starts.

To change the parameters for a service

1. In the left pane, select SQL Anywhere 11.

2. In the right pane, select the service you want to change.

3. From the File menu, choose Properties.

4. Alter the parameters as needed on the tabs of the Service Properties window.

5. Click OK when finished.

Changes to a service configuration take effect the next time someone starts the service. The Startup option
is applied the next time Windows is started.

Setting startup options
The following options govern startup behavior for SQL Anywhere services. You can set them on the
General tab of the Service Properties window.

● Automatic If you choose the Automatic setting, the service starts whenever the Windows operating
system starts. This setting is appropriate for database servers and other applications running all the time.

Running the server outside the current session

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 67

● Manual If you choose the Manual setting, the service starts only when a user with Administrator
permissions starts it. For information about Administrator permissions, see your Windows
documentation.

● Disabled If you choose the Disabled setting, the service does not start.

Specifying options
The options for a service are the same as those for the executable.

Caution
The Configuration tab of the Service Properties window provides a Parameters text box for specifying
options for a service. Do not type the name of the program executable in this box.

Examples
To start a network server service with a cache size of 20 MB, named my_server running two databases, you
would type the following in the Parameters field:

-c 20M
-n my_server
c:\db_1.db
c:\db_2.db

To start a SQL Remote Message Agent service connecting to the sample database as user ID DBA, you
would type the following:

-c "UID=DBA;PWD=sql;DBN=demo"

The following figure illustrates a sample Service Properties window.

Running the database server

68 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Setting the account options
You can choose under which account the service runs. Most services run under the special LocalSystem
account, which is the default option for services. You can set the service to log on under another account by
opening the Account tab on the Service Properties window, and typing the account information.

If you choose to run the service under an account other than LocalSystem, that account must have the Log
On As A Service privilege. This privilege can be granted from the Windows User Manager application
under Advanced Privileges. The Service utility (dbsvc) also grants this privilege if it is required.

When an icon appears in the system tray
● If a service runs under LocalSystem, and Allow Service To Interact With Desktop is selected on the

Service Properties window, an icon appears on the desktop of every user logged in to Windows on the

Running the server outside the current session

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 69

computer running the service. Any user can open the application window and stop the program running
as a service.

● If a service runs under LocalSystem, and Allow Service To Interact With Desktop is cleared on the
Service Properties window, no icon appears on the desktop for any user. Only users with permissions
to change the state of services can stop the service.

● If a service runs under another account, no icon appears on the desktop. Only users with permissions to
change the state of services can stop the service.

Changing the executable file
To change the program executable file associated with a service, click the Configuration tab on the Service
Properties window and type the new path and file name in the File Name text box.

If you move an executable file to a new directory, you must modify this entry.

Adding new databases to a service
Each network server or personal server can run more than one database. If you want to run more than one
database at a time, it is recommended that you do so by attaching new databases to your existing service,
rather than by creating new services.

To add a new database to an existing service

1. From the Context dropdown list, choose SQL Anywhere 11.

2. In the right pane, click the Services tab.

3. Select the service and then from the File menu, choose Properties.

4. Click the Configuration tab.

5. Add the path and file name of the new database to the end of the list of options in the Parameters box.

6. Click OK to save the changes.

The new database starts the next time the service starts.

Databases can be started on running servers by client applications, such as Interactive SQL.

For more information about starting a database from Interactive SQL, see “START DATABASE statement”
[SQL Anywhere Server - SQL Reference].

For more information about how to implement this function in an embedded SQL application, see
“db_start_database function” [SQL Anywhere Server - Programming].

Starting a database from an application does not attach it to the service. If the service is stopped and restarted,
the additional database will not be started automatically.

Running the database server

70 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Setting the service polling frequency
Sybase Central can poll at specified intervals to check the state (started or stopped) of each service, and
update the icons to display the current state. By default, polling is off. If you leave it off, you must click
Refresh Folder to see changes to the state.

To set the Sybase Central polling frequency

1. From the Context dropdown list, choose SQL Anywhere 11.

2. In the right pane, click the Services tab.

3. Select the service and then from the File menu, choose Properties.

4. Click the Polling tab.

5. Select Enable Polling.

6. Set the polling frequency.

The frequency applies to all services, not just the one selected. The value you set in this window remains
in effect for subsequent sessions until you change it.

7. Click OK.

Starting and stopping services

To start or stop a service

1. From the Context dropdown list, choose SQL Anywhere 11.

2. In the right pane, click the Services tab.

3. Select the service and then from the File menu, choose Start or Stop.

If you start a service, it keeps running until you stop it. Closing Sybase Central or logging off does not stop
the service.

Stopping a database server service closes all connections to the database and stops the database server. For
other applications, the program shuts down.

The Windows Service Manager
You can use Sybase Central to perform all the service management for SQL Anywhere. Although you can
use the Windows Service Manager in the Control Panel for some tasks, you cannot install or configure a
SQL Anywhere service from the Windows Service Manager.

If you open the Windows Service Manager (from the Windows Control Panel), a list of services appears.
The names of the SQL Anywhere services are formed from the service name you provided when installing
the service, prefixed by SQL Anywhere. All the installed services appear together in the list.

Running the server outside the current session

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 71

Service dependencies
In some circumstances you may want to run more than one executable as a service, and these executables
may depend on each other. For example, you may want to run a server and a SQL Remote Message Agent
or Log Transfer Manager to assist in replication.

In cases such as these, the services must start in the proper order. If a SQL Remote Message Agent service
starts before the server has started, it fails because it cannot find the server.

You can prevent these problems by using service groups, which you manage from Sybase Central.

Service groups overview
You can assign each service on your system to be a member of a service group. By default, each service
belongs to a group, as listed in the following table.

Service Default group

Network server SQLANYServer

Personal server SQLANYEngine

MobiLink synchronization client SQLANYMLSync

Replication Agent SQLANYLTM

SQL Remote Message Agent SQLANYRemote

MobiLink server SQLANYMobiLink

Broadcast Repeater utility SQLANYNS

MobiLink Listener SQLANYLSN

SQL Anywhere Volume Shadow Copy Service SQLANYVSS

Before you can configure your services to ensure that they start in the correct order, you must check that
your service is a member of an appropriate group. You can check which group a service belongs to, and
change this group, from Sybase Central.

To check and change which group a service belongs to

1. From the Context dropdown list, choose SQL Anywhere 11.

2. In the right pane, click the Services tab.

3. Select the service and then from the File menu, choose Properties.

4. Click the Dependencies tab. The top text box displays the name of the group the service belongs to.

Running the database server

72 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

5. Click Change to display a list of available groups on your system.

6. Select one of the groups, or type a name for a new group.

7. Click OK to assign the service to that group.

Managing service dependencies
With Sybase Central you can specify dependencies for a service. For example:

● You can ensure that at least one member of each of a list of service groups has started before the current
service.

● You can ensure that any number of services start before the current service. For example, you may want
to ensure that a particular network server has started before a SQL Remote Message Agent that is to run
against that server starts.

To add a service or group to a list of dependencies

1. From the Context list, choose SQL Anywhere 11.

2. In the right pane, click the Services tab.

3. Select the service, and then choose File » Properties.

4. Click the Dependencies tab.

5. Click Add Services or Add Service Groups to add a service or group to the list of dependencies.

6. Select one of the services or groups from the list.

7. Click OK to add the service or group to the list of dependencies.

Running the server outside the current session

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 73

Troubleshooting server startup
This section describes some common problems that may occur when starting the database server.

Ensure that your transaction log file is valid
The server won't start if the existing transaction log is invalid. For example, during development you may
replace a database file with a new version, without deleting the transaction log at the same time. However,
doing so causes the transaction log file to be different than the database, and results in an invalid transaction
log file.

Ensure that you have enough disk space for your temporary
file

SQL Anywhere uses a temporary file to store information while running. This file is usually stored in the
directory pointed to by the SATMP environment variable, typically c:\temp.

If you do not have enough disk space available to the temporary directory, you will have problems starting
the server.

See “SATMP environment variable” on page 379.

Ensure that network communication software is running
Appropriate network communication software must be installed and running before you run the database
server. If you are running reliable network software with just one network installed, this process should be
straightforward.

For more information about network communication issues, see “Client/server
communications” on page 141.

You should confirm that other software requiring network communications is working properly before
running the database server.

If you are running under the TCP/IP protocol, you may want to confirm that ping and Telnet are working
properly. The ping and Telnet applications are provided with many TCP/IP protocol stacks.

Debugging network communications startup problems
If you are having problems establishing a connection across a network, you can use debugging options at
both the client and the server to diagnose problems. On the server, you use the -z option. The startup
information appears on the database server messages window: you can use the -o option to log the results
to an output file.

Running the database server

74 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See “-z server option” on page 239 and “-o server option” on page 208.

Make sure you are using the right sasrv.ini file
If you are having problems establishing a connection to the correct server across a network, try deleting the
sasrv.ini file. This file contains server information, including server name, protocol, and address. It is possible
that the server information in this file is overriding information you specified in the connection string.
Deleting this file causes SQL Anywhere to create a new sasrv.ini file containing the information you specify
in the connection string. The default location of sasrv.ini is %ALLUSERSPROFILE%\Application Data\SQL
Anywhere 11 on Windows and ~/.sqlanywhere11 on Unix.

If you continue to experience problems establishing a connection, you should also delete any copy of
sasrv.ini located in any of the following places:

● The bin32 or bin64 subdirectory of your SQL Anywhere installation directory (listed in the
HKEY_LOCAL_MACHINE\SOFTWARE\Sybase\SQL Anywhere\11.0\Location registry key)

● Windows directory

● Windows system directory

● Anywhere else in your path

For more information about the sasrv.ini file, see “Server name caching for faster
connections” on page 137.

Create a debug log file
You can use the LogFile connection parameter to create a debug log file. Log files can provide more details
about where a connection failure occurred, thereby helping you troubleshoot and correct the problem. See
“LogFile connection parameter [LOG]” on page 289.

Troubleshooting server startup

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 75

Running authenticated SQL Anywhere applications
The OEM Edition of SQL Anywhere is provided for Sybase OEM Partners. With the OEM Edition of SQL
Anywhere, an authenticated application can carry out any operation on the database, subject to the
permissions granted to the user ID.

Unauthenticated connections have read-only access, and can perform inserts, updates, and deletes on
temporary tables. Using unauthenticated connections allows complex reports to be created using stored
procedures, and accessed using reporting tools, such as Crystal Reports.

The authentication mechanism is independent of any application programming language or tool, and is
carried out on every connection, so you can use both authenticated connections and more restricted
unauthenticated connections in your application.

Authentication is not a security mechanism. Anyone running an unauthenticated database server against the
database can carry out any operation, subject to the usual SQL permissions scheme.

Developing an authenticated application
Developing an authenticated application is a simple process: a special authentication signature is
incorporated into the database, and a second signature is incorporated into your application. When the
application connects to the database, the signatures are compared to authenticate the application. The
following steps are required to develop an authenticated SQL Anywhere application:

1. “Obtaining authentication signatures” on page 76

2. “Authenticating your database” on page 77

3. “Authenticating your application” on page 78

All the database tools included with SQL Anywhere, including Sybase Central, Interactive SQL, and the
utilities, such as dbbackup, are self-authenticating. They are unrestricted in their operations against any
authenticated database. If the database itself is not authenticated, the tools act in a restricted, read-only
fashion.

You must use the OEM Edition of the SQL Anywhere database server for an authenticated application. This
edition differs from the usual database server only in that it processes authentication instructions. The
authentication instructions are ignored by other editions of the database server. If you do not use the
authenticated database server, no restrictions are placed on unauthenticated applications.

Obtaining authentication signatures

Note
To get an authentication signature, you must have an OEM contract with Sybase iAnywhere.

Running the database server

76 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To obtain your authentication signature

1. Go to http://www.sybase.com/sql_anywhere_authentication_registration.

2. Complete the form to obtain your authentication signatures. The following information is incorporated
into your authentication mechanism:

● Company The name of your company.

● Application Name The name of your application.

For information about how the company name and application name are incorporated into the authentication
mechanism, see “Authenticating your database” on page 77.

Once you complete the form, you will be emailed a database signature and an application signature within
48 hours. These signatures are long (81 character) strings of characters and digits. The email message
containing your authentication information includes some examples of how to use the information. Some
email systems force line breaks in these instructions. Make sure you rejoin lines broken in the email message
for the instructions to work.

Authenticating your database
The OEM Edition of SQL Anywhere does not permit any operations to be carried out on an unauthenticated
database.

You can use the Authenticated database property to determine if the database has been authenticated:

SELECT DB_PROPERTY ('Authenticated');

For more information about database properties, see “Database properties” on page 639.

To authenticate a database

1. Set the database_authentication option for the database, using the following SQL authentication
statement:

SET OPTION PUBLIC.database_authentication =
 'company = company-name;
 application = application-name;
 signature = database-signature';

2. The company-name and application-name arguments are the values you supplied to Sybase when
obtaining your signature, and database-signature is the database signature that you received from Sybase.

3. Restart the database for the option to take effect.

When the database server loads an authenticated database, it displays a message in the database server
messages window describing the authenticated company and application. You can check that this message
is present to verify that the database_authentication option has taken effect. The message has the following
form:

This database is licensed for use with:
Application: application-name
Company: company-name

Running authenticated SQL Anywhere applications

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 77

http://www.sybase.com/sql_anywhere_authentication_registration

Tip
You can store the authentication statement in a SQL script file to avoid having to type in the long signature.
You can run the SQL script from Interactive SQL by choosing Run Script from the File menu.

If you create a file named authenticate.sql in the scripts subdirectory of your SQL Anywhere installation
directory and store the authentication statement in this file, it is applied whenever you create, rebuild, or
upgrade a database. See “Upgrading authenticated databases” on page 80.

Authenticating your application
An authenticated application must set the connection_authentication database option immediately after
connecting. The option must be set on every connection immediately after the connection is established.
ODBC or JDBC applications query the database about its capabilities, and the developer may not have control
over these actions. For this reason, every connection has a thirty second grace period before the restrictions
apply. The grace period allows an application to authenticate regardless of which development tool is being
used.

You can use the Authenticated connection property to determine if the database has been authenticated:

SELECT CONNECTION_PROPERTY ('Authenticated');

For more information about connection properties, see “Connection properties” on page 598.

The following SQL statement authenticates the connection:

SET TEMPORARY OPTION connection_authentication =
 'company = company-name;
 application = application-name;
 signature = application-signature';

The option must be set for the duration of the connection only by using the TEMPORARY keyword. The
company-name and application-name must match those in the database authentication statement. The
application-signature is the signature that you obtained from Sybase.

The database server verifies the application signature against the database signature. If the signature is
verified, the connection is authenticated and has no restrictions on its activities beyond those imposed by
the SQL permissions. If the signature is not verified, the connection is limited to those actions permitted by
unauthenticated applications.

Running the database server

78 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Executing the authentication statement
The way you execute the SET TEMPORARY OPTION statement that sets the authentication option depends
on the programming interface you are using. The signatures listed here are not valid signatures. Examples
are provided for setting the authentication option using the following interfaces:

● ODBC
● PowerBuilder
● JDBC
● ADO.NET
● Embedded SQL

Using special characters in the authentication option
If your company name has quotation marks, apostrophes, or other special characters (for example, Joe's
Garage) you need to be careful about how you construct the authentication statement. The entire set of
authentication options (Company=...;Application=...;Signature=...) is a SQL string. The rules for strings in
SQL dictate that if you include a quotation mark inside the string, it must be doubled to be accepted. For
example:

SET TEMPORARY OPTION connection_authentication=
 'Company = Joe''s Garage;
 Application = Joe''s Program;
 Signature = 0fa55157edb8e14d818e...';

ODBC
Use the following statement:

SQLExecDirect(
 hstmt,
 "SET TEMPORARY OPTION connection_authentication=
 'Company=MyCo;
 Application=MyApp;
 Signature=0fa55159999e14d818e...';",
 SQL_NTS
);

The string must be entered on a single line, or you must build it up by concatenation.

PowerBuilder
Use the following PowerScript statement:

EXECUTE IMMEDIATE
 "SET TEMPORARY OPTION connection_authentication=
 'Company=MyCo;
 Application=MyApp;
 Signature=0fa551599998e14d818e...';"
USING SQLCA

JDBC
Use the following statement:

Statement Stmt1 = con.createStatement();
Stmt1.executeUpdate(

Running authenticated SQL Anywhere applications

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 79

 "SET TEMPORARY OPTION connection_authentication=
 'Company=MyCo;
 Application=MyApp;
 Signature=0fa55159999e14d818e...';"
);

The string must be entered on a single line, or you must build it up by concatenation.

ADO.NET
Use the following statement:

SACommand cmd=new SACommand(
 "SET TEMPORARY OPTION connection_authentication=
 'Company=MyCo;
 Application=MyApp;
 Signature=0fa551599998e14d818e...';",
 con
);
cmd.ExecuteNonQuery();

The string must be entered on a single line, or you must build it up by concatenation.

Embedded SQL
Use the following statement:
EXEC SQL SET TEMPORARY OPTION connection_authentication=
 'Company=MyCo;
 Application=MyApp;
 Signature=0fa551599998e14d818e...';

The string must be entered on a single line, or you must build it up by concatenation.

When connecting to an authenticated database, the connection and authentication steps are performed
separately. However, some objects, such as the Visual Basic Grid object can attempt a separate, implicit
connection, which does not automatically include authentication. In such cases, the connection is not
authenticated and the database operation can fail. You can avoid this problem by including the InitString
connection parameter in the connection string. The following example illustrates how you can modify a
Visual Basic application to include the InitString connection parameter so that every connection is
immediately followed by authentication:

mConnectionString =
 "Provider=SAPROV.11;
 UID=DBA;
 PWD=sql;
 ENG=test11;
 InitString=SET TEMPORARY OPTION connection_authentication=
 'Company=MyCo;
 Application=MyApp;
 Signature=0fa55157edb8e14d818e...'"
mdbName.ConnectionString = mConnectionString
mdbName.Open
mIsSQL = True

Upgrading authenticated databases
The only way to preserve authentication information when upgrading or rebuilding a database is to store the
authentication statement in the file authenticate.sql.

Running the database server

80 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Upgrade utility unsupported for upgrading to version 11 or later
The Upgrade utility (dbupgrad) cannot be used to upgrade version 9.0.2 and earlier databases to version 10
or later. To upgrade older databases to version 11 or later, you must rebuild the database by performing an
unload and reload. See “Upgrading SQL Anywhere” [SQL Anywhere 11 - Changes and Upgrading].

Create a file named authenticate.sql in the install-dir\scripts directory, with the following contents:

SET OPTION PUBLIC.database_authentication = 'authentication-statement'
go

The go must appear in the file; otherwise, the statement is ignored.

For information about the content of the authentication-statement string, see “database_authentication
[database]” on page 522.

Running authenticated SQL Anywhere applications

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 81

Running SQL Anywhere Web Edition applications
SQL Anywhere Web Edition is a free version of SQL Anywhere available for the development and
deployment of web applications. SQL Anywhere Web Edition may only be used for web browser
applications, and can be run on Windows and Linux. There are no restrictions on database size, cache size,
CPUs, optimization techniques, execution strategies, or SQL language support.

Some features are not available for applications using SQL Anywhere Web Edition and require you to either
purchase them as separately licensable components, or upgrade to a paid SQL Anywhere license.

For more information about SQL Anywhere Web Edition including licensing information, feature
availability, and platform support details, see the SQL Anywhere Web Edition FAQ at http://
www.sybase.com/detail?id=1057560.

Running the database server

82 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1057560
http://www.sybase.com/detail?id=1057560

Error reporting in SQL Anywhere
When a fatal error or crash occurs and is detected by any of the following applications, an error report is
created about what was happening at the time of the problem:

● Interactive SQL (dbisql)
● MobiLink Listener (dblsn)
● MobiLink server (mlsrv11)
● network server (dbsrv11)
● personal server (dbeng11)
● QAnywhere agent (qaagent)
● Replication Agent (dbltm)
● SQL Anywhere client for MobiLink (dbmlsync)
● SQL Anywhere Console utility (dbconsole)
● SQL Remote (dbremote)
● Sybase Central

The error report includes information such as the execution state of the threads at the time of the crash, so
that iAnywhere is better able to diagnose the cause of the problem. By default, the error report is created in
the diagnostic directory (specified by the SADIAGDIR environment variable), or if this location does not
exist, it is created in the same directory as the database file.

Error report file names are composed as follows:

● a prefix that identifies the application:

Application identifier Application

LSN Listener utility

LTM Replication Agent

MLC MobiLink client

MLS MobiLink server

QAA QAnywhere agent

SA Personal or network database server

SR SQL Remote

● a value indicating the software version

● two fields linked with underscores that provide the timestamp for when the error report was created

● the application identifier

● the extension .mini_core

Error reporting in SQL Anywhere

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 83

For example, SA11_20051220_133828_32116.mini_core is an error report from a SQL Anywhere version
11 database server from 2006/06/20, at 1:38:28 pm, from process 32116.

During normal database server operation, diagnostic information is also recorded about the database server,
such as how many CPUs are on the computer, whether hyperthreading is enabled, and what options were
specified when the server was started. This information can also be submitted using dbsupport.

How SQL Anywhere software submits error reports and diagnostic information
After the database server successfully writes out error report information, it launches Support utility
(dbsupport) and passes it the name of the error report file to be submitted. By default, dbsupport attempts to
prompt you to submit an error report when it is generated, but if dbsupport is unable to prompt you, then the
report is not sent. iAnywhere encourages you to submit error reports when they occur. The report does not
contain any information that identifies the sender.

Error reports and diagnostic information are uploaded to the iAnywhere Error Reporting web site via HTTP.
This process saves you time by making it as convenient as possible to send relevant files to iAnywhere so
that it is possible to diagnose and provide solutions to problems you encounter.

You can change the default behavior of dbsupport with the -cc option:

● The following command configures dbsupport to submit error reports automatically without prompting
the user:

dbsupport -cc autosubmit
● The following command turns off automatic error report submission:

dbsupport -cc no

If you choose not to submit an error report, it remains in the diagnostic directory on your hard disk. The
location of the diagnostic directory is specified by the SADIAGDIR environment variable. See
“SADIAGDIR environment variable” on page 375.

You can view the list of error reports with the -lc option:

● The following command generate a list of all crash reports that have not been submitted to iAnywhere
Solutions:

dbsupport -lc

Submitting error reports to iAnywhere assists with diagnosing the cause of a fatal error or assertion. Once
an error report is submitted, it is deleted from the computer where it was generated. See “Support utility
(dbsupport)” on page 833.

You can manually submit the error reports with the -sc option:

● The following command submits all crash report and diagnostic information stored in the diagnostic
directory to iAnywhere Solutions:

dbsupport -sa

Running the database server

84 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere database connections

Contents
Connection parameters ... 86
Connecting with SQL Anywhere APIs ... 89
Connecting from desktop applications to a Windows Mobile database 91
Connecting from Sybase Central, Interactive SQL, or the SQL Anywhere Console
utility .. 92
Creating ODBC data sources .. 97
Connecting to a database using OLE DB .. 104
Using integrated logins .. 106
Kerberos authentication ... 114
Sample SQL Anywhere database connections ... 124
Troubleshooting connections ... 132
Disconnecting from a database ... 140

A database connection forms a channel through which all activity from the client application takes place.
Client applications cannot interact with the database server until a connection is made. When the database
server connection is made, a user’s ID determines what actions they are authorized to perform on the database
server.

When a user connects to a database, the database server assigns the user’s connection a unique connection
ID. For each new connection to the database server, the server increments the connection ID value by 1.
These connection IDs are logged in the -z server output. The connection ID can be used to filter request
logging information, identify which connection has a lock on the database, or track the total number of
connections to a server since it started and the order in which those connections were made. See “Request
logging” [SQL Anywhere Server - SQL Usage] and “How locking works” [SQL Anywhere Server - SQL
Usage].

You can use the CONNECTION_PROPERTY function to obtain a user's connection-id. See
“CONNECTION_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference].

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 85

Connection parameters
When connecting to a database, the application uses a set of connection parameters to define the connection.
Connection parameters can include the server name, the database name, and the user ID.

Connection parameters provide more than one method for completing a task. For example, you can use the
DatabaseName (DBN) connection parameter (recommended) or the DatabaseSwitches (DBS) parameter to
start an embedded database.

Each connection parameter specifies a keyword-value pair of the form parameter=value. The following
example specifies the password connection parameter for the default password:

Password=sql

Connection parameters are assembled into connection strings. In a connection string, a semicolon separates
each connection parameter:

ServerName=demo11;DatabaseName=demo

Representing connection strings
Connection string examples can be represented in the following form:

parameter1=value1
parameter2=value2
...

This is equivalent to the following connection string:

parameter1=value1;parameter2=value2

You must enter a connection string on a single line with the parameter settings separated by semicolons.

Connection parameter syntax rules
● Connection strings containing spaces You must enclose the entire connection string in double

quotes if any of the connection parameter values contain spaces.

● Boolean values Boolean (true or false) arguments are either YES, ON, 1, TRUE, Y, or T if true, or
NO, OFF, 0, FALSE, N, or F if false.

● Case sensitivity Connection parameters are case insensitive, although their values may not be (for
example, file names on Unix).

In order of precedence, you can be get the connection parameters used by the interface library from the
following places:

○ Connection string You can pass parameters explicitly in the connection string.

○ SQLCONNECT environment variable The SQLCONNECT environment variable can store
connection parameters.

○ Data sources ODBC data sources can store parameters.

SQL Anywhere database connections

86 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Character set restrictions It is recommended that the server name must be composed of the ASCII
character set in the range 1 to 127. There is no such limitation on other parameters.

● Priority The following rules govern the priority of parameters:

○ The entries in a connect string are read left to right. If the same parameter is specified more than
once, the last one in the string applies. ODBC, OLE DB, Sybase Central, Interactive SQL, and the
SQL Anywhere Console utility are exceptions to this: if the same parameter is specified more than
once, the first string applies.

○ If a string contains a data source or file data source entry, the profile is read from the configuration
file, and the entries from the file are used if they are not already set. For example, if a connection
string contains a data source name and sets some of the parameters contained in the data source
explicitly, then in case of conflict the explicit parameters are used.

● Connection string parsing If there is a problem parsing the connection string, an error is generated
that indicates which connection parameter caused the problem.

● Empty connection parameters Connection parameters that are specified with empty values are
treated as a zero length string.

See also
● “Connection parameters and network protocol options” on page 261
● “Connection strings and character sets” on page 410

Connection parameters passed as connection strings
Connection parameters are passed to the interface library as a connection string. This string consists of a
set of parameters, separated by semicolons:

parameter1=value1;parameter2=value2;...

Generally, the connection string built by an application and passed to the interface library does not correspond
directly to the way users enter information. Instead, a user may complete a window, or the application may
read connection information from an initialization file.

Many of the SQL Anywhere utilities accept a connection string as the -c option and pass the connection
string unchanged to the interface library. The following example is a typical Backup utility (dbbackup)
command line:

dbbackup -c "ENG=sample_server;DBN=demo;UID=DBA;PWD=sql" SQLAnybackup

See also
● “Resolving connection parameter conflicts” on page 87

Resolving connection parameter conflicts
To resolve connection parameter conflicts:

Connection parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 87

● Specify database files using DBF Specify a database file in the StartLine (START) parameter or
using the DatabaseFile (DBF) connection parameter (recommended).

● Specify database names using DBN Specify a database name in the StartLine (START) parameter,
the DatabaseSwitches (DBS) connection parameter, or using the DatabaseName (DBN) connection
parameter (recommended).

● Specify database server names using ENG Specify the name of the database server in the
ServerName (ENG) parameter when you autostart a database file that is not already running. This ensures
that the database connects to the intended database server.

● Use the Start parameter to specify cache size Use the StartLine (START) connection parameter
to adjust the way the DatabaseFile (DBF) connection parameter starts a database file.

For example, the following embedded database connection parameters start a database server with extra
cache:

DBF=samples-dir\demo.db
DBN=Sample
ENG=Sample Server
UID=DBA
PWD=sql
START=dbeng11 -c 8M

SQL Anywhere database connections

88 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connecting with SQL Anywhere APIs
To connect to a database, the client application must call one of the following SQL Anywhere API functions:

Interface Details

ODBC “SQL Anywhere ODBC API” [SQL Anywhere Server - Programming]

“Creating ODBC data sources” on page 97

OLE DB “Connecting to a database using OLE DB” on page 104

ADO.NET “Connecting to a database” [SQL Anywhere Server - Programming]

Embedded
SQL

“SQL Anywhere embedded SQL” [SQL Anywhere Server - Programming]

Sybase Open
Client

“Using SQL Anywhere as an Open Server” on page 1123

“Sybase Open Client API” [SQL Anywhere Server - Programming]

iAnywhere
JDBC driver

“Connecting from a JDBC client application” [SQL Anywhere Server - Programming]

“SQL Anywhere JDBC driver” [SQL Anywhere Server - Programming]

jConnect
JDBC driver

“Connecting from a JDBC client application” [SQL Anywhere Server - Programming]

“SQL Anywhere JDBC driver” [SQL Anywhere Server - Programming]

The SQL Anywhere API uses connection information included in the call from the client application to
locate and connect to the database server. Information sent by the client application can include information
held in a data source, the SQLCONNECT environment variable, or the server address cache. The following
figure is a simplified representation of the process.

Connecting with SQL Anywhere APIs

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 89

Additional information

If you want ... Consider reading ...

An overview of connecting from Sybase Central or
Interactive SQL (including a description of the drivers
involved)

“Connecting from Sybase Central, Interactive
SQL, or the SQL Anywhere Console utili-
ty” on page 92

Some examples to get started quickly, including Syb-
ase Central and Interactive SQL scenarios

“Sample SQL Anywhere database connec-
tions” on page 124

To learn about data sources “Creating ODBC data sources” on page 97

To learn what connection parameters are available “Connection parameters” on page 262

To see an in-depth description of how connections are
established

“Troubleshooting connections” on page 132

To learn about network-specific connection issues “Client/server communications” on page 141

To learn about character set issues affecting connec-
tions

“Connection strings and character
sets” on page 410

To learn about connecting through a firewall “Connecting across a firewall” on page 144

SQL Anywhere database connections

90 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connecting from desktop applications to a Windows
Mobile database

You can connect from applications running on a desktop PC, such as Sybase Central or Interactive SQL, to
a database server running on a Windows Mobile device. The connection uses TCP/IP over the ActiveSync
link between the desktop computer and the Windows Mobile device.

See also
● “Start a database server on your Windows Mobile device” on page 336
● “Create an ODBC data source to connect to your Windows Mobile device” on page 337
● “Determine the IP address of your Windows Mobile device” on page 336

Connecting from desktop applications to a Windows Mobile database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 91

Connecting from Sybase Central, Interactive SQL, or
the SQL Anywhere Console utility

This section provides procedures for using the Connect window. In Sybase Central, Interactive SQL, and
the SQL Anywhere Console utility, you use the Connect window to define the database server connection
parameters.

See also
● “Sample SQL Anywhere database connections” on page 124

Working with the Connect window
When connecting to a server or database from Sybase Central, Interactive SQL, or the SQL Anywhere
Console utility, you use the Connect window to define the connection parameters. Information you enter in
the Connect window is not preserved between sessions.

The connection parameters you specify in the Connect window are dependent on the number of databases
running on the database server. To connect to a single database, you complete the User ID and Password
fields. If there are multiple databases running on the database server, you must specify additional connection
parameters such as the server or database name.

The Connect window includes:

● An Identification tab. Use this tab to specify your user name, password, and the data source.

● A Database tab. Use this tab to identify the server or database to connect to.

● An Advanced tab. Use this tab to specify additional connection parameters and a driver for the
connection.

The Connect window has a Connect Assistant to help you connect to a database. To display or hide the
Connect Assistant, click the arrow in the top right corner of the window.

SQL Anywhere database connections

92 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Click Tools to access the following tools:

● The Test Connection tool tests your connection before exiting the Connect window.

● The Copy Connection String To Clipboard tool creates a connection string from the options you
specified in the Connect window and copies the string into your clipboard.

● The Save As ODBC Data Source tool lets you quickly create an ODBC data source from the specified
options.

After successfully connecting to the database, the database name appears in the Folders pane of Sybase
Central, below the name of the database server it is running on. The user ID for the connection appears after
the database name.

In Interactive SQL, the database name, user ID, and the database server name appear in the title bar.

Open the Connect window
When you start Sybase Central, you need to open the Connect window manually.

When you start Interactive SQL, the Connect window automatically appears. To open it manually, choose
SQL » Connect.

To open the Connect window (Sybase Central)

● In Sybase Central, choose Connections » Connect With SQL Anywhere 11. Or, press F11 to open the
Connections menu.

Connecting from Sybase Central, Interactive SQL, or the SQL Anywhere Console utility

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 93

Tip
You can make subsequent connections to a given database easier and faster using a connection profile.

To open the Connect window (Interactive SQL)

1. In Interactive SQL, choose SQL » Connect.

Alternatively, you can press F11 to open the Connect window.

2. Specify the connection parameters for the database. For example, to connect to the sample database:

● Click the Identification tab.

● Click ODBC Data Source Name, and choose SQL Anywhere 11 Demo.

● Click OK.

To open the Connect window (SQL Anywhere Console utility)

● Run the following command:

dbconsole

Sybase Central connection profiles
When you first connect to a database server or database, you enter a user ID, password, and other connection
parameters. This information must be entered again when you make subsequent connections. To save time
and simplify the connection process, you can create a connection profile to save the connection parameters
for each database.

To use and manage connection profiles, choose Connections » Connection Profiles. This command opens
the Connection Profiles window, where you can:

● connect using a connection profile

● edit an existing connection profile

● create a new connection profile

● set a description for a profile

● delete or remove profiles

● import or export a connection profile

● set a profile to connect automatically when Sybase Central is started

Note
Connection profiles are specific to Sybase Central. If you are building an ODBC application, you can use
ODBC data sources to achieve functionality similar to connection profiles. See “Creating ODBC data
sources” on page 97.

SQL Anywhere database connections

94 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Create a connection profile

To create a new connection profile

1. In Sybase Central, choose Connections » Connection Profiles.

2. Click New.

3. In the Name field, type a name for the new profile.

4. Select New Connection Profile and choose the appropriate plug-in from the list. The plug-in is the
product, such as SQL Anywhere 11 or MobiLink 11.

To base your new connection profile on an existing profile, select Copy Connection Profile and choose
the profile from the Existing Connection Profiles list.

5. To allow other users to access the profile, select Share This Connection Profile With Other Users.
This setting is useful on multi-user platforms such as Unix.

6. Click OK.

7. In the Edit Connection Profile window, enter the required values, and then click OK to close the
window.

To connect automatically when Sybase Central starts

1. In Sybase Central, choose Connections » Connection Profiles.

2. In the Connection Profiles list, select a connection profile.

3. Click Set Startup to change the Use On Startup column from No to Yes.

Edit a connection profile

To edit the parameters of an existing connection profile

1. In Sybase Central, choose Connections » Connection Profiles.

2. In the Connection Profiles list, select a connection profile.

3. Click Edit.

4. In the Edit Connection Profile window, edit the values.

Import a connection profile

To import a connection profile

1. In Sybase Central, choose Connections » Connection Profiles.

Connecting from Sybase Central, Interactive SQL, or the SQL Anywhere Console utility

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 95

2. Click Import.

3. In the File Name field, type the name of the connection profile file you want to import.

4. Click OK.

Export a connection profile

To export a connection profile

1. In Sybase Central, choose Connections » Connection Profiles.

2. In the Connection Profiles list, select a connection profile.

3. Click Export.

4. In the File Name field, type a file name for the connection profile.

5. Click Save.

SQL Anywhere database connections

96 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Creating ODBC data sources
Microsoft Open Database Connectivity (ODBC) is a standard application programming interface for
connecting client applications to Windows-based database management systems.

Many client applications, including application development systems, use the ODBC interface to access
SQL Anywhere. When connecting to the database, ODBC applications typically use ODBC data sources.
An ODBC data source is a set of connection parameters, stored in the registry or in a file.

Caution
Storing user IDs, encrypted or unencrypted passwords, and database keys in a data source is not
recommended.

The SQL Anywhere ODBC driver is named dbodbc11.dll, and it is located in install-dir\bin32.

For more information about using SQL Anywhere with ODBC, see “ODBC conformance” [SQL Anywhere
Server - Programming].

You can use ODBC data sources to connect to SQL Anywhere databases from the following applications:

● Sybase Central, Interactive SQL, and the SQL Anywhere Console utility.

● All SQL Anywhere utilities.

● PowerDesigner Physical Data Model and InfoMaker.

● Any application development environment that supports ODBC, such as Microsoft Visual Basic, Sybase
PowerBuilder, and Borland Delphi.

● SQL Anywhere client applications on Unix. On Unix, the data source is stored as a file.

Storing SQL Anywhere connection parameters
You use an ODBC data source to connect to an ODBC database. The client computer requires an ODBC
data source for each database connection.

The ODBC data source contains a set of connection parameters. You can store sets of SQL Anywhere
connection parameters as an ODBC data source, in either the Windows registry or as files.

For SQL Anywhere, the use of ODBC data sources goes beyond Windows applications using the ODBC
interface:

● SQL Anywhere client applications on Unix and Windows operating systems can use ODBC data sources.

● ODBC data sources can be used by all SQL Anywhere client interfaces except jConnect and Open Client.
The data source is stored in a file on Unix and Windows Mobile operating systems.

If you have a data source, your connection string can name the data source to use:

● Data source Use the DataSourceName (DSN) connection parameter to reference a data source in the
Windows registry:

Creating ODBC data sources

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 97

DSN=my-data-source
● File data source Use the FileDataSourceName (FILEDSN) connection parameter to reference a data

source held in a file:

FileDSN=mysource.dsn

Note
When creating a connection string, it can contain the name of an ODBC data source that contains connection
parameters, and connection parameters that are specified explicitly. If a connection parameter is specified
in the connection string and in the ODBC data source, the value that is specified explicitly takes precedence.

Create ODBC data sources using the Connect window
Use the Connect window to create ODBC data sources in Sybase Central, Interactive SQL, and the SQL
Anywhere Console utility.

To create an ODBC data source using the Connect window

1. Open the Connect window. See “Open the Connect window” on page 93.

2. Specify a User ID, Password, and File Name.

3. Choose Tools » Save As ODBC Data Source.

4. In the Enter the name for this new data source field, type a name for the data source.

5. In the Select The Data Source Type list, specify whether the data source is available for the current
user or all users.

6. Click Save.

7. Click OK.

Create ODBC data sources using the ODBC Administrator
Use the Microsoft ODBC Administrator to create and edit data sources on Windows-based applications. Use
the utility to work with User Data Sources, File Data Sources, and System Data Sources.

Caution
Storing user IDs, encrypted or unencrypted passwords, and database keys in a data source is not
recommended.

To create an ODBC data source (ODBC Administrator)

1. Choose Start » Programs » SQL Anywhere 11 » ODBC Administrator.

2. To create an ODBC data source for the current user, click the User DSN tab.

SQL Anywhere database connections

98 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To create a system-wide ODBC data source, click the System DSN tab.

3. Click Add.

4. In the Name list, choose SQL Anywhere 11. Click Finish.

5. Specify the connection parameters for the ODBC data source.

6. Click OK.

7. Click OK.

Creating a System ODBC data source on 64-bit Windows
64-bit versions of Windows maintain two sets of the System Data Source collection; one for 64-bit
applications and one for 32-bit applications. To create a System Data Source that is accessible to both 64-
bit and 32-bit applications, you must run a copy of the 32-bit ODBC Administrator (located in the WINDOWS
\SysWOW64 folder). To avoid connection problems, set up your 32-bit System Data Source exactly like your
64-bit System Data Source.

To edit an ODBC data source using the ODBC Administrator

1. Choose Start » Programs » SQL Anywhere 11 » ODBC Administrator.

2. Click the User DSN tab.

3. In the Name list, click a data source.

4. Click Configure.

5. Edit the connection parameters for the ODBC data source.

6. Click OK.

7. Click OK.

Create an ODBC data source with the dbdsn utility
File Data Sources can not be created with the dbdsn utility. Use the ODBC Administrator to create File Data
Sources. System Data Sources are limited to Windows-based operating systems.

Caution
Storing user IDs, encrypted or unencrypted passwords, and database keys in a data source is not
recommended.

To create an ODBC data source (Command line)

● Run a dbdsn command, specifying the connection parameters you want to use.

For example, the following command creates a data source for the sample database. The command must
be entered on one line:

dbdsn -w "My DSN" -c "UID=DBA;PWD=sql;DBF=samples-dir\demo.db"

Creating ODBC data sources

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 99

For information about samples-dir, see “Samples directory” on page 390.

For more information about the dbdsn utility, see “Data Source utility (dbdsn)” on page 752.

Creating a System ODBC data source on 64-bit Windows
64-bit versions of Windows maintain two sets of the System Data Source collection; one for 64-bit
applications and one for 32-bit applications. To create a System Data Source that is accessible to both 64-
bit and 32-bit applications, you must run the 32-bit version of dbdsn (located in the SQL Anywhere bin32
folder). To avoid connection problems, set up your 32-bit System Data Source exactly like your 64-bit System
Data Source.

Create an ODBC data source on Mac OS X
The SQL Anywhere ODBC driver must be added before you create the ODBC data source.

Caution
Storing user IDs, encrypted or unencrypted passwords, and database keys in a data source is not
recommended.

To add the SQL Anywhere ODBC driver

1. Launch the ODBC Administrator from /Applications/Utilities.

2. Select the Drivers tab.

3. Click Add.

4. In the Description field, type SQL Anywhere 11.

5. Click Choose and select the SQL Anywhere ODBC driver in both the Driver File Name and Setup File
Name fields. By default, it is located in /Applications/SQLAnywhere11/System/lib/dbodbc11_r.bundle.

The _r in the bundle name indicates that it is the threaded version of the driver. There is also an unthreaded
version (dbodbc11.bundle) for use with unthreaded applications.

6. Click OK.

To create an ODBC data source

You can add the information with a text editor. The ODBC configuration files are located in /Library/
ODBC within your home directory. There is an odbcinst.ini file for driver information and an odbc.ini file
for data source information.

You can also use the Data Source utility (dbdsn) to create ODBC data sources on Mac OS X. See “Data
Source utility (dbdsn)” on page 752.

1. Launch the ODBC Administrator from /Applications/Utilities.

2. In the ODBC Administrator, click the User DSN tab, and then click Add.

3. In the Name list, click SQL Anywhere 11.

SQL Anywhere database connections

100 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

4. Click Finish.

5. In the Data Source Name field, type Demo11.

6. Add the following connection parameters. The connection parameters and values are case insensitive.

Keyword Value

User ID DBA

Password sql

Start Line dbeng11

Database File /Applications/SQLAnywhere11/System/demo.db

ThreadManager ON

Driver SQL Anywhere 11

For more information about connection parameters, see “Connection parameters and network protocol
options” on page 261.

7. Click OK.

8. Click Apply.

9. Press Command+Q to exit the ODBC Administrator.

Using file data sources on Windows
Generally, on Windows-based operating systems, ODBC data sources are stored in the system registry. File
data sources are an alternative, which are stored as files. In Windows, file data sources typically have the
extension .dsn. They consist of sections, each section starting with a name enclosed in square brackets.

To connect using a File Data Source, use the FileDataSourceName (FILEDSN) connection parameter. You
can not use both DataSourceName (DSN) and FileDataSourceName (FILEDSN) in the same connection.

File data sources can be distributed
Use File Data Sources to distribute the file to users and simplify the management of multiple user
connections. If the file is placed in the default location for file data sources, it is picked up automatically by
ODBC.

To create an ODBC file data source (ODBC Administrator)

1. Choose Start » Programs » SQL Anywhere 11 » ODBC Administrator.

2. Click the File DSN tab.

3. Click Add.

Creating ODBC data sources

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 101

4. In the Name list, click SQL Anywhere 11.

5. Click Next.

6. Follow the instructions in the Create New Data Source Wizard.

Using ODBC data sources on Windows Mobile
Windows Mobile does not provide an ODBC driver manager or an ODBC Administrator. On Windows
Mobile, SQL Anywhere uses ODBC data sources stored in files. To use these data source definitions, use
either the DSN or the FILEDSN keyword; on Windows Mobile DSN and FILEDSN are synonyms.

Caution
Storing user IDs, encrypted or unencrypted passwords, and database keys in a data source is not
recommended.

Data source location
Windows Mobile searches for the data source files in the root directory of the device: \filename.dsn.

Each data source is held in a file. The file has the same name as the data source, with an extension of .dsn.

See also
● “Using file data sources on Windows” on page 101

A sample Windows Mobile data source
The following is a sample of an ODBC data source for Windows Mobile.

[ODBC]
DRIVER=\windows\dbodbc11.dll
UID=DBA
PWD=sql
Integrated=No
AutoStop=Yes
ServerName=SalesDB_remote
LINKS=tcpip(host=192.168.0.55;port=2638;dobroadcast=none)
LOG=\sa_connection.txt
START=dbsrv11 -c 8M

See also
● “Create an ODBC data source to connect to your Windows Mobile device” on page 337

Using ODBC data sources on Unix
On Unix operating systems, ODBC data sources are held in a system information file. This file may or may
not be named .odbc.ini. The following locations are searched, in order, for the system information file:

● The ODBCINI environment variable.

SQL Anywhere database connections

102 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● The ODBC_INI environment variable.

● The ODBCHOME environment variable.

● The HOME environment variable.

● The user's home directory (~).

● The PATH environment variable.

Note
The ODBCINI and ODBC_INI environment variables point to the system information file (which may or
may not be named .odbc.ini), while the ODBCHOME and HOME environment variables point to a path
where the .odbc.ini file is located.

Both ODBCINI and ODBC_INI specify a full path, including the file name. If the system information file
is located in a directory specified by ODBCINI or ODBC_INI, it does not have to be named .odbc.ini.

The following is a sample system information file:

[My Data Source]
ENG=myserver
CommLinks=tcpip(Host=hostname)
UID=DBA
PWD=sql

You can enter any connection parameter in the system information file. See “Connection
parameters” on page 262.

Network protocol options are added as part of the CommLinks (LINKS) parameter. See “Network protocol
options” on page 301.

Caution
Storing user IDs, encrypted or unencrypted passwords, and database keys in a data source is not
recommended.

On Unix, use the dbdsn utility to create and manage ODBC data sources.

Caution
On Unix, do not add simple encryption to the system information file (named .odbc.ini by default) with the
File Hiding utility (dbfhide) unless you are using only SQL Anywhere data sources. If you plan to use other
data sources (for example, for MobiLink synchronization), then obfuscating the contents of the system
information file may prevent other drivers from functioning properly.

See also
● “Creating ODBC data sources” on page 97
● “Data Source utility (dbdsn)” on page 752
● “ODBCHOME environment variable [Unix]” on page 371
● “ODBCINI and ODBC_INI environment variables [Unix]” on page 372

Creating ODBC data sources

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 103

Connecting to a database using OLE DB
This section describes how to connect to a SQL Anywhere database using OLE DB in the following
environments:

● Microsoft ActiveX Data Objects (ADO) provides a programming interface for OLE DB data sources.
You can access SQL Anywhere from programming tools such as Microsoft Visual Basic.

● Sybase PowerBuilder can access OLE DB data sources, and you can use SQL Anywhere as a
PowerBuilder OLE DB database profile.

OLE DB uses the Component Object Model (COM) to make data from a variety of sources available to
applications. Relational databases are among the classes of data sources that you can access through OLE
DB.

See also
● “Introduction to OLE DB” [SQL Anywhere Server - Programming]

OLE DB providers
An OLE DB provider is required for each type of data source you want to access. Each OLE DB
provider is a dynamic-link library. To access SQL Anywhere, choose one of the following OLE DB
providers:

● Sybase SQL Anywhere OLE DB provider The SQL Anywhere OLE DB provider provides access
to SQL Anywhere as an OLE DB data source without the need for ODBC components. The short name
for this provider is SAOLEDB.

The SAOLEDB provider is self registering. This registration process includes making registry entries in
the COM section of the registry so that ADO can locate the DLL when the SAOLEDB provider is called.
If you change the location of your DLL, you must re-register it.

● Microsoft OLE DB provider for ODBC Microsoft provides an OLE DB provider with a short name
of MSDASQL.

The MSDASQL provider makes ODBC data sources appear as OLE DB data sources. It requires the
SQL Anywhere ODBC driver.

See also
● “Introduction to OLE DB” [SQL Anywhere Server - Programming]

Connecting from ADO
ADO is an object-oriented programming interface. In ADO, the Connection object represents a unique
session with a data source.

You can use the following Connection object features to initiate a connection:

SQL Anywhere database connections

104 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● The Provider property that holds the name of the provider. If you do not supply a Provider name, ADO
uses the MSDASQL provider.

● The ConnectionString property that holds a connection string. This property holds a SQL Anywhere
connection string, which is used in the same way as the ODBC driver. You can supply ODBC data source
names, or explicit UserID, Password, DatabaseName, and other parameters, just as in other connection
strings.

● The Open method initiates a connection.

Example
The following Visual Basic code initiates an OLE DB connection to SQL Anywhere:

' Declare the connection object
Dim myConn as New ADODB.Connection
myConn.Provider = "SAOLEDB"
myConn.ConnectionString = "DSN=SQL Anywhere 11 Demo"
myConn.Open

See also
● “ADO programming with SQL Anywhere” [SQL Anywhere Server - Programming]

Connecting to a database using OLE DB

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 105

Using integrated logins
The integrated login feature allows you to maintain a single user ID and password for operating system and
network logins, and database connections. To create an integrated login:

● Enable the integrated login feature.

● Create a database user to map the integrated login to (if one does not already exist).

● Create an integrated login mapping between a Windows user or group profile and an existing database
user. The Login Mappings folder in Sybase Central lists all users with integrated login permissions.

● Connect from a client application and test the integrated login facility.

Supported operating systems
Integrated login capabilities are available for Windows-based database servers. Windows clients can use
integrated logins to connect to a network server running on Windows.

Integrated login benefits
An integrated login is a mapping from one or more Windows users or Windows user group profiles to an
existing database user. A user who has successfully navigated the security for that user profile or group and
logged in to a computer can connect to a database without providing an additional user ID or password.

To do this, the database must be configured to use integrated logins and a mapping must have been granted
between the user or group profile used to log in to the computer or network, and a database user.

Using an integrated login is more convenient for the user and permits a single security system for database
and network security. The advantages of an integrated login include:

● Users do not need to type a user ID or password.

● Users are authenticated by the operating system. A single system is used for database security and
computer or network security.

● Multiple user or group profiles can be mapped to a single database user ID.

● The name and password used to login to the Windows computer do not have to match the database user
ID and password.

Caution
Integrated logins offer the convenience of a single security system, but there are important security
implications that database administrators should be familiar with. See “Security concerns: Unrestricted
database access” on page 112 and “Security concerns: Copied database files” on page 123.

SQL Anywhere database connections

106 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Enable the integrated login feature
The login_mode database option determines whether the integrated login feature is enabled. As database
options apply only to the database in which they are found, different databases can have a different integrated
login setting even if they are loaded and running on the same server.

The login_mode database option accepts the following values:

● Standard Standard logins are permitted. This is the default setting. Standard connection logins must
supply both a user ID and password, and do not use the Integrated or Kerberos connection parameters.
An error occurs if an Integrated or Kerberos login connection is attempted.

● Integrated Integrated logins are permitted.

● Kerberos Kerberos logins are permitted. See “Kerberos authentication” on page 114.

Caution
Setting the login_mode database option to not allow Standard logins restricts connections to only those users
or groups who have been granted an integrated or Kerberos login mapping. Attempting to connect with a
user ID and password generates an error unless you are a user with DBA authority.

To allow more than one type of login, specify multiple values for the login_mode option. For example, the
following SQL statement sets the value of the login_mode database option to allow both standard and
integrated logins:

SET OPTION PUBLIC.login_mode = 'Standard,Integrated';

If a database file can be copied, the temporary public login_mode option should be used (both for integrated
and Kerberos logins). This way, integrated and Kerberos logins are not supported by default if the file is
copied.

Create an integrated login
User profiles can only be mapped to an existing database user ID. When that database user ID is removed
from the database, all integrated login mappings based on that database user ID are automatically removed.

A user or group profile does not have to exist for it to be mapped to a database user ID. More than one user
profile can be mapped to the same database user ID.

You can use either the Create Login Mapping Wizard or a SQL statement to create an integrated login
mapping.

To map an integrated login (Sybase Central)

You must have DBA authority to create or delete an integrated login mapping.

1. Open Sybase Central.

2. Connect to the database as a user with DBA authority.

3. In the left pane, right-click Login Mappings » New » Login Mapping.

Using integrated logins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 107

4. Click Next.

5. In the Which Windows User Will Be Connecting To The Database field, type the name of the user
or group profile for whom the integrated login is to be created.

6. In the Which Database User Do You Want To Associate With The Windows User list, select the
database user ID this user maps to

7. Follow the remaining instructions in the Create Login Mapping Wizard.

To map an integrated login (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a GRANT INTEGRATED LOGIN TO statement.

Example
The following SQL statement allows Windows users fran_whitney and matthew_cobb to log in to the
database as the user DBA, without having to know or provide the DBA user ID or password.

GRANT INTEGRATED LOGIN
TO fran_whitney, matthew_cobb
AS USER DBA;

See “GRANT statement” [SQL Anywhere Server - SQL Reference].

The following SQL statement allows Windows users who are members of the Windows NT group
mywindowsusers to log in to the database as the user DBA, without having to know or provide the DBA
user ID or password.

GRANT INTEGRATED LOGIN
TO mywindowsusers
AS USER DBA;

See “Creating integrated logins for Windows user groups” on page 109.

Revoke an integrated login permission

To revoke an integrated login permission (Sybase Central)

1. Open Sybase Central.

2. Connect to the database as a user with DBA authority.

3. In the left pane, clickLogin Mappings.

4. In the right pane, right-click the login mapping you want to remove and click Delete.

5. Click Yes.

To revoke an integrated login permission (SQL)

1. Connect to the database as a user with DBA authority.

SQL Anywhere database connections

108 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

2. Execute a REVOKE INTEGRATED LOGIN FROM statement.

Example
The following SQL statement removes integrated login permission from the Windows user pchin.

REVOKE INTEGRATED LOGIN
FROM pchin;

See “REVOKE statement” [SQL Anywhere Server - SQL Reference].

Connect to a database from a client application
To connect a client application to a database using an integrated login:

● Set the Integrated (INT) parameter in the list of connection parameters to YES.

● Do not specify a user ID or password in the connection string or Connect window.

If the Integrated (INT) parameter is set to YES in the connection string, an integrated login is attempted.
The server attempts a standard login when the connection attempt fails and the login_mode database option
is set to Standard,Integrated. See “login_mode option [database]” on page 540.

If an attempt to connect to a database is made without providing a user ID or password, an integrated login
is attempted. The success of the login attempt is dependent on whether the current user profile name matches
an integrated login mapping in the database.

Interactive SQL examples
In the following example, the connection attempt succeeds when the user logs in with a user profile that
matches the integrated login mapping in the default database server:

CONNECT USING 'INTEGRATED=yes';

The Interactive SQL statement CONNECT can connect to a database when:

● A server is currently running.

● The default database has the login_mode database option set to accept integrated login connections.

● An integrated login mapping has been created that matches the current user's user profile name or for a
Windows user group to which the user belongs.

● A user clicks OK without providing more information when the more connection information prompt
appears.

Creating integrated logins for Windows user groups
When a Windows user logs in, if they do not have an explicit integrated login mapping, but belong to a
Windows user group for which there is an integrated login mapping, the user connects to the database as the
database user or group specified in the Windows user group's integrated login mapping.

Using integrated logins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 109

Caution
Creating an integrated login for a Windows user group allows any user that is a member of the group to
connect to the database without knowing a user ID or password.

See “Prevent Windows user groups members from connecting to a database” on page 111.

Members of multiple groups
If the Windows user belongs to more than one Windows user group, and more than one Windows user group
on the computer has an integrated login mapping in the database, then the integrated login only succeeds if
all the Windows user groups on the computer have integrated login mappings to the same database user ID.
If multiple Windows user groups have integrated login mappings to different database user IDs, an error is
returned and the integrated login fails.

For example, consider a database with two user IDs, dbuserA and dbuserB, and the Windows user
windowsuser who belongs to the Windows user groups xpgroupA and xpgroupB.

This SQL statement... Allows...

GRANT INTEGRATED LOGIN
TO windowsuser
AS USER dbuserA;

windowsuser to connect to the database
using the integrated login mapping set ex-
plicitly for windowsuser.

GRANT INTEGRATED LOGIN
TO xpgroupA
AS USER dbuserB;

windowsuser to connect to the database
using the integrated login mapping gran-
ted to xpgroupA.

GRANT INTEGRATED LOGIN
TO xpgroupA
AS USER dbuserB;
GRANT INTEGRATED LOGIN xpgroupb
AS USER dbuserB;

windowsuser to connect to the database
because both Windows user groups that
windowsuser belongs to have an integra-
ted login mapping to the same database
user.

GRANT INTEGRATED LOGIN
TO xpgroupA
AS USER dbuserA;
GRANT INTEGRATED LOGIN
TO xpgroupb
AS USER dbuserB;

No connection to the database. When win-
dowsuser attempts to connect to the data-
base, the integrated login fails because
each Windows user group has an integra-
ted login mapping to a different database
user and windowsuser is a member of both
Windows user groups.

Domain Controller locations
By default, the computer on which the SQL Anywhere database server is running is used to verify Windows
user group membership. If the Domain Controller server is on a different computer than the database server,
you can specify the name of the Domain Controller server using the integrated_server_name option. For
example:

SET OPTION PUBLIC.integrated_server_name = '\\myserver-1';

SQL Anywhere database connections

110 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See “integrated_server_name option [database]” on page 535.

Prevent Windows user groups members from connecting to
a database

There are two methods you can use to prevent a user who is a member of a Windows user group with an
integrated login from connecting to a database using the group integrated login:

● Create an integrated login for the user to a database user ID that does not have a password.

● Created a stored procedure that is called by the login_procedure option to check whether a user is allowed
to log in, and raise an exception when a disallowed user tries to connect.

Creating an integrated login to a user ID with no password
When a user is a member of a Windows user group that has an integrated login, but also has an explicit
integrated login for their user ID, the user's integrated login is used to connect to the database. To prevent a
user from connecting to a database using their Windows user group integrated login, you can create an
integrated login for the Windows user to a database user ID without a password. Database user IDs that do
not have a password can not connect to a database.

To create an integrated login to a user ID with no password

1. Add a user to the database without a password. For example:

CREATE USER db_user_no_password;
2. Create an integrated login for the Windows user that maps to the database user without a password. For

example:

GRANT INTEGRATED LOGIN TO WindowsUser
AS USER db_user_no_password;

Creating a procedure to prevent Windows users from connecting
The login_procedure option specifies the stored procedure to call each time a connection to the database is
attempted. By default, the dbo.sp_login_environment procedure is called. You can set the login_procedure
option to call a procedure you have written that prevents specific users from connecting to the database.

The following example creates a procedure named login_check that is called by the login_procedure option.
The login_check procedure checks the supplied user name against a list of users that are not allowed to
connect to the database. If the supplied user name is found in the list, the connection fails. In this example,
users named Joe, Harry, or Martha are not allowed to connect. If the user is not found in the list, the database
connection proceeds as usual and calls the sp_login_environment procedure.

CREATE PROCEDURE DBA.user_login_check()
 BEGIN
 DECLARE INVALID_LOGON EXCEPTION FOR SQLSTATE '28000';
 // Disallow certain users
 IF(CURRENT USER IN ('Joe','Harry','Martha')) THEN
 SIGNAL INVALID_LOGON;
 ELSE
 CALL sp_login_environment;

Using integrated logins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 111

 END IF;
 END
go
GRANT EXECUTE ON DBA.user_login_check TO PUBLIC
go
SET OPTION PUBLIC.login_procedure='DBA.user_login_check'
go

Network aspects of integrated logins
If the database is located on a network server, then one of two conditions must be met for integrated logins
to be used:

● The user profile used for the integrated login connection attempt must be identical on both the local
computer and the server. The passwords for both user profiles must also be identical.

For example, when the user jsmith attempts to connect using an integrated login to a database loaded on
a network server, identical user profile names and passwords must exist on both the local computer and
the computer running the database server. The user jsmith must be permitted to log in to both computers.

● If network access is controlled by a Microsoft Domain, the user attempting an integrated login must have
domain permissions with the Domain Controller server and be logged in to the network. A user profile
on the network server matching the user profile on the local computer is not required.

Creating a default integrated login user
A default integrated login user ID can be created so that connecting via an integrated login will be successful
even if no integrated login mapping exists for the user profile currently in use.

For example, if no integrated login mapping exists for the user profile name JSMITH, an integrated login
connection attempt will normally fail when JSMITH is the user profile in use.

However, if you create a user ID named Guest in a database, an integrated login will successfully map to
the Guest user ID if no integrated login mapping explicitly identifies the user profile JSMITH.

Caution
The default integrated login user permits anyone attempting an integrated login to connect to a database
successfully if the database contains a user ID named Guest. The authorities granted to the Guest user ID
determine the permissions and authorities granted to the newly-connected user.

Security concerns: Unrestricted database access
The integrated login feature works using the login control system of Windows in place of the SQL Anywhere
security system to connect to a database without providing a user ID or password. Essentially, the user passes
through the database security if they can log in to the computer hosting the database.

SQL Anywhere database connections

112 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

If the user successfully logs in to the Windows server as dsmith, they can connect to the database without
further proof of identification provided there is either an integrated login mapping or a default integrated
login user ID.

When using integrated logins, database administrators should give special consideration to the way Windows
enforces login security to prevent unwanted access to the database.

Caution
Leaving the user profile Guest enabled can permit unrestricted access to a database that is hosted by that
server.

If the Guest user profile is enabled and has a blank password, any attempt to log in to the server will be
successful. It is not required that a user profile exist on the server, or that the login ID provided has domain
login permissions. Literally any user can log in to the server using any login ID and any password: they are
logged in by default to the Guest user profile.

This has important implications for connecting to a database with the integrated login feature enabled.

Consider the following scenario, which assumes the Windows server hosting a database has a Guest user
profile that is enabled with a blank password.

● An integrated login mapping exists between the user fran_whitney and the database user ID DBA. When
the user fran_whitney connects to the server with her correct login ID and password, she connects to the
database as DBA, a user with full administrative rights.

But anyone else attempting to connect to the server as fran_whitney will successfully log in to the server
regardless of the password they provide because Windows will default that connection attempt to the
Guest user profile. Having successfully logged in to the server using the fran_whitney login ID, the
unauthorized user successfully connects to the database as DBA using the integrated login mapping.

Disable the Guest user profile for security
The safest integrated login policy is to disable the Guest user profile on any Windows computer hosting a
SQL Anywhere database. This can be done using the Windows User Manager utility.

Using integrated logins

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 113

Kerberos authentication
The Kerberos login feature allows you to maintain a single user ID and password for database connections,
operating system, and network logins. The Kerberos login is more convenient for users and permits a single
security system for database and network security. Its advantages include:

● The user does not need to provide a user ID or password to connect to the database.

● Multiple users can be mapped to a single database user ID.

● The name and password used to log in to Kerberos do not have to match the database user ID and
password.

Kerberos is a network authentication protocol that provides strong authentication and encryption using
secret-key cryptography. Users already logged in to Kerberos can connect to a database without providing
a user ID or password.

Kerberos can be used for authentication. To delegate authentication to Kerberos you must:

● configure the server and database to use Kerberos logins

● create mapping between the user ID that logs in to the computer or network, and the database user

Caution
There are important security implications to consider when using Kerberos logins as a single security
solution. See “Security concerns: Copied database files” on page 123.

SQL Anywhere does not include the Kerberos software; it must be obtained separately. The following
components are included with the Kerberos software:

● Kerberos libraries These are referred to as the Kerberos Client or GSS (Generic Security Services)-
API runtime library. These Kerberos libraries implement the well-defined GSS-API. The libraries are
required on each client and server computer that intends to use Kerberos. The built-in Windows SSPI
interface can be used instead of a third-party Kerberos client library if you are using Active Directory
as your KDC.

● A Kerberos Key Distribution Center (KDC) server The KDC functions as a storehouse for users
and servers. It also verifies the identification of users and servers. The KDC is typically installed on a
server computer not intended for applications or user logins.

SQL Anywhere supports Kerberos authentication from DBLib, ODBC, OLE DB, and ADO.NET clients,
and Sybase Open Client and jConnect clients. Kerberos authentication can be used with SQL Anywhere
transport layer security encryption, but SQL Anywhere does not support Kerberos encryption for network
communications.

Windows uses Kerberos for Windows domains and domain accounts. Active Directory Windows Domain
Controllers implement a Kerberos KDC. A third-party Kerberos client or runtime is still required on the
database server computer for authentication in this environment, but the Windows client computers can use
the built-in Windows SSPI interface instead of a third-party Kerberos client or runtime. See “Use SSPI for
Kerberos logins on Windows” on page 119.

SQL Anywhere database connections

114 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Kerberos clients
Kerberos authentication is available on 32-bit Windows and Linux. For a list of tested Kerberos clients, see
http://www.sybase.com/detail?id=1061807.

The following table lists the default names and locations of the keytab and GSS-API files used by the
supported Kerberos clients.

Kerberos client Default keytab file GSS-API library
file name

Notes

Windows MIT
Kerberos client

C:\WINDOWS\krb5kt gssapi32.dll The KRB5_KTNAME envi-
ronment variable can be set
before starting the database
server to specify a different
keytab file.

Windows Cyber-
Safe Kerberos cli-
ent

C:\Program Files\CyberSafe
\v5srvtab

gssapi32.dll The CSFC5KTNAME envi-
ronment variable can be set
before starting the database
server to specify a different
keytab file.

Unix MIT Ker-
beros client

/etc/krb5.keytab libgssa-
pi_krb5.so1

The KRB5_KTNAME envi-
ronment variable can be set
before starting the database
server to specify a different
keytab file.

Unix CyberSafe
Kerberos client

/krb5/v5srvtab libgss.so1 The CSFC5KTNAME envi-
ronment variable can be set
before starting the database
server to specify a different
keytab file.

Unix Heimdal
Kerberos client

/etc/krb5.keytab libgssapi.so.11

1 These file names may vary depending on your operating system and Kerberos client version.

Set up Kerberos authentication

To set up Kerberos authentication on a SQL Anywhere database

1. Install and configure the Kerberos client software, including the GSS-API runtime library, on both the
client and server.

Kerberos authentication

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 115

http://www.sybase.com/detail?id=1061807

On Windows client computers using an Active Directory KDC, SSPI can be used and you do not need
to install the Kerberos client. See “Use SSPI for Kerberos logins on Windows” on page 119.

2. If necessary, create a Kerberos principal in the Kerberos Key Distribution Center (KDC) for each user.

A Kerberos principal is a Kerberos user ID in the format user/instance@REALM, where /instance is
optional. If you are already using Kerberos, the principal should already exist, so you will not need to
create a Kerberos principal for each user.

Principals are case sensitive and must be specified in the correct case. Mappings for multiple principals
that differ only in case are not supported (for example, you cannot have mappings for both
jjordan@MYREALM.COM and JJordan@MYREALM.COM).

3. Create a Kerberos principal in the KDC for the SQL Anywhere database server.

The Kerberos principal for the database server has the format server-name@REALM, where server-
name is the SQL Anywhere database server name. Principals are case significant, and the server-name
cannot contain multibyte characters, or the characters /, \, or @. The rest of the steps assume the Kerberos
principal is my_server_princ@MYREALM.COM.

You must create a server service principal within the KDC because servers use a keytab file for KDC
authentication. The keytab file is protected and encrypted.

4. Securely extract and copy the keytab for the principal server-name@REALM from the KDC to the
computer running the SQL Anywhere database server. The default location of the keytab file depends
on the Kerberos client and the platform. The keytab file's permissions should be set so that the SQL
Anywhere server can read it, but unauthorized users do not have read permission.

5. Configure SQL Anywhere to use Kerberos

Configure SQL Anywhere to use Kerberos
1. Set up Kerberos authentication on the SQL Anywhere database. See “Set up Kerberos

authentication” on page 115.

2. Start the SQL Anywhere server with the -krb or -kr option to enable Kerberos authentication, or use the
-kl option to specify the location of the GSS-API library and enable Kerberos.

3. Change the public or temporary public option login_mode to a value that includes Kerberos. You must
have DBA authority to change the setting of this option. The login_mode database option determines
whether Kerberos logins are allowed. As database options apply only to the database in which they are
found, different databases can have a different Kerberos login setting, even if they are loaded and running
on the same server. For example:

SET OPTION PUBLIC.login_mode = 'Kerberos,Standard';

The login_mode database option accepts one or more of the following values:

● Standard Standard logins are permitted. This value is the default. Standard connection logins
must supply both a user ID and password, and do not use the Integrated or Kerberos connection
parameters.

● Integrated Integrated logins are permitted.

SQL Anywhere database connections

116 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Kerberos Kerberos logins are permitted.

Caution
Setting the login_mode database option to Kerberos restricts connections to only those users who have
been granted a Kerberos login mapping. Attempting to connect using a user ID and password generates
an error unless you are a user with DBA authority.

4. Create a database user ID for the client. You can use an existing database user ID for the Kerberos login,
as long as that user has the correct permissions. For example:

CREATE USER "kerberos-user"
IDENTIFIED BY abc123;

5. Execute a GRANT KERBEROS LOGIN TO statement to create a mapping from the client's Kerberos
principal to an existing database user ID. This statement requires DBA authority. For example:

GRANT KERBEROS LOGIN TO "pchin@MYREALM.COM"
AS USER "kerberos-user";

If you want to connect when a Kerberos principal is used that does not have a mapping, ensure the Guest
database user ID exists and has a password. See “Creating a default integrated login user” on page 112.

6. Ensure the client user has already logged on (has a valid Kerberos ticket-granting ticket) using their
Kerberos principal and that the client's Kerberos ticket has not expired. A Windows user logged in to a
domain account already has a ticket-granting ticket, which allows them to authenticate to servers,
providing their principal has enough permissions.

A ticket-granting ticket is a Kerberos ticket encrypted with the user's password that is used by the Ticket
Granting Service to verify the user's identity.

7. Connect from the client, specifying the KERBEROS connection parameter (Often KERBEROS=YES,
but KERBEROS=SSPI or KERBEROS=GSS-API-library-file can also be used). If the user ID or
password connection parameters are specified, they are ignored. For example:

dbisql -c "KERBEROS=YES;ENG=my_server_princ"

Interactive SQL example
For example, a connection attempt using the following Interactive SQL statement is successful if the user
logs in with a user profile name that matches a Kerberos login mapping in a default database of a server:

CONNECT USING 'KERBEROS=YES';

The Interactive SQL statement CONNECT can connect to a database if all the following are true:

● A server is currently running.

● The default database on the current server is enabled to accept Kerberos authenticated connections.

● A Kerberos login mapping has been created for the user's current Kerberos principal.

● If the user is prompted with a window by the server for more connection information (such as occurs
when using Interactive SQL), the user clicks OK without providing more information.

Kerberos authentication

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 117

See also
● “-kl server option” on page 201
● “-kr server option” on page 202
● “-krb server option” on page 203
● “login_mode option [database]” on page 540
● “GRANT statement” [SQL Anywhere Server - SQL Reference]
● “Create Kerberos login mappings” on page 118

Connect from an Open Client or jConnect application
To connect from an Open Client or jConnect application:

● Set up Kerberos authentication. See “Set up Kerberos authentication” on page 115.

● Configure SQL Anywhere to use Kerberos. See “Configure SQL Anywhere to use
Kerberos” on page 116.

● Set up Open Client or jConnect as you would for Kerberos authentication with Adaptive Server
Enterprise. The server name must be the SQL Anywhere server's name and is case significant. You cannot
connect using an alternate server name from Open Client or jConnect.

For information about setting up the Kerberos principals and extracting the keytab, see http://
www.sybase.com/detail?id=1029260.

See also
● “-krb server option” on page 203
● “-kr server option” on page 202
● “-kl server option” on page 201
● “login_mode option [database]” on page 540
● “GRANT statement” [SQL Anywhere Server - SQL Reference]
● “CREATE USER statement” [SQL Anywhere Server - SQL Reference]
● “Kerberos connection parameter [KRB]” on page 285
● “Troubleshooting Kerberos connections” on page 120

Create Kerberos login mappings

To create a Kerberos login mapping (Sybase Central)

1. Open Sybase Central.

2. Connect to the database as a user with DBA authority.

3. In the left pane, right-click Login Mappings » New » Login Mapping.

4. Follow the instructions in the Create Login Mapping Wizard.

SQL Anywhere database connections

118 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1029260
http://www.sybase.com/detail?id=1029260

To create a Kerberos login mapping (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a GRANT KERBEROS LOGIN TO statement.

See “GRANT statement” [SQL Anywhere Server - SQL Reference].

Example
The following SQL statement grants KERBEROS login permission to the Windows user pchin.

GRANT KERBEROS LOGIN TO "pchin@MYREALM.COM"
AS USER "kerberos-user";

Revoke Kerberos login permission

To revoke a Kerberos login mapping (Sybase Central)

1. Open Sybase Central.

2. Connect to the database as a user with DBA authority.

3. In the left pane, click Login Mappings.

4. In the right pane, right-click the login mapping and choose Delete.

5. Click Yes.

To revoke a Kerberos login mapping (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a REVOKE KERBEROS LOGIN FROM statement.

See “REVOKE statement” [SQL Anywhere Server - SQL Reference].

Example
The following SQL statement removes KERBEROS login permission from the Windows user pchin.

REVOKE KERBEROS LOGIN
FROM "pchin@MYREALM.COM";

Use SSPI for Kerberos logins on Windows
In a Windows domain, SSPI can be used on Windows-based computers without a Kerberos client installed
on the client computer. Windows domain accounts already have associated Kerberos principals.

To connect using SSPI

1. Set up Kerberos authentication. See “Set up Kerberos authentication” on page 115.

Kerberos authentication

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 119

2. Start the SQL Anywhere server with the -krb option to enable Kerberos authentication. For example:

dbeng11 -krb -n my_server_princ C:\kerberos.db
3. Change the public or temporary public option login_mode to a value that includes Kerberos. You must

have DBA authority to set this option. For example:

SET OPTION PUBLIC.login_mode = 'Kerberos';
4. Create a database user ID for the client. You can use an existing database user ID for the Kerberos login,

as long as that user has the correct permissions. For example:

CREATE USER kerberos_user
IDENTIFIED BY abc123;

5. Create a mapping from the client's Kerberos principal to an existing database user ID by executing a
GRANT KERBEROS LOGIN TO statement. This statement requires DBA authority. For example:

GRANT KERBEROS LOGIN TO "pchin@MYREALM.COM"
AS USER "kerberos-user";

6. Connect to the database from the client computer. For example:

dbisql -c "KERBEROS=SSPI;ENG=my_server_princ"

When Kerberos=SSPI is specified in the connection string, a Kerberos login is attempted.

A connection attempt using the following Interactive SQL statement will also succeed, providing the
user has logged on with a user profile name that matches a Kerberos login mapping in a default database
of a server:

CONNECT USING 'KERBEROS=SSPI';

Troubleshooting Kerberos connections
If you get unexpected errors when attempting to enable or use Kerberos authentication, it is recommended
that you enable additional diagnostic messages on the database server and client.

Specifying the -z option when you start the database server, or using CALL
sa_server_option('DebuggingInformation', 'ON') if the server is already running
includes additional diagnostic messages in the database server message log. The LogFile connection
parameter writes client diagnostic messages to the specified file. As an alternative to using the LogFile
connection parameter, you can execute the command dbping -z. The -z parameter displays diagnostic
messages that should help identify the cause of the connection problem.

SQL Anywhere database connections

120 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Difficulties starting the database server

Symptom Common solutions

"Unable to load
Kerberos GSS-
API library"
message

● Ensure a Kerberos client is installed on the database server computer, including
the GSS-API library

● The database server -z output lists the name of the library that it is attempting to
load. Verify the library name is correct. If necessary, use the -kl option to specify
the correct library name.

● Ensure the directory and any supporting libraries is listed in the library path
(%PATH% on Windows).

● If the database server -z output states the GSS-API library was missing entry
points, then the library is not a supported Kerberos Version 5 GSS-API library.

"Unable to ac-
quire Kerberos
credentials for
server
name "server-
name"" message

● Ensure there is a principal for server-name@REALM in the KDC. Principals are
case sensitive, so ensure the database server name is in the same case as the user
portion of the principal name.

● Ensure the name of the SQL Anywhere server is the primary/user portion of the
principal.

● Ensure that the server's principal has been extracted to a keytab file and the keytab
file is in the correct location for the Kerberos client. See “Kerberos cli-
ents” on page 115.

● If the default realm for the Kerberos client on the database server computer is
different from the realm in the server principal, use the -kr option to specify the
realm in the server principal.

"Kerberos login
failed" client er-
ror

● Check the database server diagnostic messages. Some problems with the keytab
file used by the server are not detected until a client attempts to authenticate.

Troubleshooting Kerberos client connections
If the client got an error attempting to connect using Kerberos authentication:

Kerberos authentication

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 121

Symptom Common solutions

"Kerberos logins are not supported" error
and the LogFile includes the message "Failed
to load the Kerberos GSS-API library"

● Ensure a Kerberos client is installed on the client com-
puter, including the GSS-API library.

● The file specified by LogFile lists the name of the li-
brary that it is attempting to load. Verify that the li-
brary name is correct, and use the Kerberos connection
parameter to specify the correct library name, if nec-
essary.

● Ensure that the directory including any supporting li-
braries is listed in the library path (%PATH% on Win-
dows).

● If the LogFile output states the GSS-API library was
missing entry points, then the library is not a supported
Kerberos Version 5 GSS-API library.

"Kerberos logins are not supported" error ● Ensure the database server has enabled Kerberos log-
ins by specifying one or more of the -krb, -kl, or -kr
server options.

● Ensure Kerberos logins are supported by SQL Any-
where on both the client and server platforms.

"Kerberos login failed" error ● Ensure the user is logged into Kerberos and has a valid
ticket-granting ticket that has not expired.

● Ensure the client computer and server computer both
have their time synchronized to within less than 5 mi-
nutes.

"Login mode 'Kerberos' not permitted by
login_mode setting" error

● The public or temporary public database option setting
for the login_mode option must include the value Ker-
beros to allow Kerberos logins.

"The login ID 'client-Kerberos-princi-
pal' has not been mapped to any database
user ID"

● The Kerberos principal must be mapped to a database
user ID using the GRANT KERBEROS LOGIN state-
ment. Note the full client principal including the realm
must be provided to the GRANT KERBEROS LOGIN
statement, and principals which differ only in the in-
stance or realm are treated as different.

● Alternatively, if you want any valid Kerberos principal
which has not be explicitly mapped to be able to con-
nect, create the guest database user ID with a password
using GRANT CONNECT.

SQL Anywhere database connections

122 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Security concerns: Setting temporary public options for
added security

Setting the value of the login_mode option for a given database to allow a combination of standard, integrated,
and Kerberos logins using the SET OPTION statement permanently enables the specified types of logins
for that database. For example, the following statement permanently enables standard and integrated logins:

SET OPTION PUBLIC.login_mode = 'Standard,Integrated';

If the database is shut down and restarted, the option value remains the same and integrated logins remain
enabled.

Setting the login_mode option using SET TEMPORARY OPTION still allows user access via integrated
logins, but only until the database is shut down. The following statement changes the option value
temporarily:

SET TEMPORARY OPTION PUBLIC.login_mode = 'Standard,Integrated';

If the permanent option value is Standard, the database will revert to that value when it is shut down.

Setting temporary public options can provide additional security for your database. When you add integrated
or Kerberos logins to your database, the database relies on the security of the operating system on which it
is running. If the database is copied to another computer, access to the database reverts to the SQL Anywhere
security model.

See also
● “Security concerns: Copied database files” on page 123
● “SET OPTION statement” [SQL Anywhere Server - SQL Reference]

Security concerns: Copied database files
If the database file can be copied, use the temporary public login_mode option for integrated and Kerberos
logins. If the file is copied, the integrated and Kerberos logins are not supported by default.

If a database contains sensitive information, the computer where the database files are stored should be
protected from unauthorized access. Otherwise, the database files could be copied and unauthorized access
to the data could be obtained on another computer. To increase database security:

● Make user passwords, especially those with DBA authority, complex and difficult to guess.

● Set the PUBLIC.login_mode database option to Standard. To enable integrated or Kerberos logins, only
the temporary public option should be changed each time the server is started. This ensures that only
Standard logins are allowed if the database is copied. See “Security concerns: Setting temporary public
options for added security” on page 123.

● Strongly encrypt the database file using the AES encryption algorithm. The encryption key should be
complex and difficult to guess.

Kerberos authentication

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 123

Sample SQL Anywhere database connections
The following examples show you how to connect to a SQL Anywhere database from the tools included
with SQL Anywhere.

Connect to the sample database from Sybase Central or
Interactive SQL

To connect to the sample database (Sybase Central)

1. Choose Start » Programs » SQL Anywhere 11 » Sybase Central.

2. Click Connections » Connect With SQL Anywhere 11.

3. Click ODBC Data Source Name, and then click Browse.

4. Select SQL Anywhere 11 Demo, and then click OK.

To connect to the sample database (Interactive SQL)

1. Choose Start » Programs » SQL Anywhere 11 » Interactive SQL.

2. Click ODBC Data Source Name, and then click Browse.

3. Select SQL Anywhere 11 Demo, and then click OK.

Note
You do not need to enter a user ID and a password for this connection because the data source already
contains this information.

To connect to the sample database (specifying the database file location)

1. In Sybase Central or Interactive SQL, open the Connect window.

2. Click the Identification tab.

3. In the User ID field, type DBA.

4. In the Password field, type sql.

5. Click the Database tab.

6. In the Database Name field, type demo.db.

7. In the Database File field, browse to samples-dir. On Microsoft Windows XP operating systems the
default location is C:\Documents and Settings\All Users\Shared Documents\SQL Anywhere 11\Samples
\demo.db.

For information about samples-dir, see “Samples directory” on page 390.

8. Click OK.

SQL Anywhere database connections

124 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connect to the sample database on Mac OS X
Shortcuts are included on Mac OS X.

To connect to the sample database from Interactive SQL (Mac OS X)

1. In the Finder, locate the SQL Anywhere sample database. By default, it is located in /Applications/
SQLAnywhere11/System/demo.db.

2. Copy this file to a location where you have read and write access, such as the Desktop.

3. In the Finder, double-click DBLauncher.

By default, DBLauncher is located at the following path: /Applications/SQLAnywhere11.

4. Select Local Server.

The Local Server option does not allow client/server communications over a network.

5. Click Start to start a personal database server named demo.

6. In the Finder, double-click Interactive SQL in /Applications/SQLAnywhere11.

7. In the User ID field, type DBA.

8. In the Password field, type sql.

9. Click OK.

Connect to a local database
Use one of the following procedures to connect to a database residing on your computer. If the database is
already loaded (started) on the server, only the database name is required to connect to the database. You
do not need to specify a database file.

To simplify database access, use a connection profile. See “Sybase Central connection
profiles” on page 94.

To connect to a database already-running on a local server

1. Start Sybase Central or Interactive SQL.

If the Connect window does not appear:

● In Sybase Central, choose Connections » Connect With SQL Anywhere 11.

● In Interactive SQL, choose SQL » Connect.

2. Click the Identification tab.

3. In the User ID field, type a user name.

4. In the Password field, type a password for the database.

5. If the server is running a single database, click OK.

Sample SQL Anywhere database connections

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 125

If the server is running multiple databases:

● Click the Database tab.

● In the Database Name field, type the name of the database.

● Click OK.

To start and connect to a database

1. Start Sybase Central or Interactive SQL.

If the Connect window does not appear:

● In Sybase Central, choose Connections » Connect With SQL Anywhere 11.

● In Interactive SQL, choose SQL » Connect.

2. Click the Identification tab.

3. In the User ID field, type a user name.

4. In the Password field, type a password for the database.

5. Click the Database tab.

6. In the Database File field, specify the file path, file name, and file extension, or click Browse to browse
for a database file.

7. To create a database name that is different from the file name for subsequent connections, type a name
in the Database Name field. Do not specify a file path or extension.

8. Click OK.

Connecting to an embedded database
An embedded database, designed for use by a single application, runs on the same computer as the
application and is generally hidden from the user.

When an application uses an embedded database, the personal server is generally not running when the
application connects. The database is started using the connection string, and by specifying the database file
in the DatabaseFile (DBF) parameter of the connection string.

To improve query performance for autostarted databases, start the database as soon as possible, even if users
are not connecting right away. This allows the cache to warm before queries are executed against the database.
See “Using cache warming” [SQL Anywhere Server - SQL Usage].

Using the DBF connection parameter
The DBF connection parameter specifies the database file to use. The database file automatically loads onto
the default server, or starts a server if none are running.

The database unloads when there are no more connections to the database (generally when the application
that started the connection disconnects). If the connection started the server, the database server stops once
the database unloads.

SQL Anywhere database connections

126 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

In the following example, the sample database is loaded as an embedded database:

DBF=samples-dir\demo.db
UID=DBA
PWD=sql

For information about samples-dir, see “Samples directory” on page 390.

Using the ENG connection parameter

When using an embedded database it is recommended that you use the ServerName (ENG) connection
parameter. This ensures that the database connects to the correct database server if there are other applications
running SQL Anywhere database servers on the same computer.

Using the StartLine [START] connection parameter
The following connection parameters show you how to customize the startup of the sample database as an
embedded database. This is useful if you want to use options, such as the cache size:

START=dbeng11 -c 8M
DBF=samples-dir\demo.db
UID=DBA
PWD=sql

There are many connection parameters that affect how a server is started. It is recommended that you use
the following connection parameters instead of providing the corresponding server options within the
StartLine (START) connection parameter:

● ServerName (ENG)
● DatabaseFile (DBF)
● DatabaseSwitches (DBS)
● DatabaseName (DBN)

Using the ELEVATE connection parameter
If you are autostarting a database server on Windows Vista, you must specify ELEVATE=YES in your
connection string so that autostarted database server executables are elevated. On Windows Vista, only
elevated database servers can use AWE memory or call procedures as an administrator user.

See also
● “DatabaseFile connection parameter [DBF]” on page 272
● “ServerName connection parameter [ENG]” on page 296
● “StartLine connection parameter [START]” on page 297
● “Elevate connection parameter” on page 279
● “Open the Connect window” on page 93
● “Sample SQL Anywhere database connections” on page 124

Connect using a data source
You can save sets of connection parameters in a data source. All SQL Anywhere interfaces, except Open
Client and jConnect, can use data sources.

Sample SQL Anywhere database connections

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 127

To connect using a data source (Sybase Central or Interactive SQL)

1. Start Sybase Central or Interactive SQL.

If the Connect window does not appear:

● In Sybase Central, choose Connections » Connect With SQL Anywhere 11.

● In Interactive SQL, choose SQL » Connect.

2. Click the Identification tab.

3. In the User ID field, type a user name.

4. In the Password field, type a password for the database.

5. Do one of the following:

● Click ODBC Data Source Name and enter the DataSourceName (DSN) connection parameter that
references a data source in the Windows registry. Click Browse to view a list of data sources.

● Click ODBC Data Source File and enter the FileDataSourceName (FILEDSN) connection
parameter that references a data source held in a file. Click Browse to view a list of files.

See also
● “Open the Connect window” on page 93
● “Sample SQL Anywhere database connections” on page 124
● “Using ODBC data sources on Unix” on page 102

Connect to a server on a network
When connecting to a database running on a network server on a local or wide area network, the client
software must locate and connect to the database server. SQL Anywhere provides a network library to handle
this task.

Network connections occur over a network protocol. TCP/IP is available on all platforms.

SQL Anywhere database connections

128 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Specifying the server
SQL Anywhere server names must be unique on a local domain for a given network protocol. The following
example connects to a server running on a network:

ENG=svr-name
DBN=db-name
UID=user-id
PWD=password
CommLinks=all

When CommLinks=all is specified, the client library searches for a personal server with the given name,
and then searches the network for a server with the given name. See “CommLinks connection parameter
[LINKS]” on page 268.

Specifying the protocol
To improve performance, you can instruct the network library which protocols to use. The following
parameters use the TCP/IP protocol:

ENG=svr-name
DBN=db-name
UID=user-id
PWD=password
CommLinks=tcpip

The network library searches for a server by broadcasting over the network, which can be a time-consuming
process. Once the network library locates a server, the client library stores its name and network address in
a file (sasrv.ini), and reuses this entry for subsequent connection attempts to that server using the specified
protocol. Subsequent connections are normally faster than a connection achieved by broadcast.

By default, all network connections in Sybase Central and Interactive SQL use the TCP/IP network protocol.

To connect to a database on a network server (Sybase Central or Interactive SQL)

1. Start Sybase Central or Interactive SQL.

If the Connect window does not appear:

● In Sybase Central, choose Connections » Connect With SQL Anywhere 11.

● In Interactive SQL, choose SQL » Connect.

2. Click the Identification tab.

3. In the User ID field, type a user name.

4. In the Password field, type a password for the database.

5. Click the Database tab.

6. In the Server Name field, type the name of the server or click Find.

7. In the Database Name field, type the name of the database.

8. Click OK.

Sample SQL Anywhere database connections

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 129

See also
● “Client/server communications” on page 141
● “Network protocol options” on page 301
● “Connecting across a firewall” on page 144
● “Open the Connect window” on page 93
● “Sample SQL Anywhere database connections” on page 124

Using default connection parameters
You can use default behavior to make a connection and leave the connection parameters unspecified.
However, using the default behavior in a production environment can cause problems if the application is
installed with other SQL Anywhere applications. For more information about default behavior, see
“Troubleshooting connections” on page 132.

Default database server and database
Use the default parameters to connect to a single personal server with a single database:

UID=user-id
PWD=password

Default database server
If more than one database is on a single personal server, use the default server settings, and specify the
database you want to connect to:

DBN=db-name
UID=user-id
PWD=password

Default database
If more than one server is running, specify which server you want to connect to. You do not need to specify
the database name if only a single database is on that server. The following connection string connects to a
named server, using the default database:

ENG=server-name
UID=user-id
PWD=password

No defaults for a local server
The following connection string connects to a named local server, using a named database:

ENG=server-name
DBN=db-name
UID=user-id
PWD=password

No defaults for a network server
To connect to a network server running on a different computer:

ENG=server-name
DBN=dbn

SQL Anywhere database connections

130 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UID=user-id
PWD=password
CommLinks=tcpip

If CommLinks is not specified, only local shared memory connections are attempted.

If you are connecting from Sybase Central, Interactive SQL, or the SQL Anywhere Console utility
(dbconsole), you can select the Search Network For Database Servers option on the Connect window to
attempt a network connection.

Connecting from SQL Anywhere utilities
All SQL Anywhere database utilities use embedded SQL to communicate with the server.

How database utilities obtain connection parameter values
Many of the administration utilities obtain the connection parameter values by:

1. Using values specified on the command line. For example, the following command starts a backup of
the default database on the default server using the user ID DBA and the password sql:

dbbackup -c "UID=DBA;PWD=sql" c:\backup

For more information about the options for each database utility, see “Database administration
utilities” on page 735.

2. Using the SQLCONNECT environment variable settings if any values are missing. SQL Anywhere does
not set this variable automatically.

See “SQLCONNECT environment variable” on page 384.

Sample SQL Anywhere database connections

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 131

Troubleshooting connections
An understanding of how SQL Anywhere establishes connections can help you resolve connectivity
problems. For information about network-specific issues, including connections across firewalls, see “Client/
server communications” on page 141.

To establish a connection, SQL Anywhere:

● Locates the interface library

● Assembles a list of connection parameters

● Locates a server

● Locates the database

● Starts a personal server when the database server is not located

The SQL Anywhere connection procedure is the same for:

● Any ODBC application using the SQLDriverConnect function, which is the common connection
method for ODBC applications. Many application development systems, such as Sybase PowerBuilder,
belong to this class of application. The SQLConnect function is also available to ODBC applications.

● Any client application using embedded SQL and using the recommended function for connecting to a
database (db_string_connect). In addition, the SQL CONNECT statement is available for embedded
SQL applications and in Interactive SQL. It has two forms: CONNECT AS ... and CONNECT USING.
All the database administration tools, including Interactive SQL, use db_string_connect.

● Any ADO application using the ADODB Connection object. The Provider property is used to locate
the OLE DB driver. The Connection String property may use DataSource as an alternative to
DataSourceName and User ID as an alternative to UserID.

● Any application using the iAnywhere JDBC driver to pass the URL jdbc:ianywhere: followed by a
standard connection string as a parameter to the Driver Manager.GetConnection method. The connection
string must include DataSource= and name a SQL Anywhere data source or include Driver=SQL
Anywhere 11 (this parameter is specified as Driver=libdbodbc11.so on Linux and Unix).

See also
● “Troubleshooting server startup” on page 74
● “Troubleshooting network communications” on page 151

Locating the interface library
Generally, the location of this DLL or shared library is transparent to the user.

ODBC driver location
For ODBC, the interface library is also called an ODBC driver. An ODBC client application calls the ODBC
driver manager, and the driver manager locates the SQL Anywhere driver.

SQL Anywhere database connections

132 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The ODBC driver manager searches the supplied data source to locate the driver. When you create a data
source using the ODBC Administrator or dbdsn utility, SQL Anywhere fills in the current location for your
ODBC driver. The data source information is stored in the Windows registry, or in the Unix system
information file (named .odbc.ini by default).

Embedded SQL interface library location
Embedded SQL applications call the interface library by name. The name of the SQL Anywhere embedded
SQL interface library is:

● Windows dblib11.dll

● Unix libdblib11 with an operating-system-specific extension

OLE DB driver location
The provider name (SAOLEDB) is used to locate the SQL Anywhere OLE DB provider DLL
(dboledb11.dll) based on entries in the registry. The entries are created when the SAOLEDB provider is
installed or if it is re-registered.

ADO.NET
ADO.NET programs add a reference to the SQL Anywhere ADO.NET provider, which is named
iAnywhere.Data.SQLAnywhere.dll. The .NET Data Provider DLL is added to the .NET Global Assembly
Cache (GAC) when it is installed.

iAnywhere JDBC driver location
When you run your application, the Java package jodbc.jar must be in the classpath. The system must be
able to locate the native DLLs or shared objects.

● PC operating systems On PC operating systems such as Windows, the current directory, the system
path, and in the Windows and Windows\system32 directories are searched.

● Unix operating systems On Unix, the system path and the user library path are searched.

When the library is located
A connection string is sent to the interface library when it is located by the client application. The string is
used by the interface library to assemble a list of connection parameters, and establish a server connection.

Assembling a list of connection parameters
The following diagram illustrates how the interface library assembles the list of connection parameters and
establishes a connection.

Troubleshooting connections

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 133

● Precedence Parameters held in more than one place are subject to the following order of precedence:

1. Connection string

2. SQLCONNECT

3. Data source

If a parameter is supplied both in a data source and in a connection string, the connection string value
overrides the data source value.

● Failure Failure at this stage occurs only if you specify in the connection string or in SQLCONNECT
a data source that does not exist.

● Common parameters Depending on other connections already in use, some connection parameters
may be ignored, including:

○ AutoStop Ignored if the database is already loaded.

○ DatabaseFile Ignored if DatabaseName is specified and a database with this name is already
running.

The interface library uses the completed list of connection parameters to attempt to connect.

Locating a database server
SQL Anywhere searches for the server name specified in the ServerName (ENG) connection parameter.
SQL Anywhere searches for a default server if the ServerName (ENG) connection parameter is not used,
and the CommLinks (LINKS) connection parameter is not specified or if the CommLinks (LINKS)
connection parameter is specified and includes Shared Memory.

SQL Anywhere database connections

134 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

If SQL Anywhere locates a server, it tries to locate or load the required database on that server. See “Locating
the database” on page 136.

If SQL Anywhere can not locate a server, it may attempt to start a personal server, depending on the
connection parameters.

Notes
● For local connections, locating a server is simple. For connections over a network, you can use the

CommLinks (LINKS) connection parameter to tune the search in many ways by supplying network
protocol options.

● You can specify a set of network protocol options for each network protocol in the argument to the
CommLinks (LINKS) connection parameter.

● Each attempt to locate a server involves two steps. First, SQL Anywhere looks in the server name cache
to see if a server of that name is available (this step is skipped if the value of DoBroadcast is none).
Second, it uses the available connection parameters to attempt a connection.

Troubleshooting connections

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 135

● If the server is autostarted, information from the START, DBF, DBKEY, DBS, DBN, ENG, and
AUTOSTOP connection parameters are used to construct the options for the autostarted server.

● If the server has an alternate server name, you can only use the alternate server name to connect to the
database that specified the alternate server name. You cannot use the alternate server name to connect
to any other databases running on that database server. See “-sn database option” on page 257.

Locating a database server using the Broadcast Repeater
utility

The Broadcast Repeater utility allows SQL Anywhere clients to find SQL Anywhere database servers
running on other subnets and through firewalls where UDP broadcasts normally do not reach, without using
the HOST connection parameter or LDAP.

To use the Broadcast Repeater utility

1. Start a DBNS (database name service) process on any computer in a subnet.

2. Start a DBNS process on any computer in a different subnet and pass the computer name or IP address
of the first computer as a parameter (using the address parameter).

The two DBNS processes make a TCP/IP connection to each other.

3. The DBNS processes now listen for broadcasts on each of their own subnets. Each DBNS process
forwards requests over the TCP/IP connection to the other DBNS process, which re-broadcasts the
requests on its subnets and also forwards responses back to the originating DBNS process, which sends
them to the original client.

4. Regular SQL Anywhere broadcasts on either of the subnets reach database servers on the remote subnet,
and clients are able to connect to database servers on the remote subnet without specifying the HOST
parameter.

Any number of DBNS processes can communicate with each other. Each DBNS process connects to every
other DBNS that it knows about, and the different DBNS processes share their lists of DBNS processes. For
example, suppose you start two DBNS processes, A and B. If you start a third DBNS process, C, in a third
subnet, passing the address of B to C, then B tells C about A, and C then connects to A.

Running more than one DBNS process in a single subnet is not necessary, and is not recommended.

See also
● “Broadcast Repeater utility (dbns11)” on page 745

Locating the database
If SQL Anywhere successfully locates a server, it then tries to locate the database. For example:

SQL Anywhere database connections

136 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Server name caching for faster connections
When the DoBroadcast (DOBROAD) protocol option is set to DIRECT or ALL, the network library looks
for a database server on a network by broadcasting over the network using the CommLinks (LINKS)
connection parameter.

Tuning the broadcast
The CommLinks (LINKS) parameter takes as an argument a string listing the protocols to use and, optionally
for each protocol, a variety of network protocol options that tune the broadcast. See “Network protocol
options” on page 301.

Caching server information
Broadcasting over large networks searching for a server of a specific name can be time-consuming. Caching
server addresses speeds up network connections by saving the protocol the first connection to a server was
found on, and its address, to a file and using that information for subsequent connections.

The server information is saved in a cached file named sasrv.ini. The file contains a set of sections, each of
the following form:

Troubleshooting connections

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 137

[Server name]
LINKS=protocol_name
Address=address_string

The default location of sasrv.ini is %ALLUSERSPROFILE%\Application Data\SQL Anywhere 11 on
Windows and ~/.sqlanywhere11 on Unix.

Note
It is very important that each server has a unique name. Giving different servers the same name can lead to
identification problems.

How the cache is used
If the server name and protocol in the cache match the connection string, SQL Anywhere tries to connect
using the cached address first. If that fails, or if the server name and protocol in the cache do not match the
connection string, the connection string information is used to search for the server using a broadcast. If the
broadcast is successful, the server name entry in the cache is overwritten. If no server is found, the server
name entry in the cache is removed. If the DoBroadcast protocol option is set to none, any cached addresses
are ignored.

Interactive SQL connections
Interactive SQL has a different behavior from the default embedded SQL behavior when a CONNECT
statement is issued while already connected to a database. If no database or server is specified in the
CONNECT statement, Interactive SQL connects to the current database, rather than to the default database.
This behavior is required for database reloading operations. See “CONNECT statement [ESQL] [Interactive
SQL]” [SQL Anywhere Server - SQL Reference].

Testing that a server can be found
Use the dbping utility to troubleshoot connections and determine if a server with a specific name is available
on your network.

The dbping utility takes a connection string as an option. The utility does not start the server and only the
information required to locate the server are used by default. Use the -d option with the dbping utility to start
the server.

Examples
The following command line tests to see if a server named Waterloo is available over a TCP/IP connection:

dbping -c "ENG=Waterloo;CommLinks=tcpip"

The following command tests to see if a default server is available on the current computer.

dbping

SQL Anywhere database connections

138 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Ping utility (dbping)” on page 804

Testing embedded SQL connection performance
You can use the Ping utility (dbping) to obtain information about the performance of embedded SQL
connections by specifying the -s or -st options. The following statistics are gathered:

Statistic Description

DBLib connect and disconnect The time to perform one DBLib connect and disconnect. Note that
the performance of connecting and disconnecting using other inter-
faces, such as ODBC, is typically slower than DBLib because more
requests are required to complete the connection.

Round trip simple request The time it takes to send a request from the client to the server plus
the time it takes to send a response from the server back to the client.
The round trip time is twice the average latency.

Send throughput The throughput based on transferring 100 KB of data for each iter-
ation from dbping to the database server.

Receive throughput The throughput based on transferring 100 KB of data for each iter-
ation from the database server to dbping.

If your network has both high round trip times and high throughput, the reported throughput will be lower
than your actual network throughput because of the high round trip times. Using dbping -s can be useful to
give an indication of whether communication compression may improve performance. The performance
statistics are approximate, and are more accurate when both the client and server computers are fairly idle.
The transferred data can be compressed to approximately 25% of its original size if communication
compression is used.

The following is an example of the output from dbping -s for the dbping command dbping -s -c
"UID=DBA;PWD=sql;ENG=sampleserver;LINKS=TCPIP":

SQL Anywhere Server Ping Utility Version 11.0.1.1658
Connected to SQL Anywhere 11.0.1.1657 server "sampleserver" and database
"sample" at address 10.25.107.108.
Performance statistic Number Total Time Average
---------------------------- -------------- ---------- ------------
DBLib connect and disconnect 175 times 1024 msec 5 msec
Round trip simple request 2050 requests 1024 msec <1 msec
Send throughput 7600 KB 1024 msec 7421 KB/sec
Receive throughput 10100 KB 1024 msec 9863 KB/sec
Ping database successful.

See also
● “Ping utility (dbping)” on page 804

Troubleshooting connections

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 139

Disconnecting from a database
To disconnect users from a database see “Managing connected users” on page 467.

To disconnect from a database (Sybase Central)

1. Select a database.

2. Choose File » Disconnect.

To disconnect from a database (SQL)

● Execute a DISCONNECT statement.

See “DISCONNECT statement [ESQL] [Interactive SQL]” [SQL Anywhere Server - SQL Reference] and
“DROP CONNECTION statement” [SQL Anywhere Server - SQL Reference].

To disconnect other users from a database (SQL)

1. Connect to the database as a user with DBA authority.

2. Use the sa_conn_info system procedure to determine the connection ID of the user you want to
disconnect.

3. Execute a DROP CONNECTION statement.

Examples
The following statement shows how to use the DISCONNECT statement to disconnect the current
connection, conn1, in Interactive SQL:

DISCONNECT conn1;

The following statement shows how to use DISCONNECT in embedded SQL:

EXEC SQL DISCONNECT :conn-name

The following statement drops connection number 4.

DROP CONNECTION 4;

SQL Anywhere database connections

140 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Client/server communications

Contents
Supported network protocols ... 142
Using the TCP/IP protocol ... 143
Adjusting communication compression settings to improve performance 149
Troubleshooting network communications .. 151

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 141

Supported network protocols
Properly configured SQL Anywhere database servers run under the following networks and protocols:

● Windows (except Windows 2003 Server) TCP/IP protocol.

● Windows 2003 Server (32-bit) TCP/IP protocol.

● Windows 2003 Server (64-bit) TCP/IP protocol.

● Windows Mobile TCP/IP protocol.

● Unix TCP/IP protocol.

The client library for each platform supports the same protocols as the corresponding server. In order for
SQL Anywhere to run properly, the network protocol (TCP/IP) must be installed and configured properly
on both the client and server computers.

Client/server communications

142 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using the TCP/IP protocol
TCP/IP is a suite of protocols that has gained widespread use with the expansion of the Internet and the
world wide web.

UDP is a transport layer protocol that sits on top of IP. SQL Anywhere uses UDP on top of IP to do initial
server name resolution and uses TCP for connection and communication after that.

When you use the TCP/IP protocol, you can secure client/server communications using transport-layer
security and ECC or RSA encryption technology.

See “Transport-layer security” on page 1095.

IPv6 support in SQL Anywhere
On IPv6-enabled computers, the network database server listens by default on all IPv6 and IPv4 addresses.
IPv6 is supported on Windows, Linux, Mac OS X, Solaris, AIX, and HP-UX.

In most cases, no changes are required to the server start line to use IPv6. In the cases where specifying an
IP address is required, the server and the client libraries both accept IPv4 and IPv6 addresses. For example,
if a computer has more than one network card enabled, it will probably have two IPv4 addresses and two
IPv6 addresses. If you want the database server to listen on only one of the IPv6 addresses, you can specify
an address in the following format:

dbsrv11 -x tcpip(MyIP=fd77:55f:5a64:52a:202:5445:5245:444f) ...

Similarly, if a client application needs to specify the IP address of a server, the connection string or DSN
can contain the address, in the following format:

...;LINKS=tcpip(HOST=fe80::5445:5245:444f);...

Each interface is given an interface identifier, which appears at the end of an IPv6 address. For example, if
ipconfig.exe lists the address fe80::5445:5245:444f%7, the interface identifier is 7. When specifying
an IPv6 address on a Windows platform, the interface identifier should be used. On Unix, you can specify
either an interface identifier or interface name (the interface name is the name of the interface reported by
ifconfig). For example, the interface name is eth1 in the following IPv6 address:
fe80::5445:5245:444f%eth1. An interface identifier is required when specifying IPv6 addresses on
Linux (kernel 2.6.13 and later). This requirement affects values specified by the following protocol options:

● Broadcast
● Host
● MyIP

For example, suppose ipconfig.exe lists two interfaces, one with the identifier 1 and the other 2. If you are
looking for a database server that is on the network used by interface number 2, you can tell the client library
to broadcast only on that interface:

LINKS=tcpip(BROADCAST=ff02::1%2)

Note that ff02::1 is the IPv6 link-local multicast address.

Using the TCP/IP protocol

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 143

See also
● “Broadcast protocol option [BCAST]” on page 302
● “Host protocol option [IP]” on page 310
● “MyIP protocol option [ME]” on page 319

Using TCP/IP with Windows
The TCP/IP implementation for database servers on all Windows platforms uses Winsock 2.2. Clients on
Windows Mobile use the Winsock 1.1 standard.

If you do not have TCP/IP installed, you can install the TCP/IP protocol from the Control Panel by double-
clicking Network Settings.

Tuning TCP/IP performance
Increasing the packet size may improve query response time, especially for queries transferring a large
amount of data between a client and a server process. You can set the packet size using the -p option in the
database server command, or by setting the CommBufferSize (CBSIZE) connection parameter in your
connection profile.

See also
● “-p server option” on page 211
● “CommBufferSize connection parameter [CBSIZE]” on page 267

Connecting across a firewall
There are restrictions on connections when the client application is on one side of a firewall, and the server
is on the other. Firewall software filters network packets according to network port. Also, it is common to
disallow UDP packets from crossing the firewall.

When connecting across a firewall, you must use a set of protocol options in the CommLinks (LINKS)
connection parameter of your application's connection string.

● Host Set this parameter to the host name on which the database server is running. You can use the
short form IP.

● ServerPort If your database server is not using the default port of 2638, you must specify the port it
is using. You can use the short form Port.

● ClientPort Set this parameter to a range of allowed values for the client application to use. You can
use the short form CPort. This option may not be necessary depending on the firewall's configuration.

● DoBroadcast=NONE Set this parameter to prevent UDP from being used when connecting to the
server.

Client/server communications

144 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The firewall must be configured to allow TCP/IP traffic between the SQL Anywhere server's address and
all the SQL Anywhere clients' addresses. The SQL Anywhere server's address is the IP address of the
computer running the SQL Anywhere server (the HOST parameter) and the SQL Anywhere server's IP port
number (the ServerPort protocol option, default 2638). Each SQL Anywhere client's address consists of the
IP address of the client computer, and the range of the client IP ports (the ClientPort protocol option). For
the simplest configuration, all client ports can be allowed. If only specific client ports are allowed, specify
a range with more ports than the maximum number of concurrent connections from each client computer,
since there is a several minute timeout before a client port can be reused.

See “ClientPort protocol option [CPORT]” on page 307.

Example
The following connection string fragment restricts the client application to ports 5050 through 5060, and
connects to a server named myeng running on the computer at address myhost using the server port 2020.
No UDP broadcast is performed because of the DoBroadcast option.

ENG=myeng;LINKS=tcpip(ClientPort=5050-5060;HOST=myhost;PORT=2020;DoBroadcast=
NONE)

See also
● “CommLinks connection parameter [LINKS]” on page 268
● “ClientPort protocol option [CPORT]” on page 307
● “ServerPort protocol option [PORT]” on page 321
● “Host protocol option [IP]” on page 310
● “DoBroadcast protocol option [DOBROAD]” on page 309

Connecting on a dial-up network connection
You can use connection and protocol options to assist with connecting to a database across a dial-up link.

On the client side, you should specify the following protocol options:

● Host parameter You should specify the host name or IP address of the database server using the
Host (IP) protocol option. See “Host protocol option [IP]” on page 310.

● DoBroadcast parameter If you specify the Host (IP) protocol option, there is no need to do a
broadcast search for the database server. For this reason, use direct broadcasting. See “DoBroadcast
protocol option [DOBROAD]” on page 309.

● MyIP parameter You should set MyIP=NONE on the client side. See “MyIP protocol option
[ME]” on page 319.

● TIMEOUT parameter Set the TIMEOUT (TO) protocol option to increase the time the client will
wait while searching for a server. See “Timeout protocol option [TO]” on page 324.

A typical CommLinks (LINKS) connection parameter may look as follows:

LINKS=tcpip(MyIP=NONE;DoBroadcast=DIRECT;HOST=server_ip)

Using the TCP/IP protocol

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 145

Encrypting client/server communications over TCP/IP
By default, communication packets are not encrypted, which poses a potential security risk. You can secure
communications between client applications and the database server over TCP/IP using simple encryption
or transport-layer security. Transport-layer security provides server authentication, strong encryption using
ECC or RSA encryption technology, and other features for protecting data integrity.

See “Transport-layer security” on page 1095.

Connecting using an LDAP server
You can specify a central LDAP server to keep track of all database servers in an enterprise if you are
operating on a Windows (except Windows Mobile) or Unix platform. When the database server registers
itself with an LDAP server, clients can query the LDAP server and find the database server they are looking
for, regardless of whether they are on a WAN, LAN, or going through firewalls. Clients do not need to
specify an IP address (HOST=). The Server Enumeration utility (dblocate) can also use the LDAP server to
find other such servers.

LDAP is only used with TCP/IP, and only on network database servers.

Using SQL Anywhere with an LDAP server on AIX

To use SQL Anywhere 11 with AIX 6, you must either create links in /usr/lib or ensure that the directory
containing the LDAP libraries is included in the LIBPATH to ensure that the LDAP system libraries are
found.

To create links in /usr/lib

● Run the following commands as the root user:

cd /usr/lib
ln -s /opt/IBM/ldap/V6.1/lib64/libibmldap.a libibmldap64.a
ln -s /opt/IBM/ldap/V6.1/lib/libibmldap.a

To add the directory containing the LDAP libraries to LIBPATH

1. Create links in /usr/lib by running the following commands as the root user:

cd /usr/lib
ln -s /opt/IBM/ldap/V6.1/lib64/libibmldap.a libibmldap64.a
ln -s /opt/IBM/ldap/V6.1/lib/libibmldap.a

2. Ensure that the directory with the LDAP libraries are in the LIBPATH.

For example, for 64-bit libraries:

export LIBPATH=/opt/IBM/ldap/V6.1/lib64:$LIBPATH

For example, for 32-bit libraries:

export LIBPATH=/opt/IBM/ldap/V6.1/lib:$LIBPATH

Client/server communications

146 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Configuring the saldap.ini file
To enable this feature, a file containing information on how to find and connect to the LDAP server must
be created on both the database server computer and on each client computer. By default the name of this
file is saldap.ini, but it is configurable. If this file doesn't exist, LDAP support is silently disabled.

The file must be located in the same directory as the SQL Anywhere executables (for example, install-dir
\bin32 on Windows) unless a full path is specified with the LDAP parameter. The file must be in the following
format:

[LDAP]
server=computer-running-LDAP-server
port=port-number-of-LDAP-server
basedn=Base-DN
authdn=Authentication-DN
password=password-for-authdn
search_timeout=age-of-timestamps-to-be-ignored
update_timeout=frequency-of-timestamp-updates
read_authdn=read-only-authentication-domain-name
read_password=password-for-authdn

You can add simple encryption to obfuscate the contents of the saldap.ini file using the File Hiding utility
(dbfhide). See “File Hiding utility (dbfhide)” on page 768.

If the name of the file is not ldap.ini, then you must use the LDAP parameter to specify the file name.

server The name or IP address of the computer running the LDAP server. This value is required on Unix.
If this entry is missing on Windows, Windows looks for an LDAP server running on the local domain
controller.

port The port number used by the LDAP server. The default is 389.

basedn The domain name of the subtree where the SQL Anywhere entries are stored. This value defaults
to the root of the tree.

authdn The authentication domain name. The domain name must be an existing user object in the LDAP
directory that has write access to the basedn. This parameter is required for the database server, and ignored
on the client.

password The password for authdn. This parameter is required for the database server, and ignored on
the client.

search_timeout The age of timestamps at which they are ignored by the client and/or the Server
Enumeration utility (dblocate). A value of 0 disables this option so that all entries are assumed to be current.
The default is 600 seconds (10 minutes).

update_timeout The frequency of timestamp updates in the LDAP directory. A value of 0 disables this
option so that the database server never updates the timestamp. The default is 120 seconds (2 minutes).

read_authdn The read-only authentication domain name. The domain name must be an existing user
object in the LDAP directory that has read access to the basedn. This parameter is only required if the LDAP
server requires a non-anonymous binding before searching can be done. For example, this field is normally
required if Active Directory is used as the LDAP server. If this parameter is missing, the bind is anonymous.

read_password The password for authdn. This parameter is only required on the client if the read_authdn
parameter is specified.

Using the TCP/IP protocol

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 147

Example
The following is a sample saldap.ini file:

[LDAP]
server=ldapserver
basedn=dc=iAnywhere,dc=com
authdn=cn=SAServer,ou=iAnywhereASA,dc=iAnywhere,dc=com
password=secret

The entries are stored in a subtree of the basedn called iAnywhereASA. This entry must be created before
SQL Anywhere can use LDAP. To create the subtree, you can use the LDAPADD utility, supplying the
following information:

dn: ou=iAnywhereASA,basedn
objectClass: organizationalUnit
objectClass: top
ou: iAnywhereASA

When the server starts, it checks for an existing entry with the same name in the LDAP file. If one is found,
it is replaced if either the location entries in LDAP match the database server attempting to start, or the
timestamp field in the LDAP entry is more than 10 minutes old (the timeout value is configurable).

If neither of these entries is true, then there is another database server running with the same name as the
one attempting to start, and startup fails.

To ensure that entries in LDAP are up-to-date, the database server updates a timestamp field in the LDAP
entry every 2 minutes. If an entry's timestamp is older than 10 minutes, clients ignore the LDAP entry. Both
of these settings are configurable.

On the client, the LDAP directory is searched before doing any broadcasting, so if the database server is
found, no broadcasts are sent. The LDAP search is very fast, so if it fails, there is no discernible delay.

The Server Enumeration utility (dblocate) also uses LDAP—all database servers listed in LDAP are added
to the list of database servers returned. This allows the Server Enumeration utility (dblocate) to list database
servers that wouldn't be returned normally, for example, those which broadcasts wouldn't reach. Entries with
timestamps older than 10 minutes are not included.

Client/server communications

148 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Adjusting communication compression settings to
improve performance

Enabling compression for one or all connections, and setting the minimum size at which packets are
compressed, can improve SQL Anywhere performance in some circumstances.

To determine if enabling compression will help in your particular situation, it is recommended that you
conduct a performance analysis on your particular network and using your particular application before using
communication compression in a production environment. Performance results will vary according to the
type of network you are using, your applications, and the data you transfer.

The most basic way of tuning compression is as simple as enabling or disabling the Compression (COMP)
connection parameter on either the connection or server level. More advanced fine tuning of compression
performance is available by adjusting the CompressionThreshold (COMPTH) connection parameter.

Enabling compression increases the quantity of information stored in data packets, thereby reducing the
number of packets required to transmit a particular set of data. By reducing the number of packets, the data
can be transmitted more quickly.

For more information about performance analysis, see “Performance Monitor statistics” [SQL Anywhere
Server - SQL Usage], and “sa_conn_compression_info system procedure” [SQL Anywhere Server - SQL
Reference].

Enabling compression
Enabling compression for a connection (or all connections) can significantly improve SQL Anywhere
performance under some circumstances, including:

● When used over slow networks such as some wireless networks, some modems, serial links and some
WANs.

● When used in conjunction with SQL Anywhere encryption over a slow network with built-in
compression, since packets are compressed before they are encrypted.

Enabling compression, however, can sometimes also cause slower performance. For instance:

● Communication compression uses more memory and more CPU. It may cause slower performance,
especially for LANs and other fast networks.

● Most modems and some slow networks already have built-in compression. In these cases, SQL Anywhere
communication compression will not likely provide additional performance benefits unless you are also
encrypting the data.

For more information about compression, see “Compress connection parameter [COMP]” on page 270 and
“-pc server option” on page 212.

Modifying the compression threshold
You can also adjust the compression threshold to improve SQL Anywhere performance. For most networks,
the compression threshold does not need to be changed.

Adjusting communication compression settings to improve performance

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 149

When compression is enabled, individual packets may or may not be compressed, depending on their size.
For example, SQL Anywhere does not compress packets smaller than the compression threshold, even if
communication compression is enabled. As well, small packets (less than about 100 bytes) usually do not
compress at all. Since CPU time is required to compress packets, attempting to compress small packets could
actually decrease performance.

Generally speaking, lowering the compression threshold value may improve performance on very slow
networks, while raising the compression threshold may improve performance by reducing CPU usage.
However, since lowering the compression threshold value will increase CPU usage on both the client and
server, a performance analysis should be done to determine whether changing the compression threshold is
beneficial.

See “CompressionThreshold connection parameter [COMPTH]” on page 271, and “-pt server
option” on page 212.

To adjust SQL Anywhere compression settings

1. Enable communication compression.

Large data transfers with highly compressible data and larger packet sizes tend to get the best compression
rates.

For more information about enabling compression, see “Compress connection parameter
[COMP]” on page 270, and “-pc server option” on page 212.

2. Adjust the CompressionThreshold setting.

Lowering the compression threshold value may improve performance on very slow networks, while
raising the compression threshold may improve performance by reducing CPU usage.

For more information about adjusting the CompressionThreshold (COMPTH) connection parameter, see
“CompressionThreshold connection parameter [COMPTH]” on page 271, and “-pt server
option” on page 212.

Client/server communications

150 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Troubleshooting network communications
Network software involves several different components, increasing the likelihood of problems. Although
some tips concerning network troubleshooting are provided here, the primary source of assistance in network
troubleshooting should be the documentation and technical support for your network communications
software, as provided by your network communications software vendor.

Use logging
Specifying the -z database server option displays diagnostic communication messages, and other messages
to the database server messages window for troubleshooting purposes. These messages can help you diagnose
how a connection is failing, what connection parameters are used for the connection attempt, and what
communication links are being used.

Ensure that you are using compatible protocols
Ensure that the client and the database server are using the same protocol. The -x option for the server selects
a list of protocols for the server to use, and the CommLinks (LINKS) connection parameter does the same
for the client application.

You can use these options to ensure that each application is using the same protocol.

By default, the network database server uses all available protocols. The server supports client requests on
any active protocol. By default, the client only uses the shared memory protocol. The client can use all
available protocols by setting the CommLinks (LINKS) connection parameter to all.

See also
● “-x server option” on page 234
● “CommLinks connection parameter [LINKS]” on page 268

Ensure that you have current drivers
Old network adapter drivers can be a source of communication problems. You should ensure that you have
the latest version of your network adapter. You should be able to obtain current network adapter drivers
from the manufacturer or supplier of the card.

Testing the TCP/IP protocol
The ping utility can be useful to test that TCP/IP is installed and configured properly.

Troubleshooting network communications

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 151

Using ping to test the IP layer

Each IP layer has an associated address—for IPv4, this address is a four-integer, dot-separated number (such
as 191.72.109.12). Ping takes an IP address as an argument and attempts to send a single packet to the address.

First, determine if your own computer is configured correctly by using the ping utility to detect your
computer. If your IP address is 191.72.109.12, you would run the following command and wait to see if the
packets are routed at all:

ping 191.72.109.12

If the packets are routed, output similar to the following appears:

Pinging 191.72.109.12 with 32 bytes of data:
Reply from 191.72.109.12: bytes=32 time<.10ms TTL=32
Reply from 191.72.109.12: bytes=32 time<.10ms TTL=32
Reply from 191.72.109.12: bytes=32 time<.10ms TTL=32
...

This means that the computer is able to route packets to itself. This is reasonable assurance that the IP layer
is set up correctly. You could also ask someone else running TCP/IP for their IP address and try using the
ping utility to detect their computer.

You should ensure that you can ping the computer running the database server from the client computer
before proceeding.

If you are attempting to connect to a host on an IPv6 network, you must first ensure that IPv6 is installed on
the client computer. On Windows XP, run the command ipv6 install to install IPv6. IPv6 is installed
by default on Windows Vista. Installing IPv6 is different on each Unix operating system; consult the
operating system documentation for instructions on enabling IPv6.

Once IPv6 is installed and enabled, you can use the ping6 command to do the same thing as the ping
command described above. For example:

ping6 fe80::213:ceff:fe24:ca6
Pinging fe80::213:ceff:fe24:ca6
from fe80::213:ceff:fe24:ca6%6 with 32 bytes of data:
Reply from fe80::213:ceff:fe24:ca6%6: bytes=32 time<1ms
Reply from fe80::213:ceff:fe24:ca6%6: bytes=32 time<1ms
Reply from fe80::213:ceff:fe24:ca6%6: bytes=32 time<1ms
...

Diagnosing wiring problems
Faulty network wiring or connectors can cause problems that are difficult to track down. Try recreating
problems on a similar computer with the same configuration. If a problem occurs on only one computer, it
may be a wiring problem or a hardware problem.

Client/server communications

152 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

A checklist of common problems
The following list presents some common problems and their solutions.

For information about troubleshooting connections to the database or database server, see “Troubleshooting
connections” on page 132 and “Troubleshooting server startup” on page 74.

If you receive the message Database server not found when trying to connect, the client cannot
find the database server on the network. Check for the following problems:

● Under the TCP/IP protocol, clients search for database servers by broadcasting a request. Such broadcasts
will typically not pass through gateways, so any database server on a computer in another (sub)network,
will not be found. If this is the case, you must supply the host name of the computer on which the server
is running using the HOST (IP) protocol option.

● A firewall between the client and server may be preventing the connection. See “Connecting across a
firewall” on page 144.

● The personal server only accepts connections from the same computer. If the client and server are on
different computers, you must use the network server.

● Your network drivers are not installed properly or the network wiring is not installed properly.

● If you receive the message Unable to initialize requested communication links,
one ore more links failed to start. The probable cause is that your network drivers have not been installed.
Check your network documentation to find out how to install the driver you want to use.

● The server should use the TCP/IP protocol if you are connecting via jConnect.

● If you are trying to connect to a database server on your local computer, make sure the Search Network
For Database Servers option on the Database tab of the Connect window is cleared. You can select
this option if you are trying to connect to a database server running on a computer other than your local
computer.

For more information about network protocol options, see “Network protocol options” on page 301.

Adjusting timeout values
If you are experiencing problems with connections unexpectedly disconnecting, consider adjusting either
the liveness or the idle timeout values.

See also
● “LivenessTimeout connection parameter [LTO]” on page 288
● “-tl server option” on page 225
● “Idle connection parameter” on page 283
● “-ti server option” on page 225

Troubleshooting network communications

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 153

154

The database server

Contents
The SQL Anywhere database server .. 156
Database server options .. 165
Database options ... 248

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 155

The SQL Anywhere database server
Starts a personal database server or network database server.

Syntax
{ dbeng11 | dbsrv11 }
 [server-options] [database-file [database-options] ...]

Server options

Server option Description

@data Reads in options from a configuration file or environment variable. See
“@data server option” on page 165.

-? Displays usage information. See “-? server option” on page 166.

-b Runs in bulk operations mode. See “-b server option” on page 166.

-c size Sets initial cache size. See “-c server option” on page 167.

-ca 0 Disables dynamic cache sizing [Windows, Unix, Mac OS X]. See “-ca server
option” on page 169.

-cc { + | - } Collects information about database pages to be used for cache warming. See
“-cc server option” on page 169.

-ch size Sets the cache size upper limit [Windows, Unix, Mac OS X]. See “-ch server
option” on page 170.

-cl size Sets the cache size lower limit [Windows, Unix, Mac OS X]. See “-cl server
option” on page 171.

-cm size Specifies the amount of address space allocated for an Address Windowing
Extensions (AWE) cache [Windows]. See “-cm server option” on page 172.

-cp location[;loca-
tion ...]

Specifies set of directories or jar files in which to search for classes. See “-cp
server option” on page 173.

-cr { + | - } Warms the cache with database pages. See “-cr server option” on page 174.

-cs Displays cache usage in the database server messages window. See “-cs server
option” on page 175.

-cv { + | - } Controls the appearance of messages about cache warming in the database
server messages window. See “-cv server option” on page 175.

-cw Enables use of Address Windowing Extensions for setting the size of the da-
tabase server cache [Windows]. See “-cw server option” on page 176.

The database server

156 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Server option Description

-dt temp-file-dir Specifies the directory where temporary files are stored. See “-dt server op-
tion” on page 179.

-ec encryption-options Enables packet encryption [network server]. See “-ec server op-
tion” on page 180.

-ep Prompts for encryption key. See “-ep server option” on page 183.

-es Allows unencrypted connections over shared memory. See “-es server op-
tion” on page 184.

-f Forces the database to start without a transaction log. See “-f recovery op-
tion” on page 184.

-fc filename Specifies the file name of a DLL containing the file system full callback func-
tion. See “-fc server option” on page 185.

-fips Requires the use of FIPS-approved algorithms for strong database and com-
munication encryption [Windows]. See “-fips server option” on page 186.

-ga Automatically unloads the database after the last non-HTTP client connection
is closed. In addition, shut down after the last database is closed. See “-ga
server option” on page 188.

-gb level Sets database process priority class to level [Windows, Unix, Mac OS X]. See
“-gb server option” on page 188.

-gc num Sets maximum checkpoint timeout period to num minutes. See “-gc server
option” on page 189.

-gd level Sets database starting permission. See “-gd server option” on page 189.

-ge size Sets the stack size for threads that run external functions. See “-ge server
option” on page 190.

-gf Disables firing of triggers. See “-gf server option” on page 191.

-gk level Sets the permission required to stop the server. See “-gk server op-
tion” on page 191.

-gl level Sets the permission required to load or unload data. See “-gl server op-
tion” on page 192.

-gm num Sets the maximum number of connections. See “-gm server op-
tion” on page 192.

The SQL Anywhere database server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 157

Server option Description

-gn num Sets the maximum number of tasks that the database server can execute con-
currently. See “-gn server option” on page 193.

-gp size Sets the maximum page size to size bytes. See “-gp server op-
tion” on page 194.

-gr minutes Sets the maximum recovery time. See “-gr server option” on page 194.

-gss size Sets the thread stack size to size bytes. See “-gss server op-
tion” on page 195.

-gt num Sets the maximum number of physical processors that can be used (up to the
licensed maximum). This option is only useful on multiprocessor systems.
See “-gt server option” on page 196.

-gtc logical-processors-
to-use

Controls the maximum processor concurrency that the database server allows.
See “-gtc server option” on page 197.

-gu level Sets the permission level for utility commands: utility_db, all, none, or DBA.
See “-gu server option” on page 198.

-im submode Runs the database server in memory, reducing or eliminating writes to disk.
See “-im server option” on page 199.

-k Controls the collection of Performance Monitor statistics. See “-k server op-
tion” on page 201.

-kl GSS-API-library-file Specifies the file name of the Kerberos GSS-API library (or shared object on
Unix) and enable Kerberos authenticated connections to the database server.
See “-kl server option” on page 201.

-kr server-realm Specifies the realm of the Kerberos server principal and enables Kerberos
authenticated connections to the database server. See “-kr server op-
tion” on page 202.

-krb Enables Kerberos-authenticated connections to the database server. See “-krb
server option” on page 203.

-ks Disables the creation of shared memory that the Performance Monitor uses to
collect counter values from the database server [Windows]. See “-ks server
option” on page 204.

-ksc Specifies the maximum number of connections that the Performance Monitor
can monitor [Windows]. See “-ksc server option” on page 204.

-ksd Specifies the maximum number of databases that the Performance Monitor
can monitor [Windows]. See “-ksd server option” on page 205.

The database server

158 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Server option Description

-m Truncates the transaction log after each checkpoint for all databases. See “-m
server option” on page 205.

-n name Uses name as the name of the database server. Note that the -n option is po-
sitional. See “-n server option” on page 206.

-o filename Outputs messages to the specified file. See “-o server option” on page 208.

-oe filename Specifies file to log startup errors, fatal errors and assertions to. See “-oe server
option” on page 208.

-on size Specifies a maximum size for the database server message log file, after which
the file is renamed with the extension .old and a new file is started. See “-on
server option” on page 209.

-os size Limits the size of the log file for messages. See “-os server op-
tion” on page 210.

-ot filename Truncates the database server message log file and appends output messages
to it. See “-ot server option” on page 210.

-p packet-size Sets the maximum network packet size [network server]. See “-p server op-
tion” on page 211.

-pc Compresses all connections except same-computer connections. See “-pc
server option” on page 212.

-pt size_in_bytes Sets the minimum network packet size to compress. See “-pt server op-
tion” on page 212.

-qi Does not display the database server system tray icon or database server mes-
sages window [Windows]. See “-qi server option” on page 213.

-qn Does not minimize the database server messages window on startup [Win-
dows and Linux]. See “-qn server option” on page 213.

-qp Suppresses messages about performance in the database server messages
window. See “-qp server option” on page 214.

-qs Suppresses startup error windows. See “-qs server option” on page 215.

-qw Does not display the database server message window. See “-qw server op-
tion” on page 215.

-r Opens database in read-only mode. See “-r server option” on page 216.

The SQL Anywhere database server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 159

Server option Description

-s facility-ID Sets the Syslog facility ID [Unix, Mac OS X]. See “-s server op-
tion” on page 217.

-sb { 0 | 1 } Specifies how the server reacts to broadcasts. See “-sb server op-
tion” on page 218.

-sf feature-list Secures features for databases running on this database server. See “-sf server
option” on page 218.

-sk key Specifies a key that can be used to enable features that are disabled for the
database server. See “-sk server option” on page 223.

-su password Sets the password for the DBA user of the utility database (utility_db), or
disable connections to the utility database. See “-su server op-
tion” on page 224.

-ti minutes Sets the client idle time before shutdown—default 240 minutes. See “-ti server
option” on page 225.

-tl seconds Sets the default liveness timeout for clients in seconds—default 120 seconds.
See “-tl server option” on page 225.

-tmf Forces transaction manager recovery for distributed transactions [Windows].
See “-tmf server option” on page 226.

-tmt milliseconds Sets the re-enlistment timeout for distributed transactions [Windows]. See “-
tmt server option” on page 227.

-tq time Sets quitting time [network server]. See “-tq server option” on page 227.

-u Uses buffered disk I/O [Windows, Unix, Mac OS X]. See “-u server op-
tion” on page 228.

-ua Turns off use of asynchronous I/O [Linux]. See “-ua server op-
tion” on page 228.

-uc Starts the database server in shell mode [Unix and Mac OS X]. See “-uc server
option” on page 228.

-ud Runs as a daemon [Unix, Mac OS X]. See “-ud server option” on page 229.

-uf Specifies the action to take when a fatal error occurs [Unix, Mac OS X]. See
“-uf server option” on page 230.

The database server

160 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Server option Description

-ui Opens the Server Startup Options window and displays the database server
messages window, or starts the database server in shell mode if a usable dis-
play isn't available [Linux and Mac OS X]. See “-ui server op-
tion” on page 230.

-um Opens the Server Startup Options window and displays the database server
messages window [Mac OS X]. See “-um server option” on page 231.

-ut minutes Touches temporary files every min minutes [Unix, Mac OS X]. See “-ut server
option” on page 231.

-ux Displays the database server messages window and Server Startup Op-
tions window [Linux]. See “-ux server option” on page 232.

-v Displays database server version and stop. See “-v server op-
tion” on page 233.

-vss Enables and disables the Volume Shadow Copy Service (VSS). See “-vss
server option” on page 233.

-x list Specifies a comma-separated list of communication links to use. See “-x server
option” on page 234.

-xa authentication-info Specifies a list of database names and authentication strings for an arbiter
server. See “-xa server option” on page 235.

-xd Prevents the database server from becoming the default database server. See
“-xd server option” on page 236.

-xf state-file Specifies the location of the file used for maintaining state information about
your database mirroring system. See “-xf server option” on page 237.

-xs Specifies server side web services communications protocols. See “-xs server
option” on page 237.

-z Provides diagnostic information on communication links [network server].
See “-z server option” on page 239.

-ze Displays database server environment variables in the database server mes-
sages window. See “-ze server option” on page 240.

-zl Turns on capturing of the most recently-prepared SQL statement for each
connection. See “-zl server option” on page 240.

-zn integer Specifies the number of request log file copies to retain. See “-zn server op-
tion” on page 241.

The SQL Anywhere database server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 161

Server option Description

-zo filename Redirects request logging information to a separate file. See “-zo server op-
tion” on page 242.

-zoc Redirects web service client information to a file. See “-zoc server op-
tion” on page 243.

-zp Turns on capturing of the plan most recently used by the query optimizer. See
“-zp server option” on page 243.

-zr { all | SQL | none } Turns on logging of SQL operations. The default is NONE. See “-zr server
option” on page 244.

-zs size Limits the size of the log file used for request logging. See “-zs server op-
tion” on page 245.

-zt Turns on logging of request timing information. See “-zt server op-
tion” on page 246.

Database options
The following options can only be specified after a database file name in the database server command.

Database option Description

-a filename Applies the named transaction log file. See “-a database op-
tion” on page 248.

-ad log-directory Specifies the directory containing transaction log files to be applied to the
database. See “-ad database option” on page 248.

-ar Applies any log files located in the same directory as the transaction log to
the database. See “-ar database option” on page 249.

-as Continues running the database after transaction logs have been applied (used
in conjunction with -ad or -ar). See “-as database option” on page 250.

-dh Does not display the database when dblocate is used against this server. See
“-dh database option” on page 251.

-ds Specifies the location of the dbspaces for the database. See “-ds database op-
tion” on page 251.

-ek key Specifies encryption key. See “-ek database option” on page 252.

-m Truncates (deletes) the transaction log after each checkpoint for the specified
database. See “-m database option” on page 253.

The database server

162 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database option Description

-n name Names the database. See “-n database option” on page 253.

-r Opens the specified database(s) in read-only mode. Database modifications
not allowed. See “-r database option” on page 255.

-sm Provides a database server name that can be used to access the read-only mirror
database. See “-sm database option” on page 255.

-sn alternate-server-
name

Provides an alternate server name for a single database running on a database
server. See “-sn database option” on page 257.

-xp mirroring-options Provides information to an operational server that allows it to connect to its
partner and to the arbiter when database mirroring is being used. See “-xp
database option” on page 258.

Remarks
The dbeng11 command starts a personal database server. The dbsrv11 command starts a network database
server.

The database-file specifies the database file name. If database-file is specified without a file extension, SQL
Anywhere looks for database-file with extension .db. If you use a relative path, it is read relative to the
current working directory. You can supply a full path.

If you want to start a database server from a batch file, you must use the dbspawn utility. See “Start Server
in Background utility (dbspawn)” on page 829.

The personal database server has a maximum of ten concurrent connections, uses at most one CPU for request
processing, and doesn't support network client/server connections.

In addition, there are other minor differences, such as the default permission level that is required to start
new databases, or the permissions required to execute the CHECKPOINT statement.

Both personal and network database servers are supplied for each supported operating system, with one
exception. On Windows Mobile, only the network server is supplied. The support for TCP/IP in the network
server enables you to perform tasks from your desktop computer, including database management, with
Sybase Central.

Examples
The following command starts the SQL Anywhere sample database running on a personal database server:

dbeng11 "c:\Documents and Settings\All Users\Documents\SQL Anywhere 11\Samples
\demo.db"

The following command starts the SQL Anywhere sample database running on a network database server:

dbsrv11 "c:\Documents and Settings\All Users\Documents\SQL Anywhere 11\Samples
\demo.db"

The following example, entered all on one line, starts a server named myserver that starts with a cache size
of 3 MB and loads the sample database:

The SQL Anywhere database server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 163

dbeng11 -c 3m -n myserver "samples-dir\demo.db"

For information about samples-dir, see “Samples directory” on page 390.

The database server

164 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options
These options apply to the server as a whole, not just to an individual database.

@data server option
Reads in options from the specified environment variable or configuration file.

Syntax
{ dbsrv11 | dbeng11 } @data ...

Applies to
All operating systems and database servers, except Windows Mobile. It is supported for all database utilities
except the Language Selection utility (dblang), the Rebuild utility (rebuild), the Certificate Creation utility
(createcert), the Certificate Viewer utility (viewcert), the ActiveSync provider install utility (mlasinst), and
the File Hiding utility (dbfhide).

Remarks
Use this option to read in command line options from the specified environment variable or configuration
file. If both exist with the same name that is specified, the environment variable is used.

Configuration files can contain line breaks, and can contain any set of options. See “Using configuration
files” on page 737.

If you want to protect the information in a configuration file (for example, because it contains passwords)
you can use the File Hiding (dbfhide) utility to obfuscate the contents of configuration files. See “File Hiding
utility (dbfhide)” on page 768.

The @data parameter can occur at any point in the command line, and parameters contained in the file are
inserted at that point. Multiple files can be specified, and the file specifier can be used with command line
options.

See also
● “Using configuration files” on page 737

Example
The following configuration file holds a set of options for a server named myserver that starts with a cache
size of 4 MB and loads the sample database:

-c 4096
-n myserver
"c:\mydatabase.db"

If this configuration file is saved as c:\config.txt, it can be used in a command as follows:

dbsrv11 @c:\config.txt

The following configuration file contains comments:

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 165

#This is the server name:
-n MyServer
#These are the protocols:
-x tcpip
#This is the database file
my.db

The following statement sets an environment variable that holds options for a database server that starts with
a cache size of 4 MB and loads the sample database.

SET envvar=-c 4096 "c:\mydatabase.db";

This command starts the database server using an environment variable named envvar.

dbsrv11 @envvar

-? server option
Displays usage information.

Syntax
{ dbsrv11 | dbeng11 } -?

Applies to
All operating systems and database servers, except Windows Mobile.

Remarks
Displays a short description of each server option. The database doesn't perform any other task.

-b server option
Uses bulk operation mode.

Syntax
{ dbsrv11 | dbeng11 } -b ...

Applies to
All operating systems and database servers.

Remarks
This is useful for using the Interactive SQL INPUT command to load large quantities of data into a database.

The -b option should not be used if you are using LOAD TABLE to bulk load data.

When you use this option, the database server allows only one connection by one application. It keeps a
rollback log, but it doesn't keep a transaction log. The multi-user locking mechanism is turned off.

When you first start the database server after loading data with the -b option, you should use a new log file.

The database server

166 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Bulk operation mode doesn't disable the firing of triggers.

See also
● “Data recovery issues for bulk operations” [SQL Anywhere Server - SQL Usage]
● “Performance aspects of bulk operations” [SQL Anywhere Server - SQL Usage]

-c server option
Sets the initial memory reserved for caching database pages and other server information.

Syntax
{ dbsrv11 | dbeng11 } -c { size[k | m | g | p] } ...

Applies to
All operating systems and database servers.

Remarks
The amount of memory available for use as a database server cache is one of the key factors controlling
performance. You can set the initial amount of cache memory using the -c server option. The more cache
memory that can be given the server, the better its performance.

The size is the amount of memory, in bytes. Use k, m, or g to specify units of kilobytes, megabytes, or
gigabytes, respectively.

The unit p is a percentage either of the physical system memory, or of the maximum non-AWE cache size,
whichever is lower. The maximum non-AWE cache size depends on the operating system. For example:

● 2.8 GB for Windows 32-bit Advanced Server, Enterprise Server, Datacenter Server, and Vista

● 3.8 GB for the 32-bit database server running on Windows x64 Edition

● 1.8 GB on all other 32-bit systems

● On Windows Mobile, the p option specifies a percentage of available physical memory

If you use p, the argument is a percentage. You can use % as an alternative to p, but as most non-Unix
operating systems use % as an environment variable escape character, you must escape the % character. To
set the initial cache size to 50 percent of the physical system memory, you would use the following:

dbeng11 -c 50%% ...

On Unix operating systems, the cache size is set to the lesser of:

● the value specified after -c

● 95% of (available memory - 5 MB)

On Windows Mobile, the cache size will be set to the lesser of:

● the value specified after -c

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 167

● 95% of (available memory - 2 MB)

If no -c option is provided, the database server computes the initial cache allocation as follows:

1. It uses the following operating-system-specific default cache sizes:

● Windows Mobile 600 KB

● Windows 2 MB

● Unix 8 MB

2. It computes a runtime-specific minimum default cache size, which is the lesser of the following items:

● 25% of the computer's physical memory

● The sum of the sizes of the main database files specified on the command line. Additional dbspaces
apart from the main database files aren't included in the calculation. If no files are specified, this
value is zero.

3. It allocates the greater of the two values computed.

If your database is encrypted, you may want to increase the cache size. As well, if you are using dynamic
cache resizing (-ca option), then the cache size that is used may be restricted by the amount of memory that
is available.

See “Increase the cache size” [SQL Anywhere Server - SQL Usage].

The database server messages window displays the size of the cache at startup, and you can use the following
statement to obtain the current size of the cache:

SELECT PROPERTY('CacheSize');

See also
● “-ca server option” on page 169
● “-cc server option” on page 169
● “-ch server option” on page 170
● “-cl server option” on page 171
● “-cm server option” on page 172
● “-cr server option” on page 174
● “-cs server option” on page 175
● “-cv server option” on page 175
● “-cw server option” on page 176
● “Limiting cache memory use” [SQL Anywhere Server - SQL Usage]
● “Increase the cache size” [SQL Anywhere Server - SQL Usage]
● “Using the cache to improve performance” [SQL Anywhere Server - SQL Usage]

Example
The following example, entered all on one line, starts a server named myserver that starts with a cache size
of 3 MB and loads the sample database:

dbeng11 -c 3m -n myserver "samples-dir\demo.db"

The database server

168 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

For information about samples-dir, see “Samples directory” on page 390.

-ca server option
Enforces a static cache size.

Syntax
{ dbsrv11 | dbeng11 } -ca 0 ...

Applies to
Windows, Unix, Mac OS X

Remarks
You can disable automatic cache increase because of high server load by specifying -ca 0 on the command
line. If you do not include the -ca 0 option, the database server automatically increases the cache size. The
cache size still increases if the database server would otherwise run into the error Fatal Error:
dynamic memory exhausted.

This server option must only be used in the form -ca 0.

This option is ignored if you are using an AWE cache. You can use the -cw option to create a larger cache
using AWE. See “-cw server option” on page 176.

See also
● “-c server option” on page 167
● “-cc server option” on page 169
● “-ch server option” on page 170
● “-cl server option” on page 171
● “-cm server option” on page 172
● “-cr server option” on page 174
● “-cs server option” on page 175
● “-cv server option” on page 175
● “-cw server option” on page 176
● “Limiting cache memory use” [SQL Anywhere Server - SQL Usage]

Example
The following example starts a server named myserver that has a static cache that is 40% of the available
physical memory and loads the sample database:

dbsrv11 -c 40P -ca 0 -n myserver "samples-dir\demo.db"

For information about samples-dir, see “Samples directory” on page 390.

-cc server option
Collects information about database pages to be used for cache warming the next time the database is started.

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 169

Syntax
{ dbsrv11 | dbeng11 } -cc { + | - } ...

Applies to
All operating systems and database servers.

Remarks
By default, page collection is turned on. When collection is turned on, the database server keeps track of
each database page that is requested. Collection stops when the maximum number of pages has been
collected, the database is shut down, or the collection rate falls below the minimum value. Note that you
cannot configure the maximum number of pages collected or specify the value for the collection rate (the
value is based on cache size and database size). Once collection stops, information about the requested pages
is recorded in the database so those pages can be used to warm the cache the next time the database is started
with the -cr option. Collection of referenced pages is turned on by default.

See also
● “-c server option” on page 167
● “-ca server option” on page 169
● “-ch server option” on page 170
● “-cl server option” on page 171
● “-cm server option” on page 172
● “-cr server option” on page 174
● “-cs server option” on page 175
● “-cv server option” on page 175
● “-cw server option” on page 176
● “Using cache warming” [SQL Anywhere Server - SQL Usage]

-ch server option
Sets a maximum cache size, as a limit to automatic cache growth.

Syntax
{ dbsrv11 | dbeng11 } -ch { size[k | m | g | p] } ...

Applies to
Windows, Unix, Mac OS X

Remarks
This option limits the size of the database server cache during automatic cache growth. By default the upper
limit is approximately the lower of the maximum non-AWE cache size and 90% of the physical memory of
the computer.

The size is the amount of memory, in bytes. Use k, m, or g to specify units of kilobytes, megabytes, or
gigabytes, respectively.

The database server

170 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The unit p is a percentage either of the physical system memory, or of the maximum non-AWE cache size,
whichever is lower. The maximum non-AWE cache size depends on the operating system. For example:

● 2.8 GB for Windows 32-bit Advanced Server, Enterprise Server and Datacenter Server

● 3.8 GB for the 32-bit database server running on Windows x64 Edition

● 1.8 GB on all other 32-bit systems

● On Windows Mobile, the p option specifies a percentage of available physical memory

If you use p, the argument is a percentage. You can use % as an alternative to P, but as most non-Unix
operating systems use % as an environment variable escape character, you must escape the % character. To
set the minimum cache size to 50 percent of the physical system memory, you would use the following:

This option is ignored if you are using an AWE cache. You can use the -cw option to create a larger cache
using AWE. See “-cw server option” on page 176.

dbeng11 -ch 50%% ...

See also
● “-c server option” on page 167
● “-ca server option” on page 169
● “-cc server option” on page 169
● “-cl server option” on page 171
● “-cm server option” on page 172
● “-cr server option” on page 174
● “-cs server option” on page 175
● “-cv server option” on page 175
● “Limiting cache memory use” [SQL Anywhere Server - SQL Usage]

Example
The following example starts a server named silver that has a maximum cache size of 2 MB and loads the
sample database:

dbeng11 -ch 2m -n silver "samples-dir\demo.db"

For information about samples-dir, see “Samples directory” on page 390.

-cl server option
Sets a minimum cache size as a lower limit to automatic cache resizing.

Syntax
{ dbsrv11 | dbeng11 } -cl { size[k | m | g | p] } ...

Applies to
Windows, Unix, Mac OS X

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 171

Remarks
This option sets a lower limit to the cache. If you specify an initial cache size with the -c option, then the
minimum cache size is the same as the initial cache size. If the initial cache size is not specified, then the
default initial cache size is 2 MB on Windows and 8 MB on Unix.

The size is the amount of memory, in bytes. Use k, m, or g to specify units of kilobytes, megabytes, or
gigabytes, respectively.

The unit p is a percentage either of the physical system memory, or of the maximum non-AWE cache size,
whichever is lower. The maximum non-AWE cache size depends on the operating system. For example:

● 2.8 GB for Windows 32-bit Advanced Server, Enterprise Server and Datacenter Server

● 3.8 GB for the 32-bit database server running on Windows x64 Edition

● 1.8 GB on all other 32-bit systems

● On Windows Mobile, the p option specifies a percentage of available physical memory

If you use p, the argument is a percentage. You can use % as an alternative to P, but as most non-Unix
operating systems use % as an environment variable escape character, you must escape the % character. To
set the minimum cache size to 50 percent of the physical system memory, you would use the following:

dbeng11 -cl 50%% ...

This option is ignored if you are using an AWE cache. You can use the -cw option to create a larger cache
using AWE. See “-cw server option” on page 176.

See also
● “-c server option” on page 167
● “-ca server option” on page 169
● “-cc server option” on page 169
● “-ch server option” on page 170
● “-cm server option” on page 172
● “-cr server option” on page 174
● “-cs server option” on page 175
● “-cv server option” on page 175
● “-cw server option” on page 176
● “Limiting cache memory use” [SQL Anywhere Server - SQL Usage]

Example
The following example starts a server named silver that has a minimum cache size of 5 MB and loads the
database file example.db:

dbeng11 -cl 5m -n silver "c:\example.db"

-cm server option
Specifies the amount of address space allocated for an Address Windowing Extensions (AWE) cache on
Windows.

The database server

172 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Syntax
{ dbsrv11 | dbeng11 } -cm { size[k | m | g | p] } ...

Applies to
Windows

Remarks
When using an AWE cache on any of the supported platforms, the database server uses its entire address
space except for 512 MB to access the cache memory. The 512 MB address space is left available for other
purposes, such as DLLs that the server must load and for non-cache memory allocations. On most systems,
the default setting is enough. If you need to increase or decrease the amount of reserved address space, you
can do so by specifying the -cm option. The database server displays the amount of address space it is using
in the database server messages window at startup.

The size is the amount of memory, in bytes. Use k, m, or g to specify units of kilobytes, megabytes, or
gigabytes, respectively.

The unit p is a percentage of the maximum non-AWE cache size. If you use p, the argument is a percentage.
You can use % as an alternative to P, but as most non-Unix operating systems use % as an environment
variable escape character, you must escape the % character. To set the cache size to 50 percent of the address
space, you would use the following:

dbeng11 -cm 50%% ...

See also
● “-c server option” on page 167
● “-ca server option” on page 169
● “-cc server option” on page 169
● “-ch server option” on page 170
● “-cl server option” on page 171
● “-cr server option” on page 174
● “-cs server option” on page 175
● “-cv server option” on page 175
● “-cw server option” on page 176
● “Limiting cache memory use” [SQL Anywhere Server - SQL Usage]

-cp server option
Specifies set of directories or jar files in which to search for classes.

Syntax
{ dbsrv11 | dbeng11 } -cp location[;location ...] ...

Applies to
All operating systems and database servers.

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 173

Remarks
It is recommended that all classes and JAR files that are being used with Java in the database be installed in
the database. When you store the classes and JAR files within the database, the database can be easily moved
to a different computer or operating system. Another benefit of installing classes and JAR files into the
database is that the SQL Anywhere class loader can fetch the classes and resources from the database,
allowing each connection that is using Java in the database to have its own instance of these classes and its
own copy of static variables within these classes.

However, in cases where the class or JAR file must be loaded by the system class loader, they can be specified
with the -cp server option. This option adds directories and JAR files to the classpath that the database server
builds for launching the Java VM.

See also
● “Introduction to Java support” [SQL Anywhere Server - Programming]
● “How do I store Java classes in the database?” [SQL Anywhere Server - Programming]

-cr server option
Reloads (warms) the cache with database pages using information collected the last time the database was
run.

Syntax
{ dbsrv11 | dbeng11 } -cr { + | - } ...

Applies to
All operating systems and database servers.

Remarks
You can instruct the database server to warm the cache using pages that were referenced the last time the
database was started (page collection is turned on using the -cc option). Cache warming is turned on by
default. When a database is started, the server checks the database to see if it contains a collection of pages
requested the last time the database was started. If the database contains this information, the previously-
referenced pages are then loaded into the cache.

Warming the cache with pages that were referenced the last time the database was started can improve
performance when the same query or similar queries are executed against a database each time it is started.

See also
● “-cc server option” on page 169
● “-cl server option” on page 171
● “-cm server option” on page 172
● “-cs server option” on page 175
● “-cv server option” on page 175
● “-cw server option” on page 176
● “Using cache warming” [SQL Anywhere Server - SQL Usage]

The database server

174 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-cs server option
Displays cache size changes in the database server messages window.

Syntax
{ dbsrv11 | dbeng11 } -cs ...

Applies to
Windows, Unix

Remarks
For troubleshooting purposes, display cache information in the database server messages window whenever
the cache size changes.

See also
● “-c server option” on page 167
● “-ca server option” on page 169
● “-cc server option” on page 169
● “-ch server option” on page 170
● “-cl server option” on page 171
● “-cm server option” on page 172
● “-cr server option” on page 174
● “-cv server option” on page 175
● “-cw server option” on page 176
● “Using cache warming” [SQL Anywhere Server - SQL Usage]

-cv server option
Controls the appearance of messages about cache warming in the database server messages window.

Syntax
{ dbsrv11 | dbeng11 } -cv { + | - } ...

Applies to
All operating systems and database servers.

Remarks
When -cv+ is specified, a message appears in the database server messages window when any of the
following cache warming activities occur:

● collection of requested pages starts or stops (controlled by the -cc server option)

● page reloading starts or stops (controlled by the -cr server option)

By default, this option is turned off.

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 175

See also
● “-c server option” on page 167
● “-ca server option” on page 169
● “-cc server option” on page 169
● “-ch server option” on page 170
● “-cl server option” on page 171
● “-cm server option” on page 172
● “-cr server option” on page 174
● “-cs server option” on page 175
● “-cw server option” on page 176
● “Using cache warming” [SQL Anywhere Server - SQL Usage]

Example
The following command starts the database mydatabase.db with database page collection and page loading
turned on, and logs messages about these activities to the database server messages window:

dbsrv11 -cc+ -cr+ -cv+ mydatabase.db

-cw server option
Enables use of Address Windowing Extensions (AWE) on Windows for setting the size of the database
server cache.

Syntax
{ dbsrv11 | dbeng11 } -cw ...

Applies to
Windows

Remarks
The amount of memory available for use as a database server cache is one of the key factors controlling
performance. Because Windows supports Address Windowing Extensions, you can use the -cw option to
take advantage of large cache sizes based on the maximum amount of physical memory in the system.

AWE caches are not supported on 64-bit SQL Anywhere database servers.

Operating system Maximum non-AWE
cache size

Maximum amount of physical mem-
ory supported by Windows

Windows 2000 Professional 1.8 GB 4 GB

Windows 2000 Server 1.8 GB 4 GB

Windows 2000 Advanced Server 2.7 GB1 8 GB

Windows 2000 Datacenter Server 2.7 GB1 64 GB

The database server

176 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Operating system Maximum non-AWE
cache size

Maximum amount of physical mem-
ory supported by Windows

Windows XP Home Edition 1.8 GB 2 GB

Windows XP Professional 1.8 GB 4 GB

Windows Server 2003, Web Edi-
tion

1.8 GB 2 GB

Windows Server 2003, Standard
Edition

1.8 GB 4 GB

Windows Server 2003, Enterprise
Edition

2.7 GB1 32 GB

Windows Server 2003, Datacen-
ter Edition

2.7 GB1 64 GB

Windows Vista Ultimate 2.7 GB2 4 GB

Windows Vista Enterprise 2.7 GB2 4 GB

Windows Vista Business 2.7 GB2 4 GB

Windows Vista Home Premium 2.7 GB2 4 GB

Windows Vista Home Basic 2.7 GB2 4 GB

Windows Vista Starter 2.7 GB2 1 GB

1 On Windows XP/200x, you must start the operating system using the /3GB option to use a cache of this
size.
2 On Windows Vista, you must restart the operating system after running the following command as an
administrator to use a cache of this size:

bcdedit /set increaseuserva 3072

When using an AWE cache, most of the available physical memory in the system can be allocated for the
cache.

If you can set a cache of the required size using a non-AWE cache, this is recommended because AWE
caches allocate memory that can only be used by the database server. This means that while the database
server is running, the operating system and other applications cannot use the memory allocated for the
database server cache. AWE caches do not support dynamic cache sizing. Therefore, if an AWE cache is
used and you specify the -ch or -cl options to set the upper and lower cache size, they are ignored.

By default, 512 MB of address space is reserved for purposes other than the SQL Anywhere AWE cache
(address space is the amount of memory that can be accessed by a program at any given time). While this
amount is enough in most cases, you can change the amount of reserved address space using the -cm option.

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 177

On Windows Vista, only elevated database servers can use AWE memory. If you are autostarting a database
server on Windows Vista, you must specify ELEVATE=YES in your connection string so that autostarted
database server executables are elevated. See “Elevate connection parameter” on page 279.

To start a database server with an AWE cache, you must do the following:

● On Windows Vista, you must run the database server as an administrator.

● Have at least 130 MB of memory available on your system.

● On Windows XP/200x, if your system has between 2 GB and 16 GB of memory, add the /3GB option
to the Windows boot line in the "[operating systems]" section of the boot.ini file.

On Windows Vista, if your system has between 2 GB and 16 GB of memory, you must run the following
command as an administrator:

bcdedit /set increaseuserva 3072

On Windows XP/200x, if your system has more than 16 GB of memory, do not add the /3GB option to
the Windows boot line in the [operating systems] section of the boot.ini file because Windows won't be
able to address memory beyond 16 GB.

● On Windows XP/200x, if your system has more than 4 GB of memory, add the /PAE option to the
Windows boot line in the [operating systems] section of the boot.ini file.

On Windows Vista if your system has more than 4 GB of memory, run the following command as an
administrator:

bcdedit /set pae ForceEnable
● Grant the Lock Pages in Memory privilege to the user ID under which the server is run. The following

steps explain how to do this on Windows XP.

1. Log on to Windows as an administrator.

2. Open the Control Panel.

3. Double-click Administrative Tools.

4. Double-click Local Security Policy.

5. Open Local Policies in the left pane.

6. Double-click User Rights Assignment.

7. Double-click the Lock Pages In Memory policy in the right pane.

8. Click Add User Or Group.

9. Type the name of the user, and then click OK.

10. Click OK on the Lock Pages In Memory window.

11. Close all open windows and restart the computer for the setting to take effect.

If you specify the -cw option and the -c option on the command line, the database server attempts the initial
cache allocation as follows:

The database server

178 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

1. The AWE cache is no larger than the cache size specified by the -c option. If the value specified by the
-c option is less than 2 MB, AWE isn't used.

2. The AWE cache is no larger than all available physical memory less 128 MB.

3. The AWE cache is no smaller than 2 MB. If this minimum amount of physical memory isn't available,
an AWE cache isn't used.

When you specify the -cw option and do not specify the -c option, the database server attempts the initial
cache allocation as follows:

1. The AWE cache uses 100% of all available memory except for 128 MB that is left free for the operating
system.

2. The AWE cache is no larger than the sum of the sizes of the main database files specified on the command
line. Additional dbspaces apart from the main database files aren't included in the calculation. If no files
are specified, this value is zero.

3. The AWE cache is no smaller than 2 MB. If this minimum amount of physical memory isn't available,
an AWE cache isn't used.

When the server uses an AWE cache, the cache page size will be no smaller than 4 KB and dynamic cache
sizing is disabled.

See “Using the cache to improve performance” [SQL Anywhere Server - SQL Usage].

See also
● “-c server option” on page 167
● “-ca server option” on page 169
● “-cc server option” on page 169
● “-ch server option” on page 170
● “-cl server option” on page 171
● “-cm server option” on page 172
● “-cr server option” on page 174
● “-cs server option” on page 175
● “-cv server option” on page 175

Example
The following example starts a server named myserver that starts with a cache size of 12 GB and loads the
database c:\test\mydemo.db:

dbeng11 -n myserver -c 12G -cw c:\test\mydemo.db

-dt server option
Specifies the directory where temporary files are stored.

Syntax
{ dbsrv11 | dbeng11 } -dt temp-file-dir ...

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 179

Applies to
All servers and operating systems, except shared memory connections on Unix.

Remarks
SQL Anywhere creates two types of temporary files: database server-related temporary files (created on all
platforms), and communications-related temporary files (created only on Unix for both the client and the
server).

You can use the -dt option to specify a directory for database server-related temporary files. If you do not
specify this option when starting the database server, SQL Anywhere examines the following environment
variables, in the order shown, to determine the directory in which to place the temporary file.

● SATMP
● TMP
● TMPDIR
● TEMP

If none of the environment variables are defined, SQL Anywhere places its temporary file in the current
directory on Windows, and in the /tmp directory on Unix.

Temporary files for communications on Unix are not placed in the directory specified by -dt. Instead, the
environment variables are examined, and /tmp is used if none of the environment variables are defined.

See also
● “Overview of database files” on page 12
● “SATMP environment variable” on page 379
● “Place different files on different devices” [SQL Anywhere Server - SQL Usage]
● “sa_disk_free_space system procedure” [SQL Anywhere Server - SQL Reference]
● “temp_space_limit_check option [database]” on page 583

-ec server option
Uses transport-layer security or simple encryption to encrypt all native SQL Anywhere packets (DBLib,
ODBC, and OLE DB) transmitted to and from all clients. TDS packets aren't encrypted.

Syntax
{ dbsrv11 | dbeng11 } -ec encryption-options ...

encryption-options :

{ NONE |
 SIMPLE |
 TLS (TLS_TYPE=cipher;
 [FIPS={ Y | N };]
 IDENTITY=server-identity-filename;
 IDENTITY_PASSWORD=password) }, ...

The database server

180 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Applies to
NONE and SIMPLE apply to all servers and operating systems.

TLS applies to all servers and operating systems, except Windows Mobile.

For information about FIPS support, see http://www.sybase.com/detail?id=1061806.

Remarks
You can use this option to secure communication packets between client applications and the database server
using transport-layer security. See “Transport-layer security” on page 1095.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

The -ec option instructs the database server to accept only connections that are encrypted using one of the
specified types. Connections over the TDS protocol, which include Java applications using jConnect, are
always accepted regardless of the usage of the -ec option, and are never encrypted. Setting the TDS protocol
option to NO disallows these unencrypted TDS connections. See “TDS protocol option” on page 323.

By default, communication packets aren't encrypted, which poses a potential security risk. If you are
concerned about the security of network packets, use the -ec option. Encryption affects performance only
marginally. The -ec option controls the server's encryption settings and requires at least one of the following
parameters in a comma-separated list:

● NONE accepts connections that aren't encrypted.

● SIMPLE accepts connections that are encrypted with simple encryption. This type of encryption is
supported on all platforms, and on previous versions of SQL Anywhere. Simple encryption doesn't
provide server authentication, strong elliptic-curve or RSA encryption, or other features of transport-
layer security.

● TLS accepts connections that are encrypted. The TLS parameter accepts the following required
arguments:

○ cipher can be RSA or ECC for RSA and ECC encryption, respectively. For FIPS-approved RSA
encryption, specify TLS_TYPE=RSA;FIPS=Y. RSA FIPS uses a separate approved library, but is
compatible with clients specifying RSA with SQL Anywhere 9.0.2 or later.

For a list of supported platforms for FIPS, see http://www.sybase.com/detail?id=1061806.

The cipher must match the encryption (ECC or RSA) used to create your certificates.

For information about enforcing the FIPS-approved algorithm, see “-fips server
option” on page 186.

Note
Version 10 and later clients cannot connect to version 9.0.2 or earlier database servers using the ECC
algorithm. If you require strong encryption for this configuration, use the RSA algorithm.

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 181

http://www.sybase.com/detail?id=1061806
http://www.sybase.com/detail?id=1061806

○ server-identity-filename is the path and file name of the server identity certificate. If you are
using FIPS-approved RSA encryption, you must generate your certificates using the RSA cipher.

For more information about creating the server certificate, which can be self-signed, or signed by a
Certificate Authority or enterprise root certificate, see “Creating digital certificates” on page 1101.

○ password is the password for the server private key. You specify this password when you create
the server certificate.

If the database server accepts simple encryption, but does not accept unencrypted connections, then any non-
TDS connection attempts using no encryption automatically use simple encryption.

Starting the database server with -ec SIMPLE tells the database server to only accept connections using
simple encryption. TLS connections (ECC, RSA, and RSA FIPS) fail, and connections requesting no
encryption use simple encryption.

Starting the server with -ec SIMPLE,TLS(TLS_TYPE=ECC) tells the database server to only accept
connections with ECC encryption or simple encryption. Both RSA and RSA FIPS connections fail, and
connections requesting no encryption use simple encryption.

If you want the database server to accept encrypted connections over TCP/IP, but also want to be able to
connect to the database from the local computer over shared memory, you can specify the -es option along
with the -ec option when starting the database server. See “-es server option” on page 184.

The dbecc11.dll and dbrsa11.dll files contain the ECC and RSA code used for encryption and decryption.
The file dbfips11.dll contains the code for the FIPS-approved RSA algorithm. When you connect to the
database server, if the appropriate file cannot be found, or if an error occurs, a message appears on the
database server messages window. The server doesn't start if the specified types of encryption cannot be
initiated.

The client's and the server's encryption settings must match or the connection will fail except in the following
cases:

● if -ec SIMPLE is specified on the database server, but -ec NONE is not, then connections that do not
request encryption can connect and automatically use simple encryption

● if the database server specifies RSA and the client specifies FIPS, or vice versa, the connection succeeds.
In this case, the Encryption connection property returns the value specified by the database server.

See also
● “Starting the database server with transport-layer security” on page 1107
● “Encryption connection parameter [ENC]” on page 280
● “-ek database option” on page 252
● “-ep server option” on page 183
● “-es server option” on page 184
● “DatabaseKey connection parameter [DBKEY]” on page 274

Example
The following example specifies that connections with no encryption and simple encryption are allowed.

dbsrv11 -ec NONE,SIMPLE -x tcpip c:\mydemo.db

The database server

182 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The following example specifies starts a database server that uses the elliptic-curve server certificate
eccserver.id.

dbsrv11 -ec TLS(TLS_TYPE=ECC;IDENTITY=eccserver.id;IDENTITY_PASSWORD=test) -
x tcpip c:\mydemo.db

The following example starts a database server that uses the RSA server certificate rsaserver.id.

dbsrv11 -ec TLS(TLS_TYPE=RSA;IDENTITY=rsaserver.id;IDENTITY_PASSWORD=test) -
x tcpip c:\mydemo.db

The following example starts a database server that uses the FIPS-approved RSA server certificate
rsaserver.id.

dbsrv11 -ec
TLS(TLS_TYPE=RSA;FIPS=Y;IDENTITY=rsaserver.id;IDENTITY_PASSWORD=test) -x
tcpip c:\mydemo.db

-ep server option
Prompts the user for the encryption key upon starting a strongly encrypted database.

Syntax
{ dbsrv11 | dbeng11 } -ep ...

Applies to
All operating systems and database servers.

Remarks
The -ep option instructs the database server to make a window appear for the user to enter the encryption
key for database started on the command line that require an encryption key. This server option provides an
extra measure of security by never allowing the encryption key to be seen in clear text.

When used with the server, the user is prompted for the encryption key when the following are all true:

● the -ep option is specified

● the server is a Windows personal server, or the server is just starting up

● a key is required to start a database

● the server is either not a Windows service, or it is a Windows service with the interact with desktop
option turned ON

● the server isn't a daemon (Unix)

If you want to secure communication packets between client applications and the database server use the -
ec server option and transport-layer security. See “Transport-layer security” on page 1095.

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 183

See also
● “Starting the database server with transport-layer security” on page 1107
● “-ec server option” on page 180
● “-ek database option” on page 252
● “Encryption connection parameter [ENC]” on page 280
● “DatabaseKey connection parameter [DBKEY]” on page 274

Example
The user is prompted for the encryption key when the myencrypted.db database is started:

dbsrv11 -ep -x tcpip myencrypted.db

-es server option
Allows unencrypted connections over shared memory.

Syntax
{ dbsrv11 | dbeng11 } -ec encryption-options -es ...

Applies to
All servers and operating systems, except Windows Mobile.

Remarks
This option is only effective when specified with the -ec option. The -es option instructs the database server
to allow unencrypted connections over shared memory. Connections over TCP/IP must use an encryption
type specified by the -ec option. This option is useful in situations where you want remote clients to use
encrypted connections, but for performance reasons you also want to access the database from the local
computer with an unencrypted connection.

See also
● “-ec server option” on page 180
● “Starting the database server with transport-layer security” on page 1107

Example
The following example specifies that connections with simple encryption and unencrypted connections over
shared memory are allowed.

dbsrv11 -ec SIMPLE -es -x tcpip c:\mydemo.db

-f recovery option
Forces the database server to start after the transaction log has been lost.

The database server

184 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Syntax
{ dbsrv11 | dbeng11 } -f ...

Applies to
All operating systems and database servers.

Remarks

Caution
This option is for use in recovery situations only.

If there is no transaction log, the database server performs a checkpoint recovery of the database and then
shuts down—it doesn't continue to run. You can then restart the database server without the -f option for
normal operation.

If there is a transaction log in the same directory as the database, the database server performs a checkpoint
recovery, and a recovery using the transaction log, and then shuts down—it doesn't continue to run. You can
then restart the database server without the -f option for normal operation.

Specifying a cache size when starting the server can reduce recovery time.

See also
● “Running in special modes” on page 49
● “Backup and data recovery” on page 869

Example
The following command forces the database server to start and perform a recovery of the database
mydatabase.db:

dbeng11 mydatabase.db -f

-fc server option
Specifies the file name of a DLL (or shared object on Unix) containing the File System Full callback function.

Syntax
{ dbsrv11 | dbeng11 } -fc filename ...

Applies to
All operating systems and database servers.

Remarks
This option can be used to notify users, and possibly take corrective action, when a file system full condition
is encountered. If you use the -fc option, the database server attempts to load the specified DLL and resolve
the entry point of the callback function during startup. If the SQL Anywhere database server cannot find
both the DLL and the entry point, the database server returns an error and shuts down. The DLL is user-
supplied and can use the callback to, among other things, invoke a batch file (or shell script on Unix) you

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 185

have supplied to take diagnostic or corrective action. Alternatively, the callback function itself can perform
such an action.

A sample disk full callback function is located in samples-dir\SQLAnywhere\DiskFull.

For information about samples-dir, see “Samples directory” on page 390.

SQL Anywhere searches for the callback function DLL in the same locations as it searches for other DLLs
and files.

For more information about where SQL Anywhere searches for files, see “How SQL Anywhere locates
files” on page 392.

When the database server detects a disk full condition, it invokes the callback function (if one has been
provided), passing it the following information:

● the name of the dbspace where the condition was triggered

● the operating system-specific error code from the failed operation

The return code from the call to xp_out_of_disk indicates whether the operation that caused the condition
should be aborted or retried. If a non-zero value is returned, the operation is aborted, otherwise it is retried.
The callback function is invoked repeatedly as long as it returns zero and the file system operation fails.

On Microsoft Windows platforms, if the database server is started with a database server messages window
(neither -qi nor -qw have been specified), and a callback DLL is not provided, a window appears when a
disk full condition occurs. This window contains the dbspace name and error code, and allows the user to
choose whether the operation that caused the disk full condition should be retried or aborted.

On all other operating systems, when -fc isn't specified and a disk full condition is encountered, a fatal error
occurs.

You can create system events to track the available disk space of devices holding the database file, the log
file, or the temporary file and alert administrators in case of a disk space shortage.

See “CREATE EVENT statement” [SQL Anywhere Server - SQL Reference].

See also
● “Using callback functions” [SQL Anywhere Server - Programming]
● “Understanding system events” on page 926
● “max_temp_space option [database]” on page 550
● “temp_space_limit_check option [database]” on page 583

Example
When the database server starts, it attempts to load the diskfull.dll DLL.

dbeng11 -fc diskfull.dll

-fips server option
Requires that only FIPS-approved algorithms should be used for strong database and communication
encryption.

The database server

186 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Syntax
{ dbsrv11 | dbeng11 } -fips ...

Applies to
Windows

Remarks
Specifying this option forces all server encryption to use FIPS-approved algorithms. This option applies to
strong database encryption, client/server transport-layer security, and web services transport-layer security.
You can still use unencrypted connections and databases when the -fips option is specified, but you cannot
use simple encryption.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

For strong database encryption, the -fips option causes new databases to use the AES_FIPS type, even if
AES is specified in the ALGORITHM clause of the CREATE DATABASE statement.

When the database server is started with -fips, you can run databases encrypted with AES, AES256,
AES_FIPS, or AES256_FIPS strong encryption, but not databases encrypted with simple encryption.
Unencrypted databases can also be started on the server when -fips is specified.

The SQL Anywhere security option must be installed on any computer used to run a database encrypted
with AES_FIPS or AES256_FIPS.

For SQL Anywhere transport-layer security, the -fips option causes the server to use the FIPS-approved
RSA encryption cipher, even if RSA is specified. If ECC is specified, an error occurs because a FIPS-
approved elliptic-curve algorithm is not available.

For transport-layer security for web services, the -fips option causes the server to use HTTPS FIPS, even if
HTTPS is specified.

When you specify -fips, the ENCRYPT and HASH functions use the FIPS-approved RSA encryption cipher,
and password hashing uses the SHA-256 FIPS algorithm rather than the SHA-256 algorithm.

See also
● “Strong encryption” on page 1082
● “Transport-layer security” on page 1095
● “Encrypting SQL Anywhere web services” on page 1112
● “-ec server option” on page 180
● “ENCRYPT function [String]” [SQL Anywhere Server - SQL Reference]
● “HASH function [String]” [SQL Anywhere Server - SQL Reference]

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 187

-ga server option
Unloads the database after the last non-HTTP client connection disconnects.

Syntax
{ dbsrv11 | dbeng11 } -ga ...

Applies to
All operating systems.

Remarks
Specifying this option on the network server causes each database to be unloaded after the last non-HTTP
client connection disconnects. In addition to unloading each database after the last non-HTTP connection
disconnects, the database server shuts down when the last database is stopped.

If the only connection to a database is an HTTP connection, and the database is configured to stop
automatically, when the HTTP connection disconnects, the database is not unloaded. As well, if you specify
the -ga option, and the database has an HTTP connection and a command sequence or TDS connection,
when the last command sequence or TDS connection disconnects, the database autostops, and any HTTP
connections are dropped.

See also
● “Rebuilding databases” [SQL Anywhere Server - SQL Usage]
● “AutoStop connection parameter [ASTOP]” on page 265

-gb server option
Sets the server process priority class.

Windows syntax
{ dbsrv11 | dbeng11 } -gb { idle | normal | high | maximum } ...

Unix syntax
{ dbsrv11 | dbeng11 } -gb level ...

Applies to
Windows, Unix, Mac OS X

Remarks
This option sets the server process priority class.

On Windows, normal and high are the commonly-used settings. The value idle is provided for completeness,
and maximum may interfere with the running of your computer.

On Unix, the level is an integer from -20 to 19. The default value on Unix is the same as the nice value of
the parent process. Lower level values represent a more favorable scheduling priority. All restrictions placed

The database server

188 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

on setting a nice value apply to the -gb option. For example, on most Unix platforms, only the root user can
lower the priority level of a process (for example, changing it from 0 to -1).

-gc server option
Sets the maximum interval between checkpoints.

Syntax
{ dbsrv11 | dbeng11 } -gc minutes ...

Applies to
All operating systems and database servers.

Remarks
Set the maximum length of time in minutes that the database server runs without doing a checkpoint on each
database.

The default value is the setting of the checkpoint_time database option, which defaults to 60 minutes. If a
value of 0 is entered, the default value of 60 minutes is used.

Checkpoints generally occur more frequently than the specified time.

See “How the database server decides when to checkpoint” on page 910.

See also
● “checkpoint_time option [database]” on page 514
● “Understanding the checkpoint log” on page 18
● “How the database server decides when to checkpoint” on page 910

-gd server option
Sets the permissions required to start or stop a database.

Syntax
{ dbsrv11 | dbeng11 } -gd { DBA | all | none } ...

Applies to
All operating systems and database servers.

Remarks
This is the permission required for a user to cause a new database file to be loaded by the server, or to stop
a database on a running database server. The level can be one of the following:

● DBA Only users with DBA authority can start or stop databases.

● all All users can start or stop databases.

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 189

● none Starting and stopping databases isn't allowed apart from when the database server itself is started
and stopped.

The default setting is all for the personal database server, and DBA for the network database server. Both
uppercase and lowercase syntax is acceptable.

Note that when this option is set to DBA, the client application must already have a connection to the server
to start or stop a database. Providing a DBA user ID and password on a new connection is not enough.

You can obtain the setting of the -gd option using the StartDBPermission server property:

SELECT PROPERTY ('StartDBPermission');

See also
● “Permissions overview” on page 452

Example
The following steps illustrates how to use the -gd option for the network database server.

1. Start the network database server:

dbsrv11 -x tcpip -su mypwd -n myserver -gd DBA
2. Connect to the utility database from Interactive SQL:

dbisql -c "UID=DBA;PWD=mypwd;ENG=myserver;DBN=utility_db"
3. Start a database:

START DATABASE demo
ON myserver;

4. Connect to the database you have started:

CONNECT
TO myserver
DATABASE demo
USER DBA IDENTIFIED BY sql;

-ge server option
Sets the stack size for external functions.

Syntax
{ dbsrv11 | dbeng11 } -ge integer ...

Applies to
Windows

Remarks
Sets the stack size for threads running external functions, in bytes. The default is 32 KB.

The database server

190 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Controlling threading behavior” on page 52

-gf server option
Disables firing of triggers by the server.

Syntax
{ dbsrv11 | dbeng11 } -gf ...

Applies to
All operating systems and database servers.

Remarks
The -gf server option instructs the server to disable the firing of triggers.

See also
● “fire_triggers option [compatibility]” on page 531
● “Introduction to triggers” [SQL Anywhere Server - SQL Usage]

-gk server option
Sets the permissions required to stop the network server and personal server using dbstop.

Syntax
{ dbsrv11 | dbeng11 } -gk { DBA | all | none } ...

Applies to
All operating systems and database servers.

Remarks
The allowed values include:

● DBA Only users with DBA authority can use dbstop to stop the server. This is the default for the
network server.

● all All users can use dbstop to stop the server. This is the default for the personal server.

● none The server cannot be stopped using dbstop.

Both uppercase and lowercase syntax is acceptable.

See also
● “Stop Server utility (dbstop)” on page 831

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 191

-gl server option
Sets the permission required to load data using LOAD TABLE, and to unload data using UNLOAD or
UNLOAD TABLE.

Syntax
{ dbsrv11 | dbeng11 } -gl { DBA | all | none } ...

Applies to
All operating systems and database servers.

Remarks
Using the UNLOAD TABLE or UNLOAD statement places data in files on the database server computer,
and the LOAD TABLE statement reads files from the database server computer.

To control access to the file system using these statements, the -gl server option allows you to control the
level of database permission that is required to use these statements.

The allowed values are as follows:

● DBA Only users with DBA authority can load or unload data from the database.

● all All users can load or unload data from the database.

● none Data cannot be unloaded or loaded.

Both uppercase and lowercase syntax is acceptable.

The default setting is all for personal database servers on non-Unix operating systems, and DBA for the
network database server and the Unix personal server. These settings reflect the fact that, on non-Unix
platforms, the personal database server is running on the current computer, and so the user already has access
to the file system.

See also
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]
● “UNLOAD statement” [SQL Anywhere Server - SQL Reference]

-gm server option
Limits the number of concurrent connections to the server.

Syntax
{ dbsrv11 | dbeng11 } -gm integer ...

Applies to
All operating systems and database servers.

The database server

192 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
Defines the connection limit for the server. If this number is greater than the number that is allowed under
licensing and memory constraints, it has no effect.

The database server allows one extra DBA connection above the connection limit to allow a user with DBA
authority to connect to the server and drop other connections in an emergency.

-gn server option
Sets the maximum number of tasks that the database server can execute concurrently.

Syntax
{ dbsrv11 | dbeng11 } -gn integer ...

Applies to
All operating systems and database servers.

Remarks
This option sets the maximum multiprogramming level of the database server. It limits the number of tasks
(both user and system requests) that the database server can execute concurrently. If the database server
receives an additional request while at this limit, the new request must wait until an executing task completes.

The maximum number of combined unscheduled and active requests is limited by the -gm server option,
which limits the number of connections to the server.

Setting the -gn value too high can result in errors because the system resources for the database server are
consumed by the large -gn value.

The default value is 20 active tasks for both the network database server and the personal database server,
except on Windows Mobile where the default is 3, and the number of active tasks that can execute
simultaneously depends on the number of database server threads and the number of logical processors in
use.

The database server's kernel uses tasks as the scheduling unit. The execution of any user request requires at
least one task. However, a request may cause the scheduling of additional tasks on its behalf. One example
of this is if the request involves the execution of an external procedure or function (Java, Perl, CLR, and so
on) that in turn makes database requests back into the database server.

When intra-query parallelism is involved, each access plan component executed in parallel is a task. These
tasks count toward the -gn limit as if they were actually separate requests. However, tasks created for intra-
query parallelism are not reflected in the database properties that track the number of active and inactive
requests.

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 193

Caution
A stack of the size specified by -gss is allocated for each database server task, and the maximum number of
tasks is specified by the -gn option. If you set both -gss and -gn to a high value, then the database server may
not be able to start, or the size of the cache can be limited significantly. For example if you specified -gss
16M and -gn 100 when starting the database server, then 1.6 GB of memory would be reserved just for
stacks.

See also
● “Threading in SQL Anywhere” on page 50
● “Setting the database server's multiprogramming level” on page 53
● “max_query_tasks option [database]” on page 547
● “-gm server option” on page 192
● “-gm server option” on page 192
● “-gtc server option” on page 197

-gp server option
Sets the maximum allowed database page size.

Syntax
{ dbsrv11 | dbeng11 } -gp { 2048 | 4096 | 8192 | 16384 | 32768 } ...

Applies to
All operating systems and database servers.

Remarks
Database files with a page size larger than the page size of the server cannot be loaded. This option explicitly
sets the page size of the server, in bytes.

If you do not use this option, then the page size of the first database on the command line is used.

On all platforms, if you do not use this option and start a server with no databases loaded, the default value
is 4096.

See also
● “Table and page sizes” [SQL Anywhere Server - SQL Usage]
● “Setting a maximum page size” on page 49

-gr server option
Sets the maximum length of time (in minutes) for recovery from system failure.

Syntax
{ dbsrv11 | dbeng11 } -gr minutes ...

The database server

194 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Applies to
All operating systems and database servers.

Remarks
When a database server is running with multiple databases, the recovery time that is specified by the first
database started is used unless overridden by this option.

The value specified by the -gr option instructs the database server how often to perform a checkpoint. For
example, if you set -gr to 5, then the database server tries to perform checkpoints often enough so that
recovery takes no longer than 5 minutes. However, if recovery is necessary, it runs to completion, even if it
takes longer than the length of time specified by -gr. The default value is the setting of the recovery_time
database option, which defaults to 2 minutes.

The recovery time includes both the estimated recovery time and the estimated checkpoint time for the
database.

See also
● “recovery_time option [database]” on page 568
● “How the database server decides when to checkpoint” on page 910

-gss server option
Sets the stack size per internal execution thread in the server.

Syntax
{ dbsrv11 | dbeng11 } -gss { integer[k | m] } ...

Applies to
All operating systems and servers. For Windows, this option is supported on Windows XP and later.

Remarks
The number of internal execution threads is controlled by the -gn option and has a default value of 20. The
-gss option allows you to lower the memory usage of the database server in environments with limited
memory.

The size is the amount of memory to use, in bytes. Use k or m to specify units of kilobytes or megabytes,
respectively.

Caution
A stack of the size specified by -gss is allocated for each database server task, and the maximum number of
tasks is specified by the -gn option. If you set both -gss and -gn to a high value, then the database server may
not be able to start, or the size of the cache can be limited significantly. For example if you specified -gss
16M and -gn 100 when starting the database server, then 1.6 GB of memory would be reserved just for
stacks.

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 195

On Windows XP and later, the default stack size used by the database server is 1 MB on 32-bit operating
systems, and 4 MB on 64-bit operating systems. The maximum stack size used by the database server is 16
MB on 32-bit operating systems, and 256 MB on 64-bit operating systems. This option is ignored on
Windows 2000.

On Unix, the default and minimum stack size per internal execution thread is 500 KB, and the maximum
stack size is 4 MB.

This option is supported on Pocket PC 2003 and later. On supported Windows Mobile platforms, the default
and minimum stack size is 64 KB and the maximum stack size is 512 KB. On earlier Windows Mobile
platforms, 1MB per thread of address space is reserved.

See also
● “Threading in SQL Anywhere” on page 50

-gt server option
Sets the maximum number of physical processors that can be used (up to the licensed maximum). This option
is only useful on multiprocessor systems.

Syntax
{ dbsrv11 | dbeng11 } -gt integer ...

Applies to
Windows (except Windows Mobile), Linux, and Solaris.

Remarks
The personal database server is always limited to a single processor. With per-seat licensing, the network
database server uses all CPUs available on the computer (the default). With CPU-based licensing, the
network database server uses only the number of processors you are licensed for. The number of CPUs that
the network database server can use may also be affected by your SQL Anywhere edition. See “Editions and
licensing” [SQL Anywhere 11 - Introduction].

When you specify a value for the -gt option, the database server adjusts its affinity mask (if supported on
that hardware platform) to restrict the database server to run on only that number of physical processors. If
the database server is licensed for n processors, the server will, by default, run on all logical processors
(hyperthreads and cores) of n physical processors. This can be further restricted with the -gtc option.

Valid values for the -gt option are between 1 and the minimum of:

● the number of physical processors on the computer
● the maximum number of CPUs that the server is licensed for if CPU-licensing is in effect

If the -gt value specified lies outside this range, the lower or upper limit is imposed. For the personal database
server (dbeng11) the server uses a -gt value of 1.

The database server

196 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “-gn server option” on page 193
● “-gtc server option” on page 197
● “Threading in SQL Anywhere” on page 50

-gtc server option
Controls the maximum processor concurrency that the database server allows.

Syntax
{ dbsrv11 | dbeng11 } -gtc logical-processors-to-use ...

Applies to
Linux, Solaris, and Windows operating systems executing on Intel-compatible x86 and x64 platforms,
excluding Windows Mobile.

Remarks
When you start the database server, the number of physical and logical processors detected by the database
server appears in the database server messages window.

Physical processors are sometimes referred to as packages or dies, and are the CPUs of the computer.
Additional logical processors exist when the physical processors support hyperthreading or are themselves
configured as multiprocessors (usually referred to as multi-core processors). The operating system
schedules threads on logical processors.

The -gtc option allows you to specify the number of logical processors that can be used by the database
server. Its effect is to limit the number of database server threads that are created at server startup. This limits
the number of active database server tasks that can execute concurrently at any one time. By default, the
number of threads created is 1 + the number of logical processors on all licensed physical processors.

By default, the database server allows concurrent use of all logical processors (cores or hyperthreads) on
each licensed physical processor. For example, on a single-CPU system that supports hyperthreading, by
default the database server permits two threads to run concurrently on one physical processor. If the -gtc
option is specified, and the number of logical processors to be used is less than the total available for the
number of physical processors that are licensed, then the database server allocates logical processors based
on round-robin assignment. Specifying 1 for the -gtc option implicitly disables intra-query parallelism
(parallel processing of individual queries). Intra-query parallelism can also be explicitly limited or disabled
outright using the max_query_tasks option. See “max_query_tasks option [database]” on page 547.

See also
● “-gn server option” on page 193
● “-gt server option” on page 196
● “Parallelism during query execution” [SQL Anywhere Server - SQL Usage]
● “Threading in SQL Anywhere” on page 50

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 197

Example
Consider the following examples for a Windows-based SMP computer. In each case, assume a 4-processor
system with 2 cores on each physical processor for a total of 8 logical processors. The physical processors
are identified with letters and the logical processors (cores in this case) are identified with numbers. This 4-
processor system therefore has processing units A0, A1, B0, B1, C0, C1, D0, and D1.

Scenario Network database server settings

A single CPU license or -gt 1 specified ● -gt 1
● -gtc 2
● -gn 20

Threads can execute on A0 and A1.

No licensing restrictions on the CPU with -gtc 5
specified

● -gt 4
● -gtc 5
● -gn 20

Threads can execute on A0, A1, B0, C0, and D0.

A database server with a 3 CPU license and -gtc 5
specified

● -gt 3
● -gtc 5
● -gn 20

Threads can execute on A0, A1, B0, B1, and C0.

No licensing restrictions on the CPU with -gtc 1
specified

● -gt 4
● -gtc 1
● -gn 20

Threads can execute only on A0.

-gu server option
Sets the permission levels for utility commands.

Syntax
{ dbsrv11 | dbeng11 } -gu { all | none | DBA | utility_db } ...

Applies to
All operating systems and database servers.

Remarks
Sets permission levels for utility commands such as CREATE DATABASE and DROP DATABASE. The
level can be set to one of the following: utility_db, all, none, or DBA. The default is DBA.

The database server

198 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The utility_db level restricts the use of these commands to only those users who can connect to the utility
database. The all, none, and DBA levels permit all users, no users, or users with DBA authority, respectively,
to execute utility commands.

See also
● “Specifying the permissions required to execute file administration statements” on page 33

-im server option
Runs the database server in memory, reducing or eliminating writes to disk.

Syntax
{ dbsrv11 | dbeng11 } -im { c | nw } ...

Applies to
All operating systems and database servers.

Separately licensed component required
In-memory mode requires a separate license. See “Separately licensed components” [SQL Anywhere 11 -
Introduction].

Remarks
This feature is most useful on systems with a large amount of available memory, typically enough to hold
all the database files within the cache. There are two in-memory modes available:

● Checkpoint only (-im c) When running in checkpoint-only mode, the database server does not use
a transaction log, so you cannot recover to the most recent committed transaction. However, because the
checkpoint log is enabled, the database can be recovered to the most recent checkpoint. Normally when
you run a database without a transaction log, the database server still performs a checkpoint on a commit,
which affects performance. However, when you run the database server in checkpoint only mode, the
database server does not perform a checkpoint after each commit.

This mode is useful in applications where increased performance is desirable, and the loss of committed
transactions after the most recent checkpoint is acceptable.

The following restrictions apply when running in checkpoint-only mode:

1. There is no transaction log.

2. There is no temporary file.

3. Checkpoints are allowed both on demand and at the database server's normal checkpoint frequency.

4. Dirty pages are flushed to disk only on checkpoint.

● Never write (-im nw) When running in never write mode, committed transactions are not written to
the database file on disk. All changes are lost if the database is shut down or crashes, so database files
are always left in their original state. Requests to extend or create new dbspaces are allowed, but the
changes are not reflected in the database files. You can create and use new dbspaces, but they are not

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 199

written to disk. Making a backup in never write mode is not useful because any changes to the system
dbspace are not written to the file.

The following restrictions apply when running in never write mode:

1. There is no transaction log.

2. There is no checkpoint log.

3. There is no temporary file.

4. Dirty database pages are never flushed to disk.

5. The original database file is never modified.

Because changes are never written to the original database files, if a persistent copy of current database
contents is required, you must use the dbunload utility or the UNLOAD TABLE statement. You can also
use SQL queries to retrieve the changes, but you must then manually write these changes to the database
file.

The performance benefits gained from in-memory mode depend on the application workload and the speed
of the I/O subsystem. The largest performance gains are seen in applications that insert or update large
amounts of data, and in applications that commit and checkpoint frequently.

Often, performance of the in-memory modes is as good as, or better than the performance of using
transactional global temporary tables. The smallest performance improvement may be seen with applications
that predominately query the database. In general, when using in-memory mode, the best performance can
be achieved by pre-growing the cache to an amount large enough to hold the full expected contents of the
database files. This eliminates much of the overhead involved in growing the cache in increments while the
application is running.

Caution
Since pages are not flushed from cache in never write mode, it is possible to exhaust the available cache if
the amount of data in the database grows too large. When this happens, SQL Anywhere issues an error and
stops processing requests. For this reason, never write mode should be used with caution, and always with
a cache large enough to hold the expected complete working set of pages that an application may use. Since
checkpoints continue to occur in the "checkpoint only" mode, there is a reduced risk of the server running
out of available cache as compared to the "never write" mode.

For the LOAD TABLE and some ALTER TABLE statements, the checkpoint log is used to partially reverse
the effects of a failure or to recover from an error. In never write mode, a checkpoint log is not created and
you cannot partially reverse the effects of some statements if they fail or an error occurs. Incorrect or
incomplete data could remain in tables. See “Understanding the checkpoint log” on page 18.

See also
● “Separately licensed components” [SQL Anywhere 11 - Introduction]
● “-c server option” on page 167
● “Use in-memory mode” [SQL Anywhere Server - SQL Usage]

The database server

200 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-k server option
Controls the collection of Performance Monitor statistics.

Syntax
{ dbsrv11 | dbeng11 } -k ...

Applies to
All operating systems and database servers.

Remarks
The database server collects Performance Monitor statistics by default.

If you specify -k when you start the database server, then the server does not collect Performance Monitor
statistics. The -k option does not affect the collection of column statistics used by the query optimizer.

This option should only be used in situations where the database server is running on a multi-processor
computer where it can be shown by testing to improve performance. For most workloads, the benefit will
be negligible, so use of this option is not recommended. When you disable the performance counters, this
information is not available for analyzing performance problems.

You can also change the setting for the collection of Performance Monitor statistics using the
sa_server_option system procedure. See “sa_server_option system procedure” [SQL Anywhere Server - SQL
Reference].

See also
● “-ks server option” on page 204
● “-ksc server option” on page 204
● “-ksd server option” on page 205
● “Monitoring statistics using Sybase Central Performance Monitor” [SQL Anywhere Server - SQL

Usage]

-kl server option
Specifies the file name of the Kerberos GSS-API library (or shared object on Unix) and enables Kerberos
authenticated connections to the database server.

Syntax
{ dbsrv11 | dbeng11 } -kl GSS-API-library-file ...

Applies to
All operating systems except Windows Mobile.

Remarks
This option specifies the location and name of the Kerberos GSS-API. This option is only required if the
Kerberos client uses a different file name for the Kerberos GSS-API library than the default, or if there are

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 201

multiple GSS-API libraries installed on the computer running the database server. A Kerberos client must
already be installed and configured, and SSPI cannot be used by the database server.

Specifying this option enables Kerberos authentication to the database server.

See also
● “-kr server option” on page 202
● “-krb server option” on page 203
● “Kerberos connection parameter [KRB]” on page 285
● “Kerberos authentication” on page 114
● “GRANT statement” [SQL Anywhere Server - SQL Reference]

Example
The following command starts a database server that uses the libgssapi_krb5.so shared object for Kerberos
authentication.

dbsrv11 -kl libgssapi_krb5.so -n my_server_princ /opt/myapp/kerberos.db

-kr server option
Specifies the realm of the Kerberos server principal and enable Kerberos authenticated connections to the
database server.

Syntax
{ dbsrv11 | dbeng11 } -kr server-realm ...

Applies to
All operating systems except Windows Mobile.

Remarks
This option specifies the realm of the Kerberos server principal. Normally, the principal used by the database
server for Kerberos authentication is server-name@default-realm, where default-realm is the default realm
configured for the Kerberos client. Use this option if you want the server principal to use a different realm
than the default realm, in which case the server principal used is server-name@server-realm.

Specifying this option enables Kerberos authentication to the database server.

See also
● “-kl server option” on page 201
● “-krb server option” on page 203
● “Kerberos connection parameter [KRB]” on page 285
● “Kerberos authentication” on page 114
● “GRANT statement” [SQL Anywhere Server - SQL Reference]

The database server

202 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
The following command starts a database server that accepts Kerberos logins and uses the principal
my_server_princ@MYREALM for authentication.

dbeng11 -kr MYREALM -n my_server_princ C:\kerberos.db

-krb server option
Enables Kerberos-authenticated connections to the database server.

Syntax
{ dbsrv11 | dbeng11 } -krb ...

Applies to
All operating systems except Windows Mobile.

Remarks
This option enables Kerberos authentication to the database server. You must specify one or more of the -
krb, -kl, and -kr options for the database server to be able to authenticate clients using Kerberos.

Before you can use Kerberos authentication, a Kerberos client must already be installed and configured on
both the client and database server computers. Additionally, the principal server-name@REALM must
already exist in the Kerberos KDC, and the keytab for the principal server-name@REALM must already
have been securely extracted to the keytab file on the database server computer. The database server will
not start if the -krb option is specified, but this setup has not been performed.

Note
The database server name cannot contain any of the following characters: /, \, or @, and database server
names with multibyte characters cannot be used with Kerberos.

The login_mode database option must be set to allow Kerberos logins, and Kerberos client principals must
be mapped to database user IDs using the GRANT KERBEROS LOGIN statement.

See also
● “-kl server option” on page 201
● “-kr server option” on page 202
● “Kerberos connection parameter [KRB]” on page 285
● “Kerberos authentication” on page 114
● “GRANT statement” [SQL Anywhere Server - SQL Reference]

Example
For a Kerberos principal for the database server named my_server_princ@MYREALM, the following
command starts a database server named my_server_princ.

dbsrv11 -krb -n my_server_princ C:\kerberos.db

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 203

-ks server option
Disables the creation of shared memory that the Performance Monitor uses to collect counter values from
the database server.

Syntax
{ dbsrv11 | dbeng11 } -ks 0 ...

Applies to
Windows

Remarks
When you specify this option, the Performance Monitor does not show any server, database, or connection
statistics for the current database server.

See also
● “Monitoring statistics using Sybase Central Performance Monitor” [SQL Anywhere Server - SQL

Usage]
● “-k server option” on page 201
● “-ksc server option” on page 204
● “-ksd server option” on page 205

-ksc server option
Specifies the maximum number of connections that the Performance Monitor can monitor.

Syntax
{ dbsrv11 | dbeng11 } -ksc integer ...

Applies to
Windows

Remarks
By default, the Performance Monitor monitors 10 connections.

See also
● “Monitoring statistics using Sybase Central Performance Monitor” [SQL Anywhere Server - SQL

Usage]
● “-k server option” on page 201
● “-ks server option” on page 204
● “-ksd server option” on page 205

The database server

204 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-ksd server option
Specifies the maximum number of databases that the Performance Monitor can monitor.

Syntax
{ dbsrv11 | dbeng11 } -ksd integer ...

Applies to
Windows

Remarks
By default, the Performance Monitor monitors two databases.

See also
● “Monitoring statistics using Sybase Central Performance Monitor” [SQL Anywhere Server - SQL

Usage]
● “-k server option” on page 201
● “-ks server option” on page 204
● “-ksc server option” on page 204

-m server option
Truncates the transaction log when a checkpoint is done.

Syntax
{ dbsrv11 | dbeng11 } -m ...

Applies to
All operating systems and database servers.

Remarks
This option truncates the transaction log when a checkpoint is done, either at shutdown or as a result of a
checkpoint scheduled by the server.

Caution
When this option is selected, there is no protection against media failure on the device that contains the
database files.

This option provides a way to automatically limit the growth of the transaction log. Checkpoint frequency
is still controlled by the checkpoint_time and recovery_time options (which you can also set on the command
line).

The -m option is useful for limiting the size of the transaction log in situations where high volume transactions
requiring fast response times are being processed, and the contents of the transaction log aren't being relied
upon for recovery or replication. The -m option provides an alternative to operating without a transaction

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 205

log at all, in which case a checkpoint would be required following each COMMIT and performance would
suffer as a result. When the -m option is specified, there is no protection against media failure on the device
that contains the database files. Other alternatives for managing the transaction log (for example, using the
BACKUP statement and events) should be considered before using the -m option.

To avoid database file fragmentation, it is recommended that where this option is used, the transaction log
be placed on a separate device or partition from the database itself.

When this option is used, no operations can proceed while a checkpoint is in progress.

Caution
Do not use the -m option with databases that are being replicated or synchronized. Replication and
synchronization, used by SQL Remote and MobiLink, inherently rely on transaction log information.

See also
● “-m database option” on page 253
● “The transaction log” on page 14
● “Understanding the checkpoint log” on page 18
● “Transaction Log utility (dblog)” on page 842
● “checkpoint_time option [database]” on page 514
● “recovery_time option [database]” on page 568

-n server option
Sets the name of the database server.

Syntax
{ dbsrv11 | dbeng11 } -n server-name database-filename ...

Applies to
All operating systems and database servers.

Remarks
By default, the database server receives the name of the first database file with the path and extension
removed. For example, if the server is started on the file samples-dir\demo.db and no -n option is specified,
the name of the server is demo.

When a database server starts, it attempts to become the default database server on that computer. The first
database server to start when there is no default server becomes the default database server. Shared memory
connection attempts on that computer that do not explicitly specify a database server name connect to the
default server.

The database server

206 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Note
It is recommended that you use the -xd option for database servers being used by deployed applications, and
that all clients explicitly specify the name of the database server to which they should connect by using the
ENG connection parameter. This ensures that the database connects to the correct database server when a
computer is running multiple SQL Anywhere database servers.

There is no character set conversion performed on the server name. If the client character set and the database
server character set are different, using extended characters in the server name can cause the server to not
be found. If your clients and servers are running on different operating systems or locales, you should use
7-bit ASCII characters in the server name. See “Connection strings and character sets” on page 410.

Database server names must be valid identifiers. Long database server names are truncated to different
lengths depending on the protocol. Database server names cannot:

● begin with white space, single quotes, or double quotes
● end with white space
● contain semicolons
● be longer than 250 bytes

Note
On Windows and Unix, version 9.0.2 and earlier clients cannot connect to version 10.0.0 and later database
servers with names longer than the following lengths:

● 40 bytes for Windows shared memory
● 31 bytes for Unix shared memory
● 40 bytes for TCP/IP

The server name specifies the name to be used in the ServerName (ENG) connection parameter of client
application connection strings or profiles. With shared memory, unless -xd is specified, there is a default
database server that is used if no server name is specified, provided that at least one database server is running
on the computer.

Running multiple database servers with the same name is not recommended.

There are two -n options
The -n option is positional. If it appears before any database file names, it is a server option and names the
server. If it appears after a database file name, it is a database option and names the database.

For example, the following command names the database server SERV and the database DATA:

dbsrv11 -n SERV sales.db -n DATA

See “-n database option” on page 253.

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 207

See also
● “Identifiers” [SQL Anywhere Server - SQL Reference]
● “ServerName connection parameter [ENG]” on page 296
● “Naming the server and the databases” on page 46
● “-xd server option” on page 236

-o server option
Prints all database server messages to the database server message log file.

Syntax
{ dbsrv11 | dbeng11 } -o filename ...

Applies to
All operating systems and database servers.

Remarks
Print all database server messages, including informational messages, errors, warnings, and MESSAGE
statement output, to the specified file, and to the database server messages window. If you specify the -qi
option with -o, all messages appear only in the database server message log file.

It is recommended that you do not end the file name with .log because this can create problems for utilities
that perform operations using the transaction log.

You can obtain the name of the database server message log file by executing the following command:

SELECT PROPERTY ('ConsoleLogFile');

See also
● “Logging database server actions” on page 43
● “-oe server option” on page 208
● “-on server option” on page 209
● “-os server option” on page 210
● “-ot server option” on page 210
● “-qi server option” on page 213

-oe server option
Specifies a file name to log startup errors, fatal errors, and assertions.

Syntax
{ dbsrv11 | dbeng11 } -oe filename ...

Applies to
All operating systems and database servers.

The database server

208 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
Each line in the output log file is prefixed with the date and time. Startup errors include such errors as:

● Couldn't open/read database file: database file

● A database server with that name has already started

Fatal errors and assertions are logged to the Windows Application Event Log (except on Windows Mobile)
or the Unix system log regardless of whether -oe is specified.

It is recommended that you do not end the file name with .log because this can create problems for utilities
that perform operations using the transaction log.

See also
● “-o server option” on page 208
● “-on server option” on page 209
● “-os server option” on page 210
● “-ot server option” on page 210
● “-qi server option” on page 213

-on server option
Specifies a maximum size for the database server message log, after which the file is renamed with the
extension .old and a new file is started.

Syntax
{ dbsrv11 | dbeng11 } -on { size[k | m | g] } ...

Applies to
All operating systems and database servers.

Remarks
The size is the maximum file size for the database server message log, in bytes. Use k, m, or g to specify
units of kilobytes, megabytes, or gigabytes respectively. The minimum size limit is 10 KB. By default, there
is no maximum size limit.

When the database server message log reaches the specified size, the database server renames the file with
the extension .old, and starts a new file with the original name.

Note
If the .old database server message log file already exists, it is overwritten. To avoid losing old database
server message log files, use the -os option instead.

This option cannot be used with the -os option.

It is recommended that you do not end the database server message log file name with .log because this can
create problems for utilities that perform operations using the transaction log.

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 209

See also
● “Logging database server actions” on page 43
● “-o server option” on page 208
● “-oe server option” on page 208
● “-os server option” on page 210
● “-ot server option” on page 210

-os server option
Specifies a maximum size for the database server message log file, at which point the file is renamed.

Syntax
{ dbsrv11 | dbeng11 } -os { size[k | m | g] } ...

Applies to
All operating systems and database servers.

Remarks
The size is the maximum file size for logging database server messages, in bytes. Use k, m, or g to specify
units of kilobytes, megabytes, or gigabytes respectively. The minimum size limit is 10 KB. By default, there
is no maximum size limit.

Before the database server logs output messages to the database server message log file, it checks the current
file size. If the log message will make the file size exceed the specified size, the database server renames
the database server message log file to yymmddxx.slg, where yymmdd represents the year, month, and day
the file was created, and xx is a number that starts at 00 and continues incrementing.

This option allows you to identify old database server message log files that can be deleted to free up disk
space.

This option cannot be used with the -on option.

It is recommended that you do not end the database server message log file name with .log because this can
create problems for utilities that perform operations using the transaction log.

See also
● “Logging database server actions” on page 43
● “-o server option” on page 208
● “-oe server option” on page 208
● “-on server option” on page 209
● “-ot server option” on page 210

-ot server option
Truncates the database server message log file and appends output messages to it.

The database server

210 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Syntax
{ dbsrv11 | dbeng11 } -ot logfile ...

Applies to
All operating systems and database servers.

Remarks
The functionality is the same as the -o option except the database server message log file is truncated before
any messages are written to it. You can obtain the name of the database server message log file using the
following command:

SELECT PROPERTY ('ConsoleLogFile');

It is recommended that you do not end the database server message log file name with .log because this can
create problems for utilities that perform operations using the transaction log.

See also
● “Logging database server actions” on page 43
● “-o server option” on page 208
● “-oe server option” on page 208
● “-on server option” on page 209
● “-os server option” on page 210

-p server option
Sets the maximum size of communication packets.

Syntax
{ dbsrv11 | dbeng11 } -p integer ...

Applies to
All operating systems and database servers.

Remarks
The default is 7300 bytes on all operating systems except Windows Mobile. On Windows Mobile, the default
is 1460 bytes. The minimum value is 500 bytes and the maximum value is 16000.

You can change the communication buffer size for a connection by setting the CommBufferSize (CBSIZE)
connection parameter.

See also
● “-pc server option” on page 212
● “-pt server option” on page 212
● “CommBufferSize connection parameter [CBSIZE]” on page 267

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 211

-pc server option
Compresses all connections except for same-computer connections.

Syntax
dbsrv11 -pc ...

Applies to
All operating systems and network servers, except web servers.

Remarks
The packets sent between a SQL Anywhere client and server can be compressed using the -pc option.
Compressing a connection may improve performance under some circumstances. Large data transfers with
highly compressible data tend to get the best compression rates. This option can be overridden for a particular
client by specifying COMPRESS=NO in the client's connection parameters.

By default, connections are not compressed. Specifying the -pc option compresses all connections except
same-computer connections, web services connections, and TDS connections. TDS connections (including
jConnect) do not support SQL Anywhere communication compression.

Same-computer connections over any communication link are not compressed, even if the -pc option or
COMPRESS=YES connection parameter is used.

See also
● “-p server option” on page 211
● “-pt server option” on page 212
● “Adjusting communication compression settings to improve performance” on page 149
● “Compress connection parameter [COMP]” on page 270
● “Use the compression features” [SQL Anywhere Server - SQL Usage]

-pt server option
Increases or decreases the size limit at which packets are compressed.

Syntax
dbsrv11 -pt size ...

Applies to
All operating systems and network servers.

Remarks
This parameter takes an integer value representing the minimum byte-size of packets to be compressed.
Values less than 80 are not recommended. The default is 120 bytes.

The database server

212 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Under some circumstances, changing the compression threshold can help performance of a compressed
connection by allowing you to compress packets only when compression will increase the speed at which
the packets are transferred. The default setting should be appropriate for most cases.

If both client and server specify different compression threshold settings, the client setting applies.

See also
● “-p server option” on page 211
● “-pc server option” on page 212
● “Adjusting communication compression settings to improve performance” on page 149
● “CompressionThreshold connection parameter [COMPTH]” on page 271
● “Use the compression features” [SQL Anywhere Server - SQL Usage]

-qi server option
Controls whether database server system tray icon and database server messages window appear.

Syntax
{ dbsrv11 | dbeng11 } -qi ...

Applies to
Windows

Remarks
This option leaves no visual indication that the server is running, other than possible startup error windows.
You can use either (or both) the -o or -oe log files to diagnose errors.

See also
● “-qn server option” on page 213
● “-qp server option” on page 214
● “-qs server option” on page 215
● “-qw server option” on page 215
● “-o server option” on page 208
● “-oe server option” on page 208

-qn server option
Specifies that the database server messages window is not minimized on startup.

Syntax
{ dbsrv11 | dbeng11 } -qn ...

Applies to
Windows

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 213

Linux (if X window server is used)

Remarks
By default, the database server messages window automatically minimizes once database server startup
completes. When this option is specified, the database server messages window does not minimize after the
database server starts.

The database server messages window may appear in the background if an application autostarting the
database server it is not active and -qn is specified.

On Linux, you must specify the -ux option (use X window server) with the -qn option.

See also
● “-ux server option” on page 232
● “-qi server option” on page 213
● “-qp server option” on page 214
● “-qs server option” on page 215
● “-qw server option” on page 215

Example
The following command starts the database server on Linux or Solaris, displays the database server messages
window, and does not minimize the database server messages window once the database server is started:

dbeng11 -ux -qn sample.db

-qp server option
Specifies that messages about performance do not appear in the database server messages window.

Syntax
{ dbsrv11 | dbeng11 } -qp ...

Applies to
All operating systems and database servers.

Remarks
Do not display messages about performance in the database server messages window. Messages that are
suppressed include the following:

● No unique index or primary key for table 'table-name'

● Database file "mydatabase.db" consists of nnn fragments

The database server

214 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “-qi server option” on page 213
● “-qn server option” on page 213
● “-qs server option” on page 215
● “-qw server option” on page 215

-qs server option
Suppresses startup error windows.

Syntax
{ dbsrv11 | dbeng11 } -qs ...

Applies to
Windows

Remarks
This option suppresses startup error windows. Examples of startup errors include the database server not
being able to open or read a database file or a database server not starting because another database server
with the specified name is already running.

On Windows platforms, if the server isn't being autostarted, these errors appear in a window and must be
cleared before the server stops. These windows do not appear if the -qs option is used.

If there is an error loading the language DLL, no window appears if -qs was specified on the command line
and not in @data. This error isn't logged to the -o or -oe logs, but rather to the Windows Application Event
Log (except on Windows Mobile).

Usage errors are suppressed if -qs is on the command line, but not in @data expansion.

See also
● “-qi server option” on page 213
● “-qn server option” on page 213
● “-qp server option” on page 214
● “-qw server option” on page 215
● “-o server option” on page 208
● “-oe server option” on page 208

-qw server option
Specifies that the database server messages window does not appear.

Syntax
{ dbsrv11 | dbeng11 } -qw ...

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 215

Applies to
All operating systems and database servers.

Remarks
This option suppresses the database server messages window. On Windows platforms, the database server
system tray icon is still visible. You can use either (or both) the -o or -oe log files to diagnose errors.

See also
● “-qi server option” on page 213
● “-qn server option” on page 213
● “-qp server option” on page 214
● “-qs server option” on page 215

-r server option
Forces all databases that start on the database server to be read-only. No changes to the database(s) are
allowed: the database server doesn't modify the database file(s) or transaction log files.

Syntax
{ dbsrv11 | dbeng11 } -r ...

Applies to
All operating systems and database servers.

Remarks
Opens all database files as read-only with the exception of the temporary file when the option is specified
before any database names on the command line. If the -r option is specified after a database name, only that
specific database is read-only. You can make changes on temporary tables, but ROLLBACK has no effect,
since the transaction and rollback logs are disabled.

A database distributed on a CD-ROM device is an example of a database file that cannot be modified. You
can use read-only mode to access this sort of database.

If you attempt to modify the database, for example with an INSERT or DELETE statement, a
SQLSTATE_READ_ONLY_DATABASE error is returned.

Databases that require recovery cannot be started in read-only mode. For example, database files created
using an online backup cannot be started in read-only mode if there were any open transactions when the
backup was started, since these transactions would require recovery when the backup copy is started.

Databases with auditing turned on cannot be started in read-only mode.

If you are checking the validity of a backup copy, you should run the database in read-only mode so that it
is not modified in any way. See “Validate a database” on page 918.

The database server

216 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “-r database option” on page 255
● “auditing option [database]” on page 511
● “Deploying databases on read-only media” [SQL Anywhere Server - Programming]
● “Running in special modes” on page 49

Example
To open two databases in read-only mode

dbeng11 -r database1.db database2.db

To open only the first of two databases in read-only mode.

dbeng11 database1.db -r database2.db

-s server option
Sets the user ID for Syslog messages.

Syntax
{ dbsrv11 | dbeng11 } -s { none | user | daemon | localn } ...

Applies to
Unix, Mac OS X

Remarks
Sets the system user ID used in messages to the Syslog facility. The default is user for database servers that
are started in the foreground, and daemon for those that are run in the background (for example, started by
dbspawn, autostarted by a client, or started with the -ud database server option).

A value of none prevents any Syslog messages from being logged. The localn argument allows you to use
a facility identifier to redirect messages to a file. You can specify a number between 0 and 7, inclusive, for
n. Refer to the Unix Syslog(3) man page for more information.

The following steps illustrate how to redirect messages on Solaris, but you can also do this on Linux, AIX,
and Mac OS X. Note that on other platforms, such as HP-UX, the syslog.conf file is found in a different
location. You can place the /var/adm/sqlanywhere file in whatever location you want.

To redirect messages to a file using a facility identifier

1. Choose a unique facility identifier that isn't already being used by another application that is running on
your system.

You can do this by looking in the /etc/syslog.conf file to see of any of the localn facilities are referenced.

2. Edit the /etc/syslog.conf file and add the following line, where localn is the facility identifier you chose
in step 1:

localn.err;localn.info;localn.notice /var/adm/sqlanywhere

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 217

3. Create the /var/adm/sqlanywhere file:

touch /var/adm/sqlanywhere
4. Tell the syslogd process that you have modified the syslog.conf file by finding the process ID of syslogd:

ps -ef | grep syslogd

and then executing the following command where pid is the process ID of syslogd:

kill -HUP pid
5. Start your SQL Anywhere database server with the following command, where localn is the facility

identifier you chose in step 1:

dbeng11 -s localn ...

Now any messages that the SQL Anywhere database server reports to Syslog are redirected to the /var/
adm/sqlanywhere file.

See also
● “MESSAGE statement” [SQL Anywhere Server - SQL Reference]

-sb server option
Specifies how the server reacts to broadcasts.

Syntax
{ dbsrv11 | dbeng11 } -sb { 0 | 1 } ...

Applies to
TCP/IP

Remarks
Using -sb 0 causes the server not to start up any UDP broadcast listeners. In addition to forcing clients to
use the DoBroadcast=NONE and HOST= options to connect to the server, this option causes the server to
be unlisted when using dblocate.

Using -sb 1 causes the server to not respond to broadcasts from dblocate, while leaving connection logic
unaffected. You can connect to the server by specifying LINKS=tcpip and ENG=name.

See also
● “BroadcastListener protocol option [BLISTENER]” on page 303

-sf server option
Enables and disables features for databases running on the current database server.

The database server

218 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Syntax
{ dbsrv11 | dbeng11 } -sf feature-list ...

Applies to
All operating systems and database servers.

Remarks
This option allows you to enable and disable features for a database server. These settings affect all databases
running on the database server. You can enable all disabled (secured) features for a connection by setting
the secure_feature_key option to the key specified by the -sk option. Any connection that sets the
secure_feature_key option to the key specified by -sk can also change the set of secured features for a database
server using the SecureFeatures property of the sa_server_option system procedure.

The feature-list is a comma-separated list of feature names or feature sets to secure for the database server.
Use feature-name to indicate that the feature should be disabled, and -feature-name to indicate that the feature
should be removed from the disabled features list. For example, the following command indicates that only
dbspace features are enabled:

dbeng11 -n secure_server -sf all,-dbspace

The following feature-name values are supported (values enclosed in parentheses are the short forms of
feature names that can also be specified):

● none Specifies that no features are disabled.

● all Disables all features that can be disabled including the following groups.

○ client Disables all features that allow access to client-related input/output. This includes access
to the client computing environment. This set consists of the following features.

● read_client_file Disables the use of statements that can cause a client file to be read. For
example, the READ_CLIENT_FILE function and the LOAD TABLE statement. See “Accessing
data on client computers” [SQL Anywhere Server - SQL Usage].

● write_client_file Disables the use of all statements that can cause a client file to be written
to. For example, the UNLOAD statement and the WRITE_CLIENT_FILE function. See
“Accessing data on client computers” [SQL Anywhere Server - SQL Usage].

○ local Disables all local-related features. This includes access to the server computing environment.
This set consists of the local_call, local_db, local_io, and local_log feature subsets described below.

● local_call Disables all features that provide the ability to execute code that is not directly part
of the server and is not controlled by the server. This set consists of the following features.

○ cmdshell Disables the use of the xp_cmdshell procedure. See “xp_cmdshell system
procedure” [SQL Anywhere Server - SQL Reference].

○ external_procedure Disables the use of external stored procedures. This setting does
not disable the use of the xp_* system procedures (such as xp_cmdshell, xp_readfile, and so
on) that are built into the database server. Separate feature control options are provided for
these system procedures. See “Calling external libraries from procedures” [SQL Anywhere
Server - Programming].

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 219

○ java Disables the use of Java-related features, such as Java procedures. See “Creating a
Java class for use with SQL Anywhere” [SQL Anywhere Server - Programming].

● local_db Disables all features related to database files. This set consists of the following
features.

○ backup Disables the use of the BACKUP statement, and therefore, the ability to run server-
side backups. You can still perform client-side backups using dbbackup. See “BACKUP
statement” [SQL Anywhere Server - SQL Reference].

○ restore Disables the use of the RESTORE DATABASE statement. See “RESTORE
DATABASE statement” [SQL Anywhere Server - SQL Reference].

○ database Disables the use of the CREATE DATABASE, ALTER DATABASE, DROP
DATABASE, CREATE ENCRYPTED FILE, CREATE DECRYPTED FILE, CREATE
ENCRYPTED DATABASE, and CREATE DECRYPTED DATABASE statements.

○ dbspace Disables the use of the CREATE DBSPACE, ALTER DBSPACE, and DROP
DBSPACE statements.

● local_io Disables all features that allow direct access to files and their contents. This set
consists of the following features.

○ read_file Disables the use of statements that can cause a local file to be read. For example,
the xp_read_file system procedure, the LOAD TABLE statement, and the use of
OPENSTRING(FILE ...). The alternate names load_table and xp_read_file are deprecated.

○ write_file Disables the use of all statements that can cause a local file to be written to. For
example, the UNLOAD statement and the xp_write_file system procedure. The alternate
names unload_table and xp_write_file are deprecated.

○ delete_file Disables the use of all statements that can cause a local file to be deleted. For
example, it disables the use of the db_delete_file DBLib function, which deletes database
files. The db_delete_file function is used by the dbbackup -x and -xo options, so securing
db_delete_file causes dbbackup to fail if the -x or -xo options are specified. See
“db_delete_file function” [SQL Anywhere Server - Programming].

○ directory Disables the use of directory class proxy tables. This feature is also disabled
when remote_data_access is disabled.

● local_log Disables all logging features that result in creating or writing data directly to a file
on disk. This set consists of the following features.

○ request_log Disables the ability to change the request log file name and also disables the
ability to increase the limits of the request log file size or number of files. You can specify
the request log file and limits on this file, in the command to start the database server; however,
they cannot be changed once the server is started. When request log features are disabled,
you can still turn request logging on and off, and reduce the maximum file size and number
of request logging files. See “Request logging” [SQL Anywhere Server - SQL Usage].

○ console_log Disables the ability to change the database server message log file name
using the ConsoleLogFile option of the sa_server_option system procedure . It also disables
the ability to increase the maximum size of the log file using the ConsoleLogMaxSize option

The database server

220 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

of the sa_server_option system procedure . You can specify a server log file and its size when
starting the database server.

○ webclient_log Disables the ability to change the web service client log file name using
the WebClientLogFile option of the sa_server_option system procedure. You can specify a
web service client log file when starting the database server. See “-zoc server
option” on page 243.

○ remote Disables all features that allow remote access or communication with remote processes.
This set consists of the following features.

● remote_data_access Disables the use of any remote data access services, such as proxy
tables.

● send_udp Disables the ability to send UDP packets to a specified address using the
sa_send_udp system procedure.

● web_service_client Disables the use of web service client stored procedure calls (that is,
stored procedures that issue HTTP requests).

Feature set hierarchy
The following table lists all the feature set keywords and their hierarchy. For example, local_io encompasses
the read_file, write_file, delete_file, and directory features.

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 221

See also
● “-sk server option” on page 223
● “secure_feature_key [database]” on page 574
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]
● “Specifying secured features” on page 1072

Example
The following command starts a database server named secure_server with access to the request log and
with all remote data access features disabled. The key specified by the -sk option can be used later with the
secure_feature_key database option to enable these features for a specific connection.

dbsrv11 -n secure_server -sf request_log,remote -sk j978kls12

If a user connected to a database running on the secure_server database server sets the secure_feature_key
option to the value specified by -sk, that connection has access to the request log and remote data access
features:

The database server

222 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SET TEMPORARY OPTION secure_feature_key = 'j978kls12';

The following command disables all features, with the exception of local database features:

dbeng11 -n secure_server -sf all,-local_db

-sk server option
Specifies a key that can be used to enable features that are disabled for the database server.

Syntax
{ dbsrv11 | dbeng11 } -sk key ...

Applies to
All operating systems and database servers.

Remarks
When you secure features for a database server using the -sf option, you can also include the -sk option,
which specifies a key that can be used with the secure_feature_key database option to enable secured features
for a connection. That connection can also use the sa_server_option system procedure to modify the features
or feature sets that are secured for all databases running on the database server.

If the secure_feature_key option is set to any value other than the one specified by -sk, no error is given, and
the features specified by -sf remain secured for the connection.

See also
● “-sf server option” on page 218
● “secure_feature_key [database]” on page 574
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]
● “Specifying secured features” on page 1072

Example
The following command starts a database server named secure_server with access to the backup features
disabled. The key specified by the -sk option can be used later to enable these features for a specific
connection.

dbsrv11 -n secure_server -sf backup -sk j978kls12

Setting the secure_feature_key option to the value specified by -sk for a connection to a database running
on the secure_server database server allows that connection to perform backups or change the features that
are disabled on the secure_server database server:

SET TEMPORARY OPTION secure_feature_key = 'j978kls12';

The user could then disable the use of all secured features for databases running on secure_server by
executing the following command:

CALL sa_server_option('SecureFeatures', 'all');

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 223

-su server option
Sets the password for the DBA user of the utility database (utility_db), or disable connections to the utility
database.

Syntax
{ dbsrv11 | dbeng11 } -su password ...

Applies to
All operating systems and database servers.

Remarks
This option specifies the initial password for the DBA user of the utility database. The password is case
sensitive. You can specify none for the password to disable all connections to the utility database. To avoid
having the utility database password in clear text on the command line, you can use dbfhide to obfuscate a
file containing the password, and then reference the obfuscated file on the command line.

If you are using a personal database server and do not specify the -su option, connections to the utility
database are allowed with the DBA user ID and any password. If you are using the network database server
and do not specify the -su option, connections to the utility database are not allowed unless the util_db.ini
file exists and the user ID is DBA with a password that matches the password in the util_db.ini file. On a
network server, if both -su and util_db.ini are used, util_db.ini is ignored. Note that the util_db.ini file is
deprecated.

You can execute a CREATE USER DBA IDENTIFIED BY new-password statement while connected to
utility_db to change the password for the DBA user of the utility database. The REVOKE CONNECT FROM
DBA statement can be used to disable connections to the utility_db database.

See also
● “Connecting to the utility database” on page 31
● “File Hiding utility (dbfhide)” on page 768
● “CREATE USER statement” [SQL Anywhere Server - SQL Reference]
● “REVOKE statement” [SQL Anywhere Server - SQL Reference]

Example
The following command disables all connections to the utility database:

dbeng11 -su none c:\inventory.db

In the following example, the file named util_db_pwd.cfg that contains the utility database password is
obfuscated using dbfhide and renamed util_db_pwd_hide.cfg:

dbfhide util_db_pwd.cfg util_db_pwd_hide.cfg

The util_db_pwd_hide.cfg file can then be used to specify the utility database password:

dbsrv11 -su @util_db_pwd_hide.cfg -n my_server c:\inventory.db

The database server

224 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-ti server option
Disconnects inactive connections.

Syntax
{ dbsrv11 | dbeng11 } -ti minutes ...

Applies to
All operating systems and database servers.

Remarks
Disconnect connections that haven't submitted a request for the specified number of minutes. The default is
240 (4 hours). The maximum value is 32767. A client computer in the middle of a database transaction holds
locks until the transaction is ended or the connection is disconnected. The -ti option is provided to disconnect
inactive connections, freeing their locks.

The -ti option is very useful when used in conjunction with dbsrv11 since most connections will be over
network links (TCP).

The -ti option is useful with dbeng11 only for local TCP/IP connections. Using -ti has no effect on
connections to a local server using shared memory.

Setting the value to zero disables checking of inactive connections, so that no connections are disconnected.

See also
● “-tl server option” on page 225
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]
● “Adjusting timeout values” on page 153

-tl server option
Sets the period at which to send liveness packets.

Syntax
{ dbsrv11 | dbeng11 } -tl seconds ...

Applies to
All database servers using TCP/IP.

Remarks
A liveness packet is sent periodically across a client/server TCP/IP communications protocol to confirm that
a connection is intact. If the server runs for a LivenessTimeout period (default 2 minutes) without detecting
a liveness packet on a connection, the communication is severed, and the server drops the connection
associated with that client. Unix non-threaded clients and TDS connections do not do liveness checking.

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 225

The -tl option on the server sets the LivenessTimeout value for all clients that do not specify a liveness
period.

Liveness packets are sent when a connection hasn't sent any packets for between one third and two thirds of
the LivenessTimeout value.

When there are more than 200 connections, the server automatically calculates a higher LivenessTimeout
value based on the stated LivenessTimeout value, so the server can handle a large number of connections
more efficiently. Liveness packets are sent between one third and two thirds of the LivenessTimeout on each
idle connection. Large numbers of liveness packets aren't sent at the same time. If liveness packets take a
long time to send (depending on the network, the computer's hardware, and the CPU and network load on
the computer), it is possible that liveness packets will sent after two thirds of the LivenessTimeout. A warning
appears in the database server message log if the liveness sends take a long time. If this warning occurs,
consider increasing the LivenessTimeout value.

Although it isn't generally recommended, you can disable liveness by specifying the following:

dbsrv11 -tl 0

Rather than disabling the LivenessTimeout option, consider increasing the value to 1 hour as follows:

dbsrv11 -tl 3600

See also
● “-ti server option” on page 225
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]
● “Adjusting timeout values” on page 153

-tmf server option
Helps recover from distributed transactions in unusual circumstances.

Syntax
{ dbsrv11 | dbeng11 } -tmf ...

Applies to
Windows

Remarks
Used during recovery of distributed transactions when the distributed transaction coordinator isn't available.
It could also be used if starting a database with distributed transactions in the transaction log, on a platform
where the distributed transaction coordinator isn't available.

Caution
If you use this option, distributed transactions are not recovered properly. It is not intended for routine use.

The database server

226 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “-tmt server option” on page 227
● “Recovery from distributed transactions” [SQL Anywhere Server - Programming]

-tmt server option
Sets a re-enlistment timeout for participation in distributed transactions.

Syntax
{ dbsrv11 | dbeng11 } -tmt milliseconds ...

Applies to
Windows

Remarks
Used during recovery of distributed transactions. The value specifies how long the database server should
wait to be reenlisted. By default there is no timeout (the database server waits indefinitely).

See also
● “-tmf server option” on page 226
● “Recovery from distributed transactions” [SQL Anywhere Server - Programming]

-tq server option
Shuts down the server at a specified time.

Syntax
{ dbsrv11 | dbeng11 } -tq { datetime | time } ...

Applies to
All operating systems and database servers.

Remarks
This option is useful for setting up automatic off-line backup procedures. See “Backup and data
recovery” on page 869.

The format for the time is in hh:mm (24 hour clock), and can be preceded by an optional date. If a date is
specified, the date and time must be enclosed in double quotes and be in the format YYYY/MM/DD
HH:MM.

See also
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 227

-u server option
Opens files using the operating system disk cache.

Syntax
{ dbsrv11 | dbeng11 } -u ...

Applies to
Windows, Unix

Remarks
Files are opened using the operating system disk cache in addition to the database cache.

While the operating system disk cache may improve performance in some cases, in general better
performance is obtained without this option, using the database cache only.

If the server is running on a dedicated computer, you shouldn't use the -u option, as the database cache itself
is generally more efficient. You may want to use the -u option if the server is running on a computer with
several other applications (so that a large database cache may interfere with other applications) and yet IO-
intensive tasks are run intermittently on the server (so that a large cache will improve performance).

-ua server option
Turns off use of asynchronous I/O.

Syntax
{ dbsrv11 | dbeng11 } -ua ...

Applies to
Linux

Remarks
By default, the database server uses asynchronous I/O on Linux when possible. To use asynchronous I/O,
the following conditions must be met:

1. The library libaio.so can be loaded at run time.

2. The kernel has asynchronous I/O support.

If you want to turn off the use of asynchronous I/O, specify the -ua option on the database server command
line.

-uc server option
Starts the database server in shell mode. This is the default.

The database server

228 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Syntax
{ dbsrv11 | dbeng11 } -uc ...

Applies to
Unix, Mac OS X

Remarks
Starts the database server in shell mode. You should only specify one of -uc, -ui, -um, or -ux. When you
specify -uc, this starts the database server in the same manner as previous releases of the software.

For more information about starting the database server as a daemon, see “-ud server option” on page 229.

See also
● “-ui server option” on page 230
● “-um server option” on page 231
● “-ux server option” on page 232

-ud server option
Runs as a daemon.

Syntax
{ dbsrv11 | dbeng11 } -ud ...

Applies to
Unix, Mac OS X

Remarks
Using this option lets you run the server so that it continues running after the current user session ends.

When you start the daemon directly using the -ud option, the dbeng11 and dbsrv11 commands create the
daemon process and return immediately (exiting and allowing the next command to be executed) before the
daemon initializes itself or attempts to open any of the databases specified in the command.

One advantage of using dbspawn instead of the -ud option is that the dbspawn process does not shut down
until it has confirmed that the daemon has started and is ready to accept requests. If for any reason the daemon
fails to start, the exit code for dbspawn is non-zero.

See also
● “Start Server in Background utility (dbspawn)” on page 829
● “Software component exit codes” [SQL Anywhere Server - Programming]
● “Running the server outside the current session” on page 62
● “Security tips” on page 1066

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 229

-uf server option
Specifies the action to take when a fatal error occurs.

Syntax
{ dbsrv11 | dbeng11 } -uf action ...

Applies to
Unix, Mac OS X

Remarks
Use this option to specify which of the following actions is taken when a fatal error occurs:

● abort the Unix abort function is called, and a core file is generated.

● default the database server behaves in the same manner as abort in all cases, except when a device-
full fatal error occurs. In this case, it behaves in the same manner as defunct. This action prevents the
system from trying to write a core file on a full device. This is the default behavior.

● defunct the database server continues running and does not call abort. Any new connection attempts
made to the database server receive the SQL error of the original fatal error.

See also
● “-oe server option” on page 208
● “Support utility (dbsupport)” on page 833
● “Error reporting in SQL Anywhere” on page 83
● “Logging database server actions” on page 43

-ui server option
On Linux this option opens the Server Startup Options window, displays the database server messages
window, and starts the database server whether or not the X window server starts. On Mac OS X -ui displays
database server messages in a new window and starts the database server in shell mode if a usable display
isn't available.

Syntax
{ dbsrv11 | dbeng11 } -ui ...

Applies to
Linux with X window server support, Mac OS X

Remarks
On Linux the -ui option allows you to use the Server Startup Options window to specify server options
when starting the database server, and to display the database server messages window once the database
server has started. On Mac OS X, server messages are redirected to a new window within
DBLauncher.app.

The database server

230 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

On Linux, when the -ui option is the only option specified on the server command line, the Server Startup
Options window appears where you can enter options for starting the database server. On Mac OS X you
must use the -ui option with the other options required to start the database server.

The database server attempts to find a usable display when -ui is specified. If it cannot find one, for example
because the DISPLAY environment variable isn't set or because X window server isn't running, then the
database server starts in shell mode. If you do not want the database server to start when it cannot locate a
usable display, specify the -ux option rather than -ui. You should only specify one of -uc, -ui, -um, or -ux.

For information about starting the database server as a daemon, see “-ud server option” on page 229.

See also
● “-uc server option” on page 228
● “-um server option” on page 231
● “-ux server option” on page 232

-um server option
Displays database server messages in a new window within DBLauncher.app.

Syntax
{ dbsrv11 | dbeng11 } -um ...

Applies to
Mac OS X

Remarks
The -um option allows you to connect to the DBLauncher.app instance, if it is running, and displays messages
in a new window within DBLauncher.app. The -um option must be used with the other options required to
start the database server. Server messages appear in this window instead of in the shell. Closing this window
shuts down the database server. If a connection to the DBLauncher.app instance cannot be established, the
database server does not start.

For the database server to connect to a DBLauncher.app instance, both must be running in the same Mac
OS X security context. For example, a database server started from an ssh session cannot find a
DBLauncher.app instance that was started by Launch Services.

For information about starting the database server as a daemon, see “-ud server option” on page 229.

See also
● “-uc server option” on page 228
● “-ui server option” on page 230

-ut server option
Touches temporary files.

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 231

Syntax
{ dbsrv11 | dbeng11 } -ut minutes ...

Applies to
Unix, Mac OS X

Remarks
This option causes the server to touch temporary files at specified intervals.

-ux server option
Opens the Server Startup Options window or displays the database server messages window on Linux (use
the X window server).

Syntax
{ dbsrv11 | dbeng11 } -ux ...

Applies to
Linux with X window server support

Remarks
The -ux option allows you to do two things when starting the database server: use the Server Startup
Options window to specify server options when starting the database server and display the database server
messages window once the server has started.

When the -ux option is the only option specified on the server command line, the Server Startup
Options window appears where you can enter options for starting the database server.

The server must be able to find a usable display when -ux is specified. If it cannot find one, for example
because the DISPLAY environment variable isn't set or because X window server isn't running, then the
database server fails to start. If you want the database server to start, even if it cannot find a usable display,
use the -ui option instead of -ux.

If you specify other server options in addition to -ux, then the database server messages window appears
once the database server is started. You should only specify one of -uc, -ui, or -ux.

For more information about starting the database server as a daemon, see “-ud server option” on page 229.

See also
● “-uc server option” on page 228
● “-ui server option” on page 230
● “-qn server option” on page 213

Example
The following command displays the Server Startup Options window where you can enter options for
starting the database server:

The database server

232 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

dbeng11 -ux

The following command starts the database server and displays the database server messages window:

dbeng11 -ux sample.db

-v server option
Displays the software version.

Syntax
{ dbsrv11 | dbeng11 } -v ...

Applies to
All operating systems and database servers.

Remarks
Supplies the database server version in a window, and then stops. You can also obtain the software version
by right-clicking the title bar of the database server messages window and choosing About.

-vss server option
Enables and disables the Volume Shadow Copy Service (VSS).

Syntax
{ dbsrv11 | dbeng11 } -vss { + | - } ...

Applies to
32-bit Microsoft Windows XP and 32-bit and 64-bit editions of Microsoft Windows 2003 and later operating
systems.

Remarks
By default, all SQL Anywhere databases can use the VSS service for backups if the SQL Anywhere VSS
writer (dbvss11.exe) is running. You can use VSS without the SQL Anywhere VSS writer to back up
databases. However, you might need to use the full SQL Anywhere recovery procedures to restore those
databases. To prevent a database server from participating in the VSS service, include -vss- when starting
the database server.

See also
● “Using the SQL Anywhere Volume Shadow Copy Service (VSS)” on page 884
● “Service utility (dbsvc) for Windows” on page 820
● “Recover from media failure on the data” on page 897

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 233

Example
The following command starts the mydatabase.db database and instructs the database server not to participate
in VSS operations even if the (dbvss11.exe) writer is running:

dbsrv11 -vss- mydatabase.db

-x server option
Specifies server side network communications protocols.

Syntax 1
dbsrv11 -x { all | none | srv-protocols } ...

srv-protocols:
 { tcpip parmlist },...
parmlist:
 (parm=value;...)

Syntax 2
dbeng11 -x { all | none | eng-protocols } ...

eng-protocols:
 { tcpip [parmlist] },...
parmlist:
 (parm=value;...)

Applies to
All operating systems and database servers.

Remarks
Use the -x option to specify which communications protocols, in addition to shared memory, you want to
use to listen for client connection broadcasts.

If you do not specify the -x option, the server attempts to listen for client connection broadcasts using all
protocols supported by the database server running on your operating system, including shared memory.

If you specify the -x option with one or more protocols, the server attempts to listen for client connection
broadcasts using the specified protocol(s) and also using a shared memory protocol.

For information about securing shared memory connections on Unix, see “Security tips” on page 1066.

Note
If you are running Windows Mobile and specify the -x option, the server only attempts to listen for client
connection broadcasts using the TCP/IP protocol unless you explicitly request otherwise.

Regardless of which settings you choose for the -x option, the server always listens for connection broadcasts
using the shared memory protocol. In addition to the shared memory protocol, you can also specify the
following:

The database server

234 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● ALL Listen for connection attempts by the client using all communications protocols that are supported
by the server on this platform, including shared memory. This is the default.

● NONE Listen for connection attempts by the client using only the shared memory protocol.

● TCPIP (TCP) Listen for connection attempts by the client using the TCP/IP protocol. The TCP/IP
protocol is supported by the network server on all operating systems, and by the personal database server
for same-computer communications.

By default, the database server listens for broadcasts on port 2638, and redirects them to the appropriate
port. This ensures a connection in most cases.

You can override this default and cause the server not to listen on port 2638 by setting the option -sb 0,
or by turning off the BroadcastListener option (BroadcastListener=0). Additionally, if the client and
server are communicating through a firewall, the client must send the packet to the exact port the server
is listening on by specifying DoBroadcast=None and Host=.

See “ServerPort protocol option [PORT]” on page 321.

For some protocols, additional parameters may be provided, in the format

-x tcpip(PARM1=value1;PARM2=value2;...)

For more information about available parameters, see “Network protocol options” on page 301.

For Unix, quotation marks are required if more than one parameter is supplied:

-x "tcpip(PARM1=value1;PARM2=value2;...)"

See also
● “-xa server option” on page 235
● “-xd server option” on page 236
● “-xf server option” on page 237
● “-xp database option” on page 258
● “-xs server option” on page 237
● “CommLinks connection parameter [LINKS]” on page 268
● “Supported network protocols” on page 142

Example
Allow only shared memory and TCP/IP communications:

-x tcpip

-xa server option
Specifies a comma-separated list of database names and authentication strings for an arbiter server.

Syntax
dbsrv11 -xa auth=auth-strings;DBN=database-names

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 235

Applies to
All operating systems, network server only.

Remarks
This option is only specified when starting the arbiter server in a database mirroring system.

The authentication string must match the authentication string specified for the primary and mirror servers.

If the lists of authentication strings and database names each contain only one entry, the server will act as
the arbiter for only one database mirroring system; otherwise, each list must contain the same number of
entries.

See also
● “DatabaseName connection parameter [DBN]” on page 275
● “-sn database option” on page 257
● “-x server option” on page 234
● “-xf server option” on page 237
● “-xp database option” on page 258
● “-xs server option” on page 237

Example
The following command starts an arbiter database server named arbiter.

dbsrv11 -x tcpip -n arbiter -xa AUTH=abc;DBN=demo -xf c:\arbiterstate.txt

-xd server option
Prevents the database server from becoming the default database server.

Syntax
dbsrv11 -xd ...

Applies to
All operating systems, network server only.

Remarks
When a database server starts, it attempts to become the default database server on that computer. The first
database server to start when there is no default server becomes the default database server. Shared memory
connection attempts on that computer that do not explicitly specify a database server name connect to the
default server.

Specifying this option prevents the database server from becoming the default database server. If this option
is specified, clients that do not specify a database server name cannot find the database server over shared
memory. The -xd option also prevents the database server from using the default TCP port. If a TCP port is
not specified, the database server uses a port other than port 2638.

The database server

236 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “-n server option” on page 206
● “StartLine connection parameter [START]” on page 297
● “-x server option” on page 234

-xf server option
Specifies the location of the file used for maintaining state information about your database mirroring system.

Syntax
dbsrv11 -xf state-file ...

Applies to
All operating systems, network server only.

Remarks
The -xf option specifies the location of the file used for maintaining state information about the mirroring
system. This option is required for database mirroring. By default, the state information file is named server-
name.mirror_state.

For more information about the database mirroring state information file, see “State information
files” on page 944.

See also
● “-sn database option” on page 257
● “-x server option” on page 234
● “-xa server option” on page 235
● “-xp database option” on page 258
● “-xs server option” on page 237

Example
The following command (entered all on one line) starts a database server named server1, that uses the state
information file c:\server1state.txt.

dbsrv11.exe -n server1 -x tcpip{DOBROADCAST=no}
-xf c:\server1state.txt mydemo.db -sn mirrordemo
-xp "partner=(ENG=server2;LINKS=tcpip(TIMEOUT=1));
AUTH=abc;arbiter=(ENG=arbsrv;LINKS=tcpip(TIMEOUT=1));
MODE=sync"

-xs server option
Specifies server-side web services communications protocols.

Syntax
{ dbeng11 | dbsrv11 } -xs { protocol,... } ...

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 237

protocol : {
 NONE
 | HTTP [(option=value;...)]
 | HTTPS [(option=value;...)]

HTTPS-only options:
FIPS={ Y | N }
IDENTITY=server-identity-filename
IDENTITY_PASSWORD=password

Applies to
All operating systems and database servers.

Remarks
Use the -xs option to specify which web protocols you want to use to listen for requests.

If you do not specify the -xs option, the database server doesn't attempt to listen for web requests.

If you specify the -xs option with one or more protocols, the server attempts to listen for web requests using
the specified protocol(s).

Note
If you want to start multiple web servers at the same time, then you must change the port for one of them
since they both have the same default port.

You can use the HTTPS or the FIPS-approved HTTPS protocols for transport-layer security. See “Encrypting
SQL Anywhere web services” on page 1112.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

Regardless of which settings you specify with the -xs option, the server always listens for connection attempts
using the shared memory protocol. You can specify any of the following:

● option For a list of supported option values for each protocol, see “Network protocol
options” on page 301.

● HTTP Listen for web requests by the client using the HTTP protocol. The default port on which to
listen is 80.

● HTTPS Listen for web requests by the client using the HTTPS protocol. The default port on which to
listen is 443. You must specify the server's certificate and password to use HTTPS. The password must
be an RSA certificate because HTTPS uses RSA encryption.

The SQL Anywhere HTTP server supports HTTPS connections using SSL version 3.0 and TLS version
1.0.

You can specify HTTPS, or HTTPS with FIPS=Y for FIPS-approved RSA encryption. FIPS-approved
HTTPS uses a separate approved library, but is compatible with HTTPS.

The database server

238 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Note
The Mozilla Firefox browser can connect when FIPS-approved HTTPS is used. However, the cipher
suite used by FIPS-approved HTTPS is not supported by most versions of the Internet Explorer, Opera,
or Safari browsers—if you are using FIPS-approved HTTPS, these browsers may not be able to connect.

For information about enforcing the FIPS-approved algorithm, see “-fips server option” on page 186.

○ server-identity-filename The path and file name of the server identity. For HTTPS, you must
use an RSA certificate.

○ password The password for the server private key. You specify this password when you create
the server certificate.

● NONE Do not listen for web requests. This is the default.

For more information about available parameters, see “Network protocol options” on page 301.

On Unix, quotation marks are required if more than one parameter is supplied:

-xs "HTTP(OPTION1=value1;OPTION2=value2;...)"

See also
● “-sn database option” on page 257
● “-x server option” on page 234
● “-xa server option” on page 235
● “-xf server option” on page 237
● “-xp database option” on page 258
● “SQL Anywhere web services” [SQL Anywhere Server - Programming]

Example
Listen for HTTP web requests on port 80:

dbeng11 web.db -xs HTTP(PORT=80)

Listen for web requests using HTTPS:

dbeng11 web.db -xs
HTTPS(FIPS=N;PORT=82;IDENTITY=eccserver.id;IDENTITY_PASSWORD=test)

-z server option
Displays diagnostic communication messages, and other messages, for troubleshooting purposes.

Syntax
{ dbsrv11 | dbeng11 } -z ...

Applies to
All operating systems and database servers.

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 239

Remarks
This should only be used when tracking problems. The information appears in the database server messages
window.

See also
● “-ze server option” on page 240

-ze server option
Displays database server environment variables in the database server messages window.

Syntax
{ dbsrv11 | dbeng11 } -ze ...

Applies to
All operating systems and database servers except Windows Mobile.

Remarks
When you specify the -ze option, environment variables are listed in the database server messages window
on startup. You can log the contents of the database server messages window to a file by specifying the -o
option when starting the database server.

See also
● “SQL Anywhere environment variables” on page 365
● “-o server option” on page 208
● “-z server option” on page 239

Example
The following command starts a database server named myserver, and outputs the environment variables
set for the server to the database server messages window and the file server-log.txt.

dbeng11 -n myserver -ze -o server-log.txt

-zl server option
Turns on capturing of the most recently-prepared SQL statement for each connection to databases on the
server.

Syntax
{ dbsrv11 | dbeng11 } -zl ...

Applies to
All operating systems and database servers.

The database server

240 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
This feature can also be turned on using the RememberLastStatement server setting. You can obtain the most
recently-prepared SQL statement for a connection using the LastStatement value of the
CONNECTION_PROPERTY function. The sa_conn_activity stored procedure allows you to obtain the
most recently-prepared SQL statement for all current connections to databases on the server.

The LastStatement value is set when a statement is prepared, and is cleared when a statement is dropped.
Only one statement string is remembered for each connection.

If sa_conn_activity reports a non-empty value for a connection, it is most likely the statement that the
connection is currently executing. If the statement had completed, it would likely have been dropped and
the property value would have been cleared. If an application prepares multiple statements and retains their
statement handles, the LastStatement value does not reflect what a connection is currently doing.

For stored procedure calls, only the outermost procedure call appears, not the statements within the
procedure.

Caution
When -zl is specified or when the RememberLastStatement server setting is turned on, any user can call the
sa_conn_activity system procedure or obtain the value of the LastStatement connection property to find out
the most recently-prepared SQL statement for any other user. This option should be used with caution and
turned off when it isn't required.

See also
● LastStatement property: “Connection properties” on page 598
● “sa_conn_activity system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]

-zn server option
Specifies the number of request log file copies to retain.

Syntax
{ dbsrv11 | dbeng11 } -zn integer

Applies to
All operating systems and database servers.

Remarks
If request logging is enabled over a long period of time, the request log file can become large. The -zn option
allows you to specify the number of request log file copies to retain. It only takes effect if -zs is also specified.
The -zs option allows you to create a new log file and rename the original log file when the original log file
reaches a specified size. See “-zs server option” on page 245.

For example, if you redirect request logging information to the file req.out, and specify five request log file
copies using the -zn option, the server creates files in the following order: req.out.1, req.out.2, req.out.3,
req.out.4, and req.out.5. When these files exist and the active request log fills again, the following happens:

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 241

● req.out.1 is deleted

● the files req.out.2 to req.out.5 are renamed req.out.1 to req.out.4

● the copy of the active log is renamed req.out.5

Request logging is turned on using the -zr option and redirected to a separate file using the -zo option. You
can also set the number of request logs using the sa_server_option system procedure where nn specifies the
number of request log file copies:

CALL sa_server_option('RequestLogNumFiles',nn);

See also
● “-zo server option” on page 242
● “-zr server option” on page 244
● “-zs server option” on page 245
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]
● “Request logging” [SQL Anywhere Server - SQL Usage]

Example
In the following example, entered all on one line, request logging information is output to a request log file
named mydatabase.log, which has a maximum size of 10 KB, and three copies of the request log are kept:

dbeng11 "c:\my data\mydatabase.db" -zr all -zn 3
 -zs 10 -zo mydatabase.log

-zo server option
Redirects request logging information to a file separate from the regular log file.

Syntax
{ dbsrv11 | dbeng11 } -zo filename ...

Applies to
All operating systems and database servers.

Remarks
Request logging is turned on using the -zr option. You can direct the output from this file to a different file
that is not the regular log file by specifying the -zo option.

This option also prevents request logging from appearing in the database server messages window.

See also
● “-zn server option” on page 241
● “-zr server option” on page 244
● “-zs server option” on page 245
● “Request logging” [SQL Anywhere Server - SQL Usage]

The database server

242 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-zoc server option
Redirects web service client information to a file.

Syntax
{ dbsrv11 | dbeng11 } -zoc filename ...

Applies to
All operating systems and database servers.

Remarks
The web service client log file contains HTTP requests and transport data recorded for outbound web service
client calls. Logging is enabled automatically when you specify the -zoc server option. You can enable and
disable logging to this file using the sa_server_option system procedure:

CALL sa_server_option('WebClientLogging', 'ON');

See also
● WebClientLogging property: “Database server properties” on page 624
● WebClientLogFile property: “Database server properties” on page 624
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]
● “SQL Anywhere web services” [SQL Anywhere Server - Programming]
● “CREATE FUNCTION statement (web services)” [SQL Anywhere Server - SQL Reference]
● “CREATE PROCEDURE statement (web services)” [SQL Anywhere Server - SQL Reference]

Example
The following command starts the database server so that it listens for HTTP web requests on port 80, and
logs outbound web service client information to the file clientinfo.txt:

dbeng11 web.db -xs HTTP(PORT=80) -zoc clientinfo.txt

-zp server option
Turns on capturing of the plan most recently used by the query optimizer.

Syntax
{ dbsrv11 | dbeng11 } -zp ...

Applies to
All operating systems and database servers.

Remarks
Include this option if you want the database server to store the query execution plan that was used most
recently by each connection. This feature can also be turned on using the RememberLastPlan server setting

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 243

with the sa_server_option system procedure. You can view the text of the most recently-used plan by using
the LastPlanText connection property.

See also
● LastPlanText property: “Connection properties” on page 598
● “sa_conn_activity system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]

-zr server option
Enables request logging of operations.

Syntax
{ dbsrv11 | dbeng11 } -zr { SQL | HOSTVARS | PLAN | PROCEDURES | TRIGGERS | OTHER |
BLOCKS | REPLACE | ALL | YES | NONE | NO } ...

Applies to
All operating systems and database servers.

Remarks
This option should only be used when tracking problems. The information appears in the database server
messages window or is sent to the request log.

The values for -zr return the following types of information:

● SQL enables logging of the following:

○ START DATABASE statements
○ STOP DATABASE statements
○ STOP ENGINE statements
○ Statement preparation and execution
○ EXECUTE IMMEDIATE statement
○ Option settings
○ COMMIT statements
○ ROLLBACK statements
○ PREPARE TO COMMIT operations
○ Connects and disconnects
○ Beginnings of transactions
○ DROP STATEMENT statements
○ Cursor explanations
○ Cursor open, close, and resume
○ Errors

● PLAN enables logging of execution plans (short form). Execution plans for procedures are also
recorded if logging of procedures (PROCEDURES) is enabled.

The database server

244 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● HOSTVARS enables logging of host variable values. If you specify HOSTVARS, the information
listed for SQL is also logged.

● PROCEDURES enables logging of statements executed from within procedures.

● TRIGGERS enables logging of statements executed from within triggers.

● OTHER enables logging of additional request types not included by SQL, such as FETCH and
PREFETCH. However, if you specify OTHER but do not specify SQL, it is the equivalent of specifying
SQL+OTHER. Including OTHER can cause the log file to grow rapidly and could negatively impact
server performance.

● BLOCKS enables logging of details showing when a connection is blocked and unblocked on another
connection.

● REPLACE at the start of logging, the existing request log is replaced with a new (empty) one of the
same name. Otherwise, the existing request log is opened and new entries are appended to the end of the
file.

● ALL logs all supported information. This setting is equivalent to specifying SQL+PLAN
+HOSTVARS+PROCEDURES+TRIGGERS+OTHER+BLOCKS. This setting can cause the log file
to grow rapidly and could negatively impact server performance.

● NO or NONE turns off logging to the request log.

Once the database server is started, you can change the request log settings to log more or less information
using the sa_server_option system procedure. See “sa_server_option system procedure” [SQL Anywhere
Server - SQL Reference].

You can find the current value of the RequestLogging setting using the following query:

SELECT PROPERTY('RequestLogging');

See also
● “-zn server option” on page 241
● “-zo server option” on page 242
● “Request logging” [SQL Anywhere Server - SQL Usage]

-zs server option
Limits the size of the request log.

Syntax
{ dbsrv11 | dbeng11 } -zs { size[k | m | g] } ...

Applies to
All operating systems and database servers.

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 245

Remarks
Request logging is turned on using the -zr option, and redirected to a separate file using the -zo option. You
can limit the size of the file using the -zs option.

The size is the maximum file size for the request log, in bytes. Use k, m, or g to specify units of kilobytes,
megabytes, or gigabytes respectively.

If you specify -zs 0, then there is no maximum size for the request logging file, and the file is never renamed.
This is the default value.

When the request log file reaches the size specified by either the -zs option or the sa_server_option system
procedure, the file is renamed with the extension .old appended (replacing an existing file with the same
name if one exists). The request log file is then restarted.

See also
● “-zn server option” on page 241
● “-zo server option” on page 242
● “-zr server option” on page 244
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]
● “Request logging” [SQL Anywhere Server - SQL Usage]

Example
The following example shows how the -zs option is used to control log file size. Suppose you start a database
server with the following command line:

dbeng11 -zr all -zs 10k -zo mydatabase.log

A new log file mydatabase.log is created. When this file reaches 10 KB in size, any existing
mydatabase.old files are deleted, mydatabase.log is renamed to mydatabase.old, and a new
mydatabase.log file is started. This process is repeated each time the mydatabase.log file reaches the specified
size (in this case 10 KB).

-zt server option
Turns on logging of request timing information.

Syntax
{ dbsrv11 | dbeng11 } -zt ...

Applies to
All operating systems and database servers.

Remarks
Once the database server is started, you can change the status for logging of request timing information using
the sa_server_option system procedure. See “sa_server_option system procedure” [SQL Anywhere Server -
SQL Reference].

You can find the current value of the RequestTiming setting using the following query:

The database server

246 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SELECT PROPERTY('RequestTiming');

See also
● “sa_performance_diagnostics system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_performance_statistics system procedure” [SQL Anywhere Server - SQL Reference]
● “Request logging” [SQL Anywhere Server - SQL Usage]

Database server options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 247

Database options
These options are specified after the database file, and apply only to that database.

-a database option
Applies the named transaction log. The -a database option must be specified after the database-file, and
applies only to that database.

Syntax
{ dbsrv11 | dbeng11 } [server-options] database-file -a log-filename ...

Applies to
All operating systems and database servers.

Remarks
This option is used to recover from media failure on the database file. When this option is specified, the
database server applies the log and then shuts down—it doesn't continue to run. If you need to apply multiple
transaction logs, you must know the correct order in which to apply them when using -a. The database server
automatically applies multiple transaction logs in the correct order if you use the -ad or -ar option instead
of -a.

Specifying a cache size when starting the server can reduce recovery time.

See “Backup and data recovery” on page 869.

See also
● “Recover from media failure on the data” on page 897
● “Recovering a database with multiple transaction logs” on page 893
● “-ad database option” on page 248
● “-ar database option” on page 249
● “-as database option” on page 250

Example
The following example, entered all on one line, applies the log file demo.log to a backup copy of the sample
database.

dbeng11 "c:\backup\demo.db" -a "c:\backup\demo.log"

-ad database option
Specifies the directory containing transaction log files to be applied to the database. The -ad database option
must be specified after the database-file, and applies only to that database.

The database server

248 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Syntax
{ dbsrv11 | dbeng11 } [server-options] database-file -ad log-directory ...

Applies to
All operating systems and database servers.

Remarks
When you include the -ad option, the specified directory is scanned for transaction log files associated with
the database. Transaction log files with starting log offsets greater than or equal to the start log offset stored
in the database file are applied, in log offset order. Once all the transaction log files have been applied, the
database is stopped. You must also specify the -as option if you want the database to continue running once
the transaction log files have been applied.

See also
● “Recover from media failure on the data” on page 897
● “Recovering a database with multiple transaction logs” on page 893
● “-a database option” on page 248
● “-ar database option” on page 249
● “-as database option” on page 250

Example
The database server applies the log files in the backup directory to the mysample.db database and then stops
the database once the log files have been applied.

dbeng11 "c:\mysample.db" -ad "c:\backup"

The database server applies the log files in the backup directory to the mysample.db database and the database
continues running once the log files have been applied.

dbeng11 "c:\mysample.db" -ad "c:\backup" -as

-ar database option
Specifies that any transaction log files located in the same directory as the current transaction log should be
applied to the database. The -ar database option must be specified after the database-file, and applies only
to that database.

Syntax
{ dbsrv11 | dbeng11 } [server-options] database-file -ar ...

Applies to
All operating systems and database servers.

Remarks
When you include the -ar option, the database server looks for transaction log files associated with the
database that are located in the same directory as the current transaction log. The transaction log location is

Database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 249

obtained from the database. Transaction log files with starting log offsets greater than or equal to the start
log offset stored in the database are applied, in log offset order. Once all the transaction log files have been
applied, the database is stopped. You must also specify the -as option if you want the database to continue
running once the transaction log files have been applied.

See also
● “Recover from media failure on the data” on page 897
● “Recovering a database with multiple transaction logs” on page 893
● “-a database option” on page 248
● “-ad database option” on page 248
● “-as database option” on page 250

Example
The database server applies the transaction log files (whose location is obtained from the database) to the
mysample.db database. The database continues running after the transaction log files have been applied.

dbeng11 "c:\mysample.db" -ar -as

-as database option
Specifies that the database should continue to run after transaction logs have been applied (used in
conjunction with -ad or -ar). The -as database option must be specified after the database-file, and applies
only to that database.

Syntax
{ dbsrv11 | dbeng11 } [server-options] database-file { -ad log-dir | -ar } -as ...

Applies to
All operating systems and database servers.

Remarks
The -as option must be specified in conjunction with either the -ad or -ar option. When you include -as, the
database continues running after the transaction logs are applied to it.

See also
● “Recover from media failure on the data” on page 897
● “Recovering a database with multiple transaction logs” on page 893
● “-a database option” on page 248
● “-ad database option” on page 248
● “-ar database option” on page 249

Example
The database server applies the transaction log files to the mysample.db database. In this case, because -ar
is specified, the database server obtains the location of the transaction logs from the database. The database
continues running after the log files have been applied.

The database server

250 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

dbeng11 "c:\mysample.db" -ar -as

The database server applies the log files in the backup directory to the mysample.db database. The database
continues running after the log files have been applied.

dbeng11 "c:\mysample.db" -ad "c:\backup" -as

-ds database option
Specifies the directory where the dbspaces for the database are located. The -ds database option must be
specified after the database-file, and applies only to that database.

Syntax
{ dbsrv11 | dbeng11 } -ds dbspace-directory ...

Applies to
All operating systems and database servers.

Remarks
When a dbspace directory is specified, the database server only searches this directory for dbspaces. The
location of the dbspace appears in the database server messages window.

If your backup includes dbspaces with full path names, you can use this option to start the backed up copy
of the database on the same computer as the original database while the original database is still running.

See also
● “Using additional dbspaces” on page 25
● “START DATABASE statement” [SQL Anywhere Server - SQL Reference]
● “STOP DATABASE statement” [SQL Anywhere Server - SQL Reference]
● “default_dbspace option [database]” on page 526

Example
The following example starts a database server that looks for dbspaces in the directory c:\backup\Nov15:

dbeng11 c:\backup\Nov15\my.db -ds c:\backup\Nov15\

The following example starts a database server that looks for dbspaces in the current directory:

dbeng11 my.db -ds

-dh database option
Prevents this database from appearing when the Server Enumeration utility (dblocate) is used against this
server. The -dh database option must be specified after the database-file, and applies only to that database.

Syntax
{ dbsrv11 | dbeng11 } [server-options] database-file -dh ...

Database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 251

Applies to
All platforms.

Remarks
The -dh option makes a database undetectable when the Server Enumeration utility (dblocate) is run against
the server. Therefore, when dblocate is used with the -d option, the -dn option, or the -dv option, the database
isn't listed.

See also
● “Server Enumeration utility (dblocate)” on page 810

-ek database option
Specifies the key for a strongly encrypted database. The -ek database option must be specified after the
database-file, and applies only to that database.

Syntax
{ dbsrv11 | dbeng11 } [server-options] database-file -ek key ...

Applies to
All operating systems and servers.

Remarks
You must provide the key value with the -ek option to start an encrypted database. The key is a string,
including mixed cases, numbers, letters, and special characters.

If you want to enter the encryption key in a window so it cannot be seen in clear text, use the -ep server
option. See “-ep server option” on page 183.

If you want to secure communication packets between client applications and the database server use the -
ec server option and transport-layer security. See “Transport-layer security” on page 1095.

See also
● “-ec server option” on page 180
● “-ep server option” on page 183
● “DatabaseKey connection parameter [DBKEY]” on page 274
● “Encrypting and decrypting a database” on page 1082

Example
The following example starts a database and specifies the encryption key on the command line.

dbsrv11 -x tcpip mydata.db -ek "Akmm9u70y"

The database server

252 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-m database option
Truncates the transaction log when a checkpoint is done. The -m database option must be specified after the
database-file, and applies only to that database.

Syntax
{ dbsrv11 | dbeng11 } [server-options] database-file -m ...

Applies to
All operating systems and database servers.

Remarks
Truncates the transaction log when a checkpoint is done, either at shutdown or as a result of a checkpoint
scheduled by the server. This option provides a way to limit the growth of the transaction log automatically.
Checkpoint frequency is still controlled by the checkpoint_time and recovery_time options (or -gc and -gr
database server command line options).

The -m option is useful where high volume transactions requiring fast response times are being processed,
and the contents of the transaction log aren't being relied upon for recovery or replication. When this option
is selected, there is no protection against media failure on the device that contains the database files.

To avoid database file fragmentation, it is recommended that where this option is used, the transaction log
be placed on a separate device or partition from the database itself.

This option is the same as the -m server option, but applies only to the current database or the database
identified by the database-file variable.

Caution
Do not use the -m option with databases that are being replicated or synchronized. Replication and
synchronization, used by SQL Remote and MobiLink, inherently rely on transaction log information.

See also
● “-m server option” on page 205
● “The transaction log” on page 14
● “Transaction Log utility (dblog)” on page 842

Example
The following example starts a database server named silver and loads the database salesdata.db. When a
checkpoint is done, the transaction log contents are deleted.

dbsrv11 -n silver "c:\inventory details\salesdata.db" -m

-n database option
Sets the name of the database. The -n database option must be specified after the database-file, and applies
only to that database.

Database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 253

Syntax
{ dbsrv11 | dbeng11 } [server-options] database-file -n string ...

Applies to
All operating systems and database servers.

Remarks
Both database servers and databases can be named. Since a database server can load several databases, the
database name is used to distinguish the different databases.

By default, the database receives the name of the database file with the path and extension removed. For
example, if the database is started on samples-dir\demo.db and no -n option is specified, the name of the
database is demo.

Database names cannot:

● begin with white space, single quotes, or double quotes
● end with white space
● contain semicolons
● be longer than 250 bytes

You can only use the database name utility_db to connect to the SQL Anywhere utility database. See “Using
the utility database” on page 30.

See also
● “Naming the server and the databases” on page 46
● “-n server option” on page 206

Example
The following example starts the database server with a cache size of 3 MB, loads the database, and names
the database test. Since no database server name has been specified, the server takes its name from the first
database, so the server's name is also test.

dbsrv11 -c 3MB "c:\mydata.db" -n "test"

There are two -n options
The -n option is position dependent. If it appears before a database file name, it is a server option and names
the server. If it appears after a database file name, it is a database option and names the database.

For example, the following command names the server SERV and the database DATA:

dbsrv11 -n SERV c:\mydata.db -n DATA

See “-n server option” on page 206.

The database server

254 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-r database option
Starts the named database as read-only. No changes to the database(s) are allowed: the database server does
not modify the database file(s) and transaction log files. The -r database option must be specified after the
database-file, and applies only to that database.

Syntax
{ dbsrv11 | dbeng11 } [server-options] database-file -r ...

Applies to
All operating systems and database servers.

Remarks
Opens all database files (the main database file, dbspaces, transaction log, and transaction log mirrors) as
read-only with the exception of the temporary file when the option is specified before any database names
on the command line. If the -r option is specified after a database name, only that specific database is read-
only. You can make changes on temporary tables, but ROLLBACK has no effect, since the transaction and
rollback logs are disabled.

A database distributed on a CD-ROM device is an example of a database file that cannot be modified. You
can use read-only mode to access this sort of database.

If you attempt to modify the database, for example with an INSERT or DELETE statement, a
SQLSTATE_READ_ONLY_DATABASE error is returned.

Databases that require recovery cannot be started in read-only mode. For example, database files created
using an online backup cannot be started in read-only mode if there were any open transactions when the
backup was started, since these transactions would require recovery when the backup copy is started.

You cannot start a database in read-only mode if auditing is turned on.

See also
● “-r server option” on page 216
● “auditing option [database]” on page 511

Example
To open two databases in read-only mode

dbeng11 -r database1.db database2.db

To open only the first of two databases in read-only mode.

dbeng11 database1.db -r database2.db

-sm database option
Provides an alternate database server name that can be used to access the read-only mirror database.

Database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 255

Syntax
dbsrv11 [server-options] database-file -sm alternate-server-name

Applies to
All operating systems, network server only.

Remarks
The alternate-server-name is only active when the database server is acting as mirror for the database. By
using the -sm and -sn command-line options, an application can always connect to the database on the primary
or the mirror server, without knowing which physical server is acting as primary or mirror.

See also
● “Separately licensed components” [SQL Anywhere 11 - Introduction]
● “Configuring read-only access to a database running on the mirror server” on page 956
● “-xa server option” on page 235
● “-xf server option” on page 237
● “-xp database option” on page 258
● “START DATABASE statement” [SQL Anywhere Server - SQL Reference]
● “Introduction to database mirroring” on page 938
● “Server Enumeration utility (dblocate)” on page 810
● ReadOnly property: “Database properties” on page 639

Example
The following command starts the databases satest.db and sample.db on a database server named myserver.
The -sn option instructs the database server to use mysampleprimary as an alternate server name when
connecting to sample.db, while the -sm option instructs the database server to use mysamplemirror as an
alternate server name to connect to sample.db, running on the mirror server.

dbsrv11 -n myserver satest.db sample.db -sn mysampleprimary -sm
mysamplemirror
-xp "partner=(ENG=server2;LINKS=TCPIP(PORT=2637;TIMEOUT=1));auth=abc;
arbiter=(ENG=arbiter;LINKS=TCPIP;(PORT=2639;TIMEOUT=1));mode=sync"

You can connect to sample.db while it is running on the primary server using any of the following connection
parameters:

● ENG=myserver;DBN=sample
● ENG=mysampleprimary
● ENG=mysampleprimary;DBN=sample

You cannot connect to satest.db using ENG=mysampleprimary.

You can connect to sample.db while it is running on the mirror server using any of the following connection
parameters:

● ENG=myserver;DBN=sample
● ENG=mysamplemirror
● ENG=mysamplemirror;DBN=sample

The database server

256 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

You cannot connect to satest.db using ENG=mysamplemirror.

-sn database option
Provides an alternate server name for a single database running on a database server. The -sn database option
must be specified after the database-file, and applies only to that database.

Syntax
dbsrv11 [server-options] database-file -sn alternate-server-name

Applies to
All operating systems, network server only.

Remarks
The database server can be configured to listen for more than one server name for a particular database
server. Server names other than the real server name are called alternate server names, and are specific to a
particular database running on the database server. Clients using the alternate server name to connect can
only connect to the database that specified the alternate server name.

Alternate server names must be unique on the network; otherwise, the database fails to start. If the database
is started in the server command and the alternate server name is not unique, the server fails to start. You
can also provide an alternate server name using the START DATABASE statement.

Clients that specify an alternate server name can only connect to the database that specified the alternate
server name. They cannot connect to any other database running on that database server. If the DBN or DBF
connection parameter is specified, it must match the database name or database file, respectively. If the DBN
or DBF connection parameter is not specified, then the database acts as the default database for that server.

The Server Enumeration utility (dblocate) detects alternate server names.

Using alternate server names for database mirroring
When using database mirroring, an alternate server name must be specified for client applications to be able
to connect to the current primary server without knowing in advance which server is the primary server and
which is the mirror server. Both operational servers must use the same name for the alternate server name.

See also
● “Separately licensed components” [SQL Anywhere 11 - Introduction]
● “-xa server option” on page 235
● “-xf server option” on page 237
● “-xp database option” on page 258
● “START DATABASE statement” [SQL Anywhere Server - SQL Reference]
● “Introduction to database mirroring” on page 938
● “Server Enumeration utility (dblocate)” on page 810
● AlternateServerName property: “Database properties” on page 639

Database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 257

Example
The following command starts the databases satest.db and sample.db on a database server named myserver.
The -sn option instructs the database server to use mysample as an alternate server name when connecting
to sample.db.

dbsrv11 -n myserver satest.db sample.db -sn mysample

You can connect to sample.db using any of the following connection parameters:

● ENG=myserver;DBN=sample
● ENG=mysample
● ENG=mysample;DBN=sample

You cannot connect to satest.db using ENG=mysample.

-xp database option
Provides information to an operational server that allows it to connect to its partner and to the arbiter when
database mirroring is being used. The -xp database option must be specified after the database-file, and
applies only to that database.

Syntax
dbsrv11 [server-options] database-file
-xp partner=(partner-conn);
auth=auth-str;
[;arbiter=(arbiter-conn)]
[;mode=[sync | async | page]
[;autofailover=[YES | NO]]
[;pagetimeout=n]
[;preferred=[YES | NO] ...

Applies to
All operating systems, except Windows Mobile, network server only.

Remarks
When you specify -xp, you must also specify the location of the database mirroring state information file
with the -xf option.

if the connection parameters specified in the -xp option are invalid, and there are multiple databases running
on the server, then the mirrored database fails to start and does not attempt to reconnect. If the mirrored
database is the only database running on the database server, then the database server does not start.

partner-conn Specifies the connection string for the partner server. A user ID and password are not
required. It is recommended that you specify a timeout to reduce failover time.

auth-str Specifies the authentication string used by the arbiter.

arbiter-conn Specifies the connection string for the arbiter server. A user ID and password are not
required. It is recommended that you specify a timeout to reduce failover time.

The database server

258 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

mode Specifies the synchronization mode used for database mirroring: synchronous (sync), asynchronous
(async), or asyncfullpage (page).

autofailover Specifies whether the mirror server automatically takes over as the primary server when the
original primary server goes down. This option does not apply to synchronous mode.

Note
It is recommended that if you are using asynchronous or asyncfullpage mode, that you set the -xp autofailover
option to yes. Then, if the primary server goes down, the mirror server automatically takes over as the primary
server.

pagetimeout Specifies how often, in seconds, transaction log pages are sent to the mirror server, whether
or not they are full. This option applies only when using asyncfullpage mode.

preferred Specifies whether the server is the preferred server in the mirroring system. The preferred server
assumes the role of primary server whenever possible. See “Specifying a preferred database
server” on page 956.

See also
● “Separately licensed components” [SQL Anywhere 11 - Introduction]
● “Choosing a database mirroring mode” on page 942
● “-sn database option” on page 257
● “-xa server option” on page 235
● “-xf server option” on page 237
● MirrorMode property: “Database properties” on page 639

Example
The following command specifies parameters for the partner server named server2 and the arbiter server
named arbsrv.

dbsrv11 -n server1 mydata.db -sn mydata
-xp "partner=(ENG=server2;LINKS=tcpip(TIMEOUT=1));
AUTH=abc;arbiter=(ENG=arbsrv;LINKS=tcpip(TIMEOUT=1))"

Database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 259

260

Connection parameters and network protocol
options

Contents
Connection parameters ... 262
Network protocol options ... 301

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 261

Connection parameters
Connection parameters are included in connection strings. They can be entered in the following places:

● In an application's connection string. See “Assembling a list of connection parameters” on page 133 and
“Connection parameters passed as connection strings” on page 87.

● In an ODBC data source. See “Creating ODBC data sources” on page 97.

● In the SQL Anywhere Connect window. See “Connecting from SQL Anywhere utilities” on page 131.

The ODBC Configuration For SQL Anywhere 11 window and the SQL Anywhere Connect window for
Windows operating systems share a common format. Some of the parameters correspond to checkboxes and
fields in these windows, while others can be entered in the text box on the Advanced tab.

Notes
● Connection parameters are case insensitive, although their values may not be (for example, file names

on Unix).

● Boolean parameters are turned on with YES, Y, ON, TRUE, T, or 1, and are turned off with any of NO,
N, OFF, FALSE, F, and 0. The parameters are case insensitive.

● The Usage for each connection parameter describes the circumstances under which the parameter is to
be used. Common usage entries include the following:

○ Embedded databases When SQL Anywhere is used as an embedded database, the connection
starts a personal server and loads the database. When the application disconnects from the database,
the database is unloaded and the server stops.

○ Running local databases This refers to the case where a SQL Anywhere personal server is
already running, and the database is already loaded on the server.

○ Network servers When SQL Anywhere is used as a network server, the client application must
locate a server already running somewhere on the network and connect to a database.

● You can use the dbping utility to test connection strings. The -c option is used to specify the connection
parameters. For example, suppose a personal server with the name demo11 is running the sample database
(which can be started with the command dbeng11 samples-dir\demo.db). The following string
returns the message Ping database successful if a database server named demo11 is running
on the local computer and has a database named demo running:

dbping -d -c "ENG=demo11;DBN=demo;UID=DBA;PWD=sql"

The following command, however, returns the message Ping database failed - Database
server not running if no database server named other-server is running on the local computer:

dbping -d -c "ENG=other-server;UID=DBA;PWD=sql"

See “Ping utility (dbping)” on page 804.

See also
● “Connection parameters” on page 86

Connection parameters and network protocol options

262 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

AppInfo connection parameter [APP]
Assists administrators in identifying the origin of particular client connections from a database server.

Usage
Anywhere

Values
String

Default
Empty string

Remarks
This connection parameter is sent to the database server from embedded SQL, ODBC, OLE DB, or
ADO.NET clients and from applications using the iAnywhere JDBC driver. It is not available from Open
Client or jConnect applications.

It consists of a generated string that holds information about the client process, such as the IP address of the
client computer, the operating system it is running on, and so on. The string is associated in the database
server with the connection, and you can retrieve it using the following statement:

SELECT CONNECTION_PROPERTY('AppInfo');

Clients can also specify their own string, which is appended to the generated string. The AppInfo property
string is a sequence of semicolon-delimited key=value pairs. The valid keys are as follows:

● API DBLIB, ODBC, OLEDB, ADO.NET, iAnywhereJDBC, PHP, PerlDBD, or DBEXPRESS.

● APPINFO If you specified AppInfo in the connection string, the string entered.

● EXE The name of the client executable (Windows, Linux, and Solaris).

● HOST The host name of the client computer.

● IP The IP address of the client computer.

● OS The operating system name and version number (for example, Windows 2000).

● OSUSER The operating system user name associated with the client process. If the client process is
impersonating another user (or the set ID bit is set on Unix), the impersonated user name is returned. An
empty string is returned for version 10.0.1 and earlier clients, and for HTTP and TDS clients.

● PID The process ID of the client (Windows and Unix only).

● THREAD The thread ID of the client (Windows and Unix only).

● TIMEZONEADJUSTMENT The number of minutes that must be added to the Coordinated Universal
Time (UTC) to display time local to the connection.

● VERSION The version of the client library in use, including major and minor values, and a build
number (for example 11.0.0.2023).

Connection parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 263

If you specify a debug log file in your client connection parameters, the APPINFO string is added to the file.

See also
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “request_timeout option [database]” on page 570
● AppInfo property: “Connection properties” on page 598

Example
Connect to the sample database from Interactive SQL (the iAnywhere JDBC driver is used by default):

dbisql -c "UID=DBA;PWD=sql;DBF=samples-dir\demo.db"

View the application information:

SELECT CONNECTION_PROPERTY('AppInfo');

The result is as follows (in a single string):

IP=ip-address;
HOST=computer-name;
OSUSER=user-name;
OS='Windows XP Build 2600 Service Pack 2';
EXE='C:\Program Files\SQL Anywhere 11\Bin32\dbisql.exe';P
ID=0xcac;
THREAD=0xca8;VERSION=11.0.0.1200;
API=iAnywhereJDBC;
TIMEZONEADJUSTMENT=-240

Connect to the sample database from Interactive SQL, appending your own information to the AppInfo
property:

dbisql -c "UID=DBA;PWD=sql;DBF=samples-dir\demo.db;APP=Interactive SQL
connection"

View the application information:

SELECT CONNECTION_PROPERTY('AppInfo');

The result is as follows (in a single string):

IP=ip-address;
HOST=computer-name;
OSUSER=user-name;
OS=Windows XP Build 2600 Service Pack 2;
EXE=C:\Program Files\SQL Anywhere 11\Bin32\dbisql.exe;
PID=0xcac;
THREAD=0xba8;
VERSION=11.0.0.1200;
API=iAnywhereJDBC;
TIMEZONEADJUSTMENT=-240;
APPINFO='Interactive SQL connection'

AutoStart connection parameter [ASTART]
Controls whether a local database server is started if no connection is found.

Connection parameters and network protocol options

264 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Usage
Anywhere

Values
YES, NO

Default
YES

Remarks
By default, if no server is found during a connection attempt, and a database file, database name, or the
START connection parameter is specified, then a database server is started on the same computer. You can
turn this behavior off by setting the AutoStart (ASTART) connection parameter to NO in the connection
string. The database server is not autostarted if the CommLinks [LINKS] parameter includes TCPIP.

To improve query performance for autostarted databases, start the database as soon as possible, even if users
are not connecting right away. This allows the cache to warm before queries are executed against the database.
See “Using cache warming” [SQL Anywhere Server - SQL Usage].

See also
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “Locating a database server” on page 134
● “CommLinks connection parameter [LINKS]” on page 268
● “Elevate connection parameter” on page 279

AutoStop connection parameter [ASTOP]
Controls whether a database is stopped when there are no more open non-HTTP connections.

Usage
Embedded databases

Values
YES, NO

Default
YES

Remarks
By default, any database server that is started from a connection string is stopped when there are no more
non-HTTP connections to it. As well, any database that is loaded from a connection string is unloaded when
there are no more non-HTTP connections to it. This behavior is equivalent to AutoStop=YES.

Connection parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 265

If you supply AutoStop=NO, any database that you start in that connection remains running when there are
no more non-HTTP connections to it. As a result, the database server remains operational as well.

If the only connection to a database is an HTTP connection, and the database is configured to stop
automatically, when the HTTP connection disconnects, the database does not autostop. As well, if a database
that is configured to stop automatically has an HTTP connection and a command sequence or TDS
connection, when the last command sequence or TDS connection disconnects, the database autostops, and
any HTTP connections are dropped. See “-ga server option” on page 188 and “AutoStop connection
parameter [ASTOP]” on page 265.

The AutoStop (ASTOP) connection parameter is used only if you are connecting to a database that is not
currently running. It is ignored if the database is already started.

In .NET applications, you should be careful when using the AutoStop connection parameter. Closing a
connection will close it as far as the application is concerned, but active connections remain open when
connection pooling is enabled. As a result the server does not shut down, even though you may expect it to
do so.

See also
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “Connection pooling” [SQL Anywhere Server - Programming]
● “Starting and stopping databases” on page 59
● “START DATABASE statement” [SQL Anywhere Server - SQL Reference]

CharSet connection parameter [CS]
Specifies the character set to be used on this connection.

Usage
Anywhere

Values
String

Default
The local character set.

For more information about how the local character set is determined, see “Determining locale
information” on page 424.

Remarks
If you supply a value for CharSet, the specified character set is used for the current connection. Setting
CharSet=none disables character set conversion for the connection.

Connection parameters and network protocol options

266 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

When unloading data, you can specify the character set using the CharSet connection parameter. For more
information about valid character set values, see “Recommended character sets and
collations” on page 433.

To avoid lossy character set conversions, setting the CHARSET connection parameter is not recommended
when using Unicode client APIs. Unicode client APIs include ADO.NET, OLE DB, and the iAnywhere
JDBC driver. ODBC is also a Unicode client API when the wide (Unicode) functions are used.

See also
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “SACHARSET environment variable” on page 374
● “Understanding the locale character set” on page 415

CommBufferSize connection parameter [CBSIZE]
Sets the maximum size of communication packets, in bytes.

Usage
Anywhere

Values
Integer [k]

Default
If no CommBufferSize value is set, the CommBufferSize is controlled by the setting on the server, which
defaults to 7300 bytes on all operating systems except Windows Mobile. On Windows Mobile, the default
is 1460 bytes.

Remarks
The CommBufferSize (CBSIZE) connection parameter specifies the size of communication packets, in
bytes. Use k to specify units of kilobytes. The minimum value of CommBufferSize is 500 bytes, and the
maximum is 16000 bytes.

The protocol stack sets the maximum size of a packet on a network. If you set the CommBufferSize to be
larger than that permitted by your network, the communication packets are broken up by the network
software. The default size is a multiple of the standard ethernet TCP/IP maximum packet size (1460 bytes).

A larger packet size may improve performance for multi-row fetches and fetches of larger rows, but it also
increases memory usage for both the client and the server.

If CommBufferSize is not specified on the client, the connection uses the server's buffer size. If
CommBufferSize is specified on the client, the connection uses the CommBufferSize value.

Using the -p database server option to set the CommBufferSize causes all clients that do not specify their
own CommBufferSize to use the size specified by the -p database server option.

Connection parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 267

See also
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “Tuning TCP/IP performance” on page 144
● “-p server option” on page 211

Example
To set the buffer size to 1460 bytes:

...
CommBufferSize=1460
...

Alternatively, you can set this parameter by entering its value in the Buffer Size text box on the Network
tab of the ODBC Configuration For SQL Anywhere 11 window.

CommLinks connection parameter [LINKS]
Specifies client-side network protocol options.

Usage
Anywhere. The CommLinks (LINKS) connection parameter is optional for connections to a personal server,
and required for connections to a network server.

Values
String

Default
Use only the shared memory communication protocol to connect.

Remarks
If you do not specify a CommLinks (LINKS) connection parameter, the client searches for a server on the
current computer only, and only using a shared memory connection. This is the default behavior, and is
equivalent to CommLinks=ShMem. The shared memory protocol is the fastest communication link between
a client and server running on the same computer, as is typical for applications connecting to a personal
database server.

For information about securing shared memory connections on Unix, see “Security tips” on page 1066.

If you specify CommLinks=ALL, the client searches for a server using all available communication
protocols. Since there may be an impact on performance if you specify CommLinks=ALL, use this setting
only when you don't know which protocol to use.

If you specify one or more protocols in the CommLinks (LINKS) connection parameter, the client uses the
named communication protocol(s), in the order specified, to search for a network database server. Note that
if shared memory is specified, an attempt to connect using shared memory is made first, and then the
remaining communication protocols are tried in the order in which they are specified. A connection error

Connection parameters and network protocol options

268 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

appears and the connection attempt aborts if the connection fails to connect using a specified protocol, even
if there are protocols remaining in the list to try.

CommLinks (LINKS) connection parameter values are case insensitive, and include:

● SharedMemory (ShMem) Start the shared memory protocol for same-computer communication.
This is the default setting. The client tries shared memory first if it is included in a list of protocols,
regardless of the order in which protocols appear.

● ALL Attempt to connect using the shared memory protocol first, followed by all remaining and
available communication protocols. Use this setting if you are unsure of which communication
protocol(s) to use.

● TCPIP (TCP) Start the TCP/IP communication protocol. TCP/IP is supported on all operating systems.
A personal database server is not autostarted if the CommLinks [LINKS] parameter includes TCPIP.

Each of these values can have additional network protocol options supplied.

See “Network protocol options” on page 301.

You may want to use a specific protocol, as opposed to ALL, for the following reasons:

● The network library starts slightly faster if the client uses only necessary network protocols.

● Connecting to the database may be faster.

● You must specify the protocol explicitly if you want to tune the broadcast behavior of a particular protocol
by providing additional network protocol options.

The CommLinks (LINKS) connection parameter corresponds to the database server -x option.

See also
● “Network protocol options” on page 301
● “Client/server communications” on page 141
● “-x server option” on page 234
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “Server name caching for faster connections” on page 137
● CommLinks property: “Connection properties” on page 598

Examples
The following connection string fragment starts the TCP/IP protocol only:

CommLinks=tcpip

The following connection string fragment starts the shared memory protocol and searches for the database
server over shared memory. If the search fails, it then starts the TCP/IP protocol and searches for the server
on the local network.

CommLinks=tcpip,shmem

The following connection string fragment starts the shared memory protocol and searches for the server over
shared memory. If the search fails, the TCP protocol is started and it searches for the server on the local

Connection parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 269

network, and the host kangaroo. Note that if the server is found over shared memory, the TCP link is not
started.

CommLinks=shmem,tcpip(HOST=kangaroo)

Compress connection parameter [COMP]
Turns compression on or off for a connection. Compressing a connection may improve performance under
some circumstances.

Usage
Anywhere except with TDS connections. TDS connections (including jConnect) do not support SQL
Anywhere communication compression.

Values
YES, NO

In the case of a difference between client and server settings, the client setting applies.

Default
NO

If a value is not set for the Compress connection parameter, the compression status is controlled by the setting
on the server, which defaults to no compression.

Remarks
The packets sent between a SQL Anywhere client and server can be compressed using the Compress (COMP)
connection parameter. Large data transfers with highly compressible data tend to get the best compression
rates.

Specify YES or NO to turn communication compression on or off for the connection. They are case
insensitive.

It is recommended that you conduct a performance analysis on the particular network and using the particular
application before using communication compression in a production environment.

To enable compression for all remote connections on the server, use the -pc server option.

Note that same-computer connections over any communication link will not enable compression, even if
the -pc option or COMPRESS=YES parameter is used.

See also
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “-pc server option” on page 212
● “Adjusting communication compression settings to improve performance” on page 149
● “Use the compression features” [SQL Anywhere Server - SQL Usage]

Connection parameters and network protocol options

270 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Examples
The following connection string fragment turns packet compression ON:

Compress=YES

The following connection string fragment turns packet compression OFF:

Compress=NO

CompressionThreshold connection parameter [COMPTH]
Increases or decreases the size limit at which packets are compressed. Changing the compression threshold
can help performance of a compressed connection by allowing you to only compress packets when
compression will increase the speed at which the packets are transferred.

Usage
Anywhere except TDS. Only applies to compressed connections.

Values
Integer [k]

If both the client and server specify different compression threshold settings, the client setting applies.

Default
120

If no CompressionThreshold value is set, the compression threshold value is controlled by the setting on the
server, which defaults to 120 bytes.

Remarks
When compression is enabled, individual packets may or may not be compressed, depending on their size.
For example, SQL Anywhere does not compress packets smaller than the compression threshold, even if
communication compression is enabled. As well, small packets (less than about 100 bytes) usually do not
compress at all. Since CPU time is required to compress packets, attempting to compress small packets could
actually decrease performance.

This value represents the minimum size, in bytes, of packets to be compressed. Use k to specify units of
kilobytes. The minimum supported value is 1 byte, and the maximum supported value is 32767 bytes. Values
less than 80 bytes are not recommended.

Generally speaking, lowering the compression threshold value may improve performance on very slow
networks, while raising the compression threshold may improve performance by reducing CPU. However,
since lowering the compression threshold value will increase CPU usage on both the client and server, a
performance analysis should be done to determine whether changing the compression threshold is beneficial.

Connection parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 271

See also
● “-pt server option” on page 212
● “Adjusting communication compression settings to improve performance” on page 149
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87

Example
Connect, with a compression threshold of 100 bytes.

CompressionThreshold=100

ConnectionName connection parameter [CON]
Names a connection, to make switching to it easier in multi-connection applications.

Usage
Anywhere

Values
String

Default
No connection name.

Remarks
An optional parameter, providing a name for the particular connection you are making. You can leave this
unspecified unless you are going to establish more than one connection, and switch between them.

The connection name is not the same as the data source name.

See also
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “SET CONNECTION statement [Interactive SQL] [ESQL]” [SQL Anywhere Server - SQL Reference]

Example
Connect, naming the connection first-con:

CON=first-con

DatabaseFile connection parameter [DBF]
Indicates which database file you want to load and connect to when starting a database that is not running.

If you want to connect to an already-running database, use the DatabaseName (DBN) parameter.

Connection parameters and network protocol options

272 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Usage
Embedded databases

Values
String

Default
There is no default setting.

Remarks
The DatabaseFile (DBF) connection parameter is used to load and connect to a specific database file that is
not running on a database server.

● If the database you want to connect to is not running, use the DatabaseFile (DBF) connection parameter
so the database can be started.

● If the file name does not include an extension, SQL Anywhere looks for a file with the .db extension.

● The path of the file is relative to the working directory of the database server. If you start the server from
a command prompt, the working directory is the directory that you are in when entering the command.
If you start the server from an icon or shortcut, it is the working directory that the icon or shortcut specifies.
It is recommended that you supply a complete path and file name.

● If you specify both the database file and the database name, an attempt is made to connect to a running
database with the specified name (the database file is ignored), and if that fails, an attempt is made to
autostart a database using both the database file and database name. The database server is not autostarted
if the CommLinks [LINKS] parameter includes TCPIP.

You can also use UNC file names.

For more information about using UNC file names, see “The SQL Anywhere database
server” on page 156.

It is recommended that deployed applications specify a database server name using the ServerName (ENG)
parameter when attempting to autostart a database file if it is not running. Otherwise, the application may
connect to a different database server than intended. For example, the database server could connect to a
different version of the SQL Anywhere server that is part of an embedded application and already running.

Caution
The database file must be on the same computer as the database server. Starting a database file that is located
on a network drive can lead to file corruption.

See also
● “-gd server option” on page 189
● “CommLinks connection parameter [LINKS]” on page 268
● “DatabaseName connection parameter [DBN]” on page 275
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “Connecting to an embedded database” on page 126

Connection parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 273

Examples
The DatabaseFile (DBF) connection parameter in the following example loads and connects to the sample
database, demo.db:

DBF=samples-dir\demo.db

For information about samples-dir, see “Samples directory” on page 390.

The following two examples assume that you have started a database file named cities.db, and renamed the
database Kitchener as follows:

dbeng11 cities.db -n Kitchener

To successfully start and connect to a database and name it Kitchener:

DBN=Kitchener;DBF=cities.db

Specifying DBF=cities.db would fail to connect to the running database named Kitchener.

DatabaseKey connection parameter [DBKEY]
Starts an encrypted database with a connect request.

Usage
Anywhere

Values
String

Default
None

Remarks
You must specify this parameter when you start an encrypted database with a connect request. You do not
need to specify this parameter if you are connecting to an encrypted database that is already running.

The encryption key is a string, including mixed cases, numbers, letters, and special characters. Database
keys cannot include leading spaces, trailing spaces, or semicolons.

If you want to secure communication packets between client applications and the database server use the -
ec server option and transport-layer security. See “Transport-layer security” on page 1095.

Connection parameters and network protocol options

274 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Configuring client applications to use transport-layer security” on page 1108
● “-ec server option” on page 180
● “-ek database option” on page 252
● “-ep server option” on page 183
● “-es server option” on page 184
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “Encryption connection parameter [ENC]” on page 280

Example
The following fragment illustrates the use of the DatabaseKey (DBKEY) connection parameter:

"UID=DBA;PWD=sql;ENG=myeng;DBKEY=V3moj3952B;DBF=samples-dir\demo.db"

DatabaseName connection parameter [DBN]
Identifies a loaded database to which a connection needs to be made when connecting to a database that is
already running.

If you want to connect to a database that is not running, use the DatabaseFile (DBF) parameter.

Usage
Running local databases or network servers

Values
String

Default
There is no default setting.

Remarks
Whenever a database is started on a server, it is assigned a database name, either by the administrator using
the -n option, or by the server using the base of the file name with the extension and path removed.

You can only use the database name utility_db to connect to the SQL Anywhere utility database. See “Using
the utility database” on page 30.

Note
The DatabaseName (DBN) connection parameter is recommended for naming databases, rather than using
the -n option with the DatabaseSwitches (DBS) connection parameter.

If the database you want to connect to is already running, you should specify the database name rather than
the database file.

A connection will only occur if the name of the running database matches the name that is specified in the
DatabaseName (DBN) parameter.

Connection parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 275

Note
If you specify both the database file and the database name, an attempt is made to connect to a running
database with the specified name (the database file is ignored), and if that fails, an attempt is made to autostart
a database using both the database file and database name.

See also
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “DatabaseName protocol option [DBN]” on page 308

Example
To start a database file named cities.db and rename the database Kitchener, you can use the following
command:

dbeng11 cities.db -n Kitchener

Assuming you have run the above command, you can successfully connect to the running database named
Kitchener as follows:

DBN=Kitchener

Alternatively, you could use the following to successfully connect to the running database named Kitchener:

DBN=Kitchener;DBF=cities.db

However, specifying the following would fail to connect to the database named Kitchener:

DBF=cities.db

DatabaseSwitches connection parameter [DBS]
Provides database-specific options when starting a database.

Usage
Connecting to a server when the database is not loaded. This connection parameter autostarts a server with
the specified database and options if a database server is not running.

Values
String

Default
No options.

Remarks
You should supply DatabaseSwitches only if you are connecting to a database that is not currently running.
When the server starts the database specified by DatabaseFile, the server uses the supplied DatabaseSwitches
to determine startup options for the database.

Connection parameters and network protocol options

276 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Only database options can be supplied using this parameter. Server options must be supplied using the
StartLine connection parameter.

See “Database options” on page 248.

Note
The DatabaseName (DBN) connection parameter is recommended for naming databases, rather than using
the -n option with the DatabaseSwitches (DBS) connection parameter.

See also
● “The SQL Anywhere database server” on page 156
● “StartLine connection parameter [START]” on page 297
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “DatabaseName connection parameter [DBN]” on page 275

Example
The following command, entered on one line at a command prompt, connects to the default database server,
loads the database file demo.db (DatabaseFile (DBF) connection parameter), names it my-db (DatabaseName
(DBN) connection parameter) and starts it in read-only mode (-r option).

dbisql -c "UID=DBA;PWD=sql;DBF=samples-dir\demo.db;DBN=my-db;DBS=-r"

For information about samples-dir, see “Samples directory” on page 390.

DataSourceName connection parameter [DSN]
Tells the ODBC driver manager or embedded SQL library where to look in the registry or the system
information file (named .odbc.ini by default) to find ODBC data source information.

Usage
Anywhere

Values
String

Default
There is no default data source name.

Remarks
It is common practice for ODBC applications to send only a data source name to ODBC. The ODBC driver
manager and ODBC driver locate the data source, which contains the remainder of the connection parameters.

In SQL Anywhere, embedded SQL applications can also use ODBC data sources to store connection
parameters.

Connection parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 277

See also
● “FileDataSourceName connection parameter [FILEDSN]” on page 282
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “Using ODBC data sources on Unix” on page 102
● “Creating ODBC data sources” on page 97

Example
The following parameter uses a data source name:

DSN=My Database

DisableMultiRowFetch connection parameter [DMRF]
Turns off multi-row fetches across the network.

Usage
Anywhere

Values
YES, NO

Default
NO

Remarks
By default, when the database server gets a simple fetch request, the application asks for extra rows. You
can disable this behavior by setting this parameter to YES.

See “Using cursors in procedures and triggers” [SQL Anywhere Server - SQL Usage].

Setting the DisableMultiRowFetch (DMRF) connection parameter to YES is equivalent to setting the
prefetch database option to Off.

See “Prefetching rows” [SQL Anywhere Server - Programming].

See also
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “prefetch option [database]” on page 563

Example
The following connection string fragment prevents prefetching:

DMRF=YES

Connection parameters and network protocol options

278 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Elevate connection parameter
Elevates autostarted database server executables automatically on Windows Vista.

Usage
Windows Vista only

Values
YES, NO

Default
NO

Remarks
You can specify ELEVATE=YES in your connection string so that autostarted database server executables
are elevated. This allows non-elevated client processes to autostart elevated servers, which is necessary on
Windows Vista because non-elevated servers cannot use AWE memory. This parameter is ignored if the
database server is not autostarted. You must specify the -cw option when starting the database server
command to use an AWE cache.

See also
● “-cm server option” on page 172
● “-cw server option” on page 176

Example
The following connection string fragment causes autostarted database servers to be elevated on Windows
Vista so that they can use an AWE cache:

"Elevate=YES;START=dbeng11 -cw"

EncryptedPassword connection parameter [ENP]
Provides a password, stored in an encrypted fashion in a data source.

Usage
Anywhere

Values
String

Default
None

Connection parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 279

Remarks

Caution
Data sources are stored on disk as a file or in the registry. Storing passwords in clear text or using an encrypted
password is a significant security risk. It is not recommended if there is any sensitive data stored in the
database. When you enter a password into a data source, it can be stored in an encrypted form to provide
slightly more security than storing it in clear text.

On Unix, this information is stored in the system information file (named .odbc.ini by default).

For more information about how the system information file is located, see “Using ODBC data sources on
Unix” on page 102.

If both the Password (PWD) connection parameter and the EncryptedPassword (ENP) connection parameter
are specified, Password (PWD) takes precedence.

See also
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “Password connection parameter [PWD]” on page 291

Encryption connection parameter [ENC]
Encrypts packets sent between the client application and the server using transport-layer security or simple
encryption.

Usage
TLS: supported for TCP/IP only

NONE or SIMPLE: anywhere

Values
Encryption= { NONE
 | SIMPLE
 | TLS(TLS_TYPE=cipher;
 [FIPS={ Y | N };]
 TRUSTED_CERTIFICATES=public-certificate;
 [CERTIFICATE_COMPANY=organization;]
 [CERTIFICATE_NAME=common-name;]
 [CERTIFICATE_UNIT=organization-unit])

Default
NONE

Remarks
You can use this parameter if you want to secure communications between client applications and the
database server using transport-layer security or simple encryption. See “Transport-layer
security” on page 1095.

Connection parameters and network protocol options

280 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

The Encryption (ENC) connection parameter accepts the following arguments:

● NONE Accepts communication packets that are not encrypted.

● SIMPLE Accepts communication packets that are encrypted with simple encryption supported on all
platforms and on previous versions of SQL Anywhere. Simple encryption does not provide server
authentication, strong elliptic-curve or RSA encryption, or other features of transport-layer security.

If the database server accepts simple encryption, but does not accept no encryption, then any non-TDS
connection attempts using no encryption automatically use simple encryption.

Starting the database server with -ec SIMPLE tells the database server to accept only connections
using simple encryption. TLS connections (ECC, RSA, RSA FIPS) fail, and connections requesting no
encryption use simple encryption.

Starting the database server with -ec SIMPLE,TLS(TLS_TYPE=ECC;...) tells the database
server to accept only connections with ECC TLS encryption or simple encryption. Both RSA and RSA
FIPS connections fail, and connections requesting no encryption use simple encryption.

● cipher can be RSA or ECC for RSA and ECC encryption, respectively. For FIPS-approved RSA
encryption specify TLS_TYPE=RSA;FIPS=Y. RSA FIPS uses a separate approved library, but is
compatible with servers specifying RSA with SQL Anywhere 9.0.2 or later.

The connection fails if the cipher does not match the encryption (RSA or ECC) used to create your
certificates.

The client can use the following arguments to verify the field values in the server's public certificate:

○ trusted_certificates
○ certificate_company
○ certificate_unit
○ certificate_name

For more information about verifying certificate fields for server authentication, see “Verifying certificate
fields” on page 1109.

For more information about using digital certificates, see “Creating digital certificates” on page 1101.

You can use the CONNECTION_PROPERTY system function to retrieve the encryption settings for the
current connection:

SELECT CONNECTION_PROPERTY ('Encryption');

The function returns one of five values: None, Simple, ecc_tls, rsa_tls, or rsa_tls_fips depending which type
of encryption is being used by the connection.

See “CONNECTION_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference].

Connection parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 281

See also
● “Configuring client applications to use transport-layer security” on page 1108
● “-ec server option” on page 180
● “-ek database option” on page 252
● “-ep server option” on page 183
● “-es server option” on page 184
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “DatabaseKey connection parameter [DBKEY]” on page 274
● “certificate_company protocol option” on page 304
● “certificate_name protocol option” on page 305
● “certificate_unit protocol option” on page 306
● “trusted_certificates protocol option” on page 325

Examples
The following connection string fragment connects to a database server named demo with a TCP/IP link,
using transport-layer security and elliptic-curve encryption:

"ENG=demo;LINKS=tcpip;ENCRYPTION=tls(tls_type=ecc;trusted_certificates=eccroo
t.crt)"

The following connection string fragment connects to a database server named demo with a TCP/IP link,
using transport-layer security and RSA encryption:

"ENG=demo;LINKS=tcpip;ENCRYPTION=tls(tls_type=rsa;fips=n;trusted_certificates
=rsaroot.crt)"

The following connection string fragment connects to a database server named demo with a TCP/IP link,
using simple encryption:

"ENG=demo;LINKS=tcpip;ENCRYPTION=simple"

EngineName connection parameter [ENG]
This is a synonym for the ServerName (ENG) connection parameter. See “ServerName connection parameter
[ENG]” on page 296.

FileDataSourceName connection parameter [FILEDSN]
Tells the client library there is an ODBC file data source holding information about the database to which
you want to connect.

Usage
Anywhere

Values
String

Connection parameters and network protocol options

282 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Default
There is no default name.

Remarks
File data sources hold the same information as ODBC data sources stored in the registry. File data sources
can be easily distributed to end users so that connection information does not have to be reconstructed on
each computer.

Both ODBC and embedded SQL applications can use File data sources.

See also
● “DataSourceName connection parameter [DSN]” on page 277
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “Using file data sources on Windows” on page 101

ForceStart connection parameter [FORCE]
Start a database server without attempting to connect to one.

Usage
Only with the db_start_engine function.

Values
YES, NO

Default
NO

Remarks
By setting ForceStart=YES, the db_start_engine function starts a server without attempting to connect to
one, even if there is one already running.

See also
● “db_start_engine function” [SQL Anywhere Server - Programming]
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87

Idle connection parameter
Specifies a connection's idle timeout period.

Connection parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 283

Usage
Anywhere except with TDS and Shared Memory connections. Shared Memory and TDS connections
(including jConnect) ignore the SQL Anywhere Idle (IDLE) connection parameter.

Values
Integer

Default
None

Remarks
The Idle (IDLE) connection parameter applies only to the current connection. You can have multiple
connections on the same server set to different timeout values.

If no connection idle timeout value is set, the idle timeout value is controlled by the setting on the server,
which defaults to 240 minutes. In case of a conflict between timeout values, the connection timeout value
supercedes any server timeout value whether specified or unspecified.

The minimum value for the IDLE connection parameter is 1 minute, and the maximum supported value is
32767 minutes. If you specify 0, idle timeout checking is turned off for the connection.

See also
● “-ti server option” on page 225
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “Adjusting timeout values” on page 153

Example
The following connection string fragment sets the timeout value for this connection to 10 minutes:

"ENG=myeng;LINKS=tcpip;IDLE=10"

Integrated connection parameter [INT]
Specifies whether an integrated login can be attempted.

Usage
Anywhere

Values
YES, NO

Default
NO

Connection parameters and network protocol options

284 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
The Integrated (INT) connection parameter has the following settings:

● YES An integrated login is attempted. If the connection attempt fails and the login_mode option is set
to Standard,Integrated, a standard login is attempted.

● NO This is the default setting. No integrated login is attempted.

For a client application to use an integrated login, the server must be running with the login_mode database
option set to a value that includes Integrated.

See also
● “login_mode option [database]” on page 540
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “Using integrated logins” on page 106

Example
The following data source fragment uses an integrated login:

INT=YES

Kerberos connection parameter [KRB]
Specifies whether Kerberos authentication can be used when connecting to the database server.

Usage
All platforms except Windows Mobile.

Values
YES, NO, SSPI, or GSS-API-library-file

Default
NO

Remarks
The Kerberos [KRB] connection parameter has the following settings:

● YES A Kerberos authenticated login is attempted.

● NO No Kerberos authenticated login is attempted. This is the default.

● SSPI A Kerberos authenticated login is attempted, and the built-in Windows SSPI interface is used
instead of a GSS-API library. SSPI can only be used on Windows platforms, and it cannot be used with
a Key Distribution Center (KDC) other than the Domain Controller Active Directory KDC. If your
Windows client computer has already logged in to a Windows domain, SSPI can be used without needing
to install or configure a Kerberos client.

Connection parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 285

● GSS-API-library-file A Kerberos authenticated login is attempted, and this string specifies the file
name of the Kerberos GSS-API library (or shared object on Unix). This is only required if the Kerberos
client uses a different file name for the Kerberos GSS-API library than the default, or if there are multiple
GSS-API libraries installed on the computer.

The UserID and Password connection parameters are ignored when using a Kerberos authenticated login.

To use Kerberos authentication, a Kerberos client must already be installed and configured (nothing needs
to be done for SSPI), the user must have already logged in to Kerberos (have a valid ticket-granting ticket),
and the database server must have enabled and configured Kerberos authenticated logins.

See also
● “-kl server option” on page 201
● “-kr server option” on page 202
● “-krb server option” on page 203
● “Kerberos authentication” on page 114
● “GRANT statement” [SQL Anywhere Server - SQL Reference]
● “Use SSPI for Kerberos logins on Windows” on page 119

Examples
Kerberos=YES
Kerberos=SSPI
Kerberos=c:\Program Files\MIT\Kerberos\bin\gssapi32.dll

Language connection parameter [LANG]
Specifies the language of the connection.

Usage
Anywhere

Values
The two-letter combination representing a language. For example, specifying LANG=DE sets the default
language to German.

Default
The language specified by (in order) the SALANG environment variable, the dblang utility, or the installer.

Remarks
This connection parameter establishes the language for the connection. Any errors or warnings from the
server are delivered in the specified language, assuming that the server supports the language.

If no language is specified, the default language is used. The default language is the language specified by,
in order, the SALANG environment variable, the dblang utility, or the installer.

For more information about language codes, see “Understanding the locale language” on page 413.

Connection parameters and network protocol options

286 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

This connection parameter only affects the connection. Messages returned from SQL Anywhere tools and
utilities appear in the default language, while the messages returned from the server appear in the connection's
language.

See also
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87

LazyClose connection parameter [LCLOSE]
Controls whether cursor requests are queued until the next request or performed immediately. Queuing close
cursor requests saves a round trip and improves performance.

Usage
Anywhere

Values
YES, NO, AUTO

Default
AUTO

Remarks
● YES Always queue the cursor close request, which saves a round trip, but can cause locks and other

resources to be held after the cursor is closed by the client. The cursor close is performed when the next
request is sent to the database server on the same connection. Any isolation level 1 cursor stability locks
still apply to the cursor while the CLOSE cursor-name database request is queued.

● NO Close the cursor immediately.

● AUTO Queue the cursor close request and save a round trip, only when doing so doesn't change how
long locks or significant server resources are held. If the cursor uses isolation level 1 cursor stability
locks, or could consume significant server resources that are not released until the cursor is closed, then
the cursor is closed immediately. A query that requires a work table is an example of a cursor that can
consume significant server resources.

When this connection parameter is set to YES or AUTO, cursors are not closed until the next database
request.

Enabling this option can improve performance, if your network exhibits poor latency or your application
sends many cursor open and close requests.

See also
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “Reduce requests between client and server” [SQL Anywhere Server - SQL Usage]

Connection parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 287

LivenessTimeout connection parameter [LTO]
Controls the shutdown of connections when they are no longer intact.

Usage
Network server only.

All platforms except non-threaded Unix applications.

Values
Integer, in seconds

Default
None

If no LivenessTimeout value is set, the LivenessTimeout is controlled by the setting on the server, which
defaults to 120 seconds.

Remarks
A liveness packet is sent periodically across a client/server TCP/IP communication protocol to confirm that
a connection is intact. If the client runs for the LivenessTimeout period without detecting a liveness request
or response packet, the communication is ended.

Liveness packets are sent when a connection has not sent any packets for between one third and two thirds
of the LivenessTimeout value.

When there are more than 200 connections to a server, the server automatically calculates a higher
LivenessTimeout value based on the stated LivenessTimeout value. This enables the server to handle a large
number of connections more efficiently.

Alternatively, you can set this parameter by entering its value in the LivenessTimeout text box on the
Network tab of the ODBC Configuration For SQL Anywhere 11 window.

The minimum value for the LivenessTimeout connection parameter is 30 seconds, and the maximum value
is 32767 seconds. If you specify 0, liveness timeout checking is turned off for the connection. Any non-zero
value less than the minimum value is reset to the minimum value. For example, a connection string containing
"LivenessTimeout=5" uses "LivenessTimeout=30".

See also
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “-tl server option” on page 225

Example
The following connection string fragment sets a LivenessTimeout value of 10 minutes:

LTO=600

Connection parameters and network protocol options

288 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

LogFile connection parameter [LOG]
Sends client error messages and debugging messages to a file.

Usage
Anywhere

Values
String

Default
No log file.

Remarks
If you want to save client error messages and debugging messages in a file, use the LogFile (LOG) connection
parameter.

If the file name does not include a path, it is relative to the current working directory of the client application.

The LogFile (LOG) connection parameter is connection-specific, so from a single application you can set
different LogFile arguments for different connections.

Typical log file contents are as follows:

Mon Aug 28 2006 12:29:46
12:29:46 Attempting to connect using:
UID=DBA;PWD=********;DBF='C:\Documents and Settings\All Users\Documents\SQL
Anywhere 11\Samples\demo.db';ENG=demo11;START='C:\Program Files\
SQL Anywhere 11\bin32\dbeng11.exe';CON='Sybase Central 1';
ASTOP=YES;LOG=c:\mylog.txt
12:29:46 Attempting to connect to a running server...
12:29:46 Trying to start SharedMemory link ...
12:29:46 SharedMemory link started successfully
12:29:46 Attempting SharedMemory connection (no sasrv.ini cached address)
12:29:46 Failed to connect over SharedMemory
12:29:46 No server found, attempting to run START line...
12:29:47 Autostarted server, attempting to connect using:
UID=DBA;PWD=********;DBF='C:\Documents and Settings\All Users\Documents\
SQL Anywhere 11\Samples\demo.db';ENG=demo11;START='C:\Program Files\
SQL Anywhere 11\bin32\dbeng11.exe';CON='Sybase Central 1';ASTOP=YES
12:29:47 Attempting SharedMemory connection (no sasrv.ini cached address)
12:29:47 Connected to server over SharedMemory
12:29:47 Connected to SQL Anywhere Server version 11.0.0.2456
12:29:47 Application information:
12:29:47 IP=10.25.99.227;HOST=mymachine-XP;OS='Windows XP Build 2600
Service Pack 2';PID=0x21c;THREAD=0xa38;EXE='C:\Program Files\
SQL Anywhere 11\bin32\scjview.exe';VERSION=11.0.0.2456;
API=iAnywhereJDBC;TIMEZONEADJUSTMENT=-240
12:29:47 Connected to the server, attempting to connect to a
 running database...

Connection parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 289

12:29:48 [1] Connected to database successfully
12:29:53 [1] The number of prefetch rows has been reduced to 168 due
 to the prefetch buffer
12:29:53 [1] limit. Consider using the PrefetchBuffer connection parameter.

See also
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “LogFile protocol option [LOG]” on page 314

Example
The following command line starts Interactive SQL, connecting to the sample database with a LogFile (LOG)
connection parameter:

dbisql -c "DSN=SQL Anywhere 11 Demo;LOG=d:\logs\test.txt"

NewPassword connection parameter [NEWPWD]
Allows users to change passwords, even if they have expired, without DBA intervention.

Usage
Anywhere. The client library prompting for a new password is only supported on Microsoft Windows.

Values
String, *

Default
The password is not changed, and the client library does not prompt for a new password.

Remarks
This connection parameter is very effective when you implement a login policy using the password_life_time
or password_expiry_on_next_login options. Alternatively, you can implement a password expiry policy by
having the login_procedure signal the Password has expired error.

If the user provides a new password, the database server authenticates the user ID and password and attempts
to change the password before the login_procedure option is called. This process allows the user to change
an expired password without the involvement of a DBA. If you have set the verify_password_function option,
the new password is verified. If you are authenticating with an Integrated or Kerberos login, the original
password is not validated and the database server ignores the new password value and the password is not
changed.

On Microsoft Windows, if you use the special value *, the client library prompts for a new password during
a connection attempt only if the existing password has expired. The user must provide their existing
password, provide their new password, and confirm their new password. When the user completes the fields
and clicks OK, the old password is authenticated and the database server attempts to change the password.
If you have set the verify_password_function option, the new password is verified. The process of verifying

Connection parameters and network protocol options

290 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

if a user's password has expired, prompting for a password, and authenticating and changing the password
occurs with a single connect call to the client library.

A user receives a Password has expired error if their environment does not support password
prompting. In a Microsoft Windows environment, the prompt window might not correctly prevent interaction
with the calling application's window (it may not be modal or have the correct parent window) if the calling
application has multiple top-level windows or if the application's top level windows are minimized.

In a Windows environment, if you use the ODBC SQLDriverConnect function and the DriverCompletion
argument is anything other than SQL_DRIVER_NOPROMPT, the connection prompts for a new password
if the password has expired. The connection might prompt for a new password in OLE DB when the
DBPROP_INIT_PROMPT property is anything other than DBPROMPT_NOPROMPT. Both cases function
as if the NewPassword=* connection parameter was specified.

See also
● “GRANT statement” [SQL Anywhere Server - SQL Reference]
● “login_procedure option [database]” on page 541
● “verify_password_function option [database]” on page 591
● “post_login_procedure option [database]” on page 561

Example
The following connection string changes the password of user Test1 when they connect:

"UID=Test1;PWD=welcome;NEWPWD=hello"

In a Windows environment, the following connection string prompts the user Test1 for a new password when
the existing password expires:

"UID=Test1;PWD=welcome;NEWPWD=*"

Password connection parameter [PWD]
Provides a password for a connection.

Usage
Anywhere

Values
String

Default
No password provided.

Remarks
Every user of a database has a password. The password must be supplied for the user to be allowed to connect
to the database. Passwords have a maximum length of 255 bytes and are case sensitive. Passwords cannot
include leading spaces, trailing spaces, or semicolons.

Connection parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 291

The Password (PWD) connection parameter is not encrypted. If you are storing passwords in a data source,
you should use the EncryptedPassword (ENP) connection parameter. Sybase Central and the SQL Anywhere
ODBC configuration tool both use encrypted passwords.

If both the Password (PWD) connection parameter and the EncryptedPassword (ENP) connection parameter
are specified, the Password (PWD) connection parameter takes precedence.

Alternatively, you can set this parameter in the Password text box in the Connect window and ODBC
Configuration For SQL Anywhere 11 window.

Caution
Storing the password in a DSN or text file is a significant security risk. It is not recommended if there is any
sensitive data stored in the database. Sybase Central and the SQL Anywhere ODBC Configuration tool both
store the password in a DSN using encrypted passwords, but even encrypted passwords provide only a low
level of security.

See also
● “Setting a password” on page 457
● “Increasing password security” on page 1068
● “EncryptedPassword connection parameter [ENP]” on page 279
● “GRANT statement” [SQL Anywhere Server - SQL Reference]
● “Case sensitivity” [SQL Anywhere Server - SQL Usage]
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87

Example
The following connection string fragment supplies the user ID DBA and password sql.

UID=DBA;PWD=sql

PrefetchBuffer connection parameter [PBUF]
Sets the maximum amount of memory for buffering rows, in bytes.

Usage
Anywhere

Values
Integer [k | m]

Default
512 KB (524288) all platforms except Windows Mobile

64 KB (65536 bytes) Windows Mobile

Connection parameters and network protocol options

292 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
The PrefetchBuffer (PBUF) connection parameter controls the memory allocated on the client to store
prefetched rows. The value is in bytes, but you can use k or m to specify units of kilobytes or megabytes,
respectively. This connection parameter accepts values between 64 KB and 8 MB.

In some circumstances, increasing the number of prefetched rows can improve query performance. You can
increase the number of prefetched rows using the PrefetchRows (PROWS) and PrefetchBuffer (PBUF)
connection parameters.

Increasing the PrefetchBuffer (PBUF) connection parameter also increases the amount of memory used to
buffer GET DATA requests. This may improve performance for some applications that process many GET
DATA (SQLGetData) requests.

For compatibility with previous versions, if a value less than 16384 is specified, it is interpreted as kilobytes.

Using kilobytes without the k suffix in the PrefetchBuffer connection parameter is deprecated. See
“PrefetchRows connection parameter [PROWS]” on page 294.

See also
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87

Examples
The following connection string fragment could be used to determine if the PrefetchBuffer memory limit is
reducing the number of prefetched rows.

...PrefetchRows=100;LogFile=c:\client.txt

The following string could be used to increase the memory limit to 256 KB:

...PrefetchRows=100;PrefetchBuffer=256k

PrefetchOnOpen connection parameter
Sends a prefetch request with a cursor open request when this parameter is enabled.

Usage
ODBC

Values
YES, NO

Default
NO

Remarks
Enabling this option sends a prefetch request with a cursor open request, thereby eliminating a network
request to fetch rows each time a cursor is opened. Columns must already be bound in order for the prefetch

Connection parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 293

to occur on the open. Rebinding columns between the cursor open and the first fetch when using
PrefetchOnOpen will cause reduced performance.

Making ODBC calls to SQLExecute or SQLExecDirect on a query or stored procedure which returns a result
set causes a cursor open.

Enabling this option can improve performance if your:

● network exhibits poor latency

● application sends many cursor open and close requests

PrefetchRows connection parameter [PROWS]
Sets the maximum number of rows to prefetch when querying the database.

Usage
Anywhere

Values
Integer

Default
10

200 for ADO.NET

Remarks
Increasing the number of rows prefetched from the database server by the client can improve performance
on cursors that only fetch relative 0 or 1, with either single row or wide fetches. Wide fetches include
embedded SQL array fetches and ODBC block fetches.

Improvements occur under the following conditions:

● The application fetches many rows (several hundred or more) with very few absolute fetches.

● The application fetches rows at a high rate, and the client and server are on the same computer or
connected by a fast network.

● Client/server communication is over a slow network, such as a dial-up link or wide area network.

The number of rows prefetched is limited both by the PrefetchRows (PROWS) connection parameter and
the PrefetchBuffer (PBUF) connection parameter, which limits the memory available for storing prefetched
rows. See “PrefetchBuffer connection parameter [PBUF]” on page 292.

The maximum number of rows that can be prefetched is 1000.

Connection parameters and network protocol options

294 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87

Example
The following connection string fragment sets the number of prefetched rows to 100:

...PrefetchRows=100;...

RetryConnectionTimeout connection parameter
[RetryConnTO]

Instructs the client library (dblib, ODBC, ADO, and so on) to keep retrying the connection attempt, as long
as the server is not found, for the specified period of time.

Usage
Anywhere

Values
Integer

Default
0

Remarks
The value specified by this connection is a timeout, in seconds. It is not a counter of the number of times to
retry the connection attempt. The default value of zero indicates that the connection attempt should only be
tried once. There is a half-second delay between iterations, and the retries only occur if the connection attempt
failed because the database server was not found. Any other error is returned immediately. If the database
server is not found, the connection attempt will take at least as long as the time specified by the
RetryConnectionTimeout connection parameter.

Note that the default TCP timeout is 5 seconds, so if your connection string contains a value for RetryConnTO
that is less than 5, for example LINKS=tcp;RetryConnTO=3, then the connection attempt still takes 5
seconds.

See also
● “Timeout protocol option [TO]” on page 324

Example
The following connection string fragment tells the client library to continue to retry the connection attempt
for at least 5 seconds:

...RetryConnTO=5;...

Connection parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 295

ServerName connection parameter [ENG]
Specifies the name of a running database server to which you want to connect. This is a synonym for
EngineName.

Usage
Network servers or personal servers.

Values
String

Default
The default local database server.

Remarks
When a database server starts, it attempts to become the default database server on that computer. The first
database server to start when there is no default server becomes the default database server. Shared memory
connection attempts on that computer that do not explicitly specify a database server name connect to the
default server.

ServerName is not needed if you want to connect to the default local database server.

You must supply a ServerName if more than one local database server is running, or if you want to connect
to a network server. In the Connect window, and in the ODBC Configuration For SQL Anywhere 11
window, this is the Server Name field.

If you are autostarting a server, you can provide a server name using this parameter.

The server name is interpreted according to the character set of the client computer. Non-ASCII characters
are not recommended in server names.

Names must be valid identifiers. Database server names cannot:

● begin with white space, single quotes, or double quotes
● end with white space
● contain semicolons
● be longer than 250 bytes

On Windows and Unix, version 9.0.2 and earlier clients cannot connect to version 10.0.0 and later database
servers with names longer than the following lengths:

● 40 bytes for Windows shared memory
● 31 bytes for Unix shared memory
● 40 bytes for TCP/IP

Connection parameters and network protocol options

296 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Note
It is recommended that you include the ServerName parameter in connection strings for deployed
applications. This ensures that the application connects to the correct server in the case where a computer is
running multiple SQL Anywhere database servers, and can help prevent timing-dependent connection
failures.

It is recommended that you use the -xd option for database servers being used by deployed applications, and
that all clients explicitly specify the name of the database server to which they should connect by using the
ENG connection parameter. This ensures that the database connects to the correct database server when a
computer is running multiple SQL Anywhere database servers.

See also
● “Identifiers” [SQL Anywhere Server - SQL Reference]
● “-n server option” on page 206
● “-xd server option” on page 236
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “Connecting to an embedded database” on page 126

Example
Connect to a server named Guelph:

ENG=Guelph

StartLine connection parameter [START]
Starts a personal database server running from an application.

Usage
Embedded databases

Values
String

Default
No StartLine parameter.

Remarks
You should supply a StartLine (START) connection parameter only if you are connecting to a database
server that is not currently running. The StartLine connection parameter is a command line to start a personal
database server. The database server is not autostarted if the CommLinks [LINKS] parameter includes
TCPIP.

Connection parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 297

Note
If you want to specify the database name, database file, or server, it is recommended that you use the DBN,
DBF, and ENG connection parameters, rather than the StartLine connection parameter.

The following command uses the recommended syntax:

START=dbeng11 -c 8M;ENG=mydb;DBN=mydb;DBF=c:\sample.db

The following syntax is not recommended:

START=dbeng11 -c 8M -n mydb "c:\sample.db"

For more information about available options, see “The SQL Anywhere database server” on page 156.

Note
The StartLine connection parameter is only used to start a database server if a connection cannot be made
to the specified database server or the database cannot be started and connected to on a database server that
is already running. For example, suppose you start a database server running a database as follows:

dbeng11 c:\mydb.db

Connect another database (without specifying a database server name using the ENG connection parameter):

dbisql -c "START=dbsrv11 -c 8M;DBN=seconddb;DBF=c:
\myseconddb.db;UID=DBA;PWD=sql"

In this case, the dbsrv11 database server is not started. Instead, the dbeng11 database server that was used
to start mydb.db is used to start and connect to myseconddb.db.

However, if ENG=server-name had been specified, and a database server named server-name was not
running, then the dbsrv11 database server would have started.

See also
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “CommLinks connection parameter [LINKS]” on page 268
● “Connecting to an embedded database” on page 126

Example
The following data source fragment starts a personal database server with a cache of 8 MB.

StartLine=dbeng11 -c 8M;DBF=samples-dir\demo.db

For information about samples-dir, see “Samples directory” on page 390.

Unconditional connection parameter [UNC]
Stops a database server using the db_stop_engine function, or a database using the db_stop_database
function, even when there are connections to the database server.

Connection parameters and network protocol options

298 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Usage
db_stop_engine and db_stop_database functions only

Values
YES, NO

Default
NO

Remarks
The db_stop_engine and db_stop_database functions shut down a database server or database, respectively.
If you specify UNC=YES in the connection string, the database server or database is shut down even if there
are active connections. If Unconditional is not set to YES, then the database server or database is shut down
only if there are no active connections.

See also
● “db_stop_database function” [SQL Anywhere Server - Programming]
● “db_stop_engine function” [SQL Anywhere Server - Programming]
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87

Userid connection parameter [UID]
Specifies the user ID used to log in to the database.

Usage
Anywhere

Values
String

Default
None

Remarks
You must always supply a user ID when connecting to a database, unless you are using an integrated or
Kerberos login.

See also
● “Connection parameters” on page 86
● “Resolving connection parameter conflicts” on page 87
● “Database permissions and authorities overview” on page 446

Connection parameters

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 299

Example
The following connection string fragment supplies the user ID DBA and password sql:

UID=DBA;PWD=sql

Connection parameters and network protocol options

300 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Network protocol options
Network protocol options (for both the client and the server) enable you to work around peculiarities of
different network protocol implementations.

You can supply the network protocol options in the server command. For example:

dbsrv11 -x tcpip(PARM1=value1;PARM2=value2;...)

From the client side, you enter the protocol options as the CommLinks (LINKS) connection parameter:

CommLinks=tcpip(PARM1=value1;PARM2=value2;...)

If there are spaces in a parameter, the network protocol options must be enclosed in quotation marks to be
parsed properly by the system command interpreter:

dbsrv11 -x "tcpip(PARM1=value1;PARM2=value2;...)"
CommLinks="tcpip(PARM1=value1;PARM2=value2;...)"

The quotation marks are also required under Unix if more than one parameter is given because Unix interprets
the semicolon as a command separator.

Boolean parameters are turned on with YES, Y, ON, TRUE, T, or 1, and are turned off with any of NO, N,
OFF, FALSE, F, and 0. The parameters are case insensitive.

The examples provided should all be entered on a single line; you can also include them in a configuration
file and use the @ server option to invoke the configuration file.

TCP/IP, HTTP, and HTTPS protocol options

The options available for TCP/IP, HTTP, and HTTPS are as follows.

TCP/IP HTTP and HTTPS

“Broadcast protocol option
[BCAST]” on page 302

“DatabaseName protocol option
[DBN]” on page 308

“BroadcastListener protocol option [BLISTEN-
ER]” on page 303

“Identity protocol option” on page 311

“ClientPort protocol option
[CPORT]” on page 307

“Identity_Password protocol option” on page 312

“DoBroadcast protocol option [DOB-
ROAD]” on page 309

“KeepaliveTimeout protocol option
[KTO]” on page 312

“Host protocol option [IP]” on page 310 “LocalOnly protocol option [LO-
CAL]” on page 314

“LDAP protocol option [LDAP]” on page 313 “LogFile protocol option [LOG]” on page 314

Network protocol options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 301

TCP/IP HTTP and HTTPS

“LocalOnly protocol option [LO-
CAL]” on page 314

“LogFormat protocol option [LF]” on page 315

“MyIP protocol option [ME]” on page 319 “LogMaxSize protocol option
[LSIZE]” on page 316

“ReceiveBufferSize protocol option
[RCVBUFSZ]” on page 320

“LogOptions protocol option
[LOPT]” on page 317

“SendBufferSize protocol option
[SNDBUFSZ]” on page 320

“MaxConnections protocol option [MAX-
CONN]” on page 318

“ServerPort protocol option
[PORT]” on page 321

“MaxRequestSize protocol option [MAX-
SIZE]” on page 318

“TDS protocol option” on page 323 “MyIP protocol option [ME]” on page 319

“Timeout protocol option [TO]” on page 324 “ServerPort protocol option
[PORT]” on page 321

“VerifyServerName protocol option [VERI-
FY]” on page 326

“Timeout protocol option [TO]” on page 324

Broadcast protocol option [BCAST]
Specifies the IP address that should be used to send broadcast messages.

Usage
TCP/IP

Values
String, in the form of an IP address

Default
Broadcasts to all addresses on the same subnet.

Remarks
The default broadcast address is created using the local IP address and subnet mask. The subnet mask
indicates which portion of the IP address identifies the network, and which part identifies the host.

For example, for a subnet of 10.24.98.x, with a mask of 255.255.255.0, the default broadcast address would
be 10.24.98.255.

Connection parameters and network protocol options

302 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

When specifying an IPv6 address on a Windows platform, the interface identifier should be used. Unix
platforms support both interface identifiers and interface names in IPv6 addresses. The interface identifier
is required on Linux (kernel 2.6.13 and later). See “IPv6 support in SQL Anywhere” on page 143.

See also
● “BroadcastListener protocol option [BLISTENER]” on page 303
● “DoBroadcast protocol option [DOBROAD]” on page 309
● “Locating a database server using the Broadcast Repeater utility” on page 136

Example
The following connection string example tells the client to broadcast only on interface number 2 when using
IPv6:

LINKS=tcpip(BROADCAST=ff02::1%2)

BroadcastListener protocol option [BLISTENER]
Controls broadcast listening for the specified port.

Usage
TCP/IP (server side)

Values
YES, NO

Default
YES

Remarks
This option allows you to turn broadcast listening OFF for this port.

Using -sb 0 is the same as specifying BroadcastListener=NO on TCP/IP.

If broadcast listening is off, then the database server does not respond to UDP broadcasts. This means that
clients must use either the HOST= TCP protocol option to specify the hostname of the database server, or
register the database server with LDAP and use LDAP on the clients to find the database server. This also
means that the dblocate utility does not include the database server in its output.

See also
● “-sb server option” on page 218
● “Broadcast protocol option [BCAST]” on page 302
● “DoBroadcast protocol option [DOBROAD]” on page 309

Example
Start a database server that accepts TCP/IP connections, and requires that TCP/IP connections use the Host
protocol option:

Network protocol options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 303

dbsrv11 -x tcpip(BroadcastListener=NO) ...

The following is a fragment of a client connection string to connect to the database server:

...LINKS=tcpip;HOST=myserver;...

certificate_company protocol option
Forces the client to accept server certificates only when the Organization field on the certificate matches this
value.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

Syntax
certificate_company=organization

Usage
TLS, HTTPS

Default
None

Remarks
SQL Anywhere clients trust all certificates signed by the certificate authority, so they may also trust
certificates that the same certificate authority has issued to other companies. Without a means to discriminate,
your clients might mistake a competitor's database server for your own and accidentally send it sensitive
information. This option specifies a further level of verification, that the Organization field in the identity
portion of the certificate also matches a value you specify.

HTTPS is only supported for web services client procedures. See “CREATE PROCEDURE statement (web
services)” [SQL Anywhere Server - SQL Reference].

See also
● “certificate_name protocol option” on page 305
● “certificate_unit protocol option” on page 306
● “trusted_certificates protocol option” on page 325
● “Encryption connection parameter [ENC]” on page 280
● “Encrypting SQL Anywhere client/server communications” on page 1107
● “Certificate Creation utility (createcert)” on page 747

Connection parameters and network protocol options

304 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
The following command connects the SQL Anywhere sample database to Interactive SQL using transport-
layer security.

dbisql -c
"UID=DBA;PWD=sql;ENG=demo;LINKS=tcpip;ENC=TLS(
tls_type=RSA;FIPS=n;trusted_certificates=c:\temp\myident;
certificate_unit='SA';certificate_company='Sybase iAnywhere';
certificate_name='Sybase')"

certificate_name protocol option
Forces the client to accept server certificates only when the Common Name field on the certificate matches
this value.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

Syntax
certificate_name=common-name

Usage
TLS, HTTPS

Default
None

Remarks
SQL Anywhere clients trust all certificates signed by the certificate authority, so they may also trust
certificates that the same certificate authority has issued to other companies. Without a means to discriminate,
your clients might mistake a competitor's database server for your own and accidentally send it sensitive
information. This option specifies a further level of verification, that the Common Name field in the identity
portion of the certificate also matches a value you specify.

HTTPS is only supported for web services client procedures. See “CREATE PROCEDURE statement (web
services)” [SQL Anywhere Server - SQL Reference].

See also
● “certificate_company protocol option” on page 304
● “certificate_unit protocol option” on page 306
● “trusted_certificates protocol option” on page 325
● “Encryption connection parameter [ENC]” on page 280
● “Encrypting SQL Anywhere client/server communications” on page 1107
● “Certificate Creation utility (createcert)” on page 747

Network protocol options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 305

Example
The following command connects the SQL Anywhere sample database to Interactive SQL using transport-
layer security.

dbisql -c
"UID=DBA;PWD=sql;ENG=demo;LINKS=tcpip;ENC=TLS(
tls_type=RSA;FIPS=n;trusted_certificates=c:\temp\myident;
certificate_unit='SA';certificate_company='Sybase iAnywhere';
certificate_name='Sybase')"

certificate_unit protocol option
Forces the client to accept server certificates only when the Organization Unit field on the certificate matches
this value.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

Syntax
certificate_unit=organization-unit

Usage
TLS, HTTPS

Default
None

Remarks
SQL Anywhere clients trust all certificates signed by the certificate authority, so they may also trust
certificates that the same certificate authority has issued to other companies. Without a means to discriminate,
your clients might mistake a competitor's database server for your own and accidentally send it sensitive
information. This option specifies a further level of verification, that the Organization Unit field in the
identity portion of the certificate also matches a value you specify.

HTTPS is only supported for web services client procedures. See “CREATE PROCEDURE statement (web
services)” [SQL Anywhere Server - SQL Reference].

See also
● “certificate_company protocol option” on page 304
● “certificate_name protocol option” on page 305
● “trusted_certificates protocol option” on page 325
● “Encryption connection parameter [ENC]” on page 280
● “Encrypting SQL Anywhere client/server communications” on page 1107
● “Certificate Creation utility (createcert)” on page 747

Connection parameters and network protocol options

306 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
The following command connects the SQL Anywhere sample database to Interactive SQL using transport-
layer security.

dbisql -c
"UID=DBA;PWD=sql;ENG=demo;LINKS=tcpip;ENC=TLS(
tls_type=RSA;FIPS=n;trusted_certificates=c:\temp\myident;
certificate_unit='SA';certificate_company='Sybase iAnywhere';
certificate_name='Sybase')"

ClientPort protocol option [CPORT]
Designates the port number on which the client application communicates using TCP/IP.

Usage
TCP/IP (client side only)

Values
Integer

Default
Assigned dynamically per connection by the networking implementation. If you do not have firewall
restrictions, it is recommended that you do not use this parameter.

Remarks
This option is provided for connections across firewalls, as firewall software filters according to TCP/UDP
port. It is recommended that you do not use this parameter unless you need to for firewall reasons.

The ClientPort option designates the port number on which the client application communicates using TCP/
IP. You can specify a single port number, or a combination of individual port numbers and ranges of port
numbers. For example:

● (cport=1234)

● (cport=1234,1235,1239)

● (cport=1234-1238)

● (cport=1234-1237,1239,1242)

It is best to specify a list or a range of port numbers if you want to make multiple connections using a given
Data Source or a given connect string. If you specify a single port number, then your application will be able
to maintain only one connection at a time. In fact, even after closing the one connection, there is a several
minute timeout period during which no new connection can be made using the specified port. When you
specify a list and/or range of port numbers, the application keeps trying port numbers until it finds one to
which it can successfully bind.

Network protocol options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 307

See also
● “Host protocol option [IP]” on page 310
● “DoBroadcast protocol option [DOBROAD]” on page 309
● “ServerPort protocol option [PORT]” on page 321
● “Connecting across a firewall” on page 144

Examples
The following connection string fragment makes a connection from an application using port 6000 to a server
named my-server using port 5000:

CommLinks=tcpip(ClientPort=6000;ServerPort=5000);ServerName=my-server

The following connection string fragment makes a connection from an application that can use ports 5050
through 5060, and ports 5040 and 5070 for communicating with a server named my-server using the default
server port:

CommLinks=tcpip(ClientPort=5040,5050-5060,5070);
ServerName=my-server

DatabaseName protocol option [DBN]
Specifies the name of a database to use when processing web requests, or uses the REQUIRED or AUTO
keyword to specify whether database names are required as part of the URI.

Usage
HTTP, HTTPS

Values
AUTO, REQUIRED, database-name

Default
AUTO

Remarks
If this parameter is set to REQUIRED, the URI must specify a database name.

If this parameter is set to AUTO, the URI may specify a database name, but does not need to do so. If the
URI contains no database name, the default database on the server is used to process web requests. Since
the server must determine whether the URI contains a database name when set to AUTO, you should avoid
ambiguity in your web site design.

If this parameter is set to the name of a database, that database is used to process all web requests. The URI
must not contain a database name.

Example
The following command starts two databases, but permits only one of them to be accessed via HTTP.

dbsrv11 -xs http(DBN=web) samples-dir\demo.db web.db

Connection parameters and network protocol options

308 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

DoBroadcast protocol option [DOBROAD]
Controls how a client searches for a database server, and controls whether the database server broadcasts
when it starts.

Usage
TCP/IP

Values
ALL, NONE, DIRECT (client side)

YES, NO (server side)

Default
ALL (client side)

YES (server side)

Remarks
Client usage With DoBroadcast=ALL a broadcast is performed to search for a database server. The
broadcast goes first to the local subnet. If HOST= is specified, broadcast packets are also sent to each of the
hosts. All broadcast packets are UDP packets.

With DoBroadcast=DIRECT, no broadcast is performed to the local subnet to search for a database server.
Broadcast packets are sent only to the hosts listed in the HOST (IP) protocol option. If you specify
DoBroadcast=DIRECT, the HOST (IP) protocol option is required.

Specifying DoBroadcast=NONE causes no UDP broadcasts to be used and the server address cache
(sasrv.ini) is ignored. A TCP/IP connection is made directly with the HOST/PORT specified, and the server
name is verified. With TCP/IP, you can choose not to verify the server name by setting the VerifyServerName
(VERIFY) protocol option to NO. The HOST (IP) protocol option is a required parameter, unless LDAP is
being used, while the ServerPort (PORT) protocol option is optional.

For DIRECT and NONE, you must specify the server host with the HOST option.

Server usage Setting DoBroadcast=NO prevents the database server from broadcasting to find other
servers with the same name when starting up. This is useful in certain rare circumstances, but it is not
generally recommended.

See also
● “Broadcast protocol option [BCAST]” on page 302
● “BroadcastListener protocol option [BLISTENER]” on page 303

Example
The following command starts a client without broadcasting to search for a database server. Instead, the
server is looked for only on the computer named silver.

CommLinks=tcpip(DOBROADCAST=DIRECT;HOST=silver) demo

Network protocol options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 309

Host protocol option [IP]
Specifies additional computers outside the immediate network to be searched by the client library.

Usage
TCP/IP

Values
String

Default
No additional computers.

Remarks
HOST specifies additional computers outside the immediate network to be searched by the client library.
On the server, the search is performed to avoid starting a server with a duplicate name. Specifying a host in
the HOST protocol option does not mean that the database server must be running on a specified hosts.

For TCP/IP, the address can be the hostname IP address. You may optionally specify a PORT value as well.

When specifying an IPv6 address on a Windows platform, the interface identifier should be used. Unix
platforms support both interface identifiers and interface names in IPv6 addresses. The interface identifier
is required on Linux (kernel 2.6.13 and later). See “IPv6 support in SQL Anywhere” on page 143.

The server prints addressing information to the database server messages window during startup if the -z
option is used. In addition, the client application writes this information to its log file if the LogFile connection
parameter is specified.

You can use a comma-separated list of addresses to search for more than one computer. You can also append
a port number to an IP address, using a colon as separator. Alternatively, you can specify the host and server
ports explicitly, as in HOST=myhost;PORT=5000. For IPv6 addresses, you must enclose the address in
parentheses, for example (fe80::5445:5245:444f):2638.

To specify multiple values for a single parameter, use a comma-separated list. When you specify multiple
ports and servers, you can associate a particular port with a specific server by specifying the port in the
HOST (IP) protocol option instead of the PORT parameter.

IP and HOST are synonyms.

See also
● “ClientPort protocol option [CPORT]” on page 307

Examples
The following connection string fragment instructs the client to look on the computers kangaroo and
197.75.209.222 (port 2369) to find a database server:

LINKS=tcpip(IP=kangaroo,197.75.209.222:2369)

Connection parameters and network protocol options

310 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The following connection string fragment instructs the client to look on the computers my-server and
kangaroo to find a database server. A connection is attempted to the first host that responds running on port
2639.

LINKS=tcpip(HOST=my-server,kangaroo;PORT=2639)

The following connection string fragment instructs the client to look for a server on host1 running on port
1234 and for a server on host2 running on port 4567. The client does not look on host1 on port 4567 or on
host2 on port 1234.

LINKS=tcpip(HOST=host1:1234,host2:4567)

The following connection string fragment instructs the client to look for a server on an IPv6 address:

LINKS=tcpip(HOST=fe80::5445:5245:444f)

The following examples demonstrate using IPv6 addresses with the Host protocol option:

Global scope address, unique everywhere, so no interface index is required
// no index required
-c "links=tcpip(Host=fd77:55d:59d9:56a:202:55ff:fe76:df19)"
// all communication is done through interface 2
-c "links=tcpip(Host=fd77:55d:59d9:56a:202:55ff:fe76:df19%2)"
// all communication is done through eth0
-c "links=tcpip(Host=fd77:55d:59d9:56a:202:55ff:fe76:df19%eth0)"
Link scope address, addresses are unique on each interface
// possibly ambiguous (this host may exist through both eth0 and eth1)
-c "links=tcpip(Host=fe80::202:55ff:fe76:df19)"
// not ambiguous because it must use interface 2
-c "links=tcpip(Host=fe80::202:55ff:fe76:df19%2)"
// not ambiguous because it must use eth0
-c "links=tcpip(Host=fe80::202:55ff:fe76:df19%eth0)"

Identity protocol option
Specifies the name of an identity file.

Usage
HTTPS

Values
String

Default
There is no default identity file name.

Remarks
This required option specifies the name of an identity file. The identity file contains the public certificate
and its private key, and for certificates that are not self-signed, the identity file also contains all the signing
certificates, which includes, among other things, the encryption certificate. The password for this certificate
must be specified with the Identity_Password parameter.

Network protocol options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 311

See also
● “Setting up transport-layer security” on page 1099
● “Identity_Password protocol option” on page 312

Example
Start a server that requires web connections to use a particular encryption certificate.

dbsrv11 -xs https(Identity=cert.file;Identity_Password=secret) ...

Identity_Password protocol option
Specifies the password for the encryption certificate.

Usage
HTTPS

Values
String

Default
There is no default identity file password.

Remarks
This required option specifies the password that matches the encryption certificate specified by the Identity
protocol option.

See also
● “Setting up transport-layer security” on page 1099
● “Identity protocol option” on page 311

Example
Start a server that requires web connections to use a particular encryption certificate.

dbsrv11 -xs https(Identity=cert.file;Identity_Password=secret) ...

KeepaliveTimeout protocol option [KTO]
Specifies the maximum time, in seconds, that the database server waits for a complete request.

Usage
HTTP

Values
Integer

Connection parameters and network protocol options

312 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Default
60

Remarks
Normally, a connection is closed after each request. When a client requests the Keep-Alive option, an HTTP
connection can be kept open after each request and response, so that multiple requests can be executed on
the same connection.

Once a connection is opened, the client has the specified amount of time to send the complete HTTP request,
including the body for POST requests. On connections where Keep-Alive is requested, the timeout is reset
after sending a result, so the beginning of each request is like the opening of a new connection.

If you do not want the connection to time out, specify kto=0.

The difference between the KeepaliveTimeout and Timeout protocol options is that KeepaliveTimeout
specifies the total time from opening the connection, while Timeout specifies the maximum amount of time
between packets within the request.

See also
● “Working with HTTP headers” [SQL Anywhere Server - Programming]
● “Timeout protocol option [TO]” on page 324

LDAP protocol option [LDAP]
Allows clients to find database servers without specifying the IP address.

Usage
TCP/IP

Values
YES, NO, or filename

Default
YES

The default file name is saldap.ini.

Remarks
Having the database server register itself with an LDAP server allows clients to query the LDAP server.
This allows clients running over a WAN or through a firewall to find servers without specifying the IP
address. It also allows the Locate utility (dblocate) to find such servers.

Specifying LDAP=filename turns LDAP support on and uses the specified file as the configuration file.
Specifying LDAP=YES turns LDAP support on and uses saldap.ini as the configuration file.

You can hide the contents of the saldap.ini file with simple encryption using the File Hiding utility. See
“Hiding the contents of .ini files” on page 768.

Network protocol options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 313

LDAP is only used with TCP/IP.

See also
● “Connecting using an LDAP server” on page 146

LocalOnly protocol option [LOCAL]
Allows a client to choose to connect only to a server on the local computer, if one exists.

Usage
TCP/IP, HTTP, HTTPS

Values
YES, NO

Default
NO

Remarks
If no server with the matching server name is found on the local computer, a server will not be autostarted.

The LocalOnly (LOCAL) protocol option is only useful if DoBroadcast=ALL (the default) is also specified.

LocalOnly=YES uses the regular broadcast mechanism, except that broadcast responses from servers on
other computers are ignored.

You can use the LocalOnly (LOCAL) protocol option with the server to restrict connections to the local
computer. Connection attempts from remote computers will not find this server, and the Locate [dblocate]
utility will not see this server. Running a server with the LocalOnly (LOCAL) protocol option set to YES
allows the network server to run as a personal server without experiencing connection or CPU limits.

See also
● “Broadcast protocol option [BCAST]” on page 302
● “Starting a database server that listens for web requests” [SQL Anywhere Server - Programming]

LogFile protocol option [LOG]
Specifies the name of the file where the database server writes information about web requests.

Usage
HTTP, HTTPS

Values
Filename

Connection parameters and network protocol options

314 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Default
None

Remarks
Specify the name of the file to which the database server is to write information about web requests.

See also
● “LogFormat protocol option [LF]” on page 315
● “LogMaxSize protocol option [LSIZE]” on page 316
● “LogOptions protocol option [LOPT]” on page 317

LogFormat protocol option [LF]
Controls the format of messages written to the log file and which fields appear in them.

Usage
HTTP, HTTPS

Values
Format-string

Default
@T - @W - @I - @P - "@M @U @V" - @R - @L - @E

Remarks
This parameter controls the format of messages written to the log file and which fields appear in them. If
they appear in the string, the current values are substituted for the following codes as each message is written.

● @@ The @ character.

● @B Date and time that processing of the request started, unless the request could not be queued due
to an error.

● @C Date and time that the client connected.

● @D Name of the database associated with the request.

● @E Text of the error message, if an error occurred.

● @F Date and time that processing of the request finished.

● @I IP address of the client.

● @L Length of the response, in bytes, including headers and body.

● @M HTTP request method.

● @P Listener port associated with the request.

Network protocol options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 315

● @Q Date and time that the request was queued for processing, unless the request could not be queued
due to an error.

● @R Status code and description of the HTTP response.

● @S HTTP status code.

● @T Date and time that the current log entry was written.

● @U Requested URI.

● @V Requested HTTP version.

● @W Time taken to process the request (@F - @B), or 0.000 if the request was not processed due to
an error.

See also
● “LogFile protocol option [LOG]” on page 314
● “LogMaxSize protocol option [LSIZE]” on page 316
● “LogOptions protocol option [LOPT]” on page 317

LogMaxSize protocol option [LSIZE]
Controls the maximum size of the log file where the database server writes information about web requests.

Usage
HTTP, HTTPS

Values
Integer [k | m | g]

Default
0

Remarks
When the log file reaches the stated size, it is renamed and another log file is created. If LogMaxSize is zero,
the log file size is unlimited. The default value is in bytes, but you can use k, m, or g to specify units of
kilobytes, megabytes, or gigabytes, respectively.

See also
● “LogFile protocol option [LOG]” on page 314
● “LogFormat protocol option [LF]” on page 315
● “LogOptions protocol option [LOPT]” on page 317

Connection parameters and network protocol options

316 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

LogOptions protocol option [LOPT]
Specifies the types of messages that are recorded in the log where the database server writes information
about web requests.

Usage
HTTP, HTTPS

Values
NONE, OK, INFO, ERRORS, ALL, status-codes, REQHDRS, RESHDRS, HEADERS

Default
ALL

Remarks
The values available include keywords that select particular types of messages, and HTTP status codes.
Multiple values may be specified, separated by commas.

The following keywords control which categories of messages are logged:

● NONE Log nothing.

● OK Log requests that complete successfully (20x HTTP status codes).

● INFO Log requests that return over or not modified status codes (30x HTTP status codes).

● ERRORS Log all errors (40x and 50x HTTP status codes).

● ALL Log all requests.

The following common HTTP status codes are also available. They can be used to log requests that return
particular status codes:

● C200 OK

● C400 Bad request

● C401 Unauthorized

● C403 Forbidden

● C404 Not found

● C408 Request timeout

● C501 Not implemented

● C503 Service unavailable

In addition, the following keywords may be used to obtain more information about the logged messages:

● REQHDRS When logging requests, also write request headers to the log file.

Network protocol options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 317

● RESHDRS When logging requests, also write response headers to the log file.

● HEADERS When logging requests, also write both request and response headers to the log file (same
as REQHDRS,RESHDRS).

See also
● “LogFile protocol option [LOG]” on page 314
● “LogFormat protocol option [LF]” on page 315
● “LogMaxSize protocol option [LSIZE]” on page 316

MaxConnections protocol option [MAXCONN]
Specifies the number of simultaneous connections accepted by the database server.

Usage
HTTP, HTTPS

Values
Size

Default
5 (personal server)

Number of licensed connections (network server)

Remarks
The number of simultaneous connections accepted by the server. The value 0 indicates no limit.

See also
● “MaxRequestSize protocol option [MAXSIZE]” on page 318

MaxRequestSize protocol option [MAXSIZE]
Specifies the size of the largest request the database server can accept.

Usage
HTTP, HTTPS

Values
Integer [k | m | g]

Default
100k

Connection parameters and network protocol options

318 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
The size of the largest request accepted by the server. The default value is in bytes, but you can use k, m,
or g to specify units of kilobytes, megabytes, or gigabytes, respectively. If the size of a request exceeds this
limit, the connection is closed and a 413 ENTITY TOO LARGE response is returned to the client. This
value limits only the size of the request, not that of the response. The value 0 disables this limit, but should
be used with extreme caution. Without this limit, a rogue client could overload the server or cause it to run
out of memory.

See also
● “MaxConnections protocol option [MAXCONN]” on page 318

Example
The following command line (entered all on one line) instructs the server to accept requests up to 150000
bytes in size:

dbsrv11 -xs http{MaxRequestSize=150000}

MyIP protocol option [ME]
Controls whether the client attempts to determine addressing information.

Usage
TCP/IP, HTTP, HTTPS

Values
String

Remarks
The MyIP (ME) protocol option is provided for computers with more than one network adapter.

Each adapter has an IP address. By default, the database server uses every network interface it finds. If you
don't want your database server to listen on all network interfaces, specify the address of each interface you
want to use in the MyIP (ME) protocol option.

If the keyword NONE is supplied as the IP number, no attempt is made to determine the addressing
information. The NONE keyword is intended for clients on computers where this operation is expensive,
such as computers with multiple network cards or remote access (RAS) software and a network card. It is
not intended for use on the server.

Separate multiple IP addresses with commas.

When specifying an IPv6 address on a Windows platform, the interface identifier should be used. Unix
platforms support both interface identifiers and interface names in IPv6 addresses. The interface identifier
is required on Linux (kernel 2.6.13 and later). See “IPv6 support in SQL Anywhere” on page 143.

See also
● “Using the TCP/IP protocol” on page 143

Network protocol options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 319

Example
The following command line (entered all on one line) instructs the server to use two network cards.

dbsrv11 -x tcpip(MyIP=192.75.209.12,192.75.209.32) "samples-dir\demo.db"

The following command line (entered all on one line) instructs the database server to use an IPv6 network
card:

dbsrv11 -x tcpip(MyIP=fe80::5445:5245:444f) "samples-dir\demo.db"

For information about samples-dir, see “Samples directory” on page 390.

The following connection string fragment instructs the client to make no attempt to determine addressing
information.

LINKS=tcpip(MyIP=NONE)

ReceiveBufferSize protocol option [RCVBUFSZ]
Sets the size for a buffer used by the TCP/IP protocol stack.

Usage
TCP/IP

Values
Integer [k | m | g]

Default
Computer-dependent.

Remarks
You may want to increase the value if BLOB performance over the network is important. By default, the
specified buffer size is in bytes. Use k, m, or g to specify units of kilobytes, megabytes, or gigabytes,
respectively.

See also
● “Using the TCP/IP protocol” on page 143

SendBufferSize protocol option [SNDBUFSZ]
Sets the size for a buffer used by the TCP/IP protocol stack.

Usage
TCP/IP

Connection parameters and network protocol options

320 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Values
Integer [k | m | g]

Default
Computer-dependent.

Remarks
The default value is in bytes, but you can use k, m, or g to specify units of kilobytes, megabytes, or gigabytes,
respectively. You may want to increase the value if BLOB performance over the network is important.

See also
● “Using the TCP/IP protocol” on page 143

ServerPort protocol option [PORT]
Specifies the port the database server is running on.

Usage
TCP/IP, HTTP, HTTPS

Values
Integer

Default
The default value for TCP/IP is 2638. The default value for HTTP is 80. The default value for HTTPS is
443.

Remarks
The Internet Assigned Numbers Authority has assigned the SQL Anywhere database server port number
2638 to use for TCP/IP communications. However, other applications are not disallowed from using this
reserved port, and this may result in an addressing collision between the database server and another
application.

In the case of the database server, the ServerPort protocol option designates the port number on which to
communicate using TCP/IP. You can specify a single port number, or a combination of individual port
numbers and ranges of port numbers. For example:

● (port=1234)
● (port=1234,1235,1239)
● (port=1234-1238)
● (port=1234-1237,1239,1242)

When you specify a list and/or range of port numbers, the database server attempts to bind to all specified
port numbers.

Network protocol options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 321

The database server always listens on UDP port 2638 on most operating systems, even if you specify a
different port using a network protocol option. Applications can connect to the database server without
specifying a port number. Having this port available allows SQL Anywhere clients to find SQL Anywhere
database servers running on other subnets and through firewalls.

For a client, the ServerPort protocol option informs the client of the port or ports on which database servers
are listening for TCP/IP communication. The client broadcasts to every port that is specified by the ServerPort
(PORT) protocol option to find the server.

If you using a web server, by default, the database server listens on the standard HTTP and HTTPS ports of
80 and 443, respectively.

If you start a database server using TCP/IP port number 2638 (the default), then the server also listens to
UDP port 2638. The database server listens to UDP ports and responds to requests on these ports so that
clients can locate the database server by server name.

If the database server's TCP/IP port number is not 2638, then the server listens to the same UDP port as the
TCP/IP port.

UDP packets sent by the database server in response to client broadcasts contain no sensitive information.
The data contained in these packets is limited to:

● database server name
● port number
● database server version
● names of databases running on the database server

You can hide database names from broadcast requests by using the -dh option. You can also specify -sb 0
to disable the UDP listeners completely.

Differences on Mac OS X
Mac OS X does not allow multiple processes to bind to the same UDP port. When the database server is
running on one of these platforms, it only listens to the specified UDP port or port 2638 if no port is specified.

This means that clients must specify the TCP/IP port number if the server is not using the default port (2638).

For example if the database server is started with the command dbsrv11 -n MyServer samples-
dir/demo.db, a client on the same subnet can find the server using the following connection parameters
ENG=MyServer;LINKS=tcpip. If another server is started on Mac OS X, with the following command
dbsrv11 -n SecondServer -x tcpip(PORT=7777) samples-dir/demo.db, a client on
the same subnet can find the server using the connection parameters
ENG=SecondServer;LINKS=tcpip(PORT=7777). Note that if the database server was running on
a platform other than Mac OS X, then the client would not need to specify the PORT parameter.

Additionally, on Mac OS X, if a SQL Anywhere database server is already using port 2638, and a second
network database server was started without the PORT protocol option, the second network server would
fail to start. The reason for this is users need to know and specify the server's port number in their connection
parameters. Personal servers start successfully, even if port 2638 is in use, because shared memory is
normally used to connect to personal servers.

Connection parameters and network protocol options

322 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “-x server option” on page 234
● “-xs server option” on page 237
● “-sb server option” on page 218

Example
The following example shows how to use the PORT protocol option to specify the port the server starts on.

1. Start a network database server:

dbsrv11 -x tcpip -n server1

Port number 2638 is now taken.

2. Attempt to start another database server:

dbsrv11 -x tcpip -n server2

The default port is currently allocated, and so the server starts on another port. On Mac OS X, this will
fail.

3. If another web server on your computer is already using port 80 or you do not have permission to start
a server on this low of a port number, you may want to start a server that listens on an alternate port,
such as 8080:

dbsrv11 -xs http(port=8080) -n server3 web.db

TDS protocol option
Controls whether TDS connections to a database server are allowed.

Usage
TCP/IP (server side only)

Values
YES, NO

Default
YES

Remarks
To disallow TDS connections to a database server, set TDS to NO. If you want to ensure that only encrypted
connections are made to your server, this protocol option is the only way to disallow TDS connections.

See also
● “-ec server option” on page 180

Network protocol options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 323

Example
The following command starts a database server using the TCP/IP protocol, but disallowing connections
from Open Client or jConnect applications.

dbsrv11 -x tcpip(TDS=NO) ...

Timeout protocol option [TO]
Specifies the length of time, in seconds, to wait for a response when establishing communications.

Usage
TCP/IP, HTTP, HTTPS

Values
Integer, in seconds

Default
5 for TCP/IP.

30 for HTTP and HTTPS.

Remarks
Timeout also specifies the length of time to wait for a response when disconnecting. You may want to try
longer times if you are having trouble establishing TCP/IP communications.

On the database server, this is the amount of time to wait after sending the broadcast looking for servers with
the same name. It is only used on server startup, and does not affect client connections.

When using HTTP or HTTPS on the server, this parameter specifies the maximum idle time permitted when
receiving a request. If this limit is reached, the connection is closed and a 408 REQUEST TIMEOUT is
returned to the client. The value 0 disables idle timeout, but should be used with extreme caution. Without
this limit, a rogue client could consume the server's resources and prevent other clients from connecting.

See also
● “KeepaliveTimeout protocol option [KTO]” on page 312

Example
The following data source fragment starts a TCP/IP communication link only, with a timeout period of twenty
seconds.

...
CommLinks=tcpip(TO=20)
...

Connection parameters and network protocol options

324 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

trusted_certificates protocol option
Specifies the path and file name of a file that contains one or more trusted certificates.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

Syntax
trusted_certificates=public-certificate

Usage
TLS, HTTPS

Default
None

Remarks
Clients use the trusted_certificates encryption protocol option to specify trusted database server certificates.
The trusted certificate can be a server's self-signed certificate, a public enterprise root certificate, or a
certificate belonging to a commercial Certificate Authority. If you are using FIPS-approved RSA encryption,
you must generate your certificates using RSA. If TLS is specified in the Encryption connection parameter,
this protocol option is required.

HTTPS is only supported for web services client procedures. See “CREATE PROCEDURE statement (web
services)” [SQL Anywhere Server - SQL Reference].

See also
● “certificate_company protocol option” on page 304
● “certificate_name protocol option” on page 305
● “certificate_unit protocol option” on page 306
● “Encryption connection parameter [ENC]” on page 280
● “Encrypting SQL Anywhere client/server communications” on page 1107
● “Certificate Creation utility (createcert)” on page 747

Example
The following command connects the SQL Anywhere sample database to Interactive SQL using transport-
layer security.

dbisql -c
"UID=DBA;PWD=sql;ENG=demo;LINKS=tcpip;ENC=TLS(
tls_type=RSA;FIPS=n;trusted_certificates=c:\temp\myident;
certificate_unit='SA';certificate_company='Sybase iAnywhere';
certificate_name='Sybase')"

Network protocol options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 325

VerifyServerName protocol option [VERIFY]
Controls whether clients must verify the database server name before connecting.

Usage
TCP/IP (client side only)

Values
YES, NO

Default
YES

Remarks
When connecting over TCP using the DoBroadcast=NONE parameter, the client makes a TCP connection,
then verifies that the name of the server found is the same as the one it's looking for. Specifying
VerifyServerName=NO skips the verification of the server name. This allows SQL Anywhere clients to
connect to a SQL Anywhere server if they know only an IP address/port.

The server name must still be specified in the connection string, but it is ignored. The VerifyServerName
(VERIFY) protocol option is used only if DoBroadcast=NONE is specified.

If the server is using -sb 0 or BroadcastListener=NO, the client does not need to specify DoBroadcast=NONE
to connect to it, although the client must still specify HOST=. The dblocate utility will not find the server.

Note
It is recommended that you only use this parameter in the rare circumstance where it is not possible to give
each server a unique server name, and use that unique name to connect. Giving each server a unique server
name, and connecting to the server using that name is still the best way to connect.

See also
● “DoBroadcast protocol option [DOBROAD]” on page 309

Connection parameters and network protocol options

326 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere for Windows Mobile

Contents
Installing SQL Anywhere on a Windows Mobile device ... 328
Using the Windows Mobile sample applications .. 331
Connecting to a database running on a Windows Mobile device 336
Configuring Windows Mobile databases ... 339
Running the database server on Windows Mobile .. 348
Using the administration utilities on Windows Mobile .. 349
SQL Anywhere feature support on Windows Mobile ... 356

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 327

Installing SQL Anywhere on a Windows Mobile device
Requirements

● Microsoft ActiveSync 3.5 or later.

● A Windows Mobile device supported by SQL Anywhere.

For a list of Windows Mobile devices supported by SQL Anywhere, see http://www.sybase.com/detail?
id=1002288.

● A computer running a supported Windows operating system.

Windows Mobile file locations
The location of your SQL Anywhere install on Windows Mobile depends on the type of device and location
you are installing to. No subdirectories are created. All DLLs are installed in the \Windows directory.

Location Installation directory

Storage card \storage-card\Sybase SQL Anywhere 11

Main memory \Program Files\SQLAny11

Storage card \storage-card\SQLAny11

Caution
It is recommended that you do not install SQL Anywhere on a storage card, such as an SD card.

When the Windows Mobile device resumes from being suspended, all open files, including executables and
DLLs, located on a removable device may be closed by the operating system. The operating system itself
loses access to the executables and DLLs that were in use by programs that were running when the device
was suspended. In this case, the operating system may silently remove the process (such as the SQL
Anywhere database server) from the system without an error message.

Installation considerations: Using ICU on Windows Mobile
The Unicode Collation Algorithm (UCA) is an algorithm for sorting the entire Unicode character set. It
provides linguistically correct comparison, ordering, and case conversion. The UCA was developed as part
of the Unicode standard. SQL Anywhere implements the UCA using the International Components for
Unicode (ICU) open source library, developed and maintained by IBM.

On Windows Mobile, you require ICU if UCA is used as the NCHAR collation or the CHAR collation. You
also require ICU on Windows Mobile if your CHAR character set does not match your operating system
character set.

SQL Anywhere for Windows Mobile

328 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1002288
http://www.sybase.com/detail?id=1002288

By default, the ICU library is not installed on Windows Mobile because it adds approximately 1.7 MB to
the size of the SQL Anywhere installation on Windows Mobile. However, you can modify your SQL
Anywhere installation if you require the ICU library.

If you do not install the ICU library, you must choose either a collation whose character set matches the
Windows Mobile character set or the UTF8BIN collation as the CHAR collation when creating your
database. Also, you must choose the UTF8BIN collation as the NCHAR collation when creating your
database.

Creating databases on the desktop to deploy to Windows Mobile
When creating a database on the desktop to deploy to a Windows Mobile device, you can only use the UCA
collation if the ICU library is installed on the Windows Mobile device. A database that uses the UCA is
unusable on Windows Mobile if the ICU library is not installed on the device.

For more information about ICU, see “Unicode Collation Algorithm (UCA)” on page 417 and “Character
set conversion” on page 410.

Installation considerations: Using the .NET Compact
Framework on Windows Mobile

Although ADO.NET 3.5 is the most recent version of the API, the majority of devices that SQL Anywhere
supports have only ADO.NET 1.x support installed. To use ADO.NET version 2.0 or 3.5 on a device,
download and install the support for ADO.NET 2.0 and 3.5 from Microsoft on your device.

● Version 2.0 For information about developing an application with ADO.NET 2.0, see “SQL
Anywhere .NET Data Provider” [SQL Anywhere Server - Programming] and
“iAnywhere.Data.SQLAnywhere namespace (.NET 2.0)” [SQL Anywhere Server - Programming].

● Version 3.5 For information about developing an application with ADO.NET 3.5, see “SQL
Anywhere .NET Data Provider” [SQL Anywhere Server - Programming] and
“iAnywhere.Data.SQLAnywhere namespace (.NET 2.0)” [SQL Anywhere Server - Programming].

For more information about using ADO.NET, see “Tutorial: Using the SQL Anywhere .NET Data Provider”
[SQL Anywhere Server - Programming].

Installation considerations: Limitations on Windows Mobile
5.0 for smartphone

All SQL Anywhere Server Windows Mobile functionality is supported on the smartphone, with the following
limitations for Windows Mobile 5.0:

● The shared memory protocol is not supported TCP/IP is used, even if you do not specify a
communication protocol. You must always specify a database server name when making a connection;
if you do not, the connection fails.

Installing SQL Anywhere on a Windows Mobile device

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 329

● The Server Startup Options window is not supported The Server Startup Options window
appears when you start the database server and do not specify any options. If you provide an incomplete
or incorrect command when trying start the database server, an error appears and the database server
does not start.

● ODBC connections may not prompt for connection information When you use the ODBC
DriverCompletion parameter to SQLDriverConnect, you may be prompted for additional connection
information. This prompt does not appear. If SQLDriverConnect fails, it does not prompt, and it returns
an error.

● Unload/reload is not supported You must rebuild the Windows Mobile database on another
platform and then copy the database to the Windows Mobile device. This is the recommended method
for rebuilding a Windows Mobile database. See:

○ “Rebuilding databases on Windows Mobile” on page 345
○ “Rebuilding databases” [SQL Anywhere Server - SQL Usage]

Install SQL Anywhere for Windows Mobile
Use the following procedure to install SQL Anywhere for Windows Mobile on your Windows Mobile device.

To install SQL Anywhere for Windows Mobile

1. Connect your Windows Mobile device to a computer running a supported Windows operating system.

2. Choose Start » Programs » SQL Anywhere 11 » Deploy SQL Anywhere For Windows Mobile.

3. Follow the instructions in the SQL Anywhere Deployment Wizard.

SQL Anywhere for Windows Mobile

330 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using the Windows Mobile sample applications
The sample database named demo.db is located in the \My Documents directory on Windows Mobile devices.
Two versions of the sample database are available for Windows Mobile; one that includes the International
Components for Unicode (ICU) libraries, and one that does not. SQL Anywhere implements character set
conversion using the ICU open source library, developed and maintained by IBM.

For more information about ICU and Windows Mobile, see “Installation considerations: Using ICU on
Windows Mobile” on page 328.

The following sample applications are included with your SQL Anywhere for Windows Mobile installation:

● ADO.NET Sample
● ESQL Sample
● ODBC Sample
● SQL Anywhere Server Example

You can use these applications to access the sample database and examine the capabilities of SQL Anywhere
for Windows Mobile.

The SQL Anywhere Server Example
The SQL Anywhere Server Example starts the sample database on a network database server using preset
server options and connection parameters.

To start the SQL Anywhere Server Example

● On your Windows Mobile device, navigate to the SQL Anywhere installation directory by tapping
Start » Programs » SQLAny11 » Server.

The sample database starts running on the network database server. Once it starts, the database server
appears as an icon in the bottom right corner of the Today screen on your device. You can view the
database server messages window by tapping this icon.

Using the Windows Mobile sample applications

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 331

You can now connect to the sample database running on your Windows Mobile device from a computer.

When you are finished using the sample database, you must shut down the database server.

To shut down the database server

1. Tap the network database server icon located in the bottom right corner of the Today screen.

2. On the menu, tap Shut Down.

The ADO.NET Sample
To use the ADO.NET Sample, you must have the Microsoft .NET Compact Framework version 2.0 or 3.0
installed on your device. The Microsoft .NET Compact Framework version 2.0 is included with Windows
Mobile 6 devices, but not with Windows Mobile 5 devices. The ADO.NET Sample supports only Windows
Mobile Classic and Professional devices with touch screens.

You can download this component from the Microsoft Download Center at http://www.microsoft.com/
downloads/search.aspx?displaylang=en.

The ADO.NET Sample demonstrates a simple application that uses the ADO.NET programming interface.
This application allows you to start the sample database running on the network database server and access
and modify data using SQL statements.

The source code for this sample is located in samples-dir\SQLAnywhere\ce\ado_net_sample.

You can load this project in Visual Studio from samples-dir\SQLAnywhere\ce\ado_net_sample
\ado_net_sample.sln.

SQL Anywhere for Windows Mobile

332 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.microsoft.com/downloads/search.aspx?displaylang=en
http://www.microsoft.com/downloads/search.aspx?displaylang=en

Note
In the ADO.NET Sample user interface, SQL statements must be entered on a single line.

To use the ADO.NET Sample

1. Tap Start » Programs » SQLAny11 » ADO.NET Sample.

2. Tap Connect.

3. Tap Exec SQL to execute the default SQL statement, SELECT * FROM Employees.

Data from the Employees table appears in the data window.

4. Navigate through the data in the Employees table using the scroll bars on the side and bottom of the data
window.

5. Type the following query that accesses a more specific range of data:

SELECT EmployeeID, Surname FROM Employees;
6. Tap Exec SQL to execute the SQL statement.

The specified range of data replaces the data that was in the data pane.

7. Type SELECT * FROM Employees ORDER BY EmployeeID and tap Exec SQL.

Notice the employee Matthew Cobb, with EmployeeID 105.

8. Type UPDATE Employees SET Surname = 'Jones' WHERE Surname = 'Cobb', and then tap Exec
SQL to execute the SQL statement.

9. Type SELECT * FROM Employees ORDER BY EmployeeID and tap Exec SQL.

Notice that Matthew's last name has been changed from Cobb to Jones.

10. Type UPDATE Employees SET Surname = 'Cobb' WHERE Surname = 'Jones' and then tap Exec
SQL to reverse the change you made to the sample database.

11. Verify that the changes were reversed by typing SELECT * FROM Employees ORDER BY
EmployeeID and then tapping Exec SQL.

Notice that Matthew's last name has been changed back to Cobb.

12. Access data from another table by typing SELECT * FROM Customers, and then tapping Exec
SQL.

All the data from the Customers table appears in the data window, replacing the data from the Employees
table.

13. Shut down the database server by tapping Disconnect.

The ADO.NET Sample disconnects, and the database server automatically shuts down.

14. Close the ADO.NET Sample by tapping x in the top right corner of the window.

Using the Windows Mobile sample applications

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 333

The ESQL Sample
The ESQL Sample demonstrates a simple application that uses the embedded SQL programming interface.
This application allows you to start the sample database running on the network database server, and access
data using SQL statements.

The source code for this sample can be found in samples-dir\SQLAnywhere\ce\esql_sample.

You can load this project file in Visual Studio 2005 from: samples-dir\SQLAnywhere\ce\sql_sample
\esql_sample.sln.

Note
In the ESQL Sample user interface, SQL statements must be entered on a single line.

To use the ESQL Sample

1. Start the ESQL Sample by tapping Start » Programs » SQLAny11 » ESQL Sample.

2. Tap Connect to connect to the sample database using the default connection string.

3. Tap ExecSQL to execute the default SQL statement, SELECT * FROM Employees.

Data from the Employees table appears in the data window.

4. Use the scroll bars to view Employee table data.

5. To access data in the Customers table, type SELECT * FROM Customers, and tap ExecSQL.

Customer data replaces the Employee data in the data window.

6. Tap Disconnect to shut down the network database server.

The ESQL Sample disconnects and the network database server shuts down.

7. Close the ESQL Sample by tapping x in the top right corner of the window.

The ODBC Sample
The ODBC Sample demonstrates a simple application that uses the ODBC programming interface. This
application allows you to start the sample database running on the network database server, and access data
using basic SQL statements.

The source code for this sample can be found in samples-dir\SQLAnywhere\ce\odbc_sample.

You can load this project file in Visual Studio 2005 from: samples-dir\SQLAnywhere\ce\odbc_sample
\odbc_sample.sln.

Note
In the ODBC Sample user interface, SQL statements must be entered on a single line.

SQL Anywhere for Windows Mobile

334 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To use the ODBC Sample

1. Start the ODBC Sample by tapping Start » Programs » SQLAny11 » ODBC Sample.

2. Tap Connect.

3. Tap ExecSQL to execute the default SQL statement, SELECT * FROM Employees.

Data from the Employees table appears in the data window.

4. Use the scroll bars to view Employee table data.

5. To access data in the Customers table, type SELECT * FROM Customers and tap ExecSQL.

Customer data replaces the Employee data in the data window.

6. Tap Disconnect to shut down the network database server.

The ODBC Sample disconnects and the network database server shuts down.

7. Close the ESQL Sample.

Using the Windows Mobile sample applications

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 335

Connecting to a database running on a Windows
Mobile device

If you want to connect an application running on a computer to a database running on a Windows Mobile
device, you can connect over TCP/IP using the ActiveSync link between the computer and the Windows
Mobile device. This allows you to administer a Windows Mobile database using the administration utilities
on the computer.

See also
● “Using the administration utilities on Windows Mobile” on page 349

Start a database server on your Windows Mobile device
If you want to connect from your desktop computer to a database server that is running on Windows Mobile,
you must select the TCP/IP option when starting the server.

To start the database server on your Windows Mobile device for a remote connection

1. From the Start menu, tap Programs » SQLAny11.

2. Tap Server.

3. In the Database field, type the name of the database file that you want to start or click Browse to locate
the database.

By default, the sample database is located in \My Documents\demo.db.

4. In the Server Name field, type the database server name that you want to use.

The default name for the sample database server is demo.

5. Select Use TCP/IP.

A TCP/IP connection is necessary to connect from a computer to the database running on your Windows
Mobile device.

6. Tap OK to start the sample database running on the network database server.

Now you can create an ODBC data source to connect from the computer to your Windows Mobile device.

See also
● “Create an ODBC data source to connect to your Windows Mobile device” on page 337

Determine the IP address of your Windows Mobile device
When connecting to a database that is running on Windows Mobile, you may need the IP address to establish
the connection.

SQL Anywhere for Windows Mobile

336 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To determine the IP address of your Windows Mobile device

1. From the Start menu, tap Server.

2. In the Database field, type \My Documents\demo.db or click Browse to locate the database.

3. In the Server Name field, type the server name that you want to use.

4. Select Use TCP/IP.

A TCP/IP connection is necessary to connect from a computer to the database running on your Windows
Mobile device.

5. In the Options field, type -z.

With the -z option, the server writes out its IP address during startup. The address may change if you
disconnect your Windows Mobile device from the network and then re-connect it.

For more information, see “-z server option” on page 239.

6. Tap OK to start the sample database running on the network database server.

7. Navigate to the Today screen on your device.

8. Tap the database server icon located in the bottom right corner of the screen.

The IP address appears in the database server messages window.

Now you can create an ODBC data source to connect from the computer to your Windows Mobile device.

For more information, see “Create an ODBC data source to connect to your Windows Mobile
device” on page 337.

Create an ODBC data source to connect to your Windows
Mobile device

This section describes how to create an ODBC data source on your Windows computer that connects to a
database running on your Windows Mobile device.

For more information about ODBC data sources, see “Creating ODBC data sources” on page 97.

To create an ODBC data source to connect to your Windows Mobile device

1. On the Windows desktop computer, choose Start » Programs » SQL Anywhere 11 » ODBC
Administrator.

2. On the User DSN tab, click Add.

3. Select SQL Anywhere 11, and then click Finish.

4. On the ODBC tab, in the Data Source Name field, type MobileServer.

5. Click the Login tab, select Supply User ID And Password. Make sure the User ID and Password fields
are blank.

Connecting to a database running on a Windows Mobile device

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 337

Each time you connect to a database, you must supply a user ID and password.

6. Click the Network tab, select TCP/IP and type the connection parameters.

For example, type Host=169.254.2.1;Port=2638;DoBroadcast=none.

● Host specifies the IP address that the Windows Mobile device listens on.

If you connected a Windows Mobile device using a USB connection, use the default IP address of
169.254.2.1.

For more information, see “Start a database server on your Windows Mobile device” on page 336.

● Port specifies the port number that the Windows Mobile device listens on. This parameter is
optional.

The default proxy port is 2638.

● DoBroadcast controls how the TCP/IP connection is made. This parameter is optional.

When DoBroadcast=none is specified, the TCP/IP connection is made directly with the port
specified. Use this setting if you created a proxy port to connect to your Windows Mobile device.

When DoBroadcast=direct is specified, no broadcast is performed to the local subnet to search for
a database server. Instead, the Host IP address is required.

For more information, see “DoBroadcast protocol option [DOBROAD]” on page 309.

7. Click OK.

You can now use this data source to connect from a computer to a database running on your Windows Mobile
device.

For more information, see “Using the administration utilities on Windows Mobile” on page 349.

SQL Anywhere for Windows Mobile

338 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Configuring Windows Mobile databases
Most SQL features available in the full version of SQL Anywhere are also available in the Windows Mobile
version. These include transaction processing, referential integrity actions, procedures and triggers, and so
on. However, the Java features and the remote data access features are not available on Windows Mobile.

You should be mindful of the unsupported features when setting database properties on a database intended
for a Windows Mobile device.

For a complete list of unsupported features, see “SQL Anywhere feature support on Windows
Mobile” on page 356.

The following settings are configured during database creation. Once set, these properties can only be
changed by rebuilding the database.

● Case sensitivity or insensitivity See “Case sensitivity” [SQL Anywhere Server - SQL Usage].

● Treatment of trailing blanks in comparisons By default, databases are created with trailing blanks
classified as extra characters. For example, 'Dirk' is not the same as 'Dirk '. You can create databases
with blank padding, so that trailing blanks are ignored. See “Ignore trailing blanks in comparisons” [SQL
Anywhere Server - SQL Usage].

● Page size See “Table and page sizes” [SQL Anywhere Server - SQL Usage].

● Collation sequence and character set When creating databases for Windows Mobile, you should
use a collation based on the same single- or multibyte character set that Windows would use for the
language of interest. For example, if you are using English, French, or German, use the 1252Latin1
collation. If you are using Japanese, use the 932JPN collation, and if you are using Korean, use the
949KOR collation. See “Understanding collations” on page 416.

Note
Do not specify a locale or a sorttype in the tailoring options string when creating a database for use on
Windows Mobile. If you do, it is likely that the will not start on the Windows Mobile device. For more
information about collation tailoring options, see “Collation tailoring options” on page 420.

Because character set translation is not supported on Windows Mobile, you must use either the operating
system character set or UTF-8 for Windows Mobile databases.

You must choose whether you want to install the ICU library when creating your Windows Mobile
database. See “Installation considerations: Using ICU on Windows Mobile” on page 328.

Using a transaction log on Windows Mobile
The transaction log stores all changes made to a database, in the order in which they are made. In the event
of media failure on a database file, the transaction log is essential for database recovery. It also makes your
work more efficient. By default, the transaction log is placed in the same directory as the database file. It is
created when the database is started for the first time on your Windows Mobile device.

Configuring Windows Mobile databases

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 339

When you copy an existing database to your Windows Mobile device, you can copy both the database and
transaction log files. If you do not copy the transaction log file to the device, a new transaction log is created
when you start the database on your Windows Mobile device. The new transaction log does not contain the
information contained in the original transaction log. This can be problematic if the database was not shut
down properly the last time it was used, or if the database is involved in synchronization. The best practice
is to copy both the database and the transaction log file to the Windows Mobile device.

See also
● “The transaction log” on page 14

Using jConnect on Windows Mobile
jConnect is a pure Java JDBC driver for SQL Anywhere. Sybase Central and Interactive SQL give you the
option to enable the jConnect JDBC driver so that Java applications can access SQL Anywhere databases.

By default, jConnect is not enabled by the Create Database Wizard for databases being created for
Windows Mobile. However, you can choose to enable jConnect if you require it.

Adding jConnect support to a database adds many entries to the system tables. This adds to the size of the
database and, more significantly, adds about 200 KB to the memory requirements for running the database,
even if you do not use any jConnect functionality.

If you are not going to use jConnect, and you are running in a limited-memory environment like Windows
Mobile, it is recommended that you do not jConnect support to your database.

See also
● “Using the jConnect JDBC driver” [SQL Anywhere Server - Programming]

Using encryption on Windows Mobile
You can choose to secure your database either with simple or strong encryption. The only way to change
the encryption setting after a database has been initialized is by rebuilding the entire database.

See also
● “Encrypting and decrypting a database” on page 1082
● “Keeping your Windows Mobile database secure” on page 1093

Creating a Windows Mobile database
You can create a SQL Anywhere database for your Windows Mobile device:

● With the Sybase Central Create Database Wizard to create a database that can be copied directly to
your Windows Mobile device.

SQL Anywhere for Windows Mobile

340 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● With the Initialization utility (dbinit) to create a database that can be copied manually to your Windows
Mobile device.

● With the CREATE DATABASE statement in Interactive SQL to create a database that can be copied
manually to your Windows Mobile device.

Note
When you run a database on Windows Mobile, the database server automatically turns on checksums. This
helps to provide early detection if the database file becomes corrupt.

For information about decisions you need to make creating a Windows Mobile database, see:

● “Using a transaction log on Windows Mobile” on page 339
● “Installation considerations: Using ICU on Windows Mobile” on page 328
● “Installation considerations: Using the .NET Compact Framework on Windows Mobile” on page 329

Create a Windows Mobile database using Sybase Central
Sybase Central has features to make database creation easy for Windows Mobile. Sybase Central enforces
the requirements for Windows Mobile databases, and gives you the option of copying the database file to
your device.

To create a Windows Mobile database in Sybase Central and copy it directly to your
Windows Mobile device

1. Connect your Windows Mobile device to your computer.

2. Choose Start » Programs » SQL Anywhere 11 » Sybase Central.

3. Choose Tools » SQL Anywhere 11 » Create Database.

4. Click Create A Database On This Computer. Click Next.

5. Specify a file name and directory to store the database file in on your computer, and then click Next.

6. Select Create This Database For Windows Mobile and then click Next.

7. Select Copy The Database To Your Windows Mobile Device and then click Next.

8. Specify the Windows Mobile directory to copy your database files to. The default location is the main
device directory.

Configuring Windows Mobile databases

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 341

Tip
Copy the database to the My Documents directory of your Windows Mobile device to make it simpler
to start the database.

When starting a database on your Windows Mobile device using the Server Startup Options window,
you can only use Browse to search for the database file in the My Documents directory.

If the database is not stored in the My Documents directory, you must type the path of the database in
the Database field of the Server Startup Options window.

Optionally, you can select the Delete The Desktop Database After Copying option.

If you choose not to delete the computer copy, a copy of the database file is stored on your computer in
the directory that you specified in Step 5. Click Next.

9. Specify if you would like to copy the database to your Windows Mobile device.

10. Specify the directory where you want to save the transaction log file. Click Next.

On your Windows Mobile device, the transaction log file is created in the same directory as the database
file when the database is started on the network database server for the first time.

11. Specify whether you want to use a transaction log mirror. Click Next.

12. Clear the Install jConnect Metadata Support option and then click Next.

13. Set the level of encryption for your database by selecting the appropriate option and then click Next.

If you select strong encryption, you must specify an encryption key. It is recommended that you choose
a value for your key that is at least 16 characters long, contains a mix of upper and lowercase, and includes
numbers, letters, and special characters.

Caution
Be sure to store a copy of your key in a safe location. You require the key each time you want to start
or modify the database. A lost key will result in a completely inaccessible database, from which there is
no recovery.

14. Select a page size and click Next.

15. On the Specify Additional Settings page, select Include Checksum With Each Database Page and
then click Next.

16. Follow the remaining instructions in the wizard and then click Finish to create the database and copy it
to your device.

A window appears, tracking the progress of the files being copied to your Windows Mobile device. Click
Close

Specify a collation sequence for NCHAR data
If NCHAR UCA sorting is not required, the NCHAR collation sequence should be UTF8BIN. In this
way, the ICU libraries (dbicu11.dll and dbicudt11.dll) are not required by the database server. Select
Use The Following Supplied Collation, and then select UTF8BIN.

17. Once the wizard has copied the database to your Windows Mobile device, verify the location of the files:

SQL Anywhere for Windows Mobile

342 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

From the Start menu, tap Programs » File Explorer and navigate to the Windows Mobile directory
that you copied the database to.

The database file is listed there. The transaction log file does not appear until the first time you start the
database on your Windows Mobile device.

Create a Windows Mobile database using dbinit
The Initialization utility (dbinit) can be used to create databases that can be used on Windows Mobile.
However, you cannot copy them directly to a Windows Mobile device from this utility. You must manually
copy databases created with the dbinit utility to your Windows Mobile device.

To create a database using the dbinit utility

1. At a command prompt , navigate to the directory where you want to create your database. For example:

cd temp
2. Create your database by running the following command:

dbinit -s database-name.db

The -s option enables checksums for the database.

Tip
You can also configure database properties such as encryption and page size using the Initialization
utility. See “Initialization utility (dbinit)” on page 774.

3. Copy the database to your Windows Mobile device.

For more about copying the database to your Windows Mobile device, see “Copy a database to your
Windows Mobile device” on page 344.

Create a Windows Mobile database using the CREATE DATABASE
statement

The CREATE DATABASE statement can be used to create databases in Interactive SQL on your computer.
However, you cannot copy them directly to a Windows Mobile device from this application. You must
manually copy databases to your Windows Mobile device.

To create a database using the CREATE DATABASE statement

1. Choose Start » Programs » SQL Anywhere 11 » Interactive SQL.

If the Connect window does not appear automatically, choose SQL » Connect.

2. On the Identification tab, click ODBC Data Source Name and type SQL Anywhere 11 Demo in the
adjacent field.

Configuring Windows Mobile databases

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 343

3. Click OK.

4. Type the following statement in the SQL Statements pane of Interactive SQL:

CREATE DATABASE 'c:\\temp\\database-name.db'
TRANSACTION LOG ON
CHECKSUM ON;

Tip
You can also configure database properties such as encryption and page size using the CREATE
DATABASE statement. See “CREATE DATABASE statement” [SQL Anywhere Server - SQL
Reference].

5. From the SQL menu, choose Execute.

A database and transaction log are created in the c:\temp directory of your computer.

For information about copying the database to your Windows Mobile device, see “Copy a database to
your Windows Mobile device” on page 344.

Copy a database to your Windows Mobile device
Any existing SQL Anywhere database can be copied to your Windows Mobile device using the method
described in this section. However, you must keep in mind that any database features that are not supported
on Windows Mobile will not work when you copy the database to your Windows Mobile device. See “SQL
Anywhere feature support on Windows Mobile” on page 356.

To copy a database to your Windows Mobile device

1. Connect the Windows Mobile device to your computer.

2. Open Windows Explorer on your computer.

3. Browse to the directory on your computer containing the database that you want to copy.

4. Right-click the database file and choose Copy.

5. Open a second instance of Windows Explorer.

6. Browse to the directory on your Windows Mobile device where you want to store the database file.

Tip
When starting a database on your Windows Mobile device using the Server Startup Options window,
you can only use Browse to search for the database file in the My Documents directory.

If the database is not stored in the My Documents directory, you must type the path of the database in
the Database field of the Server Startup Options window.

7. Right-click an open area of the Windows Explorer window for your Windows Mobile device and then
choose Paste.

The file is copied to the Windows Mobile device.

SQL Anywhere for Windows Mobile

344 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Rebuilding databases on Windows Mobile
When rebuilding a database on Windows Mobile, you have the following options:

● Rebuild the Windows Mobile database on another platform and then copy the database to the Windows
Mobile device. This is the recommended method for rebuilding a Windows Mobile database.

● Repopulate an empty database using dbmlsync.

● Repopulate an empty database using dbremote.

● Use dbunload on the Windows Mobile device. This option is not available on smartphones.

The first three options are recommended when upgrading a Windows Mobile database. However, if these
options are not available to you, you can use dbunload on Windows Mobile. Before deciding to use dbunload
on Windows Mobile, you should consider the following implications of using dbunload on Windows Mobile:

● the size of the database server's temporary file (both the unload and reload can cause this file to grow to
several megabytes)

● the extra space required for dbunload and related components

● the extra cost of having multiple copies of a database on the Windows Mobile device

Because running dbunload on a Windows Mobile device can require more resources than some devices have
available, upgrading the database on a different platform is recommended whenever possible.

Note
If you want to run dbunload on a Windows Mobile device, you must choose the Unload/Reload Support
option in the Deploy SQL Anywhere 11 for Windows Mobile Wizard. You can modify your SQL
Anywhere installation to add this support if you did not select this option when you first installed SQL
Anywhere for Windows Mobile.

Notes about using dbunload on Windows Mobile
To use dbunload on a Windows Mobile device, ensure you have performed the following tasks:

● The following files should be deployed to your SQL Anywhere installation directory (by default,
\Program Files\SQLAny11):

○ dbsrv11.exe
○ dbunlspt.exe
○ dbunload.exe
○ dbrunsql.exe

● The following files should be deployed to the \Windows directory:

○ dblgen11.dll
○ dblib11.dll
○ dbscript11.dll
○ dbtool11.dll
○ dbusen.dll

Configuring Windows Mobile databases

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 345

● The following registry entry string value should be set to the SQL Anywhere software directory:
HKEY_LOCAL_MACHINE\SOFTWARE\Sybase\SQL Anywhere\11.0\Location.

The following steps can be embedded into third-party Windows Mobile applications so that the process is
automated for the end user. If you choose to do this, then you should consider using the -qc and/or -q dbunload
and dbrunsql options or calling the DBUnload function in dbtool11.dll.

To unload a database on Windows Mobile (dbunload)

1. On a platform other than Windows Mobile, create a new, empty SQL Anywhere 11 database.

The CHAR collation sequence should match that of the existing database. If NCHAR UCA sorting is
not required, the NCHAR collation sequence should be UTF8BIN. In this way, the ICU libraries
(dbicu11.dll, dbicudt11.dll) are not required by the database server.

2. Copy the SQL Anywhere 11 software and the empty SQL Anywhere 11 database file to the Windows
Mobile device. See “Notes about using dbunload on Windows Mobile” on page 345.

3. Ensure there are no database servers running on the device.

4. Run the following command:

dbunload-path\dbunload -c "UID=DBA;PWD=DBA-
password;CHARSET=none;DBF=existing-database" unload-directory

5. Ensure that dbunload succeeded, and then close the dbunload window.

6. Run the following command:

dbrunsql-path\dbrunsql -c "UID=DBA;PWD=sql;CHARSET=none;DBF=new-empty-
SQLAnywhere11databasefile" -g- \reload.sql

7. Ensure that dbrunsql succeeded, and then close the dbrunsql window.

8. Remove the reload.sql file and unload-directory from the Windows Mobile device.

Backing up a Windows Mobile database
Backup and recovery is vital to ensure you do not lose data in the event of data corruption or media failure.
It is best to back up your Windows Mobile database to a physically separate location to safeguard against
data loss because of theft or loss of the Windows Mobile device, or media failure on the Windows Mobile
device.

Most backup and recovery utilities are available on Windows Mobile. However, these utilities are not useful
since you cannot use the utilities on Windows Mobile to store backups in a physically separate location.
Instead, data can be backed up by copying the entire database file to a computer. You can also use
synchronization to maintain an up-to-date copy of your Windows Mobile database on a computer. See
“Understanding MobiLink synchronization” [MobiLink - Getting Started].

SQL Anywhere for Windows Mobile

346 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Erase a Windows Mobile database
SQL Anywhere for Windows Mobile does not support the Erase Database Wizard, the DROP DATABASE
statement, or the Erase utility (dberase). You must manually erase databases from your Windows Mobile
device. The database must not be running when you attempt to delete it.

There are two methods for erasing a database from your Windows Mobile device. You can erase a database
through the device interface, or you can connect your device to a computer and erase the database using
Windows Explorer.

After you delete the database, delete the transaction log file, if one exists.

To erase a database using the device interface

1. From the Start menu, tap Programs » File Explorer and navigate to the directory containing the
database file that you want to erase.

2. Tap and hold the database file.

3. Tap Delete.

4. Tap Yes to confirm the deletion.

To erase a database using Windows Explorer

1. Place your Windows Mobile device in its cradle and ensure that it connects to the computer via
ActiveSync.

2. Open Windows Explorer on your computer.

3. Browse to the Windows Mobile directory where the database file is stored.

4. Right-click the database file and choose Delete.

5. Click Yes.

Configuring Windows Mobile databases

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 347

Running the database server on Windows Mobile
The usual client/server arrangement has the database server running on a computer with more power and
resources than the client applications. Clearly, this is not the case with Windows Mobile; instead, the less
powerful computer is running the database server.

The network database server is supplied for Windows Mobile. Its file name is dbsrv11.exe. The network
database server supports communications over TCP/IP. Because Windows Mobile supports the network
database server, you can run administration utilities on a computer to execute tasks on your Windows Mobile
database. For example:

● You can use Sybase Central on your computer to manage your database.

● You can use Interactive SQL on your computer to load and unload data, and perform queries.

For more information, see “Using the administration utilities on Windows Mobile” on page 349.

The Windows Mobile database server does not start the TCP/IP network link unless it is explicitly requested.

For more information about starting a database server on Windows Mobile, see “Tutorial: Running Windows
Mobile databases from Sybase Central” on page 349.

On Windows Mobile, attempting to start a second SQL Anywhere database server while a first database
server is already running brings the first server to the foreground. This is standard behavior for Windows
Mobile applications. Because of this behavior, you cannot run two database servers at the same time on a
Windows Mobile device. However, SQL Anywhere supports running multiple databases on a single database
server.

Specifying server options on Windows Mobile
You can specify server and database when starting the database server to tune SQL Anywhere behavior and
performance. You can choose from many options to specify such features as how much memory the cache
can use, the level of permission needed to start a database on the database server, and the network protocols
to use.

On Windows Mobile, options are specified in the Server Startup Options window. This is different than
other Windows operating systems where database server options can be set on the command line. Most
server options are available for Windows Mobile.

For more information about database server options, see “The database server” on page 155.

For information about unsupported options, see “Database server option support on Windows
Mobile” on page 358.

SQL Anywhere for Windows Mobile

348 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using the administration utilities on Windows Mobile
This section describes specific considerations for using the SQL Anywhere database administration utilities
with Windows Mobile databases.

Tutorial: Running Windows Mobile databases from Sybase
Central

Sybase Central is a database management tool that provides a graphical user interface for administering SQL
Anywhere. Sybase Central can also be used for managing other products, including MobiLink
synchronization.

Once you complete this tutorial, you will be able to perform key tasks associated with the database server:
starting and stopping the server, running single and multiple databases on a database server, and connecting
to a database.

Requirements
● Complete all the tasks in the following sections before you begin the tutorial:

○ “Connecting to a database running on a Windows Mobile device” on page 336
○ “Create an ODBC data source to connect to your Windows Mobile device” on page 337

● Connect your Windows Mobile device to a computer.

Before you begin
You need to create two Windows Mobile databases for use in the tutorial.

To create databases for your Windows Mobile device

1. Connect your Windows Mobile device to the computer.

2. Choose Start » Programs » SQL Anywhere 11 » Sybase Central.

3. Choose Tools » SQL Anywhere 11 » Create Database.

4. Follow the instructions in the Create Database Wizard.

5. On the Specify A Database page, click Browse and select a location for the database file. Name the
database file Alpha.

6. On the Choose To Create For Windows Mobile page, click Create This Database For Windows
Mobile and then click Next.

The wizard tests the connection to your Windows Mobile device.

7. On the Choose To Copy The Database page, select Copy The Database To Your Windows Mobile
Device.

8. In the Windows Mobile File Name field, type \My Documents\Alpha.db.

Using the administration utilities on Windows Mobile

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 349

9. Select Delete The Desktop Database After Copying and then click Next.

10. On the Specify A Collation Sequence For NCHAR Data page, select Use The Following Supplied
Collation, and then select UTF8BIN.

For more information, see “Installation considerations: Using ICU on Windows Mobile” on page 328.

11. Click Finish.

12. Click Close.

13. Repeat this procedure and create a database called \My Documents\Beta.db.

Lesson 1: Start the database server
This section describes the simple case of running a single database on Windows Mobile.

To start a database on the server

1. On your Windows Mobile device, tap Start » Server.

2. In the Database field, type the name of the database file that you want to start or tap Browse and locate
the Alpha.db file in the My Documents directory.

3. In the Server Name field, type MobileServer.

4. Select Use TCP/IP.

A TCP/IP connection is necessary to connect from a computer to the database running on your Windows
Mobile device. You will connect from your computer in a later lesson.

5. In the Options field, type -gd all.

The -gd option sets the permissions to allow any user to start additional databases on the network database
server. This is necessary in a later lesson. See “-gd server option” on page 189.

6. Tap OK to start the Alpha database running on the network database server.

7. Navigate to the Today screen on your device.

8. Tap the database server icon located in the bottom right corner of the screen.

When the message Now accepting requests appears in the database server messages window, you
can proceed to the next lesson.

What's next?
Next, you will learn how to start multiple databases on the network database server on Windows Mobile.

SQL Anywhere for Windows Mobile

350 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Lesson 2: Start multiple databases on the Windows Mobile database
server

On Windows Mobile devices, attempting to start a second SQL Anywhere database server while a first
database server is already running brings the first database server to the foreground. This is standard behavior
for Windows Mobile applications. Because of this behavior, two database servers cannot run at the same
time on a Windows Mobile device. As an alternative to running multiple database servers, one server can
run multiple databases.

To connect to a database from Sybase Central

1. Choose Start » Programs » SQL Anywhere 11 » Sybase Central.

2. Choose Connections » Connect With SQL Anywhere 11.

3. Click the Identification tab and complete the following fields:

● User ID DBA

● Password sql

4. Click ODBC Data Source Name.

5. Click Browse, choose the MobileServer data source that you created in “Create an ODBC data source
to connect to your Windows Mobile device” on page 337.

6. Click the Database tab and type MobileServer in the Server Name field.

7. Click OK to connect to the Alpha.db database running on your Windows Mobile device.

8. If you fail to connect to the database server:

● Click the Network tab.
● Click TCP/IP.
● Complete the Host and Port(s) fields.
● Click OK.

Now that you have started the database server and connected to the Alpha database, you can start additional
databases on your Windows Mobile device.

To start a second database on the network database server

1. In the left pane of Sybase Central, right-click MobileServer and choose Start Database.

2. In the Database File field, type \My Documents\Beta.db.

3. Click OK to start the database on the network database server.

The database is loaded on the network database server. Now you must initiate a connection from your
computer.

To connect to the second database

1. In Sybase Central, choose File » Connect.

Using the administration utilities on Windows Mobile

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 351

2. Click the Identification tab, and complete the following fields:

● User ID DBA

● Password sql

3. Click the Database tab and complete the following fields:

● Database File Beta

● Server Name MobileServer

4. Click OK to connect to the Beta database running on your Windows Mobile device.

You can now view and manipulate the data in the Alpha and Beta databases using Sybase Central.

What's next?
Next, you will learn how to disconnect from the databases and shut down the database server on Windows
Mobile.

Lesson 3: Shut down the database server on Windows Mobile
Before you can shut down the network database server on your Windows Mobile device, you must stop the
connections from your computer.

To disconnect from the Windows Mobile databases

1. In Sybase Central, choose Connections » Disconnect.

2. Select the connection that corresponds to the Alpha database.

3. Click OK.

4. Choose Connections » Disconnect.

The Beta database is disconnected.

Now that you have disconnected from the Windows Mobile databases in Sybase Central, you can shut down
the network database server.

To shut down the server

1. On the Windows Mobile device, tap the Database Server icon located in the bottom right corner of the
Today screen.

2. Tap Menu » Shut Down.

Where do I go from here?
Once you connect to a database from Sybase Central, you can add data to the tables in your database, add
and edit database objects, and perform other administrative tasks.

SQL Anywhere for Windows Mobile

352 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

For information about administering databases from Sybase Central, see:

● “Using the SQL Anywhere plug-in” on page 671
● “Working with database objects” [SQL Anywhere Server - SQL Usage]

Tutorial: Managing Windows Mobile databases with
Interactive SQL

Interactive SQL is an application that allows you to query and alter data in your database, and modify the
structure of your database. Interactive SQL provides a pane for you to enter SQL statements, and panes that
display information about how the query was processed and the result set.

This tutorial provides a brief introduction to using Interactive SQL from a computer to manage databases
on your Windows Mobile device. You will learn how to connect to the sample database on your Windows
Mobile device from Interactive SQL. Once connected, you can use Interactive SQL to execute SQL
statements.

Lesson 1: Start the sample database
The sample database must be running on your Windows Mobile device before you can connect to it from
Interactive SQL.

To start the sample database

1. On your Windows Mobile device, tap Start » Server.

2. In the Database field, type the path of the sample database. The default location is \My Documents
\demo.db. If you installed the software to a different location, use the Browse button to locate the
database.

3. In the Server Name field, type MobileServer.

4. In the Cache field, type 5MB.

The default cache size on Windows Mobile is 600 KB. However, a larger cache size is recommended
because it can help improve performance.

5. Select Use TCP/IP. This tutorial assumes that you will use the default proxy port number, 2638.

6. Click OK to start the sample database running on the network database server.

7. Navigate to the Today screen on your device.

8. Tap the Server icon located in the bottom right corner of the screen.

When the message Now accepting requests appears in the database server messages window,
you are ready to move on to the next lesson.

Using the administration utilities on Windows Mobile

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 353

What's next?
Next you will learn how to connect from Interactive SQL to the database running on your Windows Mobile
device.

Lesson 2: Start Interactive SQL and connect
Now that the sample database is running on your Windows Mobile device, connect to it from Interactive
SQL to view and manage the database from your computer.

To connect from Interactive SQL to a database on your Windows Mobile device

1. On the desktop computer, choose Start » Programs » SQL Anywhere 11 » Interactive SQL.

2. Click the Identification tab and complete the following fields:

● User ID Type DBA.

● Password Type sql.

3. Select ODBC Data Source Name.

4. Click Browse, choose the MobileServer data source that you created in “Create an ODBC data source
to connect to your Windows Mobile device” on page 337.

5. Click OK.

6. Click the Database tab and type MobileServer in the Server Name field. If you fail to connect to the
server:

● Click the Network tab.
● Click TCP/IP.
● Complete the Host and Port(s) fields.
● Click OK.

7. Click OK to connect to the sample database running on your Windows Mobile device.

What's next?
You can now view and manage the data in the sample database from Interactive SQL.

Lesson 3: Execute queries against a Windows Mobile database
One of the principal uses of Interactive SQL is to browse table data. Interactive SQL retrieves information
by sending a request to your database server. The database server, in turn, looks up the information, and
returns it to Interactive SQL.

To execute a SQL statement against a Windows Mobile database

1. In the SQL Statements pane, execute the following statement:

SELECT * FROM Employees;
2. From the SQL menu, choose Execute to execute the statement.

SQL Anywhere for Windows Mobile

354 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

All the data from the Employees table appears in the Results pane.

3. From the SQL menu, choose Disconnect to disconnect from the Windows Mobile database.

Where do I go from here?
Once you connect to a database from Interactive SQL, you can view and manipulate the data, and add and
modify database objects.

For information about Interactive SQL, writing queries, and using SQL statements, see:

● “Using Interactive SQL” on page 676
● “Querying data” [SQL Anywhere Server - SQL Usage]
● “Summarizing, grouping, and sorting query results” [SQL Anywhere Server - SQL Usage]
● “Joins: Retrieving data from several tables” [SQL Anywhere Server - SQL Usage]
● “SQL statements” [SQL Anywhere Server - SQL Reference]

Using the administration utilities on Windows Mobile

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 355

SQL Anywhere feature support on Windows Mobile
This section lists the components and features of SQL Anywhere that are unsupported or have altered
functionality on Windows Mobile. Where available, alternatives to unsupported features are listed.

For more information about supported and unsupported components on Windows Mobile, see http://
www.sybase.com/detail?id=1061806.

SQL Anywhere includes several tools for administering databases. These include Sybase Central, Interactive
SQL, and utilities. None of these administration tools can be deployed to Windows Mobile. Instead, database
administration is performed from a Windows-based computer that is connected to the Windows Mobile
device.

For more information, see “Using the administration utilities on Windows Mobile” on page 349.

Component or feature Considerations

Application profiling When you create a tracing session for a database run-
ning on Windows Mobile, you must configure tracing
using the Database Tracing Wizard (you cannot use
the Application Profiling Wizard). As well, you must
trace data from the Windows Mobile device to a copy
of the Windows Mobile database running on a database
server on a desktop computer. You cannot automati-
cally create a tracing database from a Windows Mobile
device, and you cannot trace to the local database on a
Windows Mobile device. See “Application profiling”
[SQL Anywhere Server - SQL Usage].

Database mirroring Unsupported on Windows Mobile.

External stored procedures Unsupported on Windows Mobile.

iAnywhere JDBC driver Unsupported on Windows Mobile. You can use jCon-
nect on Windows Mobile.

Java in the database Unsupported on Windows Mobile.

jConnect The jConnect driver can be enabled when you create a
database for Windows Mobile. This can be useful if
you want to move the database to a computer that sup-
ports Java. However, enabling the jConnect driver adds
to the size of the database and, more significantly, adds
about 200 KB to the memory requirements for running
the database. This additional memory requirement
should be considered when running the database in a
limited-memory environment like Windows Mobile.
See “Using jConnect on Windows Mo-
bile” on page 340.

SQL Anywhere for Windows Mobile

356 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1061806
http://www.sybase.com/detail?id=1061806

Component or feature Considerations

Kerberos authentication Unsupported on Windows Mobile.

LDAP authentication Unsupported on Windows Mobile.

ODBC clients Windows Mobile does not provide an ODBC driver
manager or an ODBC Administrator, so SQL Any-
where uses ODBC data sources stored in files. See
“Using ODBC data sources on Windows Mo-
bile” on page 102.

Open Client Unsupported on Windows Mobile.

Parallel backups Unsupported on Windows Mobile.

Personal database server (dbeng11) Only the network database server (dbsrv11) is suppor-
ted on Windows Mobile. This executable supports lo-
cal connections and client/server communications
across a network.

Remote data access (including directory access
servers)

Unsupported on Windows Mobile.

SQL statement support on Windows Mobile

This section describes SQL statements that are not supported on Windows Mobile, and those that have altered
or limited functionality.

For a complete list of SQL statements, see “SQL statements” [SQL Anywhere Server - SQL Reference].

SQL statement Considerations

BACKUP statement Only the BACKUP DATABASE DIRECTORY clause is supported on Win-
dows Mobile.

CREATE DATA-
BASE statement

The CREATE DATABASE statement can be used to initialize a database on a
computer, which can later be copied to a Windows Mobile device. See “Cre-
ating a Windows Mobile database” on page 340.

CREATE EVENT
statement

DiskSpace event types are not supported on Windows Mobile. However, you
can use this statement to define the GlobalAutoIncrement event type or the
ServerIdle event type.

CREATE EXISTING
TABLE statement

Unsupported on Windows Mobile.

SQL Anywhere feature support on Windows Mobile

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 357

SQL statement Considerations

CREATE EXTERN-
LOGIN statement

Unsupported on Windows Mobile.

CREATE FUNCTION
statement

The CREATE FUNCTION statement can be used on Windows Mobile to create
user-defined SQL functions for use in the database. Note that the EXTERNAL
NAME clause is not supported on Windows Mobile.

CREATE SERVER
statement

Unsupported on Windows Mobile.

CREATE TABLE
statement

The AT clause of the CREATE TABLE statement for creating proxy tables is
not supported on Windows Mobile.

DROP DATABASE
statement

Unsupported on Windows Mobile.

DROP SERVER state-
ment

Unsupported on Windows Mobile.

INSTALL JAVA state-
ment

Unsupported on Windows Mobile.

REMOVE JAVA state-
ment

Unsupported on Windows Mobile.

REORGANIZE TA-
BLE statement

Unsupported on Windows Mobile.

RESTORE DATA-
BASE statement

Unsupported on Windows Mobile.

START JAVA state-
ment

Unsupported on Windows Mobile

STOP JAVA statement Unsupported on Windows Mobile.

Database server option support on Windows Mobile

This section describes those database server options that are not supported or have altered functionality on
Windows Mobile.

Option Considerations

@ data option Unsupported on Windows Mobile.

-? server option Unsupported on Windows Mobile.

SQL Anywhere for Windows Mobile

358 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Considerations

-cm server option Unsupported on Windows Mobile.

-cw server option Unsupported on Windows Mobile.

-ec server option Strong communication encryption (TLS) is not supported on Windows Mobile. Only
the none and simple settings are supported. See “-ec server option” on page 180.

-gb server option Unsupported on Windows Mobile.

-ge server option Unsupported on Windows Mobile.

-qi server option When running, the network database server appears as an icon in the bottom right
corner of the Today screen on your Windows Mobile device. This feature cannot be
disabled.

-s server option Unsupported on Windows Mobile.

-tmf server option Unsupported on Windows Mobile.

-tmt server option Unsupported on Windows Mobile.

-u server option Unsupported on Windows Mobile.

-ua server option Unsupported on Windows Mobile.

-uc server option Unsupported on Windows Mobile.

-ud server option Unsupported on Windows Mobile.

-uf server option Unsupported on Windows Mobile.

-ui server option Unsupported on Windows Mobile.

-ut server option Unsupported on Windows Mobile.

-ux server option Unsupported on Windows Mobile.

-xp server option Unsupported on Windows Mobile.

-ze server option Unsupported on Windows Mobile.

Sybase Central wizard support on Windows Mobile

The following table lists the Sybase Central wizards that are not supported or have altered functionality on
Windows Mobile and provides alternatives where possible.

SQL Anywhere feature support on Windows Mobile

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 359

Wizard Considerations

Backup Database Wizard Archive backups are not supported on Windows
Mobile. The Backup Database Wizard is not sup-
ported. See “Types of backup” on page 872.

As an alternative on Windows Mobile, you can use
the Create Backup Images Wizard, which makes
a separate backup of the database and transaction
log files. See “Use the Backup Database Wiz-
ard” on page 883.

Change Log File Settings Wizard Unsupported on Windows Mobile.

Create Database Wizard This wizard provides options for creating database
on Windows Mobile, provided Windows Mobile
services are installed on the computer running Syb-
ase Central. See “Creating a Windows Mobile da-
tabase” on page 340.

Create Maintenance Plan Wizard The following options are not available on Win-
dows Mobile:

● Full Archive Backup
● Back up to Tape
● Email the Maintenance Plan Report

Erase Database Wizard Unsupported on Windows Mobile.

Migrate Database Wizard Unsupported on Windows Mobile.

Restore Database Wizard Unsupported on Windows Mobile.

Create Service Wizard Unsupported on Windows Mobile.

Translate Log File Wizard Unsupported on Windows Mobile.

Unload Database Wizard This wizard cannot map to the Windows Mobile
directory where the database files are stored. How-
ever, you can unload a Windows Mobile database
by copying it to your computer and using the Un-
load Database Wizard.

SQL Anywhere for Windows Mobile

360 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Wizard Considerations

Upgrade Database Wizard This wizard is not supported on Windows Mobile.
However, you can upgrade a Windows Mobile da-
tabase by copying it to your computer and using
this wizard before copying the database back to
your Windows Mobile device. See “Upgrading
SQL Anywhere” [SQL Anywhere 11 - Changes and
Upgrading].

SQL Remote support on Windows Mobile

SQL Remote is supported on Windows Mobile with the following exceptions:

Component or feature Considerations

Extraction utility (dbxtract) Windows Mobile does not support this utility. If necessary, a Windows
Mobile database can be copied to a computer so that the Extraction utility
can be used.

SQL Anywhere feature support on Windows Mobile

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 361

362

Configuring Your Database

This section describes the files used by SQL Anywhere, database limitations, and how to configure database
properties and options. It also describes how to configure your SQL Anywhere installation to handle international
language issues.

SQL Anywhere environment variables .. 365
File locations and installation settings ... 389
International languages and character sets ... 399
Managing user IDs, authorities, and permissions .. 439
Database options .. 487
Connection, database, and database server properties ... 597
Physical limitations ... 653

SQL Anywhere environment variables

Contents
Introduction to SQL Anywhere environment variables .. 366
DYLD_LIBRARY_PATH environment variable [Mac OS X] 368
LD_LIBRARY_PATH environment variable [Linux and Solaris] 369
LIBPATH environment variable [AIX] .. 370
ODBCHOME environment variable [Unix] ... 371
ODBCINI and ODBC_INI environment variables [Unix] .. 372
PATH environment variable ... 373
SACHARSET environment variable .. 374
SADIAGDIR environment variable .. 375
SALANG environment variable .. 377
SALOGDIR environment variable .. 378
SATMP environment variable .. 379
SHLIB_PATH environment variable [HP-UX] .. 381
SQLANY11 environment variable .. 382
SQLANYSAMP11 environment variable ... 383
SQLCONNECT environment variable ... 384
SQLPATH environment variable ... 385
SQLREMOTE environment variable .. 386
SYBASE environment variable .. 387
TMP, TEMPDIR, and TEMP environment variables .. 388

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 365

Introduction to SQL Anywhere environment variables
SQL Anywhere uses environment variables to store various types of information. Not all environment
variables need to be set in all circumstances.

For SQL Anywhere Server, you can view the environment variables set for a particular server by starting
the server with the -ze option. See “-ze server option” on page 240.

Setting environment variables on Windows

The SQL Anywhere installer creates or modifies the following environment variables in your computer's
properties: PATH and SQLANY11. After installing SQL Anywhere, you must restart your computer for
these environment variables to take effect.

Other environment variables can be set by modifying the properties for your computer, or within command
prompts or batch files by using the SET command.

Setting environment variables for the Finder in Mac OS X

The SQL Anywhere installer sets the following environment variables: DYLD_LIBRARY_PATH,
ODBCINI, PATH, and SQLANY11. Rebooting is not required.

Terminal sessions do not inherit environment variables from the Finder. The following section describes
how to set environment variables for terminal sessions.

Setting environment variables on Unix and Mac OS X

Once SQL Anywhere 11 is installed, each user must set some environment variables for the system to locate
and run SQL Anywhere applications. The SQL Anywhere installer creates two files, sa_config.sh and
sa_config.csh, for this purpose. These files are installed in install-dir/bin32 and install-dir/bin64. Each file
sets all needed user environment variables.

As the names imply, one file is designed to work under Bourne shell (sh) and its derivatives (such as ksh or
bash). The other file is designed to work under C-shell (csh) and its derivatives (such as tcsh).

Some statements are commented out in each of these batch files. The system administrator may want to edit
these files and remove comments, depending on the configuration of their system.

To run a SQL Anywhere application, you have several choices:

1. If you add the environment variables from the sa_config files to your system environment, you can run
applications by launching them from a GUI, such as X window server, or by typing the application name
in a terminal window.

2. In a terminal window, if you source one of the sa_config files, you can run the application by typing its
name.

3. install-dir/bin32s and install-dir/bin64s contain scripts with the same names as SQL Anywhere
applications. These scripts set the appropriate environment variables before launching the application.
You can run the application by running the corresponding script. You do not have to source an
sa_config file before you run these scripts.

SQL Anywhere environment variables

366 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Sourcing files on Unix and Mac OS X

To source a file means to execute commands contained in a text file in the current instance of the shell. This
is accomplished using a command built into the shell.

Under Bourne shell and its derivatives, the name of this command is . (a single period). For example, if
SQL Anywhere is installed in /opt/sqlanywhere11, the following statement sources sa_config.sh:

. /opt/sqlanywhere11/bin32/sa_config.sh

Under C-shell and its derivatives, the command is source. For example, if SQL Anywhere is installed
in /opt/sqlanywhere11, the following statement sources sa_config.csh:

source /opt/sqlanywhere11/bin32/sa_config.csh

Introduction to SQL Anywhere environment variables

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 367

DYLD_LIBRARY_PATH environment variable [Mac
OS X]

Specifies the directories that are searched at run time for libraries required by SQL Anywhere applications
on Mac OS X.

Syntax
DYLD_LIBRARY_PATH=path-list

Default
/Applications/SQLAnywhere11/System/lib32

Remarks
The sa_config.sh and sa_config.csh files, created by the installer, are scripts that create or modify this and
other environment variables.

See also
● “LD_LIBRARY_PATH environment variable [Linux and Solaris]” on page 369
● “LIBPATH environment variable [AIX]” on page 370
● “SHLIB_PATH environment variable [HP-UX]” on page 381
● “Setting environment variables on Unix and Mac OS X” on page 366

SQL Anywhere environment variables

368 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

LD_LIBRARY_PATH environment variable [Linux and
Solaris]

Specifies the directories that are searched at run time for libraries required by SQL Anywhere applications
on Linux and Solaris.

Syntax
LD_LIBRARY_PATH=path-list

Default
● /opt/sqlanywhere11/lib32 (32-bit platforms)
● /opt/sqlanywhere11/lib64 (64-bit platforms)

Remarks
The sa_config.sh and sa_config.csh files, created by the installer, are scripts that create or modify this and
other environment variables.

See also
● “DYLD_LIBRARY_PATH environment variable [Mac OS X]” on page 368
● “LIBPATH environment variable [AIX]” on page 370
● “SHLIB_PATH environment variable [HP-UX]” on page 381
● “Setting environment variables on Unix and Mac OS X” on page 366

LD_LIBRARY_PATH environment variable [Linux and Solaris]

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 369

LIBPATH environment variable [AIX]
Specifies the directories that are searched at run time for libraries required by SQL Anywhere applications
on AIX.

Syntax
LIBPATH=path-list

Default
● /usr/lpp/sqlanywhere11/lib32 (32-bit platforms)
● /usr/lpp/sqlanywhere11/lib64 (64-bit platforms)

Remarks
The sa_config.sh and sa_config.csh files, created by the installer, are scripts that create or modify this and
other environment variables.

See also
● “DYLD_LIBRARY_PATH environment variable [Mac OS X]” on page 368
● “LD_LIBRARY_PATH environment variable [Linux and Solaris]” on page 369
● “SHLIB_PATH environment variable [HP-UX]” on page 381
● “Setting environment variables on Unix and Mac OS X” on page 366

SQL Anywhere environment variables

370 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ODBCHOME environment variable [Unix]
Specifies the location of the .odbc.ini file.

Syntax
ODBCHOME=odbc-ini-directory

Remarks
The .odbc.ini file is the system information file that contains ODBC data sources. If the file is named anything
other than .odbc.ini, you must use the ODBCINI or ODBC_INI environment variables to specify its location.

For information about the algorithm for locating ODBC data sources, see “Using ODBC data sources on
Unix” on page 102.

See also
● “ODBCINI and ODBC_INI environment variables [Unix]” on page 372
● “Setting environment variables on Unix and Mac OS X” on page 366

ODBCHOME environment variable [Unix]

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 371

ODBCINI and ODBC_INI environment variables [Unix]
Specifies the path and name of the system information file containing ODBC data sources.

Syntax
ODBCINI=odbc-ini-file

ODBC_INI=odbc-ini-file

Remarks
The file name does not need to be .odbc.ini if it is specified using one of these environment variables. Both
environment variables are provided for compatibility with other products.

For information about the algorithm for locating ODBC data sources, see “Using ODBC data sources on
Unix” on page 102.

See also
● “ODBCHOME environment variable [Unix]” on page 371
● “Setting environment variables on Unix and Mac OS X” on page 366

SQL Anywhere environment variables

372 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

PATH environment variable
Specifies the locations of directories containing SQL Anywhere executables.

Syntax
PATH=path-list

Default

Note
The following paths are only added if the corresponding component is installed.

Operating system Default location

Windows (32-bit) C:\Program Files\SQL Anywhere 11\bin32

Windows (64-bit) C:\Program Files\SQL Anywhere 11\bin64

Mac OS X (32-bit) /Applications/SQLAnywhere11/System/bin32

Mac OS X (64-bit) /Applications/SQLAnywhere11/System/bin64

AIX (32-bit) /usr/lpp/sqlanywhere11/bin32

AIX (64-bit) /usr/lpp/sqlanywhere11/bin64

Other Unix operating systems (32-bit) /opt/sqlanywhere11/bin32

Other Unix operating systems (64-bit) /opt/sqlanywhere11/bin64

Linux, Solaris Sparc /opt/sqlanywhere11/openserver/OCS-15_0/bin

Remarks
On Windows, the PATH environment variable is modified by the installer to include the directories where
SQL Anywhere executables are located.

On Unix, the sa_config.sh and sa_config.csh files, created by the installer, are scripts that create or alter this
and other environment variables.

See also
● “Setting environment variables on Windows” on page 366
● “Setting environment variables on Unix and Mac OS X” on page 366

PATH environment variable

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 373

SACHARSET environment variable
Specifies the character set used by SQL Anywhere.

Syntax
SACHARSET=charset

Remarks
The charset is a character set name.

For information about recommended character sets, see “Recommended character sets and
collations” on page 433.

If SACHARSET is not specified, the character set comes from the operating system.

See also
● “Setting environment variables on Windows” on page 366
● “Setting environment variables on Unix and Mac OS X” on page 366

SQL Anywhere environment variables

374 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SADIAGDIR environment variable
Specifies the location of the SQL Anywhere diagnostic directory.

Syntax
SADIAGDIR=diagnostic-information-directory

Default

Operating system Default location

Windows %ALLUSERSPROFILE%\Application Data\SQL Anywhere 11\diagnostics

Unix $HOME/.sqlanywhere11/diagnostics

Windows Mobile Directory where the database server is running

Remarks
SQL Anywhere stores crash reports and feature statistics information in a diagnostic directory. The
SADIAGDIR environment variable is used to determine the location of the diagnostic directory where SQL
Anywhere writes crash reports.

If the directory specified by this environment variable does not exist, then the database server operates as
though the environment variable is not set.

On Windows (except Windows Mobile), diagnostics are written to the first writable directory in the following
list:

1. The directory specified by the SADIAGDIR environment variable.

2. The directory of the current executable.

3. The current directory.

4. The temporary directory. See “SATMP environment variable” on page 379 and “TMP, TEMPDIR, and
TEMP environment variables” on page 388.

On Windows Mobile, diagnostics are written to the first writable directory in the following list:

1. The directory of the current executable.

2. The current directory.

3. The temporary directory. See “Registry settings on Windows Mobile” on page 398.

On Unix, diagnostics are written to the first writable directory in the following list:

1. The directory specified by the SADIAGDIR environment variable.

2. The directory specified by $HOME/.sqlanywhere11/diagnostics.

3. The current directory.

SADIAGDIR environment variable

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 375

4. The temporary directory. See “SATMP environment variable” on page 379 and “TMP, TEMPDIR, and
TEMP environment variables” on page 388.

Note
On Unix, writing crash reports to the user's home directory is not recommended when the database or
MobiLink server is running as a daemon, or the user is root/nobody. Because of this, the Unix install prompts
you for a suitable location and sets the SADIAGDIR environment variable in the sa_config.sh and
sa_config.csh files.

See also
● “Support utility (dbsupport)” on page 833
● “Error reporting in SQL Anywhere” on page 83
● “Setting environment variables on Windows” on page 366
● “Setting environment variables on Unix and Mac OS X” on page 366

SQL Anywhere environment variables

376 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SALANG environment variable
Specifies the language code for SQL Anywhere.

Syntax
SALANG=language-code

Remarks
The language-code is a two-letter combination representing a language. For example, setting
SALANG=DE sets the default language to German.

For information about supported language codes, see “Understanding the locale language” on page 413.

The first of the following methods that returns a value determines the default language:

1. Check the SALANG environment variable.

2. (Windows) Check the registry as set during installation or by dblang.exe. See “Language Selection utility
(dblang)” on page 791.

3. Query the operating system for language information.

4. If no language information is set, English is the default.

See also
● “Language Selection utility (dblang)” on page 791
● “Registry settings on installation” on page 397
● “Setting environment variables on Windows” on page 366
● “Setting environment variables on Unix and Mac OS X” on page 366

SALANG environment variable

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 377

SALOGDIR environment variable
Specifies the location of the backup.syb file.

Syntax
SALOGDIR=directory-name

Remarks
If the SALOGDIR environment variable is set, it is assumed to contain the path for a directory where the
backup history file, backup.syb can be written. This file is updated each time you execute a BACKUP or
RESTORE statement.

On Windows, the backup.syb file is created in the first writable location in the following list:

1. The SALOGDIR environment variable.

2. The installation directory.

On 32-bit Windows platforms, the default location is install-dir\bin32. If this directory does not exist,
an error is given.

3. The directory of the database server executable.

4. Write the backup.syb file in the root directory of the current drive.

On Unix, the backup.syb file is created in the first writable location in the following list:

1. The SALOGDIR environment variable.

2. The HOME environment variable.

3. Write the backup.syb file to the directory where the database server was started.

See also
● “BACKUP statement” [SQL Anywhere Server - SQL Reference]
● “Setting environment variables on Windows” on page 366
● “Setting environment variables on Unix and Mac OS X” on page 366

SQL Anywhere environment variables

378 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SATMP environment variable
Specifies the location of temporary files used by the database server and the SQL Anywhere command line
utilities that require a temporary directory.

Syntax
SATMP=directory-name

Remarks
SQL Anywhere creates two types of temporary files: database server-related temporary files (created on all
platforms), and communications-related temporary files (created only on Unix for both the client and the
server).

The SATMP environment variable specifies the location of temporary files used by the database server and
the SQL Anywhere command line utilities that require a temporary directory. It is useful when running the
database server as a service because it enables you to hold the temporary file in a directory that cannot be
accessed by other programs.

If the location of the temporary file is not specified with the -dt option when the database server is started,
then the database server checks the value of the SATMP environment variable to determine where to place
the temporary file. If the SATMP environment variable does not exist, then the first of the TMP, TMPDIR,
or TEMP environment variables to exist is used. On Unix, if none of the above environment variables
exist, /tmp is used.

On Windows Mobile, you can specify the directory to use as the server's temporary directory in the registry.

For information about the temporary file location on Windows Mobile, see “Registry settings on Windows
Mobile” on page 398.

On Unix, both the client and the database server must set SATMP to the same value when connecting via
shared memory.

For information about securing shared memory connections on Unix, see “Security tips” on page 1066.

If you want to restrict the permissions of the temporary files created by the database server or client on Unix,
you must set this environment variable to a directory that is not in the following list:

● /tmp
● /tmp/.SQLAnywhere
● the value of the TMP environment variable, if set
● the value of the TMPDIR environment variable, if set
● the value of the TEMP environment variable, if set
● a symbolic link pointing to any of the above directories

When SATMP is set to a directory that is not listed above, the database server searches up the given directory
path looking for directories owned by the current user with permissions set to 770, 707, or 700. If the
permissions are not set to one of these values, files are created with permissions set to 777. For each directory
that is found, the database server removes the appropriate permissions (other, group, and other+group,
respectively) from the permission mask used to create temporary files.

SATMP environment variable

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 379

Caution
Setting SATMP to a directory that is not included in the list above may affect the ability of users using
different Unix accounts to connect to the database server over shared memory.

See also
● “-dt server option” on page 179
● “TMP, TEMPDIR, and TEMP environment variables” on page 388
● “Setting environment variables on Windows” on page 366
● “Setting environment variables on Unix and Mac OS X” on page 366
● “Place different files on different devices” [SQL Anywhere Server - SQL Usage]

Using shared memory connections with older software
In SQL Anywhere version 9 and earlier, the environment variable ASTMP is equivalent to SATMP. If you
are using shared memory to connect version 9 and version 10 software, you must set the SATMP and ASTMP
environment variables to specify the (same) location of the temporary directory.

SQL Anywhere environment variables

380 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SHLIB_PATH environment variable [HP-UX]
Specifies the directories that are searched at run time for libraries required by SQL Anywhere applications
on HP-UX.

Syntax
SHLIB_PATH=path-list

Default
● /opt/sqlanywhere11/lib32 (32-bit platforms)
● /opt/sqlanywhere11/lib64 (64-bit platforms)

Remarks
The sa_config.sh and sa_config.csh files, created by the installer, are scripts that create or modify this and
other environment variables.

See also
● “DYLD_LIBRARY_PATH environment variable [Mac OS X]” on page 368
● “LD_LIBRARY_PATH environment variable [Linux and Solaris]” on page 369
● “LIBPATH environment variable [AIX]” on page 370
● “Setting environment variables on Unix and Mac OS X” on page 366

SHLIB_PATH environment variable [HP-UX]

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 381

SQLANY11 environment variable
Specifies the location of the directory containing SQL Anywhere 11.

Syntax
SQLANY11=directory-name

Default

Operating system Location

Windows C:\Program Files\SQL Anywhere 11

AIX /usr/lpp/sqlanywhere11

Mac OS X /Applications/SQLAnywhere11/System

Other Unix operating systems /opt/sqlanywhere11

Remarks
This environment variable should be set for several reasons. For example, samples require this environment
variable to locate SQL Anywhere applications.

On Windows, the installer sets the location of the SQLANY11 environment variable.

On Unix, the sa_config.sh and sa_config.csh files, created by the installer, are scripts that create or modify
this and other environment variables.

See also
● “Setting environment variables on Windows” on page 366
● “Setting environment variables on Unix and Mac OS X” on page 366

SQL Anywhere environment variables

382 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQLANYSAMP11 environment variable
Specifies the location of the SQL Anywhere samples directory.

Syntax
SQLANYSAMP11=directory-name

Default

Operating system Default location

Windows C:\Documents and Settings\All Users\Documents\SQL Anywhere
11\Samples

Windows Vista C:\Users\Public\Documents\SQL Anywhere 11\Samples

Mac OS X /Applications/SQLAnywhere11/Samples

AIX /usr/lpp/sqlanywhere11/samples

Other Unix operating systems /opt/sqlanywhere11/samples

Remarks
On Windows, the installer sets the location of the SQLANYSAMP11 environment variable.

On Unix, the sa_config.sh and sa_config.csh files, created by the installer, are scripts that create or modify
this and other environment variables.

See also
● “Setting environment variables on Windows” on page 366
● “Setting environment variables on Unix and Mac OS X” on page 366

SQLANYSAMP11 environment variable

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 383

SQLCONNECT environment variable
Specifies additional connection parameters used when connecting to the database server.

Syntax
SQLCONNECT=parameter=value; ...

Remarks
This string is a list of parameter settings, of the form parameter=value, delimited by semicolons.

Connection parameters specified by the SQLCONNECT environment variable are not used if they have
already been specified in the connection string.

For information about the supported connection parameters, see “Connection parameters” on page 262.

Password security risk
Because the password is in plain text, putting it into the SQLCONNECT environment variable is a security
risk.

See also
● “Resolving connection parameter conflicts” on page 87
● “Setting environment variables on Windows” on page 366
● “Setting environment variables on Unix and Mac OS X” on page 366

SQL Anywhere environment variables

384 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQLPATH environment variable
Specifies the location of command and Help files.

Syntax
SQLPATH=path-list

Remarks
Interactive SQL searches the directories specified in SQLPATH for command files and Help files before
searching the system path.

See also
● “Setting environment variables on Windows” on page 366
● “Setting environment variables on Unix and Mac OS X” on page 366

SQLPATH environment variable

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 385

SQLREMOTE environment variable
Specifies subdirectories that are addresses for the SQL Remote FILE message link.

Syntax
SQLREMOTE=path

Remarks
Addresses for the FILE message link in SQL Remote are subdirectories of the SQLREMOTE environment
variable. This environment variable should specify a shared directory.

On Windows operating systems, except Windows Mobile, an alternative to setting the SQLREMOTE
environment variable is to set the SQL Remote\Directory registry entry to the proper root directory.

See also
● “Setting environment variables on Windows” on page 366
● “Setting environment variables on Unix and Mac OS X” on page 366

SQL Anywhere environment variables

386 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SYBASE environment variable
Specifies the home directory for the installation of some Sybase applications, including Adaptive Server
Enterprise, Open Client, Open Server, and utilities such as DSEdit.

Syntax
SYBASE=directory-name

Remarks
You only need to set this environment variable if you are using other Sybase applications.

See also
● “Setting environment variables on Windows” on page 366
● “Setting environment variables on Unix and Mac OS X” on page 366

SYBASE environment variable

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 387

TMP, TEMPDIR, and TEMP environment variables
Specifies the location of SQL Anywhere temporary files.

Syntax
TMP=path

TMPDIR=path

TEMP=path

Remarks
SQL Anywhere software may create temporary files for various operations. A temporary file is created when
the database server starts, and is erased when the database server stops. As its name suggests, the temporary
file is used while the database server is running to hold temporary information. The temporary file does not
hold information that needs to be kept between sessions.

Temporary files are held in the directory specified by one of the TMP, TMPDIR, or TEMP environment
variables. If more than one of these environment variables is specified, then the first of TMP, TMPDIR, and
TEMP is used.

SQL Anywhere Server checks the SATMP environment variable first. If it is not specified, then these
environment variables are checked. See “SATMP environment variable” on page 379.

If none of the environment variables is defined, temporary files are placed in the current working directory
of the server. On Unix only, if none of these environment variables are found, then /tmp is used.

On Windows Mobile, you can use the registry to specify the directory to use as the server's temporary
directory.

For more information about setting the temporary directory value, see “Registry settings on Windows
Mobile” on page 398.

Using shared memory connections with older software
In SQL Anywhere version 9 and earlier, the environment variable ASTMP is equivalent to SATMP. If you
are using shared memory to connect version 9 and version 10 software, you must set the SATMP and ASTMP
environment variables to specify the location of the temporary file.

See also
● “-dt server option” on page 179
● “SATMP environment variable” on page 379
● “Setting environment variables on Windows” on page 366
● “Setting environment variables on Unix and Mac OS X” on page 366
● “Place different files on different devices” [SQL Anywhere Server - SQL Usage]

SQL Anywhere environment variables

388 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

File locations and installation settings

Contents
Installation directory structure .. 390
How SQL Anywhere locates files .. 392
Registry and INI files ... 396

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 389

Installation directory structure
When you install SQL Anywhere, several directories are created. Some of the files in these directories are
essential, and others are not. This section describes the directory structure.

SQL Anywhere software, whether you receive it as a product or bundled as part of another product, is installed
under a single installation directory. The SQLANY11 environment variable specifies the location of the
installation directory. See “SQLANY11 environment variable” on page 382.

SQL Anywhere installation directory

The SQL Anywhere installation directory itself holds several items, including the following:

● Read Me First A Read Me First file named readme.txt holds last minute information.

For platforms other than Windows Mobile, there are several directories under the installation directory:

● Executable directories There is a separate directory for each operating system platform, which holds
configuration files and context-sensitive help files.

On Windows, except Windows Mobile, these files are installed in the bin32 or bin64 directory. If you
are using Unix, they are installed in the bin32 or bin64 and lib32 or lib64 directories.

You only have the directories required for your operating system version.

● java directory JAR files are stored in this directory.

● scripts directory The scripts directory contains SQL scripts that are used by the database
administration utilities and as examples.

● \SDK\Include directory The \SDK\Include directory contains header files for developing C/C++
applications for SQL Anywhere. On Unix, this directory is called include.

Windows Mobile file locations

On Windows Mobile devices, all files are installed in the installation directory \Program Files\SQLAny11,
except for DLLs, which are installed in the \Windows directory. No subdirectories are created.

Unix file locations
The language resources are installed in the res directory, and the shared objects are installed in the lib32 or
lib64 directory.

Samples directory

When you install SQL Anywhere 11, you can choose the directory where the samples are installed. The
documentation refers to this location as samples-dir.

The SQLANYSAMP11 environment variable specifies the location of samples-dir. See “SQLANYSAMP11
environment variable” on page 383.

On Windows, you can access the samples from the Start menu by choosing Programs » SQL Anywhere
11 » Sample Applications And Projects.

File locations and installation settings

390 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The following table shows default and typical locations of samples-dir for each supported operating system:

Operating system Default installation location (samples-
dir)

Typical installation location

Windows XP/200x %ALLUSERSPROFILE%\Documents
\SQL Anywhere 11\Samples

C:\Documents and Settings\All Users
\Documents\SQL Anywhere 11\Sam-
ples1

Windows Vista %PUBLIC%\Documents\SQL Anywhere
11\Samples

C:\Users\Public\Documents\SQL
Anywhere 11\Samples

Windows Mobile \Program Files\SQLAny11

Unix and Linux /opt/sqlanywhere11/samples Script provided to copy samples to
user-specified directory.

Mac OS X /Applications/SQLAnywhere11/Samples Script provided to copy samples to
user-specified directory.

1 When accessing the SQL Anywhere samples directory in Windows Explorer, the location is Documents
and Settings > All Users > Shared Documents > SQL Anywhere 11 > Samples. However, if you are
accessing the SQL Anywhere samples directory from a command prompt, the path is C:\Documents and
Settings\All Users\Documents\SQL Anywhere 11\Samples.

Installation directory structure

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 391

How SQL Anywhere locates files
The client library and the database server need to locate files for two main purposes:

● DLLs and initialization files are required to run SQL Anywhere. If an incorrect DLL is located, there is
the possibility of version mismatch errors.

● Some files are specified in SQL statements and need to be located at run time, such as INSTALL JAVA
or LOAD TABLE.

Examples of SQL statements that use file names include the following:

● INSTALL JAVA statement The name of the file that holds Java classes.

● LOAD TABLE and UNLOAD TABLE statements The name of the file from which data should be
loaded or to which the data should be unloaded.

● CREATE DATABASE statement A file name is needed for this statement and similar statements
that can create files.

In some cases, SQL Anywhere uses a simple algorithm to locate files. In other cases, a more extensive search
is performed.

Simple file searching
In many SQL statements (such as LOAD TABLE, or CREATE DATABASE), the file name is interpreted
as relative to the current working directory of the database server.

Also, when a database server is started and a database file name (DatabaseFile (DBF) parameter) is supplied,
the path is interpreted as relative to the current working directory.

Extensive file searching on Windows

On Windows, SQL Anywhere programs, including the database server and administration utilities, can
perform a more extensive search for required files such as DLLs or shared libraries. In these cases, SQL
Anywhere programs look for files in the following order:

1. The module's directory (the directory where the program executable file or library file is located).

2. The executable directory (the directory where the program executable file or library is located).

3. The installation path (the SQL Anywhere installation directory, install-dir). install-dir is a single
directory specified by the SQLANY11 environment variable if it is defined.

4. No path (the current working directory).

5. The Location registry entry.

6. System-specific directories. This includes directories where common operating system files are held,
such as the Windows directory and the Windows\system32 directory on Windows operating systems.

7. The PATH directories. Directories in the system path and the user's path are searched.

File locations and installation settings

392 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Note
On Windows, SQL Anywhere searches the following paths relative to each location in the preceding list:

1. .

2. ..

3. .\bin32 and ..\bin32 (32-bit programs only)

4. .\bin64 and ..\bin64 (64-bit programs only)

5. .\java (for Java-related files)

6. ..\java (for Java-related files)

7. .\scripts (for SQL script files)

8. ..\scripts (for SQL script files)

Extensive file searching on Windows Mobile

On Windows Mobile, SQL Anywhere programs, including the database server and administration utilities,
can perform a more extensive search for required files such as DLLs or shared libraries. In these cases, SQL
Anywhere programs look for files in the following order:

1. The module's directory (the directory where the program executable file or library file is located).

2. The executable directory (the directory where the program executable file or library is located).

3. No path (the current working directory).

4. The Location registry entry.

5. System-specific directories. This includes directories where common operating system files are held,
such as Windows.

How SQL Anywhere locates files

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 393

Note
On Windows Mobile, SQL Anywhere searches the following paths relative to each location in the preceding
list:

1. .

2. ..

3. .\bin32

4. ..\bin32

5. .\java (for Java-related files)

6. ..\java (for Java-related files)

7. .\scripts (for SQL script files)

8. ..\scripts (for SQL script files)

Extensive file searching on Unix

On Unix, SQL Anywhere programs, including the database server and administration utilities, can perform
a more extensive search for required files such as DLLs or shared libraries. In these cases, SQL Anywhere
programs look for files in the following order:

1. The executable path (if it can be determined).

2. The installation path (the SQL Anywhere installation directory, install-dir). install-dir is a single
directory specified by the SQLANY11 environment variable if it is defined.

3. No path (the current working directory).

4. The PATH environment variable.

5. The LIBPATH environment variable:

● LD_LIBRARY_PATH on Linux and Solaris
● LD_LIBRARY_PATH and SHLIB_PATH on HP-UX
● LIBPATH on AIX
● DYLD_LIBRARY_PATH on Mac OS X

File locations and installation settings

394 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Note
On Unix, SQL Anywhere searches the following paths relative to each location in the preceding list:

1. .

2. ..

3. ./bin32 and ../bin32 (32-bit programs only)

4. ./bin64 and ../bin64 (64-bit programs only)

5. ./lib32 and ../lib32 (library files for 32-bit programs only)

6. ./lib64 and ../lib64 (library files for 64-bit programs only)

7. ./java (for Java-related files)

8. ../java (for Java-related files)

9. ./scripts (for SQL script files)

10. ../scripts (for SQL script files)

11. ./res (for .res files)

12. ../res (for .res files)

13. ./tix (for .tix files)

14. ../tix (for .tix files)

How SQL Anywhere locates files

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 395

Registry and INI files
On Windows operating systems (except Windows Mobile), SQL Anywhere uses several registry settings.
On Unix, these settings are stored in initialization files instead.

The software installation makes these settings for you, and in general operation you should not need to access
the registry or initialization files. The settings are provided here for those people who make modifications
to their operating environment.

The contents of .ini files used by SQL Anywhere can be obfuscated with simple encryption using the File
Hiding utility. See “File Hiding utility (dbfhide)” on page 768.

Caution
You should not add simple encryption to the system information file (named .odbc.ini by default) with the
File Hiding utility (dbfhide) on Unix unless you are only using SQL Anywhere data sources. If you plan to
use other data sources (for example, for MobiLink synchronization), then obfuscating the contents of the
system information file may prevent other drivers from functioning properly.

Current user and local machine settings
Some operating systems hold two levels of system settings. Some settings are specific to an individual user
and are used only when that user is logged on; these settings are called current user settings. Some settings
are global to the computer, and are available to all users; these are called local machine settings. You must
have administrator permissions on your computer to change local machine settings.

SQL Anywhere respects both current user and local machine settings. On Windows XP, for example, these
are held in the HKEY_CURRENT_USER key and the HKEY_LOCAL_MACHINE key, respectively.

Current user takes precedence
If a setting is made in both the current user and local machine registries, the current user setting takes
precedence over the local machine setting.

When local machine settings are needed
If you are running a SQL Anywhere program as a service, you should ensure that the settings are made at
the local machine level.

Services can continue to run under a special account when you log off a computer as long as you do not shut
the computer down entirely. They can be made independent of individual accounts, and therefore need access
to local machine settings.

In addition to SQL Anywhere programs, some web servers run as services. You must set local machine
settings for Apache or IIS to work with such a web server.

In general, the use of local machine settings is recommended.

File locations and installation settings

396 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Registry structure
On Windows (except Windows Mobile), you can access the registry directly with the registry editor. The
SQL Anywhere registry entries are held in either the HKEY_CURRENT_USER or
HKEY_LOCAL_MACHINE keys, in the following location:

Software
 Sybase
 SQL Anywhere
 11.0
 Sybase Central
 6.0.0

Modifying your registry is dangerous
Modify your registry at your own risk. It is recommended that you back up your system before modifying
the registry.

Registry settings on installation
On Windows, the installation program makes the following settings in the HKEY_LOCAL_MACHINE
\Software\Sybase registry. The following list describes some of these registry settings:

● SQL Anywhere\11.0\Location This entry holds the installation directory location for the SQL
Anywhere software. For example:

Location "c:\Program Files\SQL Anywhere 11"
● SQL Anywhere\11.0\Samples Location This entry holds the installation directory location for

sample programs. For example:

Samples Location "C:\Documents and Settings\All Users\Documents\SQL
Anywhere 11\Samples\"

● SQL Anywhere\11.0\Online Resources This entry holds the location for the Online Resources
documentation. For example:

Online Resources "c:\Program Files\SQL Anywhere 11\support\ianywhere.html"
● SQL Anywhere\11.0\Language This entry holds a two-letter code indicating the current language

for messages and errors. For example:

Language "EN"

The language is set based on the language selection specified during installation. See “Understanding
the locale language” on page 413.

● Sybase Central\6.0.0\Language This entry holds a two-letter code indicating the current language
for messages and errors. For example:

Language "EN"

This entry is used by Sybase Central. The language is set based on the language selection specified during
installation. See “Understanding the locale language” on page 413.

Registry and INI files

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 397

Registry settings on Windows Mobile
You can specify which directory you want to use as the server's temporary directory on Windows Mobile
by setting the following value in the registry:

HKEY_CURRENT_USER\Software\Sybase\SQL Anywhere\11.0\TempFolder

TempFolder is the name of the temporary directory you want to use. The server does one of the following:

● use the specified directory if it exists.

● attempt to create the specified directory if it does not already exist, as long as the parent directory already
exists.

If the specified directory does not exist and cannot be created, the database server:

● uses the \Temp directory if it exists.

● attempts to create a \Temp directory if it does not already exist.

If the \Temp directory does not exist and cannot be created, the server uses the current directory.

File locations and installation settings

398 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

International languages and character sets

Contents
Localized versions of SQL Anywhere .. 400
Understanding character sets .. 407
Understanding locales ... 413
Understanding collations ... 416
International language and character set tasks ... 424
Character set and collation reference information ... 429

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 399

Localized versions of SQL Anywhere
Localization refers to the linguistic and cultural adaptation of a product to a target locale, which is usually
a combination of language and country/region. Localization affects many components, including packaging,
installation, documentation, software user interface, and error/warning/information messages.

SQL Anywhere software is localized to five languages:

● English
● French
● German
● Japanese
● Simplified Chinese

Language choice is determined at installation.

Localized versions of the documentation are available in English, German, Japanese, and simplified Chinese.

On Windows, the Start menu items allow the software to be reconfigured between the installed language
and English. The Language Selection utility (dblang) allows the software to be reconfigured to any of the
available languages, including the additional deployment languages. See “Deployment software localization
on Windows” on page 401 and “Language Selection utility (dblang)” on page 791.

The following table shows the availability of each language by operating system platform.

Platform English French German Japanese Simplified Chinese

Windows Yes Yes Yes Yes Yes

Windows Mobile Yes Yes Yes Yes Yes

Linux Yes Yes Yes Yes

Unix Yes

Mac OS X Yes

Full software and documentation localization
SQL Anywhere for Windows is available in the following languages, suitable for development, deployment
and administration:

● English
● French
● German
● Japanese
● Simplified Chinese

International languages and character sets

400 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

For English, German, Japanese, and Simplified Chinese, all SQL Anywhere components are localized,
including:

● Packaging

● Installer

● Documentation and context-sensitive help

● Software

○ Start menu items and program folders

○ Database servers and client libraries

○ MobiLink server and client

○ SQL Remote client

○ Administration tools, including Interactive SQL, Sybase Central, and all related plug-ins

○ Command-line tools, such as dbinit and dbunload

For French, the installer, software, and context-sensitive help are localized.

The following components are not localized and are only available in English:

● DataWindow .NET
● InfoMaker
● PowerDesigner Physical Data Model

Deployment software localization on Windows
In addition to the five main languages listed previously, SQL Anywhere provides deployment software
resources for the following languages:

● Italian
● Korean
● Lithuanian
● Polish
● Portuguese (Brazilian)
● Russian
● Spanish
● Traditional Chinese
● Ukrainian

Localized versions of SQL Anywhere

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 401

Deployment localization applies to a subset of software components typically deployed to end users.
Packaging, documentation, administration, development, and installation software are not localized.
Localized software components include:

● Database servers and client libraries
● MobiLink server and client
● SQL Remote client
● Command-line tools, such as dbinit and dbunload

SQL Anywhere international features
Internationalization refers to the ability of software to handle a variety of languages and their appropriate
characters sets, independently of the language in which the software is running, or the operating system on
which the software is running. SQL Anywhere has full internationalization capabilities. The following
features discuss the most commonly requested and used capabilities.

● Unicode support SQL Anywhere supports Unicode as follows:

○ Client support for UTF-16 in SQL Anywhere client libraries for ODBC, OLE DB, ADO.NET, and
JDBC

○ NCHAR data types for storing Unicode character data in UTF-8

○ CHAR data types can use UTF-8 encoding

● Code pages and character sets The SQL Anywhere database server and related tools support
Windows (ANSI/ISO), UTF-8, and Unix code pages and character sets.

● Collations SQL Anywhere supports two collation algorithms: the SQL Anywhere Collation
Algorithm (SACA), and the Unicode Collation Algorithm (UCA) using International Components for
Unicode (ICU).

For more information about ICU, see “What is ICU, and when is it needed?” on page 403.

SACA provides fast, compact, and reasonable sorting at the expense of linguistic correctness. UCA
provides linguistic correctness, but with a small expense in storage requirements and execution time.
See “Understanding collations” on page 416.

For advanced ordering and comparison capabilities, SQL Anywhere also provides the SORTKEY and
COMPARE functions. These functions provide advanced linguistic sorting capabilities, like the ordering
found in a dictionary or telephone book. Where appropriate, case-insensitive and accent-insensitive
ordering and comparisons are provided. See “SORTKEY function [String]” [SQL Anywhere Server -
SQL Reference] and “COMPARE function [String]” [SQL Anywhere Server - SQL Reference].

SQL Anywhere also contains design features allowing for automatic use of SORTKEY-based ordering
on character columns. The sort_collation database option specifies the sort ordering to be used when an
ORDER BY is specified for a character column. Computed columns may also be used to store sort keys
for character columns so that they do not need to be computed each time that an ORDER BY is specified.
See “sort_collation option [database]” on page 575.

International languages and character sets

402 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Character set conversion SQL Anywhere converts data between the character set encoding on your
server and client systems, and maintains the integrity of your data, even in mixed character set
environments. See “Character set conversion” on page 410.

● Identifiers SQL Anywhere supports the use of identifiers containing most single-byte and multibyte
characters without requiring quotes. Exceptions are generally limited to spaces and punctuation symbols.

● Currency Currency symbols, including the euro symbol, are supported for ordering. SQL Anywhere
provides no currency formatting support.

● Date and time formats SQL Anywhere supports the Gregorian calendar, and provides a variety of
formats for date and time strings. Custom formatting can be done using the date_format, time_format,
and timestamp_format database options. The date_format and timestamp_format options default to an
ISO-compatible format for the date, YYYY-MM-DD. SQL Anywhere provides the CONVERT function,
which provides output formatting of dates and times into a variety of popular formats. See:

○ “date_format option [database]” on page 523
○ “time_format option [compatibility]” on page 584
○ “timestamp_format option [compatibility]” on page 585
○ “CONVERT function [Data type conversion]” [SQL Anywhere Server - SQL Reference]

See also
● “Creating a database with a named collation” on page 426
● “Recommended character sets and collations” on page 433

What is ICU, and when is it needed?
ICU, or International Components for Unicode, is an open source library developed and maintained by IBM.
ICU facilitates software internationalization by providing Unicode support. SQL Anywhere implements
certain character set conversions and collation operations using ICU.

When is ICU needed on the database server? (all platforms except Windows Mobile)
Ideally, ICU should always be available for use by the database server. The following table specifies when
and why ICU is needed:

ICU is needed when... Notes

UCA is used as the collation for the NCHAR or CHAR
character set.

UCA requires ICU.

The database character set is not UTF-8 but is a multi-byte
character set.

For password conversion from the database
character set to UTF-8 (database passwords
are stored in UTF-8, internally).

Localized versions of SQL Anywhere

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 403

ICU is needed when... Notes

The client and database character sets are different, and
when either of them is multi-byte (including UTF-8). This
includes Unicode ODBC, OLE DB, ADO.NET, and iA-
nywhere JDBC applications, regardless of the database
character set where at least one of these clients do not have
ICU.

Proper conversion to and from a multi-byte
character set requires ICU.

The database character set is not UTF-8 and conversion
between CHAR and NCHAR values is required.

The database server requires ICU to convert
UTF-8 to another character set.

An embedded SQL client uses an NCHAR character set
other than UTF-8.

The database server requires ICU to convert
UTF-8 to another character set. Note that the
default embedded SQL client NCHAR char-
acter set is the same as the initial client
CHAR character set. This can be changed
using the db_change_nchar_charset func-
tion. See “db_change_nchar_charset func-
tion” [SQL Anywhere Server - Program-
ming].

The CSCONVERT or SORTKEY functions are used. The
CSCONVERT function is called to convert between char-
acter sets that conform to the requirements of the third
point above.

Character set conversion in the case of the
third point above requires ICU. Sortkey gen-
eration for many sortkey labels requires
UCA, which, in turn, requires ICU. See
“CSCONVERT function [String]” [SQL
Anywhere Server - SQL Reference] and
“SORTKEY function [String]” [SQL Any-
where Server - SQL Reference].

When is ICU needed on the database server? (Windows Mobile)
The following table specifies when and why ICU is needed for Windows Mobile:

ICU is needed when... Notes

UCA is used as the NCHAR collation or the CHAR collation. UCA requires ICU.

The SORTKEY function is used. Sortkey generation for many sortkey la-
bels requires UCA, which, in turn, re-
quires ICU. See “SORTKEY function
[String]” [SQL Anywhere Server - SQL
Reference].

International languages and character sets

404 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ICU is needed when... Notes

The CHAR character set does not match the OS character set. Even if the character sets match, using
ICU is recommended because it im-
proves character set conversion if you are
using NCHAR, or if the CHAR character
set is multibyte.

Note
If you do not install the ICU library, you must choose either a collation whose character set matches the
Windows Mobile character set or the UTF8BIN collation as the CHAR collation when creating your
database. Also, you must choose the UTF8BIN collation as the NCHAR collation when creating your
database.

When can I get correct character set conversion on the database server without ICU?
You can get correct character set conversion without ICU when both the database character set and client
character set are single-byte and sqlany.cvf is available (all platforms), or if the operating system supports
the conversion (Windows only). This is because single-byte to single-byte conversions can be processed
without ICU, provided that the sqlany.cvf file is available, or the host operating system has the appropriate
converters installed.

When is ICU needed on the client? (all platforms except Windows Mobile)
For Unicode client applications, you are likely to get better combined client and database server performance
when all clients have ICU installed, regardless of the database character set. This is because some of the
required conversion activity may be offloaded from the database server to the client, and because fewer
conversions are required.

Also, if you are using ODBC on Windows platforms, you must have ICU installed on the client, even for
ANSI applications. This is because the driver manager converts ANSI ODBC calls to Unicode ODBC calls.

Character set questions and answers
The following table identifies where you can find answers to questions.

To answer the question ... Consider reading ...

How do I decide which collation to use for my data-
base?

“Understanding collations” on page 416

How are characters represented in software, and in
SQL Anywhere in particular?

“Understanding character sets” on page 407

What collations does SQL Anywhere provide? “Choosing collations” on page 419

Localized versions of SQL Anywhere

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 405

To answer the question ... Consider reading ...

What character set encodings does SQL Anywhere
support?

“Supported character sets” on page 429

I have a different character set on client computers
from that in use in the database. How can I get char-
acters to be exchanged properly between client and
server?

“Character set conversion” on page 410

What character sets can I use for connection strings? “Connection strings and character
sets” on page 410

How do I change the collation sequence of an existing
database?

“Changing a database from one collation to an-
other” on page 427

International languages and character sets

406 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Understanding character sets
This section provides general information about software issues related to international languages and
character sets.

Overview of character sets, encodings, and collations
Each piece of software works with a character set. A character set is a set of symbols, including letters,
digits, spaces, and other symbols. An example of a character set is ISO-8859-1, also known as Latin1.

To properly represent these characters internally, each piece of software employs an encoding, also known
as character encoding. An encoding is a method by which each character is mapped onto one or more bytes
of information, and is presented as a hexadecimal number. An example of an encoding is UTF-8.

Sometimes the terms character set and encoding are used interchangeably, since the two aspects are so closely
related.

A code page is one form of encoding. A code page is a mapping of characters to numeric representations,
typically an integer between 0 and 255. An example of a code page is Windows code page 1252.

For the purposes of this documentation, the terms encoding, character encoding, character set encoding, and
code page are synonymous.

Database servers, which sort characters (for example, listing names alphabetically), use a collation. A
collation is a combination of a character encoding (a map between characters and their representation) and
a sort order for the characters. There may be more than one sort order for each character set; for example,
a case sensitive order and a case insensitive order, or two languages may sort the same characters in a different
order.

Characters are printed or displayed on a screen using a font, which is a mapping between characters in the
character set and their appearance. Fonts are handled by the operating system.

Operating systems also use a keyboard mapping to map keys or key combinations on the keyboard to
characters in the character set.

Language issues in client/server computing
Database users working at client applications may see or access strings from the following sources:

● Data in the database Strings and other text data are stored in the database. The database server
processes these strings when responding to requests. For example, the database server may be asked to
supply all the last names beginning with a letter ordered less than N in a table. This request requires
string comparisons to be performed, and assumes a character set ordering.

● Database server software messages Applications can cause database errors to be generated. For
example, an application may submit a query that references a column that does not exist. In this case,
the database server returns a warning or error message. This message is held in a language resource
library, which is a DLL or shared library used by SQL Anywhere.

Understanding character sets

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 407

● Client application The client application interface displays text, and internally the client application
may process text.

● Client software messages The client library uses the same language library as the database server
to provide messages to the client application.

● Operating systems The client and server operating systems may provide messages or process text.

For a satisfactory working environment, all these sources of text must work together. Loosely speaking, they
must all be working in the user's language and/or character set.

Single-byte character sets
Many languages have few enough characters to be represented in a single-byte character set. In such a
character set, each character is represented by a single byte: a two-digit hexadecimal number.

At most, 256 characters can be represented in a single byte. No single-byte character set can hold all the
characters used internationally, including accented characters. This problem was addressed by the
development of a set of code pages, each of which describes a set of characters appropriate for one or more
national languages. For example, code page 1253 contains the Greek character set, and code page 1252
contains Western European languages. There are many code pages, and many names for code pages. The
above examples are code pages for Windows.

Upper and lower pages

With few exceptions, characters 0 to 127 are the same for all the code pages. The mapping for this range of
characters is called the ASCII character set. It includes the English language alphabet in upper and lowercase,
and common punctuation symbols and the digits. This range is often called the seven-bit range (because
only seven bits are needed to represent the numbers up to 127) or the lower page. The characters from 128
to 255 are called extended characters, or upper code page characters, and vary from one code page to
another.

Problems with code page compatibility are rare if the only characters used are from the English alphabet, as
these are represented in the ASCII portion of each code page (0 to 127). However, if other characters are
used, as is generally the case in any non-English environment, there can be problems if the database and the
application use different code pages.

For example, suppose a database using the UTF-8 character set loads a table from a file containing cp1252
data, and the encoding is not specified as cp1252 on the LOAD TABLE statement. Because the encoding is
not specified, the data is assumed to be encoded in UTF-8, so no character conversion takes place; the cp1252
encoding is stored directly in the database. This means that characters such as the euro symbol, represented
in cp1252 as hex 80, are not converted into UTF-8. The euro symbol in UTF-8 is represented by the three-
byte sequence E2 82 AC, but, in this case, will be stored in the database as 80. Subsequently, when an
application requests data, the database server attempts to convert the data from UTF-8 to the client character
set. The conversion will produce corrupted characters.

International languages and character sets

408 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Multibyte character sets
Some languages, such as Japanese and Chinese, have many more than 256 characters. These characters
cannot all be represented using a single byte, and therefore must be encoded using a multibyte encoding. In
addition, some character sets use the much larger number of characters available in a multibyte representation
to represent characters from many languages in a single, more comprehensive, character set. An example of
this is UTF-8.

Multibyte character sets may be of variable width whereby some characters are single-byte characters;
others are double-byte, and so on.

For more information about multibyte character sets and collations, see “SQL Anywhere Collation Algorithm
(SACA)” on page 416.

Example
As an example, characters in code page 932 (Japanese) are either one or two bytes in length. If the value of
the first byte, also called the lead byte, is in the range of hexadecimal values from \x81 to \x9F or from \xE0
to \xFC (decimal values 129-159 or 224-252), the character is a two-byte character and the subsequent byte,
also called a follow byte, completes the character. A follow byte is any byte(s) other than the first byte.

If the first byte is outside the lead byte range, the character is a single-byte character and the next byte is the
first byte of the following character.

ANSI and OEM code pages in Windows
For Windows users, there are two code pages in use. Applications using the Windows graphical user interface
use the Windows code page. Windows code pages are compatible with ISO character sets, and also with
ANSI character sets. They are often referred to as ANSI code pages.

Character-mode applications (those using a command prompt window) in Windows use code pages that
were used in DOS. These are called OEM code pages (Original Equipment Manufacturer) for historical
reasons.

SQL Anywhere supports collations based on both OEM and ANSI code pages. The OEM collations are
provided for compatibility, but they should not be used for new databases. See “Supported and alternate
collations” on page 429.

Character sets in a SQL Anywhere database
A SQL Anywhere database can use one or two character sets (encodings) for storing character data. The
CHAR data types, including CHAR, VARCHAR and LONG VARCHAR, use a single-byte or multibyte
character set. UTF-8 may be used. The NCHAR data types, including NCHAR, NVARCHAR, and LONG
NVARCHAR, use UTF-8.

When using the LOAD TABLE statement, and functions like CSCONVERT, TO_CHAR, and TO_NCHAR,
you can refer to the database character set as db_charset, and to the database NCHAR character set as
nchar_charset.

Understanding character sets

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 409

For more information about the CHAR and NCHAR data types, see “Character data types” [SQL Anywhere
Server - SQL Reference].

Character set conversion
SQL Anywhere can perform character set conversion between character sets that represent the same
characters, but at different positions in the character set or code page. There needs to be a degree of
compatibility between the character sets for this to be possible. For example, character set conversion is
possible between EUC-JIS and cp932 character sets, but not between EUC-JIS and cp1252.

SQL Anywhere implements character set conversion using the International Components for Unicode (ICU)
open source library, developed and maintained by IBM.

For more information about character set conversion for the purposes of comparing values that are in different
data types, see “Comparisons between data types” [SQL Anywhere Server - SQL Reference].

Connection strings and character sets
If all of your clients do not use the same character sets, connection strings may be a challenge during character
set conversion. This is because the connection string is parsed by the client library to locate or start a database
server. However, this parsing is done with no knowledge of the character set or language in use by the
database server.

The interface library parses the connection string as follows:

1. The connection string is broken down into its keyword=value pairs. This can be done independently of
the character set, as long as you do not use curly braces {} around CommLinks (LINKS) connection
parameters. Instead, use the recommended parentheses (). Curly braces are valid follow bytes (bytes
other than the first byte) in some multibyte character sets.

2. The server is located. There is no character set conversion performed on the server name. If the client
character set and the database server character set are different, using extended characters in the server
name can cause the server to not be found.

If your clients and servers are running on different operating systems or locales, you should use 7-bit
ASCII characters in the server name.

3. The DatabaseName (DBN) or DatabaseFile (DBF) connection parameters are converted from client
character set to the database server character set.

4. Once the database is located, the remaining connection parameters are converted to the database's
character set.

SQL statements and character sets
SQL Anywhere Server character set conversion causes all SQL statements to be converted to the database
character set prior to parsing and execution. A side-effect of this conversion is that any characters in the

International languages and character sets

410 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL statement that cannot be converted to the database character set are converted to a substitution character.
A SQL statement with an arbitrary Unicode character can be executed in one of the following ways:

● Use the UNISTR function to specify the Unicode character values

● Use a host variable to specify the Unicode character values

● Use UTF-8 as the database character set

If you select UTF8BIN as the char collation the database character set is UTF-8. If you specify UTF-8
encoding the char collation is UCA.

The Unicode Collation Algorithm (UCA) provides advanced comparison, ordering, and case conversion,
but it can affect performance. Although UTF8BIN is space-efficient and fast, the sort order and comparison
is binary. Specify the char collation as UTF8BIN if you require Unicode characters in your SQL statements,
but do not need the full power of UCA for sorting and comparison. Use UCA only when necessary, by using
the SORTKEY and COMPARE functions.

See also
● “SORTKEY function [String]” [SQL Anywhere Server - SQL Reference]
● “COMPARE function [String]” [SQL Anywhere Server - SQL Reference]
● “Unicode Collation Algorithm (UCA)” on page 417
● “SQL Anywhere Collation Algorithm (SACA)” on page 416

Troubleshooting unexpected symbols when viewing data
When selecting and viewing data using a client application such as Interactive SQL, unexpected symbols
such as squares, arrows, and question marks, may appear as characters in the data.

There are two main reasons why this can happen. The first reason is because there is a problem with the
underlying data that is stored in the database. For example, if character set conversion was required when
the data was inserted into the database, and some characters in the original character set did not have an
equivalent character in the database character set, then substitution characters were inserted instead.

The second, and more common, reason why unexpected symbols can appear in the client application is
because the font used to display the data does not support the characters. You can resolve this problem by
changing to a Unicode font. If it is not possible to change the font for the client application, you can also
change the operating system default font.

For example, suppose you are on a Windows system that uses the standard English font (Tahoma), which
does not support the display of Japanese characters. However, your database character set is cp932 and the
database contains Japanese data, and when you query the database, characters in the results display as small
boxes. In Interactive SQL, you can change the font used to display results by choosing Tools » Options »
Results » Font, and specifying a Unicode font such as Arial Unicode MS, or Lucida Sans Unicode. Unicode
fonts are a good choice because they are capable of displaying characters from many languages.

If your client application does not provide font settings that you can change, it is likely using your default
operating system font. In this case, consult your operating system documentation for information about how
to change the default system font, and change it to a Unicode font.

Understanding character sets

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 411

See also
● “Substitution characters” [SQL Anywhere Server - SQL Reference]
● “Using Interactive SQL” on page 676

International aspects of case sensitivity
SQL Anywhere is always case preserving and case insensitive for identifiers, such as system view names
and column names. The names are stored in the case in which they are created, but any access to the identifiers
is done in a case insensitive manner.

For example, the names of the system views are stored in uppercase (SYSDOMAIN, SYSTAB, and so on),
but access is case insensitive, so that the two following statements are equivalent:

SELECT * FROM systab;
SELECT * FROM SYSTAB;

The equivalence of upper and lowercase characters is defined in the collation. There are some collations
where particular care is required when assuming case insensitivity of identifiers. For example, Turkish
collations have a case-conversion behavior that can cause unexpected and subtle errors. The most common
error is that a system object containing a letter I or i is not found.

For more information about Turkish character sets and collations, see “Turkish character sets and
collations” on page 436.

International languages and character sets

412 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Understanding locales
Both the database server and the client library recognize their language and character set environment using
a locale definition.

Introduction to locales
The application locale, or client locale, is used by the client or client library when making requests to the
database server, to determine the character set in which results should be returned, and the language of error
messages, warnings, and other messages. The database server compares its own locale with the application
locale to determine whether character set conversion is needed. Different databases on a server may have
different locale definitions, and each client may have its own locale.

The locale consists of the following components:

● Language The language is a two-character string using the ISO-639 standard values (for example,
DE for German). Both the database server and the client have language values for their locale.

The database server uses the locale language to determine the language libraries to load. When creating
a database, if no collation is specified, the database server also uses the language, together with the
character set, to determine which collation to use.

The client library uses the locale language to determine the language libraries to load, and the language
to request from the database. See “Understanding the locale language” on page 413.

● Character set The character set is the code page, or encoding, in use. The client and server both have
character set values, and they may differ. If they differ, character set conversion is used to enable
interoperability. See “Understanding the locale character set” on page 415.

Understanding the locale language
The locale language is the language being used by the user of the client application, or expected to be used
by users of the database server. For more information about how to find locale settings, see “Determining
locale information” on page 424.

The client library, and the database server, both determine the language component of the locale in the same
manner:

1. Use the value of the SALANG environment variable, if it exists. See “SALANG environment
variable” on page 377.

2. In the case of Windows, if the SALANG environment variable doesn't exist, check the SQL Anywhere
language registry entry. See “Registry settings on installation” on page 397.

3. Check the operating system language setting.

4. If the language still cannot be determined by the above settings, default to English.

Understanding locales

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 413

Language label values

The following table displays the valid language label values, together with the equivalent ISO 639 language
codes:

Language ISO_639 language code Language label Alternative label

Arabic AR arabic N/A

Czech CS czech N/A

Danish DA danish N/A

Dutch NL dutch N/A

English EN us_english english

Finnish FI finnish N/A

French FR french N/A

German DE german N/A

Greek EL greek N/A

Hebrew HE hebrew N/A

Hungarian HU hungarian N/A

Italian IT italian N/A

Japanese JA japanese N/A

Korean KO korean N/A

Lithuanian LT lithuanian N/A

Norwegian NO norwegian norweg

Polish PL polish N/A

Portuguese PT portuguese portugue

Russian RU russian N/A

Simplified Chinese ZH chinese simpchin

Spanish ES spanish N/A

Swedish SV swedish N/A

International languages and character sets

414 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Language ISO_639 language code Language label Alternative label

Thai TH thai N/A

Traditional Chinese TW tchinese tradchin

Turkish TR turkish N/A

Ukrainian UK ukrainian N/A

Understanding the locale character set
Both application and server locale definitions have a character set. The application uses its character set
when requesting character strings from the database server. The database server compares the database
character set with that of the application to determine whether character set conversion is needed. If the
database server cannot convert to and from the client character set, the connection fails.

1. If the SACHARSET environment variable is set, its value is used to determine the character set. See
“SACHARSET environment variable” on page 374.

The database server uses SACHARSET only when creating new databases, and then only if no collation
is specified.

2. If the connection string specifies a character set, it is used. For more information, see “CharSet connection
parameter [CS]” on page 266.

3. Open Client applications check the locales.dat file in the locales subdirectory of the Sybase release
directory.

4. Character set information from the operating system is used to determine the locale:

● On Windows operating systems, the current Windows ANSI code page is used.

● On Unix platforms, the following Locale Environment Variables are examined, in the specified order:
LC_ALL, LC_MESSAGES, LC_CTYPE, LANG. For the first of these environment variables found
to be set, its value is used to determine the character set. If the character set cannot be determined
from the operating system, the default of iso_1 (also referred to as Windows code page 28591, ISO
8859-1 Latin I, ISO 8859-1 Latin-1, or iso_8859-1:1987) is used.

5. On any other platform, a default code page cp1252 is used.

For more information about how to find locale settings, see “Determining locale
information” on page 424.

Understanding locales

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 415

Understanding collations
A collation describes how to sort and compare characters from a particular character set or encoding. SQL
Anywhere supports two collation algorithms: the SQL Anywhere Collation Algorithm (SACA), and the
Unicode Collation Algorithm (UCA). SACA provides fast, compact, and reasonable sorting at the expense
of linguistic correctness. UCA provides linguistic correctness, but with a small expense in storage
requirements and execution time.

This section describes the supplied collations, and provides suggestions about which collations to use.

For more information about how to create a database with a specific collation, see “Creating a database with
a named collation” on page 426 and “Initialization utility (dbinit)” on page 774.

For information about customization of the UCA collation using collation tailoring syntax, see “Collation
tailoring options” on page 420.

SQL Anywhere Collation Algorithm (SACA)
The SQL Anywhere Collation Algorithm provides reasonable comparison, ordering, and case conversion
of single-byte and multibyte character sets. The algorithm is space efficient and fast. The mapped form of
a string, such as an index, is the same length as the original string. The mappings for comparison, ordering,
and case conversion use a simple table lookup of each byte value of the string.

The SACA has been provided with SQL Anywhere since its early days as Watcom SQL.

Single-byte character sets

In a typical collation for a single-byte character set, all accented and unaccented forms of a character are
mapped to the same value, making the collation accent insensitive. Accented and unaccented forms of the
same letter compare as exactly equal and sort near each other.

The collation also provides conversion between uppercase and lowercase letters, preserving accents.

Multibyte character sets

In multibyte character sets, the lead-bytes are mapped into the 256 distinct values. Follow bytes are compared
using their binary value.

For most collations for multibyte character sets, this mapping technique provides a reasonable ordering
because the character set encoding groups characters into 256-byte pages identified by the lead byte. The
pages, and the characters within each page, are in a reasonable order in the character set. The collations
typically preserve the ordering of the pages (lead bytes) within the character set. Some pages may be ordered
by other characteristics. For example, the 932JPN collation provided for Japanese code page 932 groups the
full-width (Kanji) and half-width (katakana) characters.

Case conversion is provided only for the 7-bit English characters.

International languages and character sets

416 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UTF-8 character sets

UTF-8 is a multibyte character set. Each character contains from one to four bytes. SQL Anywhere provides
the UTF8BIN collation for sorting UTF-8 characters.

In UTF8BIN, lead bytes are mapped into 256 distinct values, and follow bytes are compared using their
binary values. Because of the representation of characters in UTF-8 and the limitation of 256 distinct mapping
values, it is not possible to group related characters such as accented and unaccented forms of the same letter.
The ordering is essentially binary.

Case conversion is supported only for the 7-bit English characters.

Unicode Collation Algorithm (UCA)
The Unicode Collation Algorithm is an algorithm for sorting the entire Unicode character set. It provides
linguistically correct comparison, ordering, and case conversion. The UCA was developed as part of the
Unicode standard. SQL Anywhere implements the UCA using the International Components for Unicode
(ICU) open source library, developed and maintained by IBM.

Note
The default UCA ordering sorts most characters in most languages into an appropriate order. However,
because of the sorting and comparison variations between languages sharing characters, the UCA cannot
provide proper sorting for all languages. For this purpose, ICU provides a syntax for tailoring the UCA. See
“Collation tailoring options” on page 420.

The UCA provides advanced comparison, ordering, and case conversion at a small cost in space and time.

The mapped form of a string is longer than the original string. The algorithm provides sophisticated handling
of more complex characters.

Unlike the SQL Anywhere Collation Algorithm, the Unicode Collation Algorithm is only for use with single-
byte and UTF-8 character sets, and it separates each character into one or more attributes. For letters, these
attributes are base character, accent, and case.

Non-letters typically have only one attribute, the base character.

UCA compares character strings as follows:

● Compare the base characters. If one string of base characters differs from the other, then the comparison
is complete. Accent and case are not considered.

● If the database is accent sensitive, compare the accents. If the accents differ, then the comparison is
complete. Case is not considered.

● If the database is case sensitive, compare the case of each character.

The original string values are equal if and only if the base characters, accents, and case are the same for both
strings.

Understanding collations

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 417

Example
Suppose UCA is used to compare the strings in the first column of the table below. The subsequent columns
describe the three attributes for each string. Notice that the base characters are identical; the words differ
only in accents and case.

String Base characters Accents Case

noel noel none, none, none, none lower, lower, lower, lower

noël noel none, none, accent, none lower, lower, lower, lower

Noel noel none, none, none, none upper, lower, lower, lower

Noël noel none, none, accent, none upper, lower, lower, lower

The following table shows the ordering that would occur in the four possible combinations of accent- and
case-sensitivity using UCA:

Accent sensi-
tive

Case sensi-
tive

ORDER BY result Explanation

N N Noel, noël, Noël,
noel in any order

● Accents ignored

● Case ignored

● All values considered equal

● Random order within set of four

Y N Noel, noel in any
order,

followed by

noël, Noël in any
order

● No-accents before accents, so e before ë

● Case ignored, N and n are in random order
within each set of two

N Y Noel, Noël in any
order,

followed by

noël, noel in any
order

● Uppercase before lowercase, so N before n

● Accents ignored, e and ë are in random order
within each set of two

Y Y Noel

noel

Noël

noël

● No-accents before accents, so e before ë

● Uppercase before lowercase, so N before n

International languages and character sets

418 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Collations in a SQL Anywhere database

CHAR collation
CHAR data types, including CHAR, VARCHAR, and LONG VARCHAR, can use a collation that uses the
SQL Anywhere Collation Algorithm or they can use the Unicode Collation Algorithm. In either case, the
collation used is referred to as the CHAR collation.

NCHAR collation

NCHAR data types, including NCHAR, NVARCHAR, and LONG NVARCHAR, can use the Unicode
Collation Algorithm or can use the UTF8BIN collation, which uses the SQL Anywhere Collation Algorithm.

Choosing case and accent sensitivity
When a SQL Anywhere database is created, if case sensitivity is not specified, then it is case insensitive. It
can be made case sensitive by specifying the appropriate option. It is not possible to change the case
sensitivity after the database has been created without rebuilding the database.

The case sensitivity for the database determines the case sensitivity for both the SACA and UCA collations,
and so it also determines the case sensitivity of both the CHAR and NCHAR collations.

When a SQL Anywhere database is created, if accent sensitivity is not specified, then it is accent insensitive.
It can be made accent sensitive by specifying the appropriate option. It is not possible to change the accent
sensitivity after the database has been created without rebuilding the database.

The accent sensitivity for the database affects only the UCA collation, whether it is used for the CHAR or
NCHAR collations or both. If you choose SACA collations for both CHAR and NCHAR collations, then
the options for accent sensitivity have no effect. Accent sensitivity is an attribute of SACA collations and
cannot be specified using the options provided when creating the database.

Choosing collations
When you create a database, SQL Anywhere can choose a default collation based on operating system
language and character set settings. In most cases, the default collation is a suitable choice, but you can also
explicitly choose a collation to match your needs from the wide selection of supplied collations. In some
cases, SQL Anywhere supports more than one collation for a particular language.

You should choose a collation that uses a character set and sort order that are appropriate for the data in your
database. You can also specify collation tailoring options for additional control over the sorting and
comparing of characters. For more information about creating databases, see “Creating a
database” on page 21.

For more information about data sorting and international features, see “SQL Anywhere international
features” on page 402.

Understanding collations

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 419

See also
● “Creating a database with a named collation” on page 426
● “Recommended character sets and collations” on page 433
● “CREATE DATABASE statement” [SQL Anywhere Server - SQL Reference]
● “Initialization utility (dbinit)” on page 774

Considerations when choosing a collation
When choosing the collation for your database, consider the following:

● There is a performance cost, and extra complexity in system configuration, when you use character set
conversion. Choose a collation that avoids the need for character set conversion. Character set conversion
is not used if the database server and client use the same character set.

You can avoid character set conversion by using a collation sequence in the database that matches the
character set in use on your client computer operating system. In the case of Windows operating systems
on the client computer, choose the ANSI character set.

● If your client computers use a variety of characters sets, or if the database must store Unicode data,
consider using the UCA and/or UTF8BIN collations. However, note that the UCA collation cannot be
used with multibyte character sets other than UTF-8.

● Choose a collation that uses a character set and sort order appropriate for the data in the database. It is
often the case that there are several collations that meet this requirement.

Collation tailoring options

If you choose the UCA collation when you create a database, you can optionally specify collation tailoring
options. If you do not choose UCA as the collation, you can still use tailoring syntax to control case sensitivity.
You can also specify tailoring options when comparing or sorting data using the COMPARE and SORTKEY
functions.

Collation tailoring options take the form of keyword-value pairs. Following is a table of the supported
keywords, including their allowed alternate forms, and their allowed values.

Note
Databases created with collation tailoring options cannot be started using a pre-10.0.1 database server.

Keyword Collation Alternate forms Allowed values

Locale UCA (none) Any valid locale code. For
example, en.

International languages and character sets

420 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Keyword Collation Alternate forms Allowed values

CaseSensitivity All supported collations CaseSensitive, Case ● respect Respect
case differences be-
tween letters. For the
UCA collation, this is
equivalent to Upper-
First. For other colla-
tions, it depends on
the collation itself.

● ignore Ignore case
differences between
letters.

● UpperFirst Al-
ways sort uppercase
first (Aa).

● LowerFirst Al-
ways sort lowercase
first (aA).

AccentSensitivity UCA AccentSensitive, Ac-
cent

● respect Respect
accent differences be-
tween letters.

● ignore Ignore ac-
cent differences be-
tween letters.

● French Respect
accent sensitivity with
French rules.

Understanding collations

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 421

Keyword Collation Alternate forms Allowed values

PunctuationSensitivity UCA PunctuationSensitive,
Punct

● ignore Ignore dif-
ferences in punctua-
tion.

● primary Use first
level sorting (consider
letter, only). For ex-
ample, a > b.

● quaternary Use
fourth level sorting:
consider letter first,
then case, then accent,
and then punctuation.
For example, multi-
Byte, multibyte, mul-
ti-byte, and multi-
Byte, are sorted as:

○ multiByte
○ multibyte
○ multi-Byte
○ multi-byte

You cannot specify
quaternary with a case
or accent insensitive
database.

International languages and character sets

422 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Keyword Collation Alternate forms Allowed values

SortType UCA (none) The type of sort to use.
Possible values:

● phonebook
● traditional
● standard
● pinyin
● stroke
● direct
● posix
● big5han
● gb2312han

For more information
about these sort types, see
Unicode Technical Stand-
ard #35, at http://
www.unicode.org/re-
ports/tr35/.

Note
To tailor a UCA collation to conform to the Swedish Academy's 2005 standards in which V and W are
considered to be different characters at the primary level, specify UCA
(locale=swe;sorttype=phonebook). Without sorttype=phonebook, V and W are considered to
be the same character in the Swedish locale.

See also
● “CREATE DATABASE statement” [SQL Anywhere Server - SQL Reference]
● “Initialization utility (dbinit)” on page 774
● “COMPARE function [String]” [SQL Anywhere Server - SQL Reference]
● “SORTKEY function [String]” [SQL Anywhere Server - SQL Reference]

How SQL Anywhere chooses the default collation for a new database
When a new database is created, and the collation is not explicitly specified, SQL Anywhere uses the
language and character set to determine the collation.

● The language comes from the SALANG environment variable (if it exists), the registry, or the operating
system. See “SALANG environment variable” on page 377.

● The character set comes from the SACHARSET environment variable (if it exists) or the operating
system. See “SACHARSET environment variable” on page 374.

Understanding collations

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 423

http://www.unicode.org/reports/tr35/
http://www.unicode.org/reports/tr35/
http://www.unicode.org/reports/tr35/

International language and character set tasks
This section groups together the tasks associated with international language and character set issues.

Determining the default collation
If you do not explicitly specify a collation when creating a database, a default collation is used. The default
collation depends on the operating system you are working on.

To determine the default collation for your computer

1. Start Interactive SQL.

2. Connect to the sample database.

3. Enter the following query:

SELECT PROPERTY('DefaultCollation');

The default collation is returned.

For more information about this collation, see “Choosing collations” on page 419.

Determining locale information
You can determine locale information using functions such as PROPERTY, DB_PROPERTY, and
CONNECTION_PROPERTY. The following table shows how to use these functions to return locale
information about the client connection, database, and database server.

System function and parameter Return value

SELECT PROPERTY('CharSet'); Character set of the database server. Usually
the character set of the computer hosting the
server.

SELECT PROPERTY('DefaultCollation'); Default CHAR collation used by the data-
base server for creating databases.

SELECT
PROPERTY('DefaultNcharCollation'); Default NCHAR collation used by the data-

base server for creating databases.

SELECT PROPERTY('Language'); The locale language for the database server.

SELECT DB_PROPERTY('CharSet'); Character set used to store CHAR data in the
database.

International languages and character sets

424 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

System function and parameter Return value

SELECT DB_PROPERTY('NcharCharSet'); Character set used to store NCHAR data in
the database.

SELECT DB_PROPERTY('MultiByteCharSet'); Whether CHAR data uses a multibyte char-
acter set (On=yes, Off=no).

SELECT DB_PROPERTY('Language'); Comma-separated list of two-letter codes
representing the languages supported by da-
tabase CHAR collation.

SELECT DB_PROPERTY('Collation'); CHAR collation name in use by the database
server.

SELECT DB_PROPERTY('NcharCollation'); NCHAR collation name in use by the data-
base server.

SELECT CONNECTION_PROPERTY('CharSet'); Client's CHAR data character set.

SELECT
CONNECTION_PROPERTY('NcharCharSet'); Character set of NCHAR data for the con-

nection.

SELECT CONNECTION_PROPERTY('Language'); Client language for the connection.

See also
● “PROPERTY function [System]” [SQL Anywhere Server - SQL Reference]
● “DB_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference]
● “CONNECTION_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference]

Setting locales
You can use the default locale on your operating system, or explicitly set a locale for use by the SQL
Anywhere components on your computer.

To set the SQL Anywhere locale

1. If the default locale is appropriate for your needs, you do not need to take any action.

For more information about how to find out the default locale of your operating system, see “Determining
locale information” on page 424.

2. If you need to change the locale, you can set either or both of the SALANG and SACHARSET
environment variables:

SACHARSET=charset
SALANG=language-code

International language and character set tasks

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 425

The charset is a valid character set label, and language-code is a language code from the list of valid
languages. See “Language label values” on page 414.

For more information about setting environment variables on different operating systems, see “SQL
Anywhere environment variables” on page 365.

Creating a database with a named collation
You can specify the collation for each database when you create the database. The default collation is inferred
from the code page and language of the database server's computer's operating system.

For information about using the NCHAR collation, see “NCHAR collation” on page 419.

To specify a database collation when creating a database (command prompt)

1. Run the following command to list the recommended collation sequences:

dbinit -l

The first column of the list is the collation label, which you supply when creating the database.

2. Create a database using the dbinit utility, specifying a collation sequence using the -z option. The
following command creates a database with a Greek collation.

dbinit -z 1253ELL mydb.db

The following command creates a case sensitive database, spanish.db, which uses the 1262spa collation
for non-NCHAR data. For NCHAR data, the UCA collation is specified, with locale es, and sorting by
lowercase first.

dbinit -c -z 1252spa -zn uca(locale=es;case=LowerFirst) spanish.db

To specify a database collation when creating a database (SQL)

● You can use the CREATE DATABASE statement to create a database. The following statement creates
a database with a Greek collation:

CREATE DATABASE 'mydb.db'
COLLATION '1253ELL';

The following statement creates a database using code page 1252 and uses the UCA for both CHAR and
NCHAR data types. Accents and case are respected during comparison and sorting.

CREATE DATABASE 'c:\\uca.db'
COLLATION 'UCA'
ENCODING 'CP1252'
NCHAR COLLATION 'UCA'
ACCENT RESPECT
CASE RESPECT;

To specify a database collation when creating a database (Sybase Central)

● You can use the Create Database Wizard in Sybase Central to create a database. The wizard has a page
where you choose a collation from a list.

International languages and character sets

426 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Tutorial: Creating a SQL Anywhere database” [SQL Anywhere Server - SQL Usage]
● “Creating a database” on page 21
● “CREATE DATABASE statement” [SQL Anywhere Server - SQL Reference]
● “Initialization utility (dbinit)” on page 774

Changing a database from one collation to another
Changing a database to another collation requires a rebuild of the database. Collations are chosen at database
creation time and cannot be changed.

To change collations

1. Determine the character set for the existing database as follows:

SELECT DB_PROPERTY('CharSet');

For early versions of SQL Anywhere, this property may not exist. The character set is also implied by
the collation name. For example, collation 1252LATIN1 uses code page 1252.

2. Determine the character set for the data in the existing database.

International language and character set tasks

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 427

This should be the same as, or compatible with, the database character set. If it is not, it is an excellent
reason to rebuild the database, but requires great care in the rebuilding process.

In particular, if you have been using a database with collation 850LATIN1 with earlier versions of SQL
Anywhere that either did not support character set conversion (versions 5 and earlier) or disabled it by
default (versions 6 and 7), and if your client applications were normal Windows applications, you may
have code page 1252 character data in your database that is expecting data to be in code page 850. A
simple test for this case is to use UNLOAD TABLE with the ENCODING option to unload some
character data, then view it in Windows Notepad. If accented data is correct, then the character data in
the database matches the Windows ANSI code page, which for English and other Western European
languages is code page 1252. If the data appears correct in a DOS-based editor, then the character data
matches the Windows OEM code page, which is likely 437 or 850.

3. Unload the database.

If the data character set is incompatible with the database character set, it is critical that the data be
unloaded without character set conversion. Depending on the version of SQL Anywhere being used, you
can use the internal unload feature of dbunload, or manually unload the data using the UNLOAD TABLE
statement.

4. Create the new database, specifying the collations and character sets you want to use.

5. Load the data into the new database.

If the unloaded data and schema (reload.sql) match the character set of the computer used to do the
reload, you can use the external reload option of dbunload. The server's character set conversion will
automatically convert the data to the correct character set for the database.

If the data's encoding does not match the character set of the database, and you are loading data using
LOAD TABLE statements (internal reload), you must use the ENCODING clause; the database server
does not, by default, perform character set conversion for data loaded using LOAD TABLE statements.

If the data's encoding does not match the code page of the computer on which you are working, and you
are loading using INPUT statements (external reload), you must use the ENCODING clause; otherwise,
the database server assumes that the data is in the computer's native character set.

See also
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]
● “UNLOAD statement” [SQL Anywhere Server - SQL Reference]
● “INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “Creating a database with a named collation” on page 426
● “Unload utility (dbunload)” on page 845
● “Rebuilding databases” [SQL Anywhere Server - SQL Usage]
● “CharSet connection parameter [CS]” on page 266

International languages and character sets

428 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Character set and collation reference information
The following sections provide information about character sets and collations for SQL Anywhere.

Supported character sets
SQL Anywhere supports a growing list of hundreds of character sets and labels. Character set encodings are
known by a wide variety of names or labels. To view the list of character sets supported by SQL Anywhere,
run the following command:

dbinit -le

Each line of output lists the most common labels for a given character set encoding, in comma separated
form. The first label in each line of output is the preferred SQL Anywhere name for the character set encoding.
The others are the labels used by different authorities, organizations, or standards. These are IANA (Internet
Assigned Numbers Authority), MIME (Multipurpose Internet Mail Extensions), ICU (International
Components for Unicode), Java, and ASE (Adaptive Server Enterprise).

If you do not find the character set you are looking for, you can also execute the following command to see
a longer list that includes labels that are less common:

dbinit -le+

When a character set encoding label is specified, SQL Anywhere searches for the label in the set of labels
known to it. Different authorities sometimes use the same label for different character sets. SQL Anywhere
does its best to resolve ambiguities by context. For example, a JDBC application that references a character
set by an ambiguous label resolves to a Java standard label. It is recommended that the SQL Anywhere label
always be used to avoid any ambiguities. An excellent resource for understanding character set encoding
labels is International Components for Unicode.

In addition to the character set encoding labels returned by the dbinit -le option, you can also use the following
character set aliases:

● os_charset Alias for the character set used by the operating system hosting the database server.

● char_charset Alias for the CHAR character set used by the database.

● nchar_charset Alias for the NCHAR character set used by the database.

An easy way to determine if a certain character set or label is supported is to test it using the CSCONVERT
function. See “CSCONVERT function [String]” [SQL Anywhere Server - SQL Reference].

Supported and alternate collations
The following table lists compatibility collations introduced in SQL Anywhere version 8 that can be used
with the SORTKEY and COMPARE functions.

In SQL Anywhere version 10, implementation of the SORTKEY and COMPARE functions changed to ICU
(International Components for Unicode) and UCA (Unicode Collation Algorithm) and collation names now

Character set and collation reference information

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 429

http://icu.sourceforge.net/

map to the UCA collation. Sorting and comparison in SQL Anywhere version 10 and later may not be
identical to earlier versions of SQL Anywhere.

See also
● “COMPARE function [String]” [SQL Anywhere Server - SQL Reference]
● “SORTKEY function [String]” [SQL Anywhere Server - SQL Reference]
● “What is ICU, and when is it needed?” on page 403

Collation label Description

874THAIBIN Code Page 874, Windows Thai, ISO8859-11, binary ordering

932JPN Code Page 932, Japanese Shift-JIS with Microsoft extensions

936ZHO Code Page 936, Simplified Chinese, PRC GBK 2312-80 8-bit encoding

949KOR Code Page 949, Korean KS C 5601-1987 encoding, Wansung

950ZHO_HK Code Page 950, Traditional Chinese, Big 5 encoding with HKSCS

950ZHO_TW Code Page 950, Traditional Chinese, Big 5 encoding

1250LATIN2 Code Page 1250, Windows Latin 2, Central/Eastern European

1250POL Code Page 1250, Windows Latin 2, Polish

1251CYR Code Page 1251, Cyrillic

1252LATIN1 Code Page 1252, Windows Latin 1, Western

1252NOR Code Page 1252, Windows Latin 1, Norwegian

1252SPA Code Page 1252, Windows Latin 1, Spanish

1252SWEFIN Code Page 1252, Windows Latin 1, Swedish/Finnish

1253ELL Code Page 1253, Windows Greek, ISO8859-7 with extensions

1254TRK Code Page 1254, Windows Latin 5, Turkish, ISO 8859-9 with extensions

1254TRKALT Code Page 1254, Windows Turkish, ISO8859-9 with extensions, I-dot
equals I-no-dot

1255HEB Code Page 1255, Windows Hebrew, ISO8859-8 with extensions

1256ARA Code Page 1256, Windows Arabic, ISO8859-6 with extensions

1257LIT Code Page 1257, Lithuanian

International languages and character sets

430 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Collation label Description

EUC_CHINA Simplified Chinese GB 2312-80 Encoding

EUC_JAPAN Japanese EUC JIS X 0208-1990 and JIS X 0212-1990 Encoding

EUC_KOREA Korean KS C 5601-1992 Encoding, Johab

EUC_TAIWAN Taiwanese Big 5 Encoding

ISO1LATIN1 ISO8859-1, ISO Latin 1, Western, Latin 1 Ordering

ISO9LATIN1 ISO8859-15, ISO Latin 9, Western, Latin 1 Ordering

ISO_1 ISO8859-1, Latin 1, Western

ISO_BINENG Binary ordering, English ISO/ASCII 7-bit letter case mappings

UCA Standard default UCA collation

UTF8BIN UTF-8, 8-bit multibyte encoding for Unicode, binary ordering

Alternate collations
Alternate collations are available for compatibility with older versions of SQL Anywhere, or for special
purposes. To see the full list of supported alternate collations, run the following command:

dbinit -l+

Adaptive Server Enterprise collations

The following table lists the supported Adaptive Server Enterprise collations for use with features such as
the SORTKEY function.

Description Collation name Collation ID

Default Unicode multilingual default 0

CP 850 Alternative: no accent altnoacc 39

CP 850 Alternative: lowercase first altdict 45

CP 850 Western European: no case, preference altnocsp 46

CP 850 Scandinavian dictionary scandict 47

CP 850 Scandinavian: no case, preference scannocp 48

GB Pinyin gbpinyin n/a

Character set and collation reference information

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 431

Description Collation name Collation ID

Binary sort binary 50

Latin-1 English, French, German dictionary dict 51

Latin-1 English, French, German no case nocase 52

Latin-1 English, French, German no case, preference nocasep 53

Latin-1 English, French, German no accent noaccent 54

Latin-1 Spanish dictionary espdict 55

Latin-1 Spanish no case espnocs 56

Latin-1 Spanish no accent espnoac 57

ISO 8859-5 Russian dictionary rusdict 58

ISO 8859-5 Russian no case rusnocs 59

ISO 8859-5 Cyrillic dictionary cyrdict 63

ISO 8859-5 Cyrillic no case cyrnocs 64

ISO 8859-7 Greek dictionary elldict 65

ISO 8859-2 Hungarian dictionary hundict 69

ISO 8859-2 Hungarian no accents hunnoac 70

ISO 8859-2 Hungarian no case hunnocs 71

ISO 8859-5 Turkish dictionary turdict 72

ISO 8859-5 Turkish no accents turnoac 73

ISO 8859-5 Turkish no case turnocs 74

CP 874 (TIS 620) Royal Thai dictionary thaidict 1

ISO 14651 ordering standard 14651 22

Shift-JIS binary order sjisbin 179

Unicode UTF-8 binary sort utf8bin 24

EUC JIS binary order eucjisbn 192

International languages and character sets

432 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Description Collation name Collation ID

GB2312 binary order gb2312bn 137

CP932 MS binary order cp932bin 129

Big5 binary order big5bin 194

EUC KSC binary order euckscbn 161

Recommended character sets and collations
While SQL Anywhere recognizes the names of hundreds of character sets, code pages, encodings and
collations, this section provides listings of those that are recommended for use with Windows and Unix
platforms, depending on the language in use.

You can use the dbinit -le option to obtain a list of all the available character set encodings for a SQL
Anywhere database. See “Initialization utility (dbinit)” on page 774.

Note
For languages not found in the tables below, the UTF-8 encoding should be used with collations UCA or
UTF8BIN.

Windows platforms

Language Windows
Code Page

Character set la-
bel

Collation Alternate col-
lation

Arabic 1256 Windows-1256 1256ARA

Central and Eastern European 1250 Windows-1250 1250LATIN2

Danish 1252 Windows-1252 1252LATIN1

Dutch 1252 Windows-1252 1252LATIN1

English 1252 Windows-1252 1252LATIN1

Finnish 1252 Windows-1252 1252SWEFIN

French 1252 Windows-1252 1252LATIN1

German 1252 Windows-1252 1252LATIN1

Greek 1253 Windows-1253 1253ELL

Hebrew 1253 Windows-1253 1255HEB

Character set and collation reference information

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 433

Language Windows
Code Page

Character set la-
bel

Collation Alternate col-
lation

Italian 1252 Windows-1252 1252LATIN1

Japanese 932 Windows-31J 932JPN

Korean 949 IBM949 949KOR

Lithuanian 1257 Windows-1257 1257LIT

Norwegian 1252 Windows-1252 1252NOR

Polish 1250 Windows-1250 1250POL

Portuguese 1252 Windows-1252 1252LATIN1

Russian 1251 Windows-1251 1251CYR

Simplified Chinese 936 GBK 936ZHO

Spanish 1252 Windows-1252 1252SPA

Swedish 1252 Windows-1252 1252SWEFIN

Thai 874 TIS-620 874THAIBIN

Traditional Chinese - Hong
Kong

950 Big5-HKSCS 950ZHO_HK

Traditional Chinese - Taiwan 950 Big5 950ZHO_TW

Turkish 1254 Windows-1254 1254TRK 1254TRKALT

Ukrainian 1251 Windows-1251 1251CYR

Western European 1252 Windows-1252 1252LATIN1

Unix platforms

Language Character set label Collation Alternate collation

Arabic ISO_8859-6:1987 UCA

Central and Eastern European ISO_8859-2:1987 UCA

Danish ISO-8859-15 ISO9LATIN1 ISO1LATIN1

Dutch ISO-8859-15 ISO9LATIN1 ISO1LATIN1

International languages and character sets

434 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Language Character set label Collation Alternate collation

English ISO-8859-15 ISO9LATIN1 ISO1LATIN1

Finnish ISO-8859-15 ISO9LATIN1 ISO1LATIN1

French ISO-8859-15 ISO9LATIN1 ISO1LATIN1

German ISO-8859-15 ISO9LATIN1 ISO1LATIN1

Greek ISO_8859-7:1987 UCA

Hebrew ISO_8859-8:1988 UCA

Italian ISO-8859-15 ISO9LATIN1 ISO1LATIN1

Japanese EUC-JP1 EUC_JAPAN

Korean EUC-KR EUC_KOREA

Lithuanian (use UTF-8) UCA or
UTF8BIN

Norwegian ISO-8859-15 ISO9LATIN1 ISO1LATIN1

Polish ISO_8859-2:1987 UCA

Portuguese ISO-8859-15 ISO9LATIN1 ISO1LATIN1

Russian ISO_8859-5:1988 UCA

Simplified Chinese GB2312 EUC_CHINA

Spanish ISO-8859-15 ISO9LATIN1 ISO1LATIN1

Swedish ISO-8859-15 ISO9LATIN1 ISO1LATIN1

Thai (use UTF-8) UCA or
UTF8BIN

Traditional Chinese - Hong Kong Big5-HKSCS 950ZHO_HK 950TWN

Traditional Chinese - Taiwan EUC-TW EUC_TAIWAN

Traditional Chinese - Taiwan Big5 950ZHO_TW

Turkish ISO_8859-9:1989 920TRK

Ukrainian ISO_8859-5:1988 UCA

Character set and collation reference information

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 435

Language Character set label Collation Alternate collation

Western European ISO-8859-15 ISO9LATIN1 ISO1LATIN1

1 EUC-JP is an alternate label for the SQL Anywhere label
Extended_UNIX_Code_Packed_Format_for_Japanese.

Turkish character sets and collations
The Turkish language has two forms of what appears to be the letter I. One form, referred to as I-dot, appears
as the following:

The second form, referred to as I-no-dot, appears as the following:

Even though these letters appear as variations of the same letter, in the Turkish alphabet they are considered
to be distinct letters. SQL Anywhere provides the Turkish collation 1254TRK to support these variations.

Turkish rules for case conversion of these characters are incompatible with ANSI SQL standard rules for
case conversion. For example, Turkish says that the lowercase equivalent of I is:

However, the ANSI standard says that it is:

For this reason, correct case-insensitive matching is dependent on whether the text being matched is Turkish
or English/ANSI. In many contexts, there is not enough information to make such a distinction, which leads
to some non-standard behaviors in such databases.

For example, consider the following statements, executed against a database using the 1254TRK collation:

The first statement references a system object, and ANSI SQL conversion rules are required to match the
name. The second statement references a user object, and Turkish conversion rules are required to match
the name. However, the database server cannot tell which conversion rules to use until it knows what the
object is, and it cannot know what the object is, until it knows what conversion rules to use. The situation
cannot be resolved properly for both system and user objects. In this example, since the database server is
using the Turkish collation 1254TRK, the first statement fails because lowercase I is not considered
equivalent to uppercase I, and the second statement succeeds.

International languages and character sets

436 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The incompatibility of Turkish and ANSI standards requires that system object references in Turkish
databases specify the object name in the correct case, that is, the case used to create the object. The first
statement above should be written as follows:

In fact, only the letter I must be in the correct case.

As an alternative, it is acceptable, although unusual, to write the statement as follows:

Note that keywords, such as INSERT, are case-insensitive even in Turkish databases. SQL Anywhere knows
that all keywords use only English letters, so it uses ANSI case conversion rules when matching keywords.
SQL Anywhere also applies this knowledge for certain other identifiers, such as built-in functions. However,
objects whose names are stored in the catalog must be specified using the correct case or letter, as described
above.

Data in case-insensitive Turkish databases
Similar rules govern data in case-insensitive Turkish databases. For example if a data value is

then a lowercase reference to that data should be

Then, the same I-dot character is used in both forms.

Alternative Turkish collation 1254TRKALT
For some application developers, the Turkish letter I problem can cause significant problems. While the
correct solution is to ensure that all object references are in the proper case or that the proper form of the
letter I is used, in some cases it may be more expedient to make a decision to violate the Turkish rules in
favor of the ANSI rules.

SQL Anywhere provides the collation 1254TRKALT, which is identical to 1254TRK, except that it makes
I-dot and I-no-dot equivalent characters.

It is important to understand the consequences of this change. In a 1254TRKALT database, the following
strings are equal:

Character set and collation reference information

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 437

This is not correct for a Turkish user, but may be acceptable in some cases.

The second issue appears when using ORDER BY. Consider the following strings:

In a 1254TRK database, an ORDER BY of the strings would produce the following:

because I-no-dot is less than I-dot. In a 1254TRKALT database, the order would be

because I-no-dot is equal to I-dot.

International languages and character sets

438 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Managing user IDs, authorities, and
permissions

Contents
Managing login policies overview .. 440
Database permissions and authorities overview ... 446
Managing user permissions and authorities overview ... 455
Managing connected users ... 467
Managing groups ... 468
Database object names and prefixes .. 475
Using views and procedures for extra security .. 477
Changing ownership on nested objects ... 480
How user permissions are assessed ... 482
Managing the resources connections use ... 483
Users and permissions in the catalog .. 484

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 439

Managing login policies overview
A login policy is a named object in a database that consists of a set of rules that are applied when you create
a database connection for a user. All new databases include a root login policy. You can modify the root
login policy values, but you cannot delete the policy. Login policies govern only the rules for user login and
are separate from authorities and permissions. Login policies are not inherited through group memberships.

The following settings are governed by a login policy:

● Password life time
● Password grace time
● Password expiry on next login
● Locked
● Maximum connections
● Maximum failed login attempts
● Maximum days since login
● Maximum non-DBA connections

The user account is assigned the root login policy when:

● you create a new user account and do not specify a login policy
● you use the Unload utility (dbunload) to rebuild a database created by a previous version of SQL

Anywhere
● you upgrade a SQL Anywhere version 10 database using the Upgrade utility (dbupgrad) or the ALTER

DATABASE UPGRADE statement

You can create, alter, and drop login policies. As well, you can create, alter, and drop users, and assign login
policies to them. The sa_get_user_status system procedure lets you get information about the current status
of a user. See “sa_get_user_status system procedure” [SQL Anywhere Server - SQL Reference].

Inheritance of login policy settings

A default login policy called root is stored in the database and contains the default option values for all
policies. If you want to use different settings than the defaults, you can either alter the root policy, or create
a policy and then alter it to contain overrides for the defaults. A policy inherits its default settings from the
root policy, unless it is altered to contain overrides.

For example, suppose the root policy value for max_connections is 5. You create a policy called myPolicy
and alter it to set max_connections to Unlimited. Then, you create a user and assign the myPolicy login
policy. When the user logs in, their login policy option settings are inherited from the root login policy with
the exception of max_connections, which is set to Unlimited.

Inheritance of default values from the root policy is important to understand because if you subsequently
change the value of an option setting in the root policy, you impact users of policies that rely on the default
value for that setting. Similarly, if a root value is changed, it does not impact any users of policies that contain
an override for that setting.

Managing user IDs, authorities, and permissions

440 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Modify the root login policy

To modify the root login policy (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, click Login Policies.

3. In the right pane, right-click root and choose Properties.

4. Modify a policy value and click OK.

To modify the root login policy (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute an ALTER LOGIN POLICY statement.

Example
This example creates overrides in the root login policy for the locked and max_connections values.

ALTER LOGIN POLICY root
locked=on
max_connections=5;

See also
● “ALTER LOGIN POLICY statement” [SQL Anywhere Server - SQL Reference]

Creating a new login policy
If you do not assign users to a login policy you create, they are assigned the root login policy.

To create a login policy (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Right-click Login Policies and then choose New » Login Policy.

3. Follow the instructions in the Create Login Policy Wizard.

To create a login policy (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE LOGIN POLICY statement. If you specify a login policy that already exists, the
statement fails.

Example
This example creates the Test1 login policy with option values.

Managing login policies overview

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 441

CREATE LOGIN POLICY Test1;

See also
● “CREATE LOGIN POLICY statement” [SQL Anywhere Server - SQL Reference]
● “Assigning a login policy to an existing user” on page 442
● “Altering a login policy” on page 443

Creating a user and assigning a login policy
If you create a user account and do not assign a login policy, they are assigned the root login policy.

To create a new user and assign a login policy (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Right-click Users & Groups and choose New » User.

3. Follow the instructions in the Create User Wizard.

To create a new user and assign a login policy (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE USER statement.

Example
This example creates a user called SQLTester with the password "welcome" and assigns the Test1 login
policy.

CREATE USER SQLTester IDENTIFIED BY welcome
LOGIN POLICY Test1;

See also
● “CREATE USER statement” [SQL Anywhere Server - SQL Reference]
● “Creating new users” on page 455

Assigning a login policy to an existing user
If you do not assign a customized login policy, users are assigned the root login policy. Use this procedure
to change a user's login policy assignment.

To assign a login policy to an existing user (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, click Users & Groups.

Managing user IDs, authorities, and permissions

442 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

3. In the right pane, right-click a user and then choose Properties.

4. In the Login Policy list, choose a login policy.

5. Click OK.

To assign a login policy to an existing user (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute an ALTER USER statement.

Example
This example assigns the Test2 login policy to SQLTester.

ALTER USER SQLTester
LOGIN POLICY Test2;

See also
● “ALTER USER statement” [SQL Anywhere Server - SQL Reference]
● “Creating new users” on page 455

Altering a login policy

To alter a login policy (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, click Login Policies.

3. In the right pane, right-click a login policy and choose Properties.

4. Alter the login policy value.

5. Click OK.

To alter a login policy (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute an ALTER LOGIN POLICY statement.

Example
This example creates overrides in the Test1 login policy for the locked and max_connections values.

ALTER LOGIN POLICY Test1
locked=on
max_connections=5;

Managing login policies overview

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 443

See also
● “ALTER LOGIN POLICY statement” [SQL Anywhere Server - SQL Reference]
● “Assigning a login policy to an existing user” on page 442

Dropping a login policy
You cannot drop the root login policy. You must assign users to another login policy before dropping a
customized login policy.

Note
You cannot drop a login policy if it is still assigned to a user.

To drop a login policy (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, click Login Policies.

3. On the Login Policies pane, right-click a login policy and choose Delete.

4. Click Yes.

To drop a login policy (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a DROP LOGIN POLICY statement.

Example
This example drops the Test1 login policy.

DROP LOGIN POLICY Test1;

See also
● “DROP LOGIN POLICY statement” [SQL Anywhere Server - SQL Reference]

Managing login policies on read only databases
When you start a database in a read-only mode, the login policies are based on the existing persistent state
of the database. The effect of any login policies you assign is limited to the current session.

If login management is enabled on a database that you later start in read-only mode, the following rules
apply:

● Login management by the server is based on the state of the database before it is started.

● Explicit statements that change the state of the database are denied and result in an error.

Managing user IDs, authorities, and permissions

444 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● The server continues to maintain dynamic information, such as failed_login_attempts and
last_login_time, for each user. However, this information is maintained in transient memory and is lost
when you shut down the database. The database returns to the same state before you started it.

● If the account is locked by the existing login management policy, a user cannot log in. Also, the usual
methods for changing a password during log in are unavailable.

● If the database is read only due to its role as a mirror database in a high availability system, then the
effect of any statement executed on the primary database is reflected in the mirror database. Also, the
dynamic information collected on the primary server is sent to the mirror database and is merged in
transient memory with the information collected for the mirror database.

Managing login policies overview

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 445

Database permissions and authorities overview
Each user of a database has a name they enter when connecting to the database (user ID), and they belong
to at least one group. Users and groups also have authorities and permissions attributed to them that allow
them to perform their tasks while maintaining the security and privacy of information within the database.

A permission grants the ability to perform a create, modify, query, use, or delete database objects such as
tables, views, users, and so on. An authority grants the ability to perform a task at the database level, such
as backing up the database, or performing diagnostic tracing. SQL Anywhere allows you to grant permissions
and authorities to user and groups.

While all permissions are inheritable (from the groups to which the user belongs), only some authorities are
inheritable.

Inheriting authorities

The following table lists the authorities you can assign to users, and whether they are inherited through group
membership:

Authority Inherited through
group membership

More information

BACKUP No See “BACKUP authority” on page 448.

DBA No See “DBA authority” on page 449.

PROFILE Yes See “PROFILE authority” on page 450.

READCLIENTFILE Yes See “READCLIENTFILE authority” on page 450.

READFILE Yes See “READFILE authority” on page 451.

REMOTE DBA

RESOURCE No See “RESOURCE authority” on page 451.

VALIDATE No See “VALIDATE authority” on page 451.

WRITECLIENTFILE Yes See “WRITECLIENTFILE authority” on page 452.

Inheritance of permissions

The following table lists the permissions you can assign to users, and whether they are inherited through
group membership:

Managing user IDs, authorities, and permissions

446 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Permis-
sion

Inherited through group
membership

More information

ALL Yes Allows the user to perform
all tasks associated with a
database object (equivalent
to granting ALTER, DE-
LETE, INSERT, REFER-
ENCES, SELECT, and UP-
DATE)

See “GRANT statement”
[SQL Anywhere Server -
SQL Reference].

ALTER Yes Allows the user to alter a
database object

See “Permissions inherited
through group member-
ship” on page 453.

CON-
NECT

No Allows the user to connect
to the database

See “Creating new
users” on page 455.

CONSOL-
IDATE

No Identifies a consolidated
database in SQL Remote

See “CONSOLIDATE per-
mission” [SQL Remote].

DELETE Yes Allows the user to delete a
database object

See “GRANT statement”
[SQL Anywhere Server -
SQL Reference].

INSERT Yes Allows the user to insert da-
ta into a database object

See “GRANT statement”
[SQL Anywhere Server -
SQL Reference].

INTE-
GRATED
LOGIN

No Allows the user to connect
to the database using an in-
tegrated login

See “Using integrated log-
ins” on page 106.

KER-
BEROS
LOGIN

No Allows the user to connect
to the database using a Ker-
beros login

See “Kerberos authentica-
tion” on page 114.

PUBLISH No Identifies the publisher of a
database in SQL Remote

See “PUBLISH permis-
sion” [SQL Remote].

REFER-
ENCES

Yes Allows the user to create in-
dexes on a table, and create
foreign keys that reference
the table

See “GRANT statement”
[SQL Anywhere Server -
SQL Reference].

Database permissions and authorities overview

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 447

Permis-
sion

Inherited through group
membership

More information

REMOTE No Identifies a remote database
in SQL Remote and Mobi-
Link

See “GRANT REMOTE
DBA statement [Mobi-
Link] [SQL Remote]” [SQL
Anywhere Server - SQL
Reference].

SELECT Yes Allows the user to query a
database object

See “GRANT statement”
[SQL Anywhere Server -
SQL Reference].

UPDATE Yes Allows the user to update a
database object

See “GRANT statement”
[SQL Anywhere Server -
SQL Reference].

See also: “GRANT statement” [SQL Anywhere Server - SQL Reference].

Negative permissions

SQL Anywhere does not support negative permissions. This means that you cannot revoke a permission that
was not explicitly granted.

For example, suppose user bob is a member of a group called sales. If a user grants DELETE permission on
a table, T, to sales, then bob can delete rows from T. If you want to prevent bob from deleting from T, you
cannot simply execute a REVOKE DELETE on T from bob, since the DELETE ON T permission was never
granted directly to bob. In this case, you would have to revoke bob's membership in the sales group.

See:

● “GRANT statement” [SQL Anywhere Server - SQL Reference]
● “REVOKE statement” [SQL Anywhere Server - SQL Reference]

Authorities overview
In SQL Anywhere, authorities can be thought of as database-level permissions. As such, they are not
necessarily associated with any object within the database (other than the user). For example, a user with
BACKUP authority is allowed to back up the database. Authorities can also include database object
permissions. For example, a user with PROFILE authority can perform application profiling and database
tracing tasks, which involves using system tables and system procedures that are not available to other users
(other than users with DBA authority).

BACKUP authority
The BACKUP authority allows a user to back up databases and transaction logs with archive or image
backups using the BACKUP statement or dbbackup utility. BACKUP authority is not inherited through

Managing user IDs, authorities, and permissions

448 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

group membership, and can be granted only by a user with DBA authority. See “BACKUP statement” [SQL
Anywhere Server - SQL Reference] and “Backup utility (dbbackup)” on page 740.

DBA authority
When you create a database, a single usable user ID is also created. By default, the first user ID is DBA, and
the password is initially sql (passwords are case sensitive). You can change the name and password of the
DBA user using the DBA USER and DBA PASSWORD clauses of the CREATE DATABASE statement
or by specifying the dbinit -dba option. See “CREATE DATABASE statement” [SQL Anywhere Server -
SQL Reference], and “Initialization utility (dbinit)” on page 774.

The DBA user ID automatically has DBA authority within the database. This level of permission enables
DBA users to perform any activity in the database. They can create tables, change table structures, create
new user IDs, revoke permissions from users, back up the database, and so on.

DBA authority is not inherited by group membership.

You only have DBA authority on a database if you are connected to it.

Users with DBA authority
A user with DBA authority becomes the database administrator. References made to the database
administrator, or DBA, include any user or users with DBA authority.

Although DBA authority may be granted or transferred to other user IDs, this chapter assumes that the DBA
user ID is the database administrator, and that the abbreviation DBA means both the DBA user ID and any
user ID with DBA authority.

Adding new users
The DBA has the authority to add new users to the database. As the DBA adds users, they are also granted
permissions to perform tasks on the database. Some users may need to simply look at the database information
using SQL queries, others may need to add information to the database, and others may need to modify the
structure of the database itself. Although some of the responsibilities of the DBA may be handed over to
other user IDs, the DBA is responsible for the overall management of the database by virtue of the DBA
authority.

The DBA has authority to create database objects and assign ownership of these objects to other user IDs.

Caution
To prevent unauthorized access to your data, you should change the password for the DBA user (or change
the DBA user and password) before deploying the database.

Database permissions and authorities overview

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 449

PROFILE authority
The PROFILE authority allows a user to perform the following profiling, tracing, and diagnostic operations:

● application profiling
● diagnostic tracing
● procedure profiling
● request logging (request log creation and analysis)
● run the Index Consultant

The PROFILE authority is not inheritable by group membership.

Users with PROFILE authority are automatically added to the diagnostics group.

Performing procedure profiling and request logging requires the user to use the sa_server_option system
procedure for configuration. Access to this procedure is granted to users with PROFILE authority, but only
for the options related to procedure profiling and request logging.

When performing application profiling and diagnostic tracing, users with PROFILE authority, but not DBA
authority, cannot create a separate database for storing the profiling and tracing data unless they have specific
permissions to unload a database. However, they can store the data in the same database or in another database
to which they can already connect.

To grant this authority, the database must have been created by a SQL Anywhere 11 database server, or have
been upgraded to a version 11 database using the Upgrade utility (dbupgrad), or the ALTER DATABASE
UPGRADE statement. See “Upgrade utility (dbupgrad)” on page 860 and “ALTER DATABASE statement”
[SQL Anywhere Server - SQL Reference].

See also
● “Application profiling” [SQL Anywhere Server - SQL Usage]
● “Advanced application profiling using diagnostic tracing” [SQL Anywhere Server - SQL Usage]
● “Index Consultant” [SQL Anywhere Server - SQL Usage]
● “Procedure profiling using system procedures” [SQL Anywhere Server - SQL Usage]
● “Request logging” [SQL Anywhere Server - SQL Usage]
● “DBA authority” on page 449
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]

READCLIENTFILE authority
The READCLIENTFILE authority allows a user to read files on the client computer, for example when
loading data from a file on a client computer.

The READCLIENTFILE authority can be inherited through group membership.

Managing user IDs, authorities, and permissions

450 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Accessing data on client computers” [SQL Anywhere Server - SQL Usage]
● “WRITECLIENTFILE authority” on page 452
● “GRANT statement” [SQL Anywhere Server - SQL Reference]
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]
● “READ_CLIENT_FILE function [String]” [SQL Anywhere Server - SQL Reference]

READFILE authority
The READFILE authority allows a user to use the OPENSTRING clause in a SELECT statement to read a
file. Without READFILE authority, the user can still use the OPENSTRING clause to query a string or
BLOB value, but not a file.

The READFILE authority can be inherited through group membership.

For more information about using the OPENSTRING clause in a SELECT statement, see “FROM clause”
[SQL Anywhere Server - SQL Reference].

REMOTE DBA authority
The REMOTE DBA authority grants a limited set of DBA permissions to SQL Remote or MobiLink
synchronization users. The remote DBA authority avoids having to grant full DBA authority, thereby
avoiding security problems associated with distributing DBA user IDs and passwords.

For more information about using the REMOTE DBA authority, see “GRANT REMOTE DBA statement
[MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL Reference].

RESOURCE authority
The RESOURCE authority allows a user to create database objects, such as tables, views, stored procedures,
and triggers. The RESOURCE authority is not inherited through group membership, and can be granted only
by a user with DBA authority.

To create a trigger, a user needs both RESOURCE authority and ALTER permissions on the table to which
the trigger applies.

DBA authority is required to create database objects with different owners.

VALIDATE authority
The VALIDATE authority allows a user to perform database, table, index, and checksum validation using
the VALIDATE statement or dbvalid utility. The VALIDATE authority is not inherited through group
membership, and can be granted only by a user with DBA authority.

Database permissions and authorities overview

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 451

See also
● “VALIDATE statement” [SQL Anywhere Server - SQL Reference]
● “Validation utility (dbvalid)” on page 862

WRITECLIENTFILE authority
The WRITECLIENTFILE authority allows a user to write to files on a client computer, for example when
using the UNLOAD TABLE statement to write data to a client computer.

The WRITECLIENTFILE authority can be inherited through group membership.

See also
● “Accessing data on client computers” [SQL Anywhere Server - SQL Usage]
● “READCLIENTFILE authority” on page 450
● “GRANT statement” [SQL Anywhere Server - SQL Reference]
● “READ_CLIENT_FILE function [String]” [SQL Anywhere Server - SQL Reference]
● “WRITE_CLIENT_FILE function [String]” [SQL Anywhere Server - SQL Reference]
● “UNLOAD statement” [SQL Anywhere Server - SQL Reference]

Permissions overview
In SQL Anywhere, permissions allow users to access, create, modify, and delete database objects (tables,
views, procedures, and so on). For example, to select data from a table, the user must either own the table,
or have SELECT permissions on it.

A user's permissions can be grouped into the following main categories:

● Permissions explicitly set for the user or group These are the permissions that are explicitly set
for a user or group to control whether they can create, modify, execute, or delete database objects.

● Permissions acquired through ownership of an object These are the permissions acquired by
virtue of creating a data base object. For example, if a user creates a table, their ownership allows them
to modify or delete the object.

● Permissions inherited through group membership These are the permissions inherited from a
group to which a user or group belongs.

● Permissions on disabled objects You can grant permissions on disabled objects. Permissions to
disabled objects are stored in the database and become effective when the object is enabled.

Permissions explicitly set for the user or group
You can give a user permission to execute system procedures and functions by granting EXECUTE
permission for that object.

For tables, views, and dbspaces, there are several distinct permissions you may grant to user IDs:

Managing user IDs, authorities, and permissions

452 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Permission Description

ALTER Permission to alter the structure of a table or create a trigger on a table.

CREATE ON Permission to create database objects on the specified dbspace.

DELETE Permission to delete rows from a table or view.

INSERT Permission to insert rows into a table or view.

REFERENCES Permission to create indexes on a table and to create foreign keys that
reference a table.

SELECT Permission to look at information in a table or view.

UPDATE Permission to update rows in a table or view. This can also granted on a
set of columns in a table or view.

ALL All the above permissions.

For more information about the permissions you can set on database objects, see “GRANT statement” [SQL
Anywhere Server - SQL Reference].

Permissions acquired through ownership of an object
A user who creates a new object within the database is called the owner of that object, and automatically
has permission to perform any operation on that object. The owner of a table may modify the structure of
that table, for instance, or may grant permissions to other database users to update the information within
the table.

Users with DBA authority have permission to modify any component within the database, and so could
delete a table created by another user. They have all the permissions regarding database objects that the
owners of each object have. As well, users with DBA authority can also create database objects for other
users. In this case, the owner of an object is not the user ID that executed the CREATE statement. Despite
this possibility, the owner and creator of database objects as the same user are referred to interchangeably.

See also
● “Groups without passwords” on page 472

Permissions inherited through group membership
Setting permissions individually for each user of a database can be a time-consuming and error-prone process.
For most databases, permission management based on groups, rather than on individual user IDs, is a much
more efficient approach.

Each user ID can be a member of multiple groups, and they inherit all permissions from each of the groups.

Database permissions and authorities overview

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 453

For example, you may create groups for different departments in a company database (sales, marketing, and
so on) and assign these groups permissions. Each salesperson becomes a member of the sales group, and
automatically gains access to the appropriate areas of the database.

Managing user IDs, authorities, and permissions

454 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Managing user permissions and authorities overview
This section describes how to create new users and grant permissions and authorities to them. For most
databases, the bulk of permission management should be performed using groups, rather than by assigning
permissions to individual users one at a time. However, as a group is simply a user ID with special properties,
you should read and understand this section before moving on to the discussion of managing groups.

Setting up individual user IDs

Even if there are no security concerns regarding a multi-user database, there are good reasons for setting up
an individual user ID for each user. In addition to granting permissions to individual users, you can also
grant permissions to groups of users. The administrative overhead is very low if a group with the appropriate
permissions is set up.

You may want to use individual user IDs since:

● The Log Translation utility (dblog) can selectively extract the changes made by individual users from a
transaction log. This is very useful when troubleshooting or piecing together what happened if data is
incorrect.

● Sybase Central displays much more useful information so you can tell which connections belong to
which users.

● Row locking messages (with the blocking option set to Off) are more informative.

Creating new users
You can create new users in both Sybase Central and Interactive SQL. In Sybase Central, you manage users
or groups in the Users & Groups folder. In Interactive SQL, you can add a new user using the CREATE
USER statement. For both tools, you need DBA authority to create new users.

All new users are automatically added to the PUBLIC group. Once you have created a new user, you can:

● add the user to other groups. See “Granting group membership to existing users or
groups” on page 469.

● set the user's permissions on tables, views, and procedures. See “Managing user permissions and
authorities overview” on page 455.

● set the user as the publisher or as a remote user of the database. See “User permissions” [SQL Remote].

● assign a login policy to the user. By default, a user is assigned to the root login policy. However, you
can create and assign custom login policies. See “Managing login policies overview” on page 440.

Initial permissions for new users
By default, the permissions assigned to new users include:

● the ability to connect to the database (assuming a password has been specified for the user)

● the ability to view the data stored in the system views

Managing user permissions and authorities overview

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 455

● the ability to execute most system stored procedures

To access tables in the database, new users need to be assigned permissions.

A user with DBA authority can set the permissions granted automatically to new users by assigning
permissions to the special PUBLIC user group. See “Special groups” on page 473.

Restrictions on user IDs and passwords
User IDs cannot:

● begin with white space, single quotes, or double quotes
● end with white space
● contain semicolons

Passwords are case sensitive and they cannot:

● begin with white space, single quotes, or double quotes
● end with white space
● contain semicolons
● be longer than 255 bytes in length

See “Setting a password” on page 457.

To create a new user (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Right-click Users & Groups and then choose New » User.

3. Follow the instructions in the Create User Wizard.

To create a new user (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE USER statement.

Example
This example adds a new user to the database with the user ID of M_Haneef and a password of Welcome.

CREATE USER M_Haneef
IDENTIFIED BY Welcome;

See also
● “CREATE USER statement” [SQL Anywhere Server - SQL Reference]

Managing user IDs, authorities, and permissions

456 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Setting a password
A user must have a password to be able to connect to the database. Passwords are case sensitive and they
cannot:

● begin with white space, single quotes, or double quotes
● end with white space
● contain semicolons
● be longer than 255 bytes in length

When passwords are created or changed, they are converted to UTF-8 before being hashed and stored in the
database. If the database is unloaded and reloaded into a database with a different character set, existing
passwords continue to work. If the server cannot convert from the client's character set to UTF-8, then it is
recommended that the password be composed of 7-bit ASCII characters as other characters may not work
correctly.

Changing a password

To change a user password (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Click Users & Groups.

3. In the Users & Groups list, right-click a user and then choose Properties.

4. Select This User Has A Password.

5. Complete the Password and Confirm Password fields.

6. Click Apply.

7. Click OK.

To change a user password (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a ALTER USER statement.

Example
ALTER USER M_Haneef
IDENTIFIED BY welcome;

Changing the DBA password
The default password for the DBA user for all databases is sql. You should change this password to prevent
unauthorized access to your database.

Managing user permissions and authorities overview

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 457

To change the DBA password (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Click Users & Groups.

3. In the Users & Groups list, right-click DBA and then choose Properties.

4. Select This User Has A Password.

5. Complete the Password and Confirm Password fields.

6. Click Apply.

7. Click OK.

To change the DBA password (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a ALTER USER statement.

Example
The following command changes the password for the DBA user to welcome_DBA:

ALTER USER DBA
IDENTIFIED BY welcome_DBA;

See also
● “ALTER USER statement” [SQL Anywhere Server - SQL Reference]

Setting user and group options
In Sybase Central, configurable options for users and groups are located in the User Options and Group
Options windows (the same window as for setting database options). In Interactive SQL, you can specify
an option in a SET OPTION statement.

To set options for a user or group (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Click Users & Groups.

3. Right-click a user or group and then choose Options.

4. In the Options list, click an option.

5. Click Set Permanent Now.

6. Click Close.

Managing user IDs, authorities, and permissions

458 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To set the options for a user or group (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a SET OPTION statement.

See also
● “Set properties for database objects” [SQL Anywhere Server - SQL Usage]
● “Database options” on page 493

Granting authorities
You grant authorities in much the same way as you grant permissions.

To grant an authority to a user ID

1. Connect to the database as a user with DBA authority.

2. Execute a GRANT statement, specifying the authorities you are granting, and the user-id of the recipient.

For example, to grant DBA authority, the appropriate SQL statement is:

GRANT DBA TO user-id;

For more information about the supported authorities in SQL Anywhere, see “Authorities
overview” on page 448.

Granting permissions on tables
You can assign a set of permissions on individual tables and grant users combinations of these permissions
to define their access to a table.

You can use either Sybase Central or Interactive SQL to set permissions. In Interactive SQL, you can use
the GRANT statement to grant the following permissions on tables:

● The ALTER permission allows a user to alter the structure of a table or to create triggers on a table. The
REFERENCES permission allows a user to create indexes on a table and to create foreign keys. These
permissions grant the authority to modify the database schema, and so will not be assigned to most users.
These permissions do not apply to views.

● The DELETE, INSERT, and UPDATE permissions grant the authority to modify the data in a table.

● The SELECT permission grants authority to look at data in a table, but does not give permission to change
it.

● The ALL permission grants all the above permissions.

● The REFERENCES, SELECT, and UPDATE permissions can be restricted to a set of columns in the
table or view.

Managing user permissions and authorities overview

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 459

To grant permissions on tables or columns (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Click Tables.

3. Right-click a table and then choose Properties.

4. Click the Permissions tab and configure the permissions for the table:

● Click Grant.

● Double-click a user or group.

● In the permissions table, click the fields beside the user or group to set specific permissions.

● Select a user and click Change to set specific permissions for a columns.

● Click OK.

● To revoke all permissions, select a user or group and click Revoke.

5. Click Apply.

Tips
You can also assign permissions from the User Properties or Group Properties window. To assign
permissions to multiple users or groups, use the Table Properties window. To assign permissions to multiple
tables, use the User Properties window.

To grant permissions on tables or columns (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a GRANT statement to assign the permission.

See “GRANT statement” [SQL Anywhere Server - SQL Reference].

Example 1
All table permissions are granted in a very similar fashion. You can grant permission to M_Haneef to delete
rows from the table named sample_table as follows:

1. Connect to the database as a user with DBA authority, or as the owner of sample_table.

2. Execute the following SQL statement:

GRANT DELETE
ON sample_table
TO M_Haneef;

Example 2
You can grant permission to M_Haneef to update the column_1 and column_2 columns only in the table
named sample_table as follows:

1. Connect to the database as a user with DBA authority, or as the owner of sample_table.

2. Execute the following SQL statement:

Managing user IDs, authorities, and permissions

460 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

GRANT UPDATE (column_1, column_2)
ON sample_table
TO M_Haneef;

Table permissions are limited in that they generally apply to all the data in a table, although the
REFERENCES, SELECT, and UPDATE permissions can be granted to a subset of columns. You can fine-
tune user permissions by creating procedures that perform actions on tables, and then granting users the
permission to execute the procedure.

See also
● “GRANT statement” [SQL Anywhere Server - SQL Reference]

Granting permissions on views
Setting permissions on views is similar to setting them on tables.

For more information about the SQL statements involved, see “Granting permissions on
tables” on page 459.

A user may perform an operation through a view if one or more of the following are true:

● The appropriate permission(s) on the view for the operation has been granted to the user by a user with
DBA authority.

● The user has the appropriate permission(s) on all the base table(s) for the operation.

● The user was granted appropriate permission(s) for the operation on the view by a non-DBA user. This
user must be either the owner of the view or have WITH GRANT OPTION of the appropriate
permission(s) on the view. The owner of the view must be either:

○ a user with DBA authority.

○ a user that does not have DBA authority, but also the owner of all the base table(s) referred to by the
view.

○ a user that does not have DBA authority, and is not the owner of some or all the base table(s) referred
to by the view. However, the view owner has SELECT permission WITH GRANT OPTION on the
base table(s) not owned and any other required permission(s) WITH GRANT OPTION on the base
table(s) not owned for the operation.

Instead of the owner having permission(s) WITH GRANT OPTION on the base table(s),
permission(s) may have been granted to PUBLIC. This includes SELECT permission on system
tables.

UPDATE permissions can be granted on an entire view or on individual columns within a view.

Note
You can grant permissions on disabled views. Permissions to disabled views are stored in the database and
become effective when the object is enabled.

Managing user permissions and authorities overview

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 461

To grant permissions on views (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Click Views.

3. Right-click a view and then choose Properties.

4. Click the Permissions tab.

5. Configure the permissions for the view:

● Click Grant.

● Double-click a user or group.

● In the permissions table, click the fields beside the user or group to set specific permissions.

● To revoke all permissions, select a user or group and click Revoke

6. Click Apply.

Tip
You can also assign permissions from the User Properties or Group Properties window. Use the View
Properties window to assign permissions to multiple users or groups. Use the User Properties or Group
Properties window to assign permissions to multiple views.

See also
● “GRANT statement” [SQL Anywhere Server - SQL Reference]

Granting users the right to grant permissions
You can assign each of the table and view permissions described with the WITH GRANT OPTION. This
option gives the right to pass on the permission to other users.

In Sybase Central, you can specify a grant option by displaying the properties window of a user, group, or
table, clicking the Permissions tab, and double-clicking the fields provided so that a check mark with two
'+' signs appears.

Note
You can only specify WITH GRANT OPTION for users. Members of groups do not inherit the WITH
GRANT OPTION if it is granted to a group.

Example
You can grant permission to M_Haneef to delete rows from the table named sample_table, and the right to
pass on this permission to other users, as follows:

1. Connect to the database as a user with DBA authority, or as the owner of sample_table

2. Execute the SQL statement:

Managing user IDs, authorities, and permissions

462 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

GRANT DELETE ON sample_table
TO M_Haneef
WITH GRANT OPTION;

See “GRANT statement” [SQL Anywhere Server - SQL Reference].

See also
● “Granting permissions on tables” on page 459
● “Permissions and authorities of groups” on page 471

Granting permissions on procedures
A user with DBA authority or the owner of the procedure may grant permission to execute stored procedures.
The EXECUTE permission is the only permission that may be granted on a procedure.

The method for granting permissions to execute a procedure is similar to that for granting permissions on
tables and views. However, the WITH GRANT OPTION clause of the GRANT statement does not apply
to the granting of permissions on procedures.

You can use either Sybase Central or Interactive SQL to set permissions.

To grant permissions on procedures (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Click Procedures & Functions.

3. Right-click a procedure and then choose Properties.

4. Click the Permissions tab.

5. Configure the permissions for the procedure:

● Click Grant.

● Double-click a user or group.

● To allow or revoke permission to execute a procedure, select a user or group and click the Execute
column. A checkmark indicates the user or group can execute the procedure.

● To revoke all permissions, select a user or group and click Revoke.

6. Click Apply.

Tip
You can also assign permissions from the User Properties or Group Properties window. Use the
Procedure Properties window to assign permissions to multiple users or groups. Use the User
Properties or Group Properties window to assign permissions to multiple procedures.

To grant permissions on procedures (SQL)

1. Connect to the database as a user with DBA authority or as the owner of the procedure.

Managing user permissions and authorities overview

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 463

2. Execute a GRANT EXECUTE ON statement.

Example
You can grant M_Haneef permission to execute a procedure named my_procedure, as follows:

1. Connect to the database as a user with DBA authority or as owner of my_procedure procedure.

2. Execute the SQL statement:

GRANT EXECUTE
ON my_procedure
TO M_Haneef;

Execution permissions of procedures
Procedures execute with the permissions of their owner. Any procedure that updates information in a table
will execute successfully only if the owner of the procedure has UPDATE permissions on the table.

As long as the procedure owner has the proper permissions, the procedure executes successfully when called
by any user assigned permission to execute it, whether they have permissions on the underlying table. You
can use procedures to allow users to perform well-defined activities on a table, without having any general
permissions on the table.

See also
● “GRANT statement” [SQL Anywhere Server - SQL Reference]
● “Granting permissions on tables” on page 459

Execution permissions of triggers
The server executes triggers in response to a user action. Triggers do not require permissions to be executed.
When a trigger executes, it does so with the permissions of the creator of the table with which it is associated.

See “Trigger execution permissions” [SQL Anywhere Server - SQL Usage].

Granting and revoking remote permissions
In Sybase Central, you can manage the remote permissions of both users and groups. Remote permissions
allow normal users and groups to become remote users in a SQL Remote replication setup to exchange
replication messages with the publishing database.

Granting remote permissions
You cannot grant remote permissions to a user until you define at least one message type in the database.

To grant remote permissions to a group, you must explicitly grant remote permissions to each user in the
group. Remote permissions are not inherited by members of a group.

Managing user IDs, authorities, and permissions

464 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Revoking remote permissions
Revoking remote permissions reverts a remote user to a normal user. Revoking these permissions also
automatically unsubscribes that user from all publications.

To grant remote permissions to users (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Click Users & Groups.

3. Right-click a user and then choose Change To Remote User.

4. Complete the fields and click OK.

After granting a user remote permissions, you can subscribe the user to publications.

To revoke remote permissions from remote users

1. Connect to the database as a user with DBA authority.

2. Click Users & Groups or SQL Remote Users.

3. Right-click a user and then choose Revoke Remote.

4. Click Yes.

See “SQL Remote introduction” [SQL Remote].

Revoking user permissions and authorities
A user's permissions are a combination of those that have been granted and those that have been revoked.
By revoking and granting permissions, you can manage the pattern of user permissions on a database.

A user with DBA authority or the owner of the procedure must issue this command.

If you are revoking connect permissions or table permissions from another user, the other user must not be
connected to the database. You cannot revoke connect permissions from dbo.

The REVOKE statement revokes permissions that have been explicitly granted to the user (that is, not
inherited from the groups to which they belong). The syntax for the REVOKE statement is the same as for
the GRANT statement. For example, to revoke user M_Haneef's ability to execute my_procedure, the
command is:

REVOKE EXECUTE
ON my_procedure
FROM M_Haneef;

To revoke their permission to delete rows from sample_table, the command is:

REVOKE DELETE
ON sample_table
FROM M_Haneef;

Managing user permissions and authorities overview

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 465

When you add a user to a group, the user inherits all the permissions and inheritable authorities assigned to
that group. SQL Anywhere does not allow you to revoke a subset of the permissions and authorities that a
user inherits as a member of a group. You can only revoke permissions that are explicitly given by a GRANT
statement. If you need to remove inherited permissions or authorities from a user, consider creating a new
group with the required permissions and authorities, and making the user a member, or remove the user from
the group and explicitly grant the permissions they require.

See also
● “REVOKE statement” [SQL Anywhere Server - SQL Reference]
● “GRANT statement” [SQL Anywhere Server - SQL Reference]

Deleting users from the database
You can delete a user from the database using both Sybase Central and Interactive SQL. The user being
removed cannot be connected to the database during this procedure.

Deleting a user also deletes all database objects (such as tables) that they own.

Only a user with DBA authority can delete a user.

To delete a user from the database (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Click Users & Groups.

3. Right-click a user and then choose Delete.

4. Click Yes.

To delete a user from the database (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a DROP USER statement.

Example
Remove the user M_Haneef from the database.

DROP USER M_Haneef;

See also
● “DROP USER statement” [SQL Anywhere Server - SQL Reference]
● “REVOKE statement” [SQL Anywhere Server - SQL Reference]
● “Revoking user permissions and authorities” on page 465
● “Deleting groups from the database” on page 473

Managing user IDs, authorities, and permissions

466 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Managing connected users
If you are working with Sybase Central, you can keep track of all users connected to the database. You can
view properties of these connected users, and you can disconnect them if you want.

To display a list of all users connected to a database

● Select the database in the left pane, and click the Connected Users tab in the right pane.

This tab displays all users currently connected to the database, regardless of the application that they
used to connect (Sybase Central, Interactive SQL, or a custom client application).

To inspect the properties of a user's connection to a database

1. Select the database in the left pane, and click the Connected Users tab in the right pane.

2. Right-click the user and then choose Properties.

3. Review the properties for the user and click OK.

To disconnect users from a database

1. Select the database in the left pane, and click the Connected Users tab in the right pane.

2. Right-click the user and then choose Disconnect.

Managing connected users

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 467

Managing groups
A group can be thought of as a user ID with special permissions, such as the ability to have members. You
grant and revoke permissions and authorities for a group in exactly the same manner as you do for users.

You can construct a hierarchy of groups where each group is a member of another group. Members, whether
they be users or groups, inherit the authorities and permissions from its parent group. A user ID may belong
to more than one group; the user-to-group relationship is many-to-many.

Just as with users, you can grant or revoke group permissions on a table, view, or procedure. When you do
so, all members of the group inherit the change.

You can create a group without a password. This enables you to prevent users from connecting to the database
using the group user ID. See “Groups without passwords” on page 472.

To administer authorities and permissions for a group, follow the same procedures that you do for
administering permissions and authorities for users. See “Managing user permissions and authorities
overview” on page 455.

To administer remote permissions for groups, see “Granting and revoking remote
permissions” on page 464.

Special inheritance notes for groups
With the exception of the grant permission (GRANT ... WITH GRANT OPTION statement), users and
groups inherit all permissions of the groups they are members of.

Members of a group can inherit only the following authorities set for the group they belong to.

● READCLIENTFILE
● READFILE
● WRITECLIENTFILE

Brief example
In the following example, two groups, group1 and group 2, are created. A user, bobsmith, is created and
given membership in both groups. A table, table1, is created and group2 is given SELECT and INSERT
permissions on the new table.

GRANT CONNECT, GROUP TO group1;
GRANT CONNECT, GROUP TO group2;
GRANT CONNECT TO bobsmith IDENTIFIED BY sql;
GRANT MEMBERSHIP IN GROUP group1 TO bobsmith;
GRANT MEMBERSHIP IN GROUP group2 TO bobsmith;
CREATE TABLE DBA.table1(column1 INT, modified_by VARCHAR(128) DEFAULT
USER);
GRANT SELECT, INSERT ON DBA.table1 TO group2;

Because bobsmith is a member of group2, he inherits select and insert permissions on table1 and can insert
values into it as shown below:

CONNECT USER bobsmith IDENTIFIED BY sql;
INSERT INTO DBA.table1(column1) VALUES(1);

Managing user IDs, authorities, and permissions

468 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Creating groups

To create a new group (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Right-click Users & Groups and then choose New » Group.

3. Follow the instructions in the Create Group Wizard.

To create a new group (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a GRANT GROUP TO statement. If the user ID you specify in this statement has not been
created, the statement fails.

Example
Create the user ID personnel.

CREATE USER personnel
IDENTIFIED BY group_password;

Make the user ID personnel a group.

GRANT GROUP TO personnel;

See also
● “GRANT statement” [SQL Anywhere Server - SQL Reference]
● “CREATE USER statement” [SQL Anywhere Server - SQL Reference]
● “Creating new users” on page 455

Granting group membership to existing users or groups
You can add existing users to groups or add groups to other groups in both Sybase Central and Interactive
SQL. In Sybase Central, you can control group membership in the right pane of users or groups. In Interactive
SQL, you can make a user a member of a group with the GRANT statement.

When you assign a user membership in a group, they inherit all the permissions on tables, views, and
procedures associated with that group. They also inherit any inheritable authorities.

Only a user with DBA authority can grant membership in a group.

To add a user or group to another group (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Click Users & Groups.

Managing groups

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 469

3. Double-click a user or group.

4. For a user:

● From the File menu, choose New » Memberships.

For a group:

● Click the Memberships tab.
● From the File menu, choose New » Memberships.

5. In the Name list, double-click a group.

The new group appears on the Memberships tab in the right pane.

To add a user or group to another group (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a GRANT MEMBERSHIP IN GROUP statement, specifying the group and the users involved.

Example
Grant the user M_Haneef membership in the personnel group:

GRANT MEMBERSHIP
IN GROUP personnel
TO M_Haneef;

See also
● “Database permissions and authorities overview” on page 446
● “GRANT statement” [SQL Anywhere Server - SQL Reference]
● “Creating new users” on page 455

Revoking group membership
You can remove users or groups from a group in both Sybase Central and Interactive SQL.

Removing a user or group from a group does not delete them from the database (or from other groups). To
do this, you must delete the user/group itself.

Only a user with DBA authority can revoke membership in a group.

When you add a user to a group, the user inherits all the permissions assigned to that group. SQL Anywhere
does not allow you to revoke a subset of the permissions that a user inherits as a member of a group because
you can only revoke permissions that are explicitly given by a GRANT statement. If you need to have
different permissions for different users, you can create different groups with the appropriate permissions,
or you can explicitly grant each user the permissions they require.

To remove a user or group from another group (Sybase Central)

1. Connect to the database as a user with DBA authority.

Managing user IDs, authorities, and permissions

470 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

2. Click Users & Groups.

3. Double-click a user or group.

4. In the Memberships pane, right-click a group and then choose Remove Memberships.

Tip
You can also remove a user by double-clicking the group, clicking the Members tab in the right pane, right-
clicking the user or group and choosing Remove Members.

To remove a user or group from another group (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a REVOKE MEMBERSHIP IN GROUP statement, specifying the group and user name.

Example
Remove the user M_Haneef from the personnel group:

REVOKE MEMBERSHIP
IN GROUP personnel
FROM M_Haneef;

See also
● “REVOKE statement” [SQL Anywhere Server - SQL Reference]
● “Creating new users” on page 455
● “Deleting users from the database” on page 466
● “Deleting groups from the database” on page 473

Permissions and authorities of groups
You grant permissions to groups in exactly the same way as any other user ID. Permissions on tables, views,
and procedures are inherited by members of the group, including other groups and their members.

Ownership of database objects is associated with a single user ID and is not inherited by group members. If
the user ID personnel creates a table, then the personnel user ID is the owner of that table and has the authority
to make any changes to the table, and to grant privileges concerning the table to other users. Other user IDs
who are members of personnel are not the owners of this table, and do not have these rights. Only granted
permissions are inherited. For example, if a user with DBA authority or the personnel user ID explicitly
grants SELECT permission on a table to the personnel user ID, all group members inherit select access to
the table.

You can grant some authorities to groups as well.

Notes
Members of a group do not inherit the DBA, RESOURCE, and GROUP permissions. Even if the user ID
has RESOURCE authority, the members of personnel do not have RESOURCE authority.

Managing groups

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 471

Note
You can only specify WITH GRANT OPTION for users. Members of groups do not inherit the WITH
GRANT OPTION if it is granted to a group.

Referring to tables owned by groups
Groups are used for finding tables and procedures in the database. For example, the following query always
finds the view SYS.SYSGROUPS, because all users belong to the PUBLIC group, and PUBLIC belongs to
the SYS group which owns the SYSGROUPS view:

SELECT * FROM SYSGROUPS;

The SYSGROUPS view contains a list of group-name, member-name pairs representing the group
memberships in your database.

If a table named employees is owned by the user ID personnel, and if M_Haneef is a member of the personnel
group, then M_Haneef can refer to the employees table simply as employees in SQL statements. Users who
are not members of the personnel group need to use the qualified name personnel.employees.

Creating a group to own the tables
A good practice to follow, that allows everyone to access the tables without qualifying names, is to create a
group whose only purpose is to own the tables. Do not grant any permissions to this group, but make all
users members of the group. You can then create permission groups and grant users membership in these
permission groups as warranted.

If a user owns a table that has the same name as a table owned by a group, using the unqualified table name
refers to the table owned by the user, not the one owned by the group. As well, if a user belongs to more
than one group that has a table with the same name, the user must qualify the table name.

See “Database object names and prefixes” on page 475.

Groups without passwords
Users connected to a group's user ID have certain permissions. A user belonging to a group would have
ownership permissions over any tables in the database created in the name of the group's user ID.

It is possible to set up a database so that only the DBA handles groups and their database objects, rather than
permitting other user IDs to make changes to group membership. You can do this by disallowing connection
as the group's user ID when creating the group. To do this, enter the CREATE USER statement without a
password. The following statement creates a user ID personnel:

CREATE USER personnel;

This user ID can be granted group permissions, and other user IDs can be granted membership in the group,
inheriting any permissions that have been given to personnel. However, nobody can connect to the database
using the personnel user ID because it has no valid password.

Managing user IDs, authorities, and permissions

472 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The user ID personnel can be an owner of database objects, even though no user can connect to the database
using this user ID. The CREATE TABLE statement, CREATE PROCEDURE statement, and CREATE
VIEW statement all allow the owner of the object to be specified as a user other than that executing the
statement. Only a user with DBA authority can perform this assignment of ownership.

Special groups
When you create a database, the SYS, PUBLIC, and dbo groups are also automatically created. None of
these groups has passwords, so it is not possible to connect to the database as SYS, PUBLIC, or dbo. However,
these groups serve important functions in the database.

The SYS group
The SYS group owns the system tables and views for the database, which contain the full description of
database schema, including all database objects and all user IDs.

For more information about the system tables and views, together with a description of access to the tables,
see “Tables” [SQL Anywhere Server - SQL Reference] and “System views” [SQL Anywhere Server - SQL
Reference].

The PUBLIC group
The PUBLIC group has SELECT permission on the system tables. As well, the PUBLIC group is a member
of the SYS group, and has read access for some of the system tables and views, so any user of the database
can find out information about the database schema. If you want to restrict this access, you can REVOKE
PUBLIC's membership in the SYS group.

Any new user ID is automatically a member of the PUBLIC group and inherits any permissions specifically
granted to that group by a user with DBA authority. You can also REVOKE membership in PUBLIC for
users if you want.

The dbo group
The dbo group owns many system stored procedures and views. The dbo group is a member of the SYS
group. The PUBLIC group is a member of the dbo group. The dbo group also owns tables used for UltraLite
and MobiLink.

Deleting groups from the database
You can delete a group from the database using both Sybase Central and Interactive SQL.

Deleting users or groups from the database is different from removing them from other groups. Deleting a
group from the database does not delete its members from the database, although they lose membership in
the deleted group.

Only a user with DBA authority can delete a group.

Managing groups

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 473

To delete a group from the database (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Click Users & Groups.

3. Right-click the group and then choose Delete.

4. Click Yes.

To delete a group from the database (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a REVOKE CONNECT FROM statement.

Example
Remove the group personnel from the database.

REVOKE CONNECT FROM personnel;

See also
● “REVOKE statement” [SQL Anywhere Server - SQL Reference]
● “Revoking user permissions and authorities” on page 465
● “Deleting users from the database” on page 466

Managing user IDs, authorities, and permissions

474 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database object names and prefixes
The name of every database object is an identifier.

For information about the rules for valid identifiers, see “Identifiers” [SQL Anywhere Server - SQL
Reference].

In queries and sample SQL statements throughout this book, database objects from the sample database are
generally referred to using their simple name. For example:

SELECT *
FROM Employees;

Tables, procedures, and views all have an owner. The DBA user ID owns the tables in the sample database.
In some circumstances, you must prefix the object name with the owner user ID, as in the following statement.

SELECT *
FROM DBA.Employees;

The Employees table reference is said to be qualified. In other circumstances it is enough to give the object
name. This section describes when you need to use the owner prefix to identify tables, views and procedures,
and when you do not.

When referring to a database object, you require a prefix unless:

● You are the owner of the database object.

● The database object is owned by a group ID of which you are a member.

Example
Consider the following example of a corporate database. The user ID company created all the tables, and
since this user ID belongs to the database administrator, it therefore has DBA authority.

CREATE USER Company
IDENTIFIED BY secret;
GRANT DBA TO Company;

The company user ID created the tables in the database.

CONNECT USER company IDENTIFIED BY secret;
CREATE TABLE company.Customers (...);
CREATE TABLE company.Products (...);
CREATE TABLE company.Orders (...);
CREATE TABLE company.Invoices (...);
CREATE TABLE company.Employees (...);
CREATE TABLE company.Salaries (...);

Not everybody in the company should have access to all information. Consider two user IDs in the sales
department, Joe and Sally, who should have access to the Customers, Products, and Orders tables. To do
this, you create a Sales group.

CREATE USER Sally IDENTIFIED BY xxxxx;
CREATE USER Joe IDENTIFIED BY xxxxx;
CREATE USER Sales IDENTIFIED BY xxxxx;
GRANT GROUP TO Sales;
GRANT ALL ON Customers TO Sales;

Database object names and prefixes

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 475

GRANT ALL ON Orders TO Sales;
GRANT SELECT ON Products TO Sales;
GRANT MEMBERSHIP IN GROUP Sales TO Sally;
GRANT MEMBERSHIP IN GROUP Sales TO Joe;

Now Joe and Sally have permission to use these tables, but they still have to qualify their table references
because the table owner is Company, and Sally and Joe are not members of the Company group:

SELECT *
FROM company.Customers;

To rectify the situation, make the Sales group a member of the Company group.

GRANT GROUP TO Company;
GRANT MEMBERSHIP IN GROUP Company TO Sales;

Now Joe and Sally, being members of the Sales group, are indirectly members of the Company group, and
can reference their tables without qualifiers. The following command now works:

SELECT *
FROM Customers;

Note
Joe and Sally do not have any extra permissions because of their membership in the company group. The
company group has not been explicitly granted any table permissions. (The company user ID has implicit
permission to look at tables like Salaries because it created the tables and has DBA authority.) So, Joe and
Sally still get an error executing either of these commands:

SELECT *
FROM Salaries;
SELECT *
FROM company.Salaries;

In either case, Joe and Sally do not have permission to look at the Salaries table.

Managing user IDs, authorities, and permissions

476 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using views and procedures for extra security
For databases that require a high level of security, defining permissions directly on tables has limitations.
Any permission granted to a user on a table applies to the whole table. There are many cases when users'
permissions need to be shaped more precisely than on a table-by-table basis. For example:

● It is not desirable to give access to personal or sensitive information stored in an employee table to users
who need access to other parts of the table.

● You may want to give sales representatives update permissions on a table containing descriptions of their
sales calls, but limit such permissions to their own calls.

In these cases, you can use views and stored procedures to tailor permissions to suit the needs of your
organization. This section describes some of the uses of views and procedures for permission management.

See also
● “Working with views” [SQL Anywhere Server - SQL Usage]
● “Granting permissions on views” on page 461

Using views for tailored security
Views are computed tables that contain a selection of rows and columns from base tables. Views are useful
for security when it is appropriate to give a user access to just one portion of a table. The portion can be
defined in terms of rows or in terms of columns. For example, you may want to disallow a group of users
from seeing the Salary column of an employee table, or you may want to limit a user to see only the rows
of a table they have created.

Example 1
The Sales manager needs access to information in the database concerning employees in the department.
However, there is no reason for the manager to have access to information about employees in other
departments.

This example describes how to create a user ID for the sales manager, create views that provide the
information she needs, and grant the appropriate permissions to the sales manager user ID.

1. Create the new user ID using the GRANT statement. While logged in as a user with DBA authority,
execute the following statements:

CONNECT DBA
IDENTIFIED by sql;
CREATE USER SalesManager
IDENTIFIED BY sales;

2. Define a view that only looks at sales employees as follows:

CREATE VIEW EmployeeSales AS
 SELECT EmployeeID, GivenName, Surname
 FROM Employees
 WHERE DepartmentID = 200;

Using views and procedures for extra security

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 477

The table reference could be qualified with the owner to avoid an ambiguous reference to an identically
named table.

3. Give SalesManager permission to look at the view:

GRANT SELECT
ON EmployeeSales
TO SalesManager;

You use exactly the same command to grant permission on views and on tables.

Example 2
The next example creates a view which allows the Sales Manager to look at a summary of sales orders. This
view requires information from more than one table for its definition:

1. Create the view.

CREATE VIEW OrderSummary AS
 SELECT OrderDate, Region, SalesRepresentative, CompanyName
 FROM SalesOrders
 KEY JOIN Customers;

2. Grant permission for the Sales Manager to examine this view.

GRANT SELECT
ON OrderSummary
TO SalesManager;

3. To check that the process has worked properly, connect to the SalesManager user ID and look at the
views you created:

CONNECT SalesManager
IDENTIFIED BY sales;
SELECT *
FROM DBA.EmployeeSales;
SELECT *
FROM DBA.OrderSummary;

No permissions have been granted to the Sales Manager to look at the underlying tables. The following
commands produce permission errors.

SELECT * FROM GROUPO.Employees;
SELECT * FROM GROUPO.SalesOrders;

Other permissions on views
The previous example shows how to use views to tailor SELECT permissions. You can grant INSERT,
DELETE, and UPDATE permissions on views in the same way.

Using procedures for tailored security
While views restrict access on the basis of data, procedures restrict the actions a user may take. A user can
have EXECUTE permission on a procedure without having any permissions on the table or tables on which
the procedure acts. See “Granting permissions on procedures” on page 463.

Managing user IDs, authorities, and permissions

478 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Strict security
For strict security, you can disallow all access to the underlying tables, and grant permissions to users or
groups of users to execute certain stored procedures. This approach strictly defines the manner in which data
in the database can be modified.

Using views and procedures for extra security

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 479

Changing ownership on nested objects
Views and procedures can access underlying objects that are owned by different users. For example, if usera,
userb, userc, and userd were four different users, userd.viewd could be based on userc.viewc, which could
be based on userb.viewb, which could be based on usera.tablea. Similarly for procedures, userd.procd could
call userc.procc, which could call userb.procb, which could insert into usera.tablea.

The following Discretionary Access Control (DAC) rules apply to nested views and tables:

● To create a view, the user must have SELECT permission on all the base objects (for example tables and
views) in the view.

● To access a view, the view owner must have been granted the appropriate permission on the underlying
tables or views with the GRANT OPTION and the user must have been granted the appropriate
permission on the view.

● Updating with a WHERE clause requires both SELECT and UPDATE permission.

● If a user owns the tables in a view definition, the user can access the tables through a view, even if the
user is not the owner of the view and has not been granted access on the view.

The following DAC rules apply to nested procedures:

● A user does not require any permissions on the underlying objects (for example tables, views or
procedures) to create a procedure.

● For a procedure to execute, the owner of the procedure needs the appropriate permissions on the objects
that the procedure references.

● Even if a user owns all the tables referenced by a procedure, the user will not be able to execute the
procedure to access the tables unless the user has been granted EXECUTE permission on the procedure.

Following are some examples that describe this behavior.

Example 1: User1 creates table1, and user2 creates view2 on
table1

● User1 can always access table1, since user1 is the owner.

● User1 can always access table1 through view2, since user1 is the owner of the underlying table. This is
true even if user2 does not grant permission on view2 to user1.

● User2 can access table1 directly or through view2 if user1 grants permission on table1 to user2.

● User3 can access table1 if user1 grants permission on table1 to user3.

● User3 can access table1 through view2 if user1 grants permission on table1 to user2 with grant option
and user2 grants permission on view2 to user3.

Managing user IDs, authorities, and permissions

480 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example 2: User2 creates procedure2 that accesses table1
● User1 can access table1 through procedure2 if user2 grants EXECUTE permission on procedure2 to

user1. Note that this is different from the case of view2, where user1 did not need permission on view2.

Example 3: User1 creates table1, user2 creates table2, and
user3 creates view3 joining table1 and table2

● User3 can access table1 and table2 through view3 if user1 grants permission on table1 to user3 and user2
grants permission on table2 to user3.

● If user3 has permission on table1 but not on table2, then user3 cannot use view3, even to access the
subset of columns belonging to table1.

● User1 or user2 can use view3 if (a) user1 grants permission with grant option on table1 to user3, (b)
user2 grants permission with grant option on table2 to user3, and (c) user3 grants permission on view3
to that user.

Changing ownership on nested objects

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 481

How user permissions are assessed
Groups do introduce complexities in the permissions of individual users. Suppose user M_Haneef has
SELECT and UPDATE permissions on a specific table individually, but is also a member of two groups.
Suppose one of these groups has no access to the table at all, and one has only SELECT access. What are
the permissions in effect for this user?

SQL Anywhere decides whether a user ID has permission to perform a specific action in the following
manner:

1. If the user ID has DBA authority, the user ID can perform any action in the database.

2. Otherwise, permission depends on the permissions assigned to the individual user. If the user ID has
been granted permission to perform the action, then the action proceeds.

3. If no individual settings have been made for that user, permission depends on the permissions of each
of the groups to which the member belongs. If any of these groups has permission to perform the action,
the user ID has permission by virtue of membership in that group, and the action proceeds.

This approach minimizes problems associated with the order in which permissions are set.

Managing user IDs, authorities, and permissions

482 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Managing the resources connections use
Building a set of users and groups allows you to manage permissions on a database. Another aspect of
database security and management is to limit the resources an individual user can use.

For example, you may want to prevent a single connection from taking too much of the available memory
or CPU resources, so you can avoid having a connection slow down other users of the database.

SQL Anywhere provides a set of database options that users with DBA authority can use to control resources.
These options are called resource governors.

Setting options
You can set database options using the SET OPTION statement, with the following syntax:

SET [TEMPORARY] OPTION ... [userid. | PUBLIC.]option-name = [option-value]

Resources that can be managed
You can use the following options to manage resources:

● max_cursor_count Limits the number of cursors for a connection. See “max_cursor_count option
[database]” on page 545.

● max_statement_count Limits the number of prepared statements for a connection. See
“max_statement_count option [database]” on page 549.

● priority Sets the priority level at which requests from a connection are executed. See “priority option
[database]” on page 565.

● max_priority Controls the maximum priority level for connections. See “max_priority option
[database]” on page 547.

Database option settings are not inherited through the group structure.

See also
● “Database options” on page 493
● “SET OPTION statement” [SQL Anywhere Server - SQL Reference]

Managing the resources connections use

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 483

Users and permissions in the catalog
The database system views contain information about the current users of a database and about their
permissions.

The special user ID SYS owns the system views. You cannot connect using the SYS user ID.

Users with DBA authority have SELECT access to all system views, but not the underlying system tables.
The access of other users to some tables and views is also limited. For example, only a user with DBA
authority has access to the SYS.SYSUSERPERM view, which contains all information about the permissions
of users of the database, and the encrypted passwords of each user ID. However, SYS.SYSUSERPERMS
is a view containing all information in SYS.SYSUSERPERM except for the password, and by default all
users have SELECT access to this view. You can fully modify all permissions and group memberships set
up in a new database for SYS, PUBLIC, DBA, and dbo.

The following table summarizes the system views containing information about user IDs, groups, and
permissions. The user ID SYS owns all the listed views, and so their qualified names are
SYS.SYSUSERPERM and so on.

Appropriate SELECT queries on these views generate all the user ID and permission information stored in
the database.

View Default Contents

SYSCOLAUTH PUBLIC Information from SYSCOLPERM in a more readable
format. See “SYSCOLAUTH consolidated view”
[SQL Anywhere Server - SQL Reference].

SYSCOLPERM PUBLIC All columns with SELECT or UPDATE permission
given by the GRANT command. See “SYSCOL-
PERM system view” [SQL Anywhere Server - SQL
Reference].

DUMMY PUBLIC Dummy table that can be used to find the current user
ID. See “DUMMY system table” [SQL Anywhere
Server - SQL Reference].

SYSGROUP PUBLIC One row for each member of each group. See
“SYSGROUP system view” [SQL Anywhere Server
- SQL Reference].

SYSGROUPS PUBLIC Information from SYSGROUP in a more readable
format. See “SYSGROUPS consolidated view” [SQL
Anywhere Server - SQL Reference].

SYSPROCAUTH PUBLIC Information from SYSPROCPERM in a more reada-
ble format. See “SYSPROCAUTH consolidated
view” [SQL Anywhere Server - SQL Reference].

Managing user IDs, authorities, and permissions

484 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

View Default Contents

SYSPROCPERM PUBLIC Each row holds one user granted permission to use
one procedure. See “SYSPROCPERM system view”
[SQL Anywhere Server - SQL Reference].

SYSTABAUTH PUBLIC Information from SYSTABLEPERM in a more read-
able format. See “SYSTABAUTH consolidated
view” [SQL Anywhere Server - SQL Reference].

SYSTABLEPERM PUBLIC All permissions on table given by the GRANT com-
mands. See “SYSTABLEPERM system view” [SQL
Anywhere Server - SQL Reference].

SYSUSER DBA only Information on all users in the database. See “SY-
SUSER system view” [SQL Anywhere Server - SQL
Reference].

SYSUSERAUTH DBA only All information in SYSUSERPERM except for user
numbers. See “SYSUSERAUTH compatibility view
(deprecated)” [SQL Anywhere Server - SQL Refer-
ence].

SYSUSERAUTHORITY PUBLIC Authority granted for each user ID. See “SYSUSER-
AUTHORITY system view” [SQL Anywhere Server
- SQL Reference].

SYSUSERLIST PUBLIC All information in SYSUSERAUTH except for pass-
words. See “SYSUSERLIST compatibility view
(deprecated)” [SQL Anywhere Server - SQL Refer-
ence].

SYSUSERPERM DBA only Database-level permissions and password for each
user ID. See “SYSUSERPERM compatibility view
(deprecated)” [SQL Anywhere Server - SQL Refer-
ence].

SYSUSERPERMS PUBLIC All information in SYSUSERPERM except for pass-
words. See “SYSUSERPERMS compatibility view
(deprecated)” [SQL Anywhere Server - SQL Refer-
ence].

Users and permissions in the catalog

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 485

486

Database options

Contents
Introduction to database options ... 488

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 487

Introduction to database options
Database options control many aspects of database behavior. For example, you can use database options for
the following purposes:

● Compatibility You can control how much like Adaptive Server Enterprise your SQL Anywhere
database operates, and whether SQL that does not conform to SQL/2003 generates errors.

● Error handling You can control what happens when errors such as dividing by zero, or overflow
errors, occur.

● Concurrency and transactions You can control the degree of concurrency, and details of COMMIT
behavior.

Setting database options
You set options with the SET OPTION statement. It has the following general syntax:

SET [EXISTING] [TEMPORARY] OPTION
[userid. | PUBLIC.]option-name = [option-value]

Specify a user ID or group name to set the option for that user or group only. Every user belongs to the
PUBLIC group. If no user ID or group is specified, the option change is applied to the currently logged on
user ID that issued the SET OPTION statement.

Any option, whether user-defined or not, must have a public setting before a user-specific value can be
assigned. The database server does not support setting TEMPORARY values for user-defined options.

For example, the following statement applies an option change to the user DBA, if DBA is the user that
issues it:

SET OPTION blocking_timeout = 3;

The following statement applies a change to the PUBLIC user ID, a user group to which all users belong.
You must have DBA authority to execute this statement.

SET OPTION PUBLIC.login_mode = 'Standard';

If option-value is omitted, the specified option setting is deleted from the database. If it was a personal option
setting, the value reverts back to the PUBLIC setting. If a TEMPORARY option is deleted, the option setting
reverts back to the permanent setting.

See “SET OPTION statement” [SQL Anywhere Server - SQL Reference].

To set options for a database (Sybase Central)

1. Open the database server.

2. Right-click the database and choose Options.

3. Edit the values.

Database options

488 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Tips
With the Database Options window, you can also set database options for specific users and groups (when
you open this window for a user or group, it is called the User Options window or Group Options window,
respectively).

When you set options for the database itself, you are actually setting options for the PUBLIC group in that
database because all users and groups inherit option settings from PUBLIC.

Caution
Changing option settings while fetching rows from a cursor is not supported because it can lead to unreliable
results. For example, changing the date_format setting while fetching from a cursor would lead to different
date formats among the rows in the result set. Do not change option settings while fetching rows.

Note
In databases that use a Turkish collation or are case sensitive, executing a query on SYSOPTION or a query
like the following may not match any rows if the option name is used with the wrong case:

SELECT * FROM sa_conn_properties() WHERE propname = 'BLOCKING';
For information about the proper case for option names, see “Alphabetical list of options” on page 503.

Scope and duration of database options
You can set options at 3 levels of scope: public, user, and temporary.

Temporary options take precedence over user and public settings. User-level options take precedence over
public settings. If you set a user level option for the current user, the corresponding temporary option is set
as well.

Some options (such as COMMIT behavior) are database-wide in scope. Setting these options requires DBA
authority. Other options (such as isolation_level) can also be applied to just the current connection, and need
no special permissions.

Changes to option settings take place at different times, depending on the option. Changing a global option
such as recovery_time takes place the next time the database is started.

Generally, only options that affect the current connection take place immediately. You can change option
settings in the middle of a transaction, for example. One exception to this is that changing options when a
cursor is open can lead to unreliable results. For example, changing date_format may not change the format
for the next row when a cursor is opened. Depending on the way the cursor is being retrieved, it may take
several rows before the change works its way to the user.

Setting public options

DBA authority is required to set an option for the PUBLIC user ID.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 489

Changing the value of an option for the PUBLIC user ID sets the permanent value of the option for all users
who have not SET their own value. An option value cannot be set for an individual user ID unless there is
already a PUBLIC user ID setting for that option.

Some options which can only be set for the PUBLIC user take effect immediately for existing connections,
even though the changed setting will not be visible to users via the CONNECTION_PROPERTY function.
An example of this is the global_database_id option. For this reason, PUBLIC-only options should not be
changed while other users are connected to the database.

Setting temporary options

Adding the TEMPORARY keyword to the SET OPTION statement changes the duration of the change.
Ordinarily an option change is permanent. It does not change until it is explicitly changed using the SET
OPTION statement.

When the SET TEMPORARY OPTION statement is executed, the new option value takes effect only for
the current connection, and only for the duration of the connection.

When the SET TEMPORARY OPTION is used to set a PUBLIC option, the change is in place for as long
as the database is running. When the database is shut down, temporary options for the PUBLIC user ID
revert back to their permanent value.

Setting a temporary option for the PUBLIC user ID offers a security advantage. For example, when the
login_mode option is enabled, the database relies on the login security of the system on which it is running.
Enabling it as a temporary option setting means that a database relying on the security of a Windows domain
will not be compromised if the database is shut down and copied to a local computer. In this case, the
login_mode option will revert to its permanent value, which could be Standard, a mode where integrated
logins are not permitted.

Setting options for a SQL statement
The INSERT, UPDATE, DELETE, SELECT, UNION, EXCEPT, and INTERSECT statements have an
OPTION clause that lets you specify how materialized views are used by the statement and how the query
is optimized. This clause can also be used to specify an option setting that takes precedence over any public
or temporary option settings that are in effect, for that statement only. You can change the setting of the
following options in the OPTION clause:

● isolation_level
● max_query_tasks
● optimization_goal
● optimization_level
● optimization_workload
● user_estimates

Finding option settings
You can obtain a list of option settings, or the values of individual options, in a variety of ways.

Database options

490 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Getting a list of option values
● Current option settings for your connection are available as a subset of connection properties. You can

list all connection properties using the sa_conn_properties system procedure.

CALL sa_conn_properties;

To order this list alphabetically, you can execute the following statement:

SELECT *
FROM sa_conn_properties()
ORDER BY PropName;

If you want to filter the result or order by anything other than name, you could also use a WHERE clause.
For example:

SELECT *
FROM sa_conn_properties()
WHERE PropDescription LIKE '%cache%'
ORDER BY PropNum;

See “sa_conn_properties system procedure” [SQL Anywhere Server - SQL Reference].

● In Interactive SQL, the SET statement with no arguments lists the current setting of options.

SET;
● In Sybase Central, select a database, and then choose File » Options.

● Use the following query on the SYSOPTIONS system view to display all PUBLIC values, and those
USER values that have been explicitly set:

SELECT *
FROM SYSOPTIONS;

Getting individual option values
You can obtain a single setting using the CONNECTION_PROPERTY system function. For example, the
following statement reports the value of the ansi_blanks option:

SELECT CONNECTION_PROPERTY ('ansi_blanks');

See “CONNECTION_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference].

Monitoring option settings

You can use the sa_server_option system procedure to instruct the database server to send a message or
return an error when an attempt is made to set a database option.

You use the OptionWatchList property to create a list the options that you want to monitor, and the
OptionWatchAction property to specify the action the database server should take when an attempt is made
to set an option that is being monitored.

For example, the following command instructs the database server to monitor the database options
automatic_timestamp, float_as_double, and tsql_hex_constant:

CALL dbo.sa_server_option(
'OptionWatchList','automatic_timestamp,float_as_double,tsql_hex_constant');

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 491

The following command instructs the database server to return an error if an attempt is made to set an option
specified in the OptionWatchList property:

CALL dbo.sa_server_option('OptionWatchAction','ERROR');

See also
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]
● OptionWatchAction and OptionWatchList properties: “Database server properties” on page 624

Initial option settings
Connections to SQL Anywhere can be made through the TDS protocol (Open Client and jConnect JDBC
connections) or through the SQL Anywhere protocol (ODBC and embedded SQL).

If you have users who use both TDS and the SQL Anywhere-specific protocol, you can configure their initial
settings using stored procedures. SQL Anywhere uses this method to set Open Client connections and
jConnect connections to reflect default Adaptive Server Enterprise behavior.

The initial settings are controlled using the login_procedure option. This option names a stored procedure
to run when users connect. The default setting is to use the sp_login_environment system procedure. You
can change this behavior as necessary.

In turn, sp_login_environment checks to see if the connection is being made over TDS. If it is, it calls the
sp_tsql_environment procedure, which sets several options to new default values for the current connection.

See also
● “login_procedure option [database]” on page 541
● “sp_login_environment system procedure” [SQL Anywhere Server - SQL Reference]
● “sp_tsql_environment system procedure” [SQL Anywhere Server - SQL Reference]

Deleting option settings
If option-value is omitted, the specified option setting is removed from the database. If it was a personal
option setting, the value reverts back to the PUBLIC setting. If a TEMPORARY option is deleted, the option
setting reverts back to the permanent setting.

For example, the following statement resets the ansi_blanks option to its default value:

SET OPTION ansi_blanks =;

See “SET OPTION statement” [SQL Anywhere Server - SQL Reference].

Database options

492 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option classification
SQL Anywhere provides many options. It is convenient to divide them into a few general classes. The classes
of options are:

● “Database options” on page 493
● “Compatibility options” on page 498
● “SQL Remote options” on page 502
● “Interactive SQL options” on page 708

Database options
This section lists all database options.

Option Values Default

“allow_snapshot_isolation option [data-
base]” on page 504

On, Off Off

“auditing option [database]” on page 511 On, Off Off

“auditing_options option [database]” on page 512 Reserved Reserved

“background_priority option [database] [depreca-
ted]” on page 512

On, Off Off

“blocking option [database]” on page 513 On, Off On

“blocking_timeout option [data-
base]” on page 513

Integer (in millisec-
onds)

0

“checkpoint_time option [database]” on page 514 Number of minutes 60

“cis_option option [database]” on page 515 0, 7 0

“cis_rowset_size option [database]” on page 515 Integer 50

“collect_statistics_on_dml_updates option [data-
base]” on page 516

On, Off On

“conn_auditing option [database]” on page 518 On, Off On

“connection_authentication option [data-
base]” on page 518

String Empty string

“cooperative_commit_timeout option [data-
base]” on page 520

Integer (in millisec-
onds)

250

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 493

Option Values Default

“cooperative_commits option [data-
base]” on page 521

On, Off On

“database_authentication [data-
base]” on page 522

String Empty string

“date_format option [database]” on page 523 String YYYY-MM-DD

“date_order option [database]” on page 525 MDY, YMD, DMY YMD

“debug_messages option [database]” on page 525 On, Off Off

“dedicated_task option [database]” on page 526 On, Off Off

“default_dbspace option [database]” on page 526 String Empty string (use the system
dbspace)

“default_timestamp_increment option [database]
[MobiLink client]” on page 527

Integer (in micro-
seconds from 1 to
1000000)

1

“delayed_commit_timeout option [data-
base]” on page 528

Integer (in millisec-
onds)

500

“delayed_commits option [data-
base]” on page 528

On, Off Off

“exclude_operators option [data-
base]” on page 530

Reserved Reserved

“extended_join_syntax option [data-
base]” on page 530

On, Off On

“first_day_of_week option [data-
base]” on page 532

1, 2, 3, 4, 5, 6, 7 7 (Sunday is the first day of
the week)

“for_xml_null_treatment option [data-
base]” on page 533

Empty, Omit Omit

“force_view_creation option [data-
base]” on page 533

Reserved Reserved

“global_database_id option [data-
base]” on page 533

Integer 2147483647

“http_session_timeout option [data-
base]” on page 534

Integer 30

Database options

494 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Values Default

“integrated_server_name option [data-
base]” on page 535

String NULL

“isolation_level option [database] [compatibili-
ty]” on page 535

0, 1, 2, 3, snapshot,
statement-snap-
shot, readonly-
statement-snapshot

0

“java_location option [database]” on page 537 String Empty string

“java_main_userid option [data-
base]” on page 538

String Default DBA user

“java_vm_options option [data-
base]” on page 538

String Empty string

“log_deadlocks option [database]” on page 539 On, Off Off

“login_mode option [database]” on page 540 Standard, Integra-
ted, Kerberos,
Mixed (deprecated)

Standard

“login_procedure option [database]” on page 541 String sp_login_environment

“materialized_view_optimization option [data-
base]” on page 543

Disabled, Fresh,
Stale, N { Minute[s]
| Hour[s] | Day[s] |
Week[s] |
Month[s] }

Stale

“max_client_statements_cached option [data-
base]” on page 544

Integer 10

“max_cursor_count option [data-
base]” on page 545

Integer 50

“max_plans_cached option [data-
base]” on page 546

Integer 20

“max_priority option [database]” on page 547 Critical, High,
Above Normal,
Normal, Below nor-
mal, Low, Back-
ground

Normal

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 495

Option Values Default

“max_query_tasks option [data-
base]” on page 547

Integer 0

“max_recursive_iterations option [data-
base]” on page 548

Integer 100

“max_statement_count option [data-
base]” on page 549

Integer >=0 50

“max_temp_space option [data-
base]” on page 550

Integer [k|m|g|p] 0

“min_password_length option [data-
base]” on page 551

Integer >=0 0 characters

“odbc_describe_binary_as_varbinary [data-
base]” on page 553

On, Off Off

“odbc_distinguish_char_and_varchar option [data-
base]” on page 553

On, Off Off

“oem_string option [database]” on page 554 String (up to 128
bytes)

Empty string

“on_charset_conversion_failure option [data-
base]” on page 556

Ignore, Warning,
Error

Ignore

“optimization_goal option [data-
base]” on page 557

First-row or All-
rows

All-rows

“optimization_level option [data-
base]” on page 558

0-15 9

“optimization_workload option [data-
base]” on page 560

Mixed, OLAP Mixed

“pinned_cursor_percent_of_cache option [data-
base]” on page 560

Integer, between
0-100

10

“post_login_procedure option [data-
base]” on page 561

String Empty string

“precision option [database]” on page 563 Integer, between 1
and 127, inclusive

30

“prefetch option [database]” on page 563 Off, Conditional,
Always

Conditional

Database options

496 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Values Default

“preserve_source_format option [data-
base]” on page 564

On, Off On

“prevent_article_pkey_update option [database]
[MobiLink client]” on page 565

On, Off On

“priority option [database]” on page 565 Critical, High,
Above Normal,
Normal, Below nor-
mal, Low, Back-
ground

Normal

“quoted_identifier option [compatibili-
ty]” on page 567

On, Off On

“read_past_deleted option [data-
base]” on page 567

On, Off On

“recovery_time option [database]” on page 568 Integer, in minutes 2

“remote_idle_timeout option [data-
base]” on page 568

Integer, in seconds 15

“request_timeout option [database]” on page 570 Integer (0 through
86400, in seconds)

0

“return_date_time_as_string option [data-
base]” on page 571

On, Off Off

“rollback_on_deadlock [database]” on page 572 On, Off On

“row_counts option [database]” on page 572 On, Off Off

“scale option [database]” on page 573 Integer, between 0
and 127, inclusive,
and less than the
value specified for
the precision data-
base option

6

“secure_feature_key [database]” on page 574 String NULL

“sort_collation option [database]” on page 575 Internal, colla-
tion_name, or colla-
tion_id

Internal

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 497

Option Values Default

“subsume_row_locks option [data-
base]” on page 581

On, Off On

“suppress_tds_debugging option [data-
base]” on page 581

On, Off Off

“synchronize_mirror_on_commit option [data-
base]” on page 582

On, Off Off

“tds_empty_string_is_null option [data-
base]” on page 582

On, Off Off

“temp_space_limit_check option [data-
base]” on page 583

On, Off On

“time_zone_adjustment option [data-
base]” on page 584

Integer, or negative
integer enclosed in
quotation marks, or
string, representing
time in hours and
minutes, preceded
by + or -, enclosed
in quotation marks

Set by either the client's or
the database server's time
zone, depending on the cli-
ent's connection type

“truncate_timestamp_values option [database]
[MobiLink client]” on page 586

On, Off Off

“updatable_statement_isolation option [data-
base]” on page 588

0, 1, 2, 3 0

“update_statistics option [database]” on page 589 On, Off On

“user_estimates option [database]” on page 590 Enabled, Disabled,
Override-Magic

Override-Magic

“verify_password_function option [data-
base]” on page 591

String Empty string

“wait_for_commit option [data-
base]” on page 595

On, Off Off

“webservice_namespace_host option [data-
base]” on page 595

NULL, hostname-
string

NULL

Compatibility options

Database options

498 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The following options allow you to make SQL Anywhere behavior compatible with Adaptive Server
Enterprise, or to support both old behavior and allow ISO SQL/2003 behavior.

For further compatibility with Adaptive Server Enterprise, some of these options can be set for the duration
of the current connection using the Transact-SQL SET statement instead of the SQL Anywhere SET OPTION
statement. See “SET statement [T-SQL]” [SQL Anywhere Server - SQL Reference].

Default settings
The default setting for some of these options differs from the Adaptive Server Enterprise default setting. To
ensure compatibility across your SQL Anywhere and Adaptive Server Enterprise databases, you should
explicitly set each of the compatibility options listed in this section.

When a connection is made using the Open Client or JDBC interfaces, some option settings are explicitly
set for the current connection to be compatible with Adaptive Server Enterprise. These options are listed in
the following table.

Options for Open Client and JDBC connection compatibility with Adaptive Server Enterprise

Option Setting

allow_nulls_by_default Off

ansi_blanks Off

ansi_substring On

ansinull On

chained Off

continue_after_raiserror On

escape_character Off

on_tsql_error Continue for jConnect connections

time_format HH:NN:SS.SSS

timestamp_format YYYY-MM-DD HH:NN:SS.SSS

tsql_outer_joins Off

tsql_variables On

Transact-SQL and SQL/2003 compatibility options
The following table lists the compatibility options, their allowed values, and their default settings.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 499

Option Values Default

“allow_nulls_by_default option [compatibili-
ty]” on page 503

On, Off On

“ansi_blanks option [compatibili-
ty]” on page 506

On, Off Off

“ansi_close_cursors_on_rollback option [com-
patibility]” on page 507

On, Off Off

“ansi_permissions option [compatibili-
ty]” on page 507

On, Off On

“ansi_update_constraints option [compatibili-
ty]” on page 509

Off, Cursors, Strict Cursors

“ansinull option [compatibility]” on page 510 On, Off On

“chained option [compatibility]” on page 514 On, Off On

“close_on_endtrans option [compatibili-
ty]” on page 516

On, Off On

“continue_after_raiserror option [compatibili-
ty]” on page 519

On, Off On

“conversion_error option [compatibili-
ty]” on page 520

On, Off On

“date_format option [database]” on page 523 String YYYY-MM-DD

“date_order option [database]” on page 525 MDY, YMD,
DMY

YMD

“escape_character option [compatibili-
ty]” on page 530

Reserved Reserved

“fire_triggers option [compatibili-
ty]” on page 531

On, Off On

“isolation_level option [database] [compatibili-
ty]” on page 535

0, 1, 2, 3 0

“nearest_century option [compatibili-
ty]” on page 552

Integer (between 0
and 100 inclusive)

50

Database options

500 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Values Default

“non_keywords option [compatibili-
ty]” on page 552

String (Comma-
separated key-
words list)

Empty string (No keywords
turned off)

“on_tsql_error option [compatibili-
ty]” on page 557

Stop, Conditional,
Continue

Conditional

“quoted_identifier option [compatibili-
ty]” on page 567

On, Off On

“sql_flagger_error_level option [compatibili-
ty]” on page 575

Off, SQL:1992/
Entry, SQL:1992/
Intermediate,
SQL:1992/Full,
SQL:1999/Core,
SQL:1999/Pack-
age, SQL:2003/
Core, SQL:2003/
Package, Ultralite

Off

“sql_flagger_warning_level option [compatibili-
ty]” on page 576

Off, SQL:1992/
Entry, SQL:1992/
Intermediate,
SQL:1992/Full,
SQL:1999/Core,
SQL:1999/Pack-
age, SQL:2003/
Core, SQL:2003/
Package, Ultralite

Off

“string_rtruncation option [compatibili-
ty]” on page 580

On, Off On

“time_format option [compatibili-
ty]” on page 584

String HH:NN:SS.SSS

“timestamp_format option [compatibili-
ty]” on page 585

String YYYY-MM-DD
HH:NN:SS.SSS

“tsql_outer_joins option [compatibili-
ty]” on page 588

On, Off Off

“tsql_variables option [compatibili-
ty]” on page 588

On, Off Off

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 501

Synchronization options
The following database options can be set to configure SQL Anywhere databases used as MobiLink
synchronization clients.

Option Values Default

“default_timestamp_increment option [database]
[MobiLink client]” on page 527

Integer (in microseconds
from 1 to 1000000)

1

“delete_old_logs option [MobiLink client] [SQL
Remote] [Replication Agent]” on page 529

On, Off, Delay, n days Off

“prevent_article_pkey_update option [database]
[MobiLink client]” on page 565

On, Off On

“truncate_timestamp_values option [database]
[MobiLink client]” on page 586

On, Off Off

SQL Remote options
The following options are included to provide control over SQL Remote replication behavior.

Option Values Default

“blob_threshold option [SQL Re-
mote]” on page 512

Integer (in bytes) 256

“compression option [SQL Re-
mote]” on page 517

Integer, from -1 to 9 6

“delete_old_logs option [MobiLink cli-
ent] [SQL Remote] [Replication
Agent]” on page 529

On, Off, Delay, n days Off

“external_remote_options [SQL Re-
mote]” on page 531

On, Off Off

“qualify_owners option [SQL Re-
mote]” on page 566

On, Off On

“quote_all_identifiers option [SQL Re-
mote]” on page 566

On, Off Off

“replication_error option [SQL Re-
mote]” on page 569

Stored procedure
name

(no procedure)

Database options

502 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Values Default

“replication_error_piece option [SQL
Remote]” on page 570

Stored procedure
name

(no procedure)

“save_remote_passwords option [SQL
Remote]” on page 573

On, Off On

“sr_date_format option [SQL Re-
mote]” on page 577

date-string YYYY/MM/DD

“sr_time_format option [SQL Re-
mote]” on page 578

time-string HH:NN:SS.SSSSSS

“sr_timestamp_format [SQL Re-
mote]” on page 579

timestamp-string YYYY/MM/DD HH:NN:SS.SSSSSS

“subscribe_by_remote option [SQL Re-
mote]” on page 580

On, Off On

“verify_all_columns option [SQL Re-
mote]” on page 591

On, Off Off

“verify_threshold option [SQL Re-
mote]” on page 594

Integer (in bytes) 1000

Replication Agent options
The following options are included to provide control over Replication Agent replication behavior.

Option Values Default

“delete_old_logs option [MobiLink client]
[SQL Remote] [Replication
Agent]” on page 529

On, Off, Delay, n days Off

“replicate_all option [Replication
Agent]” on page 569

On, Off Off

Alphabetical list of options
This section lists options alphabetically.

allow_nulls_by_default option [compatibility]

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 503

Controls whether new columns that are created without specifying either NULL or NOT NULL are allowed
to contain NULL values.

Allowed values
On, Off

Default
On

Off for Open Client and jConnect connections

Remarks
The allow_nulls_by_default option is included for Transact-SQL compatibility. See “Setting options for
Transact-SQL compatibility” [SQL Anywhere Server - SQL Usage].

allow_read_client_file option [database]
Controls whether to allow the reading of files on a client computer.

Allowed values
On, Off

Default
Off

Scope
DBA authority required.

Remarks
This option must be enabled to read from files on a client computer, for example using the
READ_CLIENT_FILE function.

See also
● “Accessing data on client computers” [SQL Anywhere Server - SQL Usage]
● “READ_CLIENT_FILE function [String]” [SQL Anywhere Server - SQL Reference]
● “READCLIENTFILE authority” on page 450
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]
● “isql_allow_read_client_file option [Interactive SQL]” on page 715
● “allow_write_client_file option [database]” on page 506
● “isql_allow_write_client_file option [Interactive SQL]” on page 715
● “Client-side data security” [SQL Anywhere Server - SQL Usage]

allow_snapshot_isolation option [database]

Database options

504 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Controls whether snapshot isolation is enabled or disabled.

Allowed values
On, Off

Default
Off

Scope
Can be set for the PUBLIC group only. DBA authority required.

Remarks
This option controls whether snapshot isolation is enabled for the database. Once this option is set to On,
the database server starts recording the original versions of updated rows in the temporary file in the event
that a transaction uses snapshot isolation.

If there are transactions in progress when the setting of the allow_snapshot_isolation option is changed, then
the change does not take effect immediately. Any transactions that are running when the option setting is
changed from Off to On must complete before snapshots can be used. When the setting of the option is
changed from On to Off, any outstanding snapshots are allowed to complete before the database server stops
collecting version information, and new snapshots are not initiated.

You can view the current snapshot isolation setting for a database by querying the value of the
SnapshotIsolationState database property:

SELECT DB_PROPERTY ('SnapshotIsolationState');

The SnapshotIsolationState property has one of the following values:

● On Snapshot isolation is enabled for the database.

● Off Snapshot isolation is disabled for the database.

● in_transition_to_on Snapshot isolation will be enabled once the current transactions complete.

● in_transition_to_off Snapshot isolation will be disabled once the current transactions complete.

See also
● “isolation_level option [database] [compatibility]” on page 535
● “updatable_statement_isolation option [database]” on page 588
● “Snapshot isolation” [SQL Anywhere Server - SQL Usage]
● “Isolation levels and consistency” [SQL Anywhere Server - SQL Usage]
● “Enabling snapshot isolation” [SQL Anywhere Server - SQL Usage]

Example
The following statement enables snapshot isolation for a database:

SET OPTION PUBLIC.allow_snapshot_isolation = 'On';

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 505

allow_write_client_file option [database]
Controls whether to allow the writing of files to a client computer.

Allowed values
On, Off

Default
Off

Scope
DBA authority required.

Remarks
This option must be enabled to write files to a client computer, for example using the WRITE_CLIENT_FILE
function.

See also
● “Accessing data on client computers” [SQL Anywhere Server - SQL Usage]
● “WRITE_CLIENT_FILE function [String]” [SQL Anywhere Server - SQL Reference]
● “WRITECLIENTFILE authority” on page 452
● “UNLOAD statement” [SQL Anywhere Server - SQL Reference]
● “isql_allow_write_client_file option [Interactive SQL]” on page 715
● “allow_read_client_file option [database]” on page 504
● “isql_allow_read_client_file option [Interactive SQL]” on page 715
● “Client-side data security” [SQL Anywhere Server - SQL Usage]

ansi_blanks option [compatibility]
Controls behavior when character data is truncated at the client side.

Allowed values
On, Off

Default
Off

Remarks
The ansi_blanks option has no effect unless the database ignores trailing blanks in string comparisons and
pads strings that are fetched into character arrays. It forces a truncation error whenever a value of data type
CHAR(N) is read into a C char[M] variable for values of N greater than or equal to M. With ansi_blanks set
to Off, a truncation error occurs only when at least one non-blank character is truncated.

For embedded SQL with the ansi_blanks option set to On, when you supply a value of data type DT_STRING,
you must set the sqllen field to the length of the buffer containing the value (at least the length of the value

Database options

506 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

plus space for the terminating null character). With ansi_blanks set to Off, the length is determined solely
by the position of the NULL character. The value of the ansi_blanks option is determined when the
connection is established. Changing the option once the connection has been made does not affect this sqllen
embedded SQL behavior.

When a database is blank padded, this option controls truncation warnings sent to the client if the expression
being fetched is CHAR or NCHAR (not VARCHAR or NVARCHAR) and it is being fetched into a char or
nchar (not VARCHAR or NVARCHAR) host variable. If these conditions hold and the host variable is too
small to hold the fetched expression once it is blank padded to the expression's maximum length, a truncation
warning is raised and the indicator contains the minimum number of bytes required to hold the fetched
expression if it is blank padded to its maximum length. If the expression is CHAR(N) or NCHAR(N), the
indicator may be set to a value other than N to take in account character set translation of the value returned
and character length semantics.

ansi_close_cursors_on_rollback option [compatibility]
Controls whether cursors that were opened WITH HOLD are closed when a ROLLBACK is performed.

Allowed values
On, Off

Default
Off

Remarks
The draft SQL/3 standard requires all cursors be closed when a transaction is rolled back. By default, on a
rollback SQL Anywhere closes only those cursors that were opened without a WITH HOLD clause. This
option allows you to force closure of all cursors.

The close_on_endtrans option overrides the ansi_close_cursors_on_rollback option.

See also
● “close_on_endtrans option [compatibility]” on page 516

ansi_permissions option [compatibility]
Controls permissions checking for DELETE and UPDATE statements.

Allowed values
On, Off

Default
On

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 507

Scope
Can be set for the PUBLIC group only. Takes effect immediately. DBA authority required.

Remarks
With ansi_permissions set to On, the SQL/2003 permissions requirements for DELETE and UPDATE
statements are checked. The default value is Off in Adaptive Server Enterprise. The following table outlines
the differences.

SQL statement Permissions required with ansi_per-
missions off

Permissions required with an-
si_permissions on

UPDATE UPDATE permission on the columns
where values are being set

UPDATE permission on the col-
umns where values are being set

SELECT permission on all columns
appearing in the WHERE clause

SELECT permission on all columns
on the right side of the SET clause

DELETE DELETE permission on the table DELETE permission on the table

SELECT permission on all columns
appearing in the WHERE clause

The ansi_permissions option can be set only for the PUBLIC group. No private settings are allowed.

ansi_substring option [compatibility]
Controls the behavior of the SUBSTRING (SUBSTR) function when negative values are provided for the
start or length parameters.

Allowed values
Off, On

Default
On

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately.

Description
When the ansi_substring option is set to On, the behavior of the SUBSTRING function corresponds to ANSI/
ISO SQL/2003 behavior. A negative or zero start offset is treated as if the string were padded on the left
with non-characters, and gives an error if a negative length is provided.

Database options

508 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

When this option is set to Off, the behavior of the SUBSTRING function is the same as in previous releases
of SQL Anywhere: a negative start offset means an offset from the end of the string, and a negative length
means the desired substring ends length characters to the left of the starting offset. Also, using a start offset
of 0 is equivalent to a start offset of 1.

The setting of this option does not affect the behavior of the BYTE_SUBSTR function. It is recommended
that you avoid using non-positive start offsets or negative lengths with the SUBSTRING function. Where
possible, use the LEFT or RIGHT functions instead.

See also
● “SUBSTRING function [String]” [SQL Anywhere Server - SQL Reference]
● “LEFT function [String]” [SQL Anywhere Server - SQL Reference]
● “RIGHT function [String]” [SQL Anywhere Server - SQL Reference]

Examples
The following examples show the difference in the values returned by the SUBSTRING function based on
the setting of the ansi_substring option.

SUBSTRING('abcdefgh',-2,4);
 ansi_substring = Off ==> 'gh' // substring starts at second-last character
 ansi_substring = On ==> 'a' // takes the first 4 characters of
 // ???abcdefgh and discards all ?
SUBSTRING('abcdefgh',4,-2);
 ansi_substring = Off ==> 'cd'
 ansi_substring = On ==> value -2 out of range for destination
SUBSTRING('abcdefgh',0,4);
 ansi_substring = Off ==> 'abcd'
 ansi_substring = On ==> 'abc'

ansi_update_constraints option [compatibility]
Controls the range of updates that are permitted.

Allowed values
Off, Cursors, Strict

Default
Cursors

Remarks
SQL Anywhere provides several extensions that allow updates that are not permitted by the ANSI SQL
standard. These extensions provide powerful, efficient mechanisms for performing updates. However, in
some cases, they cause behavior that is not intuitive. This behavior can produce anomalies such as lost
updates if the user application is not designed to expect the behavior of these extensions.

The ansi_update_constraints option controls whether updates are restricted to those permitted by the SQL/
2003 standard.

If the option is set to Strict, the following updates are prevented:

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 509

● Updates of cursors containing JOINS

● Updates of columns that appear in an ORDER BY clause

● The FROM clause is not allowed in UPDATE statements

If the option is set to Cursors, these same restrictions are in place, but only for cursors. If a cursor is not
opened with FOR UPDATE or FOR READ ONLY, the database server chooses updatability based on the
SQL/2003 standard. If the ansi_update_constraints option is set to Cursors or Strict, cursors containing an
ORDER BY clause default to FOR READ ONLY; otherwise, they continue to default to FOR UPDATE.

See also
● “UPDATE statement” [SQL Anywhere Server - SQL Reference]

ansinull option [compatibility]
Controls the interpretation of NULL values.

Allowed values
On, Off

Default
On

Remarks
This option is implemented primarily for Transact-SQL (Adaptive Server Enterprise) compatibility. The
ansinull option affects the results of comparison predicates with NULL constants, and also affects warnings
issued for grouped queries over NULL values.

With ansinull set to On, ANSI three-valued logic is used for all comparison predicates in a WHERE or
HAVING clause, or in an On condition. Any comparisons with NULL using = or != evaluate to unknown.

Setting ansinull to Off means that SQL Anywhere uses two-valued logic for the following four conditions:

expr = NULL

expr != NULL

expr = @var // @var is a procedure variable, or a host variable

expr != @var

In each case, the predicate evaluates to either true or false—never unknown. In such comparisons, the NULL
value is treated as a special value in each domain, and an equality (=) comparison of two NULL values yields
true. Note that the expression expr must be a relatively simple expression, referencing only columns,
variables, and literals; subqueries and functions are not permitted.

With ansinull set to On, the evaluation of any aggregate function, except COUNT(*), on an expression that
contains at least one NULL value, may generate the warning null value eliminated in
aggregate function (SQLSTATE=01003). With ansinull set to Off, this warning does not appear.

Database options

510 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Limitations

● Setting ansinull to Off affects only WHERE, HAVING, or ON predicates in SELECT, UPDATE,
DELETE, and INSERT statements. The semantics of comparisons in a CASE or IF statement, or in IF
expressions, are unaffected.

● Adaptive Server Enterprise 12.5 introduced a change in the behavior of LIKE predicates with a NULL
pattern string when ansinull is set to Off. In SQL Anywhere, LIKE predicates remain unaffected by the
setting of ansinull.

auditing option [database]
Enables and disables auditing in the database.

Allowed values
On, Off

Default
Off

Scope
Can be set for the PUBLIC group only. Takes effect immediately. DBA authority required.

Remarks
This option turns auditing on and off.

Auditing is the recording of details about many events in the database in the transaction log. Auditing
provides some security features, at the cost of some performance. When you turn on auditing for a database,
you cannot stop using the transaction log. You must turn auditing off before you turn off the transaction log.
Databases with auditing on cannot be started in read-only mode.

For the auditing option to work, you must set the auditing option to On, and also specify which types of
information you want to audit using the sa_enable_auditing_type system procedure. Auditing will not take
place if either of the following are true:

● The auditing option is set to Off
● Auditing options have been disabled

If you set the auditing option to On, and do not specify auditing options, all types of auditing information
are recorded. Alternatively, you can choose to record any combination of the following: permission checks,
connection attempts, DDL statements, public options, and triggers using the sa_enable_auditing_type system
procedure.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 511

See also
● “Auditing database activity” on page 1074
● “sa_enable_auditing_type system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_disable_auditing_type system procedure” [SQL Anywhere Server - SQL Reference]

Example
Turn on auditing

SET OPTION PUBLIC.auditing = 'On';

auditing_options option [database]
This option is reserved for system use. Do not change the setting of this option.

background_priority option [database] [deprecated]
Deprecated. Limits impact on the performance of connections other than the current connection.

Allowed values
On, Off

Default
Off

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately.

If you set this option temporarily, that setting applies to the current connection only. Different connections
under the same user ID can have different settings for this option.

Intra-query parallelism is not used for connections with background_priority set to on. See “Parallelism
during query execution” [SQL Anywhere Server - SQL Usage].

Remarks
Setting this option to On causes requests to execute at the Background priority level. When this option is set
to Off, requests execute at the value specified by the Priority option.

See also
● “priority option [database]” on page 565
● “max_priority option [database]” on page 547

blob_threshold option [SQL Remote]
Controls the size of value that the Message Agent treats as a long object (BLOB).

Database options

512 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Allowed values
Integer, in bytes

Default
256

Remarks
Any value longer than the blob_threshold option is replicated as a BLOB. That is, it is broken into pieces
and replicated in chunks before being reconstituted using a SQL variable and concatenating the pieces at the
recipient site.

Each SQL statement must fit within a message, so you should not set the value of this option to a size larger
than your message size (50 KB by default).

See also
● “SQL Remote options” [SQL Remote]

blocking option [database]
Controls the behavior in response to locking conflicts.

Allowed values
On, Off

Default
On

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately.

Remarks
If the blocking option is set to On, any transaction attempting to obtain a lock that conflicts with an existing
lock held by another transaction waits until every conflicting lock is released or until the blocking_timeout
is reached. If the lock is not released within blocking_timeout milliseconds, then an error is returned for the
waiting transaction. If the blocking option is set to Off, the transaction that attempts to obtain a conflicting
lock receives an error.

See also
● “blocking_timeout option [database]” on page 513

blocking_timeout option [database]
To control how long a transaction waits to obtain a lock.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 513

Allowed values
Integer, in milliseconds

Default
0

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately.

Remarks
When the blocking option is set to On, any transaction attempting to obtain a lock that conflicts with an
existing lock waits for blocking_timeout milliseconds for the conflicting lock to be released. If the lock is
not released within blocking_timeout milliseconds, then an error is returned for the waiting transaction.

Setting this option to 0 forces all transactions attempting to obtain a lock to wait until all conflicting
transactions release their locks.

See also
● “blocking option [database]” on page 513

chained option [compatibility]
Controls the transaction mode in the absence of a BEGIN TRANSACTION statement.

Allowed values
On, Off

Default
On

Off for Open Client and jConnect connections

Remarks
Controls the Transact-SQL transaction mode. In Unchained mode (chained=Off), each statement is
committed individually unless an explicit BEGIN TRANSACTION statement is executed to start a
transaction. In chained mode (chained=On) a transaction is implicitly started before any data retrieval or
modification statement.

checkpoint_time option [database]
Sets the maximum number of minutes that the database server will run without doing a checkpoint.

Allowed values
Integer

Database options

514 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Default
60

Scope
Can be set for the PUBLIC group only. DBA authority required. You must shut down and restart the database
server for the change to take effect.

Remarks
This option is used with the recovery_time option to decide when checkpoints should be done.

See also
● “Understanding the checkpoint log” on page 18
● “recovery_time option [database]” on page 568
● “How the database server decides when to checkpoint” on page 910

cis_option option [database]
Controls whether debugging information for remote data access appears in the database server messages
window.

Allowed values
0, 7

Default
0

Scope
Can be set for an individual connection or for the PUBLIC group.

Remarks
This option controls whether information about how queries are executed on a remote database appears in
the database server messages window when using remote data access. Set this option to 7 to see debugging
information in the database server messages window. When this option is set to 0 (the default), debugging
information for remote data access does not appear in the database server messages window.

Once you have turned on remote tracing, the tracing information appears in the database server messages
window. You can log this output to a file by specifying the -o server option when you start the database
server. See “-o server option” on page 208.

cis_rowset_size option [database]
Sets the number of rows that are returned from remote servers for each fetch.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 515

Allowed values
Integer

Default
50

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect when a new connection is
made to a remote server.

Remarks
This option sets the ODBC FetchArraySize value when using ODBC to connect to a remote database server.

close_on_endtrans option [compatibility]
Controls the closing of cursors at the end of a transaction.

Allowed values
On, Off

Default
On

Off for jConnect connections

Remarks
When close_on_endtrans is set to On, cursors are closed whenever a transaction is committed unless the
cursor was opened WITH HOLD. The behavior when a transaction is rolled back is governed by the
ansi_close_cursors_on_rollback option.

When close_on_endtrans is set to Off, cursors are not closed at either a commit or a rollback, regardless of
the ansi_close_cursors_on_rollback option setting or whether the cursor was opened WITH HOLD or not.

Setting this to Off provides Adaptive Server Enterprise compatible behavior.

See also
● “ansi_close_cursors_on_rollback option [compatibility]” on page 507

collect_statistics_on_dml_updates option [database]
Controls the gathering of statistics during the execution of data-altering DML statements such as INSERT,
DELETE, and UPDATE.

Database options

516 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Allowed values
On, Off

Default
On

Remarks
The database server updates statistics during normal statement execution and uses the gathered statistics to
self-tune the column statistics. Set the collect_statistics_on_dml_updates option to Off to disable the
updating of statistics during the execution of data-altering DML statements such as INSERT, DELETE, and
UPDATE.

Under normal circumstances, it should not be necessary to turn this option off. However, in environments
where significantly large amounts of data are frequently changing, setting this option to Off may improve
performance—assuming update_statistics is also set to On.

The difference between the collect_statistics_on_dml_updates option and the update_statistics option is that
the update_statistics option compares the actual number of rows that satisfy a predicate with the number of
rows that are estimated to satisfy the predicate, and then updates the estimates. The
collect_statistics_on_dml_updates option modifies the column statistics based on the values of the specific
rows that are inserted, updated, or deleted.

See also
● “update_statistics option [database]” on page 589
● “Updating column statistics to improve optimizer performance” [SQL Anywhere Server - SQL Usage]

compression option [SQL Remote]
Sets the level of compression for SQL Remote messages.

Allowed values
Integer, from -1 to 9

Default
6

Remarks
The values have the following meanings:

● -1 Send messages in version 5 format. The Message Agent from version 5 cannot read messages sent
by the Message Agent from version 6 and later. You should ensure that the compression option is set to
-1 until all Message Agents in your system are upgraded to version 6 or later.

● 0 No compression.

● 1 to 9 Increasing degrees of compression. Creating messages with high compression can take longer
than creating messages with low compression.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 517

See also
● “SQL Remote options” [SQL Remote]

conn_auditing option [database]
Controls whether auditing is enabled or disabled for each connection when the auditing option is set to On.

Allowed values
On, Off

Default
On

Scope
Can be set as a temporary option only, for the duration of the current connection. DBA authority required.

Remarks
The setting of the conn_auditing option is only respected when it is set in a login procedure (specified by
the login_procedure database option). Setting conn_auditing to On turns on auditing for the connection.
However, auditing information is not recorded unless the auditing option is also set to On. You can execute
the following statement to determine whether a connection is being audited:

SELECT CONNECTION_PROPERTY ('conn_auditing');

See also
● “Controlling auditing” on page 1074
● “auditing option [database]” on page 511
● “login_procedure option [database]” on page 541

connection_authentication option [database]
Specifies an authentication string that is used to verify the application signature against the database signature
for authenticated applications.

Allowed values
String

Default
Empty string

Scope
Can be set for an individual connection only.

Database options

518 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
This option only takes effect when you are using the OEM Edition of the SQL Anywhere database server.

Authenticated applications must set the connection_authentication database option for every connection
immediately after the connection is established. If the signature is verified, the connection is authenticated
and has no restrictions on its activities beyond those imposed by the SQL permissions. If the signature is not
verified, the connection is limited to those actions permitted by unauthenticated applications.

The connection_authentication option must be set for the duration of the current connection only by using
the TEMPORARY keyword. The following SQL statement authenticates the connection:

SET TEMPORARY OPTION connection_authentication =
 'company = company-name;
 application = application-name;
 signature = application-signature';

The company-name and application-name must match those in the database authentication statement. The
application-signature is the application signature that you obtained from Sybase.

If your company name has quotation marks, apostrophes, or other special characters, you must double them
in the string for it to be accepted.

For more information about configuring and using the OEM Edition of SQL Anywhere, see “Running
authenticated SQL Anywhere applications” on page 76.

See also
● “database_authentication [database]” on page 522

Example
The following example specifies an authentication string that contains special characters:

SET TEMPORARY OPTION connection_authentication=
 'Company = Joe''s Garage;
 Application = Joe''s Program;
 Signature = 0fa55157edb8e14d818e...';

continue_after_raiserror option [compatibility]
Controls behavior following a RAISERROR statement.

Allowed values
On, Off

Default
On

Remarks
The RAISERROR statement is used within procedures and triggers to generate an error. When this option
is set to Off, the execution of the procedure or trigger is stopped whenever the RAISERROR statement is
encountered.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 519

If you set the continue_after_raiserror option to On, the RAISERROR statement no longer signals an
execution-ending error. Instead, the RAISERROR status code and message are stored and the most recent
RAISERROR is returned when the procedure completes. If the procedure that caused the RAISERROR was
called from another procedure, the RAISERROR is not returned until the outermost calling procedure ends.

Intermediate RAISERROR statuses and codes are lost after the procedure ends. If, at return time, an error
occurs along with the RAISERROR, then the information for the new error is returned and the RAISERROR
information is lost. The application can query intermediate RAISERROR statuses by examining the
@@error global variable at different execution points.

The setting of the continue_after_raiserror option is used to control behavior following a RAISERROR
statement only if the on_tsql_error option is set to Conditional (the default). If you set the on_tsql_error
option to Stop or Continue, the on_tsql_error setting takes precedence over the continue_after_raiserror
setting.

See also
● “on_tsql_error option [compatibility]” on page 557

conversion_error option [compatibility]
Controls the reporting of data type conversion failures on fetching information from the database.

Allowed values
On, Off

Default
On

Remarks
This option controls whether data type conversion failures, when data is fetched from the database or inserted
into the database, are reported by the database as errors (conversion_error set to On) or as a warning
(conversion_error set to Off).

When conversion_error is set to On, the SQLE_CONVERSION_ERROR error is generated. If the option
is set to Off, the warning SQLE_CANNOT_CONVERT is produced.

If conversion errors are reported as warnings only, the NULL value is used in place of the value that could
not be converted. In embedded SQL, an indicator variable is set to -2 for the column or columns that cause
the error.

cooperative_commit_timeout option [database]
Governs when a COMMIT entry in the transaction log is written to disk.

Allowed values
Integer, in milliseconds

Database options

520 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Default
250

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately.

Remarks
This option has meaning only when cooperative_commits is set to On. The database server waits for the
specified number of milliseconds for other connections to fill a page of the log before writing to disk. The
default setting is 250 milliseconds.

See also
● “cooperative_commits option [database]” on page 521

cooperative_commits option [database]
Controls when commits are written to disk.

Allowed values
On, Off

Default
On

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately.

Remarks
If cooperative_commits is set to Off, a COMMIT is written to disk when the database server receives it, and
the application is then allowed to continue.

If cooperative_commits is set to On (the default) and if there are other active connections, the database server
does not immediately write the COMMIT to the disk. Instead, the application waits for up to the maximum
length set by the cooperative_commit_timeout option for something else to put on the pages before they are
written to disk.

Setting cooperative_commits to On, and increasing the cooperative_commit_timeout setting, increases
overall database server throughput by cutting down the number of disk I/Os, but at the expense of a longer
turnaround time for each individual connection.

If both cooperative_commits and delayed_commits are set to On, and the cooperative_commit_timeout
interval passes without the pages getting written, the application is resumed (as if the commit had worked),
and the remaining interval (delayed_commit_timeout - cooperative_commit_timeout) is used as a
delayed_commits interval. The pages are then written, even if they are not full.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 521

See also
● “delayed_commits option [database]” on page 528

database_authentication [database]
Sets the authentication string for a database.

Allowed values
String

Default
Empty string

Scope
Can be set for the PUBLIC group only. You must restart the database for this option to take effect.

Remarks
This option only takes effect when you are using the OEM Edition of the SQL Anywhere database server.

When a database is authenticated, only connections that specify the correct authentication signature can
perform operations on the database. Connections that are not authenticated operate in read-only mode. You
must use the OEM Edition of SQL Anywhere if you want to use authenticated databases.

To authenticate a database, set the database_authentication option for the database:

SET OPTION PUBLIC.database_authentication =
 'company = company-name;
 application = application-name;
 signature = database-signature';

The company-name and application-name arguments are the values you supplied to Sybase when obtaining
your signature, and database-signature is the database signature that you received from Sybase.

If your company name has quotation marks, apostrophes, or other special characters, you must double them
in the string for it to be accepted.

When the database server loads an authenticated database, it displays a message in the database server
messages window describing the authenticated company and application. You can check that this message
is present to verify that the database_authentication option has taken effect. The message has the following
form:

This database is licensed for use with:
Application: application-name
Company: company-name

You can store the authentication statement in a SQL script file to avoid having to type in the long signature
repeatedly. If you store the authentication statement in the file install-dir\scripts\authenticate.sql, it is applied
whenever you create, rebuild, or upgrade a database.

For more information about configuring and using the OEM Edition of SQL Anywhere, see “Running
authenticated SQL Anywhere applications” on page 76.

Database options

522 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “connection_authentication option [database]” on page 518

Example
SET OPTION PUBLIC.database_authentication =
 'company = MyCompany;
 application = MySQLAnywhereApp;
 signature = 0fa55157edb8e14d818e';

date_format option [database]
Sets the format for dates retrieved from the database.

For more information about controlling the interpretation of date formats, see “date_order option
[database]” on page 525.

Allowed values
String

Default
'YYYY-MM-DD' (this corresponds to ISO date format specifications)

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately.

Remarks
The format is a string using the following symbols:

Symbol Description

yy Two digit year

yyyy Four digit year

mm Two digit month

mmm[m...] Character short form for months

d Single digit day of week, (1 = Sunday, 7 = Saturday)

dd Two digit day of month

ddd[d...] Character short form for days of the week

jjj Day of the year, from 1 to 366

Each symbol is substituted with the appropriate data for the date that is being formatted.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 523

If the character data is multibyte, the length of each symbol reflects the number of characters, not the number
of bytes. For example, the 'mmm' symbol specifies a length of three characters for the month.

For symbols that represent character data (such as mmm), you can control the case of the output as follows:

● Type the symbol in all uppercase to have the format appear in all uppercase. For example, MMM produces
JAN.

● Type the symbol in all lowercase to have the format appear in all lowercase. For example, mmm produces
jan.

● Type the symbol in mixed case to have SQL Anywhere choose the appropriate case for the language that
is being used. For example, in English, typing Mmm produces May, while in French it produces mai.

For symbols that represent numeric data, you can control zero-padding with the case of the symbols:

● Type the symbol in same-case (such as MM or mm) to allow zero padding. For example, yyyy/mm/dd
could produce 2002/01/01.

● Type the symbol in mixed case (such as Mm) to suppress zero padding. For example, yyyy/Mm/Dd could
produce 2002/1/1.

Note
If you change the setting for date_format in a way that re-orders the date format, be sure to change the
date_order option to reflect the same change, and vice versa. See “date_order option
[database]” on page 525.

See also
● “time_format option [compatibility]” on page 584
● “timestamp_format option [compatibility]” on page 585

Example
The following table illustrates date_format settings, together with the output from the following statement,
executed on Monday, April 14, 2008.

SELECT CAST(CURRENT DATE AS VARCHAR);

date_format CURRENT DATE

yyyy/mm/dd/ddd 2008/04/14/mon

yyyy/Mm/Dd/ddd 2008/4/14/mon

jjj 105

mmm yyyy apr 2008

Mmm yyyy Apr 2008

mm-yyyy 04-2008

Database options

524 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

date_order option [database]
Controls the interpretation of date formats.

For more information about setting the format for dates retrieved from the database, see “date_format option
[database]” on page 523.

Allowed values
MDY, YMD, DMY

Default
YMD (this corresponds to ISO date format specifications)

For Open Client and jConnect connections, the default is set to MDY

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately.

Remarks
The database option date_order is used to determine whether 10/11/12 is Oct 11 1912, Nov 12 1910, or Nov
10 1912.

Note
If you change the setting for date_order in a way that re-orders the date format, be sure to change the
date_format and timestamp_format options to reflect the same change, and vice versa. See “date_format
option [database]” on page 523, and “timestamp_format option [compatibility]” on page 585.

debug_messages option [database]
Controls whether MESSAGE statements that include a DEBUG ONLY clause are executed.

Allowed values
On, Off

Default
Off

Remarks
This option allows you to control the behavior of debugging messages in stored procedures and triggers that
contain a MESSAGE statement with the DEBUG ONLY clause specified. By default, this option is set to
Off and debugging messages do not appear when the MESSAGE statement is executed. By setting
debug_messages to On, you can enable the debugging messages in all stored procedures and triggers.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 525

Note
DEBUG ONLY messages are inexpensive when the debug_messages option is set to Off, so these statements
can usually be left in stored procedures on a production system. However, they should be used sparingly in
locations where they would be executed frequently; otherwise, they may result in a small performance
penalty.

See also
● “MESSAGE statement” [SQL Anywhere Server - SQL Reference]

dedicated_task option [database]
Dedicates a request handling task to handling requests from a single connection.

Allowed values
On, Off

Default
Off

Scope
Can be set as a temporary option only, for the duration of the current connection. DBA authority required.

Remarks
When the dedicated_task connection option is set to On, a request handling task is dedicated exclusively to
handling requests for the connection. By pre-establishing a connection with this option enabled, you will be
able to gather information about the state of the database server if it becomes otherwise unresponsive.

default_dbspace option [database]
Changes the default dbspace in which tables are created.

Allowed values
String.

Default
Empty string

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately.

Database options

526 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
For each database, you can create up to twelve dbspaces in addition to the system (main) dbspace. When a
table is created without specifying a dbspace, the dbspace named by this option setting is used. If this option
is not set, is set to the empty string, or is set to system, then the system dbspace is used.

When you create temporary tables or indexes, they are always placed in the TEMPORARY dbspace,
regardless of the setting of the default_dbspace option. If you specify the IN clause when creating a base
table, the dbspace specified by the IN clause is used, rather than the dbspace specified by the default_dbspace
option.

If all tables are created in a location other than the system dbspace, then the system dbspace is only used for
the checkpoint log and system tables. This is useful if you want to put the checkpoint log on a separate disk
from the rest of your database objects for performance reasons. You can place the checkpoint log in a separate
disk by changing all CREATE TABLE statements to specify the dbspace, or by changing this option before
creating any tables.

See also
● “Using additional dbspaces” on page 25
● “Place different files on different devices” [SQL Anywhere Server - SQL Usage]
● “CREATE DBSPACE statement” [SQL Anywhere Server - SQL Reference]

Example
In the following example, a new dbspace named MyLibrary is created. The default dbspace is then set to the
MyLibrary dbspace and the table LibraryBooks is stored in the MyLibrary dbspace instead of the system
dbspace.

CREATE DBSPACE MyLibrary
AS 'c:\\dbfiles\\library.db';
SET OPTION default_dbspace = 'MyLibrary';
CREATE TABLE LibraryBooks (
 title CHAR(100),
 author CHAR(50),
 isbn CHAR(30),
);

default_timestamp_increment option [database] [MobiLink client]
Specifies the number of microseconds to add to a column of type TIMESTAMP to keep values in the column
unique.

Allowed values
Integer, between 1 and 1000000 inclusive

Default
1

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 527

Remarks
Since a TIMESTAMP value is precise to six decimal places in SQL Anywhere, by default 1 microsecond
(0.000001 of a second) is added to differentiate between two identical TIMESTAMP values.

Some software, such as Microsoft Access, truncates TIMESTAMP values to three decimal places, making
valid comparisons a problem. You can set the truncate_timestamp_values option to On to specify the number
of decimal place values SQL Anywhere stores to maintain compatibility.

For MobiLink synchronization, if you are going to set this option, it must be set prior to performing the first
synchronization.

See also
● “truncate_timestamp_values option [database] [MobiLink client]” on page 586

delayed_commit_timeout option [database]
Specifies the maximum delay between an application executing a COMMIT and the COMMIT actually
being written to disk when the delayed_commits option is set to On.

Allowed values
Integer, in milliseconds

Default
500

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately.

Remarks
This option has meaning only when delayed_commits is set to On. it governs when a COMMIT entry in the
transaction log is written to disk. With delayed_commits set to On, the database server waits for the number
of milliseconds set in the delayed_commit_timeout option for other connections to fill a page of the log
before writing the current page contents to disk. See “delayed_commits option [database]” on page 528.

delayed_commits option [database]
Determines when the database server returns control to an application following a COMMIT.

Allowed values
On, Off

Default
Off (this corresponds to ISO COMMIT behavior)

Database options

528 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately.

Remarks
When set to On, the database server replies to a COMMIT statement immediately instead of waiting until
the transaction log entry for the COMMIT has been written to disk. When set to Off, the application must
wait until the COMMIT is written to disk.

When this option is On, the log is written to disk when the log page is full or according to the
delayed_commit_timeout option setting, whichever is first. There is a slight chance that a transaction may
be lost even though committed if a system failure occurs after the database server replies to a COMMIT, but
before the page is written to disk. Setting delayed_commits to On, and the delayed_commit_timeout option
to a high value, promotes a quick response time at the slight risk of losing a committed transaction during
recovery.

If both cooperative_commits and delayed_commits are set to On, and if the cooperative_commit_timeout
interval passes without the pages getting written, the application is resumed (as if the commit had worked),
and the remaining interval (delayed_commit_timeout - cooperative_commit_timeout) is used as a
delayed_commits interval after which the pages will be written, even if they are not full.

See also
● “cooperative_commit_timeout option [database]” on page 520
● “cooperative_commits option [database]” on page 521
● “delayed_commit_timeout option [database]” on page 528

delete_old_logs option [MobiLink client] [SQL Remote] [Replication
Agent]

Controls whether transaction logs are deleted when their transactions have been replicated or synchronized.

Allowed values
On, Off, Delay, n days

Default
Off

Remarks
This option is used by SQL Anywhere MobiLink clients, by SQL Remote, and by the SQL Anywhere
Replication Agent. The default setting is Off. When it is set to On, each old transaction log is deleted when
all the changes it contains have been replicated or synchronized successfully. When it is set to DELAY, each
old transaction log with a file name indicating that it was created on the current day is not deleted, even if
all changes have been sent and confirmed. When it is set to n days, logs that were created before n days ago
are deleted.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 529

For more information about how to use the delete_old_logs option in conjunction with the BACKUP
statement to delete old copies of transaction logs, see “BACKUP statement” [SQL Anywhere Server - SQL
Reference].

Example
If, on January 18 you run dbmlsync against a remote database that has set the delete_old_logs option to 10
days, dbmlsync deletes offline transaction logs that were created on or before January 7. The remote database
would set the option as follows:

SET OPTION delete_old_logs = '10 days';

See also
● “SQL Anywhere client logging” [MobiLink - Client Administration]
● “MirrorLogDirectory (mld) extended option” [MobiLink - Client Administration]
● “SQL Remote options” [SQL Remote]

escape_character option [compatibility]
This option is reserved for system use. Do not change the setting of this option.

exclude_operators option [database]
This option is reserved for system use. Do not change the setting of this option.

extended_join_syntax option [database]
Controls whether queries with duplicate correlation names syntax for multi-table joins are allowed, or
reported as an error.

Allowed values
On, Off

Default
On

Remarks
If this option is set to On, then SQL Anywhere allows duplicate correlation names to be used in the null-
supplying side of outer joins. All tables or views specified with the same correlation name are interpreted
as the same instance of the table or view.

The following FROM clause illustrates the SQL Anywhere interpretation of a join using duplicate correlation
names where C1 and C2 are search conditions:

(R left outer join T on (C1), T join S on (C2))

Database options

530 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

If the option is set to On, this join is interpreted as follows:

(R left outer join T on (C1)) join S on (C2)

If the option is set to Off, the following error is generated:

SQL Anywhere Error -137: Table 'T' requires a unique correlation name.

Note
To see the result of eliminating duplicate correlation names, you can view the rewritten statement using the
REWRITE function with the second argument set to ANSI.

See also
● “REWRITE function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]

external_remote_options [SQL Remote]
Indicates where the message link parameters should be stored.

Allowed values
On, Off

Default
Off

Remarks
This option is used by SQL Remote to indicate whether the message link parameters should be stored in the
database (Off) or externally (On).

fire_triggers option [compatibility]
Controls whether triggers are fired in the database.

Allowed values
On, Off

Default
On

Remarks
When set to On, triggers are fired. When set to Off, no triggers are fired, including referential integrity
triggers (such as cascading updates and deletes). Only a user with DBA authority can set this option. The
option is overridden by the -gf option, which turns off all trigger firing regardless of the fire_triggers setting.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 531

This option is relevant when replicating data from Adaptive Server Enterprise to SQL Anywhere because
all actions from Adaptive Server Enterprise transaction logs are replicated to SQL Anywhere, including
actions performed by triggers.

See also
● “-gf server option” on page 191
● “Introduction to triggers” [SQL Anywhere Server - SQL Usage]

first_day_of_week option [database]
Sets the numbering of the days of the week.

Allowed values
1, 2, 3, 4, 5, 6, 7

Default
7 (Sunday is the first day of the week)

Remarks
The values have the following meaning:

Value Meaning

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

7 Sunday

The value specified by this option affects the result of the DATEPART function when obtaining a weekday
value. You can also change the first day of week using the DATEFIRST option in the SET statement.

The value specified by this option does not affect the result of the DOW function. For example, even if the
first day of the week is set to Monday, the DOW function returns a 2 for Monday.

See also
● “DATEPART function [Date and time]” [SQL Anywhere Server - SQL Reference]
● “SET statement [T-SQL]” [SQL Anywhere Server - SQL Reference]

Database options

532 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

for_xml_null_treatment option [database]
Controls the treatment of NULL values in queries that use the FOR XML clause.

Allowed values
Empty, Omit

Default
Omit

Remarks
If you execute a query that includes the FOR XML clause, the for_xml_null_treatment option determines
how NULL values are treated. By default, elements and attributes that contain NULL values are omitted
from the result. Setting this option to Empty generates empty elements or attributes if the value is NULL.

See also
● “Using the FOR XML clause to retrieve query results as XML” [SQL Anywhere Server - SQL Usage]
● “SELECT statement” [SQL Anywhere Server - SQL Reference]

force_view_creation option [database]
This option is reserved for system use. Do not change the setting of this option.

Caution
The force_view_creation option should only be used within a reload.sql script. This option is used by the
Unload utility (dbunload) and should not be set explicitly.

global_database_id option [database]
Controls the range of values for columns created with DEFAULT GLOBAL AUTOINCREMENT. For use
in generating unique primary keys in a replication environment.

Allowed values
Non-negative integer

Default
2147483647

Scope
Can be set for the PUBLIC group only. DBA authority required.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 533

Remarks
The value you specify for this option is the starting value. For columns created with DEFAULT GLOBAL
AUTOINCREMENT, when a row is inserted into the table that does not include a value for the DEFAULT
GLOBAL AUTOINCREMENT column, the database server generates a value for the column. The value is
determined by the global_database_id value and the partition size for the column.

Setting global_database_id to the default value indicates that DEFAULT GLOBAL AUTOINCREMENT
is disabled. In this case NULL is generated as a default.

You can find the value of the option in the current database using the following statement:

SELECT DB_PROPERTY('GlobalDBID');

This feature is of particular use in replication environments to ensure unique primary keys.

See also
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● GlobalDBID property: “Database properties” on page 639
● MobiLink: “Setting the global database ID” [MobiLink - Server Administration]
● SQL Remote: “Duplicate primary key errors” [SQL Remote]
● “Reloading tables with autoincrement columns” [SQL Anywhere 11 - Changes and Upgrading]

Example
The following example sets the database identification number to 100.

SET OPTION PUBLIC.global_database_id = '100';

http_session_timeout option [database]
Specify the amount of time, in minutes, that the client waits for an HTTP session to time out before giving
up.

Allowed values
Integer (1 to 525600)

Default
30

Scope
Can be set for the PUBLIC group only. DBA authority required.

Remarks
This option provides variable session timeout control for web service applications. A web service application
can change the timeout value from within any request that owns the HTTP session, but a change to the
timeout value can impact subsequent queued requests if the HTTP session times out. The web application
must include logic to detect whether a client is attempting to access an HTTP session that no longer exists.
This can be done by examining the value of the SessionCreateTime connection property to determine whether

Database options

534 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

a timestamp is valid: if the HTTP request is not associated with the current HTTP session, then the
SessionCreateTime connection property contains an empty string.

If you need a connection to persist for the duration of the HTTP session, it is recommended that you use the
SessionTimeout option in the sa_set_http_option system procedure. See “sa_set_http_option system
procedure” [SQL Anywhere Server - SQL Reference].

See also
● SessionTimeout, SessionCreateTime, and http_session_timeout properties: “Connection

properties” on page 598
● “sa_set_http_option system procedure” [SQL Anywhere Server - SQL Reference]
● “Using HTTP sessions” [SQL Anywhere Server - Programming]

integrated_server_name option [database]
Specifies the name of the Domain Controller server used for looking up Windows user group membership
for integrated logins.

Allowed values
String

Default
NULL

Scope
Can be set for the PUBLIC group only. DBA authority required.

Remarks
This option allows a user with DBA authority to specify the name of the Domain Controller server that is
used to look up group membership when using Windows user groups for integrated logins. By default, the
computer that SQL Anywhere is running on is used for verifying group membership.

See also
● “Creating integrated logins for Windows user groups” on page 109
● “GRANT statement” [SQL Anywhere Server - SQL Reference]

Example
The following example specifies that group membership is verified on the computer server-1.

SET OPTION PUBLIC.integrated_server_name = '\\server-1';

isolation_level option [database] [compatibility]
Controls the locking isolation level.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 535

Allowed values
0, 1, 2, 3, snapshot, statement-snapshot, readonly-statement-snapshot

Default
0

1 for Open Client, jConnect, and TDS connections

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately.

Remarks
This option controls the locking isolation level as follows:

● 0 Allow dirty reads, non-repeatable reads, and phantom rows.

● 1 Prevent dirty reads. Allow non-repeatable reads and phantom rows.

● 2 Prevent dirty reads and non-repeatable reads. Allow phantom rows.

● 3 Serializable. Prevent dirty reads, non-repeatable reads, and phantom rows.

● snapshot Use a snapshot of committed data from the time when the first row is read or updated by
the transaction.

● statement-snapshot For each statement, use a snapshot of committed data from the time when the
first row is read from the database. Non-repeatable reads and phantom rows can occur within a
transaction, but not within a single statement.

● readonly-statement-snapshot For read-only statements, use a snapshot of committed data from
the time when the first row is read from the database. Non-repeatable reads and phantom rows can occur
within a transaction, but not within a single statement. For updatable statements, use the isolation level
specified by the updatable_statement_isolation option (can be one of 0 (the default), 1, 2, or 3).

For more details about supported isolation levels, see “Isolation levels and consistency” [SQL Anywhere
Server - SQL Usage].

The allow_snapshot_isolation option must be set to On to use the snapshot, statement-snapshot, or readonly-
statement-snapshot settings.

If you are using the iAnywhere JDBC driver, the default isolation level is 0.

Queries running at isolation level snapshot, statement-snapshot, or readonly-statement-snapshot see a
snapshot of a committed state of the database.

Database options

536 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

You can override any temporary or public settings for this option within individual INSERT, UPDATE,
DELETE, SELECT, UNION, EXCEPT, and INTERSECT statements by including an OPTION clause in
the statement. See:

● “INSERT statement” [SQL Anywhere Server - SQL Reference]
● “UPDATE statement” [SQL Anywhere Server - SQL Reference]
● “DELETE statement” [SQL Anywhere Server - SQL Reference]
● “SELECT statement” [SQL Anywhere Server - SQL Reference]
● “UNION clause” [SQL Anywhere Server - SQL Reference]
● “EXCEPT clause” [SQL Anywhere Server - SQL Reference]
● “INTERSECT clause” [SQL Anywhere Server - SQL Reference]

See also
● “allow_snapshot_isolation option [database]” on page 504
● “updatable_statement_isolation option [database]” on page 588
● “Snapshot isolation” [SQL Anywhere Server - SQL Usage]
● “Isolation levels and consistency” [SQL Anywhere Server - SQL Usage]
● “Choosing isolation levels” [SQL Anywhere Server - SQL Usage]

java_location option [database]
Specifies the path of the Java VM for the database.

Allowed values
String

Default
Empty string

Scope
Can be set for the PUBLIC group only. DBA authority required.

Remarks
By default, this option contains an empty string. In this case, the database server searches the JAVA_HOME
environment variable, the path, and other locations for the Java VM. The JavaVM database property allows
you to query which Java VM the database server will use if the java_location option is not set.

See also
● “java_main_userid option [database]” on page 538
● “java_vm_options option [database]” on page 538
● JavaVM property: “Database properties” on page 639
● “Choosing a Java VM” [SQL Anywhere Server - Programming]

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 537

java_main_userid option [database]
Specifies the database user whose connection can be used for installing classes and other Java-related
administrative tasks.

Allowed values
String

Default
DBA user (the default user created when the database is initialized)

Scope
Can be set for the PUBLIC group only. DBA authority required.

Remarks
The specified user ID should have DBA authority so they can perform the required operations. The password
for this user is not required.

See also
● “java_location option [database]” on page 537
● “java_vm_options option [database]” on page 538
● “Choosing a Java VM” [SQL Anywhere Server - Programming]

java_vm_options option [database]
Specifies command line options that the database server uses when it launches the Java VM.

Allowed values
String

Default
Empty string

Scope
Can be set for the PUBLIC group only. DBA authority required.

Remarks
This option lets you specify options that the database server uses when launching the Java VM specified by
the java_location option. These additional options can be used to set up the Java VM for debugging purposes
or to run as a service on Unix platforms. In some cases, additional options are required to use the Java VM
in 64-bit mode instead of 32-bit mode.

Database options

538 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “java_location option [database]” on page 537
● “java_main_userid option [database]” on page 538
● “Choosing a Java VM” [SQL Anywhere Server - Programming]

Example
The following example uses the java_vm_options option to keep the Java VM running on Unix when the
database server is started as a service and the user needs to log out:

SET OPTION PUBLIC.java_vm_options = '-Xrs';

The following example instructs the Java VM to use 64-bit mode on HP-UX:

SET OPTION PUBLIC.java_vm_options = '-d64';

log_deadlocks option [database]
Controls whether deadlock reporting is turned on or off.

Allowed values
On, Off

Default
Off

Scope
Can be set for the PUBLIC group only. DBA authority required. Takes effect immediately.

Remarks
When this option is set to On, the database server logs information about deadlocks in an internal buffer.
The size of the buffer is fixed at 10000 bytes. You can view the deadlock information using the
sa_report_deadlocks stored procedure. The contents of the buffer are cleared when this option is set to Off.

When deadlock occurs, information is reported for only those connections involved in the deadlock. The
order in which connections are reported is based on which connection is waiting for which row. For thread
deadlocks, information is reported about all connections.

When you have deadlock reporting turned on, you can also use the Deadlock system event to take action
when a deadlock occurs. See “Understanding system events” on page 926.

See also
● “sa_report_deadlocks system procedure” [SQL Anywhere Server - SQL Reference]
● “Determining who is blocked” [SQL Anywhere Server - SQL Usage]
● “Tutorial: Diagnosing deadlocks” [SQL Anywhere Server - SQL Usage]

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 539

login_mode option [database]
Controls the use of integrated and Kerberos logins for the database.

Allowed values
One or more of: Standard, Integrated, Kerberos, Mixed (deprecated)

Default
Standard

Scope
Can be set for the PUBLIC group only. DBA authority required. Takes effect immediately.

Remarks
This option specifies whether standard, integrated, and Kerberos logins are permitted. One or more of the
following login modes are accepted (the values are case insensitive):

● Standard Standard logins are permitted. This is the default setting. Standard connection logins must
supply both a user ID and password, and do not use the Integrated or Kerberos connection parameters.

● Integrated Integrated logins are permitted.

● Kerberos Kerberos logins are permitted.

● Mixed (deprecated) This is equivalent to specifying Standard,Integrated.

If you specify multiple login modes, the database server allows all the specified modes.

Caution
Setting the login_mode database option to not allow Standard logins restricts connections to only those users
or groups who have been granted an integrated or Kerberos login mapping. Attempting to connect with a
user ID and password generates an error. The only exceptions to this are users with DBA authority.

You can specify multiple values in a comma-separated list. This list cannot contain white space. For example,
the following setting allows both standard and integrated logins:

SET OPTION PUBLIC.login_mode = 'Standard,Integrated';
If a database file is not secured and can be copied by unauthorized users, the temporary public login_mode
option should be used (both for integrated and Kerberos logins). This way, integrated and Kerberos logins
are not supported by default if the file is copied.

See also
● “Using integrated logins” on page 106
● “Kerberos authentication” on page 114
● “Security concerns: Copied database files” on page 123

Example
Enable only integrated logins (standard logins and Kerberos logins fail):

Database options

540 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SET OPTION PUBLIC.login_mode = 'Integrated';

Enable standard and Kerberos logins (integrated logins fail):

SET OPTION PUBLIC.login_mode = 'Standard,Kerberos';

Enable standard, integrated, and Kerberos logins:

SET OPTION PUBLIC.login_mode = 'Standard,Integrated,Kerberos';

login_procedure option [database]
Specifies a login procedure that sets connection compatibility options at startup.

Allowed values
String

Default
sp_login_environment system procedure

Scope
DBA authority required.

Remarks
This login procedure calls the sp_login_environment procedure at run time to determine the database
connection settings. The login procedure is called after all the checks have been performed to verify that the
connection is valid. The procedure specified by the login_procedure option is not executed for event
connections.

You can customize the default database option settings by creating a new procedure and setting
login_procedure to call the new procedure. This custom procedure needs to call either sp_login_environment
or detect when a TDS connection occurs (see the default sp_login_environment code) and call
sp_tsql_environment directly. Failure to do so can break TDS-based connections. You should not edit either
sp_login_environment or sp_tsql_environment.

A password expired error message with SQLSTATE 08WA0 can be signaled by a user defined login
procedure to indicate to a user that their password has expired. Signaling the error allows applications to
check for the error and process expired passwords. It is recommended that you use a login policy to implement
password expiry and not a login procedure that returns the expired password error message.

If you use the NewPassword=* connection parameter, signaling this error is required for the client libraries
to prompt for a new password. If the procedure signals SQLSTATE 28000 (invalid user ID or password) or
SQLSTATE 08WA0 (expired password), or the procedure raises an error with RAISERROR, the login fails
and an error is returned to the user. If you signal any other error or if another error occurs, then the user login
is successful and a message is written to the database server message log.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 541

See also
● “post_login_procedure option [database]” on page 561
● “sp_login_environment system procedure” [SQL Anywhere Server - SQL Reference]
● “sp_tsql_environment system procedure” [SQL Anywhere Server - SQL Reference]
● “Increasing password security” on page 1068
● “NewPassword connection parameter [NEWPWD]” on page 290
● “CREATE PROCEDURE statement (web services)” [SQL Anywhere Server - SQL Reference]

Example
The following example shows how you can disallow a connection by signaling the INVALID_LOGON
error.

CREATE PROCEDURE DBA.login_check()
 BEGIN
 DECLARE INVALID_LOGON EXCEPTION FOR SQLSTATE '28000';
 // Allow a maximum of 3 concurrent connections
 IF(DB_PROPERTY('ConnCount') > 3) THEN
 SIGNAL INVALID_LOGON;
 ELSE
 CALL sp_login_environment;
 END IF;
 END
go
GRANT EXECUTE ON DBA.login_check TO PUBLIC
go
SET OPTION PUBLIC.login_procedure='DBA.login_check'
go

For more information about an alternate way to disallow connections, see “RAISERROR statement” [SQL
Anywhere Server - SQL Reference].

The following example shows how you can block connection attempts if the number of failed connections
for a user exceeds 3 within a 30 minute period. All blocked attempts during the block out period receive an
invalid password error and are logged as failures. The log is kept long enough for a DBA to analyze it.

CREATE TABLE DBA.ConnectionFailure(
 pk INT PRIMARY KEY DEFAULT AUTOINCREMENT,
 user_name CHAR(128) NOT NULL,
 tm TIMESTAMP NOT NULL DEFAULT CURRENT TIMESTAMP
)
go
CREATE INDEX ConnFailTime ON DBA.ConnectionFailure(
 user_name, tm)
go
CREATE EVENT ConnFail TYPE ConnectFailed
HANDLER
BEGIN
 DECLARE usr CHAR(128);
 SET usr = event_parameter('User');
 // Put a limit on the number of failures logged.
 IF (SELECT COUNT(*) FROM DBA.ConnectionFailure
 WHERE user_name = usr
 AND tm >= DATEADD(minute, -30,

Database options

542 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 CURRENT TIMESTAMP)) < 20 THEN
 INSERT INTO DBA.ConnectionFailure(user_name)
 VALUES(usr);
 COMMIT;
 // Delete failures older than 7 days.
 DELETE DBA.ConnectionFailure
 WHERE user_name = usr
 AND tm < dateadd(day, -7, CURRENT TIMESTAMP);
 COMMIT;
 END IF;
END
go
CREATE PROCEDURE DBA.login_check()
BEGIN
 DECLARE usr CHAR(128);
 DECLARE INVALID_LOGON EXCEPTION FOR SQLSTATE '28000';
 SET usr = CONNECTION_PROPERTY('Userid');
 // Block connection attempts from this user
 // if 3 or more failed connection attempts have occurred
 // within the past 30 minutes.
 IF (SELECT COUNT(*) FROM DBA.ConnectionFailure
 WHERE user_name = usr
 AND tm >= DATEADD(minute, -30,
 CURRENT TIMESTAMP)) >= 3 THEN
 SIGNAL INVALID_LOGON;
 ELSE
 CALL sp_login_environment;
 END IF;
END
go
GRANT EXECUTE ON DBA.login_check TO PUBLIC
go
SET OPTION PUBLIC.login_procedure='DBA.login_check'
go

The following example shows how to signal the Password has expired message. It is recommended
that you use a login policy to implement password expiry notification.

CREATE PROCEDURE DBA.check_expired_login()
BEGIN
 DECLARE PASSWORD_EXPIRED EXCEPTION FOR SQLSTATE '08WA0';
 IF(condition-to-check-for-expired-password) THEN
 SIGNAL PASSWORD_EXPIRED;
 ELSE
 CALL sp_login_environment;
 END IF;
END;

For information about login policies, see “Managing login policies overview” on page 440.

materialized_view_optimization option [database]
Controls how materialized views are used by the optimizer to answer queries efficiently.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 543

Allowed values
Disabled, Fresh, Stale, N { Minute[s] | Hour[s] | Day[s] | Week[s] | Month[s] }

Default
Stale

Scope
Can be set for an individual connection, for an individual user, or for the PUBLIC group. Takes effect
immediately.

Remarks
The materialized_view_optimization option lets you specify the circumstances under which the optimizer
can use stale materialized views.

Data in a materialized view becomes stale when data in any of the base tables referenced by the materialized
view is updated. You should consider the acceptable degree of data staleness when deciding the refresh
frequency for the materialized view, and the time it takes to refresh the view, since the view is not available
for querying during the refresh process. You should also consider whether it is acceptable for the database
server to return results that may not reflect the current state of the database. You can choose from the
following settings for this option:

● Disabled Do not use materialized views for query optimization.

● Fresh Use a materialized view only if it is fresh (data in underlying tables has not been modified since
the view was last refreshed).

● Stale Use materialized views even if they are stale. This is the default setting.

● N { Minute[s] | Hour[s] | Day[s] | Week[s] | Month[s] } Use fresh and stale materialized views, as
long as the stale materialized views have been refreshed within the specified time period. Values specified
in minutes must be less than 231 minutes. The database server treats a week as 7 days and a month as 30
days.

When a query directly references a materialized view, the view is used regardless of staleness; the
materialized_view_optimization option has no effect in this case.

max_client_statements_cached option [database]
Controls the number of statements cached by the client.

Allowed values
Integer, 0 to 100

Scope
Can be set for an individual connection or for the PUBLIC group. Changing the value takes effect
immediately.

Database options

544 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Default
10

Description

Client statement caching reduces database requests and statement prepares when identical SQL statements
are prepared multiple times. When the same SQL text is prepared and dropped repeatedly, the client caches
the statement, leaving it prepared on the database server, even after it has been dropped by the application.
Caching the statement saves the database server the extra work of dropping and re-preparing the statement.
If a schema change occurs, a database option setting changes, or a DROP VARIABLE statement is executed,
the prepared statement is dropped automatically and is prepared again the next time the SQL statement is
executed, ensuring that a cached statement that could cause incorrect behavior is never reused.

This option specifies the maximum number of statements that can remain prepared (cached). Cached
statements are not counted toward the max_statement_count resource governor.

The setting of this option applies to connections made using embedded SQL, ODBC, OLE DB, ADO.NET,
and the iAnywhere JDBC driver. It does not apply to Open Client, jConnect, or HTTP connections.

Setting this option to 0 disables client statement caching. Increasing this value has the potential to improve
performance if the application is repeatedly preparing and dropping more than ten of the same SQL
statements. For example, if an application loops through twenty-five SQL statements, preparing and dropping
them each iteration through the loop, and each iteration each of these SQL statements have the exact same
text, setting this option to 25 may improve performance.

Increasing the value of this option increases memory use on the client and places more cache pressure on
the database server. If a significant number of cached statements cannot be reused because of schema changes
or option settings, statement caching is disabled automatically for the connection. If statement caching is
automatically turned off, the client periodically turns statement caching on again to re-evaluate the decision
and determine whether re-enabling statement caching would be beneficial.

See also
● “max_statement_count option [database]” on page 549
● ClientStmtCacheHits and ClientStmtCacheMisses properties: “Connection properties” on page 598
● ClientStmtCacheHits and ClientStmtCacheMisses properties: “Database server

properties” on page 624

max_cursor_count option [database]
Controls a resource governor that limits the maximum number of cursors that a connection can use at once.

Allowed values
Integer

Default
50

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 545

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately. DBA authority
required to set this option for any connection.

Remarks
This resource governor allows a DBA to limit the number of cursors per connection that a user can use. If
an operation would exceed the limit for a connection, an error is generated, indicating that the governor for
the resource has been exceeded.

If a connection executes a stored procedure, that procedure is executed under the permissions of the procedure
owner. However, the resources used by the procedure are assigned to the current connection.

You can remove resource limits by setting the option to 0 (zero).

max_plans_cached option [database]
Specifies the maximum number of execution plans to be stored in a cache.

Allowed values
Integer

Default
20

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately. DBA authority
required to set this option for the PUBLIC group.

Remarks
This option specifies the maximum number of plans cached for each connection. The optimizer caches the
execution plan for queries, INSERT, UPDATE, and DELETE statements that are performed inside stored
procedures, functions, and triggers. After a statement in a stored procedure, stored function, or trigger is
executed several times by a connection, the optimizer builds a reusable plan for the statement.

Reusable plans do not use the values of host variables for selectivity estimation or rewrite optimizations. As
a result of this, the reusable plan can have a higher cost than if the statement was re-optimized. When the
cost of the reusable plan is close to the best observed cost for a statement, the optimizer adds the plan to the
plan cache.

The cache is cleared when you execute statements, such as CREATE TABLE and DROP TABLE, that
modify the table schema. Statements that reference declared temporary tables are not cached.

Setting this option to 0 disables plan caching.

See also
● “Plan caching” [SQL Anywhere Server - SQL Usage]
● max_plans_cached property: “Connection properties” on page 598

Database options

546 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

max_priority option [database]
Controls the maximum priority level for connections.

Allowed values
Critical, High, Above Normal, Normal, Below normal, Low, Background

Default
Normal

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately. DBA authority
required.

If you set this option temporarily, that setting applies to the current connection only. Different connections
under the same user ID can have different settings for this option.

Remarks
The scheduling of different priority levels allows all requests to get some CPU time, regardless of the priority
level of the request. Higher priority requests get more time slices than lower priority ones.

See also
● “priority option [database]” on page 565

max_query_tasks option [database]
Specifies the maximum number of server tasks that the database server can use to process a query in parallel.

Allowed values
Integer

Default
0

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately.

Remarks
The max_query_tasks option sets the maximum level of parallelism that can be used for any SQL statement.
The option sets the number of database server tasks that can be used to process a query in parallel. The
default value is 0, which allows the database server to use as many tasks as it chooses. Any other value for
the max_query_tasks option sets the maximum number of tasks allowed per query. Setting the
max_query_tasks option to 1 disables intra-query parallelism.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 547

For more information about server tasks, threads, and query execution, see “Threading in SQL
Anywhere” on page 50 and “Setting the database server's multiprogramming level” on page 53.

The number of tasks the database server can use for all requests is limited by the threshold set using the -gn
option at startup. This number is a global maximum for all databases and connections serviced by that server.
The number of tasks used for a request is also limited by the number of logical processors available to the
database server. For example, setting the processor concurrency to 1 with the -gtc option disables intra-query
parallelism.

When enabled, intra-query parallelism is used to process SELECT statements that meet certain
qualifications. The presence of an exchange operator in the access plan for a query indicates that intra-query
parallelism was used.

You can override any temporary or public settings for this option within individual INSERT, UPDATE,
DELETE, SELECT, UNION, EXCEPT, and INTERSECT statements by including an OPTION clause in
the statement. See:

● “INSERT statement” [SQL Anywhere Server - SQL Reference]
● “UPDATE statement” [SQL Anywhere Server - SQL Reference]
● “DELETE statement” [SQL Anywhere Server - SQL Reference]
● “SELECT statement” [SQL Anywhere Server - SQL Reference]
● “UNION clause” [SQL Anywhere Server - SQL Reference]
● “EXCEPT clause” [SQL Anywhere Server - SQL Reference]
● “INTERSECT clause” [SQL Anywhere Server - SQL Reference]

See also
● “-gn server option” on page 193
● “-gt server option” on page 196
● “-gtc server option” on page 197
● “Parallelism during query execution” [SQL Anywhere Server - SQL Usage]
● max_query_tasks property: “Database server properties” on page 624

max_recursive_iterations option [database]
Limits the maximum number of iterations a recursive common table expression can make.

Allowed values
Integer

Default
100

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately. DBA authority
required to set this option for the PUBLIC group.

Database options

548 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
Computation of a recursive common table expression aborts and an error is generated if the computation
fails to complete within the specified number of iterations. Recursive subqueries often increase geometrically
in the amount of resources required for each additional iteration. Set this option to limit the amount of time
and resources that will be consumed before infinite recursion is detected, yet permit your recursive common
table expressions to work as intended.

Setting this option to 0 disables recursive common table expressions.

See also
● “Common table expressions” [SQL Anywhere Server - SQL Usage]

max_statement_count option [database]
Controls a resource governor that limits the maximum number of prepared statements that a connection can
use simultaneously.

Allowed values
Integer

Default
50

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately. DBA authority
required to set this option for any connection.

Remarks
Applications that use prepared statements can receive the error "Resource governor for 'prepared statements'
exceeded" if the prepared statements are not explicitly dropped once they are no longer required. The
max_statement_count database option is a resource governor that allows a DBA to limit the number of
prepared statements used per connection. If an operation would exceed the limit for a connection, an error
is generated, indicating that the governor for the resource has been exceeded.

If a connection executes a stored procedure, that procedure is executed under the permissions of the procedure
owner. However, the resources used by the procedure are assigned to the current connection.

The database server maintains data structures for each prepared statement a connection creates. These
structures are only freed when the application signals to the database server that the prepared statements are
no longer needed or if the connection disconnects. To reduce the statement count for a connection, you must
execute the equivalent of a DROP STATEMENT request. The following table lists the commands you can
execute for the APIs supported by SQL Anywhere:

Interface Statement

ADO RecordSet.Close

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 549

Interface Statement

ADO.NET SADataReader.Close or SADataReader.Dispose

embedded SQL DROP STATEMENT

Java resultSet.Close, Statement.Close

ODBC SQLFreeStmt(hstmt, SQL_DROP) or SQLFreeHandle(SQL_HAN-
DLE_STMT, hstmt)

Note
In Java and .NET, it is recommended that you drop statements explicitly. You should not rely on garbage
collection to perform this cleanup because the language routines do not issue server calls to deallocate the
statement resources. In addition, there is no guarantee of when the garbage collection routines will execute.

If a server needs to support more than the default number of prepared statements at any one time for any one
connection, then the max_statement_count setting should be set to a higher value. Note, however, that larger
numbers of active prepared statements consume additional server memory. You can disable the prepared
statement resource governor entirely by setting the max_statement_count option to 0 (zero), but this is not
recommended. Doing so makes the database server vulnerable to shutting down with an out-of-memory
condition for applications that do not properly free prepared statements.

See also
● “Preparing statements” [SQL Anywhere Server - Programming]
● “DROP STATEMENT statement [ESQL]” [SQL Anywhere Server - SQL Reference]

max_temp_space option [database]
Controls the maximum amount of temporary file space a connection can use.

Allowed values
Integer [k | m | g | p]

Default
0

Scope
Can be set for a temporary option for the duration of the current connection or for the PUBLIC group. Takes
effect immediately. DBA authority required.

Remarks
This option allows you to specify the maximum amount of temporary file space a connection can use before
the request fails because it exceeds the temporary file space limit. The temp_space_limit_check option must
be set to On (the default) for the max_temp_space option to take effect.

Database options

550 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The default value 0 indicates that there is no fixed limit on the amount of temporary file space a connection
can request. Any other value specifies the number of bytes of temporary file space a connection can use.
You can use k, m, or g to specify units of kilobytes, megabytes, or gigabytes, respectively. If you use p, the
argument is a percentage of the total amount of temporary file space available.

For connections that request temporary file space, the database server checks the limit against the setting of
the max_temp_space option to make sure the request is under the maximum size. If the connection requests
more temporary space than is allowed, the request fails and the error SQLSTATE_TEMP_SPACE_LIMIT
is generated.

Can be set for an individual connection or for the PUBLIC group. Takes effect immediately. DBA authority
required to set this option for the PUBLIC group.

See also
● “temp_space_limit_check option [database]” on page 583
● “sa_disk_free_space system procedure” [SQL Anywhere Server - SQL Reference]

Example
Set a 1 GB limit for a connection:

SET OPTION PUBLIC.max_temp_space = '1g';

Both of the following statements set a 1 MB limit for a connection:

SET OPTION PUBLIC.max_temp_space = 1048576;
SET OPTION PUBLIC.max_temp_space = '1m';

Use five percent of the total temporary space available:

SET OPTION PUBLIC.max_temp_space = '5p';

min_password_length option [database]
Sets the minimum length for new passwords in the database.

Allowed values
Integer

The value is in bytes. For single-byte character sets, this is the same as the number of characters.

Default
0 characters

Scope
Can only be set for the PUBLIC group. Takes effect immediately. DBA authority required.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 551

Remarks
This option allows the database administrator to impose a minimum length on all new passwords for greater
security. Existing passwords are not affected. Passwords have a maximum length of 255 bytes and are case
sensitive.

See also
● “verify_password_function option [database]” on page 591

Example
Set the minimum length for new passwords to 6 bytes.

SET OPTION PUBLIC.min_password_length = 6;

nearest_century option [compatibility]
Controls the interpretation of two-digit years in string-to-date conversions.

Allowed values
Integer, between 0 and 100 inclusive

Default
50

Remarks
This option controls the handling of two-digit years when converting from strings to dates or timestamps.

The nearest_century setting is a numeric value that acts as a rollover point. Two digit years less than the
value are converted to 20yy, while years greater than or equal to the value are converted to 19yy.

The historical SQL Anywhere behavior is to add 1900 to the year. Adaptive Server Enterprise behavior is
to use the nearest century, so for any year where value yy is less than 50, the year is set to 20yy.

non_keywords option [compatibility]
Turns off individual keywords, allowing their use as identifiers.

Allowed values
String

Default
Empty string

Remarks
This option turns off individual keywords. This provides a way of ensuring that applications created with
older versions of the product are not broken by new keywords. If you have an identifier in your database

Database options

552 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

that is now a keyword, you can either add double quotes around the identifier in all applications or scripts,
or turn off the keyword using the non_keywords option.

The following statement prevents TRUNCATE and SYNCHRONIZE from being recognized as keywords:

SET OPTION non_keywords = 'TRUNCATE, SYNCHRONIZE';

Each new setting of this option replaces the previous setting. The following statement clears all previous
settings.

SET OPTION non_keywords =;

A side-effect of this option is that SQL statements that use a turned off keyword cannot be used: they produce
a syntax error.

See also
● “Keywords” [SQL Anywhere Server - SQL Reference]

odbc_describe_binary_as_varbinary [database]
Controls how the SQL Anywhere ODBC driver describes BINARY columns.

Allowed values
On, Off

Default
Off

Remarks
This option allows you to choose whether you want all BINARY and VARBINARY columns to be described
to your application as BINARY or VARBINARY. By default, the SQL Anywhere ODBC driver describes
both BINARY and VARBINARY columns as SQL_BINARY. When this option is set to On, the ODBC
driver describes BINARY and VARBINARY columns as SQL_VARBINARY. Regardless of the setting of
this option, it is not possible to distinguish between BINARY and VARBINARY columns.

It may be useful to turn this option On if you are using Delphi applications where BINARY columns are
always zero-padded, but VARBINARY columns are not. You can improve performance in Delphi by setting
this option to On so that all columns are treated as variable length data types.

See also
● “BINARY data type” [SQL Anywhere Server - SQL Reference]
● “VARBINARY data type” [SQL Anywhere Server - SQL Reference]

odbc_distinguish_char_and_varchar option [database]
Controls how the SQL Anywhere ODBC driver describes CHAR columns.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 553

Allowed values
On, Off

Default
Off

Remarks
When a connection is opened, the SQL Anywhere ODBC driver uses the setting of this option to determine
how CHAR columns are described. If this option is set to Off (the default), then CHAR columns are described
as SQL_VARCHAR. If this option is set to On, then CHAR columns are described as SQL_CHAR.
VARCHAR columns are always described as SQL_VARCHAR.

The odbc_distingish_char_and_varchar option also controls whether NCHAR columns are described as
SQL_WCHAR or SQL_WVARCHAR. If this option is set to Off, then NCHAR columns are described as
SQL_WVARCHAR. If this option is set to On, then NCHAR columns are described as SQL_WCHAR.
NVARCHAR columns are always described as SQL_WVARCHAR.

See also
● “NCHAR data type” [SQL Anywhere Server - SQL Reference]
● “NVARCHAR data type” [SQL Anywhere Server - SQL Reference]

oem_string option [database]
Stores user-specified information in the header page of the database file.

Allowed values
String (up to 128 bytes)

Default
Empty string

Scope
Can only be set for the PUBLIC group. Takes effect immediately. DBA authority required.

Remarks
You can store information in the header page of the database file and later extract the information by reading
the file directly from your application. This page is stored in the system dbspace file header. If you specify
a value for the OEM string that is longer than 128 bytes, an error is returned.

You may find it useful to store such information as schema versions, the application name, the application
version, and so on. Alternatively, without starting the database, an application could use the OEM string to
determine whether the database file is associated with the application, or design your application to use the
information to validate that the database file is intended for your application, by storing a string that the
application reads for validation purposes before using the database file. You could also extract metadata to
display to users.

Database options

554 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To set the oem_string in the system dbspace file header, execute the following statement:

SET OPTION PUBLIC.oem_string=user-specified-string;

The user-specified-string value is stored both in the ISYSOPTIONS system table and the system dbspace
file header. You must define the string in the required character set before you specify it in a SET OPTION
statement because no translation is done on the string when it is supplied in the SET OPTION statement.
You can use the CSCONVERT function to convert the string to the required character set.

You can query the value of the oem_string in the following ways:

● Using the oem_string connection property:

SELECT CONNECTION_PROPERTY('oem_string');
● Using the SYSOPTION system view:

SELECT setting FROM SYSOPTION WHERE "option" = 'oem_string';

To query the oem_string option from an application

1. Open the database system dbspace file.

2. Read the first page of the file into a buffer.

3. Search the buffer for the two byte prefix and suffix sequences before and after the OEM string.

The prefix and suffix strings are defined in sqldef.h as DB_OEM_STRING_PREFIX and
DB_OEM_STRING_SUFFIX, respectively. All the bytes between these two strings define the OEM
string that is defined in the database.

SQL Anywhere includes two sample programs in the oem_string directory:

● dboem.cpp is a C program that illustrates how to extract the OEM string and print it to the database server
messages window.

● dboem.pl illustrates how to extract the OEM string and print it to the stdout within a PERL script.

Caution
Applications cannot write directly to the OEM string in the database because it corrupts the database header
page.

On Windows, applications cannot read the file directly when a server has the database file loaded. The
database server has an exclusive lock on the file. However, on any supported Unix platform, applications
that have read permissions can read the file directly at any time. However, changes to the OEM string may
not show up in the file immediately. Issuing a checkpoint causes the database server to flush page 0 to disk,
and reflect the current OEM string value.

Should the database server fail between changing the OEM string and the next checkpoint, the file header
may not reflect the new OEM string value; the new OEM string value will be set correctly after the database
goes through recovery.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 555

See also
● “CSCONVERT function [String]” [SQL Anywhere Server - SQL Reference]

Example
The following example encrypts the OEM string that contains information about the database file and stores
it in the database header file:

BEGIN
 DECLARE @v VARCHAR(100);
 SET @v = BASE64_ENCODE(ENCRYPT('database version 10', 'abc'));
 EXECUTE IMMEDIATE 'SET OPTION PUBLIC.oem_string = ''' || @v || '''';
END;

You can retrieve the value of the OEM string using the following command:

SELECT DECRYPT(
 BASE64_DECODE(
 CONNECTION_PROPERTY('oem_string')),'abc')

on_charset_conversion_failure option [database]
Controls what happens if an error is encountered during character conversion.

Allowed values
Ignore, Warning, Error

Default
Ignore

Remarks
Controls what happens if an error is encountered during character conversion, as follows:

● Ignore Errors and warnings do not appear.

● Warning Reports substitutions and illegal characters as warnings. Illegal characters are not translated.

● Error Reports substitutions and illegal characters as errors.

When character set conversion is required between the client and the database, this option governs whether
to ignore, return a warning, or return an error, when illegal characters are detected, or when character
substitution is used.

Single-byte to single-byte converters are not able to report substitutions and illegal characters, and must be
set to Ignore.

This option does not control the behavior when lossy conversion takes place on the client. For example, SQL
statements from the client must be in, or converted to, the CHAR database character set. Suppose a Unicode
client application prepares a SQL statement, and that statement contains characters that cannot be represented
in the CHAR database character set. Substitution characters are used instead. However, because the lossy
conversion took place on the client, the database server is unaware of the lossy conversion.

Database options

556 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Comparisons between CHAR and NCHAR” [SQL Anywhere Server - SQL Reference]
● “Converting NCHAR to CHAR” [SQL Anywhere Server - SQL Reference]
● “Substitution characters” [SQL Anywhere Server - SQL Reference]

on_tsql_error option [compatibility]
Controls error-handling in stored procedures.

Allowed values
String (see below for allowed values)

Default
Conditional

Continue for jConnect connections

Remarks
This option controls error handling in stored procedures.

● Stop Stop execution immediately upon finding an error.

● Conditional If the procedure uses ON EXCEPTION RESUME, and the statement following the error
handles the error, continue, otherwise exit.

● Continue Continue execution, regardless of the following statement. If there are multiple errors, the
first error encountered in the stored procedure is returned.

Both the Conditional and Continue settings for on_tsql_error are used for Adaptive Server Enterprise
compatibility, with Continue most closely simulating Adaptive Server Enterprise behavior. To have errors
reported earlier, use the Conditional setting when creating new Transact-SQL stored procedures.

When this option is set to Stop or Continue, it supercedes the setting of the continue_after_raiserror option.
However, when this option is set to Conditional (the default), behavior following a RAISERROR statement
is determined by the setting of the continue_after_raiserror option.

See also
● “CREATE PROCEDURE statement (web services)” [SQL Anywhere Server - SQL Reference]
● “CREATE PROCEDURE statement [T-SQL]” [SQL Anywhere Server - SQL Reference]
● “Transact-SQL procedure language overview” [SQL Anywhere Server - SQL Usage]
● “continue_after_raiserror option [compatibility]” on page 519

optimization_goal option [database]
Determines whether query processing is optimized towards returning the first row quickly, or minimizing
the cost of returning the complete result set.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 557

Allowed values
First-row, All-rows

Default
All-rows

Remarks
The optimization_goal option controls whether SQL Anywhere optimizes SQL data manipulation language
(DML) statements for response time or total resource consumption.

If the option is set to All-rows (the default), then SQL Anywhere optimizes a query to choose an access plan
with the minimal estimated total retrieval time. Setting optimization_goal to All-rows may be appropriate
for applications that intend to process the entire result set, such as PowerBuilder DataWindow applications.
A setting of All-rows is also appropriate for insensitive (ODBC static) cursors since the entire result is
materialized when the cursor is opened. It may also be appropriate for scroll (ODBC keyset-driven) cursors,
since the intent of such a cursor is to permit scrolling through the result set.

If the option is set to First-row, SQL Anywhere chooses an access plan that is intended to reduce the time
to fetch the first row of the query's result, possibly at the expense of total retrieval time. In particular, the
SQL Anywhere optimizer will typically avoid, if possible, access plans that require the materialization of
results to reduce the time to return the first row. With this setting, the optimizer favors access plans that
utilize an index to satisfy a query's ORDER BY clause, rather than plans that require an explicit sorting
operation.

You can use the FASTFIRSTROW table hint in a query's FROM clause to set the optimization goal for a
specific query to First-row, without having to change the optimization_goal setting.

For more information about using the FASTFIRSTROW table hint, see “FROM clause” [SQL Anywhere
Server - SQL Reference].

You can override any temporary or public settings for this option within individual INSERT, UPDATE,
DELETE, SELECT, UNION, EXCEPT, and INTERSECT statements by including an OPTION clause in
the statement. See:

● “INSERT statement” [SQL Anywhere Server - SQL Reference]
● “UPDATE statement” [SQL Anywhere Server - SQL Reference]
● “DELETE statement” [SQL Anywhere Server - SQL Reference]
● “SELECT statement” [SQL Anywhere Server - SQL Reference]
● “UNION clause” [SQL Anywhere Server - SQL Reference]
● “EXCEPT clause” [SQL Anywhere Server - SQL Reference]
● “INTERSECT clause” [SQL Anywhere Server - SQL Reference]

optimization_level option [database]
Controls the amount of effort made by the SQL Anywhere query optimizer to find an access plan for a SQL
statement.

Database options

558 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Allowed values
0-15

Default
9

Remarks
The optimization_level option controls the amount of effort that the SQL Anywhere optimizer spends on
optimizing SQL data manipulation language (DML) statements. This option controls the maximum number
of alternative join strategies that the optimizer will consider for any SELECT block. The higher the setting
of optimization_level, the greater the maximum number of join strategies that the optimizer will consider.

If the option is set to 0, then the SQL Anywhere optimizer chooses the first access plan it considers for
execution, in effect avoiding any cost-based comparison of alternative plans. In addition, with level 0 some
semantic optimizations of nested queries are disabled. If this option is set to a value higher than 0, the
optimizer evaluates alternative strategies and chooses the one with the lowest expected cost. If this option
is set to a value greater than the default (9), the optimizer is more aggressive in its search for alternative
strategies, possibly resulting in much higher elapsed time spent in the optimization phase.

In typical scenarios, this option is temporarily set to lower levels (0, 1, or 2) when the application desires
faster OPEN times for a DML statement. It is known that although the statement may be complex, the query's
execution time is very small, and the specific access plan chosen by the optimizer is less consequential. It
is not recommended that the PUBLIC setting of optimization_level be changed from its default.

The effect of setting the optimization_level option is independent of the settings of the optimization_goal
and optimization_workload options.

Simple DML statements (single-block, single-table queries that contain equality conditions in the WHERE
clause that uniquely identify a specific row) are optimized heuristically and bypass the cost-based optimizer
altogether. The optimization of simple DML statements is not affected by the setting of the
optimization_level option. The count of the number of requests optimized through the optimizer bypass
mechanism is available as the QueryBypassed connection property.

For more information about the QueryBypassed connection property, see “Connection
properties” on page 598.

You can override any temporary or public settings for this option within individual INSERT, UPDATE,
DELETE, SELECT, UNION, EXCEPT, and INTERSECT statements by including an OPTION clause in
the statement. See:

● “INSERT statement” [SQL Anywhere Server - SQL Reference]
● “UPDATE statement” [SQL Anywhere Server - SQL Reference]
● “DELETE statement” [SQL Anywhere Server - SQL Reference]
● “SELECT statement” [SQL Anywhere Server - SQL Reference]
● “UNION clause” [SQL Anywhere Server - SQL Reference]
● “EXCEPT clause” [SQL Anywhere Server - SQL Reference]
● “INTERSECT clause” [SQL Anywhere Server - SQL Reference]

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 559

optimization_workload option [database]
Determines whether query processing is optimized towards a workload that is a mix of updates and reads or
a workload that is predominantly read-based.

Allowed values
Mixed, OLAP

Default
Mixed

Scope
Can be set for the PUBLIC group only. DBA authority required.

Remarks
The optimization_workload option controls whether SQL Anywhere optimizes queries for a workload that
is a mix of updates and reads or predominantly read only.

If the option is set to Mixed (the default), SQL Anywhere chooses query optimization algorithms appropriate
for a workload that is a mixture of short inserts, updates, and deletes and longer running read-only queries.

If the option is set to OLAP, SQL Anywhere chooses algorithms appropriate for a workload that consists
for the most part of long-running queries, combined with batch updates. In particular, the optimizer may
choose to use the Clustered Hash Group By query execution algorithm.

When the option is set to OLAP, the Clustered Hash Group By algorithm is enabled. If the option is set to
Mixed (the default), it is disabled.

You can override any temporary or public settings for this option within individual INSERT, UPDATE,
DELETE, SELECT, UNION, EXCEPT, and INTERSECT statements by including an OPTION clause in
the statement. See:

● “INSERT statement” [SQL Anywhere Server - SQL Reference]
● “UPDATE statement” [SQL Anywhere Server - SQL Reference]
● “DELETE statement” [SQL Anywhere Server - SQL Reference]
● “SELECT statement” [SQL Anywhere Server - SQL Reference]
● “UNION clause” [SQL Anywhere Server - SQL Reference]
● “EXCEPT clause” [SQL Anywhere Server - SQL Reference]
● “INTERSECT clause” [SQL Anywhere Server - SQL Reference]

See also
● “ClusteredHashGroupBy algorithm (GrByHClust)” [SQL Anywhere Server - SQL Usage]

pinned_cursor_percent_of_cache option [database]
Specifies how much of the cache can be used for pinning cursors.

Database options

560 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Allowed values
Integer, between 0-100

Default
10

Scope
Can be set for the PUBLIC group only. DBA authority required.

Remarks
The database server uses pages of virtual memory for the data structures needed to implement cursors. These
pages are kept locked in memory between fetch requests so they are readily available when the next fetch
request arrives.

To prevent these pages from occupying too much of the cache in low memory environments, a limit is placed
on the percentage of the cache allowed to be used for pinning cursors. You can use the
pinned_cursor_percent_of_cache option to adjust this limit.

The option value is specified as a percentage from 0 to 100, with a default of 10. Setting the option to 0
means that cursor pages are not pinned between fetch requests.

post_login_procedure option [database]
Specifies a procedure whose result set contains messages that should be displayed by applications when a
user connects.

Allowed values
String

Default
post_login_procedure system procedure

Scope
DBA authority required.

Remarks
When the post_login_procedure option is set to anything other than an empty string, applications can call
the procedure specified by the option as part of the connection process to determine what messages should
be displayed to the user, if any. The option values should be of the form owner.function-name to prevent a
user from overriding the function.

The SQL Anywhere plug-in for Sybase Central, Interactive SQL, and dbisqlc call the procedure if this option
is set and display any messages returned by the procedure in a window. Other applications that are not
included with SQL Anywhere should be modified to call the procedure given by this option and display
messages if you need this functionality.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 561

One case where an application may need to display a message on connection is to notify the user that their
password is about to expire if a password expiry system is implemented. This functionality could be used
to notify the user each time they connect if their password will expire in the next few days, and before it
actually expires.

The procedure specified by this option must return a result set with one or more rows and two columns. The
first column of type VARCHAR(255) returns the text of the message, or NULL if there is no message. The
second column of type INT returns the action type. Allowed values for actions are:

● 0 Display the message (if any).

● 1 Display the message and prompt the user for a password change.

● 2-99 Reserved.

● 100 and greater User defined.

The SQL Anywhere plug-in, dbisql, and dbisqlc display all non-NULL messages, regardless of the action
value. If the action is set to 1, then the SQL Anywhere plug-in and dbisql (but not dbisqlc) prompt the user
to change the password, and then set the new password to the user-specified value.

For an example that uses post_login_procedure and includes advanced password rules and implementing
password expiration, see Using a password verification function.

See also
● “login_procedure option [database]” on page 541
● “Increasing password security” on page 1068

Example
The following example uses a procedure named p_post_login_check that warns users that their password is
about to expire and then prompts them to change their password.

CREATE PROCEDURE DBA.p_post_login_check()
RESULT(message_text VARCHAR(255), message_action INT)
BEGIN
 DECLARE message_text CHAR(255);
 DECLARE message_action INT;

 -- assume the password_about_to_expire variable was
 -- set by the login procedure
 IF password_about_to_expire = 1 THEN
 SET message_text = 'Your password is about to expire';
 SET message_action = 1;
 ELSE
 SET message_text = NULL;
 SET message_action = 0;
 END IF;
 -- return message (if any) through this result set
 SELECT message_text, message_action;
END;
GRANT EXECUTE ON DBA.p_post_login_check TO PUBLIC;
SET OPTION PUBLIC.post_login_procedure = 'DBA.p_post_login_check';

Database options

562 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

precision option [database]
Specifies the maximum number of digits in the result of any decimal arithmetic.

Allowed values
Integer, between 1 and 127, inclusive

Default
30

Scope
Can be set for the PUBLIC group only. Takes effect immediately.

Remarks
Precision is the total number of digits to the left and right of the decimal point. The scale option specifies
the minimum number of digits after the decimal point when an arithmetic result is truncated to the maximum
precision.

Multiplication, division, addition, subtraction, and aggregate functions can all have results that exceed the
maximum precision.

For example, when a DECIMAL(8,2) is multiplied with a DECIMAL(9,2), the result could require a
DECIMAL(17,4). If precision is 15, only 15 digits will be kept in the result. If scale is 4, the result will be
a DECIMAL(15,4). If scale is 2, the result will be a DECIMAL(15,2). In both cases, there is a possibility
of overflow.

prefetch option [database]
Controls whether rows are fetched to the client side before being made available to the client application.

Allowed values
Off, Conditional, Always

Default
Conditional

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately.

Remarks
This option controls whether rows are fetched to the client side in advance of being made available to the
client application. Fetching several rows at a time, even when the client application requests rows one at a
time (for example, when looping over the rows of a cursor) can cut down on response time and improve
overall throughput by cutting down the number of requests to the database.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 563

● Off means no prefetching is done.

● Conditional (the default) causes prefetching to occur unless the cursor type is SENSITIVE or the query
includes a proxy table.

● Always means prefetching is done even for sensitive cursor types and cursors that involve a proxy table.

The Always value must be used with caution, as it affects some cursor semantics. For example, it causes the
sensitive cursor to become asensitive. Old values may be fetched if the value was updated between the
prefetch and the application's fetch request. In addition, using prefetch on a cursor that involves a proxy table
can cause the error -668, Cursor is restricted to FETCH NEXT operations, if the client attempts to re-fetch
prefetch rows. A client may attempt to re-fetch prefetch rows after a rollback or on a fetch relative 0, if a
fetch column is re-bound or bound for the first time after the first fetch, or in some cases when GET DATA
is used.

The value sensitive cursor types include the ESQL SENSITIVE and SCROLL cursor types, and the ODBC
and OLE DB DYNAMIC and KEYSET cursor types.

The setting of the prefetch option is ignored by Open Client and jConnect connections.

If the DisableMultiRowFetch connection parameter is set to YES, the prefetch database option is ignored
and no prefetching is done.

This option previously accepted the value On. This value is now an alias for Conditional.

See also
● “Prefetching rows” [SQL Anywhere Server - Programming]
● “DisableMultiRowFetch connection parameter [DMRF]” on page 278

preserve_source_format option [database]
Controls whether the original source definition of procedures, triggers, views, and event handlers is saved
in system files. If saved, it is saved in the column source in SYSTAB, SYSPROCEDURE, SYSTRIGGER,
and SYSEVENT.

Allowed values
On, Off

Default
On

Scope
Can be set for the PUBLIC group only. DBA authority required.

Remarks
When preserve_source_format is On, the database server saves the formatted source from CREATE and
ALTER statements on procedures, views, triggers, and events, and puts it in the appropriate system view's
source column.

Database options

564 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Unformatted source text is stored in the same system tables, in the columns proc_defn, trigger_defn, and
view_defn. However, these definitions are not easy to read in Sybase Central. The formatted source column
allows you to view the definitions with the spacing, comments, and case that you want.

This option can be turned off to reduce space used to save object definitions in the database. The option can
be set only for the user PUBLIC.

prevent_article_pkey_update option [database] [MobiLink client]
Controls updates to the primary key columns of tables involved in publications.

Allowed values
On, Off

Default
On

Remarks
Setting this option to On disallows updates to the primary key columns of tables that are part of a publication.
This option helps ensure data integrity, especially in a replication and synchronization environment.

Caution
It is strongly recommended that you do not set this option to Off in a synchronization or replication
environment.

priority option [database]
Sets the priority level at which requests from a connection are executed.

Allowed values
Critical, High, Above Normal, Normal, Below Normal, Low, Background

Default
Normal

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately.

If you set this option temporarily, the setting applies to the current connection only. Different connections
under the same user ID can have different settings for this option.

Remarks
The value of this option cannot be set higher than the value of the max_priority option.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 565

See also
● “max_priority option [database]” on page 547

qualify_owners option [SQL Remote]
Controls whether SQL statements being replicated by SQL Remote should use qualified object names.

Allowed values
On, Off

Default
On

Remarks
When qualification is not needed in SQL Anywhere installations, messages will be slightly smaller with this
option set to Off.

See also
● “SQL Remote options” [SQL Remote]

query_mem_timeout option [database]
Sets the maximum time, in milliseconds, that a request waits for a memory grant.

Allowed values
-1, 0, positive integer

Default
-1

Remarks
When this option is set to -1 (the default) or any value less than 0, the request waits for a memory grant for
up to 50 times the estimated execution time for the request. If this option is set to 0, the request waits forever
for memory to be granted. Otherwise, the value is the maximum time, in milliseconds, that a request waits
for a memory grant.

See also
● “The memory governor” [SQL Anywhere Server - SQL Usage]

quote_all_identifiers option [SQL Remote]
Controls whether SQL statements being replicated by SQL Remote should use quoted identifiers.

Database options

566 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Allowed values
On, Off

Default
Off

Remarks
When this option is Off, dbremote quotes identifiers that require quotes by SQL Anywhere (as it has always
done).

When the option is On, all identifiers are quoted.

See also
● “SQL Remote options” [SQL Remote]

quoted_identifier option [compatibility]
Controls the interpretation of strings that are enclosed in double quotes.

Allowed values
On, Off

Default
On

Off for Open Client and jConnect connections

Remarks
This option controls whether strings that are enclosed in double quotes are interpreted as identifiers (On) or
as literal strings (Off). The quoted_identifier option is included for Transact-SQL compatibility.

See “Setting options for Transact-SQL compatibility” [SQL Anywhere Server - SQL Usage].

read_past_deleted option [database]
Controls server behavior on uncommitted deletes at isolation levels 1 and 2.

Allowed values
On, Off

Default
On

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 567

Remarks
If read_past_deleted is On (the default), sequential scans at isolation levels 1 and 2 skip uncommitted deleted
rows. If Off, sequential scans block on uncommitted deleted rows at isolation levels 1 and 2 (until the deleting
transaction commits or rolls back). This option changes server behavior at isolation levels 1 and 2.

For most purposes, this option should be left On. If set to Off, the blocking behavior depends on the plan
chosen by the optimizer (if there is an index that could possibly be used).

recovery_time option [database]
Sets the maximum length of time, in minutes, that the database server will take to recover from system
failure.

Allowed values
Integer, in minutes

Default
2

Scope
Can be set for the PUBLIC group only. DBA authority required. Takes effect when server is restarted.

Remarks
This option is used with the checkpoint_time option to decide when checkpoints should be done.

SQL Anywhere uses a heuristic to estimate the recovery time based on the operations that have been
performed since the last checkpoint, and includes both the estimated recovery time and the estimated
checkpoint time for the database. So, the recovery time is not exact.

See also
● “The automatic recovery process” on page 889
● “checkpoint_time option [database]” on page 514
● “-gr server option” on page 194
● “How the database server decides when to checkpoint” on page 910

remote_idle_timeout option [database]
Controls how many seconds of inactivity web service client procedures and functions tolerate.

Allowed values
Integer, in seconds

Default
15

Database options

568 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
This option affects web service client procedures and functions. If more time than the specified number of
seconds passes without activity, the procedure or function times out.

replicate_all option [Replication Agent]
Allows an entire database to act as a primary site in a Replication Server setup.

Allowed values
On, Off

Default
Off

Remarks
This option is only used by the SQL Anywhere Replication Agent. When it is set to On, the entire database
is set to act as a primary site in a Replication Server installation. All changes to the database are sent to
Replication Server by the Replication Agent.

See also
● “Replicating an entire database” on page 1158

replication_error option [SQL Remote]
Allows you to specify a stored procedure to be called by the Message Agent when a SQL error occurs.

Allowed values
Stored procedure name

Default
No procedure

Remarks
For SQL Remote, the replication_error option allows you to specify a stored procedure to be called by the
Message Agent when a SQL error occurs. By default, no procedure is called.

The procedure must have a single argument of type CHAR, VARCHAR, or LONG VARCHAR. The
procedure is called once with the SQL error message and once with the SQL statement that causes the error.
In some circumstances (such as foreign key violations), the SQL statement that caused the error is not
available, so the stored procedure can only be called once.

Although the option allows you to track and monitor SQL errors in replication, you must still design them
out of your setup; this option is not intended to resolve such errors.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 569

See also
● “SQL Remote options” [SQL Remote]
● “replication_error_piece option [SQL Remote]” on page 570

replication_error_piece option [SQL Remote]
Works in conjunction with the replication_error option to allow you to specify a LONG VARCHAR stored
procedure to be called by the Message Agent when a SQL error occurs during SQL Remote replication.

Allowed values
Stored procedure name

Default
No procedure

Remarks
If an error occurs and replication_error is defined, then the replication_error procedure is called with the full
error string.

If replication_error and replication_error_piece are both defined, then the error is broken up into VARCHAR
pieces. replication_error is called with the first piece and replication_error_piece is called repeatedly with
the remaining pieces.

See also
● “replication_error option [SQL Remote]” on page 569
● “SQL Remote options” [SQL Remote]

request_timeout option [database]
Controls the maximum time a single request can run. This option can be used to prevent a connection from
consuming a significant amount of server resources for a long period of time.

Allowed values
Integer, 0 through 86400 (one day), in seconds

Default
0

Remarks
When this option is set to 0, requests do not time out.

Any request that takes longer than approximately request_timeout seconds (wall-clock time, not CPU time)
is interrupted and an error is returned to the user. The error returned is SQLE_REQUEST_TIMEOUT:
"Request interrupted due to timeout". If a request is blocked, and the blocking_timeout option is set to 0,

Database options

570 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

then the request can remain blocked for a maximum of request_timeout seconds before returning a blocking
error (for example, SQLE_LOCKED: "User '%1' has the row in '%2' locked").

User and public values 1 to 14 are not allowed. This prevents users from being locked out of the database
server if connecting takes a long time (for example, because of a complex login procedure).

This option can be used with both database client and HTTP/HTTPS requests. Note that setting the option
in a stored procedure or HTTP/HTTPS request has no effect on the current request since the option value at
the beginning of the request is used.

Setting the request_timeout public option should be done with caution as this can cause applications that
have long running requests (such as dbvalid, dbbackup, and dbunload) to fail. Also, applications that do not
use significant server resources, but that can block on another user can fail when request_timeout is set. One
way to address these types of problems is to set the request_timeout option only for certain applications in
the login procedure based on a connection's APPINFO value.

Setting this option may not prevent applications from using significant server resources if each request
evaluates quickly, for example when fetching a result set containing many rows.

See also
● “blocking_timeout option [database]” on page 513
● “AppInfo connection parameter [APP]” on page 263

return_date_time_as_string option [database]
Controls how a date, time, or timestamp value is passed to the client application when queried.

Allowed values
On, Off

Default
Off

Scope
Can be set as a temporary option only, for the duration of the current connection.

Remarks
This option indicates whether date, time, and timestamp values are returned to applications as a date or time
data type or as a string.

When this option is set to On, the database server converts the date, time, or timestamp value to a string
before it is sent to the client to preserve the timestamp_format, date_format, or time_format option setting.

Sybase Central and Interactive SQL automatically turn the return_date_time_as_string option On.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 571

See also
● “date_format option [database]” on page 523
● “time_format option [compatibility]” on page 584
● “timestamp_format option [compatibility]” on page 585

rollback_on_deadlock [database]
Controls how transactions are treated when a deadlock occurs.

Allowed values
On, Off

Default
On

Scope
Can be set by any user and can be set for the PUBLIC group and individual connections. Takes effect
immediately.

Remarks
When this option is set to On, a transaction is automatically rolled back if it encounters a deadlock. The
rollback happens after the current request completes. If this option is set to Off, SQL Anywhere automatically
rolls back the statement that encountered the deadlock, and returns an error to that transaction indicating
which form of deadlock occurred. Note that rolling back the statement likely would not release any of the
locks acquired by the statement.

For more information about deadlocks, see “Deadlock” [SQL Anywhere Server - SQL Usage].

row_counts option [database]
Specifies whether the database will always count the number of rows in a query when it is opened.

Allowed values
On, Off

Default
Off

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately.

Database options

572 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
If this option is set to Off, the row count is usually only an estimate. If this option is set to On, the row count
is always accurate.

Caution
When row_counts is set to On, it may take significantly longer to execute queries. In fact, it will usually
cause SQL Anywhere to execute the query twice, doubling the execution time.

save_remote_passwords option [SQL Remote]
Saves the password that is entered in the message link.

Allowed values
On, Off

Default
On

Remarks
If you are storing the message link parameters externally, rather than in the database, you may not want to
save the passwords. You can prevent the passwords from being saved by setting this option to Off.

See also
● “SQL Remote options” [SQL Remote]

scale option [database]
Specifies the minimum number of digits after the decimal point when an arithmetic result is truncated to the
maximum precision.

Allowed values
Integer, between 0 and 127, inclusive, and less than the value specified for the precision database option

Default
6

Scope
Can be set for the PUBLIC group only. Takes effect immediately.

Remarks
Multiplication, division, addition, subtraction, and aggregate functions can all have results that exceed the
maximum precision.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 573

See also
● “precision option [database]” on page 563

secure_feature_key [database]
Allows you to enable features for the connection that were secured using the database server -sf option.

Allowed values
String

Default
NULL

Scope
Can be set as a temporary option only, for the duration of the current connection.

Remarks
You can specify features that cannot be used by databases running on a server by including the -sf option
when you start the database server. The -sk server option lets you specify a key that can be used to re-enable
all secured (disabled) features for a connection and gives that connection authority to change the features
that are secured for all databases running on the database server. When you set the value of the
secure_feature_key temporary option to the value specified by -sk when the database server was started,
then all features are re-enabled for that database connection, and on that connection you can use the
sa_server_option system procedure to control access to database features.

If the secure_feature_key option is set to any value other than the one specified by -sk, no error is given, and
the features specified by -sf remain disabled for the connection.

See also
● “-sk server option” on page 223
● “-sf server option” on page 218
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]
● “Specifying secured features” on page 1072

Example
The following command starts a database server named secure_server with access to the request log and all
remote data access features disabled. The key specified by the -sk option can be used later to enable these
features for a specific database connection.

dbsrv11 -n secure_server -sf request_log,remote -sk j978kls12 testdb.db

Setting the secure_feature_key option to the value specified by -sk for a database running on the
secure_server database server enables access to the request log and remote data access features for that
connection:

SET TEMPORARY OPTION secure_feature_key = 'j978kls12';

Database options

574 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sort_collation option [database]
Allows implicit use of the SORTKEY function on ORDER BY expressions.

Allowed values
Internal, collation_name, or collation_id

Default
Internal

Remarks
When the value of this option is Internal, the ORDER BY clause remains unchanged.

When the value of this option is set to a valid collation name or collation ID, CHAR or NCHAR string
expressions in the ORDER BY clause are treated as if the SORTKEY function had been invoked. String
expressions that use other string data types, such as BINARY, UUID, XML, or VARBIT are not modified.

See also
● “SORTKEY function [String]” [SQL Anywhere Server - SQL Reference]

Example
Set the sort collation to binary:

SET TEMPORARY OPTION sort_collation='binary';

Having the sort collation set to binary transforms the following queries:

SELECT Name, ID
FROM Products
ORDER BY Name, ID;
SELECT name, ID
FROM Products
ORDER BY 1, 2;

The queries are transformed into:

SELECT Name, ID
FROM Products
ORDER BY SORTKEY(Name, 'binary'), ID;

sql_flagger_error_level option [compatibility]
Controls the response to any SQL that is not part of the specified standard.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 575

Allowed values
● Off
● SQL:1992/Entry
● SQL:1992/Intermediate
● SQL:1992/Full
● SQL:1999/Core
● SQL:1999/Package
● SQL:2003/Core
● SQL:2003/Package
● Ultralite

Default
Off

Remarks
This option flags as an error any SQL that is not part of the specified standard. For example, specifying SQL:
2003/Package causes the database server to flag syntax that is not full SQL/2003 syntax.

The default behavior, Off, turns error flagging off.

For compatibility with previous SQL Anywhere versions, the following values are also accepted, and are
mapped as specified below:

● E This option corresponds to SQL:1992/Entry.

● I This option corresponds to SQL:1992/Intermediate.

● F This option corresponds to SQL:1992/Full.

● W This option corresponds with Off.

See also
● “sa_ansi_standard_packages system procedure” [SQL Anywhere Server - SQL Reference]
● “SQLFLAGGER function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “sql_flagger_warning_level option [compatibility]” on page 576
● “SQL preprocessor” [SQL Anywhere Server - Programming]

sql_flagger_warning_level option [compatibility]
Controls the response to any SQL that is not part of the specified standard.

Database options

576 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Allowed values
● Off
● SQL:1992/Entry
● SQL:1992/Intermediate
● SQL:1992/Full
● SQL:1999/Core
● SQL:1999/Package
● SQL:2003/Core
● SQL:2003/Package
● Ultralite

Default
Off

Remarks
This option flags any SQL that is not part of a specified standard as a warning. For example, specifying SQL:
2003/Package causes the database server to flag syntax that is not full SQL/2003 syntax.

The default behavior, Off, turns warning flagging off.

For compatibility with previous versions, the following values are also accepted, and are mapped as specified
below:

● E This option corresponds to SQL:1992/Entry.

● I This option corresponds to SQL:1992/Intermediate.

● F This option corresponds to SQL:1992/Full.

● W This option corresponds to Off.

See also
● “sa_ansi_standard_packages system procedure” [SQL Anywhere Server - SQL Reference]
● “SQLFLAGGER function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “sql_flagger_error_level option [compatibility]” on page 575
● “SQL preprocessor” [SQL Anywhere Server - Programming]

sr_date_format option [SQL Remote]
Sets the format for dates retrieved from the database.

Allowed values
String (composed of the symbols listed below)

Default
YYYY/MM/DD

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 577

Remarks
The Message Agent uses this option when replicating columns that store a date. The format is a string using
the following symbols:

Symbol Description

YY Two digit year

YYYY Four digit year

MM Two digit month)

MMM[m...] Character short form for months—as many characters as there are "m"s

DD Two digit day of month

Each symbol is substituted with the appropriate data for the date that is being formatted.

For symbols that represent character data (such as MMM), you can control the case of the output as follows:

● Type the symbol in all uppercase to have the format appear in all uppercase. For example, MMM produces
JAN.

● Type the symbol in all lowercase to have the format appear in all lowercase. For example, mmm produces
jan.

● Type the symbol in mixed case to have SQL Anywhere choose the appropriate case for the language that
is being used. For example, in English, typing Mmm produces May, while in French it produces mai.

If the character data is multibyte, the length of each symbol reflects the number of characters, not the number
of bytes. For example, the 'mmm' symbol specifies a length of three characters for the month.

For symbols that represent numeric data, you can control zero-padding with the case of the symbols:

The option is a string build from the following symbols:

● Type the symbol in same-case (such as MM or mm) to allow zero padding. For example, yyyy/mm/dd
could produce 2002/01/01.

● Type the symbol in mixed case (such as Mm) to suppress zero padding. For example, yyyy/Mm/Dd could
produce 2002/1/1.

See also
● “sr_time_format option [SQL Remote]” on page 578
● “sr_timestamp_format [SQL Remote]” on page 579
● “SQL Remote options” [SQL Remote]

sr_time_format option [SQL Remote]
Sets the format for times retrieved from the database.

Database options

578 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Allowed values
String (composed of the symbols listed below)

Default
HH:NN:SS.SSSSS

Remarks
The Message Agent uses this option when replicating columns that store a time. The format is a string using
the following symbols:

Symbol Description

HH Two digit hours (24-hour clock).

NN Two digit minutes.

MM Two-digit minutes if following a colon (as in hh:mm).

SS.ssssss Seconds and fractions of a second, up to six decimal places. Not all
platforms support timestamps to a precision of six places.

Each symbol is substituted with the appropriate data for the time that is being formatted. Any format symbol
that represents character rather than digit output can be put in uppercase, which causes the substituted
characters to also be in uppercase. For numbers, using mixed case in the format string suppresses leading
zeros.

Remarks
Using mixed case in the formatting string suppresses leading zeroes.

See also
● “sr_date_format option [SQL Remote]” on page 577
● “sr_timestamp_format [SQL Remote]” on page 579
● “SQL Remote options” [SQL Remote]

sr_timestamp_format [SQL Remote]
Sets the format for timestamps that are retrieved from the database.

Allowed values
The format strings are taken from the sr_date_format option combined with sr_time_format option settings.

Default
yyyy/mm/dd hh:nn:ss.Ssssss

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 579

Remarks
The Message Agent replicates datetime information using this option. The default setting is the
sr_date_format option setting combined with the sr_time_format option setting.

See also
● “sr_date_format option [SQL Remote]” on page 577
● “sr_time_format option [SQL Remote]” on page 578
● “SQL Remote options” [SQL Remote]

string_rtruncation option [compatibility]
Determines whether an error is raised when a string is truncated.

Allowed values
On, Off

Default
On

Remarks
If the truncated characters consist only of spaces, no exception is raised. The setting of On corresponds to
ANSI/ISO SQL/2003 behavior. When this option is set to Off, the exception is not raised and the character
string is silently truncated.

String truncation may occur in several places. For example, using INSERT, UPDATE, CAST, or assignment
to a variable may truncate a string if the declared destination type is too short.

See also
● “Character data types” [SQL Anywhere Server - SQL Reference]

subscribe_by_remote option [SQL Remote]
Controls interpretation of NULL or empty-string SUBSCRIBE BY values.

Allowed values
On, Off

Default
On

Database options

580 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
When the option is set to On, operations from remote databases on rows with a SUBSCRIBE BY value that
is NULL or an empty string assume that the remote user is subscribed to the row. When it is set to Off, the
remote user is assumed not to be subscribed to the row.

The only limitation of this option is that it will lead to errors if a remote user really does want to INSERT
(or UPDATE) a row with a NULL or empty subscription expression (for information held only at the
consolidated database). This is reasonably obscure and can be worked around by assigning a subscription
value in your installation that belongs to no remote user.

See also
● “SQL Remote options” [SQL Remote]
● “Using the subscribe_by_remote option with many-to-many relationships” [SQL Remote]

subsume_row_locks option [database]
Controls when the database server acquires individual row locks for a table.

Allowed values
On, Off

Default
On

Remarks
If the subsume_row_locks option is On (the default) then whenever a table t is locked exclusively with LOCK
TABLE t IN EXCLUSIVE MODE, the database server no longer acquires individual row locks for t.

This can result in a significant performance improvement if extensive updates are made to t in a single
transaction, especially if t is large relative to cache size. It also allows for atomic update operations that are
larger than the lock table can currently handle (approximately 2-4 million rows).

When this option is On, keyset cursors over a table locked in this fashion will return row changed warnings
for every row in the cursor, if any row in the database has been modified. Note that the database server could
turn an updatable cursor with an ORDER BY into a keyset cursor as a result.

suppress_tds_debugging option [database]
Determines whether TDS debugging information appears in the database server messages window.

Allowed values
On, Off

Default
Off

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 581

Remarks
When the database server is started with the -z option, debugging information appears in the database server
messages window, including debugging information about the TDS protocol.

The suppress_tds_debugging option restricts the debugging information about TDS that appears in the
database server messages window. When this option is set to Off (the default) TDS debugging information
appears in the database server messages window.

synchronize_mirror_on_commit option [database]
Controls when database changes are assured to have been sent to a mirror server when running in
asynchronous or asyncfullpage mode.

Allowed values
On, Off

Default
Off

Remarks
The synchronize_mirror_on_commit option allows fine-grained control over when database changes are
assured to have been sent to a mirror server when running in asynchronous or asyncfullpage mode. The
option is Off by default. When set to On, each COMMIT causes any changes recorded in the transaction log
to be sent to the mirror server, and an acknowledgement to be sent by the mirror server to the primary server
once the changes are received by the mirror server. The option can be set for specific transactions using SET
TEMPORARY OPTION. It may also be useful to set the option for specific applications by examining the
APPINFO string in a login procedure. This allows mirroring behavior to be tailored to meet the needs of
different applications.

See also
● “Introduction to database mirroring” on page 938

tds_empty_string_is_null option [database]
Controls whether empty strings are returned as NULL or a string containing one blank character for TDS
connections.

Allowed values
On, Off

Default
Off

Database options

582 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
By default, this option is set to Off and empty strings are returned as a string containing one blank character
for TDS connections. When this option is set to On, empty strings are returned as NULL strings for TDS
connections. Non-TDS connections distinguish empty strings from NULL strings.

temp_space_limit_check option [database]
Checks the amount of temporary file space used by a connection and fails the request if the amount of space
requested is greater than the connection's allowable quota.

Allowed values
On, Off

Default
On

Scope
Can be set for the PUBLIC group only. DBA authority required.

Remarks
When temp_space_limit_check is set to On (the default), if a connection requests more than its quota of
temporary file space, then the request fails and the error SQLSTATE_TEMP_SPACE_LIMIT is returned.
When this option is set to Off, the database server does not check the amount of temporary file space used
by a connection. If a connection requests more than its quota of temporary space when this option is set to
Off, a fatal error can occur.

The temporary file space quota for a connection is the minimum of the following two thresholds:

1. the maximum amount of temporary file space permitted for each connection as specified by the setting
of the max_temp_space option

2. the maximum potential size of the temporary file divided by the number of connections

This threshold is used only if the temporary file has grown to 80% or more of its maximum size, which is
determined by the amount of free space remaining on the device as reported by the operating system. When
a connection requests more temporary file space than the quota allows, that connection's current request fail
with SQLSTATE 54W05 (TEMP_SPACE_LIMIT).

You can specify a hard limit on the amount of temporary file space used by a connection with the
max_temp_space option.

See also
● “sa_disk_free_space system procedure” [SQL Anywhere Server - SQL Reference]
● “max_temp_space option [database]” on page 550

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 583

time_format option [compatibility]
Sets the format for times retrieved from the database.

Allowed values
String (composed of the symbols listed below)

Default
HH:NN:SS.sss

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately.

Remarks
The format is a string using the following symbols:

Symbol Description

HH Two digit hours

NN Two digit minutes

SS.ssssss Seconds and fractions of a second, up to six decimal places. Not all
platforms support timestamps to a precision of six places.

AA A.M. or P.M. (12 hour clock)—omit AA and PP for 24 hour time

PP PM if needed (12 hour clock)—omit AA and PP for 24 hour time

Each symbol is substituted with the appropriate data for the time that is being formatted. Any format symbol
that represents character rather than digit output can be put in uppercase, which causes the substituted
characters to also be in uppercase. For numbers, using mixed case in the format string suppresses leading
zeros.

See also
● “date_format option [database]” on page 523
● “timestamp_format option [compatibility]” on page 585

time_zone_adjustment option [database]
Allows a connection's time zone adjustment to be modified.

Allowed values
Integer (for example, 300)

Negative integer enclosed in quotation marks (for example, '-300')

Database options

584 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

String representing a time in hours and minutes, preceded by + or - and enclosed in quotation marks (for
example, '+5:00', or '-5:00')

Default
If the client is connecting via embedded SQL, ODBC, OLE DB, ADO, or ADO.NET, the default value is
set according to the client's time zone. If the client is connecting via jConnect or Open Client, the default is
based on the database server's time zone.

Remarks
The time_zone_adjustment option value is the same value as that returned by SELECT
CONNECTION_PROPERTY('TimeZoneAdjustment');. The value represents the number of
minutes that must be added to the Coordinated Universal Time (UTC) to display time local to the connection.

See also
● TimeZoneAdjustment property: “Connection properties” on page 598

timestamp_format option [compatibility]
Sets the format for timestamps that are retrieved from the database.

Allowed values
String (composed of the symbols listed below)

Default
YYYY-MM-DD HH:NN:SS.SSS

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately.

Remarks
The format is a string using the following symbols:

Symbol Description

YY Two digit year

YYYY Four digit year

MM Two digit month, or two digit minutes if following a colon (as
in 'HH:MM')

MMM[m...] Character short form for months—as many characters as there are "m"s

DD Two digit day of month

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 585

Symbol Description

DDD[d...] Character short form for day of the week

HH Two digit hours

NN Two digit minutes

SS.ssssss Seconds and fractions of a second, up to six decimal places. Not all
platforms support timestamps to a precision of six places.

AA A.M. or P.M. (12 hour clock)—omit AA and PP for 24 hour time

PP PM if needed (12 hour clock)—omit AA and PP for 24 hour time

Each symbol is substituted with the appropriate data for the date that is being formatted.

For symbols that represent character data (such as MMM), you can control the case of the output as follows:

● Type the symbol in all uppercase to have the format appear in all uppercase. For example, MMM produces
JAN.

● Type the symbol in all lowercase to have the format appear in all lowercase. For example, mmm produces
jan.

● Type the symbol in mixed case to have SQL Anywhere choose the appropriate case for the language that
is being used. For example, in English, typing Mmm produces May, while in French it produces mai.

If the character data is multibyte, the length of each symbol reflects the number of characters, not the number
of bytes. For example, the 'mmm' symbol specifies a length of three characters for the month.

For symbols that represent numeric data, you can control zero-padding with the case of the symbols:

● Type the symbol in same-case (such as MM or mm) to allow zero padding. For example, yyyy/mm/dd
could produce 2002/01/01.

● Type the symbol in mixed case (such as Mm) to suppress zero padding. For example, yyyy/Mm/Dd could
produce 2002/1/1.

Note
If you change the setting for timestamp_format in a way that re-orders the date format, be sure to change
the date_order option to reflect the same change, and vice versa. See “date_order option
[database]” on page 525.

See also
● “date_format option [database]” on page 523
● “time_format option [compatibility]” on page 584

truncate_timestamp_values option [database] [MobiLink client]

Database options

586 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Limits the resolution of timestamp values.

Allowed values
On, Off

Default
Off

Scope
Can be set for the PUBLIC group only. DBA authority required. This option should not be enabled for
databases already containing timestamp data.

Remarks
A TIMESTAMP value is precise to six decimal places in SQL Anywhere. However, to maintain
compatibility with other software, which may truncate the TIMESTAMP value to three decimal places, you
can set the truncate_timestamp_values option to On to limit the number of decimal places SQL Anywhere
stores. The default_timestamp_increment option determines the number of decimal places to which the
TIMESTAMP value is truncated.

For MobiLink synchronization, if you are going to set this option, it must be set prior to performing the first
synchronization.

If the database server finds TIMESTAMP values with a higher resolution than that specified by the
combination of truncate_timestamp_values and default_timestamp_increment, an error is reported.

In most cases, unloading the database and then reloading it into a new database in which the
truncate_timestamp_values and default_timestamp_increment values have been set is the easiest solution to
ensure the proper TIMESTAMP values are used. However, depending on the type of TIMESTAMP columns
in your table, you can also do the following:

● If the TIMESTAMP columns are defined with DEFAULT TIMESTAMP or DEFAULT UTC
TIMESTAMP (so that the value is automatically updated by the database server when the row is
modified), you must delete all the rows in the table before the truncate_timestamp_values option is
changed. You can delete the rows using the DELETE or TRUNCATE TABLE statement.

● If the TIMESTAMP column is defined with a value other than DEFAULT TIMESTAMP or DEFAULT
UTC TIMESTAMP, you can execute an UPDATE statement that casts the values to a string and then
back to a TIMESTAMP. For example,

UPDATE T
 SET ts = CAST(DATEFORMAT(ts, 'yyyy/mm/dd hh:nn:ss.ss')
 AS TIMESTAMP);

Note that this process may lose more precision than is necessary. The format string to use depends on
the number of digits of precision to be kept.

See also
● “default_timestamp_increment option [database] [MobiLink client]” on page 527

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 587

Example
Setting the default_timestamp_increment option to 100000 causes truncation after the first decimal place in
the seconds component, allowing a value such as '2000/12/05 10:50:53:700' to be stored.

tsql_outer_joins option [compatibility]
Controls the ability to use the Transact-SQL outer join operators *= and =* in statements and views.

Allowed values
On, Off

Default
Off

Remarks
Support for Transact-SQL outer joins is deprecated. Setting this option to On allows you to use Transact-
SQL outer joins.

tsql_variables option [compatibility]
Controls whether the @ sign can be used as a prefix for embedded SQL host variable names.

Allowed values
On, Off

Default
Off

On for Open Client and jConnect connections

Remarks
When this option is set to On, you can use the @ sign instead of the colon as a prefix for host variable names
in embedded SQL. This is implemented primarily for Transact-SQL compatibility.

updatable_statement_isolation option [database]
Specifies the isolation level used by updatable statements when the isolation_level option is set to readonly-
statement-snapshot.

Allowed values
0, 1, 2, 3

Database options

588 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Default
0

Remarks
The isolation level specified by the updatable_statement_isolation option is used by updatable statements
when the isolation_level option is set to readonly-statement-snapshot. The following values are accepted:

● 0 Allow dirty reads, non-repeatable reads, and phantom rows.

● 1 Prevent dirty reads. Allow non-repeatable reads and phantom rows.

● 2 Prevent dirty reads and non-repeatable reads. Allow phantom rows.

● 3 Serializable. Prevent dirty reads, non-repeatable reads, and phantom rows.

See also
● “isolation_level option [database] [compatibility]” on page 535
● “Snapshot isolation” [SQL Anywhere Server - SQL Usage]
● “Isolation levels and consistency” [SQL Anywhere Server - SQL Usage]
● “Choosing isolation levels” [SQL Anywhere Server - SQL Usage]

update_statistics option [database]
Controls the gathering of statistics during query execution.

Allowed values
On, Off

Default
On

Remarks
The database server collects statistics during normal query execution and uses the gathered statistics to self-
tune the column statistics. You can set the update_statistics option Off to disable the gathering of statistics
during query execution.

Under normal circumstances, it should not be necessary to turn this option off.

The update_statistics option does not affect changes to statistics as a result of updates to data (LOAD/
INSERT/UPDATE/DELETE). To control whether statistics are updated based on these statements, use the
collect_statistics_on_dml_updates database option.

The difference between the collect_statistics_on_dml_updates option and the update_statistics option is that
the update_statistics option compares the actual number of rows that satisfy a predicate with the number of
rows that are estimated to satisfy the predicate, and then updates the estimates. The
collect_statistics_on_dml_updates option modifies the column statistics based on the values of the specific
rows that are inserted, updated, or deleted.

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 589

See also
● “collect_statistics_on_dml_updates option [database]” on page 516
● “Updating column statistics to improve optimizer performance” [SQL Anywhere Server - SQL Usage]

user_estimates option [database]
Controls whether user selectivity estimates in query predicates are respected or ignored by the query
optimizer.

Allowed values
Enabled, Disabled, Override-Magic

Default
Override-Magic

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately.

Remarks
SQL Anywhere allows you to specify user selectivity estimates can improve the optimizer's performance
when the database server is unable to accurately predict the selectivity of a predicate. However, user
selectivity estimates should be used only in appropriate circumstances. For example, it may be useful to
supply a selectivity estimate for a predicate that involves one or more functions if the Override-Magic
selectivity estimate used by the optimizer is significantly different from the actual selectivity.

If you have used selectivity estimates that are inaccurate as a workaround to performance problems where
the software-selected access plan was poor, it is recommended that you set this option to Disabled. The
database server may not select an optimal plan if you use inaccurate estimates.

For more information about user selectivity estimates, see “Explicit selectivity estimates” [SQL Anywhere
Server - SQL Reference].

When a user selectivity estimate is supplied with a predicate, the estimate is respected or ignored based on
the setting of this option. The following values are accepted:

● Enabled All user-supplied selectivity estimates are respected. You can also use On to turn on this
option.

● Override-Magic A user selectivity estimate is respected and used only if the optimizer would
otherwise choose to use its last-resort, heuristic value (also called the magic value).

● Disabled All user estimates are ignored and magic values are used when no other estimate data is
available. You can also use Off to turn off this option.

Database options

590 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

You can override any temporary or public settings for this option within individual INSERT, UPDATE,
DELETE, SELECT, UNION, EXCEPT, and INTERSECT statements by including an OPTION clause in
the statement. See:

● “INSERT statement” [SQL Anywhere Server - SQL Reference]
● “UPDATE statement” [SQL Anywhere Server - SQL Reference]
● “DELETE statement” [SQL Anywhere Server - SQL Reference]
● “SELECT statement” [SQL Anywhere Server - SQL Reference]
● “UNION clause” [SQL Anywhere Server - SQL Reference]
● “EXCEPT clause” [SQL Anywhere Server - SQL Reference]
● “INTERSECT clause” [SQL Anywhere Server - SQL Reference]

verify_all_columns option [SQL Remote]
Controls whether messages that contain updates published by the local database are sent with all column
values included.

Allowed values
On, Off

Default
Off

Remarks
This option is used by SQL Remote only. When it is set to On, messages that contain updates published by
the local database are sent with all column values included, and a conflict in any column triggers a RESOLVE
UPDATE trigger at the subscriber database.

Example
The following statement sets the verify_all_columns option to Off in SQL Anywhere, for all users:

SET OPTION PUBLIC.verify_all_columns = 'Off';

See also
● “SQL Remote options” [SQL Remote]

verify_password_function option [database]
Use the verify_password_function option to implement password rules.

Allowed values
String

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 591

Default
Empty string (no function is called when a password is set).

Scope
DBA authority required.

Remarks
The function specified by the verify_password_function is called automatically when a non-NULL password
is created or set. To prevent a user from overriding the function, set the option value to owner.function-
name. A user must have a password to be able to connect to the database. Passwords are case sensitive and
they cannot:

● begin with white space, single quotes, or double quotes
● end with white space
● contain semicolons
● be longer than 255 bytes in length

When passwords are created or changed, they are converted to UTF-8 before being hashed and stored in the
database. If the database is unloaded and reloaded into a database with a different character set, existing
passwords continue to work. If the database server cannot convert from the client's character set to UTF-8,
then it is recommended that the password be composed of 7-bit ASCII characters as other characters may
not work correctly.

You can use any of the following statements to set a password:

● CREATE USER
● ALTER USER
● GRANT

After validating the statement used to create or set the password, the function is called to verify the password
using the specified rules. If the password conforms to the specified rules, the function must return NULL to
indicate success, and the invoking statement executes. Otherwise, an error is indicated by setting an error or
returning a non-NULL string. If a non-NULL string is returned, it is included in the error to the user as the
reason for failure.

The password verification function takes two parameters: user-name VARCHAR(128) and new-pwd
VARCHAR(255). It returns a value of type VARCHAR(255). It is recommended that you execute an ALTER
FUNCTION function-name SET HIDDEN statement on the password verification function to ensure that it
cannot be stepped through using the debugger. If the verify_password_function option is set, specifying
more than one user ID and password with a GRANT CONNECT statement is not allowed.

For more information about password rules, see “Use password verification” on page 1069.

Database options

592 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “min_password_length option [database]” on page 551
● “CREATE USER statement” [SQL Anywhere Server - SQL Reference]
● “CREATE FUNCTION statement (web services)” [SQL Anywhere Server - SQL Reference]
● “ALTER FUNCTION statement” [SQL Anywhere Server - SQL Reference]
● “ALTER USER statement” [SQL Anywhere Server - SQL Reference]
● “GRANT statement” [SQL Anywhere Server - SQL Reference]
● “Increasing password security” on page 1068
● “NewPassword connection parameter [NEWPWD]” on page 290

Example
The following example defines a table and a function and sets some login policy options. Together they
implement advanced password rules that include requiring certain types of characters in the password,
disallowing password reuse, and expiring passwords. The function is called by the database server with the
verify_password_function option when a user ID is created or a password is changed. The application can
call the procedure specified by the post_login_procedure option to report that the password should be
changed before it expires.

The code for this sample is also available in the following location: samples-dir\SQLAnywhere\SQL
\verify_password.sql. (For information about samples-dir, see “Samples directory” on page 390.)

-- only DBA should have permissions on this table
CREATE TABLE DBA.t_pwd_history(
 pk INT DEFAULT AUTOINCREMENT PRIMARY KEY,
 user_name CHAR(128), -- the user whose password is set
 pwd_hash CHAR(32)); -- hash of password value to detect
 -- duplicate passwords
-- called whenever a non-NULL password is set
-- to verify the password conforms to password rules
CREATE FUNCTION DBA.f_verify_pwd(uid VARCHAR(128),
 new_pwd VARCHAR(255))
RETURNS VARCHAR(255)
BEGIN
 -- a table with one row per character in new_pwd
 DECLARE local temporary table pwd_chars(
 pos INT PRIMARY KEY, -- index of c in new_pwd
 c CHAR(1 CHAR)); -- character
 -- new_pwd with non-alpha characters removed
 DECLARE pwd_alpha_only CHAR(255);
 DECLARE num_lower_chars INT;
 -- enforce minimum length (can also be done with
 -- min_password_length option)
 IF length(new_pwd) < 6 THEN
 RETURN 'password must be at least 6 characters long';
 END IF;
 -- break new_pwd into one row per character
 INSERT INTO pwd_chars SELECT row_num, substr(new_pwd, row_num, 1)
 FROM dbo.RowGenerator
 WHERE row_num <= length(new_pwd);
 -- copy of new_pwd containing alpha-only characters
 SELECT list(c, '' ORDER BY pos) INTO pwd_alpha_only
 FROM pwd_chars WHERE c BETWEEN 'a' AND 'z' OR c BETWEEN 'A' AND 'Z';

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 593

 -- number of lower case characters IN new_pwd
 SELECT count(*) INTO num_lower_chars
 FROM pwd_chars WHERE CAST(c AS BINARY) BETWEEN 'a' AND 'z';
 -- enforce rules based on characters contained in new_pwd
 IF (SELECT count(*) FROM pwd_chars WHERE c BETWEEN '0' AND '9')
 < 1 THEN
 RETURN 'password must contain at least one numeric digit';
 ELSEIF length(pwd_alpha_only) < 2 THEN
 RETURN 'password must contain at least two letters';
 ELSEIF num_lower_chars = 0
 OR length(pwd_alpha_only) - num_lower_chars = 0 THEN
 RETURN 'password must contain both upper- and lowercase characters';
 END IF;
 -- not the same as any user name
 -- (this could be modified to check against a disallowed words table)
 IF EXISTS(SELECT * FROM SYS.SYSUSER
 WHERE lower(user_name) IN (lower(pwd_alpha_only),
 lower(new_pwd))) THEN
 RETURN 'password or only alphabetic characters in password ' ||
 'must not match any user name';
 END IF;
 -- not the same as any previous password for this user
 IF EXISTS(SELECT * FROM t_pwd_history
 WHERE user_name = uid
 AND pwd_hash = hash(uid || new_pwd, 'md5')) THEN
 RETURN 'previous passwords cannot be reused';
 END IF;
 -- save the new password
 INSERT INTO t_pwd_history(user_name, pwd_hash)
 VALUES(uid, hash(uid || new_pwd, 'md5'));
 RETURN(NULL);
END;
ALTER FUNCTION DBA.f_verify_pwd SET HIDDEN;
GRANT EXECUTE ON DBA.f_verify_pwd TO PUBLIC;
SET OPTION PUBLIC.verify_password_function = 'DBA.f_verify_pwd';

-- All passwords expire in 180 days. Expired passwords can be changed
-- by the user using the NewPassword connection parameter.
ALTER LOGIN POLICY DEFAULT password_life_time = 180;
-- If an application calls the procedure specified by the
-- post_login_procedure option, then the procedure can be used to
-- warn the user that their password is about to expire. In particular,
-- Interactive SQL and Sybase Central call the post_login_procedure.
ALTER LOGIN POLICY DEFAULT password_grace_time = 30;
-- Five consecutive failed login attempts will result in a non-DBA
-- user ID being locked.
ALTER LOGIN POLICY DEFAULT max_failed_login_attempts = 5;

verify_threshold option [SQL Remote]
Controls which columns are verified when updates are replicated.

Database options

594 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Allowed values
Integer, in bytes

Default
1000

Remarks
This option is used by SQL Remote only. If the data type of a column is longer than the threshold, old values
for the column are not verified when an UPDATE is replicated. This keeps the size of SQL Remote messages
down, but has the disadvantage that conflicting updates of long values are not detected.

See also
● “SQL Remote options” [SQL Remote]

wait_for_commit option [database]
Determines when foreign key integrity is checked, as data is manipulated.

Allowed values
On, Off

Default
Off

Scope
Can be set for an individual connection or for the PUBLIC group. Takes effect immediately.

Remarks
If this option is set to On, the database does not check foreign key integrity until the next COMMIT statement.
Otherwise, all foreign keys that are not created with the check_on_commit option are checked as they are
inserted, updated or deleted.

webservice_namespace_host option [database]
Specifies the hostname to be used as the XML namespace within generated WSDL documents.

Allowed values
NULL or hostname-string

Default
NULL

Introduction to database options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 595

Scope
Can be set for the PUBLIC group only. Takes effect immediately. DBA authority required.

Remarks
Webservices Description Language Documents (WSDLs) are exported by DISH services. These are XML
documents that contain descriptions of the available SOAP services. The URL of the targetNameSpace and
the soapAction operations within this XML document contain a hostname. When this option is set to NULL,
the default value, the hostname is that of the computer on which the database server is running. If this option
is set to a string value, the string is used as the hostname instead. This option is intended for use when
developing web service client applications that will, when deployed, target a host other than the one used
for development.

Database options

596 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connection, database, and database server
properties

Contents
Connection properties ... 598
Database server properties ... 624
Database properties .. 639

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 597

Connection properties
The following table lists properties available for each connection to a SQL Anywhere database.

You can use the CONNECTION_PROPERTY system function to retrieve the value for an individual
property, or you can use the sa_conn_properties system procedure to retrieve the values of all connection
properties. Property names are case insensitive.

Examples
To retrieve the value of a connection property

● Use the CONNECTION_PROPERTY system function. The following statement returns the number of
pages that have been read from file by the current connection.

SELECT CONNECTION_PROPERTY ('DiskRead');

To retrieve the values of all connection properties

● Use the sa_conn_properties system procedure:

CALL sa_conn_properties();

A separate row appears for each connection.

See also
● “CONNECTION_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference]
● “sa_conn_activity system procedure” [SQL Anywhere Server - SQL Reference]
● “Database server properties” on page 624
● “Database properties” on page 639

Descriptions

Property Description

allow_nulls_by_default Returns a value indicating whether columns created without
specifying either NULL or NOT NULL are allowed to contain
NULL values. See “allow_nulls_by_default option [compatibil-
ity]” on page 503.

allow_read_client_file Returns a value indicating whether the database server allows
the reading of files on a client computer. See “allow_read_cli-
ent_file option [database]” on page 504.

allow_snapshot_isolation Returns a value indicating whether snapshot isolation is enabled
or disabled. See “allow_snapshot_isolation option [data-
base]” on page 504.

Connection, database, and database server properties

598 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

allow_write_client_file Returns a value indicating whether the database server allows
the writing of files to a client computer. See “allow_write_cli-
ent_file option [database]” on page 506.

ansi_blanks Returns a value indicating when character data is truncated at the
client side. See “ansi_blanks option [compatibili-
ty]” on page 506.

ansi_close_cursors_on_rollback Returns a value indicating whether cursors opened WITH HOLD
are closed when a ROLLBACK is performed. See “an-
si_close_cursors_on_rollback option [compatibili-
ty]” on page 507.

ansi_permissions Returns a value indicating whether permissions are checked for
DELETE and UPDATE statements. See “ansi_permissions op-
tion [compatibility]” on page 507.

ansi_substring Returns a value indicating how the SUBSTRING (SUBSTR)
function behaves when negative values are provided for the start
or length parameters. See “ansi_substring option [compatibili-
ty]” on page 508.

ansi_update_constraints Returns a value indicating the range of updates that are permit-
ted. See “ansi_update_constraints option [compatibili-
ty]” on page 509.

ansinull Returns a value that indicates how NULL values are interpreted.
See “ansinull option [compatibility]” on page 510.

AppInfo Returns information about the client that made the connection.
For HTTP connections, this includes information about the
browser. For connections using older versions of jConnect or
Open Client, the information may be incomplete.

The API value can be DBLIB, ODBC, OLEDB, ADO.NET, iA-
nywhereJDBC, PHP, PerlDBD, or DBEXPRESS.

For more information about the values returned for other types
of connections, see “AppInfo connection parameter
[APP]” on page 263.

Connection properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 599

Property Description

ApproximateCPUTime Returns an estimate of the amount of CPU time accumulated by
a given connection, in seconds. The value returned may differ
from the actual value by as much as 50%, although typical var-
iations are in the 5-10% range. On multi-processor computers,
each CPU (or hyperthread or core) accumulates time, so the sum
of accumulated times for all connections may be greater than the
elapsed time. This property is supported on Windows and Linux.

auditing Returns On if the PUBLIC.auditing option is set to On. Other-
wise, returns Off.

If the auditing option is set to On, and the conn_auditing option
is set to Off, the auditing connection property still returns On,
even though the current connection is not being audited. See
“Controlling auditing” on page 1074 and “auditing option [da-
tabase]” on page 511.

auditing_options This property is reserved for system use. Do not change the set-
ting of this option.

Authenticated Returns Yes if the application has sent a valid connection au-
thentication string. Returns No if the application has not sent a
valid connection authentication string.

AuthType Returns the type of authentication used when connecting. The
value returned is one of Standard, Integrated, Kerberos, or an
empty string. An empty string is returned for internal connec-
tions and connections for HTTP services that use AUTHORI-
ZATION OFF.

background_priority Deprecated. Returns a value indicating how much impact the
current connection has on the performance of other connections.
See “background_priority option [database] [depreca-
ted]” on page 512.

BlockedOn Returns zero if the current connection isn't blocked, or if it is
blocked, the connection number on which the connection is
blocked because of a locking conflict.

blocking Returns a value indicating the database server's behavior in re-
sponse to locking conflicts. See “blocking option [data-
base]” on page 513.

blocking_timeout Returns the length of time, in milliseconds, a transaction waits
to obtain a lock. See “blocking_timeout option [data-
base]” on page 513.

Connection, database, and database server properties

600 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

BytesReceived Returns the number of bytes received during client/server com-
munications. This value is updated for HTTP and HTTPS con-
nections.

BytesReceivedUncomp Returns the number of bytes that would have been received dur-
ing client/server communications if compression was disabled.
This value is the same as the value for BytesReceived if com-
pression is disabled.

BytesSent Returns the number of bytes sent during client/server commu-
nications. This value is updated for HTTP and HTTPS connec-
tions.

BytesSentUncomp Returns the number of bytes that would have been sent during
client/server communications if compression was disabled. This
value is the same as the value for BytesSent if compression is
disabled.

CacheHits Returns the number of successful reads of the cache.

CacheRead Returns the number of database pages that have been looked up
in the cache.

CacheReadIndInt Returns the number of index internal-node pages that have been
read from the cache.

CacheReadIndLeaf Returns the number of index leaf pages that have been read from
the cache.

CacheReadTable Returns the number of table pages that have been read from the
cache.

CacheReadWorkTable Returns the number of cache work table reads .

CarverHeapPages Returns the number of heap pages used for short-term purposes
such as query optimization.

chained Returns the transaction mode used in the absence of a BEGIN
TRANSACTION statement. See “chained option [compatibili-
ty]” on page 514.

CharSet Returns the CHAR character set used by the connection.

checkpoint_time Returns the maximum time, in minutes, that the database server
runs without doing a checkpoint. See “checkpoint_time option
[database]” on page 514.

Connection properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 601

Property Description

cis_option Returns 0 if debugging information for remote data access ap-
pears in the database server messages window and 7 if the de-
bugging information for remote data access does not appear in
the database server messages window. See “cis_option option
[database]” on page 515.

cis_rowset_size Returns the number of rows that are returned from remote servers
for each fetch. See “cis_rowset_size option [data-
base]” on page 515.

ClientLibrary Returns jConnect for jConnect connections; CT_Library for
Open Client connections; None for HTTP connections, and
CmdSeq for ODBC, embedded SQL, OLE DB, ADO.NET, and
iAnywhere JDBC driver connections.

ClientNodeAddress Returns the node for the client in a client/server connection.
When the client and server are both on the same computer, an
empty string is returned. This is a synonym for the NodeAddress
property.

ClientPort Returns the client's TCP/IP port number or 0 if the connection
isn't a TCP/IP connection.

ClientStmtCacheHits Returns the number of prepares that were not required for this
connection because of the client statement cache. This is the
number of additional prepares that would be required if client
statement caching was disabled. See “max_client_state-
ments_cached option [database]” on page 544.

ClientStmtCacheMisses Returns the number of statements in the client statement cache
for this connection that were prepared again. This is the number
of times a cached statement was considered for reuse, but could
not be reused because of a schema change, a database option
setting, or a DROP VARIABLE statement. See “max_cli-
ent_statements_cached option [database]” on page 544.

close_on_endtrans Returns On or Off to indicate whether cursors are closed at the
end of a transaction. See “close_on_endtrans option [compati-
bility]” on page 516.

collect_statistics_on_dml_updates Returns On or Off to indicate whether statistics are gathered
during the execution of data-altering DML statements such as
INSERT, DELETE, and UPDATE. See “collect_statis-
tics_on_dml_updates option [database]” on page 516.

Commit Returns the number of Commit requests that have been handled.

Connection, database, and database server properties

602 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

CommLink Returns the communication link for the connection. This is one
of the network protocols supported by SQL Anywhere, or local
for a same-computer connection.

CommNetworkLink Returns the communication link for the connection. This is one
of the network protocols supported by SQL Anywhere. Values
include SharedMemory and TCPIP. The CommNetworkLink
property always returns the name of the link, regardless of
whether it is same-computer or not.

CommProtocol Returns TDS for Open Client and jConnect connections, HTTP
for HTTP connections, and CmdSeq for ODBC, embedded SQL,
OLE DB, ADO.NET, and iAnywhere JDBC driver connections.

Compression Returns On or Off to indicate whether communication compres-
sion is enabled on the connection.

conn_auditing Returns On if auditing is enabled for the connection, even if the
auditing option is set to Off. See “Controlling audit-
ing” on page 1074.

connection_authentication Returns the string used to authenticate the client. Authentication
is required before the database can be modified. See “connec-
tion_authentication option [database]” on page 518.

continue_after_raiserror Returns On or Off to indicate whether execution of a procedure
or trigger is stopped whenever the RAISERROR statement is
encountered. See “continue_after_raiserror option [compatibil-
ity]” on page 519.

conversion_error Returns On or Off to indicate data type conversion failures are
reported when fetching information from the database. See
“conversion_error option [compatibility]” on page 520.

cooperative_commit_timeout Returns the time, in milliseconds, that the database server waits
for other connections to fill a page of the log before writing to
disk. See “cooperative_commit_timeout option [data-
base]” on page 520.

cooperative_commits Returns On or Off to indicate when commits are written to disk.
See “cooperative_commits option [database]” on page 521.

Connection properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 603

Property Description

CurrentLineNumber Returns the current line number of the procedure or compound
statement a connection is executing. The procedure can be iden-
tified using the CurrentProcedure property. If the line is part of
a compound statement from the client, an empty string is re-
turned.

CurrentProcedure Returns the name of the procedure that a connection is currently
executing. If the connection is executing nested procedure calls,
the name is the name of the current procedure. If there is no
procedure executing, an empty string is returned.

Cursor Returns the number of declared cursors that are currently being
maintained by the server.

CursorOpen Returns the number of open cursors that are currently being
maintained by the server.

database_authentication Returns the string used to authenticate the database. Authenti-
cation is required for authenticated database servers before the
database can be modified. See “database_authentication [data-
base]” on page 522.

date_format Returns a string indicating the format for dates retrieved from
the database. See “date_format option [database]” on page 523.

date_order Returns a string indicating how dates are formatted. See
“date_order option [database]” on page 525.

DBNumber Returns the ID number of the database.

debug_messages Returns On or Off to indicate whether MESSAGE statements
that include a DEBUG ONLY clause are executed. See “de-
bug_messages option [database]” on page 525.

dedicated_task Returns On or Off to indicate whether a request handling task is
dedicated exclusively to handling requests for the connection.
See “dedicated_task option [database]” on page 526.

default_dbspace Returns the name of the default dbspace, or an empty string if
the default dbspace has not been specified. See “default_dbspace
option [database]” on page 526.

default_timestamp_increment Returns a value, in microseconds, that is added to a column of
type TIMESTAMP to keep values in the column unique. See
“default_timestamp_increment option [database] [MobiLink
client]” on page 527.

Connection, database, and database server properties

604 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

delayed_commit_timeout Returns the time, in milliseconds, that the database server waits
to return control to an application following a COMMIT. See
“delayed_commit_timeout option [database]” on page 528.

delayed_commits Returns On or Off to indicate when the database server returns
control to an application following a COMMIT. See “de-
layed_commits option [database]” on page 528.

DiskRead Returns the number of pages that have been read from disk.

DiskReadHint Returns the number of disk read hints.

DiskReadHintPages Returns the number of disk read hint pages.

DiskReadIndInt Returns the number of index internal-node pages that have been
read from disk.

DiskReadIndLeaf Returns the number of index leaf pages that have been read from
disk.

DiskReadTable Returns the number of table pages that have been read from disk.

DiskReadWorkTable Returns the number of disk work table reads.

DiskSyncRead Returns the number of disk reads issued synchronously.

DiskSyncWrite Returns the number of writes issued synchronously.

DiskWaitRead Returns the number of times the database server waited for an
asynchronous read.

DiskWaitWrite Returns the number of times the database server waited for an
asynchronous write.

DiskWrite Returns the number of modified pages that have been written to
disk.

DiskWriteHint Returns the number of disk write hints.

DiskWriteHintPages Returns the number of disk write hint pages.

Encryption Returns a value that indicates whether the connection is encryp-
ted. See “Encryption connection parameter
[ENC]” on page 280.

escape_character This property is reserved for system use. Do not change the set-
ting of this option.

Connection properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 605

Property Description

EventName Returns the name of the associated event if the connection is
running an event handler. Otherwise, the result is NULL.

exclude_operators This property is reserved for system use. Do not change the set-
ting of this option.

ExprCacheAbandons Returns the number of times that the expression cache was aban-
doned because the hit rate was too low.

ExprCacheDropsToReadOnly Returns the number of times that the expression cache dropped
to read-only status because the hit rate was low.

ExprCacheEvicts Returns the number of evictions from the expression cache.

ExprCacheHits Returns the number of hits in the expression cache.

ExprCacheInserts Returns the number of values inserted into the expression cache.

ExprCacheLookups Returns the number of lookups done in the expression cache.

ExprCacheResumesOfReadWrite Returns the number of times that the expression cache resumed
read-write status because the hit rate increased.

ExprCacheStarts Returns the number of times that the expression cache was star-
ted.

extended_join_syntax Returns On if queries with duplicate correlation name syntax for
multi-table joins are allowed, Off if they are reported as an error.
See “extended_join_syntax option [database]” on page 530.

fire_triggers Returns On if triggers are fired in the database, otherwise, returns
Off. See “fire_triggers option [compatibility]” on page 531.

first_day_of_week Returns the number that is used for the first day of the week,
where 7=Sunday and 1=Monday. See “first_day_of_week op-
tion [database]” on page 532.

for_xml_null_treatment Returns Omit if elements and attributes that contain NULL val-
ues are omitted from the result and Empty if empty elements or
attributes are generated for NULL values when the FOR XML
clause is used in a query. See “for_xml_null_treatment option
[database]” on page 533.

force_view_creation This property is reserved for system use. Do not change the set-
ting of this option.

Connection, database, and database server properties

606 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

FullCompare Returns the number of comparisons that have been performed
beyond the hash value in an index.

GetData Returns the number of GETDATA requests.

global_database_id Returns the starting value used for columns created with DE-
FAULT GLOBAL AUTOINCREMENT. See “global_data-
base_id option [database]” on page 533.

HashForcedPartitions Returns the number of times that a hash operator was forced to
partition because of competition for memory.

HashRowsFiltered Returns the number of probe rows rejected by bit-vector filters.

HashRowsPartitioned Returns the number of rows written to hash work tables.

HashWorkTables Returns the number of work tables created for hash-based oper-
ations.

HeapsCarver Returns the number of heaps used for short-term purposes such
as query optimization..

HeapsLocked Returns number of relocatable heaps currently locked in the
cache.

HeapsQuery Returns the number of heaps used for query processing (hash and
sort operations).

HeapsRelocatable Returns the number of relocatable heaps.

http_session_timeout Returns the current HTTP session timeout, in minutes. See
“http_session_timeout option [database]” on page 534.

HttpServiceName Returns the service name origin for a web application. The prop-
erty is useful for error reporting and control flow. An empty
string is returned when this property is selected from a stored
procedure that did not originate from an HTTP request or if the
connection is currently inactive waiting to continue an HTTP
session.

IdleTimeout Returns the idle timeout value of the connection. See “Idle con-
nection parameter” on page 283.

IndAdd Returns the number of entries that have been added to indexes.

IndLookup Returns the number of entries that have been looked up in in-
dexes.

Connection properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 607

Property Description

integrated_server_name Returns the name of the Domain Controller server used for look-
ing up Windows user group membership for integrated logins.
See “integrated_server_name option [database]” on page 535.

IsDebugger Returns Yes or No to distinguish connections that are being used
to run the SQL Anywhere debugger. The value is Yes if the cur-
rent connection number corresponds to the connection number
of a debugger connection, and No otherwise. See “Debugging
procedures, functions, triggers, and events” [SQL Anywhere
Server - SQL Usage].

isolation_level Returns the isolation level of the connection (0, 1, 2, 3, snapshot,
statement-snapshot, or readonly-statement-snapshot). See “iso-
lation_level option [database] [compatibility]” on page 535.

java_location Returns the path of the Java VM for the database if one has been
specified. See “java_location option [database]” on page 537.

java_main_userid Returns the name of the database user whose connection can be
used for installing classes and other Java-related administrative
tasks. See “java_main_userid option [database]” on page 538.

java_vm_options Returns the command line options that the database server uses
when it launches the Java VM. See “java_vm_options option
[database]” on page 538.

Language Returns the locale language.

LastIdle Returns the number of ticks between requests.

LastPlanText Returns the long text plan of the last query executed on the con-
nection. You control the remembering of the last plan by setting
using the RememberLastPlan option of the sa_server_option
system procedure, or using the -zp server option. See “-zp server
option” on page 243.

LastReqTime Returns the time at which the last request for the specified con-
nection started.

Connection, database, and database server properties

608 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

LastStatement Returns the most recently prepared SQL statement for the current
connection. See “-zl server option” on page 240.

The LastStatement value is set when a statement is prepared, and
is cleared when a statement is dropped. Only one statement string
is remembered for each connection.

If sa_conn_activity reports a non-empty value for a connection,
it is most likely the statement that the connection is currently
executing. If the statement had completed, it would likely have
been dropped and the property value would have been cleared.
If an application prepares multiple statements and retains their
statement handles, the LastStatement value does not reflect what
a connection is currently doing.

When client statement caching is enabled, and a cached state-
ment is reused, this property returns an empty string.

LivenessTimeout Returns the liveness timeout period for the current connection.
See “LivenessTimeout connection parameter
[LTO]” on page 288.

lock_rejected_rows This property is reserved for system use. Do not change the set-
ting of this option.

LockCount Returns the number of locks held by the connection.

LockIndexID Returns the identifier of the locked index.

LockName Returns a 64-bit unsigned integer value representing the lock for
which a connection is waiting.

LockRowID Returns the identifier of the locked row.

LockTableOID Returns zero if the connection isn't blocked, or if the connection
is on a different database than the connection calling CONNEC-
TION _PROPERTY. Otherwise, this is the object ID of the table
for the lock on which this connection is waiting. The object ID
can be used to look up table information using the SYSTAB
system view. See “SYSTAB system view” [SQL Anywhere
Server - SQL Reference].

log_deadlocks Returns On if deadlock information is reported; otherwise, re-
turns Off. See “log_deadlocks option [database]” on page 539.

Connection properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 609

Property Description

LogFreeCommit Returns the number of redo free commits. A redo free commit
occurs when a commit of the transaction log is requested but the
log has already been written (so the commit was done for free.)

login_mode Returns one or more of Standard, Integrated, or Kerberos to in-
dicate whether integrated logins and Kerberos are supported. See
“login_mode option [database]” on page 540.

login_procedure Returns the name of the stored procedure used to set compati-
bility options at startup. See “login_procedure option [data-
base]” on page 541.

LoginTime Returns the date and time the connection was established.

LogWrite Returns the number of pages that have been written to the trans-
action log.

materialized_view_optimization Returns a value indicating whether materialized views are used
during query optimization:

● Disabled
● Fresh
● Stale
● N Minute[s]
● N Hour[s]
● N Day[s]
● N Week[s]
● N Month[s]

See “materialized_view_optimization option [data-
base]” on page 543.

max_client_statements_cached Returns the number of statements cached by the client. See
“max_client_statements_cached option [data-
base]” on page 544.

max_cursor_count Returns a value specifying the maximum number of cursors that
a connection can use at once. See “max_cursor_count option
[database]” on page 545.

max_hash_size This property is deprecated.

max_plans_cached Returns a value specifying the maximum number of execution
plans to be stored in a cache. See “max_plans_cached option
[database]” on page 546.

Connection, database, and database server properties

610 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

max_priority Returns a value indicating the maximum priority level a con-
nection can have. See “max_priority option [data-
base]” on page 547.

max_query_tasks Returns the maximum number of requests that the database serv-
er can use to process a query. See “max_query_tasks option [da-
tabase]” on page 547.

max_recursive_iterations Returns a value specifying the maximum number of iterations a
recursive common table expression can make. See “max_recur-
sive_iterations option [database]” on page 548.

max_statement_count Returns a value specifying the maximum number of prepared
statements that a connection can use simultaneously. See
“max_statement_count option [database]” on page 549.

max_temp_space Returns a value indicating the maximum amount of temporary
file space available for a connection. See “max_temp_space op-
tion [database]” on page 550.

MessageReceived Returns the string that was generated by the MESSAGE state-
ment that caused the WAITFOR statement to be interrupted.
Otherwise, an empty string is returned.

min_password_length Returns the minimum length for new passwords in the database.
See “min_password_length option [database]” on page 551.

Name Returns the name of the current connection.

NcharCharSet Returns the NCHAR character set used by the connection.

nearest_century Returns a value that indicates how two-digit years are interpreted
in string-to-date conversions. See “nearest_century option [com-
patibility]” on page 552.

NodeAddress Returns the node for the client in a client/server connection.
When the client and server are both on the same computer, an
empty string is returned.

non_keywords Returns a list of keywords, if any, that are turned off so they can
be used as identifiers. See “non_keywords option [compatibili-
ty]” on page 552.

Number Returns the ID number of the connection.

Connection properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 611

Property Description

odbc_describe_binary_as_varbina-
ry

Returns Off if the SQL Anywhere ODBC driver describes both
BINARY and VARBINARY columns as SQL_BINARY and
returns On if the ODBC driver describes BINARY and VAR-
BINARY columns as SQL_VARBINARY. See “odbc_de-
scribe_binary_as_varbinary [database]” on page 553.

odbc_distinguish_char_and_var-
char

Returns Off if CHAR columns are described as SQL_VAR-
CHAR, and On if CHAR columns are described as SQL_CHAR.
See “odbc_distinguish_char_and_varchar option [data-
base]” on page 553.

oem_string Returns the string stored in the header page of the database file.
See “oem_string option [database]” on page 554.

on_charset_conversion_failure Returns one of Ignore, Warning, or Error to indicate the behavior
when an error is encountered during character set conversion.
See “on_charset_conversion_failure option [data-
base]” on page 556.

on_tsql_error Returns one of Stop, Conditional, or Continue to indicate the
behavior when an error is encountered while executing a stored
procedure. See “on_tsql_error option [compatibili-
ty]” on page 557.

optimization_goal Returns one of First-row or All-rows to indicate how query pro-
cessing is optimized. See “optimization_goal option [data-
base]” on page 557.

optimization_level Returns a value between 0 and 15. This number is used to control
the amount of effort made by the SQL Anywhere query optimizer
to find an access plan for a SQL statement. See “optimiza-
tion_level option [database]” on page 558.

optimization_workload Returns a value indicating the amount of effort made by the SQL
Anywhere query optimizer to find an access plan for a SQL
statement. See “optimization_workload option [data-
base]” on page 560.

OSUser Returns the operating system user name associated with the cli-
ent process. If the client process is impersonating another user
(or the set ID bit is set on Unix), the impersonated user name is
returned. An empty string is returned for version 10.0.1 and ear-
lier clients, and for HTTP and TDS clients.

PacketSize Returns the packet size used by the connection, in bytes.

Connection, database, and database server properties

612 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

PacketsReceived Returns the number of client/server communication packets re-
ceived. This value is not updated for HTTP or HTTPS connec-
tions.

PacketsReceivedUncomp Returns the number of packets that would have been received
during client/server communications if compression was disa-
bled. (This value is the same as the value for PacketsReceived if
compression is disabled.)

PacketsSent Returns the number of client/server communication packets sent.
This value is not updated for HTTP or HTTPS connections.

PacketsSentUncomp Returns the number of packets that would have been sent during
client/server communications if compression was disabled.
(This value is the same as the value for PacketsSent if compres-
sion is disabled.)

pinned_cursor_percent_of_cache Returns the percentage of the cache that can be used for pinning
cursors. See “pinned_cursor_percent_of_cache option [data-
base]” on page 560.

post_login_procedure Returns the name of the procedure whose result set contains
messages that should be displayed by applications when a user
connects. See “post_login_procedure option [data-
base]” on page 561.

precision Returns the decimal and numeric precision setting. See “preci-
sion option [database]” on page 563.

prefetch Returns Off if no prefetching is done, Conditional if prefetching
occurs unless the cursor type is SENSITIVE or the query in-
cludes a proxy table, or Always if prefetching is done even for
SENSITIVE cursor types and cursors that involve a proxy table.
See “prefetch option [database]” on page 563.

Prepares Returns the number of statement preparations performed for the
connection.

PrepStmt Returns the number of prepared statements currently being main-
tained by the server.

preserve_source_format Returns On if the original source definition of procedures, trig-
gers, views, and event handlers is saved in system tables, other-
wise, returns Off. See “preserve_source_format option [data-
base]” on page 564.

Connection properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 613

Property Description

prevent_article_pkey_update Returns On if updates are not allowed to the primary key columns
of tables involved in publications, otherwise returns Off. See
“prevent_article_pkey_update option [database] [MobiLink cli-
ent]” on page 565.

priority Returns a value indicating the priority level of a connection. See
“priority option [database]” on page 565.

query_mem_timeout Returns the value of the query_mem_timeout option. See
“query_mem_timeout option [database]” on page 566.

QueryBypassed Returns the number of requests optimized by the optimizer by-
pass.

QueryBypassedCosted Returns the number of requests processed by the optimizer by-
pass using costing.

QueryBypassedHeuristic Returns the number of requests processed by the optimizer by-
pass using heuristics.

QueryBypassedOptimized Returns the number of requests initially processed by the opti-
mizer bypass and subsequently fully optimized by the SQL Any-
where optimizer.

QueryCachedPlans Returns the number of query execution plans currently cached
for the connection.

QueryCachePages Returns the number of cache pages used to cache execution
plans.

QueryDescribedBypass Returns the number of describe requests processed by the opti-
mizer bypass.

QueryDescribedOptimizer Returns the number of describe requests processed by the opti-
mizer.

QueryHeapPages Returns the number of cache pages used for query processing
(hash and sort operations).

QueryJHToJNLOptUsed Returns the number of times a hash join was converted to a nested
loops join.

Connection, database, and database server properties

614 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

QueryLowMemoryStrategy Returns the number of times the server changed its execution
plan during execution as a result of low memory conditions. The
strategy can change because less memory is now available than
the optimizer estimated, or because the execution plan required
more memory than the optimizer estimated.

QueryMemActiveCurr Returns the number of requests actively using query memory.

QueryMemGrantFailed Returns the total number of times a request waited for query
memory, but failed to get it.

QueryMemGrantGranted Returns the number of pages currently granted to requests.

QueryMemGrantRequested Returns the total number of times any request attempted to ac-
quire query memory.

QueryMemGrantWaited Returns the total number of times any request waited for query
memory.

QueryMemGrantWaiting Returns the current number of requests waiting for query mem-
ory.

QueryOpened Returns the number of OPEN requests for execution.

QueryOptimized Returns the number of requests fully optimized.

QueryReused Returns the number of requests that have been reused from the
plan cache.

QueryRowsBufferFetch Returns the number of rows fetched using buffering.

QueryRowsMaterialized Returns the number of rows are written to work tables during
query processing.

quoted_identifier Returns On if strings enclosed in double quotes are interpreted
as identifiers, or Off if they are interpreted as literal strings. See
“quoted_identifier option [compatibility]” on page 567.

read_past_deleted Returns On if sequential scans at isolation levels 1 and 2 skip
uncommitted deleted rows, and Off if sequential scans block on
uncommitted deleted rows at isolation levels 1 and 2. See
“read_past_deleted option [database]” on page 567.

recovery_time Returns the maximum length of time, in minutes, that the data-
base server will take to recover from system failure. See “recov-
ery_time option [database]” on page 568.

Connection properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 615

Property Description

RecursiveIterations Returns the number of iterations for recursive unions.

RecursiveIterationsHash Returns the number of times recursive hash join used a hash
strategy.

RecursiveIterationsNested Returns the number of times recursive hash join used a nested
loops strategy.

RecursiveJNLMisses Returns the number of index probe cache misses for recursive
hash join.

RecursiveJNLProbes Returns the number of times recursive hash join attempted an
index probe.

remote_idle_timeout Returns the time, in seconds, of inactivity that web service client
procedures and functions will tolerate. See “remote_idle_time-
out option [database]” on page 568.

replicate_all Returns On if the database is acting as a primary site in a Rep-
lication Server installation; otherwise, returns Off. See “repli-
cate_all option [Replication Agent]” on page 569.

ReqCountActive Returns the number of requests processed, or NULL if the Re-
questTiming server property is set to Off. See “-zt server op-
tion” on page 246.

ReqCountBlockContention Returns the number of times the connection waited for atomic
access, or NULL if the -zt option was not specified. See “-zt
server option” on page 246.

ReqCountBlockIO Returns the number of times the connection waited for I/O to
complete, or NULL if the -zt option was not specified. See “-zt
server option” on page 246.

ReqCountBlockLock Returns the number of times the connection waited for a lock, or
NULL if the -zt option was not specified. See “-zt server op-
tion” on page 246.

ReqCountUnscheduled Returns the number of times the connection waited for schedul-
ing, or NULL if the -zt option was not specified. See “-zt server
option” on page 246.

Connection, database, and database server properties

616 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

ReqStatus Returns the status of the request. It can be one of the following
values:

● Idle The connection is not currently processing a request.

● Unscheduled* The connection has work to do and is
waiting for a worker thread.

● BlockedIO* The connection is blocked waiting for an I/
O.

● BlockedContention* The connection is blocked waiting
for access to shared database server data structures.

● BlockedLock The connection is blocked waiting for a
locked object.

● Executing The connection is executing a request.

The values marked with an asterisk (*) are only returned when
logging of request timing information has been turned on for the
database server using the -zt server option. If request timing in-
formation is not being logged (the default), the values are repor-
ted as Executing.

For more information, see “-zt server option” on page 246.

ReqTimeActive Returns the amount of time spent processing requests, or NULL
if the -zt option was not specified. See “-zt server op-
tion” on page 246.

ReqTimeBlockContention Returns the amount of time spent waiting for atomic access, or
NULL if the RequestTiming server property is set to Off. See “-
zt server option” on page 246.

ReqTimeBlockIO Returns the amount of time spent waiting for I/O to complete, or
NULL if the -zt option was not specified. See “-zt server op-
tion” on page 246.

ReqTimeBlockLock Returns the amount of time spent waiting for a lock, or NULL if
the -zt option was not specified. See “-zt server op-
tion” on page 246.

ReqTimeUnscheduled Returns the amount of unscheduled time, or NULL if the -zt op-
tion was not specified. See “-zt server option” on page 246.

ReqType Returns the type of the last request.

Connection properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 617

Property Description

request_timeout Returns the maximum time a single request can run. See “re-
quest_timeout option [database]” on page 570.

RequestsReceived Returns the number of client/server communication requests or
round trips. It is different from PacketsReceived in that multi-
packet requests count as one request, and liveness packets are
not included.

return_date_time_as_string Returns On if date, time, and timestamp values are returned to
applications as a string, and Off if they are returned as a date or
time data type. See “return_date_time_as_string option [data-
base]” on page 571.

Rlbk The number of rollback requests that have been handled.

rollback_on_deadlock Returns After when referential integrity actions are executed af-
ter the UPDATE or DELETE, and Before if they are executed
before the UPDATE or DELETE. See “rollback_on_deadlock
[database]” on page 572.

RollbackLogPages Returns the number of pages in the rollback log.

row_counts Returns On if the row count is always accurate, and Off if the
row count is usually an estimate. See “row_counts option [da-
tabase]” on page 572.

scale Returns the decimal and numeric scale for the connection. See
“scale option [database]” on page 573.

secure_feature_key Stores the key that is used to enable and disable features for a
database server. Selecting the value of this property always re-
turns an empty string.

ServerNodeAddress Returns the node for the server in a client/server connection.
When the client and server are both on the same computer, an
empty string is returned.

ServerPort Returns the database server's TCP/IP port number or 0.

SessionCreateTime Returns the time the HTTP session was created.

SessionID Returns the session ID for the connection if one has been defined,
otherwise, returns an empty string.

SessionLastTime Returns the time of the last request for the HTTP session.

Connection, database, and database server properties

618 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

SessionTimeout Returns the time, in minutes, the HTTP session persists during
inactivity. See “sa_set_http_option system procedure” [SQL
Anywhere Server - SQL Reference].

SnapshotCount Returns the number of snapshots associated with the connection.

sort_collation Returns Internal if the ORDER BY clause remains unchanged,
otherwise the collation name or collation ID is returned. See
“sort_collation option [database]” on page 575.

SortMergePasses Returns the number of merge passes used during sorting.

SortRowsMaterialized Returns the number of rows written to sort work tables.

SortRunsWritten Returns the number of sorted runs written during sorting.

SortSortedRuns Returns the number of sorted runs created during run formation.

SortWorkTables Returns the number of work tables created for sorting.

sql_flagger_error_level Returns one of the following values to indicate which SQL that
is not part of a specified set of SQL/2003 is flagged as an error:

● E Flag syntax that is not entry-level SQL/2003 syntax

● I Flag syntax that is not intermediate-level SQL/2003 syn-
tax

● F Flag syntax that is not full-SQL/2003 syntax

● W Allow all supported syntax

For more information, see “sql_flagger_error_level option
[compatibility]” on page 575.

sql_flagger_warning_level Returns one of the following values to indicate which SQL that
is not part of a specified set of SQL/2003 is flagged as a warning:

● E Flag syntax that is not entry-level SQL/2003 syntax

● I Flag syntax that is not intermediate-level SQL/2003 syn-
tax

● F Flag syntax that is not full-SQL/2003 syntax

● W Allow all supported syntax

For more information, see “sql_flagger_warning_level option
[compatibility]” on page 576.

Connection properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 619

Property Description

StatementDescribes Returns the total number of statements processed by DESCRIBE
requests.

StatementPostAnnotates Returns the number of statements processed by the semantic
query transformation phase.

StatementPostAnnotatesSimple Returns the number of statements processed by the semantic
query transformation phase, but which skipped some of the se-
mantic transformations.

StatementPostAnnotatesSkipped Returns the number of statements that have completely skipped
the semantic query transformation phase.

string_rtruncation Returns On if an error is raised when a string is truncated, and
returns Off if an error is not raised and the character string is
silently truncated. See “string_rtruncation option [compatibili-
ty]” on page 580.

subsume_row_locks Returns On if the database server acquires individual row locks
for a table, otherwise, returns Off. See “subsume_row_locks op-
tion [database]” on page 581.

suppress_tds_debugging Returns Off if TDS debugging information appears in the data-
base server messages window, and returns On if debugging in-
formation does not appear in the database server messages win-
dow. See “suppress_tds_debugging option [data-
base]” on page 581.

synchronize_mirror_on_commit Returns On if the database mirror server is synchronized on
commit, otherwise returns Off. See “synchronize_mir-
ror_on_commit option [database]” on page 582.

tds_empty_string_is_null Returns On if empty strings are returned as NULL for TDS con-
nections, and returns Off if a string containing one blank char-
acter is returned for TDS connections. See “tds_emp-
ty_string_is_null option [database]” on page 582.

temp_space_limit_check Returns On if the database server checks the amount of tempo-
rary space available for a connection, and returns Off if the da-
tabase server does not check the amount of space available for a
connection. See “temp_space_limit_check option [data-
base]” on page 583.

TempTablePages Returns the number of pages in the temporary file used for tem-
porary tables.

Connection, database, and database server properties

620 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

time_format Returns the string format used for times retrieved from the da-
tabase. See “time_format option [compatibility]” on page 584.

time_zone_adjustment Returns the number of minutes that must be added to the Coor-
dinated Universal Time (UTC) to display time local to the con-
nection. See “time_zone_adjustment option [data-
base]” on page 584.

timestamp_format Returns the number of minutes that must be added to the Coor-
dinated Universal Time (UTC) to display time local to the con-
nection. See “timestamp_format option [compatibili-
ty]” on page 585.

TimeZoneAdjustment Returns the number of minutes that must be added to the Coor-
dinated Universal Time (UTC) to display time local to the con-
nection. See “time_zone_adjustment option [data-
base]” on page 584.

TransactionStartTime Returns a string containing the time the database was first modi-
fied after a COMMIT or ROLLBACK, or an empty string if no
modifications have been made to the database since the last
COMMIT or ROLLBACK.

truncate_timestamp_values Returns On if the number of decimal places used in the time-
stamp values is limited, otherwise, returns Off. See “trun-
cate_timestamp_values option [database] [MobiLink cli-
ent]” on page 586.

tsql_outer_joins Returns On if Transact-SQL outer joins can be used in DML
statements. See “tsql_outer_joins option [compatibili-
ty]” on page 588.

tsql_variables Returns On if you can use the @ sign instead of the colon as a
prefix for host variable names in embedded SQL, otherwise, re-
turns Off. See “tsql_variables option [compatibili-
ty]” on page 588.

UncommitOp Returns the number of uncommitted operations.

updatable_statement_isolation Returns the isolation level (0, 1, 2, or 3) used by updatable state-
ments when the isolation_level option is set to readonly-state-
ment-snapshot. See “updatable_statement_isolation option [da-
tabase]” on page 588.

update_statistics This property is reserved for system use. Do not change the set-
ting of this option.

Connection properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 621

Property Description

upgrade_database_capability This property is reserved for system use. Do not change the set-
ting of this option.

user_estimates Returns one of the following values that controls whether selec-
tivity estimates in query predicates are respected or ignored by
the query optimizer:

● Enabled All user-supplied selectivity estimates are re-
spected. You can also use On to turn on this option.

● Override-Magic A user selectivity estimate is respected
and used only if the optimizer would otherwise choose to use
its last-resort, heuristic value (also called the magic value).

● Disabled All user estimates are ignored and magic values
are used when no other estimate data is available. You can
also use Off to turn off this option.

For more information, see “user_estimates option [data-
base]” on page 590.

UserAppInfo Returns the string specified by the AppInfo connection param-
eter in a connection string.

For more information, see “AppInfo connection parameter
[APP]” on page 263.

UserID Returns the user ID for the connection.

UtilCmdsPermitted Returns On or Off to indicate whether utility commands such as
CREATE DATABASE, DROP DATABASE, and RESTORE
DATABASE are permitted for the connection. See “-gu server
option” on page 198.

verify_password_function Returns the name of the function used for password verification
if one has been specified. See “verify_password_function option
[database]” on page 591.

wait_for_commit Returns On if the database does not check foreign key integrity
until the next COMMIT statement. Otherwise, returns Off and
all foreign keys that are not created with the check_on_commit
option are checked as they are inserted, updated or deleted. See
“wait_for_commit option [database]” on page 595.

WaitStartTime Returns the time at which the connection started waiting (or an
empty string if the connection is not waiting).

Connection, database, and database server properties

622 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

WaitType Returns the reason for the wait, if it is available. Possible values
for WaitType are:

● lock Returned if the connection is waiting on a lock.

● waitfor Returned if the connection is executing a waitfor
statement.

● empty string Returned if the connection is not waiting,
or if the reason for the wait is not available.

webservice_namespace_host Returns the hostname to be used as the XML namespace within
generated WSDL documents if one has been specified. See
“webservice_namespace_host option [database]” on page 595.

Connection properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 623

Database server properties
The following table lists properties that apply across the database server as a whole.

You can use the PROPERTY system function to retrieve the value for an individual property, or you can
use the sa_eng_properties system procedure to retrieve the values of all database server properties. Property
names are case insensitive.

Examples
To retrieve the value of a database server property

● Use the PROPERTY system function. For example, the following statement returns the number of cache
pages used for global server data structures:

SELECT PROPERTY ('MainHeapPages');

To retrieve the values of all server properties

● Use the sa_eng_properties system procedure:

CALL sa_eng_properties;

See also
● “PROPERTY function [System]” [SQL Anywhere Server - SQL Reference]
● “Connection properties” on page 598
● “Database properties” on page 639

Descriptions

Property Description

ActiveReq Returns the number of server threads that are currently handling a re-
quest.

AvailIO Returns the current number of available I/O control blocks.

BuildChange Reserved.

BuildClient Reserved.

BuildProduction Returns Yes if the database server is compiled for production use or
returns No if the database server is a debug build.

BuildReproducible Reserved.

BytesReceived Returns the number of bytes received during client/server communi-
cations. This value is updated for HTTP and HTTPS connections.

Connection, database, and database server properties

624 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

BytesReceivedUncomp Returns the number of bytes that would have been received during cli-
ent/server communications if compression was disabled. (This value is
the same as the value for BytesReceived if compression is disabled.)

BytesSent Returns the number of bytes sent during client/server communications.
This value is updated for HTTP and HTTPS connections.

BytesSentUncomp Returns the number of bytes that would have been sent during client/
server communications if compression was disabled. (This value is the
same as the value for BytesSent if compression is disabled.)

CacheAllocated Returns the number of cache pages that have been allocated for server
data structures.

CacheFile Returns the number of cache pages used to hold data from database
files.

CacheFileDirty Returns the number of cache pages that are dirty (needing a write).

CacheFree Returns the number of cache pages not being used.

CacheHits Returns the number of database page lookups.

CachePanics Returns the number of times the cache manager has failed to find a page
to allocate.

CachePinned Returns the number of pinned cache pages.

CacheRead Returns the number of cache reads.

CacheReplacements Returns the number of pages in the cache that have been replaced.

CacheScavenges Returns the number of times the cache manager has scavenged for a
page to allocate.

CacheScavengeVisited Returns the number of pages visited while scavenging for a page to
allocate.

CacheSizingStatistics Returns Yes if the server is displaying cache sizing statistics when the
cache is resized, otherwise, returns No. See “-cs server op-
tion” on page 175.

CarverHeapPages Returns the number of heap pages used for short-term purposes such
as query optimization.

CharSet Returns the CHAR character set in use by the database server.

Database server properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 625

Property Description

ClientStmtCacheHits Returns the number of prepares that were not required because of the
client statement cache. This is the number of additional prepares that
would be required if client statement caching was disabled. See
“max_client_statements_cached option [database]” on page 544.

ClientStmtCacheMisses Returns the number of statements in the client statement cache that were
prepared again. This is the number of times a cached statement was
considered for reuse, but could not be reused because of a schema
change, a database option setting, or a DROP VARIABLE statement.
See “max_client_statements_cached option [database]” on page 544.

CollectStatistics Returns Yes or No to indicate whether the database server is collecting
performance statistics. See “-k server option” on page 201.

CommandLine Returns the command line that was used to start the database server.

If the encryption key for a database was specified using the -ek option,
the key is replaced with a constant string of asterisks in the value re-
turned by this property.

CompactPlatformVer Returns a condensed version of the PlatformVer property.

CompanyName Returns the name of the company owning this software.

ConnsDisabled Returns Yes or No to indicate the current setting of the server option
to disable new connections. See “sa_server_option system procedure”
[SQL Anywhere Server - SQL Reference].

ConsoleLogFile Returns the name of the file where database server messages are logged
if the -o option was specified, otherwise returns an empty string. See
“-o server option” on page 208 and “Logging database server ac-
tions” on page 43.

ConsoleLogMaxSize Returns the maximum size in bytes of the file used to log database
server messages. See “-os server option” on page 210.

CurrentCacheSize Returns the current cache size, in kilobytes.

DebuggingInformation Returns Yes if the server is displaying diagnostic messages for trou-
bleshooting, and No otherwise. See “-z server option” on page 239.

DefaultCollation Returns the collation that would be used for new databases if none is
explicitly specified.

DefaultNcharCollation Returns the name of the default NCHAR collation on the server com-
puter (UCA if ICU is installed, and UTF8BIN otherwise).

Connection, database, and database server properties

626 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

DiskRead Returns the number of disk reads.

DiskReadHintScatterLimit Returns the imposed limit on the size (in bytes) of a scatter read hint.

DiskRetryRead Returns the number of disk read retries.

DiskRetryReadScatter Returns the number of disk read retries for scattered reads.

DiskRetryWrite Returns the number of disk write retries.

EventTypeDesc Returns the system event type description associated with a given event
type ID.

EventTypeName Returns the system event type name associated with a given event type
ID.

ExchangeTasks Returns the number of tasks currently being used for parallel execution
of queries.

ExchangeTasksCompleted Returns the total number of internal tasks that have been used for intra-
query parallelism since the database server started. See “Parallelism
during query execution” [SQL Anywhere Server - SQL Usage].

FipsMode Returns Yes if the -fips option was specified when the database server
was started, and No otherwise.

FirstOption Returns the number that represents the first connection property that
corresponds to a database option.

FreeBuffers Returns the number of available network buffers.

FunctionMaxParms Returns the maximum number of parameters that can be specified a
function. The function is identified by the value specified by the func-
tion-number, which is a positive integer. For example:

SELECT PROPERTY ('FunctionMaxParms', function-
number);

Note that the function-number is subject to change between releases.

FunctionMinParms Returns the minimum number of parameters that must be specified a
function. The function is identified by the value specified by the func-
tion-number, which is a positive integer. For example:

SELECT PROPERTY ('FunctionMaxParms', function-
number);

Note that the function-number is subject to change between releases.

Database server properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 627

Property Description

FunctionName Returns the name of the function identified by the value specified by
the function-number (which is a positive integer):

SELECT PROPERTY ('FunctionName', function-number);

Note that the function-number is subject to change between releases.

HeapsCarver Returns the number of heaps used for short-term purposes such as query
optimization.

HeapsLocked Returns number of relocatable heaps currently locked in the cache.

HeapsQuery Returns the number of heaps used for query processing (hash and sort
operations).

HeapsRelocatable Returns the number of relocatable heaps.

HttpAddresses Returns a semicolon delimited list of the TCP/IP addresses the server
is listening to for HTTP connections. For example:

(::1):80;127.0.0.1:80

HttpNumActiveReq Returns the number of HTTP connections that are actively processing
an HTTP request. An HTTP connection that has sent its response is not
included.

HttpNumConnections Returns the number of HTTP connections that are currently open within
the database server. They may be actively processing a request or wait-
ing in a queue of long lived (keep-alive) connections.

HttpNumSessions Returns the number of active and dormant HTTP sessions within the
database server.

HttpPorts Returns the HTTP port numbers for the web server as a comma de-
limited list.

HttpsAddresses Returns a semicolon delimited list of the TCP/IP addresses the server
is listening to for HTTPS connections. For example:

(::1):443;127.0.0.1:443

HttpsNumActiveReq Returns the number of secure HTTPS connections that are actively
processing an HTTPS request. An HTTPS connection that has sent its
response is not included.

HttpsNumConnections Returns the number of HTTPS connections that are currently open
within the database server. They may be actively processing a request
or waiting in a queue of long lived (keep-alive) connections.

Connection, database, and database server properties

628 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

HttpsPorts Returns the HTTPS port numbers for the web server as a comma de-
limited list.

IdleTimeout Returns the default idle timeout. See “-ti server option” on page 225.

IsEccAvailable Returns Yes if the ECC DLL is installed, and No otherwise.

IsFipsAvailable Returns Yes if the FIPS DLL is installed, and No otherwise.

IsNetworkServer Returns Yes if connected to a network database server, and No if con-
nected to a personal database server.

IsRsaAvailable Returns Yes if the RSA DLL is installed, and No otherwise.

IsRuntimeServer Returns Yes if connected to the limited desktop runtime database serv-
er, and No otherwise.

IsService Returns Yes if the database server is running as a service, and No oth-
erwise.

Language Returns the locale language for the server.

LastConnectionProperty Returns the number that represents the last connection property.

LastDatabaseProperty Returns the number that represents the last database property.

LastOption Returns the number that represents the last connection property that
corresponds to a database option.

LastServerProperty Returns the number that represents the last server property.

LegalCopyright Returns the copyright string for the software.

LegalTrademarks Returns trademark information for the software.

LicenseCount Returns the number of licensed seats or processors.

LicensedCompany Returns the name of the licensed company.

LicensedUser Returns the name of the licensed user.

LicenseType Returns the license type. Can be networked seat (per-seat) or CPU-
based.

LivenessTimeout Returns the client liveness timeout default. See “-tl server op-
tion” on page 225.

Database server properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 629

Property Description

LockedCursorPages Returns the number of pages used to keep cursor heaps pinned in mem-
ory.

LockedHeapPages Returns the number of heap pages locked in the cache.

MachineName Returns the name of the computer running a database server. Typically,
this is the computer's host name.

MainHeapBytes Returns the number of bytes used for global server data structures.

MainHeapPages Returns the number of pages used for global server data structures.

MapPhysicalMemoryEng Returns the number of database page address space windows mapped
to physical memory in the cache using Address Windowing Extensions.

MaxCacheSize Returns the maximum cache size allowed, in kilobytes.

MaxConnections Returns the maximum number of concurrent connections the server
allows. For the personal server, this value defaults to 10. For the net-
work server, this value defaults to about 32000. This value can be low-
ered using the -gm server option. See “-gm server op-
tion” on page 192.

Computer resources typically limit the number of connections to a net-
work server to a lower value than the default.

MaxEventType Returns the maximum valid event type ID.

MaxMessage Deprecated. Returns the current maximum line number that can be re-
trieved from the database server messages window. This represents the
most recent message displayed in the database server messages win-
dow.

MaxRemoteCapability Returns the maximum valid capability ID.

Message, linenumber Deprecated. Returns a line from the database server messages window,
prefixed by the date and time the message appeared. The second pa-
rameter specifies the line number.

The value returned by PROPERTY("message") is the first line
of output that was written to the database server messages window.
Calling PROPERTY("message", n) returns the n-th line of
server output (with zero being the first line). The buffer is finite, so as
messages are generated, the first lines are dropped and may no longer
be available in memory. In this case, NULL is returned.

Connection, database, and database server properties

630 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

MessageCategoryLimit Returns the minimum number of messages of each severity and cate-
gory that can be retrieved using the sa_server_messages system pro-
cedure. The default value is 400. See “sa_server_messages system pro-
cedure” [SQL Anywhere Server - SQL Reference].

MessageText, linenumber Deprecated. Returns the text associated with the specified line number
in the database server messages window, without a date and time prefix.
The second parameter specifies the line number.

MessageTime, linenumber Deprecated. Returns the date and time associated with the specified line
number in the database server messages window. The second parameter
specifies the line number.

MessageWindowSize Deprecated. Returns the maximum number of lines that can be retrieved
from the database server messages window.

MinCacheSize Returns the minimum cache size allowed, in kilobytes.

MultiPacketsReceived Returns the number of multi-packet requests received during client/
server communications.

MultiPacketsSent Returns the number of multi-packet responses sent during client/server
communications.

MultiPageAllocs Returns the number of multi-page cache allocations.

MultiProgrammingLevel Returns the maximum number of concurrent tasks the server can proc-
ess. Requests are queued if there are more concurrent tasks than this
value. This can be changed with the -gn server option. See “-gn server
option” on page 193.

Name Returns the alternate name of the server used to connect to the database
if one was specified, otherwise, returns the real server name. See “-sn
database option” on page 257.

Database server properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 631

Property Description

NativeProcessorArchitecture Returns a string that identifies the native processor type on platforms
where a processor can be emulated (such as X86 on Win64). In all other
cases, it returns the same value as property('ProcessorArchitecture').

Values can include:

● 32-bit Windows, except Windows Mobile, - X86
● Windows Mobile - ARM
● 64-bit Windows - X86_64
● Solaris - SPARC or X86_64
● AIX - PPC
● MAC OS - X86 or X86_64
● HP - IA64
● Linux - X86 or X86_64

For a full list of supported platforms, see http://www.sybase.com/de-
tail?id=1002288.

NumLogicalProcessors Returns the number of logical processors (including cores and hyper-
threads) enabled on the server computer.

NumLogicalProcessorsUsed Returns the number of logical processors the database server will use.
On Windows, use the -gtc option to change the number of logical pro-
cessors used. See “-gtc server option” on page 197.

NumPhysicalProcessors Returns the number of physical processors enabled on the server com-
puter. This value is NumLogicalProcessors divided by the number of
cores or hyperthreads per physical processor. On some non-Windows
platforms, cores or hyperthreads may be counted as physical process-
ors.

NumPhysicalProcessorsUsed Returns the number of physical processors the database server will use.
The personal server is limited to one processor on some platforms. On
Windows, you can use the -gt option to change the number of physical
processors used by the network database server. See “-gt server op-
tion” on page 196.

OmniIdentifier This property is reserved for system use. Do not change the setting of
this option.

PacketsReceived Returns the number of client/server communication packets received.
This value is not updated for HTTP or HTTPS connections.

PacketsReceivedUncomp Returns the number of packets that would have been received during
client/server communications if compression was disabled. (This value
is the same as the value for PacketsReceived if compression is disa-
bled.)

Connection, database, and database server properties

632 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1002288
http://www.sybase.com/detail?id=1002288

Property Description

PacketsSent Returns the number of client/server communication packets sent. This
value is not updated for HTTP or HTTPS connections.

PacketsSentUncomp Returns the number of packets that would have been sent during client/
server communications if compression was disabled. (This value is the
same as the value for PacketsSent if compression is disabled.)

PageSize Returns the size of the database server cache pages. This can be set
using the -gp option, otherwise, it is the maximum database page size
of the databases specified on the command line.

PeakCacheSize Returns the largest value the cache has reached in the current session,
in kilobytes.

Platform Returns the operating system on which the software is running. For
example, if you are running on Windows 2000, this property returns
Windows2000.

PlatformVer Returns the operating system on which the software is running, includ-
ing build numbers, service packs, and so on. For example, it could
return Windows 2000 Build 2195 Service Pack 3.

ProcessCPU Returns CPU usage for the database server process. Values are in sec-
onds. This property is supported on Windows and Unix. This property
is not supported on Windows Mobile.

The value returned for this property is cumulative since the database
server was started. The value will not match the instantaneous value
returned by applications such as the Windows Task Manager or the
Windows Performance Monitor.

ProcessCPUSystem Returns system CPU usage for the database server process CPU. This
is the amount of CPU time that the database server spent inside the
operating system kernel. Values are in seconds. This property is sup-
ported on Windows and Unix. This property is not supported on Win-
dows Mobile.

The value returned for this property is cumulative since the database
server was started. The value will not match the instantaneous value
returned by applications such as the Windows Task Manager or the
Performance Monitor.

Database server properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 633

Property Description

ProcessCPUUser Returns user CPU usage for the database server process. Values are in
seconds. This excludes the amount of CPU time that the database server
spent inside the operating system kernel. This property is supported on
Windows and Unix. This property is not supported on Windows Mo-
bile.

The value returned for this property is cumulative since the database
server was started. The value will not match the instantaneous value
returned by applications such as the Windows Task Manager or the
Performance Monitor.

ProcessorArchitecture Returns a string that identifies the processor type. Values include:

● 32-bit Windows (except Windows Mobile) - X86
● 64-bit Windows - X86_64
● Windows Mobile - ARM
● Solaris - SPARC or X86_64
● AIX - PPC
● MAC OS - X86
● HP - IA64
● Linux - X86 or X86_64

ProductName Returns the name of the software.

ProductVersion Returns the version of the software being run.

ProfileFilterConn Returns the ID of the connection being monitored if procedure profiling
for a specific connection is turned on. Otherwise, returns an empty
string. You control procedure profiling by user with the sa_server_op-
tion procedure. See “sa_server_option system procedure” [SQL Any-
where Server - SQL Reference].

ProfileFilterUser Returns the name of the user being monitored if procedure profiling for
a specific user is turned on. Otherwise, returns an empty string. You
control procedure profiling by user with the sa_server_option proce-
dure. See “sa_server_option system procedure” [SQL Anywhere Server
- SQL Reference].

QueryHeapPages Returns the number of cache pages used for query processing (hash and
sort operations).

QueryMemActiveCurr Returns the number of requests actively using query memory.

QueryMemActiveEst Returns the database server's estimate of the steady state average of the
number of requests actively using query memory.

Connection, database, and database server properties

634 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

QueryMemActiveMax Returns the maximum number of requests that are actively allowed to
use query memory.

QueryMemExtraAvail Returns the amount of memory available to grant beyond the base
memory-intensive grant.

QueryMemGrantBase Returns the minimum amount of memory granted to all requests.

QueryMemGrantBaseMI Returns the minimum amount of memory granted to memory-intensive
requests.

QueryMemGrantExtra Returns the number of query memory pages that can be distributed
among active memory intensive beyond QueryMemGrantBaseMI.

QueryMemGrantFailed Returns the total number of times a request waited for query memory,
but failed to get it.

QueryMemGrantGranted Returns the number of pages currently granted to requests.

QueryMemGrantRequested Returns the total number of times any request attempted to acquire
query memory.

QueryMemGrantWaited Returns the total number of times any request waited for query memory.

QueryMemGrantWaiting Returns the current number of requests waiting for query memory.

QueryMemPages Returns the amount of memory that is available for query execution
algorithms, expressed as a number of pages.

QueryMemPercentOfCache Returns the amount of memory that is available for query execution
algorithms, expressed as a percent of maximum cache size.

QuittingTime Returns the shutdown time for the server. If none is specified, the value
is none.

RememberLastPlan Returns Yes if the server is recording the last query optimization plan
returned by the optimizer. See “-zp server option” on page 243.

RememberLastStatement Returns Yes if the server is recording the last statement prepared by
each connection, and No otherwise. See “-zl server op-
tion” on page 240.

RemoteCapability Returns the remote capability name associated with a given capability
ID.

RemoteputWait Returns the number of remote put waits.

Database server properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 635

Property Description

Req Returns the number of times the server has been entered to allow it to
handle a new request or continue processing an existing request.

RequestFilterConn Returns the ID of the connection that logging information is being fil-
tered for, otherwise, returns -1.

RequestFilterDB Returns the ID of the database that logging information is being filtered
for, otherwise, returns -1.

RequestLogFile Returns the name of the request logging file. An empty string is returned
if there is no request logging. See “sa_server_option system procedure”
[SQL Anywhere Server - SQL Reference].

RequestLogging Returns one of SQL, PLAN, HOSTVARS, PROCEDURES, TRIG-
GERS, OTHER, BLOCKS, REPLACE, ALL, or NONE, indicating the
current setting for request logging. See “sa_server_option system pro-
cedure” [SQL Anywhere Server - SQL Reference].

RequestLogMaxSize Returns the maximum size of the request log file. See “-zs server op-
tion” on page 245.

RequestLogNumFiles Returns the number of request log files being kept. See “sa_server_op-
tion system procedure” [SQL Anywhere Server - SQL Reference].

RequestsReceived Returns the number of client/server communication requests or round
trips. It is different from PacketsReceived in that multi-packet requests
count as one request, and liveness packets are not included.

RequestTiming Returns Yes if request timing is turned on, and No otherwise. Request
timing is turned on using the -zt database server option. See “-zt server
option” on page 246.

SendFail Returns the number of times that the underlying communications pro-
tocols have failed to send a packet.

Connection, database, and database server properties

636 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

ServerEdition Returns the type of database server license. Values include:

● Education
● Full Developer Evaluation
● Web Authenticated
● RunTime
● IQ

If you have a separate licence for any of the following features, then
the appropriate string(s) are added to the license string that is returned:

● HighAvailability See “SQL Anywhere high availability option”
[SQL Anywhere 11 - Introduction].

● InMemory See “SQL Anywhere in-memory mode option” [SQL
Anywhere 11 - Introduction].

● ECC See “SQL Anywhere security option” [SQL Anywhere 11
- Introduction].

● FIPS See “SQL Anywhere security option” [SQL Anywhere 11
- Introduction].

ServerName Returns the name of the server for the current connection. You can use
this value to determine which of the operational servers is currently
acting as primary in a database mirroring configuration. See “Intro-
duction to database mirroring” on page 938.

StartDBPermission Returns the setting of the -gd server option, which can be one of DBA,
all, or none. See “-gd server option” on page 189.

StartTime Returns the date/time that the server started.

StreamsUsed Returns the number of database server streams in use.

TcpIpAddresses Returns a semicolon delimited list of the TCP/IP addresses the server
is listening to for Command Sequence and TDS connections. For ex-
ample:

(::1):2638;127.0.0.1:2638

TempDir Returns the directory in which temporary files are stored by the server.

TimeZoneAdjustment Returns the number of minutes that must be added to the Coordinated
Universal Time (UTC) to display time local to the server.

TotalBuffers Returns the total number of network buffers.

Database server properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 637

Property Description

UniqueClientAddresses Returns the number of unique client network addresses connected to a
network server.

UnschReq Returns the number of requests that are currently queued up waiting
for an available server thread.

WebClientLogFile Returns the name of the web service client log file. See “-zoc server
option” on page 243.

WebClientLogging Returns a value that indicates whether web service client information
is being logged to a file. See “-zoc server option” on page 243.

Connection, database, and database server properties

638 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database properties
The following table lists properties available for each database on the database server.

You can use the DB_PROPERTY system function to retrieve the value for an individual property, or you
can use the sa_db_properties system procedure to retrieve the values of all database properties. Property
names are case insensitive.

Examples
To retrieve the value of a database property

● Use the DB_PROPERTY system function. For example, the following statement returns the page size
of the current database:

SELECT DB_PROPERTY ('PageSize');

To retrieve the values of all database properties

● Use the sa_db_properties system procedure:

CALL sa_db_properties;

See also
● “DB_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference]
● “DB_EXTENDED_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference]
● “Database server properties” on page 624
● “Connection properties” on page 598

Descriptions

Property Description

AccentSensitive Returns the status of the accent sensitivity feature. Returns Yes if the
database is accent sensitive, No if it is not, or FRENCH if it is using
French sensitivity rules.

Alias Returns the database name.

AlternateMirrorServerName Returns the alternate mirror server name associated with the database
if one was specified. See “-sm database option” on page 255.

AlternateServerName Returns the alternate server name associated with the database if one
was specified. See “-sn database option” on page 257.

Database properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 639

Property Description

ArbiterState Returns one of the following values:

● NULL You are connected to a database that is not mirrored.

● connected The arbiter server is connected to the primary
server.

● disconnected The arbiter server is not connected to the pri-
mary server.

See “Introduction to database mirroring” on page 938.

AuditingTypes Returns the types of auditing currently enabled. See “auditing option
[database]” on page 511

Authenticated Returns Yes if the database has been authenticated, or No if the da-
tabase has not been authenticated.

BlankPadding Returns On if the database has blank padding enabled. Otherwise, it
returns Off.

CacheHits Returns the number of database page lookups satisfied by finding the
page in the cache.

CacheRead The number of database pages that have been looked up in the cache.

CacheReadIndInt Returns the number of index internal-node pages that have been read
from the cache.

CacheReadIndLeaf Returns the number of index leaf pages that have been read from the
cache.

CacheReadTable Returns the number of table pages that have been read from the cache.

CacheReadWorkTable Returns the number of cache work table reads.

Capabilities Returns the capability bits enabled for the database. This property is
primarily for use by technical support.

CaseSensitive Returns the status of the case sensitivity feature. Returns On if the
database is case sensitive. Otherwise, it returns Off. In case sensitive
databases, data comparisons are case sensitive. This setting does not
affect the case sensitivity of identifiers. Passwords are always case
sensitive. See “Case sensitivity” [SQL Anywhere Server - SQL Us-
age].

Connection, database, and database server properties

640 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

CatalogCollation Returns the identifier for the collation used for the catalog. This
property has extensions that you can specify when querying the
property value. See “DB_EXTENDED_PROPERTY function [Sys-
tem]” [SQL Anywhere Server - SQL Reference].

CharSet Returns the CHAR character set of the database.

This property has extensions that you can specify when querying the
property value. See “DB_EXTENDED_PROPERTY function [Sys-
tem]” [SQL Anywhere Server - SQL Reference].

CheckpointLogBitmapPages-
Written

Returns the number of writes to the checkpoint log bitmap.

CheckpointLogBitmapSize Returns the checkpoint log bitmap size.

CheckpointLogCommitToDisk Returns the number of checkpoint log commits to disk.

CheckpointLogPagesInUse Returns the number of checkpoint log pages in use.

CheckpointLogPagesRelocated Returns the number of relocated checkpoint log pages.

CheckpointLogPagesWritten Returns the number of checkpoint log pages that have been written.

CheckpointLogSavePreimage Returns the number of pre-images of database pages that are being
added to the checkpoint log.

CheckpointLogSize Returns the size of the checkpoint log, in pages.

CheckpointLogWrites Returns the number of writes to the checkpoint log.

CheckpointUrgency Returns the time that has elapsed since the last checkpoint, as a per-
centage of the checkpoint time setting of the database.

Checksum Returns On if database page checksums are enabled for the database.
Otherwise, returns Off. Checksums are always present for critical
pages.

Chkpt Returns the number of checkpoints that have been performed.

ChkptFlush Returns the number of ranges of adjacent pages written out during a
checkpoint.

ChkptPage Returns the number of transaction log checkpoints.

CleanablePagesAdded Returns the number of pages marked to be cleaned since database
server startup.

Database properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 641

Property Description

CleanablePagesCleaned Returns the number of database pages cleaned since database server
startup.

CleanableRowsAdded Returns the number of rows marked to be deleted since database
server startup.

CleanableRowsCleaned Returns the number of shadow table rows deleted since database
server startup.

Collation Returns the collation used by the database. For a list of available
collations, see “Supported and alternate collations” on page 429.

This property has extensions that you can specify when querying the
property value. See “DB_EXTENDED_PROPERTY function [Sys-
tem]” [SQL Anywhere Server - SQL Reference].

CommitFile Returns the number of times the server has forced a flush of the disk
cache. On Windows, the disk cache doesn't need to be flushed if
unbuffered (direct) I/O is used.

ConnCount Returns the number of connections to the database. The property
value does not include connections used for firing events or other
internal operations, but it does include connections used for external
environment support. If you want to obtain an accurate count of the
number of licensed connections in use, you can execute the following
statement:

SELECT COUNT(*) FROM sa_conn_info()

ConnsDisabled Returns On if connections to the current database are disabled, oth-
erwise, returns Off.

CurrentRedoPos Returns the current offset in the transaction log file where the next
database operation is to be logged.

CurrIO Returns the current number of file I/Os that were issued by the server
but haven't yet completed.

CurrRead Returns the current number of file reads that were issued by the serv-
er, but haven't yet completed.

CurrWrite Returns the current number of file writes that were issued by the
server, but haven't yet completed.

DatabaseCleaner Returns On or Off to indicate whether the database cleaner is enabled.

Connection, database, and database server properties

642 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

DBFileFragments Returns the number of database file fragments. This property is sup-
ported on Windows.

DiskRead Returns the number of pages that have been read from disk.

DiskReadHint Returns the number of disk read hints.

DiskReadHintPages Returns the number of disk read hint pages.

DiskReadIndInt Returns the number of index internal-node pages that have been read
from disk.

DiskReadIndLeaf Returns the number of index leaf pages that have been read from disk.

DiskReadTable Returns the number of table pages that have been read from disk.

DiskReadWorkTable Returns the number of disk work table reads.

DiskRetryReadScatter Returns the number of disk read retries for scattered reads.

DiskSyncRead Returns the number of disk reads issued synchronously.

DiskSyncWrite Returns the number of writes issued synchronously.

DiskWaitRead Returns the number of times the database server waited for an asyn-
chronous read.

DiskWaitWrite Returns the number of times the database server waited for an asyn-
chronous write.

DiskWrite Returns the number of modified pages that have been written to disk.

DiskWriteHint Returns the number of disk write hints.

DiskWriteHintPages Returns the number of disk gather write hints.

DriveType Returns the type of drive on which the database file is located. The
value is one of the following: CD, FIXED, RAMDISK, REMOTE,
REMOVABLE, or UNKNOWN.

On Unix, depending on the version of Unix and the type of drive, it
may not be possible to determine the drive type. In these cases UN-
KNOWN is returned.

This property has extensions that you can specify when querying the
property value. See “DB_EXTENDED_PROPERTY function [Sys-
tem]” [SQL Anywhere Server - SQL Reference].

Database properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 643

Property Description

Encryption Returns the type of encryption used for database or table encryption,
one of None, Simple, AES, AES256, AES_FIPS, or AES256_FIPS.

EncryptionScope Returns the part of the database, if any, that can be encrypted. The
value is one of the following: TABLE, DATABASE, or NONE.

TABLE indicates that table encryption is enabled. DATABASE in-
dicates that the whole database is encrypted. NONE indicates that
table encryption is not enabled, and the database is not encrypted.

ExprCacheAbandons Returns the number of time that the expression cache was completely
abandoned because the hit rate was too low.

ExprCacheDropsToReadOnly Returns the number of times that the expression cache dropped to
read-only status because the hit rate was low.

ExprCacheEvicts Returns the number of evictions from the expression cache.

ExprCacheHits Returns the number of hits in the expression cache.

ExprCacheInserts Returns the number of values inserted into the expression cache.

ExprCacheLookups Returns the number of lookups performed in the expression cache.

ExprCacheResumesOfRead-
Write

Returns the number of times that the expression cache resumed read-
write status because the hit rate increased.

ExprCacheStarts Returns the number of times the expression cache was started.

ExtendDB Returns the number of pages by which the database file has been
extended.

ExtendTempWrite Returns the number of pages by which temporary files have been
extended.

File Returns the file name of the database root file, including path. This
property has extensions that you can specify when querying for prop-
erty value. See “DB_EXTENDED_PROPERTY function [System]”
[SQL Anywhere Server - SQL Reference].

FileSize Returns the file size of the system dbspace, in pages. This property
has extensions that you can specify when querying for property value.
See “DB_EXTENDED_PROPERTY function [System]” [SQL Any-
where Server - SQL Reference].

Connection, database, and database server properties

644 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

FreePages Returns the number of free pages in the system dbspace. The Free-
Pages property is only supported on databases created with version
8.0.0 or later.

This property has extensions that you can specify when querying for
property value. See “DB_EXTENDED_PROPERTY function [Sys-
tem]” [SQL Anywhere Server - SQL Reference].

FullCompare Returns the number of comparisons that have been performed beyond
the hash value in an index.

GetData Returns the number of GETDATA requests.

GlobalDBID Returns the value of the global_database_id option used to generate
unique primary key values in a replication environment.

HasCollationTailoring Returns a value indicating whether collation tailoring was specified
when the database was created. Possible values are On or Off.

HasEndianSwapFix Returns a value indicating whether the database supports both big-
endian and little endian UTF-16 encoding on all platforms, regardless
of the endianness of the platform. Possible values are On or Off.

HashForcedPartitions Returns the number of times that a hash operator was forced to par-
tition because of competition for memory.

HashRowsFiltered Returns the number of probe rows rejected by bit-vector filters.

HashRowsPartitioned Returns the number of rows written to hash work tables.

HashWorkTables Returns the number of work tables created for hash-based operations.

HasNCHARLegacyCollation-
Fix

Returns one of the following values:

● ON For all databases created using version 11 or later, and
databases created by a version 10 database server with the legacy
collation fix and that use a legacy NCHAR collation.

● OFF For databases created using a version 10 database server
without the legacy collation fix, or databases created using a ver-
sion 10 database server that do not use a legacy NCHAR colla-
tion.

IdentitySignature Reserved.

IdleCheck Returns the number of times that the server's idle thread has become
active to do idle writes, idle checkpoints, and so on.

Database properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 645

Property Description

IdleChkpt Returns the number of checkpoints completed by the server's idle
thread. An idle checkpoint occurs whenever the idle thread writes out
the last dirty page in the cache.

IdleChkTime Returns the number of hundredths of a second spent checkpointing
during idle I/O.

IdleWrite Returns the number of disk writes that have been issued by the serv-
er's idle thread.

IndAdd Returns the number of entries that have been added to indexes.

IndLookup Returns the number of entries that have been looked up in indexes.

IOParallelism Returns the estimated number of simultaneous I/O operations sup-
ported by the dbspace. This property has extensions that you can
specify when querying the property value. See “DB_EXTEN-
DED_PROPERTY function [System]” [SQL Anywhere Server - SQL
Reference].

IOToRecover Returns the estimated number of I/O operations required to recover
the database.

JavaVM Returns the Java VM the database server uses to execute Java in the
database.

Language Returns a comma-separated list of languages known to be supported
by the database collation. The languages are in two-letter ISO format.
If the language isn't known, the return value is NULL. For a list of
the two-letter ISO format language names and the language they
correspond to, see “Understanding the locale lan-
guage” on page 413.

LockCount Returns the number of locks held by the database.

LockTablePages Returns the number of pages used to store lock information.

LogFileFragments Returns the number of log file fragments. This property is supported
on Windows.

LogFreeCommit Returns the number of Redo Free Commits. A Redo Free Commit
occurs when a commit of the transaction log is requested but the log
has already been written (so the commit was done for free).

LogMirrorName Returns the file name of the transaction log mirror, including path.

LogName Returns the file name of the transaction log, including path.

Connection, database, and database server properties

646 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

LogWrite Returns the number of pages that have been written to the transaction
log.

LTMGeneration Returns the generation number of the LTM or Replication Agent.
This property is primarily for use by technical support.

LTMTrunc Returns the minimal confirmed log offset for the Replication Agent.

MaxIO Returns the maximum value that CurrIO has reached.

MaxRead Returns the maximum value that CurrRead has reached.

MaxWrite Returns the maximum value that CurrWrite has reached.

MirrorMode Returns NULL if database mirroring is not in use, synchronous if the
mirroring mode specified with the -xp command line option is syn-
chronous, and asynchronous otherwise.

MirrorState Returns one of the following values:

● null You are connected to a database that is not mirrored.

● synchronizing The mirror server is not connected or has not
yet read all the primary server's log pages. This value is also re-
turned if the synchronization mode is asynchronous.

● synchronized The mirror server is connected and has all
changes that have been committed on the primary server.

See “Introduction to database mirroring” on page 938.

MultiByteCharSet Returns On if the database uses a multibyte character set. Otherwise,
returns Off.

Name Returns the database name (identical to Alias).

NcharCharSet Returns the NCHAR character set of the database.

NcharCollation Returns the name of the collation used for NCHAR data. This prop-
erty has extensions that you can specify when querying the property
value. See “DB_EXTENDED_PROPERTY function [System]”
[SQL Anywhere Server - SQL Reference].

NextScheduleTime Returns the next scheduled execution time for a specified event;
query this property using the DB_EXTENDED_PROPERTY func-
tion. See “DB_EXTENDED_PROPERTY function [System]” [SQL
Anywhere Server - SQL Reference].

Database properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 647

Property Description

OptionWatchAction Returns the action that is taken when an attempt is made to set a
database option that is included in the OptionWatchList property. See
“sa_server_option system procedure” [SQL Anywhere Server - SQL
Reference].

OptionWatchList Returns the list of database options being monitored by the database
server. See “sa_server_option system procedure” [SQL Anywhere
Server - SQL Reference].

PageRelocations Returns the number of relocatable heap pages that have been read
from the temporary file.

PageSize Returns the page size of the database, in bytes.

PartnerState Returns one of the following values:

● NULL You are connected to a database that is not mirrored.

● connected The mirror server is connected to the primary
server.

● disconnected The mirror server is not connected to the pri-
mary server.

See “Introduction to database mirroring” on page 938.

Prepares Returns the number of statement preparations performed for the da-
tabase.

ProcedurePages Returns the number of relocatable heap pages that have been used
for procedures.

ProcedureProfiling Returns On if procedure profiling is turned on for the database. Oth-
erwise, returns Off.

QueryBypassed Returns the number of requests reused from the plan cache.

QueryBypassedCosted Returns the number of requests processed by the optimizer bypass
using costing.

QueryBypassedHeuristic Returns the number of requests processed by the optimizer bypass
using heuristics.

QueryBypassedOptimized Returns the number of requests initially processed by the optimizer
bypass and subsequently fully optimized by the SQL Anywhere op-
timizer.

QueryCachedPlans Returns the number of cached execution plans across all connections.

Connection, database, and database server properties

648 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

QueryCachePages Returns the number of pages used to cache execution plans.

QueryDescribedBypass Returns the number of describe requests processed by the optimizer
bypass.

QueryDescribedOptimizer Returns the number of describe requests processed by the optimizer.

QueryJHToJNLOptUsed Returns the number of times a hash join was converted to a nested
loops join.

QueryLowMemoryStrategy Returns the number of times the server changed its execution plan
during execution as a result of low memory conditions. The strategy
can change because less memory is available than the optimizer es-
timated, or because the execution plan required more memory than
the optimizer estimated.

QueryOpened Returns the number of OPEN requests for execution.

QueryOptimized Returns the number of requests fully optimized.

QueryReused Returns the number of reused query plans.

QueryRowsBufferFetch Returns the number of rows fetched using buffering.

QueryRowsMaterialized Returns the number of rows written to work tables during query pro-
cessing.

ReadOnly Returns On if the database is being run in read-only mode. Otherwise,
returns Off.

ReceivingTracingFrom Returns the name of the database from which the tracing data is
coming. Returns a blank string if tracing is not attached.

RecoveryUrgency Returns an estimate of the amount of time required to recover the
database as a percentage of the recovery time setting of the database.
See “-gr server option” on page 194 and “How the database server
decides when to checkpoint” on page 910.

RecursiveIterations Returns the number of iterations for recursive unions.

RecursiveIterationsHash Returns the number of times recursive hash join used a hash strategy.

RecursiveIterationsNested Returns the number of times recursive hash join used a nested loops
strategy.

RecursiveJNLMisses Returns the number of index probe cache misses for recursive hash
join.

Database properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 649

Property Description

RecursiveJNLProbes Returns the number of times recursive hash join attempted an index
probe.

RelocatableHeapPages Returns the number of pages used for relocatable heaps (cursors,
statements, procedures, triggers, views, and so on.).

RemoteTrunc Returns the minimal confirmed log offset for the SQL Remote Mes-
sage Agent.

RollbackLogPages Returns the number of pages in the rollback log.

SendingTracingTo Returns the connection string where the tracing data is being sent.
Returns a blank string if tracing is not attached.

SnapshotCount Returns the number of snapshots associated with the database.

SnapshotIsolationState Returns one of the following values:

● On snapshot isolation is enabled for the database.

● Off snapshot isolation is disabled for the database.

● in_transition_to_on snapshot isolation will be enabled once
the current transactions complete.

● in_transition_to_off snapshot isolation will be disabled once
the current transactions complete.

See “allow_snapshot_isolation option [database]” on page 504.

SortMergePasses Returns the number of merge passes used during sorting.

SortRowsMaterialized Returns the number of rows written to sort work tables.

SortRunsWritten Returns the number of sorted runs written during sorting.

SortSortedRuns Returns the number of sorted runs created during run formation.

SortWorkTables Returns the number of work tables created for sorting.

StatementDescribes Returns the total number of statements processed by DESCRIBE re-
quests.

StatementPostAnnotates Returns the number of statements processed by the semantic query
transformation phase.

Connection, database, and database server properties

650 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Property Description

StatementPostAnnotatesSim-
ple

Returns the number of statements processed by the semantic query
transformation phase, but which skipped some of the semantic trans-
formations.

StatementPostAnnotatesSkip-
ped

Returns the number of statements that have completely skipped the
semantic query transformation phase.

SyncTrunc Returns the minimal confirmed log offset for the MobiLink client
dbmlsync executable.

TempFileName Returns the file name of the database temporary file, including path.

TempTablePages Returns the number of pages in the temporary file used for temporary
tables.

TriggerPages Returns the number of relocatable heap pages used for triggers.

VersionStorePages Returns the number of pages in the temporary file that are being used
for the row version store when snapshot isolation is enabled.

ViewPages Returns the number of relocatable heap pages used for views.

XPathCompiles Returns the number of times any XPath query (using the openxml
procedure) was compiled by the database server since database server
startup.

Database properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 651

652

Physical limitations

Contents
SQL Anywhere size and number limitations .. 654

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 653

SQL Anywhere size and number limitations
The following table lists the physical limitations on size and number of objects in a SQL Anywhere database.
The memory, CPU, and disk drive of the computer are more limiting factors in most cases.

Item Limitation

Database size 13 files per database. For each file, the largest
file allowed by operating system and file sys-
tem

Dbspace size 228 x page size

Temporary file size 228 x page size

Field size 2 GB

File size (FAT 12) 16 MB

File size (FAT 16) 2 GB

File size (FAT 32) 4 GB

File size for NTFS, HP-UX 11.0 and later, Solaris 2.6
and later, Linux 2.4 and later)

● 512 GB for 2 KB pages

● 1 TB for 4 KB pages

● 2 TB for 8 KB pages

File size (all other platforms and file systems) 2 GB

Maximum cache size (non-AWE cache) (Windows
2000 Professional, Windows 2000 Server, Windows XP
Home Edition, Windows XP Professional, Windows
Server 2003 Web Edition, Windows Server 2003 Stand-
ard Edition)

1.8 GB

Maximum cache size (non-AWE cache) (Windows
2000 Advanced Server, Windows 2000 Enterprise Serv-
er, Windows 2000 Datacenter Server, Windows Server
2003 Enterprise Edition, Windows Server 2003 Data-
center Edition, Windows Vista Ultimate, Windows Vis-
ta Enterprise, Windows Vista Business, Windows Vista
Home Premium, Windows Vista Home Basic)

2.7 GB

Physical limitations

654 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Item Limitation

Maximum cache size (AWE cache) (Windows 2000
Professional, Windows 2000 Server, Windows 2000
Advanced Server, Windows 2000 Datacenter Server,
Windows XP Home Edition, Windows XP Professio-
nal, Windows Server 2003 Web Edition, Windows
Server 2003 Standard Edition, Windows Server 2003
Enterprise Edition, Windows Server 2003 Datacenter
Edition)

100% of all available memory - 128 MB

Maximum cache size (Windows Mobile) Limited by available memory on the device

Maximum cache size (Unix—Solaris, x86 Linux, AIX,
HP)

2 GB for 32-bit servers

Maximum cache size (Win 64) Limited by physical memory on 64-bit servers

Maximum cache size (Itanium HP-UX) Limited by physical memory on 64-bit servers

Maximum index entry size No limit

Number of databases per server 255

Number of columns per table 45000

Note: An excessive number of columns, al-
though allowed, can affect performance.

Number of nullable constants per table min(45000, (page size - overhead) * 8)

Number of columns in a procedure result set 45000

Number of columns in a SELECT list 100000

Number of columns in a GROUP BY list 100000

Number of columns in a GROUP BY with grouping sets 64

Number of columns in a CUBE 15

Number of distinct grouping sets 32768

Length of DEFAULT for a column 32768

Length of COMPUTE for a column 32768

Length of DEFAULT for procedure parameters 32768

Length of DEFAULT for a user-defined domain 32768

SQL Anywhere size and number limitations

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 655

Item Limitation

Length of check constraints 2 GB

Number of indexes per table 232

Number of rows per database 4096 x 228 x 13

Number of rows per table 4096 x 228

Number of tables per database 232 - 220 - 1 = 4293918719

Number of temporary tables per connection 220 = 1048576

Number of tables referenced per transaction No limit

Number of stored procedures per database 232 - 1 = 4294967295

Number of concurrent statements per database server 20 x number-of-database-connections + 65534

Number of events per database 231 - 1 = 2147483647

Number of triggers per database 232 - 1 = 4294967295

Row size Limited by file size

Table size Maximum file size. User-created indexes for
the table can be stored separately from the table

Strings 2 GB

Binary data types 2 GB

Identifiers (including user IDs, table names, and column
names)

128 bytes

Passwords 255 bytes

Database server names 250 bytes (TCP/IP and shared memory

See “-n server option” on page 206 and “Serv-
erName connection parameter
[ENG]” on page 296.

Database names 250 bytes

See “-n database option” on page 253.

Physical limitations

656 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Administering Your Database

This section describes how to use the tools included with SQL Anywhere to administer your database.

SQL Anywhere graphical administration tools ... 659
Database administration utilities ... 735

SQL Anywhere graphical administration tools

Contents
Using Sybase Central .. 660
Using Interactive SQL .. 676
Using text completion .. 725
Using the fast launcher option ... 728
Using the SQL Anywhere Console utility ... 729
Checking for software updates .. 732

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 659

Using Sybase Central
Sybase Central is a graphical tool for managing your database servers, databases, and the objects they contain.

From within Sybase Central, you can get additional information about using and configuring Sybase Central
by choosing Help » Sybase Central.

Sybase Central key features
● Easy command access The File menu in Sybase Central automatically updates when you select an

object, providing commands related directly to that object. You can also right-click an object to access
these commands.

● Task wizards If you want to add a new object, Sybase Central provides you with wizards that walk
you through the task step by step.

● Drag-and-drop functionality Sybase Central supports drag-and-drop functionality for many
operations. For example, if you want to copy tables to a different database, you can click and drag them
to that location. See “Copying database objects in the SQL Anywhere plug-in” on page 671.

● Keyboard shortcuts Many commonly-used commands have keyboard shortcuts; these shortcuts are
listed beside the command names in the menus. See “Sybase Central keyboard
shortcuts” on page 665.

● Plug-in support You can manage a variety of database products and tools by using plug-ins. From
within Sybase Central, you can get additional information about using and configuring a plug-in by
choosing the plug-in name from the Help menu.

Plug-ins
Each product is managed by a separate plug-in. The plug-ins for these products must be registered and loaded
before you can use the products in Sybase Central. When you install a product, its plug-in is automatically
registered and loaded.

SQL Anywhere 11 includes Sybase Central plug-ins for the following products:

● SQL Anywhere databases
● UltraLite databases
● MobiLink synchronization
● QAnywhere messaging

The plug-in files are found in the following location in your SQL Anywhere 11 installation:

Plug-in File name and location

SQL Anywhere 11 install-dir\java\saplugin.jar

MobiLink 11 install-dir\java\mlplugin.jar

UltraLite 11 install-dir\java\ulplugin.jar

QAnywhere 11 install-dir\java\qaplugin.jar

SQL Anywhere graphical administration tools

660 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

For more information about using the plug-ins included with SQL Anywhere 11, see:

● SQL Anywhere: “Using the SQL Anywhere plug-in” on page 671
● MobiLink: “MobiLink models” [MobiLink - Getting Started]
● UltraLite: “Create a database with the Create Database Wizard” [UltraLite - Database Management and

Reference] and “Working with UltraLite databases” [UltraLite - Database Management and
Reference]

● QAnywhere: “QAnywhere plug-in” [QAnywhere]

Deploying Sybase Central
Subject to your license agreement, you can deploy SQL Anywhere administration tools, including Sybase
Central.

For information about deploying Sybase Central with your application, see “Deploying administration tools”
[SQL Anywhere Server - Programming].

Starting Sybase Central
This section provides steps for starting Sybase Central and using the SQL Anywhere plug-in to connect to
the sample database—SQL Anywhere 11 Demo—on Windows and Unix.

To start Sybase Central and connect to the sample database (Windows)

1. From the Start menu, choose Programs » SQL Anywhere 11 » Sybase Central.

2. In the Welcome To Sybase Central window, click View And Edit The Schema Or Perform
Maintenance On A Database.

If the Welcome To Sybase Central window does not appear, choose Connections » Connect With
SQL Anywhere 11.

3. On the Identification tab, select ODBC Data Source Name, and then in the box below, type SQL
Anywhere 11 Demo.

4. Click OK to connect.

Mac OS X note
The administration tools only run on Intel Macintoshes with 64-bit processors supported by the Apple JDK
1.6 (Mac OS X 10.5.2 or later). See http://www.sybase.com/detail?id=1061806.

To start Sybase Central (Mac OS X)

1. In the Finder, double-click Sybase Central in /Applications/SQLAnywhere11.

2. In the Welcome To Sybase Central window, click View And Edit The Schema Or Perform
Maintenance On A Database.

If the Welcome To Sybase Central window does not appear, choose Connections » Connect With
SQL Anywhere 11.

Using Sybase Central

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 661

http://www.sybase.com/detail?id=1061806

3. On the Identification tab, select ODBC Data Source Name, and then in the box below, type SQL
Anywhere 11 Demo.

4. Click OK to connect.

Note
The following steps assume that you have already sourced the SQL Anywhere utilities. See “Setting
environment variables on Unix and Mac OS X” on page 366.

To start Sybase Central and connect to the sample database (Unix command line)

1. In a terminal session, enter the following command:

scjview

Sybase Central opens.

2. In the Welcome To Sybase Central window, click View And Edit The Schema Or Perform
Maintenance On A Database.

If the Welcome To Sybase Central window does not appear, choose Connections » Connect With
SQL Anywhere 11.

3. On the Identification tab, select ODBC Data Source Name and then type SQL Anywhere 11 Demo.

The following steps can be used if you are using a version of Linux that supports the Linux Applications
menu and if you chose to install the menu items when you installed SQL Anywhere 11.

To start Sybase Central and connect to the sample database (Linux Applications menu)

1. From the Applications menu, choose SQL Anywhere 11 » Sybase Central.

Sybase Central opens.

2. In the Welcome To Sybase Central window, click View And Edit The Schema Or Perform
Maintenance On A Database.

If the Welcome To Sybase Central window does not appear, choose Connections » Connect With
SQL Anywhere 11.

3. On the Identification tab, select ODBC Data Source Name and then type SQL Anywhere 11 Demo.

Navigating Sybase Central
This section explains how to navigate the Sybase Central user interface.

The Sybase Central main window:

SQL Anywhere graphical administration tools

662 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The main Sybase Central window is split into two vertically-aligned panes.

Left pane
You can choose whether you want the left pane to display the:

● Folders pane displays a hierarchical view of database objects.

Folders shows only the containers in the object tree; it does not show objects that are not containers of
other objects. For example, the left pane may show a Columns folder (a container), but not the columns
themselves because they are items, and appear in the right pane instead.

● Tasks pane displays a task list for the currently-selected database object.

● Search pane allows you to search for objects in a plug-in.

Right pane
The right pane shows the contents of the currently selected container. The right pane has tabs that display
the contents of the container that is selected in the left pane, and other information about the selected
container.

You can configure the columns that appear on a tab in the right pane by choosing View » Choose
Columns.

To view the Tasks, Folders, or Search pane

1. Start Sybase Central.

Using Sybase Central

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 663

2. From the View menu, choose Tasks, Folders, or Search to view the task list, folders list, or search
feature respectively.

You can change the appearance of the right pane in the Options window (accessed through the Tools menu).

Once you connect to a database or database server, you can administer it by navigating and selecting its
objects in the main window.

Toolbar
The main window toolbar provides you with buttons for common commands. To show or hide the toolbar,
from the View menu, choose Toolbars » Standard Toolbars. With the main toolbar, you can:

● navigate through the object folders

● connect to or disconnect from a database, database server, or product plug-in

● show the Tasks, Folders, or Search pane

● access the Connection Profiles window (also accessible from the Tools menu)

● refresh the view of the current folder

● cut, copy, paste, and delete objects

● undo or redo actions

● view the properties window for a selected object

Context dropdown list
The Context dropdown list, which appears below the toolbar, lets you navigate the object folders for a plug-
in.

Status bar

The status bar, which appears at the bottom of the main window, shows a brief summary of menu commands
as you navigate through the menus. To show or hide the status bar, choose View » Status Bar.

Searching databases in Sybase Central
Sybase Central allows you to search a database for a specified database object, or to search for a string within
the SQL of a database object.

To search for a specified object

1. In Sybase Central, choose View » Search Pane.

The Search pane appears in the left pane.

2. Configure options for the search.

3. Click Search.

SQL Anywhere graphical administration tools

664 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The search results appear in Results in the left pane.

4. Select a result, and then double-click it to open the result in the right pane.

The SQL Anywhere plug-in allows you to search:

● Search In SQL (Procedures, Events, Functions, and Triggers) Select this option to include the
SQL of procedures, events, functions and triggers in the search.

● Search Dynamic Properties (Connections, Statistics, Locks) Select this option to include
dynamic properties, such as connected users, SQL Remote statistics, table locks, and table page usage
information in the search.

The MobiLink plug-in allows you to search:

● Search In Scripts Select this option to include synchronization scripts in the search.

Sybase Central keyboard shortcuts
Sybase Central provides the following keyboard shortcuts.

Function key Description

Alt+Enter Opens the properties window for the selected item.

Ctrl+C Copies the selection to the clipboard.

Ctrl+V Inserts the clipboard contents.

Ctrl+X Cuts the selection and moves it to the clipboard.

Delete Deletes the selection.

F1 Opens the Sybase Central help.

F5 Refreshes the contents of the selected folder.

F9 Opens the Connection Profiles window.

F11 Opens the Connection menu if there are multiple plug-ins loa-
ded. If only one plug-in is loaded, pressing F11 opens the Con-
nection window for that plug-in.

F12 Disconnects when there is only one connection in Sybase Cen-
tral. When there is more than one connection, pressing F12
opens the Disconnect window where you can select the con-
nection you want to disconnect.

Shift+F10 Opens the popup menu for the selected object.

Using Sybase Central

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 665

Using the Code Editor
The Code Editor appears as a SQL tab in the right pane of Sybase Central, as a separate window in Sybase
Central, and as the SQL Statements pane in Interactive SQL where you can display, edit, and print code
and messages.

Beyond the standard text editing functions, the Code Editor provides the following functionality:

● a toolbar and status bar

● automatic syntax highlighting

● language-sensitive indenting

● the ability to find and replace text

● the ability to open from and save to files (the availability of this functionality depends on the plug-in
you are using)

● the ability to print the code

● text completion when typing code

To open the Code Editor in a separate window

1. Select a database object, such as a stored procedure, view, or trigger, in the left or right pane of Sybase
Central.

2. Choose File » Edit In New Window, or press Ctrl+E.

Customizing the Code Editor

You can customize the display characteristics of the Code Editor using the Options window. This window
lets you change settings for the foreground and background colors, and the overall Code Editor appearance.
All changes you make persist between sessions.

To set Code Editor settings when editing on the SQL tab

1. From the File menu, choose Customize Editor.

2. Configure the settings on the various tabs. Click OK.

To set Code Editor settings when editing in a separate window

1. In the Code Editor, choose Tools » Options.

2. Configure the settings on the various tabs. Click OK.

Code Editor keyboard shortcuts
Sybase Central provides the following keyboard shortcuts for the Code Editor.

SQL Anywhere graphical administration tools

666 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Function key Description

Alt+F4 Closes the Code Editor (if a separate window) or closes Sybase
Central if you are editing text in the right pane of Sybase Cen-
tral.

Backspace Deletes the selection. If nothing is selected, pressing Backspace
deletes the character to the left of the cursor.

Ctrl+] Moves the cursor to the matching brace. Use this shortcut to
match parentheses, braces, brackets, and angle brackets.

Ctrl+A Selects the entire contents of the Code Editor window.

Ctrl+Backspace Deletes the word to the left of the cursor.

Ctrl+C Copies the selected text to the clipboard.

Ctrl+Delete Deletes the word to the right of the cursor.

Ctrl+End Moves the cursor to the bottom of the Code Editor window.

Ctrl+F Opens the Find/Replace window where you can search for and
replace the specified text if you have not searched for text in
the current window. Otherwise, this searches for the next oc-
currence of the specified text.

Ctrl+F3 Finds the next occurrence of the currently-selected text.

Ctrl+G Opens the Go To window where you can specify the line loca-
tion you want to go to within the Code Editor window.

Ctrl+Home Moves the cursor to the top of the Code Editor window.

Ctrl+L Deletes the current line.

Ctrl+Left Arrow Moves the cursor back one word.

Ctrl+N Clears the contents of the Code Editor window and closes the
current file (if any). This shortcut cannot be used from the
SQL tab in the right pane of Sybase Central.

Ctrl+O Opens a file when the Code Editor is open as a separate window.
This shortcut cannot be used from the SQL tab in the right pane
of Sybase Central.

Ctrl+P Prints the contents of the Code Editor window. You can con-
figure the appearance of the printed text: from the Tools menu,
choose Options, and then click the Print tab.

Using Sybase Central

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 667

Function key Description

Ctrl+Right Arrow Moves the cursor forward one word.

Ctrl+S Saves the contents of the Code Editor window.

Ctrl+Shift+] Extends the selection to the matching brace. Use this shortcut
to match parentheses, braces, brackets, and angle brackets.

Ctrl+Shift+End Extends the selection to the end of the code.

Ctrl+Shift+F3 Find the previous occurrence of the currently-selected text.

Ctrl+Shift+Home Extends the selection to the beginning of the code.

Ctrl+Shift+L Deletes the current line.

Ctrl+Shift+Left Arrow Extends the selection back one word.

Ctrl+Shift+Right Arrow Extends the selection forward one word.

Ctrl+Shift+U Changes the selection to uppercase characters.

Ctrl+Shift+Period (.) Increases the line indentation of selected text in the Code Editor
window. If no text is selected, the indentation is applied to the
current line.

Ctrl+Shift+Comma (,) Decreases the line indentation of selected text in the Code Ed-
itor window. If no text is selected, the indentation is applied to
the current line.

Ctrl+U Changes the selection to lowercase characters.

Ctrl+V Inserts the Clipboard contents at the current cursor location.

Ctrl+X Cuts the selected text.

Ctrl+Y Redoes the most recently undone action.

Ctrl+Z Undoes the last action.

SQL Anywhere graphical administration tools

668 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Function key Description

Ctrl+Minus Sign (-) Adds and removes the double-hyphen (--) SQL comment indi-
cator.

To turn existing text into comments, select the text in the Code
Editor window and press Ctrl+minus sign. The double-hyphen,
SQL comment indicator is added to the start of the lines that
contain the selected text.

If no text is selected, the comment indicator is added to the start
of the current line.

To remove a comment indicator, select the text and press Ctrl
+minus sign.

See “Comments” [SQL Anywhere Server - SQL Reference].

Ctrl+Forward Slash (/) Adds and removes the double-slash (//) SQL comment indica-
tor.

To turn existing text into comments, select the text in the Code
Editor window and press Ctrl+forward slash. The double-slash,
SQL comment indicator is added to the start of the lines that
contain the selected text.

If no text is selected, the comment indicator is added to the start
of the current line.

To remove a comment indicator, select the text and press Ctrl
+forward slash.

See “Comments” [SQL Anywhere Server - SQL Reference].

Delete Deletes the selection.

Down Arrow Moves the cursor down one line.

End Moves the cursor to the end of the current line.

F3 Opens the Find/Replace window where you can search for and
replace the specified text if you have not searched for text in
the current window. Otherwise, this searches for the next oc-
currence of the specified text.

Home Move the cursor to the start of the current line or to the start of
the text on the current line.

Left Arrow Moves the cursor one character to the left.

Page Down Moves the cursor to the end of the current page.

Using Sybase Central

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 669

Function key Description

Page Up Moves the cursor to the top of the current page.

Right Arrow Moves the cursor one character to the right.

Shift+Down Arrow Extends the selection down one line.

Shift+End Selects the current line.

Shift+F3 Opens the Find/Replace window where you can search for and
replace the specified text if no text is selected. If text is selected,
finds the previous occurrence of the selected text.

Shift+F10 Displays the popup menu for the area that has focus.

This keyboard shortcut is an alternative to right-clicking an
area.

Shift+Home Extends the selection to the start of the text on the current line.

Shift+Left Arrow Extends the selection one character to the left of the currently
selected character(s).

Shift+Page Down Extends the selection down one page.

Shift+Page Up Extends the selection up one page.

Shift+Right Arrow Extends the selection one character to the right of the currently
selected character(s).

Shift+Up Arrow Extends the cursor up one line.

Up Arrow Moves the cursor up one line.

Using the Log Viewer
The Log Viewer is a window in Sybase Central that displays and stores product messages. It displays the
following types of messages:

● Information Basic information about your current session.

● Warning Warning messages about actions that have occurred.

● Error Error messages about actions that have failed.

You can filter these messages to show only a certain type or number, or choose to show only messages from
a particular plug-in. You can also save messages to a file or clear all messages from the list.

SQL Anywhere graphical administration tools

670 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

When you are working in Sybase Central, you can access the Log Viewer through the Tools menu.

To open the Log Viewer

1. In Sybase Central, choose Tools » Log Viewer.

The Sybase Central Log Viewer appears, showing the current messages (if any exist).

2. Use the View menu to configure the types of messages that are logged.

Using the SQL Anywhere plug-in
You can use the SQL Anywhere plug-in to upgrade existing databases, create new databases, and administer
databases. You can choose the mode from the Mode menu or by clicking the toolbar button for the mode.

The SQL Anywhere plug-in can operate in any of the following modes:

● Design mode While working in Design mode, you can create and modify database objects such as
tables, users, triggers, indexes, remote database servers, and so on. You can also add data to tables, create
new databases, and upgrade existing databases.

For more information about tasks you can perform on a SQL Anywhere database while in Design mode,
see “Working with database objects” [SQL Anywhere Server - SQL Usage].

● Debug mode While working in Debug mode, you can use the SQL Anywhere debugger to assist you
in developing SQL stored procedures, triggers, and event handlers.

For more information about using Debug mode, see “Debugging procedures, functions, triggers, and
events” [SQL Anywhere Server - SQL Usage].

● Application Profiling mode While working in Application Profiling mode, you can configure
application profiling or diagnostic tracing for your database. The data that is generated helps you
understand how applications interact with the database and can also help you identify and eliminate
performance problems.

For more information about using Application Profiling mode, see “Application profiling” [SQL
Anywhere Server - SQL Usage].

See also
● “Connecting from Sybase Central, Interactive SQL, or the SQL Anywhere Console utility” on page 92
● “Working with database objects” [SQL Anywhere Server - SQL Usage]
● “Create a Windows Mobile database using Sybase Central” on page 341

Copying database objects in the SQL Anywhere plug-in
In the SQL Anywhere plug-in, you can copy existing database objects and insert them into another location
in the same database or in a completely different database.

To copy an object, select the object in the left pane of Sybase Central and drag it to the appropriate folder
or container, or copy the object and then paste it in the appropriate folder or container. A new object is

Using Sybase Central

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 671

created, and the original object's code is copied to the new object. When copying objects within the same
database, you must rename the new object.

You can also paste objects onto other objects in the database. For example, if you paste a table onto a user,
this gives the user permissions on the table.

In Sybase Central, when you copy any of the objects from the following list, the SQL for the object is copied
to the clipboard so it can be pasted into other applications, such as Interactive SQL or a text editor. For
example, if you copy an index in Sybase Central and paste it into a text editor, the CREATE INDEX statement
for that index appears. You can copy the following objects in the SQL Anywhere plug-in:

● Articles
● Check constraints
● Columns
● Dbspaces
● Directory access servers
● Domains
● Events
● External logins
● Foreign keys
● Indexes
● Login mappings (integrated logins and Kerberos logins)
● Login policies
● Maintenance plan reports
● Maintenance plans
● Message types
● MobiLink users
● Primary keys
● Procedures and functions
● Publications
● Remote servers
● Schedules
● SQL Remote subscriptions
● Synchronization subscriptions
● System triggers
● Text configuration objects
● Text indexes
● Tables
● Triggers
● Unique constraints
● Users and groups
● Views
● Web services

Viewing entity-relationship diagrams from the SQL Anywhere plug-
in

SQL Anywhere graphical administration tools

672 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

When you are connected to a database from the SQL Anywhere plug-in, you can view an entity-relationship
diagram of the tables in the database. Select the database, and then click the ER Diagram tab in the right
pane to see the diagram.

When you rearrange objects in the diagram, the changes persist between Sybase Central sessions. Double-
clicking a table takes you to the column definitions for that table.

The tables that appear in the diagram are subject to the filtering set for the database. Filtering is done by
owner.

To change the tables included in the entity-relationship diagram

1. Select the database in the left pane of Sybase Central, and then choose File » Configure Owner
Filter.

2. Select the database users whose tables you want to see in the entity-relationship diagram, and then click
OK.

3. Choose File » Filter Objects By Owner.

4. Click the ER Diagram tab in the right pane.

5. Choose File » Choose ER Diagram Tables.

Using Sybase Central

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 673

6. In the Choose ER Diagram Tables window, use the Add and Remove buttons to customize the tables
that appear in the Selected Tables list.

7. Click OK.

See also
● “Creating databases in SQL Anywhere” [SQL Anywhere Server - SQL Usage]

Monitoring database health and statistics
In Design mode, the Overview tab provides a high-level view of the database server and its features. This
tab contains the following components:

● Database Located in the top left corner, this pane displays general information about the database
server.

To update the SQL Anywhere database server software click Check For Updates. See “Checking for
software updates” on page 732.

● Features Located in the left bottom corner, this pane provides a visual representation of the database
and its products and features. Clicking a node in the diagram expands the accompanying section in the
Health And Statistics pane on the right; clicking the node again collapses the section.

Note
You must initiate the retrieval of MobiLink and QAnywhere information; otherwise, these nodes appear
as unknowns (greyed-out). See MobiLink, QAnywhere, and Notifiers below.

● Health And Statistics Located on the right, this pane displays statistics and information relating to
the overall status of the database. The following collapsible panes are available:

○ Statistics Displays general statistics, such as the number of pages read and written to disk. It
displays a warning if there are any unscheduled requests. Click the warning to learn more.

○ Dbspaces Displays a table listing all dbspaces. It displays a warning if a dbspace has less than
10% of free disk space remaining, or if a dbspace file cannot be found. Click the warning to learn
more.

○ Transaction Logs Displays information for the transaction log and the transaction log mirror, if
applicable. This pane appears only when the database has a transaction log. It displays a warning if
a log file has less than 10% of free disk space remaining. Click the warning to learn more.

○ Connected Users Displays connected user and transaction statistics. Shows a table of the top 5
transaction times, if there are any. It shows a table of all blocked connections, if there are any. Displays
a warning if there are any blocked connections. Click the warning to learn more.

○ Database Mirroring Displays information for the primary, arbiter, and mirror servers and for the
mirroring system. This pane appears only when database mirroring is being used. It displays a
warning if the arbiter or mirror server is disconnected. Click the warning to learn more.

SQL Anywhere graphical administration tools

674 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

○ Remote Servers Displays a table of the remote servers used by the database. This pane appears
only when a remote server exists. It displays a warning if a remote server is disconnected or a remote
server cannot establish a connection. Click the warning to learn more.

Note
For JDBC remote servers, a warning appears that a connection has been disconnected or lost only if
the JDBC remote server attempts to access a proxy object. See “Configuration notes for JDBC
classes” [SQL Anywhere Server - SQL Usage].

○ MobiLink, QAnywhere, And Notifiers Displays statistics for MobiLink, QAnywhere, and
Notifiers. This pane only appears when MobiLink tables and views exist in the database.

Note
You must click the Refresh button to refresh the information in this pane. Unlike the information in
the other panes, the information in this pane is not refreshed when you choose View » Refresh (or
click the Refresh toolbar icon). You must refresh this information separately because refreshing
could affect the database's performance.

○ SQL Remote Users Displays a table of all SQL Remote users, and their most recent send and
receive times. This pane only appears when the database has SQL Remote users.

Documenting a database
You can generate documentation about objects in a SQL Anywhere database using the Database
Documentation Wizard. The generated documentation contains information about the following database
objects:

● procedures
● functions
● triggers
● events
● views

In addition to the object definitions, the documentation also shows the dependencies and references for each
object. For example, documentation for the procedure dbo.sa_migrate_data includes the tables that it
updates, inserts into, and deletes from, and the name of the procedure that calls it. You can choose to include
object comments and systems procedures in the documentation.

The generated documentation is saved to HTML files, which makes it easy to navigate and review. This
documentation is useful for documenting and reviewing your system.

To generate database documentation

1. In Sybase Central, connect to the database you want to generate documentation for.

2. From the Tools menu, choose SQL Anywhere 11 » Generate Database Documentation.

3. Follow the instructions in the Database Documentation Wizard.

Using Sybase Central

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 675

Using Interactive SQL
Interactive SQL is a tool included with SQL Anywhere that lets you execute SQL statements, build scripts,
and display database data for both SQL Anywhere and UltraLite databases. You can use Interactive SQL
for:

● Sending SQL statements to the database server. See “Executing SQL statements from Interactive
SQL” on page 681.

● Browsing the information in a database. See “Executing SQL statements from Interactive
SQL” on page 681.

● Editing data in result sets. See “Editing result sets in Interactive SQL” on page 695.

● Loading data into a database. See “Import data with the Import Wizard” [SQL Anywhere Server - SQL
Usage].

● Exporting query results to a file or another database. See “Export query results” [SQL Anywhere Server
- SQL Usage].

● Running script files. See “Run SQL command files in Interactive SQL” [SQL Anywhere Server - SQL
Usage].

● Running the Index Consultant, a tool that helps you improve query performance. See “Index Consultant”
[SQL Anywhere Server - SQL Usage].

● Accessing the Query Editor, a tool that helps you design, analyze, and test all kinds of queries. See
“Using the Query Editor” on page 690.

Interactive SQL is available on Windows, Solaris, Linux, and Mac OS X, see http://www.sybase.com/detail?
id=1061806.

Mac OS X note
The administration tools only run on Intel Macintoshes with 64-bit processors supported by the Apple JDK
1.6 (Mac OS X 10.5.2 or later). See http://www.sybase.com/detail?id=1061806.

SQL Anywhere graphical administration tools

676 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1061806
http://www.sybase.com/detail?id=1061806
http://www.sybase.com/detail?id=1061806

SQL statements used only from Interactive SQL
Interactive SQL supports all SQL statements supported by SQL Anywhere and UltraLite databases, and
several SQL statements that can be used only from Interactive SQL:

● “CLEAR statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “CONFIGURE statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “CONNECT statement [ESQL] [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “DESCRIBE statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “DISCONNECT statement [ESQL] [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “EXIT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “HELP statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “PARAMETERS statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “READ statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “SET CONNECTION statement [Interactive SQL] [ESQL]” [SQL Anywhere Server - SQL Reference]
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “START ENGINE statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “START LOGGING statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “STOP LOGGING statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “SYSTEM statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

Starting Interactive SQL
There are several ways you can start Interactive SQL: from a command prompt, from the Windows Start
menu, and from within Sybase Central.

To start Interactive SQL (command prompt)

● Run the following command:

dbisql

If you do not include the -c option, which specifies the connection parameters for the database, or if you
supply insufficient connection parameters, the Connect window appears, where you can enter connection
information for the database. See “Connection parameters” on page 262.

To start Interactive SQL and connect to the sample database, run the following command:

dbisql -c "UID=DBA;PWD=sql;DSN=SQL Anywhere 11 Demo"

For information about the supported options, see “Interactive SQL utility (dbisql)” on page 786.

To start Interactive SQL (Windows)

1. From the Start menu, choose Programs » SQL Anywhere 11 » Interactive SQL.

2. Enter the connection information for your database in the Connect window.

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 677

3. Click OK.

To start Interactive SQL (Sybase Central)

1. From the Tools menu, choose SQL Anywhere 11 » Open Interactive SQL.

2. Enter the connection information for your database in the Connect window.

3. Click OK.

Tip
You can also use one of the following methods to access Interactive SQL from Sybase Central:

● Selecting a database, and choosing Open Interactive SQL from the File menu.

● Right-clicking a database, and choosing Open Interactive SQL.

● Right-clicking a stored procedure, and choosing Execute From Interactive SQL. Interactive SQL opens
with a CALL to the procedure in the SQL Statements pane and executes the stored procedure.

● Right-clicking a table or view and choosing View Data In Interactive SQL. Interactive SQL opens with
a SELECT * FROM table-name and executes the query.

Starting Interactive SQL on Unix

To start Interactive SQL (Unix command line)

1. In a terminal session, run the following command:

dbisql
2. Enter the connection information for your database in the Connect window.

3. Click OK.

To start Interactive SQL (Mac OS X)

1. In the Finder, double-click Interactive SQL in /Applications/SQLAnywhere11.

2. Enter the connection information for your database in the Connect window.

The following steps can be used if you are using a version of Linux that supports the Linux desktop icons
and if you chose to install them when you installed SQL Anywhere 11.

To start Interactive SQL (Linux desktop icons)

1. From the Applications menu, choose SQL Anywhere 11 » Interactive SQL

2. Enter the connection information for your database in the Connect window.

3. Click OK.

SQL Anywhere graphical administration tools

678 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Note
The following steps assume that you have already sourced the SQL Anywhere utilities. See “Setting
environment variables on Unix and Mac OS X” on page 366.

Navigating Interactive SQL
The Interactive SQL window is divided into panes:

● SQL Statements This pane provides a place for you to type SQL statements to access and modify
your data.

The SQL Statements pane contains a column on the left that shows line numbers. These line numbers
allow you to do the following:

○ Select a line Click a line number to select a line. Alternatively place your cursor in the line, and
press Ctrl+comma(,).

○ Select multiple lines Click and drag to select multiple lines.

○ Select a statement Double-click a line to select the entire SQL statement that corresponds to the
line. Alternatively place your cursor in the statement, and press Ctrl+period(.).

See “Interactive SQL keyboard shortcuts” on page 704.

● Results The Results pane has two tabs: Results and Messages. The tabs appear at the bottom of the
Results pane.

The Results tab displays the results of commands that you execute. For example, if you use SQL
statements to search for specific data in the database, the Results tab displays the columns and rows that
match the search criteria in the pane above. You can edit the result set on the Results tab. See “Editing
result sets in Interactive SQL” on page 695.

The Messages tab displays messages from the database server about the SQL statements that you execute
in Interactive SQL.

Results of graphical plans for SQL Anywhere databases and text plans for UltraLite databases are
displayed in separate Plan Viewer window(s). See “Viewing graphical plans in Interactive
SQL” on page 693.

When you are connected to a database from Interactive SQL, the title bar displays connection information,
as follows:

database-name (userid) on server-name

For example, if you connect to the sample database using the SQL Anywhere 11 Sample ODBC data source,
the title bar contains the following information:

demo (DBA) on demo11

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 679

You can configure settings for the tabs and panes in Interactive SQL using the Options window.

To customize Interactive SQL

1. In Interactive SQL, choose Tools » Options.

2. In the left pane, click an option and specify the options that you want.

3. Click OK.

To clear the SQL Statements pane

● From the Edit menu choose Clear SQL, or press Esc.

See also
● “Troubleshooting unexpected symbols when viewing data” on page 411

Interactive SQL windows
You can access all the windows in Interactive SQL through the Tools, Data, and Favorites menus. With
these windows, you can configure Interactive SQL settings, search for table and procedure names to insert
into your queries, edit your queries, export a result set, and save files and connection information as favorites.

SQL Anywhere graphical administration tools

680 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The Tools menu contains the following windows:

● Lookup Table Name The Lookup Table Name window lets you browse table and column names
and insert them into the SQL Statements pane.

● Lookup Procedure Name The Lookup Procedure Name window lets you browse procedure names
and insert them into the SQL Statements pane.

● Edit Query The Query Editor provides a graphical way to create and edit SELECT statements in
Interactive SQL. See “Using the Query Editor” on page 690.

● Index Consultant The Index Consultant guides you in the proper selection of indexes. You can use
the Index Consultant to analyze the benefits of indexes for an individual query. See “Obtain Index
Consultant recommendations for a query” [SQL Anywhere Server - SQL Usage].

● Plan Viewer The Plan Viewer is a graphical tool for viewing graphical plans for SQL Anywhere
databases and text plans for UltraLite databases. See “Viewing plans using the Interactive SQL Plan
Viewer” on page 692.

● Options The Options window sets options for commands, appearance, importing and exporting data,
and messages in Interactive SQL.

The Data menu contains the following windows:

● Export Opens the Export Wizard, which allows you to export a result set. See “Export data with the
Export Wizard” [SQL Anywhere Server - SQL Usage].

● Import Opens the Import Wizard, which allows you to import data from a file or database. See
“Import data with the Import Wizard” [SQL Anywhere Server - SQL Usage].

The Favorites menu contains the following windows:

● Add To Favorites This window allows you to save SQL files and connection information as favorites.

● Organize Favorites This window allows you to maintain and organize your favorites.

● Show Favorites Opens the Favorites window on the left side of the Interactive SQL window.

Executing SQL statements from Interactive SQL
One of the primary uses of Interactive SQL is to browse table data. Interactive SQL retrieves information
by sending a request to your database server. The database server, in turn, looks up the information, and
returns it to Interactive SQL.

After you execute a SELECT statement, the result set appears on the Results tab in the Results pane. By
default, row numbers appear to the left of the result set.

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 681

Note
The database server creates schema locks on tables that you view in Interactive SQL, even if you do not
modify the table.

However, you can configure Interactive SQL to attempt to release the database schema locks it creates when
it displays your result set. To do so, in Interactive SQL, choose Tools » Options » SQL Anywhere, and
select Automatically Release Database Locks.

When this option is selected, after you execute a statement that returns a result set, Interactive SQL checks
if your connection has any uncommitted changes in the database. If none exist, then Interactive SQL releases
your schema locks; otherwise, Interactive SQL does not release your schema locks. That is, Interactive SQL
does not release your schema locks if you have any uncommitted changes to the database.

To execute all SQL statements

1. Type your query in the SQL Statements pane.

2. Press F5, or choose SQL » Execute to execute the statement.

To execute selected SQL statements

1. Type your queries in the SQL Statements pane and select the query.

2. Press F9, or choose SQL » Execute Selection to execute the statement.

To execute SQL statements individually, for example when debugging, you can use Single Step from the
SQL menu. Single Step executes a specified statement and then selects the next statement to be executed.
To execute the next statement, run Single Step again.

To execute SQL statements one at a time

1. Type your queries in the SQL Statements pane.

2. Place your cursor in the statement that you want to execute.

3. From the SQL menu, choose Single Step or press Shift+F9 to execute the specified statement.

When the SQL statement executes, the next SQL statement is selected.

4. To execute the selected SQL statement, press Shift+F9.

5. Repeat the previous step until there are no more selected statements to execute.

Configuring the Execute Statements toolbar button

You can also click the Execute Statements button to execute the statements in the SQL Statements pane.
This button can be set to execute all SQL statements or only execute the selected statements.

To configure the Execute Statements toolbar button

1. From the Tools menu, choose Options.

SQL Anywhere graphical administration tools

682 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

2. Click Toolbar

To execute all SQL statements, select Execute All Statement(s). This is the default setting.

To execute only the selected SQL statements, select Execute Selected Statement(s).

See also
● “Configuring the administration tools” [SQL Anywhere Server - Programming]

Executing multiple SQL statements
You can execute multiple SQL statements from Interactive SQL as long as each statement ends with a
command delimiter. The command delimiter is set with the command_delimiter option, and is a semicolon
(;) by default. An alternative to using the semicolon is to enter the separator go on a line by itself, at the
beginning of the line. See “command_delimiter option [Interactive SQL]” on page 711.

Results processing
By default, Interactive SQL shows the first result set of the most-recently executed statement.

To see all the result sets

1. From Tools, choose Options, choose one of the following:

● SQL Anywhere » Results.

● UltraLite » Results.

2. Choose Show All Result Sets.

3. Choose Show results from each statement.

4. Click OK

Tip
You can press F9 to execute only the selected text in the SQL Statements pane.

You can press Shift+F9 to execute only the selected statement in the SQL Statements pane and select the
next statement for execution.

See also
● “Troubleshooting unexpected symbols when viewing data” on page 411

Executing command files
Command files are text files that contain SQL statements, and are useful if you want to run the same SQL
statements repeatedly. You can use Interactive SQL to open, view, run, and save command files.

You can execute command files in any of the following ways from Interactive SQL:

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 683

● You can use the Interactive SQL READ statement to execute command files. For example, the following
statement executes the file temp.sql:

READ temp.sql;
● You can load a command file into the SQL Statements pane and execute it directly from there.

You load command files into the SQL Statements pane by choosing File » Open. Enter the file name,
for example temp.sql, when prompted.

● You can run a command file without loading it by choosing File » Run Script.

● You can supply a command file as a command line argument for Interactive SQL.

See “Run SQL command files in Interactive SQL” [SQL Anywhere Server - SQL Usage].

Setting Interactive SQL as the default editor for .sql files
On Windows platforms you can make Interactive SQL the default editor for .sql command files. This lets
you double-click the file so that its contents appears in the SQL Statements pane of Interactive SQL.

To make Interactive SQL the default editor for .sql files

1. From Interactive SQL, choose Tools » Options.

2. In the left pane, click General.

3. Click Make Interactive SQL The Default Editor For .SQL Files And Plan Files.

4. Click OK.

For more information about using Interactive SQL with command files, see:

● “Using SQL command files” [SQL Anywhere Server - SQL Usage]
● “Run SQL command files in Interactive SQL” [SQL Anywhere Server - SQL Usage]

Using favorites
In Interactive SQL, you can store frequently-used SQL command files and connections in a favorites list. A
favorites list is specific to a single user and cannot be seen by other users.

To add a .sql file to favorites

1. Open the SQL command file that you want to add to your favorites.

2. From the Favorites menu, choose Add To Favorites.

3. Select Add the open file 'filename'. In the Name field, type a name for the .sql file.

4. Click OK.

To add a connection to favorites

1. Connect to a database.

SQL Anywhere graphical administration tools

684 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

2. From the Favorites menu, choose Add To Favorites.

3. Select Save The Connection Password. In the Name field, type a name for the connection.

4. Click OK.

You can choose to display your favorites in a sidebar.

To show the favorites

● From the Favorites menu, choose Show Favorites.

The Favorites pane appears on the left side of the Interactive SQL window.

To open a favorite

● From the Favorites menu, choose the favorite you want to open.

Recalling commands
When you execute a command, Interactive SQL automatically saves it in a history list that persists between
Interactive SQL sessions. Interactive SQL maintains a record of up to 50 of the most recent commands.

You can view the entire list of commands in the Command History window. To access the Command
History window, press Ctrl+H, or click the Open A List Of Past SQL Statements button on the toolbar.

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 685

The most recent commands appear at the bottom of the list. To recall a command, select it and then click
OK. It appears in the SQL Statements pane of Interactive SQL. You can select multiple commands from
the Command History window.

You can also recall commands without the Command History window. Use the Recall Previous SQL
Statement and Recall Next SQL Statement icons in the toolbar to scroll back and forward through your
commands, or press Alt+Right Arrow and Alt+Left Arrow, respectively.

Note
If you execute a SQL statement that contains password information (CREATE USER, GRANT REMOTE
DBA, CONNECT, or CREATE EXTERNLOGIN), the password information appears in the Command
History window for the duration of the current Interactive SQL session.

When the command history is viewed in subsequent Interactive SQL sessions, passwords are replaced with ...
in any of these statements that contain password information. For example, if you execute the following
statement in Interactive SQL:

CREATE USER testuser
 IDENTIFIED BY testpassword;

the following statement appears in the Command History window in subsequent Interactive SQL sessions:

CREATE USER testuser
 IDENTIFIED BY ...;

Copying commands from the Command History window
You can copy commands from the Command History window to use elsewhere. When you copy multiple
commands, they are separated by the command delimiter (a semicolon by default).

To copy commands from the Command History window

1. Open the Command History window.

2. Select the command or commands, and then press Ctrl+C or click Copy.

3. Click OK to copy the selected statements to the SQL Statements pane of Interactive SQL.

Saving commands from the Command History window
You can also save commands in text files so that you can use them in a subsequent Interactive SQL session.

To save the command history to a file

1. Open the Command History window.

2. Click the Save History As .SQL File button or press Ctrl+S.

3. In the Save As window, specify a location and name for the file.

The command history file has a .sql extension.

4. Click Save when finished.

SQL Anywhere graphical administration tools

686 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Removing commands from the Command History window
The contents of the Command History window persist between Interactive SQL sessions. You can remove
commands from the history in one of two ways:

● Select one or more commands and click the Delete button or press the Delete key to remove the selected
command(s) from the window. This action cannot be undone.

● Remove all the commands from the window by clicking Clear History. This action cannot be undone.

Logging commands
With the Interactive SQL logging feature, you can record commands as you execute them. Interactive SQL
continues to record commands until you stop the logging process, or until you end the current session. The
recorded commands are stored in a log file so you can use the commands again.

To begin logging Interactive SQL commands

1. From the SQL menu, choose Start Logging.

2. In the Save As window, specify a location and name for the log file. For example, name the file
mylogs.sql.

3. Click Save when finished.

To stop logging Interactive SQL commands

● From the SQL menu, choose Stop Logging.

Tips
You can also start and stop logging by typing in the SQL Statements pane. To start logging, type and execute
START LOGGING 'c:\filename.sql', where c:\filename.sql is the path, name, and extension of the log file.
You only need to include the single quotation marks if the path contains embedded spaces. To stop logging
Interactive SQL commands, type and execute STOP LOGGING.

Once you start logging, all commands that you try to execute are logged, including ones that do not execute
properly.

Canceling commands in Interactive SQL
A cancel operation stops the current processing and prompts for the next command. The Interrupt The
SQL Statement button on the Interactive SQL toolbar cancels a command.

If a command file was being processed, you are prompted for an action to take (Stop Command File,
Continue, or Exit Interactive SQL). These actions can be controlled with the Interactive SQL on_error
option. See “on_error option [Interactive SQL]” on page 721.

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 687

Inserting comments
Comments are used to attach explanatory text to SQL statements or statement blocks. The database server
does not execute comments. SQL Anywhere supports the following types of comments: -- (double hyphen), //
(double slash), and /* ... */ (slash-asterisk). See “Comments” [SQL Anywhere Server - SQL Reference].

To add or remove comment indicators

● To turn existing text into comments, select the text in the SQL Statements pane and press Ctrl+Minus
Sign (-) to add double hyphen comment indicators or Ctrl+Forward Slash (/) to add double slash comment
indicators. The SQL comment indicator is added to the beginning of each line with selected text.

If no text is selected, the comment indicator is added to the beginning of the current line.

To remove a comment indicator, select the text and press Ctrl+Minus Sign (-) to remove double hyphen
comment indicators or Ctrl+Forward Slash (/)to remove double slash comment indicators.

Indenting SQL statements
To add or increase indentation of SQL statements

1. Select the text in the SQL Statements pane that you want to indent. If no text is selected, the indentation
is applied to the current line.

2. Press Ctrl+Period (.).

To remove or decrease indentation of SQL statements

1. Select the text in the SQL Statements pane that you want to decrease the indentation. If no text is selected,
the indentation is applied to the current line.

2. Press Ctrl+Comma (,).

To change the number of spaces that are indented

1. From the Tools menu, choose Options.

2. Choose Editor and then click the Tabs tab.

3. Type a new number in the Indent Size field.

Looking up tables, columns, and procedures
While you are entering commands in Interactive SQL, you can look up the names of tables, columns, or
procedures stored in the current database and insert them at your cursor position.

SQL Anywhere graphical administration tools

688 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To look up the names of tables in the database

1. From the Tools menu, choose Lookup Table Name or press F7.

2. Find and select the table.

3. Click OK to insert the table name into the SQL Statements pane at the current cursor position.

To look up column names in the database

1. From the Tools menu, choose Lookup Table Name or press F7.

2. Find and select the table containing the column.

3. Click Show Columns.

4. Select the column and click OK to insert the column name into the SQL Statements pane at the current
cursor position.

To look up the names of procedures in the database

1. From the Tools menu, choose Lookup Procedure Name or press F8.

2. Find and select the procedure.

3. Click OK to insert the procedure name into the SQL Statements pane at the current cursor position.

In the Lookup Table Name and Lookup Procedure Name windows, you can enter the first few characters
of the table or procedure you are looking for. The list is narrowed to include only those items that start with
the text you entered.

You can use the SQL wildcard characters '%' (percent sign) and '_' (underscore) to help narrow your search.
'%' matches any string of zero or more characters, while '_' matches any one character.

For example, to list all the tables that contain the word profile, type %profile%.

If you want to search for a percent sign or underscore within a table name, you must prefix the percent sign
or underscore with an escape character. The escape character for the iAnywhere JDBC driver is '~' (tilde).

Tip
Interactive SQL supports text completion for database object names when you type in the SQL
Statements pane, which can be used as an alternative to looking up table and procedure names. See “Using
text completion” on page 725.

You can also use text completion to find object names, including tables, columns, and procedures. See
“Using text completion” on page 725.

Generating SQL statements from result sets
You can create INSERT, DELETE, and UPDATE statements for selected rows in the result set.

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 689

To generate SQL statements from an Interactive SQL result set

1. Select the row(s) you want to generate a statement for.

2. Right-click the selection, and choose Generate, and then choose INSERT Statement, DELETE
Statement, or UPDATE Statement.

The statement is copied to the clipboard.

Using the Query Editor
The Query Editor is a tool in Interactive SQL that helps you build SELECT statements. You can create SQL
queries in the Query Editor, or you can import queries and edit them. When you have finished your query,
click OK to export it back into Sybase Central or Interactive SQL for processing.

To create a query using the Query Editor

1. Connect to a database from Interactive SQL.

2. Open the Query Editor.

From the Tools menu, choose Edit Query.

If you have SQL code selected in Interactive SQL, the selected code is automatically imported into the
Query Editor.

3. Create your query.

4. Click OK to write the query to the Interactive SQL SQL Statements pane.

The Query Editor provides a series of tabs that guide you through the components of a SQL query, most of
which are optional. The tabs are presented in the order that SQL queries are usually built:

Tab Description

Tables tab Use this tab to specify the tables in your query.

Joins tab Use this tab to specify a join strategy for combining the data in the tables. If you include
more than one table in your query, you should specify a join strategy for combining
the data in the tables. If you do not specify a join strategy for tables you added in the
Tables tab, the Query Editor suggests one; if there is a foreign key relationship be-
tween the tables, it generates a join condition based on that relationship, or it suggests
a cross product. When you open queries, the Query Editor accepts exactly the join
strategy that you specified (and an unspecified JOIN is not defaulted to KEY JOIN,
as it would be otherwise in SQL Anywhere).

Columns tab Use this tab to specify the columns in your result set. If you do not specify columns,
all columns appear.

INTO tab Use this tab to assign results to variables.

SQL Anywhere graphical administration tools

690 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Tab Description

WHERE tab Use this tab to specify conditions for restricting the rows in your result set.

GROUP BY tab Use this tab to group rows in the result set.

HAVING tab Use this tab to restrict the rows in your result set based on group values.

ORDER BY tab Use this tab to sort the rows.

The Query Editor also contains the following tools:

Window Description

Expression Editor Use the Expression Editor to build search conditions or define computed columns.

Derived Table Use this window, which is nearly identical to the main Query Editor, to create derived
tables and subqueries.

Each component of the Query Editor has context-sensitive online help that describes how to use the tab, and
provides links into the SQL Anywhere documentation that explain relevant concepts and usage.

You do not need to use SQL code to create queries with the Query Editor. However, you can use SQL with
the Query Editor in the following ways:

● You can create a query in the SQL Statements pane in Interactive SQL, and import it into the Query
Editor by highlighting the code before you open the editor.

● At any time while using the Query Editor, you can click SQL at the bottom of the window to see the
SQL code for the query you are building. You can directly edit the code, and the fields are automatically
updated in the Query Editor.

You can configure the Query Editor from Interactive SQL or Sybase Central so that the SQL is fully
formed, meaning that all table and column names fully qualified and names are quoted. This extra
formatting is not normally necessary, but it ensures that the SQL works in all situations. You can also
choose to get a list of tables on startup.

To configure the Query Editor

● From the Tools menu, choose Options » SQL Anywhere, and then click the Query Editor tab.

Query Editor limitations

The Query Editor builds SQL Anywhere SELECT statements. It is not designed to create views, although
you can create them in Interactive SQL and reference them in the Query Editor. Nor was it designed to create
UPDATE statements or other non-SELECT SQL statements. It creates a single SELECT statement, so it
does not build unions or intersects of SELECT statements. In addition, the Query Editor does not support
Transact-SQL syntax.

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 691

See also
● “Querying data” [SQL Anywhere Server - SQL Usage].
● “SELECT statement” [SQL Anywhere Server - SQL Reference].

Viewing plans using the Interactive SQL Plan Viewer
The Plan Viewer is a graphical tool for viewing graphical plans for SQL Anywhere databases and text plans
for UltraLite databases.

To start the Plan Viewer

1. Open Interactive SQL.

2. Choose Tools » Plan Viewer (or press Shift+F5).

The Plan Viewer appears in a separate window.

Navigating the Plan Viewer

The Plan Viewer window is divided into panes:

● SQL pane This pane provides a place for you to type SQL statements that you want to generate plans
for.

● Results pane This pane shows the graphical plan. This pane is only for SQL Anywhere databases.

● Details pane This pane provides text details about the plan for SQL Anywhere databases. For
UltraLite databases, this pane shows the text plan.

SQL Anywhere graphical administration tools

692 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Viewing graphical plans in Interactive SQL
You can view the query optimizer's execution plan for a SQL statement in the Plan Viewer window in
Interactive SQL.

For SQL Anywhere databases, only graphical plans appear in the Plan Viewer. For UltraLite databases only
text plans are supported in the Plan Viewer. See “View an UltraLite execution plan” [UltraLite - Database
Management and Reference].

To create a graphical plan

1. Type your query in the SQL Statements pane.

2. Choose Tools » Plan Viewer or press Shift+F5.

The Plan Viewer appears in a separate window. Your specified query appear in the SQL pane.

3. Click Get Plan to generate a plan for the specified query.

To open a graphical plan

1. Choose Tools » Plan Viewer.

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 693

2. Click Open.

3. Select a plan file (.saplan), and then click Open.

See also
● “Reading graphical plans” [SQL Anywhere Server - SQL Usage]

Configuring the graphical plan
After executing the graphical plan you can customize the appearance of items in the plan.

To change the appearance of the graphical plan

1. Right-click the plan in the lower left pane of the Plan Viewer and choose Customize.

2. Change the settings.

3. Click OK when finished.

4. Click Get Plan generate the graphical plan with your changes.

Printing SQL statements, execution plans, and result sets
You can print the contents of the SQL Statements pane or query results by:

● pressing Ctrl+P

● choosing File » Print

When prompted, choose to print the SQL Statements or Results.

You can print a plan in the Plan Viewer by:

● pressing the Print button

● right-clicking the plan, and choosing Print

You can also add a header or footer and configure other formatting options in the Interactive SQL
Options window.

To add a header

1. Open the Interactive SQL Options window.

Choose Tools » Options.

2. On the Editor page click the Print tab.

3. In the Header field, specify the text that you want to appear in the header. You can also click the right
arrow and choose items to include in the header.

SQL Anywhere graphical administration tools

694 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Editing result sets in Interactive SQL
Once you execute a query in Interactive SQL, you can sort and edit the result set to modify the database.
You can also select rows from the result set and copy them for use in other applications. The field delimiter,
quoting character, and escape character for the results are controlled by the isql_field_separator, isql_quote,
and isql_escape_character options, respectively. These options can be viewed and changed in Options
window in Interactive SQL.

Interactive SQL supports editing, inserting, and deleting rows. Editing the result set has the same effect as
executing UPDATE, INSERT, and DELETE statements. After editing a result set, the equivalent INSERT,
UPDATE, and DELETE statements are added to Interactive SQL's command history. See “Recalling
commands” on page 685.

To edit a row or value in the result set, you must have the proper permissions on the table or column you
want to modify values from. For example, if you want to delete a row, then you must have DELETE
permission for the table the row belongs to.

You cannot edit a result set if you:

● select columns from a table with a primary key, but do not select all the primary key columns.

● attempt to edit the result set of a JOIN (for example, if there is data from more than one table in the result
set).

● attempt to edit a table that has its editing disabled, see “Disabling table editing” on page 696.

Editing the result set may fail if you:

● attempt to edit a row or column you do not have permission on.

● enter an invalid value (for example, a string in a numeric column or a NULL in a column that does not
allow NULLs).

When editing fails, an Interactive SQL error message appears explaining the error, and the database table
values remain unchanged.

Editing table values from the Interactive SQL result set
From Interactive SQL you can change any or all the values within existing rows in database tables, provided
that you have UPDATE permission on the columns being modified. In addition, for SQL Anywhere and
UltraLite databases, table editing must not be disabled.

When you edit the result set, you can only make changes to the values in one row at a time.

To edit a row in the result set

1. Execute a query in Interactive SQL.

2. On the Results tab, click the value you want to change.

3. Right-click the value and choose Edit Row, or press F2 to edit the result set.

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 695

A blinking cursor appears in the table cell containing the value.

4. Enter the new value. If you want to change other values in the row, press Tab or Shift+Tab to move to
the other values.

5. Press Enter to update the database once you are done editing values in the row.

You can press the Esc key to cancel the change that was made to the selected value.

6. Execute a COMMIT statement to make your changes to the table permanent.

Disabling table editing
You can disable table editing via the Options window in Interactive SQL or via the Interactive SQL
initialization file, see “Configuring the administration tools” [SQL Anywhere Server - Programming].

To disable table editing (Interactive SQL)

1. From the Tools menu, choose Options, and then choose SQL Anywhere or UltraLite.

2. Ensure that Scrollable Table is selected and select Disable Editing.

3. Click OK.

4. Execute a query.

You must execute a new query for the changes to table editing to take effect.

Inserting rows into the database from the Interactive SQL result set
Interactive SQL allows you to add new rows to a table. You tab between columns in the result set to add
values to the row. You must have INSERT permission on the table to add new rows.

To insert a new row into the result set

1. Right-click the result set and choose Add Row.

A new blank row appears with a blinking cursor in the first value in the row.

2. Enter the new value and then press Tab to move to the next column.

You cannot enter invalid data types into a column. For example, you cannot enter a string into a column
that accepts the INT data type.

Repeat this step until all the column values are added.

3. Press Enter to update the database.

Inserting values into columns with default values
When adding a value in a column that has a default value, the cell editor contains a list with a
(DEFAULT) item. Select (DEFAULT) if you want to insert the default value. Similarly, if a column accepts
NULL values, (NULL) appears in the list. If a column cannot be NULL and does not have a default value,
you must enter a value.

SQL Anywhere graphical administration tools

696 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Inserting values into computed columns

If the result set contains a computed column and you do not specify a value for the computed column, the
value is calculated when the database is updated. However, if you specify a value for the computed column,
the database is updated with the specified value, and a value is not calculated for the computed column.

Inserting new rows using the INPUT statement

An alternative to inserting new rows from the result set in Interactive SQL is to add rows using the INPUT
statement with the PROMPT clause. When the PROMPT clause is specified, Interactive SQL prompts you
for the value for each column in the table. For example, to add a new row to the Products table and be
prompted for the values for each column, you would execute the following statement in Interactive SQL:

INPUT INTO Products PROMPT;

Deleting rows from the database using Interactive SQL
You can also delete rows from a database table in Interactive SQL. You must have DELETE permission on
the table to delete rows.

To delete a row from the result set

1. Select the row(s) you want to delete. To select a row(s):

● Press and hold the Shift key while clicking the row(s).

● Press and hold the Shift key while using the Up or Down Arrow.

If you want to delete non-consecutive rows, you must delete each row individually.

2. Press Delete.

The selected row(s) are removed from the database table.

3. Execute a COMMIT to make the change permanent.

Copying rows from an Interactive SQL result set
You can copy cells, rows, and columns directly from the result set in Interactive SQL and then paste them
into other applications. Copying rows and columns copies both the column headings and table data into the
clipboard. You can only copy one column at a time.

Copied data is formatted according to the following Interactive SQL options:

● “isql_field_separator option [Interactive SQL]” on page 717
● “isql_escape_character option [Interactive SQL]” on page 717
● “isql_quote option [Interactive SQL]” on page 719

You can also change these options from the Interactive SQL Options menu, by choosing Import/Export.

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 697

If these options are set to their defaults, the copied data is comma-delimited and the strings are enclosed in
single quotes.

To copy rows from the Interactive SQL result set

1. Select the row(s) in the result set that you want to copy.

2. Right-click the selection and choose Copy » Copy Selected Row(s).

The selected row(s), including their column headings, are copied to the clipboard.

You can now paste the row(s) into other applications.

To copy a column from the Interactive SQL result set

● Right-click the column you want to copy and choose Copy » Copy Column. You can only copy one
column at a time.

If the Results pane does not contain the entire result set, you are prompted to fetch the remaining results
before selecting them. Otherwise, only those results that have been fetched so far are selected.

The column, including the column heading, is copied to the clipboard.

You can now paste the column into other applications.

To copy individual values from the Interactive SQL result set

● Right-click the value in the result set that you want to copy, and choose Copy » Copy Cell.

When you do this, no column headings are copied—only the data is copied to the clipboard, and no
quoting is done.

You can now paste the contents of the cell into other applications.

Sorting columns in an Interactive SQL result set
To sort columns in the result set

● Click a column-header in the Results tab, to sort the results by that column.

When the Results tab does not contain the entire result set, you are prompted to fetch the remaining
results. Otherwise, only the currently fetched results are sorted.

Opening multiple windows
You can open multiple Interactive SQL windows. Each window corresponds to a separate database
connection. You can connect simultaneously to two (or more) different databases on different database
servers, or you can open concurrent connections to a single database.

SQL Anywhere graphical administration tools

698 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To open a new Interactive SQL window

1. From the Window menu, choose New Window.

Tip
If the SQLCONNECT environment variable is set, or if you are already connected to a SQL Anywhere
database, the database server attempts to use this information to connect to a database before it prompts
you for information. Likewise, if the ULCONNECT environment variable is set, or if you are already
connected to an UltraLite database, the database server attempts to use this information to connect to a
database before it prompts you for information in. If these attempts fail, or if you are not already connected
to a database, the Connect window appears.

2. In the Connect window, enter the connection information for your database, and click OK to connect.

The connection information (including the database name, your user ID, and the database server name)
appears in the Interactive SQL title bar.

You can also connect to or disconnect from a database with the Connect and Disconnect items in the
SQL menu, or by executing a CONNECT or DISCONNECT statement.

Using source control integration
Interactive SQL integrates with third-party source control systems, allowing you to perform many common
source control operations on files from within Interactive SQL. On Windows, Interactive SQL integrates
with most source control products that support the Microsoft Common Source Code Control API (SCC),
including Microsoft Visual SourceSafe. To use source control products that do not support the SCC API on
Windows and other operating systems, specify a command line to run for each of the source control actions.
Output from those commands appears in a log window.

Interactive SQL supports the following tasks (as long as the task is supported in the source control product):

● Open a source control project
● Get
● Check in
● Check out
● Undo check out
● Compare versions
● Show file history
● Show file properties
● Run the source control manager

If the underlying source control program does not support an action, its corresponding menu item is disabled.
For example, Visual SourceSafe supports all of these actions, but using a custom (command line) source
control system does not support opening a source control project, or running a source control manager.

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 699

For more information about the supported actions, see:

● “Opening source control projects from Interactive SQL” on page 701
● “Checking files out from Interactive SQL” on page 701
● “Checking in files from Interactive SQL” on page 703
● “Additional source control actions” on page 703

You should be familiar with the operations of your source control program before attempting to use it from
Interactive SQL.

Configuring Interactive SQL to use source control
You must configure Interactive SQL to use source control before you can perform source control actions on
files, such as checking files in and out, comparing different versions of a file, and viewing the history for a
file.

If you are running Interactive SQL on a Windows computer that has a source control product that supports
the Microsoft SCC API, you can use that product or use a custom (command line oriented) system.

Configuring SCC source control systems
To configure Interactive SQL source control on Windows with SCC

1. Click Tools » Options.

2. In the left pane, click Source Control.

3. Click Enable Source Control Integration.

4. Click OK.

Configuring other source control systems
To configure Interactive SQL source control systems with a command line interface

1. Click Tools » Options.

2. In the left pane, click Source Control.

3. Click Enable Source Control Integration.

4. Click Configure.

5. In the Custom Source Control Options window, click Reset.

6. Select your source control system from the list, and then click OK.

7. Edit the commands in the list as necessary by selecting an action from the Source Control Actions list,
and then typing the corresponding command in the Command Line pane.

When you are defining commands for your system in the Source Control Actions list, use the
placeholder [FILENAME] to represent the name of the file that is used when you run the command. For
example, the command to submit a file in Perforce is p4 submit [FILENAME]. Actions that appear

SQL Anywhere graphical administration tools

700 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

bold in this list have commands defined for them, while actions in plain font do not have a command
defined.

If you do not specify a command line for an action, the item in the File » Source Control menu is
disabled.

Tip
You can export your source control command lines to an external file by clicking Export in the Custom
Source Control Options window (accessed by choosing Tools » Options, and then clicking
Configure on the Source Control pane). You can later read these commands back in by clicking
Import in this window. This may be useful if you need to configure Interactive SQL source control
command lines on several computers.

8. Click OK, and then click OK again.

Opening source control projects from Interactive SQL
Some source control products require you to open a source control project before you can perform any other
source control actions. The exact definition of what a project is depends on the source control system you
are using. Typically, it is a set of files that are under source control, along with a location on your local file
system where working copies of the files are placed. You usually have to provide some credentials, such as
a user ID and password, to the source control system to open a project.

If your source control system supports opening a source control project, the File » Source Control » Open
Source Control Project menu item is enabled. Choosing this option from the File menu opens a source
control-specific window for opening a project. Once you open a project, you do not have to open it again,
even in subsequent Interactive SQL sessions. The project is opened automatically for you.

Checking files out from Interactive SQL

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 701

Once you open a file in Interactive SQL, there are two ways you can check the file out: modifying its contents
in the SQL Statements pane, or using the command on the File menu.

When you configure the source control options for Interactive SQL, if you select Automatically Check Out
Files When Editor Contents Are Modified, Interactive SQL attempts to check out a file when you modify
its contents in the SQL Statements pane.

To check out a file using the Interactive SQL File menu

1. Choose File » Open, and then browse to the file you want to open.

The file status appears on the status bar at the bottom of the Interactive SQL window. The status is one
of Checked In, Checked Out, or Not Controlled. Files that are checked in are assumed to be read-only,
and Read-Only appears in the Interactive SQL title bar. The file in the following example is checked
in:

2. Check out the file by choosing File » Source Control » Check Out.

Depending on which source control product you are using, you may be prompted for a comment or other
options as part of the check out procedure.

Caution
If you are using a SCC-compliant source control system, the status is always accurate. However, if you use
the custom source control system, the status is based on whether the file is read-only or not. A read-only file
is assumed to be checked in, but no assumptions are made about editable files because they could be either
checked out or not controlled.

SQL Anywhere graphical administration tools

702 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Checking in files from Interactive SQL
When you are finished making edits to your file, you can check it back in from Interactive SQL.

To check in a file from Interactive SQL

1. Choose File » Source Control » Check In.

2. Enter check in comments if you are prompted.

Additional source control actions
In addition to opening source control projects, and checking files in and out, Interactive SQL supports several
other source control actions. The availability of these actions depends on the source control system you are
using. These actions are accessed from the File » Source Control menu in Interactive SQL.

● Get This action gets the latest copy of the file you currently have open in the SQL Statements pane.

● Undo Check Out If you have checked out a file, and you want to discard your changes, choose
File » Source Control » Undo Checkout. This discards your working copy of the file, and then
downloads the copy of the file that is in the source control archive.

● Compare Versions This action compares the working copy of the file you have opened against the
version in the source control archive.

● History This action displays a list of source control actions (typically check-ins) that have been made
to the file you have open.

● Properties This action displays a list of source control properties that are associated with the file you
have opened.

● Run Source Control Manager This action launches the management program for your source
control system. For example, if you are using Microsoft Visual SourceSafe, this launches Visual
SourceSafe Explorer.

Interactive SQL SQL statements
The following list provides links into the SQL Anywhere documentation for the SQL statements that are
available to users of Interactive SQL.

“CLEAR statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

“CONFIGURE statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

“CONNECT statement [ESQL] [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

“DESCRIBE statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

“DISCONNECT statement [ESQL] [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

“EXIT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 703

“HELP statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

“INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

“OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

“PARAMETERS statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

“READ statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

“SET CONNECTION statement [Interactive SQL] [ESQL]” [SQL Anywhere Server - SQL Reference]

“SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

“START ENGINE statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

“START LOGGING statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

“STOP LOGGING statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

“SYSTEM statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

See also
● “Using the SQL statement reference” [SQL Anywhere Server - SQL Reference]

Interactive SQL keyboard shortcuts
Interactive SQL provides the following keyboard shortcuts:

Key(s) Description

Alt+F4 Shuts down Interactive SQL.

Alt+Left Arrow Displays the previous SQL statement in the history list.

Alt+Right Arrow Displays the next SQL statement in the history list.

Ctrl+Backspace Deletes the word to the left of the cursor.

Ctrl+Break Interrupts the SQL statement that is being executed.

Ctrl+A Selects all text in the active pane.

In the Results pane, if the results are not the entire result set, you are prompted
to fetch the remaining rows. Otherwise the currently fetched results are selec-
ted. See “Copying rows from an Interactive SQL result set” on page 697.

Ctrl+C In the Results pane, copies the selected row(s) and column headings to the
clipboard.

In the SQL Statements pane, copies the selected text to the clipboard.

SQL Anywhere graphical administration tools

704 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Key(s) Description

Ctrl+Del Deletes the word to the right of the cursor.

Ctrl+End Moves the cursor to the bottom of the current pane.

Ctrl+F Opens the Find/Replace window.

Ctrl+G Moves the cursor to the specified line in the SQL Statements pane.

Ctrl+H Displays the history of your executed SQL statement(s).

Ctrl+Home Moves the cursor to the top of the current pane.

Ctrl+L Deletes the current line from the SQL Statements pane and puts the line onto
the clipboard.

Ctrl+Shift+L Deletes the current line.

Ctrl+N Clears the contents of the Interactive SQL window and closes the current file
(if any).

Ctrl+O Opens a file.

Ctrl+P Prints the contents of the SQL Statements pane; from the Tools menu, choose
Options, then choose Editor, and then click the Print tab.

Ctrl+Q Opens the Query Editor.

The Query Editor helps you build SQL queries. When you have finished build-
ing your query, click OK to export it back into the SQL Statements pane.

Ctrl+S Saves the contents of the SQL Statements pane to the specified file.

Ctrl+U Changes the selection to lowercase characters.

Ctrl+Shift+U Changes the selection to uppercase characters.

Ctrl+V Pastes the selected text.

Ctrl+X Cuts the selected text.

Ctrl+Y Repeats the last operation.

Ctrl+Z Undoes the last operation.

Ctrl+] Moves the cursor to the matching brace. Use this shortcut to match parentheses,
braces, brackets, and angle brackets.

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 705

Key(s) Description

Ctrl+Shift+] Extends the selection to the matching brace. Use this shortcut to match paren-
theses, braces, brackets, and angle brackets.

Ctrl+Minus Sign (-) Adds and removes the double-hyphen (--) SQL comment indicator.

To turn existing text into comments, select the text in the SQL Statements
pane and press Ctrl+minus sign. The SQL comment indicator is added to the
beginning of each line in the selection.

If no text is selected, the comment indicator is added to the beginning of the
current line.

To remove a comment indicator, select the text and press Ctrl+minus sign.

See “Comments” [SQL Anywhere Server - SQL Reference].

Ctrl+Forward Slash (/) Adds and removes the double-slash (//) SQL comment indicator.

To turn existing text into comments, select the text in the SQL Statements
pane and press Ctrl+forward slash. The SQL comment indicator is added to
the beginning of each line in the selection.

If no text is selected, the comment indicator is added to the beginning of the
current line.

To remove a comment indicator, select the text and press Ctrl+forward slash.

See “Comments” [SQL Anywhere Server - SQL Reference].

Ctrl+Up Arrow Selects the SQL statement preceding the statement that contains the cursor in
the SQL Statements pane.

Ctrl+Down Arrow Selects the SQL statement following the statement that contains the cursor in
the SQL Statements pane.

Ctrl+Period (.) Selects the entire SQL statement containing the cursor in the SQL State-
ments pane.

Ctrl+Comma (,) Selects the line containing the cursor in the SQL Statements pane.

Ctrl+Shift+Period (.) Increases the line indentation of selected text in the SQL Statements pane.

If no text is selected, the indentation is applied to the current line.

You can change the number of spaces that are indented; from the Tools menu,
choose Options, then choose Editor, and then click the Tabs tab.

SQL Anywhere graphical administration tools

706 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Key(s) Description

Ctrl+Shift+Comma (,) Decreases line indentation of selected text in the SQL Statements pane.

If no text is selected, the indentation is applied to the current line.

You can change the number of spaces that are indented; from the Tools menu,
choose Options, then choose Editor, and then click the Tabs tab.

Esc Clears the SQL Statements pane.

F1 Opens online help.

F2 Edits the selected value in the result set. You can tab from column to column
within the row.

F3 Finds the next occurrence of the specified text.

Shift+F3 Finds the previous occurrence of the selected text.

F5 Executes all text in the SQL Statements pane.

You can also perform this operation by clicking Execute All SQL State-
ments on the toolbar or choosing SQL » Execute.

Shift+F5 Opens the Plan Viewer for the specified statement in the SQL Statements
pane. The specified statement is not executed; to execute the statement in the
Plan Viewer, click Get Plan.

F7 Displays the Lookup Table Name window.

In this window, you can find and select a table and then press Enter to insert
the table name into the SQL Statements pane at the cursor position. Or, with
a table selected in the list, press F7 again to display the columns in that table.
You can then select a column and press Enter to insert the column name into
the SQL Statements pane at the cursor position.

F8 Displays the Lookup Procedure Name window.

In this window, you can find and select a procedure and then press Enter to
insert the procedure name into the SQL Statements pane at the cursor position.

F9 Executes the text that is selected in the SQL Statements pane.

If no text is selected, all the statements are executed.

You can also perform this operation by clicking Execute Selected State-
ments on the toolbar or choosing SQL » Execute.

Shift+F9 Executes the selected SQL statement, and then selects the next statement. This
shortcut allows you to step through a series of SQL statements. See “Executing
SQL statements from Interactive SQL” on page 681.

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 707

Key(s) Description

Shift+F10 Displays the shortcut menu for the area that has focus.

This keyboard shortcut is an alternative to right-clicking an area.

F11 Opens the Connect window if Interactive SQL is not connected to a database.

F12 Disconnects Interactive SQL from the current database.

Home Moves the cursor to the start of the current line or to the first word on the current
line.

Shift+Home Extends the selection to the start of the text on the current line.

Page Down Moves a page down in the current pane.

Page Up Moves a page up in the current pane.

Interactive SQL options
Use the SET OPTION statement to change the values of the following Interactive SQL options. See “SET
OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference].

Option Values Default

“auto_commit option [Interactive
SQL]” on page 710

On, Off Off

“auto_refetch option [Interactive
SQL]” on page 710

On, Off On

“bell option [Interactive
SQL]” on page 711

On, Off On

“command_delimiter option [Interactive
SQL]” on page 711

String ' ; '

“commit_on_exit option [Interactive
SQL]” on page 712

On, Off On

“default_isql_encoding option [Interactive
SQL]” on page 713

String Empty string

“echo option [Interactive
SQL]” on page 714

On, Off On

SQL Anywhere graphical administration tools

708 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Values Default

“input_format option [Interactive
SQL]” on page 714

TEXT, FIXED TEXT

“isql_allow_read_client_file option [Interac-
tive SQL]” on page 715

On, Off, Prompt Prompt

“isql_allow_write_client_file option [Interac-
tive SQL]” on page 715

On, Off, Prompt Prompt

“isql_command_timing option [Interactive
SQL]” on page 716

On, Off On

“isql_escape_character option [Interactive
SQL]” on page 717

Character ' \ '

“isql_field_separator option [Interactive
SQL]” on page 717

String ' , '

“isql_maximum_displayed_rows option [In-
teractive SQL]” on page 718

All or a non-negative integer 500

“isql_print_result_set option [Interactive
SQL]” on page 719

Last, All, None Last

“isql_quote option [Interactive
SQL]” on page 719

String '

“isql_show_multiple_result_sets [Interactive
SQL]” on page 720

On, Off Off

“nulls option [Interactive
SQL]” on page 721

String '(NULL)'

“on_error option [Interactive
SQL]” on page 721

Stop, Continue, Prompt, Exit,
Notify_Continue, Notify_Stop,
Notify_Exit

Prompt

“output_format option [Interactive
SQL]” on page 722

TEXT, FIXED, HTML, SQL,
XML

TEXT

“output_length option [Interactive
SQL]” on page 723

Integer 0

“output_nulls option [Interactive
SQL]” on page 723

String Empty string

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 709

Option Values Default

“truncation_length option [Interactive
SQL]” on page 723

Integer 256

auto_commit option [Interactive SQL]
Controls whether a COMMIT is performed after each statement.

Allowed values
On, Off

Default
Off

Remarks
If auto_commit is On, a database COMMIT is performed after each successful statement.

By default, a COMMIT or ROLLBACK is performed only when the user issues a COMMIT or ROLLBACK
statement or a SQL statement that causes an automatic commit (such as the CREATE TABLE statement).

Using a data source in Interactive SQL
By default, ODBC operates in autocommit mode. Even if you have set the auto_commit option to Off in
Interactive SQL, ODBC's setting will override Interactive SQL's. You can change ODBC's setting using the
SQL_ATTR_AUTOCOMMIT connection attribute. ODBC autocommit is independent of the chained
option.

See also
● “commit_on_exit option [Interactive SQL]” on page 712
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

auto_refetch option [Interactive SQL]
Controls whether query results are fetched again after deletes, updates, and inserts.

Allowed values
On, Off

Default
On

SQL Anywhere graphical administration tools

710 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
If auto_refetch is On, the current query results that appear on the Results tab in the Interactive SQL
Results pane are refetched from the database after any INSERT, UPDATE, or DELETE statement.
Depending on how complicated the query is, this may take some time. For this reason, it can be turned off.

See also
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

bell option [Interactive SQL]
Controls whether the bell sounds when an error occurs.

Allowed values
On, Off

Default
On

Remarks
Set this option according to your preference.

See also
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

command_delimiter option [Interactive SQL]
Sets the string that indicates the end of a statement in Interactive SQL.

Allowed values
String

Default
Semicolon (;)

Remarks
In general, there is no need to change the command delimiter. You should leave it as a semicolon.

An alternative to using a semicolon or another string as a statement delimiter is to enter the separator go on
a line by itself, at the beginning of the line. See “Introduction to batches” [SQL Anywhere Server - SQL
Usage].

Specifying go on its own line at the beginning of the line is always recognized as a command delimiter, even
if you set the command_delimiter option to a different value.

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 711

The command_delimiter value can be any string of characters with the following restrictions:

● If the delimiter contains any one of & (ampersand), * (asterisk), @ (at sign), : (colon), . (period), =
(equals), ((left parentheses),) (right parentheses), or | (vertical bar), the delimiter must not contain any
other character. For example, * is a valid delimiter, but ** is not.

● You should not use an existing keyword as a command separator. See “Keywords” [SQL Anywhere
Server - SQL Reference].

● The command delimiter can be any sequence of characters (including numbers, letters, and punctuation),
but it cannot contain embedded blanks. As well, it can contain a semicolon, but only as the first character.

If the command delimiter is set to a string beginning with a character that is valid in identifiers, the
command delimiter must be preceded by a space. The command delimiter is case sensitive. You must
enclose the new command delimiter in single quotation marks. When the command delimiter is a
semicolon (the default), no space is required before the semicolon.

See also
● “Interactive SQL utility (dbisql)” on page 786
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

Examples
The following example sets the command delimiter to a tilde:

SET OPTION command_delimiter='~';
MESSAGE 'hello'~

You can also use the Interactive SQL -d option to set the command delimiter without including a SET
OPTION command_delimiter statement in a .sql file. For example, if you have a script file named test.sql
that uses tildes (~) as the command delimiter, you could run:

dbisql -d "~" test.sql

commit_on_exit option [Interactive SQL]
Controls the behavior when Interactive SQL disconnects or shuts down.

Allowed values
On, Off

Default
On

Remarks
Controls whether a COMMIT or ROLLBACK is done when you leave Interactive SQL. When
commit_on_exit is set to On, a COMMIT is done.

SQL Anywhere graphical administration tools

712 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

default_isql_encoding option [Interactive SQL]
Specifies the code page that should be used by READ, INPUT, and OUTPUT statements.

Allowed values
Identifier or string

Default
Use system code page (empty string)

Scope
Can be set as a temporary option only, for the duration of the current connection.

Remarks
This option is used to specify the code page to use when reading or writing files. It cannot be set permanently.
The default code page is the default code page for the platform you are running on. On English Windows
computers, the default code page is 1252.

Interactive SQL determines the code page that is used for a particular INPUT, OUTPUT, or READ statement
as follows, where code page values occurring earlier in the list take precedence over those occurring later
in the list:

● the code page specified in the ENCODING clause of the INPUT, OUTPUT, or READ statement

● the code page specified with the default_isql_encoding option (if this option is set)

● the default code page for the computer Interactive SQL is running on

For more information about code pages and character sets, see “International language and character set
tasks” on page 424.

See also
● “READ statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “Overview of character sets, encodings, and collations” on page 407
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

Example
Set the encoding to UTF-16 (for reading Unicode files):

SET TEMPORARY OPTION default_isql_encoding = 'UTF-16';

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 713

echo option [Interactive SQL]
Controls whether statements are echoed to the log file before they are executed.

Allowed values
On, Off

Default
On

Remarks
This option is most useful when you use the READ statement to execute an Interactive SQL command file
or when you run a command file in Interactive SQL by choosing File » Run Script. Logging must be turned
on for this option to take effect. See “START LOGGING statement [Interactive SQL]” [SQL Anywhere
Server - SQL Reference].

See also
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

input_format option [Interactive SQL]
Sets the default data format expected by the INPUT statement.

Allowed values
String (see below for allowed values)

Default
TEXT

Remarks
Allowable input formats are:

● TEXT Input lines are assumed to be text characters, one row per line, with values separated by commas.
Alphabetic strings can be enclosed in apostrophes (single quotes) or quotation marks (double quotes).
Strings containing commas must be enclosed in either single or double quotes. If single or double quotes
are used, double the quote character to use it within the string. Optionally, you can use the DELIMITED
BY clause to specify a different delimiter string than the default, which is a comma (,).

Three other special sequences are also recognized. The two characters \n represent a newline character,
\\ represents a single backslash character, and the sequence \xDD, where DD is the hexadecimal
representation of a character, represents the character with hexadecimal code DD.

● FIXED Input lines are in fixed length format.

SQL Anywhere graphical administration tools

714 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

isql_allow_read_client_file option [Interactive SQL]
Controls whether client file reads are permitted for the connection.

Allowed values
On, Off, Prompt

Default
Prompt

Remarks
This option controls whether the database server can read files on the client computer. On means reading is
allowed. Off means reading is not allowed. Prompt means prompt the user for the action to take.

This option is stored on a per-connection basis and persists only for the duration of the connection. You can
set this option using the SET TEMPORARY OPTION statement. If you omit the TEMPORARY keyword,
Interactive SQL reports an error.

This option allows a data file to be read without user intervention in cases where LOAD TABLE is executed
from a stored procedure or trigger.

READCLIENTFILE authority is required to read a file on a client computer.

See also
● “Accessing data on client computers” [SQL Anywhere Server - SQL Usage]
● “READCLIENTFILE authority” on page 450
● “READ_CLIENT_FILE function [String]” [SQL Anywhere Server - SQL Reference]
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]
● “allow_read_client_file option [database]” on page 504
● “allow_write_client_file option [database]” on page 506
● “isql_allow_write_client_file option [Interactive SQL]” on page 715
● “Client-side data security” [SQL Anywhere Server - SQL Usage]

isql_allow_write_client_file option [Interactive SQL]
Controls whether client file writes are permitted for the connection.

Allowed values
On, Off, Prompt

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 715

Default
Prompt

Remarks
This option controls whether the database server can write to files on the client computer. On means writing
is allowed. Off means writing is not allowed. Prompt means prompt the user for the action to take.

This option is stored on a per-connection basis and persists only for the duration of the connection. You can
set this option using the SET TEMPORARY OPTION statement. If you omit the TEMPORARY keyword,
Interactive SQL reports an error.

WRITECLIENTFILE authority is required to write a file on a client computer.

See also
● “Accessing data on client computers” [SQL Anywhere Server - SQL Usage]
● “WRITECLIENTFILE authority” on page 452
● “WRITE_CLIENT_FILE function [String]” [SQL Anywhere Server - SQL Reference]
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “UNLOAD statement” [SQL Anywhere Server - SQL Reference]
● “allow_write_client_file option [database]” on page 506
● “allow_read_client_file option [database]” on page 504
● “isql_allow_read_client_file option [Interactive SQL]” on page 715
● “Client-side data security” [SQL Anywhere Server - SQL Usage]

isql_command_timing option [Interactive SQL]
Controls whether SQL statements are timed or not.

Allowed values
On, Off

Default
On

Remarks
This boolean option controls whether SQL statements are timed or not. If you set the option to On, the time
of execution appears in the Messages pane after you execute a statement. If you set the option to Off, the
time does not appear.

You can also set this option on the Messages tab of the Options window.

See also
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

SQL Anywhere graphical administration tools

716 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

isql_escape_character option [Interactive SQL]
Controls the escape character used in place of unprintable characters in data exported to text files.

Allowed values
Any single character

Default
A backslash (\)

Remarks
When Interactive SQL exports strings that contain unprintable characters (such as a carriage return), it
converts each unprintable character into a hexadecimal format and precedes it with an escape character. The
character you specify for this setting is used in the output if your OUTPUT statement does not contain an
ESCAPE CHARACTER clause. This setting is used only if you are exporting to an text file.

See also
● “isql_quote option [Interactive SQL]” on page 719
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

Example
Create a table that contains one string value with an embedded carriage return (denoted by the "\n" in the
INSERT statement). Then export the data to c:\escape.txt with a # sign as the escape character.

CREATE TABLE escape_test(text varchar(10));
INSERT INTO escape_test VALUES('one\ntwo');
SET OPTION isql_escape_character='#';
SELECT * FROM escape_test;
OUTPUT TO c:\escape.txt FORMAT TEXT;

This code places the following data in escape.txt:

'one#x0Atwo'

The pound sign (#) is the escape character and x0A is the hexadecimal equivalent of the \n character.

The start and end characters (in this case, single quotation marks) depend on the isql_quote setting.

isql_field_separator option [Interactive SQL]
Controls the default string used for separating values in data exported to text files.

Allowed values
String

Default
A comma (,)

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 717

Remarks
Controls the default string used for separating (or delimiting) values in data exported to text files. If an
OUTPUT statement does not contain a DELIMITED BY clause, the value of this setting is used.

See also
● “isql_quote option [Interactive SQL]” on page 719
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “isql_escape_character option [Interactive SQL]” on page 717

Example
The first example sets the field separator to a colon in the data exported to c:\Employees.txt.

SET OPTION isql_field_separator=':';
SELECT Surname, GivenName FROM Employees WHERE EmployeeID < 150;
OUTPUT TO c:\Employees.txt FORMAT TEXT;

This code places the following data in Employees.txt:

'Whitney': 'Fran'
'Cobb':'Matthew'
'Chin':'Philip'
'Jordan':'Julie'

The start and end characters (in this case, single quotation marks) depend on the isql_quote setting.

The next example sets the field separator to a tab in the data exported to c:\Employees.txt.

SET OPTION isql_field_separator='\t';
SELECT Surname, GivenName FROM Employees WHERE EmployeeID < 150;
OUTPUT TO c:\Employees.txt FORMAT TEXT;

This code places the following data in Employees.txt:

Surname GivenName
'Whitney' 'Fran'
'Cobb' 'Matthew'
'Chin' 'Philip'
'Jordan' 'Julie'

The start and end characters (in this case, single quotation marks) depend on the isql_quote setting. The
escape character (in this case the backslash) depends on the isql_escape_character setting.

isql_maximum_displayed_rows option [Interactive SQL]
Specifies the maximum number of rows that can appear in the Results pane in Interactive SQL.

Allowed values
ALL or a non-negative integer

Default
500

SQL Anywhere graphical administration tools

718 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
This option lets you specify the maximum number of rows that appear in the Results pane. You can also set
the value for this option in the Options window in Interactive SQL.

Caution
Interactive SQL can run out of memory when displaying large result sets. If this problem occurs, Interactive
SQL reports the problem but will not display the result set.

See also
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

isql_print_result_set option [Interactive SQL]
Specifies which result set(s) are printed when a .sql file is run.

Allowed values
LAST, ALL, NONE

Default
LAST

Remarks
The isql_print_result_set option takes effect only when you run Interactive SQL as a command line program
(for example, when running a .sql file).

This option allows you to specify which result set(s) are printed when a .sql file is run.

You can choose one of the following print options:

● LAST Prints the result set from the last statement in the file.

● ALL Prints result sets from each statement in the file which returns a result set.

● NONE Does not print any result sets.

See also
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

isql_quote option [Interactive SQL]
Controls the default string that begins and ends all strings in data exported to text files.

Allowed values
String

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 719

Default
A single apostrophe (')

Remarks
Controls the default string that begins and ends all strings in data exported to text files. If an OUTPUT
statement does not contain a QUOTE clause, this value is used by default.

See also
● “isql_field_separator option [Interactive SQL]” on page 717
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

Example
To change the default string that begins and ends all strings to a double quote character.

SET OPTION isql_quote='"';
SELECT Surname, GivenName FROM Employees WHERE EmployeeID < 150;
OUTPUT TO c:\Employees.txt FORMAT TEXT;

This code places the following data in Employees.txt:

"Whitney", "Fran"
"Cobb","Matthew"
"Chin","Philip"
"Jordan","Julie"

The separator characters (in this case, commas) depend on the isql_field_separator setting.

isql_show_multiple_result_sets [Interactive SQL]
Specifies whether multiple result sets can appear in the Results pane in Interactive SQL.

Allowed values
On, Off

Default
Off

Remarks
Set this option to On if you want Interactive SQL to display multiple result sets in the Results pane when
you execute a procedure that returns multiple SELECT statements.

Each result set appears on a separate tab in the Results pane. By default, Interactive SQL does not display
multiple result sets. The setting of this option also applies to Interactive SQL when it is running as a command
line program.

See also
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

SQL Anywhere graphical administration tools

720 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

nulls option [Interactive SQL]
Specifies how NULL values in the database appear when displaying results in Interactive SQL.

Allowed values
String

Default
(NULL)

Remarks
Set this option according to your preference. Note that this value is not used when saving result sets to a file.
The value used when saving to a file is specified by the output_nulls option.

See also
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “output_nulls option [Interactive SQL]” on page 723

on_error option [Interactive SQL]
Controls what happens if an error is encountered while executing statements in Interactive SQL.

Allowed values
String (see below for allowed values)

Default
Prompt

Remarks
Controls what happens if an error is encountered while executing statements, as follows:

● Stop Interactive SQL stops executing statements.

● Prompt Interactive SQL prompts the user to see if they want to continue.

● Continue The error is ignored and Interactive SQL continues executing statements.

● Exit Interactive SQL shuts down.

● Notify_Continue The error is reported, and the user is prompted to press Enter or click OK to
continue.

● Notify_Stop The error is reported and the user is prompted to press Enter or click OK to stop executing
statements.

● Notify_Exit The error is reported and the user is prompted to press Enter or click OK to shut down
Interactive SQL.

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 721

When you are executing a .sql file, the values Stop and Exit are equivalent. If you specify either of these
values, Interactive SQL shuts down.

See also
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

output_format option [Interactive SQL]

Function
Sets the default output format for data retrieved by a SELECT statement that is redirected to a file or output
using the OUTPUT statement.

Allowed values
String (see below for allowed values)

Default
TEXT

Remarks
The valid output formats are:

● TEXT The output is a TEXT format file with one row per line in the file. All values are separated by
commas, and strings are enclosed in apostrophes (single quotes). The delimiter and quote strings can be
changed using the DELIMITED BY and QUOTE clauses. If All is specified in the QUOTE clause, then
all values (not just strings) are quoted.

Three other special sequences are also used. The two characters \n represent a newline character; \\
represents a single backslash character, and the sequence \xDD represents the character with hexadecimal
code DD.

● FIXED The output is fixed format, with each column having a fixed width. The width for each column
can be specified using the COLUMN WIDTH clause. If this clause is omitted, the width for each column
is computed from the data type for the column, and is large enough to hold any value of that data type.
No column headings are output in this format.

● HTML The output is in HTML format.

● SQL The output is an Interactive SQL INPUT statement required to recreate the information in the
table.

● XML The output is an XML file encoded in UTF-8 and containing an embedded DTD. Binary values
are encoded in CDATA blocks with the binary data rendered as 2-hex-digit strings.

See also
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

SQL Anywhere graphical administration tools

722 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

output_length option [Interactive SQL]
Controls the length of column values when Interactive SQL exports information to an external file.

Allowed values
Non-negative integer

Default
0 (no truncation)

Remarks
This option controls the maximum length of column values when Interactive SQL exports data to an external
file (using output redirection with the OUTPUT statement). This option affects only the TEXT, HTML, and
SQL output formats.

See also
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

output_nulls option [Interactive SQL]
Controls the way NULL values are exported.

Allowed values
String

Default
Empty string

Remarks
This option controls the way NULL values are written by the OUTPUT statement. Every time a NULL value
is found in the result set, the string from this option is returned instead. This option affects only the TEXT,
HTML, FIXED, and SQL output formats.

See also
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

truncation_length option [Interactive SQL]
Controls the truncation of wide columns for displays to fit on a screen.

Allowed values
Integer

Using Interactive SQL

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 723

Default
256

Remarks
The truncation_length option limits the length of displayed column values. The unit is in characters. A value
of 0 means that column values are not truncated. The default truncation length is 256.

See also
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

SQL Anywhere graphical administration tools

724 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using text completion
Interactive SQL and Sybase Central provide a text completion option that can supply object names for you.
You can configure text completion to complete the name of any or all the following object types: tables,
views, columns, stored procedures, and system functions.

For SELECT, INSERT, UPDATE, DELETE, and DESCRIBE statements, the list of possible suggestions
is relative to where you are typing within the statement. For example, consider the following SQL statement:

SELECT EmployeeID FROM Employees as e WHERE e.EmployeeID>=20;

If you open the text completion window after SELECT, the list contains column names in the Employees
table, and stored procedures and SQL functions.

If you open the text completion window after FROM, the list contains only tables and stored procedures.

If you open the text completion window after the e in the WHERE clause, the list contains only columns in
the table whose alias is e.

To use text completion

1. In Interactive SQL, type the first letter of a database object name in the SQL Statements pane.

2. Press Ctrl+Space or Ctrl+Shift+Space.

A window appears listing the names of database objects that begin with the letter(s) you typed. In the
following example, it shows all database objects that begin with the letter F.

Using text completion

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 725

If you do not see the object name you want, press Tab to view a complete list of database objects (based
on the filtering options you set—by default, all database objects appear in the list).

3. Select the object name from the list and then press Enter.

The object name appears in the SQL Statements pane.

You can configure the text completion settings from the Options window in Interactive SQL or when you
are in a text editor window in Sybase Central.

Text completion keyboard shortcuts
The following keyboard shortcuts are available when the text completion list is open.

Key Description

Ctrl+C Shows only columns in the text completion list.

Ctrl+F Shows only SQL functions in the text completion list.

Ctrl+P Shows only stored procedures and functions in the text completion list.

SQL Anywhere graphical administration tools

726 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Key Description

Ctrl+S Changes the contents of the list to show or hide system objects.

Ctrl+Shift+Space Opens the text completion window. You can also use Ctrl+Space to open the
text completion window.

Ctrl+T Shows only tables in the text completion list.

Ctrl+V Shows only views in the text completion list.

Escape Closes the text completion window without adding any text.

Tab Toggles between a list of all database object names and a list of names that
match what has been typed so far.

* For tables, inserts a comma separated list of columns, including data types.

For stored procedures, inserts the procedure name, followed by a comma-
separated list of parameter names and their data types.

+ For tables, inserts a comma-separated list of columns.

For stored procedures, inserts the procedure name, followed by a comma-
separated list of parameter names.

" Completes the name, enclosing it in quotation marks, regardless of the setting
of the quoted_identifier option. See “quoted_identifier option [compatibili-
ty]” on page 567.

Using text completion

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 727

Using the fast launcher option
The fast launcher option reduces the startup time for Sybase Central and Interactive SQL. When fast
launching is enabled, the program stays in memory for a configurable length of time after you close it. If
you restart the program within this time, it starts quickly. If you do not restart the program within this time,
the process terminates and releases its resources to the operating system. The fast launching is only available
on Windows.

Configuring the fast launcher option
The fast launcher option uses a TCP/IP port on your computer. If another program is already using this port,
you can change the port number used by the fast launcher.

When a fast launcher option is not used for the amount of time specified in the inactivity timer, it ends, which
frees up memory for other applications. By default, the inactivity timer is set to 30 minutes.

To configure the Interactive SQL fast launcher option

1. Open Interactive SQL.

2. Choose Tools » Options.

3. In the left pane, click General.

4. Click Configure.

5. Complete the Port Number and Shut Down The Fast Launcher fields.

6. Click OK.

7. Click OK.

To configure the Sybase Central fast launcher

1. Open Sybase Central.

2. Choose Tools » Options.

3. In the left pane, click General.

4. Click Configure.

5. Complete the Port Number and Shut Down The Fast Launcher fields.

6. Click OK.

7. Click OK.

SQL Anywhere graphical administration tools

728 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using the SQL Anywhere Console utility
The SQL Anywhere Console utility provides administration and monitoring facilities for database server
connections.

The SQL Anywhere Console utility is supported on several platforms. For platform availability, see http://
www.sybase.com/detail?id=1061806.

On platforms where the SQL Anywhere Console utility is not supported, you can use the connection,
database, and database server properties to obtain information or you can monitor your database server from
a computer running an operating system that supports the SQL Anywhere Console utility (such as Windows,
Mac OS X, or Linux).

If a user without DBA authority connects to the SQL Anywhere Console utility, all features requiring DBA
authority are disabled.

For information about the options that the SQL Anywhere Console utility supports, see “SQL Anywhere
Console utility (dbconsole)” on page 827.

Starting the SQL Anywhere Console utility

To start the SQL Anywhere Console utility (command prompt)

● Run the following command:

dbconsole

If you do not include the -c option, which specifies the connection parameters for the database, or if you
supply insufficient connection parameters, the Connect window appears, where you can enter connection
information for the database.

For information about the supported options, see “SQL Anywhere Console utility
(dbconsole)” on page 827.

The following command starts the SQL Anywhere Console utility and connects to the sample database:

dbconsole -c "UID=DBA;PWD=sql;DSN=SQL Anywhere 11 Demo"

The following steps can be used if you are using a version of Linux that supports the Linux desktop icons
and if you chose to install them when you installed SQL Anywhere 11.

To start the SQL Anywhere Console utility (Linux desktop icons)

1. From the Applications menu, choose SQL Anywhere 11 » DBConsole

2. Enter the connection information for your database in the Connect window.

3. Click OK.

Using the SQL Anywhere Console utility

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 729

http://www.sybase.com/detail?id=1061806
http://www.sybase.com/detail?id=1061806

Note
The following steps assume that you have already sourced the SQL Anywhere utilities. See “Setting
environment variables on Unix and Mac OS X” on page 366.

To start the SQL Anywhere Console utility (Unix command line)

1. In a terminal session, run the following command:

dbconsole
2. Enter the connection information for your database in the Connect window.

3. Click OK.

Mac OS X note
The administration tools only run on Intel Macintoshes with 64-bit processors supported by the Apple JDK
1.6 (Mac OS X 10.5.2 or later). See http://www.sybase.com/detail?id=1061806.

To start the SQL Anywhere Console utility (Mac OS X)

1. In the Finder, double-click DBConsole in /Applications/SQLAnywhere11.

2. Enter the connection information for your database in the Connect window.

Navigating the SQL Anywhere Console utility main window
The SQL Anywhere Console utility consists of three panes:

● Connections Displays information about current database connections.

● Properties Displays information about databases and database servers that are currently running.

● Messages Displays database server messages.

You can configure the information that appears in each pane using the Options window.

To customize the contents of the Connections pane

1. In the SQL Anywhere Console utility, choose File » Options.

2. In the left pane, click Connection Viewer.

3. Select the properties you want to appear in the Connections pane.

4. Click OK.

To customize the contents of the Properties pane

1. In the SQL Anywhere Console utility, choose File » Options.

SQL Anywhere graphical administration tools

730 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1061806

2. In the left pane, click Property Viewer.

3. Select the database and database server properties you want to appear in the Properties pane.

4. Click OK.

To customize the contents of the Messages pane

1. In the SQL Anywhere Console utility, choose File » Options.

2. In the left pane, click Message Viewer.

3. Select the message options for the messages that appear in the Messages pane.

4. Click OK.

Using the SQL Anywhere Console utility

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 731

Checking for software updates
You can configure SQL Anywhere to notify you when updates, such as EBFs and maintenance releases,
become available. By default, SQL Anywhere does not check for software updates.

Checking for updates automatically
Sybase Central, Interactive SQL, and the SQL Anywhere Console utility (dbconsole) all provide you with
a way to configure the Update Checker, which controls whether SQL Anywhere should check for software
updates and how often it should do so.

To configure the Update Checker (Sybase Central)

1. Choose Help » SQL Anywhere 11 » Configure Update Checker.

2. Edit the Update Checker settings.

3. Click OK.

To configure the Update Checker (Interactive SQL)

1. Choose Tools » Options.

2. In the left pane, click SQL Anywhere.

3. Click the Check For Updates tab.

4. Edit the Update Checker settings.

5. Click OK.

To configure the Update Checker (SQL Anywhere Console utility)

1. Choose File » Options.

2. In the left pane, click Check For Updates.

3. Edit the Update Checker settings.

4. Click OK.

Checking for updates manually
You can check for SQL Anywhere software updates at any time by doing one of the following:

● Start menu Choose Start » Programs » SQL Anywhere 11 » Check For Updates.

● Sybase Central Choose Help » SQL Anywhere 11 » Check For Updates.

● Interactive SQL Choose Help » Check For Updates.

● SQL Anywhere Console utility (dbconsole) Choose Help » Check For Updates.

● SQL Anywhere Support utility (dbsupport) Issue the following command:

dbsupport -iu

SQL Anywhere graphical administration tools

732 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Sybase web site Go to http://downloads.sybase.com.

See also
● “Error reporting in SQL Anywhere” on page 83
● “Support utility (dbsupport)” on page 833

Checking for software updates

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 733

http://downloads.sybase.com

734

Database administration utilities

Contents
Administration utilities overview ... 737
Backup utility (dbbackup) .. 740
Broadcast Repeater utility (dbns11) .. 745
Certificate Creation utility (createcert) ... 747
Certificate Viewer utility (viewcert) ... 750
Data Source utility (dbdsn) .. 752
dbisqlc utility (deprecated) ... 764
Erase utility (dberase) .. 766
File Hiding utility (dbfhide) ... 768
Histogram utility (dbhist) .. 770
Information utility (dbinfo) .. 772
Initialization utility (dbinit) ... 774
Interactive SQL utility (dbisql) .. 786
Key Pair Generator utility (createkey) .. 790
Language Selection utility (dblang) ... 791
Log Transfer Manager utility (dbltm) .. 794
Log Translation utility (dbtran) ... 799
Ping utility (dbping) .. 804
Rebuild utility (rebuild) ... 807
Script Execution utility (dbrunsql) .. 808
Server Enumeration utility (dblocate) .. 810
Server Licensing utility (dblic) .. 813
Service utility (dbsvc) for Linux .. 816
Service utility (dbsvc) for Windows .. 820
SQL Anywhere Console utility (dbconsole) ... 827
Start Server in Background utility (dbspawn) .. 829
Stop Server utility (dbstop) .. 831
Support utility (dbsupport) ... 833
Transaction Log utility (dblog) ... 842
Unload utility (dbunload) .. 845
Upgrade utility (dbupgrad) ... 860

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 735

Validation utility (dbvalid) ... 862
Version Diagnostic utility (dbversion) .. 865

Database administration utilities

736 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Administration utilities overview
SQL Anywhere includes a set of utility programs for performing database administration tasks. Each of the
utilities can be accessed from one or more of Sybase Central, Interactive SQL, or at a command prompt.

For platform availability, see http://www.sybase.com/detail?id=1002288.

The administration utilities use a set of registry entries or .ini files. See “Registry and INI
files” on page 396.

Database file administration statements
A set of SQL statements are available that perform some of the tasks that the administration utilities perform.
See “SQL statements” [SQL Anywhere Server - SQL Reference].

See also
● “Using Sybase Central” on page 660
● “Using Interactive SQL” on page 676

Using configuration files
Many of the utilities provided with SQL Anywhere allow you to store command-line options in a
configuration file. If you use an extensive set of options, you may find it useful to store them in a configuration
file.

The @data option allows you to specify environment variables and configuration files on the command line.
To specify a configuration file, replace data with the path and name of the configuration file. If both an
environment variable and configuration file exist with the same name, the environment variable is used.

Configuration files can contain line breaks, and can contain any set of options, including the @data option.
You can use the number sign (#) to designate lines as comments. The ampersand (&) character appearing
by itself at the end of a line indicates that the previous token is continued on the next line. For example, the
following configuration file might be used to start a mirroring server:

-n server1
-o server1.conslog
-gd all
-su sql
-hs
-x tcpip(port=2638;dobroadcast=no)
-xf server1.state
asatest.db
-sn asatest
-xp partner=(eng=server2;links=tcpip(port=2637;timeout=1)); &
 arbiter=(eng=arbiter;links=tcpip(port=2639;timeout=1)); &
 mode=sync; &
 auth=abc

The @data parameter can occur at any point in the command line, and parameters contained in the file are
inserted at that point. You can use @data multiple times on one command line to specify multiple
configuration files.

Administration utilities overview

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 737

http://www.sybase.com/detail?id=1002288

Utilities read the command line by expanding the specified configuration files and reading the entire
command line from left to right. If you specify options that are overridden by other options in the command
line, the option closer to the end of the line wins. In some cases, conflicting options result in an error.

Note
The Start Server in Background utility (dbspawn) does not expand configuration files specified by the @data
option.

If you want to protect passwords or other information in the configuration file, you can use the File Hiding
utility to obfuscate the contents of the configuration file.

For more information about obfuscating the contents of a configuration file, see “File Hiding utility
(dbfhide)” on page 768.

Example
The following configuration file holds a set of options for the Validation utility (dbvalid):

#Connect to the sample database as the user DBA with password sql
-c "UID=DBA;PWD=sql;DBF=samples-dir\demo.db"
#Perform an express check on each table
-fx
#Log output messages to the specified file
-o "c:\validationlog.txt

For information about samples-dir, see “Samples directory” on page 390.

If this configuration file is saved as c:\config.txt, it can be used in a command as follows:

dbvalid @c:\config.txt

Using conditional parsing in configuration files
You can use conditional parsing in configuration files to specify the utilities that can use the file. Conditional
directives allow command parameters to be included or excluded depending on the utility using the file. The
File Hiding Utility (dbfhide) can still be used to hide the contents of a configuration file when conditional
parsing is used in the file.

Syntax
configuration-file= text...

text : comment | conditional | command-line-option

comment : line starting with # that is not a conditional

conditional :

#if condition
text
 [#elif condition
text
] ...
 [#else

Database administration utilities

738 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 text
] ...
#endif

condition : { tool=utility-name[,utility-name]... | utility-name }

The following values are supported for utility-name:

dbbackup dbinfo dbltm dbstop dbxtract

dbdsn dbinit dbmlsync dbsupport mlsrv

dbeng dblic dbping dbsvc mluser

dberase dblocate dbremote dbunload qaagent

dbfhide dblog dbspawn dbupgrad rteng

dbhist dblsn dbsrv dbvalid

Usage
To be treated as a directive, the first non-whitespace character on a line must be #. When a utility is
encountered in an #if or #elif directive, the lines that follow the directive are included until another
conditional directive is encountered. The #else directive handles the condition where the utility has not been
found in the preceding blocks. The #endif directive completes the conditional directive structure.

Blank spaces are not permitted anywhere within the list of tool names specified by tool=. You can nest
conditional directives. If an error occurs while parsing the configuration file, the utility reports that the
configuration file cannot be opened.

Example
The following configuration file can be used by dbping, dbstop, and dbvalid.

#if tool=dbping,dbstop,dbvalid
 #always make tools quiet
 -q
 -c "UID=DBA;PWD=sql;ENG=myserver;DBN=mydb"
 #if dbping
 #make a database connection
 -d
 #elif tool=dbstop
 #don't ask
 -y
 #else
 #must be dbvalid
 #use WITH EXPRESS CHECK
 -fx
 #endif
#endif

Administration utilities overview

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 739

Backup utility (dbbackup)
Creates a client-side or a server-side backup of database files and transaction logs for running databases.

Syntax
dbbackup [options] target-directory

Option Description

@data Reads in options from the specified environment variable or configuration file. See “Using
configuration files” on page 737.

If you want to protect passwords or other information in the configuration file, you can use
the File Hiding utility to obfuscate the contents of the configuration file. See “File Hiding
utility (dbfhide)” on page 768.

-b block-
size

Specifies the maximum block size (in number of pages) to be used to transfer pages from
the database server to dbbackup. The dbbackup utility tries to allocate this number of pages;
if it fails, it repeatedly reduces this value by half until the allocation succeeds. The default
size is 128 pages.

-c "key-
word=val-
ue; ..."

Specifies connection parameters. The user ID must have DBA authority or REMOTE DBA
authority to connect to the database. See “Connection parameters” on page 262.

For example, the following command backs up the sample database running on the database
server sample_server, connecting as the DBA user, into the SQLAnybackup directory:

dbbackup -c "ENG=sample_server;DBN=demo;UID=DBA;PWD=sql"
SQLAnybackup

-d Backs up the main database files only, without backing up the transaction log file, if one
exists.

Database administration utilities

740 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-k check-
point-log-
copy-option

Specifies how dbbackup processes the database files before writing them to the destination
directory. The choice of whether to apply pre-images during a backup, or copy the check-
point log as part of the backup, has performance implications. If the -s option is specified
to perform the backup on the server, the default setting for -k is auto; otherwise, the default
setting is copy.

auto The database server checks the amount of available disk space on the volume
hosting the backup directory. If there is at least twice as much disk space available as the
size of the database at the start of the backup, then the backup proceeds as if copy was
specified. Otherwise, it proceeds as if nocopy was specified. This setting can only be used
if -s is also specified.

copy The backup reads the database files without applying pre-images for any modified
pages. The checkpoint log in its entirety and the system dbspace, are copied to the backup
directory. The next time the database is started, the database server automatically recovers
the database to its state as of the checkpoint at the start of the backup.

Because page pre-images do not have to be written to the temporary file, using this option
can provide better backup performance and reduce internal server contention for other
connections that are operating during a backup. However, since the backup copy of the
database file includes the checkpoint log, which has pre-images of any pages modified
since the start of the backup, the backed-up copy of the database files may be larger than
the database files at the time the backup started. The copy option should be used when disk
space in the destination directory is not an issue.

nocopy The checkpoint log is not copied as part of the backup. This option causes pre-
images of modified pages to be saved in the temporary file so that they can be applied to
the backup as it progresses. The backup copies of the database files will be the same size
as the database when the backup operation commenced. The backup copies may actually
be slightly smaller because the checkpoint log is not present in this copy. This option results
in smaller backed up database files, but the backup may proceed more slowly, and possibly
decrease performance of other operations in the database server. It is useful in situations
where space on the destination drive is limited.

recover The database server copies the checkpoint log (as with the copy option), but
applies the checkpoint log to the database when the backup is complete. This restores the
backed up database files to the same state (and size) that they were in at the start of the
backup operation. This option is useful if space on the backup drive is limited (it requires
the same amount of space as the copy option for backing up the checkpoint log, but the
resulting file size is smaller). This setting can only be used if -s is also specified.

Backup utility (dbbackup)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 741

Option Description

-l filename Enables a secondary system to be brought up rapidly in the event of a server crash. A live
backup does not stop. It continues running while the server runs. It runs until the primary
server becomes unavailable. At that point, it shuts down, but the backed up log file is intact
and can be used to bring a secondary system up quickly. See “Differences between live
backups and transaction log mirrors” on page 875 and “Make a live back-
up” on page 886.

If you specify -l, then you cannot use -s to create an image back up on the server.

-n Changes the naming convention of the backup transaction log file to yymmddxx.log, where
xx are sequential letters ranging from AA to ZZ and yymmdd represents the current year,
month, and day. This option is used in conjunction with -r.

The backup copy of the transaction log file is stored in the directory specified in the com-
mand, and with the yymmddxx.log naming convention. This allows backups of multiple
versions of the transaction log file to be kept in the same backup directory.

You can also use both the -x option and the -n option to rename the log copy. For example

dbbackup -c "UID=DBA;PWD=sql" -x -n mybackupdir

-o filename Writes output messages to the named file.

-q Does not display output messages. This option is available only when you run this utility
from a command prompt.

-r Renames the transaction log and starts a new transaction log. It forces a checkpoint and
causes the following three steps to occur:

1. The current working transaction log file is copied and saved to the directory specified
in the command.

2. The current transaction log remains in its current directory, but is renamed using the
format yymmddxx.log, where xx are sequential characters starting at AA and running
through to ZZ, and yymmdd represents the current year, month, and day. This file is
then no longer the current transaction log.

3. A new transaction log file is generated that contains no transactions. It is given the
name of the file that was previously considered the current transaction log, and is used
by the database server as the current transaction log.

Do not use this option if you are using database mirroring. See “Database mirroring and
transaction log files” on page 959.

Database administration utilities

742 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-s Creates an image backup on the server using the BACKUP DATABASE statement. If you
specify the -s option, the -l option (to create a live backup of the transaction log) cannot
be used. The directory specified is relative to the server's current directory, so it is recom-
mended that you specify a full pathname. In addition, the server must have write permis-
sions on the specified directory. When -s is specified, the Backup utility does not display
progress messages and does not prompt you when it overwrites existing files. If you want
to be prompted when an attempt is made to overwrite an existing file, do not specify -s or
-y. You must specify -s if you specify the -k recovery option.

-t Creates a backup that can be used as an incremental backup since the transaction log can
be applied to the most recently backed up copy of the database file(s).

-x Backs up the existing transaction log, deletes the original log, and then starts a new trans-
action log. Do not use this option if you are using database mirroring. See “Database
mirroring and transaction log files” on page 959.

Caution
Using this option can result in a database that cannot be recovered from media failure. You
should only use this option when data loss is acceptable.

-xo Deletes the current transaction log and starts a new one. This operation does not perform
a backup; its purpose is to free up disk space in non-replication environments. Do not use
this option if you are using database mirroring. See “Database mirroring and transaction
log files” on page 959.

-y Creates the backup directory or replaces a previous backup file in the directory without
confirmation. If you want to be prompted when an attempt is made to overwrite an existing
file, do not specify -s or -y.

target-di-
rectory

Specifies the directory the backup files are copied to. If the directory does not exist, it is
created. However, the parent directory must exist. By default, the Backup utility creates a
client-side backup of the database files. You can specify -s to create a backup on the server
using the BACKUP DATABASE statement.

Remarks
The Backup utility makes a backup copy of all the files for a single database. A simple database consists of
two files: the main database file and the transaction log. More complicated databases can store tables in
multiple files, with each file as a separate dbspace. All backup file names are the same as the database file
names. The image backup created by the Backup utility consists of a separate file for each file that is backed
up.

For more information about making archive backups (a single file that contains both the database file and
the transaction log), see “Archive backups” on page 877.

Backup utility (dbbackup)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 743

Using the Backup utility on a running database is equivalent to copying the database files when the database
is not running. You can use the Backup utility to back up the database while other applications or users are
using it.

If neither of the options -d or -t are used, all database files are backed up.

By default, the Backup utility creates a client-side backup of the database files. You can specify -s to create
a backup on the server using the BACKUP DATABASE statement.

For information about performing server-side backups, see “BACKUP statement” [SQL Anywhere Server -
SQL Reference].

Caution
Backup copies of the database and transaction log must not be changed in any way. If there were no
transactions in progress during the backup, or if you specified BACKUP DATABASE WITH
CHECKPOINT LOG RECOVER or WITH CHECKPOINT LOG NO COPY, you can check the validity of
the backup database using read-only mode or by validating a copy of the backup database.

However, if transactions were in progress, or if you specified BACKUP DATABASE WITH CHECKPOINT
LOG COPY, the database server must perform recovery on the database when you start it. Recovery modifies
the backup copy, which is not desirable.

In addition to dbbackup, you can access the Backup utility in the following ways:

● From Sybase Central, using the Create Backup Images Wizard. See “Image backups” on page 877.

● From Interactive SQL, using the BACKUP DATABASE statement. See “BACKUP statement” [SQL
Anywhere Server - SQL Reference].

For more information about recommended backup procedures, see “Backup and data
recovery” on page 869.

Exit codes are 0 (success) or non-zero (failure).

For more information about exit codes, see “Software component exit codes” [SQL Anywhere Server -
Programming].

Database administration utilities

744 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Broadcast Repeater utility (dbns11)
Allows SQL Anywhere clients to find SQL Anywhere database servers running on other subnets and through
firewalls where UDP broadcasts normally do not reach.

Syntax
dbns11 [options] [address ...]

Option Description

@data Reads in options from the specified environment variable or configuration file. See “Using
configuration files” on page 737.

If you want to protect passwords or other information in the configuration file, you can use
the File Hiding utility to obfuscate the contents of the configuration file. See “File Hiding
utility (dbfhide)” on page 768.

-ap port Specifies the port number used by the database server. The default port number is 2638.

-m ip Specifies the IP address of the computer the DBNS process is running on. This parameter
is required for computers with more than one IP address. This address must be an IPv4
address.

-o filename Writes the output that appears in the Broadcast Repeater messages window to the named
file.

-p port Specifies the port number used by the DBNS Broadcast Repeater. The default is 3968. If
there is a firewall between the subnets, then you must open the port number used by the
Broadcast Repeater utility for TCP connections between DBNS processes, in addition to
opening port 2638 for standard client-server communications.

-q Runs in quiet mode—messages are not displayed.

-s Causes the new DBNS process to check if another DBNS process is already running on that
subnet, and returns an error before shutting down if another DBNS process is found.

-x host Shuts down the DBNS process running on specified host. You can specify an IP address or
host name.

-z Starts the DBNS Broadcast Repeater in debug mode. When running in debug mode, a line
appears in the Broadcast Repeater messages window for each SQL Anywhere broadcast
packet that is received or forwarded. Debug mode should only be used when there are
connectivity problems because of the verbosity of the debugging output.

address Specifies the IP address or host name of other computers that are, or will be, running DBNS
processes. This allows the DBNS processes to detect each other and exchange information
about known database servers and other DBNS processes.

Broadcast Repeater utility (dbns11)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 745

Remarks
The Broadcast Repeater allows SQL Anywhere clients to find SQL Anywhere database servers running on
other subnets and through firewalls where UDP broadcasts normally do not reach, without using the HOST
connection parameter or LDAP.

The address can be either an IP address or a computer name. Use spaces to separate multiple addresses.

This utility is available on supported Unix and all 32-bit and 64-bit Windows platforms.

The clients and database server must be running SQL Anywhere 9.0.2 or later to use the Broadcast Repeater.

Caution
It is recommended that you do not run the dbns11 utility on the same computer as a SQL Anywhere database
server because it is possible that dbns11 or the database server may not receive UDP broadcasts.

See also
● “Locating a database server using the Broadcast Repeater utility” on page 136

Example
Suppose you want to allow computers on the subnets 10.50.83.255 and 10.50.125.255 to connect using
broadcasts. You need to a computer on the 10.50.83.255 subnet (Computer A at 10.50.83.114) and one
computer on the 10.50.125.255 subnet (Computer B at 10.50.125.103).

On each of these two computers, run dbns11, passing the IP address of the other computer. Execute the
following command on Computer A:

dbns11 10.50.125.103

On Computer B, execute the following command:

dbns11 10.50.83.114

If either computer has more than one IP address, you must also specify the local IP address using the -m
option. For example, on Computer A, you would use the following command:

dbns11 -m 10.50.83.114 10.50.125.103

Database administration utilities

746 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Certificate Creation utility (createcert)
Creates X.509 certificates.

Syntax
createcert [-r | -s]

Option Description

-r Creates a PKCS10 certificate request. When this option is specified, createcert does not
prompt for a signer or any other information used to sign a certificate.

-s filename Signs the PKCS10 certificate request that is in the specified file. The request can be DER
or PEM encoded. When this option is specified, createcert does not prompt for key gener-
ation or subject information.

Remarks
Users may typically go to a third party to purchase certificates. These certificate authorities provide their
own tools for creating certificates. The following tools may be especially useful to create certificates for
development and testing purposes, and can also be used for production certificates.

To create a signed certificate, use createcert without options. If you want to break up the process into two
steps, for example so one person creates a request and another person signs it, the first person can run
createcert with -r to create a request and the second person can sign the request by running createcert with
-s.

When you run createcert, you are prompted for the following information. When you specify the -r or -s
option, some of these prompts do not appear.

● Choose encryption type This prompt only appears if you have purchased a license for ECC
encryption. Choose RSA or ECC.

● Enter RSA key length (512-16384) This prompt only appears if you chose RSA encryption. You
can choose a length between 512 bits and 16384 bits.

● Enter ECC curve This prompt only appears if you have purchased a license for ECC encryption and
you chose the ECC encryption type above. You are prompted to choose from a list of ECC curves. The
default is sect163k1.

● Subject information You must enter the following information, which identifies the entity:

○ Country Code
○ State/Province
○ Locality
○ Organization
○ Organizational Unit
○ Common Name

Certificate Creation utility (createcert)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 747

● Enter file path of signer's certificate Optionally, supply a location and file name for the signer's
certificate. If you supply this information, the generated certificate is a signed certificate. If you do not
supply this information, then the generated certificate is a self-signed root certificate.

● Enter file path of signer's private key Supply a location and file name to save the private key
associated with the certificate request. This prompt only appears if you supplied a file in the previous
prompt.

● Enter password for signer's private key Supply the password that was used to encrypt the signer's
private key. Only supply this password if the private key was encrypted.

● Serial number Optionally, supply a serial number. The serial number must be a hexadecimal string
of 40 digits or less. This number must be unique among all certificates signed by the current signer. If
you do not supply a serial number, createcert generates a GUID as the serial number.

● Certificate will be valid for how many years (1-100) Specify the number of years (between 1 and
100) that the certificate is valid. After this period, the certificate expires, along with all certificates it
signs.

● Certificate Authority (y)es or (n)o Indicate whether this certificate can be used to sign other
certificates. By default, certificates are not certificate authorities (n).

● Key usage Supply a comma-separated list of numbers that indicate how the certificate's private key
can be used. This is an advanced option; the default should be acceptable for most situations. The default
depends on whether the certificate is a certificate authority or not.

● File path to save request This prompt only appears if you specify the -r option. Supply a location
and file name for the PCKS10 certificate request.

● Enter file path to save certificate Supply a location and file name to save the certificate. The
certificate is not saved unless you specify a location and file name.

● Enter file path to save private key Supply a location and file name to save the private key.

● Enter password to protect private key Optionally, supply a password with which to encrypt the
private key. If you do not supply a password, the private key is not encrypted. This prompt only appears
if you supplied a file in the previous prompt.

● Enter file path to save identity Supply a location and file name to save the identity. The identity
file is a concatenation of the certificate, signer, and private key. This is the file that you supply to the
server at startup. If the private key was not saved, createcert prompts for a password to save the private
key. Otherwise, it uses the password provided earlier. The identity is not saved unless you provide a file
name. If you do not save the identity file, you can manually concatenate the certificate, signer, and private
key files into an identity file.

See also
● “Certificates” on page 1096
● “Certificate Viewer utility (viewcert)” on page 750
● “-ec server option” on page 180
● “Encryption connection parameter [ENC]” on page 280
● “FIPS-approved encryption technology” on page 1097

Database administration utilities

748 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
The following example creates a signed certificate. In the example, no file name is provided for the signer's
certificate, which makes it a self-signed root certificate.

>createcert
SQL Anywhere X.509 Certificate Generator Version 11.0.1.3330
Choose encryption type ((R)SA or (E)CC): r
Enter RSA key length (512-16384): 1024
Generating key pair...
Country Code: CA
State/Province: Ontario
Locality: Waterloo
Organization: Sybase iAnywhere
Organizational Unit: Engineering
Common Name: Test Certificate
Enter file path of signer's certificate:
Certificate will be a self-signed root
Serial number [generate GUID]:
Generated serial number: bfb89a26fb854955954cabc4d056e177
Certificate valid for how many years (1-100): 10
Certificate Authority (Y/N) [N]: n
1. Digital Signature
2. Nonrepudiation
3. Key Encipherment
4. Data Encipherment
5. Key Agreement
6. Certificate Signing
7. CRL Signing
8. Encipher Only
9. Decipher Only
Key Usage [3,4,5]: 3,4,5
Enter file path to save certificate: cert.pem
Enter file path to save private key: key.pem
Enter password to protect private key: pwd
Enter file path to save identity: id.pem

To generate an enterprise root certificate (a certificate that signs other certificates), a self-signed root
certificate should be created with Certificate Authority. The procedure is similar to that shown above.
However, the response to the Certificate Authority prompt should be yes and choice for roles should be
option 6,7 (the default).

Certificate Authority (Y/N) [N]: y
1. Digital Signature
2. Nonrepudiation
3. Key Encipherment
4. Data Encipherment
5. Key Agreement
6. Certificate Signing
7. CRL Signing
8. Encipher Only
9. Decipher Only
Key Usage [6,7]: 6,7

Certificate Creation utility (createcert)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 749

Certificate Viewer utility (viewcert)
Displays values within a Public Key Infrastructure (PKI) object, converts the encoding of PKI objects, or
encrypts and decrypts private keys.

Syntax
viewcert [options] input-file

Option Description

-d DER-encodes the output. This option is only useful with the -o option. It cannot
be used with -p. By default, viewcert outputs the PKI object in a readable text
format.

-ip input-password Specifies the password needed to decrypt the private key if the input-file contains
an encrypted private key.

-o output-file Specifies the file that viewcert should write the output to. By default, viewcert
writes the output to the command prompt window where it is running.

-op output-password Specifies the password viewcert should use to encrypt a private key. This option
is only useful with -d or -p. By default, private keys are not encrypted.

-p PEM-encodes the output. This option is only useful with the -o option. It cannot
be used with -d. By default, viewcert outputs the PKI object in a readable text
format.

input-file Specifies a file that must be a DER- or PEM-encoded PKI object.

Remarks
The viewcert utility can be used to view the following types of PKI objects:

● X.509 certificates
● certificate requests
● private keys
● certificate revocation lists (CRLs)

Viewcert can also be used to convert between DER and PEM encoding types and to encrypt or decrypt
private keys.

The viewcert utility supports RSA and ECC objects. To view ECC objects, you must order a separate license.
See “Separately licensed components” [SQL Anywhere 11 - Introduction].

See also
● “Certificate Creation utility (createcert)” on page 747

Database administration utilities

750 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
The following example allows you to view the sample RSA certificate that is included with SQL Anywhere:

viewcert rsaroot.crt

This example produces the following output:

SQL Anywhere X.509 Certificate Viewer Version 11.0.1.3330
X.509 Certificate

Common Name: RSA Root
Organizational Unit: test
Organization: test
Locality: test
State/Province: test
Country Code: test
Issuer: RSA Root
Serial Number: 303031
Issued: Apr 15, 2002 12:53:51
Expires: Apr 16, 2022 12:53:51
Signature Algorithm: RSA, MD5
Key Type: RSA
Key Size: 1024 bits
Basic Constraints: Is a certificate authority, path length limit: 10
Key Usage: Certificate Signing, CRL Signing

Certificate Viewer utility (viewcert)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 751

Data Source utility (dbdsn)
Creates, deletes, describes, and lists SQL Anywhere ODBC data sources.

Syntax
dbdsn [modifier-options]
 { -l[s | u]
 | -d[s | u] dsn
 | -g[s | u] dsn
 | -w[s | u] dsn [details-options;...]
 | -cl }

Major option Description

@data Reads in options from the specified environment varia-
ble or configuration file. See “Using configuration
files” on page 737.

If you want to protect passwords or other information in
the configuration file, you can use the File Hiding utility
to obfuscate the contents of the configuration file. See
“File Hiding utility (dbfhide)” on page 768.

-l[s | u] Lists the available SQL Anywhere ODBC data sources.
You can modify the list format using the -b or -v options.
On Windows, you can modify the option using the u
(user) or s (system) specifiers. The default specifier is
u.

-d[s | u] dsn Deletes the named SQL Anywhere data source. If you
supply -y, any existing data source is deleted without
confirmation. On Windows, you can modify the option
using the u (user) or s (system) specifiers. The default
specifier is u.

-g[s | u] dsn Lists the definition of the named SQL Anywhere data
source. You can modify the format of the output using
the -b or -v options. On Windows, you can modify the
option using the u (user) or s (system) specifiers. The
default specifier is u.

-w[s | u] dsn [details-options] Creates a new data source, or overwrites one if one of
the same name exists. If you supply -y, any existing data
source is overwritten without confirmation. On Win-
dows, you can modify the option using the u (user) or
s (system) specifiers. The default specifier is u.

Database administration utilities

752 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Major option Description

-cl Lists the connection parameters supported by the dbdsn
utility. See “Connection parameters” on page 262.

For information about supported ODBC connection pa-
rameters, see “ODBC connection parame-
ters” on page 756.

Modifier-options Description

-b Formats the output of the list as a single line con-
nection string.

-cm Displays the command used to create the data
source. This option can be used to output the crea-
tion command to a file, which can be used to add
the data source to another computer or can be used
to restore a data source to its original state if changes
have been made to it. You must specify the -g option
or -l option with -cm or the command fails. Speci-
fying -g displays the creation command for the
specified data source, while specifying -l displays
the creation command for all data sources.

If the specified data source does not exist, the com-
mand to delete the data source is generated. For ex-
ample, if the mydsn data source does not exist on
the computer, dbdsn -cm -g mydsn would re-
turn the following command to delete the mydsn
data source:

dbdsn -y -du "mydsn"

Data Source utility (dbdsn)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 753

Modifier-options Description

-dr Includes the Driver parameter when displaying data
sources. When you use the -cm option to recreate
data sources, it allows the current version of dbdsn
to create data sources that reference a different ver-
sion of the ODBC driver.

For example, suppose you used the following com-
mand to create a version 9 data source:

dbdsn -y -wu "9.0 Student Sample" -c
"UID=DBA;PWD=sql;...;Driver=
Adaptive Server Anywhere 9.0"

When you execute dbdsn -cm -l, dbdsn lists
the same command without the Driver= parameter,
which would then recreate the DSN using the SQL
Anywhere version 10.0 ODBC driver.

However, if you execute dbdsn -dr -cm -l,
then the Driver= parameter is included and the data
source is recreated exactly as it was created origi-
nally: using the version 9 ODBC driver.

-f Displays the name of the system file that is being
used. This option is only available on Unix.

-ns Specifies that the environment variable settings are
used to determine the location of the system infor-
mation file (named .odbc.ini by default). This op-
tion is also useful for determining which file is being
used by dbdsn when there are multiple candidates
for the system information file in the environment.
This option is only available on Unix.

If you do not specify -ns when creating a data
source, dbdsn also checks for the system informa-
tion file in the user's home directory and the path.

For more information about how the system infor-
mation file is located, see “Using ODBC data sour-
ces on Unix” on page 102.

-o filename Writes output messages to the named file.

Database administration utilities

754 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Modifier-options Description

-or Creates a data source for the iAnywhere Solutions
Oracle driver when specified with the -c option. For
example:

dbdsn -w MyOracleDSN -or -c
Userid=DBA;Password=sql;
SID=abcd;ArraySize=500;ProcResults=y

You can specify the -cl option with the -or option to
obtain a list of the connection parameters for the
iAnywhere Solutions Oracle driver.

For more information, see “iAnywhere Solutions
Oracle driver” [MobiLink - Server Administration].

-pe Encrypts the password in the PWD entry, and re-
places the PWD entry with an ENP entry containing
the encrypted password when this option is speci-
fied and a PWD entry is included in the DSN.

-q Suppresses output to the database server messages
window. If you specify -q when deleting or modi-
fying a data source, you must also specify -y.

-v Formats the output of the list over several lines, as
a table.

-y Deletes or overwrites each data source without
prompting you for confirmation. If you specify -q
when deleting or modifying a data source, you must
also specify -y.

Details-options Description

-c "keyword=value;..." Specifies connection parameters as a connection
string. See “Connection parameters” on page 262.

-cw Ensures that the DBF parameter (specified using -c)
is an absolute file name. If the value of DBF is not an
absolute file name, dbdsn will prepend the current
working directory (CWD). This option is useful be-
cause some operating systems do not have CWD in-
formation readily available in batch files.

Remarks
The modifier options can occur before or after the major option specification.

Data Source utility (dbdsn)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 755

The Data Source utility is a cross-platform alternative to the ODBC Administrator for creating, deleting,
describing, and listing SQL Anywhere ODBC data sources. The utility is useful for batch operations.

Caution
Storing user IDs, passwords (encrypted or unencrypted), and/or database keys in a data source is not secure.
It is recommended that you do not store this information in a data source if the database contains sensitive
data.

On Windows operating systems, the data sources are held in the registry.

For information about creating a data source on Windows using the ODBC Administrator, see “Creating
ODBC data sources” on page 97.

On Unix operating systems, data sources are held in the system information file (named .odbc.ini by default).
When you use the Data Source utility to create or delete SQL Anywhere ODBC data sources on Unix, the
utility automatically updates the [ODBC Data Sources] section of the system information file. If you
do not specify the Driver connection parameter using the -c option on Unix, the Data Source utility
automatically adds a Driver entry with the full path of the SQL Anywhere ODBC driver based on the setting
of the SQLANY11 environment variable.

For more information about the system information file, see “Using ODBC data sources on
Unix” on page 102.

Caution
You should not obfuscate the system information file (.odbc.ini) with the File Hiding utility (dbfhide) on
Unix unless you will only be using SQL Anywhere data sources. If you plan to use other data sources (for
example, for MobiLink synchronization), then obfuscating the system information file may prevent other
drivers from functioning properly.

Exit codes are 0 (success) or non-zero (failure). See “Software component exit codes” [SQL Anywhere Server
- Programming].

ODBC connection parameters
The Data Source utility (dbdsn) supports the following ODBC connection parameters. Boolean (true or false)
arguments are either YES or 1 if true, or NO or 0 if false.

Name Description

Delphi Delphi cannot handle multiple bookmark
values for a row. When you set this value
to NO, one bookmark value is assigned to
each row, instead of the two that are oth-
erwise assigned. Setting this option to YES
can improve scrollable cursor perform-
ance.

Database administration utilities

756 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Name Description

DescribeCursor This parameter lets you specify how often
you want a cursor to be redescribed when
a procedure is executed. The default set-
ting is If Required.

● Never Specify 0, N, or NO if you
know that your cursors do not have to
be redescribed. Redescribing cursors is
expensive and can decrease perform-
ance.

● If Required Specify 1, Y, or YES if
you want the ODBC driver to deter-
mine whether a cursor must be rede-
scribed. The presence of a RESULT
clause in your procedure prevents
ODBC applications from redescribing
the result set after a cursor is opened.
This is the default setting.

● Always If you specify 2, A, or AL-
WAYS, the cursor is redescribed each
time it is opened. If you use Transact-
SQL procedures or procedures that re-
turn multiple result sets, you must re-
describe the cursor each time it is
opened.

Description This parameter allows you to provide a de-
scription of the ODBC data source.

Data Source utility (dbdsn)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 757

Name Description

Driver This parameter allows you to specify an
ODBC driver for the connection, as fol-
lows: Driver=driver-name. By de-
fault, the driver that is used is SQL Any-
where 11. The driver-name must be SQL
Anywhere X, where X is the major version
number of the software. If the driver-
name does not begin with SQL Any-
where, it cannot be read by the Data
Source utility (dbdsn).

On Unix, this parameter specifies the
fully-qualified path to the shared object. If
you do not specify the Driver connection
parameter on Unix, the Data Source utility
automatically adds a Driver entry with the
full path of the SQL Anywhere ODBC
driver based on the setting of the SQLA-
NY11 environment variable.

GetTypeInfoChar When this option is set to YES, CHAR
columns are returned as SQL_CHAR in-
stead of SQL_VARCHAR. By default,
CHAR columns are returned as
SQL_VARCHAR.

InitString InitString allows you to specify a com-
mand that is executed immediately after
the connection is established. For example,
you may want to set a database option or
execute a stored procedure.

Database administration utilities

758 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Name Description

IsolationLevel You can specify one of the following val-
ues to set the initial isolation level for this
data source:

● 0 This is also called the read uncom-
mitted isolation level. This is the de-
fault isolation level. It provides the
maximum level of concurrency, but
dirty reads, non-repeatable reads, and
phantom rows may be observed in re-
sult sets.

● 1 This is also called the read com-
mitted level. This provides less con-
currency than level 0, but eliminates
some of the inconsistencies in result
sets at level 0. Non-repeatable rows
and phantom rows may occur, but dirty
reads are prevented.

● 2 This is also called the repeatable
read level. Phantom rows may occur.
Dirty reads and non-repeatable rows
are prevented.

● 3 This is also called the serializable
level. This provides the least concur-
rency, and is the strictest isolation lev-
el. Dirty reads, non-repeatable reads,
and phantom rows are prevented.

● snapshot You must enable snap-
shot isolation for the database to use
this isolation level. The snapshot iso-
lation levels prevent all interference
between reads and writes. Writes can
still interfere with each other. For con-
tention, a few inconsistences are pos-
sible and performance is the same as
isolation level 0.

● statement-snapshot You must
enable snapshot isolation for the data-
base to use this isolation level. The
snapshot isolation levels prevent all in-
terference between reads and writes.
Writes can still interfere with each oth-
er. For contention, a few inconsisten-

Data Source utility (dbdsn)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 759

Name Description

ces are possible and performance is the
same as isolation level 0.

● readonly-statement-snap-
shot This is also called the isolation
level. You must enable snapshot isola-
tion for the database to use this isola-
tion level. The snapshot isolation lev-
els prevent all interference between
reads and writes. Writes can still inter-
fere with each other. For contention, a
few inconsistences are possible and
performance is the same as isolation
level 0.

For more information, see “Choosing iso-
lation levels” [SQL Anywhere Server -
SQL Usage].

KeysInSQLStatistics Specify YES if you want the SQLStatistics
function to return foreign keys. The ODBC
specification states that SQLStatistics
should not return primary and foreign
keys; however, some Microsoft applica-
tions (such as Visual Basic and Access)
assume that primary and foreign keys are
returned by SQLStatistics.

LazyAutocommit Setting this parameter to YES delays the
commit operation until a statement closes.

PrefetchOnOpen When PrefetchOnOpen is set to YES, a
prefetch request is sent with a cursor open
request. The prefetch eliminates a network
request to fetch rows each time a cursor is
opened. Columns must already be bound
for the prefetch to occur on the open. This
connection parameter can help reduce the
number of client/server requests to help
improve performance over a LAN or
WAN.

Database administration utilities

760 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Name Description

PreventNotCapable The SQL Anywhere ODBC driver returns
a Driver not capable error because
it does not support qualifiers. Some ODBC
applications do not handle this error prop-
erly. Set this parameter to YES to prevent
this error code from being returned, allow-
ing these applications to work.

SuppressWarnings Set this parameter to YES if you want to
suppress warning messages that are re-
turned from the database server on a fetch.
Versions 8.0.0 and later of the database
server return a wider range of fetch warn-
ings than earlier versions of the software.
For applications that are deployed with an
earlier version of the software, you can se-
lect this option to ensure that fetch warn-
ings are handled properly.

TranslationDLL This option is provided for backward com-
patibility. The use of translators is not rec-
ommended.

TranslationName This option is provided for backward com-
patibility. The use of translators is not rec-
ommended.

TranslationOption This option is provided for backward com-
patibility. The use of translators is not rec-
ommended.

See also
● “Creating ODBC data sources” on page 97
● “Using ODBC data sources on Unix” on page 102

Examples
Write a definition of the data source newdsn. Do not prompt for confirmation if the data source already
exists.

dbdsn -y -w newdsn -c "UID=DBA;PWD=sql;LINKS=TCPIP;ENG=myserver"

or, with a different option order,

dbdsn -w newdsn -c "UID=DBA;PWD=sql;LINKS=TCPIP;ENG=myserver" -y

List all known user data sources, one data source name per line:

Data Source utility (dbdsn)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 761

dbdsn -l

List all known system data sources, one data source name per line:

dbdsn -ls

List all data sources along with their associated connection string:

dbdsn -l -b

Report the connection string for the user data source MyDSN:

dbdsn -g MyDSN

Report the connection string for the system data source MyDSN:

dbdsn -gs MyDSN

Delete the data source BadDSN, but first list the connection parameters for BadDSN and prompt for
confirmation:

dbdsn -d BadDSN -v

Delete the data source BadDSN without prompting for confirmation.

dbdsn -d BadDSN -y

Create a data source named NewDSN for the database server MyServer:

dbdsn -w NewDSN -c "UID=DBA;PWD=sql;ENG=MyServer"

If NewDSN already exists, you are prompted to confirm overwriting the data source.

List all connection parameter names and their aliases:

dbdsn -cl

List all user data sources:

dbdsn -l -o dsninfo.txt

List all connection parameter names:

dbdsn -cl -o dsninfo.txt

Specify an absolute file name. When the DSN is created, it will contain DBF=c:\SQLAnywhere11\my.db.

c:\SQLAnywhere11> dbdsn -w testdsn -cw -c UID=DBA;PWD=sql;ENG=SQLAny;DBF=my.db

Generate the command to create the SQL Anywhere 11 Demo data source and output it to a file called
restoredsn.bat:

dbdsn -cm -gs "SQL Anywhere 11 Demo" > restoredsn.bat

The restoredsn.bat file contains the following:

dbdsn -y -ws "SQL Anywhere 11 Demo" -c "UID=DBA;PWD=sql;
DBF='C:\Documents and Settings\All Users\Documents\SQL Anywhere 11\Samples
\demo.db';

Database administration utilities

762 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ENG=demo11;START='C:\Program Files\SQL Anywhere 11\bin32\dbeng11.exe';
ASTOP=yes;Description='SQL Anywhere 11 Sample Database'"

Return the location of the system information file on Unix:

dbdsn -f

This command returns the following output:

dbdsn using /home/user/.odbc.ini

Change the location of the system information file:

export ODBCINI=./myodbc.ini

Verify the new location of the system information file using dbdsn -f:

dbdsn using ./myodbc.ini

Use the -ns option when creating the data source:

dbdsn -w NewDSN -c "UID=DBA" -ns

This results in the following output:

Configuration "newdsn" written to file ./myodbc.ini

Data Source utility (dbdsn)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 763

dbisqlc utility (deprecated)
The dbisqlc utility executes SQL statements against a database. The utility is similar to the Interactive SQL
utility (dbisql), except that it is not implemented in Java, which can be important if you are deploying it to
a computer with limited resources.

Note
dbisqlc is deprecated; however, there are currently no plans to remove it. It is provided for backwards
compatibility for running SQL scripts and as a lightweight tool for deployment. dbisqlc does not support all
the features that Interactive SQL supports and may not support all the features available in the current version
of the database server. It is recommended that you use the Interactive SQL utility (accessed by using the
dbisql command or by choosing Start » Programs » SQL Anywhere 11 » Interactive SQL). See
“Interactive SQL utility (dbisql)” on page 786.

Syntax
dbisqlc [options] [dbisqlc-command | command-file]

Option Description

-c "key-
word=val-
ue; ..."

Specifies connection parameters. If Interactive SQL cannot connect, you are presented
with a window where you can enter the connection parameters. See “Connection pa-
rameters” on page 262.

-d delimiter Specifies a command delimiter. Quotation marks around the delimiter are optional, but
are required when the command shell itself interprets the delimiter in some special way.

The specified command delimiter is used for all connections in the current dbisqlc ses-
sion.

-q Suppresses output messages. This is useful only if you start Interactive SQL with a
command or command file. Specifying this option does not suppress error messages,
but it does suppress the following:

● warnings and other non-fatal messages

● the printing of result sets

-x Scans commands but does not execute them. This is useful for checking long command
files for syntax errors.

Remarks
The dbisqlc utility allows you to type SQL commands or run command files. For detailed descriptions of
SQL statements and Interactive SQL commands, see “SQL language elements” [SQL Anywhere Server -
SQL Reference].

If dbisqlc-command is specified, dbisqlc executes the command. You can also specify a command file name.
If no dbisqlc-command or command-file argument is specified, dbisqlc enters interactive mode, where you
can type a command into a command window.

Database administration utilities

764 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The dbisqlc utility is supported on Microsoft Windows, Mac OS X, and Unix.

See also
● “Interactive SQL utility (dbisql)” on page 786
● “SQL language elements” [SQL Anywhere Server - SQL Reference]

Example
The following command runs the command file mycom.sql against the current default server, using the user
ID DBA and the password sql. If there is an error in the command file, the process shuts down.

dbisqlc -c "UID=DBA;PWD=sql" mycom.sql

The following command adds a user to the current default database:

dbisqlc -c "UID=DBA;PWD=sql" CREATE USER joe IDENTIFIED BY passwd

dbisqlc utility (deprecated)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 765

Erase utility (dberase)
Erases dbspaces and transaction log files associated with a database.

Syntax
dberase [options] database-file

Option Description

@data Reads in options from the specified environment variable or configuration file. See “Using
configuration files” on page 737.

If you want to protect passwords or other information in the configuration file, you can use
the File Hiding utility to obfuscate the contents of the configuration file. See “File Hiding
utility (dbfhide)” on page 768.

-ek key Specifies the encryption key for strongly encrypted databases directly in the command. If
you have a strongly encrypted database, you must provide the encryption key to use the
database or transaction log in any way. For strongly encrypted databases, you must specify
either -ek or -ep, but not both. The command will fail if you do not specify the correct key
for a strongly encrypted database.

-ep Specifies that you want to be prompted for the encryption key. This option causes a window
to appear, in which you enter the encryption key. It provides an extra measure of security
by never allowing the encryption key to be seen in clear text. For strongly encrypted data-
bases, you must specify either -ek or -ep, but not both. The command will fail if you do not
specify the correct key for a strongly encrypted database.

-o filename Writes output messages to the named file.

-q Runs in quiet mode—do not display output messages. If you specify this option, you must
also specify -y, otherwise the operation fails.

-y Deletes each file without being prompted for confirmation. If you specify -q, you must also
specify -y, otherwise the operation fails.

Remarks
With the Erase utility, you can erase a database file and its associated transaction log, or you can erase a
transaction log file or transaction log mirror file. All database files and transaction log files are marked read-
only to prevent accidental damage to the database and accidental deletion of the database files.

The database-file may be a database file or transaction log file. The full file name must be specified, including
extension. If a database file is specified, the associated transaction log file (and mirror, if one is maintained)
is also erased.

Database administration utilities

766 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Note
The Erase utility does not erase dbspaces. If you want to erase a dbspace, you can do so with the DROP
DATABASE statement or by using the Erase Database Wizard in Sybase Central. See “DROP DBSPACE
statement” [SQL Anywhere Server - SQL Reference].

You can also use the Erase Database Wizard to erase dbspaces and transaction log files. See “Erasing a
database” on page 34.

Deleting a database file that references other dbspaces does not automatically delete the dbspace files. If you
want to delete the dbspace files on your own, change the files from read-only to writable, and then delete
the files individually. As an alternative, you can use the DROP DATABASE statement to erase a database
and its associated dbspace files.

If you erase a database file, the associated transaction log and transaction log mirror are also deleted. If you
erase a transaction log for a database that also maintains a transaction log mirror, the mirror is not deleted.

The database being erased must not be running when this utility is used.

Exit codes are 0 (success) or non-zero (failure). See “Software component exit codes” [SQL Anywhere Server
- Programming].

Erase utility (dberase)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 767

File Hiding utility (dbfhide)
Uses simple encryption to hide the contents of configuration files and initialization files.

Syntax
dbfhide original-configuration-file encrypted-configuration-file

Option Description

original-configuration-file Specifies the name of the original file.

encrypted-configuration-file Specifies a name for the new obfuscated file.

Remarks
Configuration files are used by some utilities to hold command line options. These options may contain a
password. You can use the File Hiding utility to add simple encryption to configuration files, and to .ini files
used by SQL Anywhere and its utilities, and thereby obfuscate the contents of the file. The original file will
not be modified. Once you add simple encryption to a file, there is no way to remove it. To make changes
to an obfuscated file, you must keep a copy of the original file that you can modify and obfuscate again.

For more information about using configuration files, see “Using configuration files to store server startup
options” on page 46.

For more information about encryption, see “Keeping your data secure” on page 1063.

Hiding the contents of .ini files
Often, SQL Anywhere expects an .ini file to have a particular name. When you want to add simple encryption
to a file whose name is important (such as saldap.ini), you need to save a copy of the original file with a
different name when you add simple encryption to the file. If you do not keep a copy of the original file,
then you cannot modify the contents of the file once it has been obfuscated. The following steps explain how
to add simple encryption to a .ini file.

To hide the contents of a file

1. Save the file with a different name.

rename saldap.ini saldap.ini.org
2. Obfuscate the file with the File Hiding utility, giving the obfuscated file the required file name.

dbfhide saldap.ini.org saldap.ini
3. Protect the saldap.ini.org file using file system or operating system protection, or store the file in a secure

location.

To make a change to the saldap.ini file, edit the saldap.ini.org file and repeat step 2.

Database administration utilities

768 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Caution
You should not add simple encryption to the system information file (named .odbc.ini by default) with the
File Hiding utility (dbfhide) on Unix unless you will only be using SQL Anywhere data sources. If you plan
to use other data sources (for example, for MobiLink synchronization), then obfuscating the contents of the
system information file may prevent other drivers from functioning properly.

This utility does not accept the @data parameter to read in options from a configuration file.

See also
● “Using configuration files” on page 737
● “Using conditional parsing in configuration files” on page 738

Example
Create a configuration file that starts the personal database server and the sample database. It should set a
cache of 10 MB, and name this instance of the personal server Elora. The configuration file would be written
as follows:

Configuration file for server Elora
-n Elora
-c 10M
samples-dir\demo.db

(Note that lines beginning with # are treated as comments.)

For information about samples-dir, see “Samples directory” on page 390.

Name the file sample.txt. If you wanted to start the database using this configuration file, your command
line would be:

dbeng11 @sample.txt

Now, add simple encryption to the configuration.

dbfhide sample.txt encrypted_sample.txt

Use the encrypted_sample.txt file to start a database.

dbsrv11 @encrypted_sample.txt

File Hiding utility (dbfhide)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 769

Histogram utility (dbhist)
Converts a histogram into a Microsoft Excel chart containing information about the selectivity of predicates.

Syntax
dbhist [options] -t table-name [excel-output-filename]

Option Description

@data Reads in options from the specified environment variable or configuration file. See
“Using configuration files” on page 737.

If you want to protect passwords or other information in the configuration file, you can
use the File Hiding utility to obfuscate the contents of the configuration file. See “File
Hiding utility (dbfhide)” on page 768.

-c options Specifies connection parameters. See “Connection parameters” on page 262.

-n colname Specifies the name of the column to associate the histogram with. If you do not specify
a column, all columns that have histograms in the table are returned.

-t table-name Specifies the name of the table or materialized view for which to generate the chart.

-u owner Specifies the owner of the table or materialized view.

excel-output-
name

Specifies the name of the generated Excel file. If no name is specified, Excel prompts
you to enter one with a Save As window.

Remarks
Histograms are stored in the ISYSCOLSTAT system table and can also be retrieved with the
sa_get_histogram stored procedure. The Histogram utility converts a histogram into a Microsoft Excel chart
containing information about the selectivity of predicates. The Histogram utility (dbhist) only works on
Windows, and you must have Excel 97 or later installed.

Statistics (including histograms) may not be present for a table or materialized view, for example, if statistics
were recently dropped. In this case, the Histogram utility returns the message Histogram contains
no data, aborting. In this case, you must create the statistics, and then run the Histogram utility
again. To create statistics for a table or materialized view, execute a CREATE STATISTICS statement. See
“CREATE STATISTICS statement” [SQL Anywhere Server - SQL Reference].

To determine the selectivity of a predicate over a string column, you should use the ESTIMATE or
ESTIMATE_SOURCE functions. Attempting to retrieve a histogram from string columns causes both
sa_get_histogram and the Histogram utility to generate an error. See “ESTIMATE function [Miscellaneous]”
[SQL Anywhere Server - SQL Reference] and “ESTIMATE_SOURCE function [Miscellaneous]” [SQL
Anywhere Server - SQL Reference].

The sheets are named with the column name. Column names are truncated after 24 characters, and all
occurrences of \, /, ?, *, [,], and : (which are not allowed in Excel) are replaced with underscores (_). Chart
names are prefixed with the word chart, followed by the same naming convention above. Duplicate names

Database administration utilities

770 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

(arising from character replacement, truncation, or columns named starting with chart) result in an Excel
error stating that no duplicate names can be used. However, the spreadsheet is still created with those names
created with their previous version (Sheet1, Chart1, and so on).

Exit codes are 0 (success) or non-zero (failure). See “Software component exit codes” [SQL Anywhere Server
- Programming].

You can also retrieve histograms using the sa_get_histogram stored procedure. See “sa_get_histogram
system procedure” [SQL Anywhere Server - SQL Reference].

Example
The following command (entered all on the same line) generates an Excel chart for the column ProductID
in the table SalesOrderItems for database demo.db, and saves it as histogram.xls.

dbhist -c "UID=DBA;PWD=sql;DBF=samples-dir\demo.db" -n ProductID -t
SalesOrderItems histogram.xls

The following statement generates charts for every column with a histogram in the table SalesOrders,
assuming that the sample database is already started. This statement also attempts to connect using
UID=DBA and PWD=sql. No output file name is specified, so Excel prompts you to enter one.

dbhist -t SalesOrders -c "UID=DBA;PWD=sql"

For information about samples-dir, see “Samples directory” on page 390.

See also
● “Optimizer estimates and column statistics” [SQL Anywhere Server - SQL Usage]
● “CREATE STATISTICS statement” [SQL Anywhere Server - SQL Reference]

Histogram utility (dbhist)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 771

Information utility (dbinfo)
Displays information about the specified database.

Syntax
dbinfo [options]

Option Description

@data Reads in options from the specified environment variable
or configuration file. See “Using configuration
files” on page 737.

If you want to protect passwords or other information in
the configuration file, you can use the File Hiding utility
to obfuscate the contents of the configuration file. See
“File Hiding utility (dbfhide)” on page 768.

-c "keyword=value; ..." Specifies connection parameters. See “Connection param-
eters” on page 262.

Any valid user ID can run the Information utility, but to
obtain page usage statistics you need DBA authority.

-o filename Writes output messages to the named file.

-q Runs in quiet mode—messages are not displayed.

-u Displays information about the usage and size of all tables,
including system and user-defined tables and materialized
views.

You can only request page usage statistics if no other users
are connected to the database and you have DBA author-
ity. The page usage information is obtained using the
sa_table_page_usage system procedure.

Remarks
The dbinfo utility displays information about a database. It reports the name of the database file, the name
of any transaction log file or log mirror, the page size, the collation name and label, whether table encryption
is enabled, and other information. Optionally, it can also provide table usage statistics and details.

You can use the dbinfo utility to determine the size of a table on disk. To do so, run a command similar to
the following:

dbinfo -u -c "UID=DBA;PWD=sql;DBF=sample-dir\demo.db"

The result shows you how many pages are used to hold the data in each table in your database (Pages), and
the percentage used of those pages (%used). For any table, you can then multiply the number of pages by

Database administration utilities

772 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

the database page size, and then multiply that by %used to determine the amount of space is being used for
your table.

Exit codes are 0 (success) or non-zero (failure).

For more information about exit codes, see “Software component exit codes” [SQL Anywhere Server -
Programming].

Information utility (dbinfo)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 773

Initialization utility (dbinit)
Creates a new database.

Syntax
dbinit [options] new-database-file

Option Description

@data Reads in options from the specified environment varia-
ble or configuration file. See “Using configuration
files” on page 737.

If you want to protect passwords or other information in
the configuration file, you can use the File Hiding utility
to obfuscate the contents of the configuration file. See
“File Hiding utility (dbfhide)” on page 768.

-a Causes string comparisons to respect accent differences
between letters (for example, e is less than é if the UCA
(Unicode Collation Algorithm) is used for either CHAR
or NCHAR data types (see -z and -zn). With the excep-
tion of Japanese databases created with a UCA collation,
by default, accents are ignored (meaning e is equal to é).
If all base letters (letters with accents and case removed)
are otherwise equal, then accents are compared from left
to right.

The default accent sensitivity of a UCA collation when
creating a Japanese database is sensitive. That is, accents
are respected. See “Unicode Collation Algorithm
(UCA)” on page 417.

-af Causes string comparisons to respect accent differences
between letters (for example, e is less than é) if the UCA
is used for either CHAR or NCHAR data types (see -z
and -zn below). By default, accents are ignored (meaning
e is equal to é). If all base letters (letters with accents
removed) are otherwise equal, then accents are com-
pared from right to left, consistent with the rules of the
French language.

For more information, see “Unicode Collation Algo-
rithm (UCA)” on page 417.

Database administration utilities

774 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-b Blank pads the database.

SQL Anywhere compares all strings as if they are vary-
ing length and stored using the VARCHAR domain.
This includes string comparisons involving fixed length
CHAR or NCHAR columns. In addition, SQL Any-
where never trims or pads values with trailing blanks
when the values are stored in the database.

By default, SQL Anywhere treats blanks as significant
characters. So, the value 'a ' (the character 'a' followed
by a blank) is not equivalent to the single-character string
'a'. Inequality comparisons also treat a blank as any other
character in the collation.

If blank padding is enabled (the dbinit -b option), the
semantics of string comparisons more closely follow the
ANSI/ISO SQL standard. With blank-padding enabled,
SQL Anywhere ignores trailing blanks in any compari-
son.

In the example above, an equality comparison of 'a ' to
'a' in a blank-padded database returns TRUE. With a
blank-padded database, fixed-length string values are
padded with blanks when they are fetched by an appli-
cation. The ansi_blanks connection option controls
whether the application receives a string truncation
warning on such an assignment. See “ansi_blanks option
[compatibility]” on page 506.

-c Considers all values case sensitive in comparisons and
string operations. Identifiers in the database are case in-
sensitive, even in case sensitive databases.

With the exception of Japanese databases created with a
UCA collation, the default behavior is that all compari-
sons are case insensitive. The default case sensitivity of
a UCA collation when creating a Japanese database is
sensitive.

Databases used as QAnywhere server stores should be
case insensitive.

This option is provided for compatibility with the ISO/
ANSI SQL standard.

Initialization utility (dbinit)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 775

Option Description

-dba [DBA-user][,pwd] Specifies the DBA user ID and password. If you specify
a new name for the DBA user for the database, you can
no longer connect to the database as the user DBA. You
can also specify a different password for the DBA data-
base user. If you do not specify a password, the default
password sql is used. If you do not specify this option,
the default user ID DBA with password sql is created.

Either of the following commands creates a database
with a DBA user named testuser with the default pass-
word sql:

dbinit -dba testuser mydb.db
dbinit -dba testuser, mydb.db

The following command uses the default user ID DBA
with password mypwd:

dbinit -dba ,mypwd mydb.db

The following command changes the DBA user to user1
with password mypwd:

dbinit -dba user1,mypwd mydb.db

It is recommended that the password be composed of 7-
bit ASCII characters as other characters may not work
correctly if the server cannot convert from the client's
character set to UTF-8.

-dbs size[k | m | g | p] Pre-allocates space for the database. Pre-allocating
space for the database helps reduce the risk of running
out of space on the drive the database is located on. As
well, it can help improve performance by increasing the
amount of data that can be stored in the database before
the database server needs to grow the database, which
can be a time-consuming operation.

By default, the size is in bytes. You can use k, m, g, or
p to specify units of kilobytes, megabytes, or gigabytes,
or pages, respectively.

Database administration utilities

776 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-ea algorithm Specifies the encryption algorithm used for database or
table encryption (-et). Specify -ea simple for simple en-
cryption (do not specify -ek or -ep). Simple encryption
is equivalent to obfuscation and is intended only to keep
data hidden in the event of casual direct access of the
database file, to make it more difficult for someone to
decipher the data in your database using a disk utility to
look at the file.

For greater security, specify AES or AES256 for 128-bit
or 256-bit strong encryption, respectively. Specify
AES_FIPS or AES256_FIPS for 128-bit or 256-bit
FIPS-approved strong encryption, respectively. For
strong encryption, you must also specify the -ek or -ep
option. For more information about strong encryption,
see “Strong encryption” on page 1082.

To create a database that is not encrypted, specify -ea
none, or do not include the -ea option (and do not specify
-et, -ep, or -ek).

If you do not specify the -ea option, the default behavior
is as follows:

● -ea none, if -ek, -ep, or -et is not specified
● -ea AES, if -ek or -ep is specified (with or without -

et)
● -ea simple, if -et is used without -ek or -ep

Algorithm names are case insensitive.

On Windows Mobile, the AES_FIPS and AES256_FIPS
algorithms are only supported with ARM processors.

The following command creates a strongly encrypted
database and specifies the encryption key and algorithm.

dbinit -ek "0kZ2o56AK#" -ea AES_FIPS
"myencrypteddb.db"

File compression utilities cannot compress encrypted
database files as much as unencrypted ones.

Initialization utility (dbinit)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 777

Option Description

Separately licensed component required
ECC encryption and FIPS-certified encryption require a
separate license. All strong encryption technologies are
subject to export regulations.

See “Separately licensed components” [SQL Anywhere
11 - Introduction].

-ek key Specifies that you want to create a strongly encrypted
database by specifying an encryption key directly in the
command. The -ek option is used with an AES algo-
rithm, optionally specified using the -ea option. If you
specify the -ek option without specifying the -ea option,
AES is used by default.

When specified with -et, the database is not encrypted.
Instead, table encryption is enabled. See “Table encryp-
tion” on page 1090.

Caution
For strongly encrypted databases, be sure to store a copy
of the key in a safe location. If you lose the encryption
key there is no way to access the data, even with the
assistance of technical support. The database must be
discarded and you must create a new database.

-ep Specifies that you want to create a strongly encrypted
database by inputting the encryption key in a window.
This provides an extra measure of security by never al-
lowing the encryption key to be seen in clear text.

You must input the encryption key twice to confirm that
it was entered correctly. If the keys don't match, the in-
itialization fails.

When specified with -et, the database is not encrypted.
Instead, table encryption is enabled.

For more information, see “Strong encryp-
tion” on page 1082.

Database administration utilities

778 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-et Enables table encryption using the encryption algorithm
(and key) specified for the -ea option. Use this option
when you want to create encrypted tables instead of en-
crypting the entire database. If you specify -et with -ek
or -ep, but not -ea, the AES algorithm is used by default.
When you specify only -et, simple encryption is used.

Enabling table encryption does not mean your tables are
encrypted. You must encrypt tables individually, after
database creation. See “Encrypting a ta-
ble” on page 1091.

When table encryption is enabled, table pages for the
encrypted table, associated index pages, and temporary
file pages are encrypted, and the transaction log pages
that contain transactions on encrypted tables.

The following example creates the database new.db with
strong encryption enabled for tables using the key abc,
and the AES_FIPS encryption algorithm:

dbinit -et -ek abc -ea AES_FIPS new.db

-i Excludes jConnect system objects from the database. If
you want to use the jConnect JDBC driver to access sys-
tem catalog information, you need to install jConnect
catalog support (it is installed by default). When you
specify this option you can still use JDBC, as long as you
do not access system information. If you want, you can
add jConnect support at a later time using Sybase Central
or the ALTER DATABASE statement.

For more information, see “Installing jConnect system
objects into a database” [SQL Anywhere Server - Pro-
gramming].

If you are creating a database for use on Windows Mo-
bile, see “Using jConnect on Windows Mo-
bile” on page 340.

-k Does not create the SYSCOLUMNS and SYSINDEXES
views. By default, database creation generates the views
SYS.SYSCOLUMNS and SYS.SYSINDEXES for
compatibility with system tables that were available in
Watcom SQL (versions 4 and earlier of this software).
These views conflict with the Sybase Adaptive Server
Enterprise compatibility views dbo.syscolumns and
dbo.sysindexes.

Initialization utility (dbinit)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 779

Option Description

-l Lists the recommended collation sequences and then
stops. No database is created. A list of available collation
sequences is automatically presented in the Sybase Cen-
tral Create Database Wizard.

-le Lists the available character set encodings and then
stops. No database is created. Each character set encod-
ing is identified by one or more labels. These are strings
that can be used to identify the encoding. Each line of
text that appears lists the encoding label and alternate
labels by which the encoding can be identified. These
labels fall into one of several common categories: SA
(the SQL Anywhere label), IANA (Internet Assigned
Numbers Authority), MIME (Multipurpose Internet
Mail Extensions), ICU (International Components for
Unicode), JAVA, or ASE (Adaptive Server Enterprise).

If you want to view a list of character set encodings that
includes the alternate labels, specify the -le+ option.

When the Initialization utility reports the character set
encoding, it always reports the SQL Anywhere version
of the label. For example, the following command re-
ports the CHAR character set encoding windows-1250:

dbinit -ze cp1250 -z uca test.db

-m filename Creates a transaction log mirror. A transaction log mirror
is an identical copy of a transaction log, usually main-
tained on a separate device, for greater protection of your
data. By default, SQL Anywhere does not use a trans-
action log mirror.

-n Creates a database without a transaction log. Creating a
database without a transaction log saves disk space, but
can result in poorer performance because each commit
causes a checkpoint. Also, if your database becomes
corrupted and you are not running with a transaction log,
data is not recoverable. The transaction log is required
for data replication and provides extra security for data-
base information in case of media failure or system fail-
ure.

-o filename Writes output messages to the named file.

Database administration utilities

780 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-p page-size Specifies the page size for the database. The page size
for a database can be (in bytes) 2048, 4096, 8192, 16384,
or 32768, with 4096 being the default.

Large databases can benefit from a larger page size. For
example, the number of I/O operations required to scan
a table is generally lower, as a whole page is read in at a
time. However, there are additional memory require-
ments for large page sizes. It is strongly recommended
that you do performance testing (and testing in general)
when choosing a page size. Then choose the smallest
page size that gives satisfactory results. For most appli-
cations, 16 KB or 32 KB page sizes are not recommen-
ded. You should not use page sizes of 16 KB or 32 KB
in production systems unless you can be sure that a large
database server cache is always available, and only after
you have investigated the tradeoffs of memory and disk
space with its performance characteristics. If a large
number of databases are going to be started on the same
server, pick a reasonable page size.

For more information, see:

● “Use an appropriate page size” [SQL Anywhere Serv-
er - SQL Usage]

● “Table and page sizes” [SQL Anywhere Server - SQL
Usage]

-q Runs in quiet mode—messages are not displayed.

-s Adds checksums to database pages. Checksums are used
to determine whether a database page has been modified
on disk. When you create a database with checksums
enabled, a checksum is calculated for each page just be-
fore it is written to disk. The next time the page is read
from disk, the page's checksum is recalculated and com-
pared to the checksum stored on the page. If the check-
sums are different, then the page has been modified or
corrupted on disk, and an error occurs. Critical database
pages are always checksummed by the database server,
regardless of whether -s is specified.

Checksums are automatically enabled for databases run-
ning on Windows Mobile and storage devices such as
removable drives to help provide early detection if the
database becomes corrupt.

Initialization utility (dbinit)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 781

Option Description

-t transaction-log-name Specifies the name of the transaction log file. The trans-
action log is a file where the database server logs all
changes, made by all users, no matter what application
is being used. The transaction log plays a key role in
backup and recovery (see “The transaction
log” on page 14), and in data replication. If the file name
has no path, it is placed in the same directory as the da-
tabase file. If you run dbinit without specifying -t or -n,
a transaction log is created with the same file name as
the database file, but with extension .log.

-z coll [collation-tailoring-string] Specifies the collation sequence for the database. The
collation sequence is used for sorting and comparing
character data types (CHAR, VARCHAR, and LONG
VARCHAR). The collation provides character compar-
ison and ordering information for the encoding (charac-
ter set) being used. It is important to choose your colla-
tion carefully. It cannot be changed after the database
has been created without unloading and reloading the
database. If the collation is not specified, SQL Anywhere
chooses a collation based on the operating system lan-
guage and character set. See:

● “Choosing collations” on page 419
● “Recommended character sets and colla-

tions” on page 433
● “Supported and alternate collations” on page 429

Optionally, you can specify collation tailoring options
(collation-tailoring-string) for additional control over
the sorting and comparing of characters. These options
take the form of keyword=value pairs, assembled in pa-
rentheses, following the collation name. For example:

dbinit -c -z uca(locale=es;case=Low-
erFirst) spanish2.db
See “Collation tailoring options” on page 420.

Case and accent settings specified in the collation-tai-
loring-string override case and accent options for dbinit
(-c, -a, and -af), in the event that you specify both.

Note
Databases initialized with collation tailoring options
cannot be started by a pre-10.0.1 database server.

Database administration utilities

782 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-ze encoding Specifies the encoding for the collation. Most collations
specified by -z dictate both the encoding (character set)
and ordering. For those collations, -ze should not be
specified.

If the collation specified by -z is UCA (Unicode Colla-
tion Algorithm), then -ze can specify UTF-8 or any sin-
gle-byte encoding for CHAR data types. By default,
SQL Anywhere uses UTF-8. Use -ze to specify a locale-
specific encoding and get the benefits of the UCA for
comparison and ordering.

-zn coll [collation-tailoring-string] Specifies the collation sequence used for sorting and
comparing of national character data types (NCHAR,
NVARCHAR, and LONG NVARCHAR). The collation
provides character ordering information for the UTF-8
encoding (character set) being used. Values are UCA
(the default), or UTF8BIN which provides a binary or-
dering of all characters whose encoding is greater than
0x7E. If the dbicu11 and dbicudt11 DLLs are not instal-
led, then the default NCHAR collation is UTF8BIN. For
more information, see “Choosing colla-
tions” on page 419.

Optionally, you can specify collation tailoring options
(collation-tailoring-string) for additional control over
the sorting and comparing of characters. These options
take the form of keyword=value pairs, assembled in pa-
rentheses, following the collation name. For example:

dbinit -c -zn UCA(case=LowerFirst)
sens.db
See “Collation tailoring options” on page 420.

Case and accent settings specified in the collation-tai-
loring-string override case and accent options for dbinit
(-c, -a, and -af), in the event that you specify both.

Note
Databases initialized with collation tailoring options
cannot be started by a pre-10.0.1 database server.

Initialization utility (dbinit)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 783

Remarks
Several database attributes are specified at initialization and cannot be changed later except by unloading,
reinitializing, and rebuilding the entire database. These database attributes include:

● Case sensitivity or insensitivity
● Accent sensitivity or insensitivity
● Punctuation sensitivity
● Treatment of trailing blanks in comparisons
● Page size
● Character set encoding or collation sequence
● Database encryption
● Table encryption

For example, the database test.db can be created with 8192 byte pages as follows:

dbinit -p 8192 test.db

You cannot name a database utility_db. This name is reserved for the utility database. See “Using the utility
database” on page 30.

When specifying collation tailoring options in the initialization command, you cannot specify quaternary
for the punctuation sensitivity if the database is case or accent insensitive.

In addition, the choice of whether to use a transaction log and a transaction log mirror is made at initialization.
This choice can be changed later using the Transaction Log utility or the ALTER DATABASE statement.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

You can also create a database in the following ways:

● From Sybase Central, using the Create Database Wizard. See “Create a database (Sybase
Central)” on page 21.

● From Interactive SQL, using the CREATE DATABASE statement. See “CREATE DATABASE
statement” [SQL Anywhere Server - SQL Reference].

Note
When you are deploying applications, the personal database server (dbeng11) is required for creating
databases using the dbinit utility. It is also required if you are creating databases from Sybase Central on the
local computer when no other database servers are running.

Exit codes are 0 (success) or non-zero (failure). See “Software component exit codes” [SQL Anywhere Server
- Programming].

Database administration utilities

784 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
The following command creates a case sensitive database, spanish.db, which uses the 1262spa collation for
non-NCHAR data. For NCHAR data, the UCA collation is specified, with locale es, and sorting by lowercase
first.

dbinit -c -z 1252spa -zn uca(locale=es;case=LowerFirst) spanish.db

Initialization utility (dbinit)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 785

Interactive SQL utility (dbisql)
Executes SQL commands and runs command files against a database.

Syntax
dbisql [options] [dbisql-command | command-file]

Option Description

@data Reads in options from the specified environment variable or configuration file. See
“Using configuration files” on page 737.

If you want to protect passwords or other information in the configuration file, you can
use the File Hiding utility to obfuscate the contents of the configuration file. See “File
Hiding utility (dbfhide)” on page 768.

-c "key-
word=val-
ue; ..."

Specifies connection parameters. If Interactive SQL cannot connect, you are presented
with a window where you can enter the connection parameters. See “Connection pa-
rameters” on page 262.

-d delimiter Specify a command delimiter. Quotation marks around the delimiter are optional, but
are required when the command shell itself interprets the delimiter in some special way.

This option overrides the setting of the command_delimiter option. See “command_de-
limiter option [Interactive SQL]” on page 711.

-d1 Echoes all statements explicitly executed by the user to the command window
(STDOUT). This can provide useful feedback for debugging SQL scripts, or when In-
teractive SQL is processing a long SQL script. (The final character is a number 1, not a
lowercase L). This option is only available when you run Interactive SQL as a command
line program.

-datasource
DSN-name

Specifies an ODBC data source to connect to.

-f filename Opens (but does not run) in the SQL Statements pane the file called filename.

If the -f option is given, the -c option is ignored; that is, no connection is made to the
database.

The file name can be enclosed in quotation marks, and must be enclosed in quotation
marks if the file name contains a space. If the file does not exist, or if it is really a directory
instead of a file, Interactive SQL prints an error message and then quits. If the file name
does not include a full drive and path specification, it is assumed to be relative to the
current directory.

This option is only supported when Interactive SQL is run as a windowed application.

-host host-
name

Specifies the hostname or IP address of the computer on which the database server is
running. You can use the name localhost to represent the current computer.

Database administration utilities

786 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-nogui Runs Interactive SQL in a command-prompt mode, with no windowed user interface.
This is useful for batch operations. If you specify either dbisql-command or command-
file, then -nogui is assumed.

In this mode, Interactive SQL sets the program exit code to indicate success or failure.
On Windows operating systems, the environment variable ERRORLEVEL is set to the
program exit code. See “Software component exit codes” [SQL Anywhere Server - Pro-
gramming].

-onerror
{ continue |
exit }

Controls what happens if an error is encountered while reading statements from a com-
mand file. This option overrides the on_error setting. It is useful when using Interactive
SQL in batch operations. See “on_error option [Interactive SQL]” on page 721.

-port port-
number

Specifies the port number on which the database server is running. The default port
number for SQL Anywhere is 2638.

-q Suppresses output messages. This is useful only if you start Interactive SQL with a com-
mand or command file. Specifying this option does not suppress error messages, but it
does suppress the following:

● warnings and other non-fatal messages

● the printing of result sets

-ul Specifies that UltraLite databases are the default. Interactive SQL customizes the options
available to you depending on the type of database you are connected to. By default,
Interactive SQL assumes that you are connecting to SQL Anywhere databases. When
you specify the -ul option, the default changes to UltraLite databases. Regardless of the
type of database set as the default, you can connect to either SQL Anywhere or UltraLite
databases by choosing the database type from the dropdown list on the Connect window.

For more information about connecting to UltraLite databases from Interactive SQL, see
“Interactive SQL utility for UltraLite (dbisql)” [UltraLite - Database Management and
Reference].

-version Displays the version number of Interactive SQL. You can also view the version number
from within Interactive SQL; from the Help menu, choose About Interactive SQL.

-x Scans commands but does not execute them. This is useful for checking long command
files for syntax errors.

For detailed descriptions of SQL statements and Interactive SQL commands, see “SQL
language elements” [SQL Anywhere Server - SQL Reference].

Interactive SQL utility (dbisql)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 787

Remarks

Interactive SQL allows you to browse the database, execute SQL commands, and run command files. It also
provides feedback about the number of rows affected, the time required for each command, the execution
plan of queries, and any error messages.

You can connect to both SQL Anywhere and UltraLite databases.

Interactive SQL is supported on Windows, Solaris, Linux, and Mac OS X.

If dbisql-command is specified, Interactive SQL executes the command. You can also specify a command
file name. If no dbisql-command or command-file argument is specified, Interactive SQL enters interactive
mode, where you can type a command into a command window.

You can start Interactive SQL in the following ways:

● from Sybase Central, using the Open Interactive SQL menu item.
● from the Start menu by choosing Start » Programs » SQL Anywhere 11 » Interactive SQL.
● using the dbisql command.

For Windows, there are two executables. Batch scripts should call dbisql or dbisql.com, not dbisql.exe. The
dbisql.com executable is linked as a console application. The dbisql.exe executable is linked as a windowed
application and does not block the command shell from which it was started. If dbisql.exe is run from a batch
file, you won't see any output sent to the standard output or standard error files.

You can specify a code page to use when reading or writing files using the ENCODING clause of the INPUT,
OUTPUT, or READ statement. For example, on an English Windows XP computer, windowed programs
use the 1252 (ANSI) code page. If you want Interactive SQL to read a file named status.txt created using
the 297 (IBM France) code page, use the following statement:

READ
ENCODING 297
status.txt;

The default code page for Interactive SQL can also be set using the default_isql_encoding option. See:

● “Recommended character sets and collations” on page 433
● “default_isql_encoding option [Interactive SQL]” on page 713
● “INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “READ statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

Exit codes are 0 (success) or non-zero (failure). Non-zero exit codes are set only when you run Interactive
SQL in batch mode (with a command line that contains a SQL statement or the name of a script file). See
“Software component exit codes” [SQL Anywhere Server - Programming].

When executing a reload.sql file with Interactive SQL, you must specify the encryption key as a parameter.
If you do not provide the key in the READ statement, Interactive SQL prompts for the key.

Database administration utilities

788 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “CLEAR statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “CONFIGURE statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “CONNECT statement [ESQL] [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “DESCRIBE statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “EXIT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “HELP statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “PARAMETERS statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “READ statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “SET CONNECTION statement [Interactive SQL] [ESQL]” [SQL Anywhere Server - SQL Reference]
● “SET OPTION statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “START ENGINE statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “START LOGGING statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “STOP LOGGING statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “SYSTEM statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

Example
The following command runs the command file mycom.sql against the current default server, using the user
ID DBA and the password sql. If there is an error in the command file, the process shuts down.

dbisql -c "UID=DBA;PWD=sql" -onerror exit mycom.sql

The following command adds a user to the current default database:

dbisql -c "UID=DBA;PWD=sql" CREATE USER joe IDENTIFIED passwd

Interactive SQL utility (dbisql)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 789

Key Pair Generator utility (createkey)
Creates RSA and ECC key pairs for use with MobiLink end-to-end encryption.

Syntax
createkey

Remarks
To create ECC objects, you must order a separate license. See “Separately licensed components” [SQL
Anywhere 11 - Introduction].

When you run createkey, you are prompted for the following information:

● Choose encryption type This prompt only appears if you have purchased a license for ECC
encryption. Choose RSA or ECC.

● Enter RSA key length (512-16384) This prompt only appears if you chose RSA encryption. You
can choose a length between 512 bits and 16384 bits.

● Enter ECC curve This prompt only appears if you have purchased a license for ECC encryption and
you chose the ECC encryption type. You are prompted to choose from a list of ECC curves. The default
is sect163k1.

● Enter file path to save public key Specify a file name and location for the generated PEM-encoded
public key. This file is specified on the MobiLink client by the e2ee_public_key protocol option. See
“e2ee_public_key” [MobiLink - Client Administration].

● Enter file path to save private key Specify a file name and location for the generated PEM-encoded
private key. This file is specified on the MobiLink server via the e2ee_private_key protocol option. See
“-x option” [MobiLink - Server Administration].

● Enter password to protect private key Optionally, supply a password with which to encrypt the
private key. The private key is not encrypted if you do not supply a password. This password is specified
on the MobiLink server via the e2ee_private_key_password protocol option. See “-x option” [MobiLink
- Server Administration].

See also
● “End-to-end encryption” on page 1113
● “e2ee_type” [MobiLink - Client Administration] (MobiLink client network protocol option)

Example
The following example creates an RSA key pair:

>createkey
SQL Anywhere Key Pair Generator Version 11.0.0.1304
Choose encryption type ((R)SA or (E)CC): r
Enter RSA key length (512-16384): 2048
Generating key pair...
Enter file path to save public key: rsapublic.pem
Enter file path to save private key: rsaprivate.pem
Enter password to protect private key: pwd

Database administration utilities

790 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Language Selection utility (dblang)
Reports and changes the registry settings that control the languages used by SQL Anywhere and Sybase
Central.

Syntax
dblang [options] language-code

Option Description

-m Writes the language code to the registry under HKEY_LOCAL_MACHINE.

-q Runs in quiet mode—messages are not printed.

-u Writes the language code to the registry under HKEY_CURRENT_USER. This is the default
location.

Language code Language

EN English

DE German

ES Spanish

FR French

IT Italian

JA Japanese

KO Korean

LT Lithuanian

PL Polish

PT Portuguese

RU Russian

TW Traditional Chinese

UK Ukrainian

ZH Simplified Chinese

Language Selection utility (dblang)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 791

Remarks
If you do not specify -m or -u, then the language code is written to the registry under
HKEY_CURRENT_USER. You can specify both -m and -u to write the language code to both locations.

Running the dblang utility without a language code reports the current settings. These settings are as follows:

● SQL Anywhere This setting controls which language resource library is used to deliver informational
and error messages from the SQL Anywhere database server. The language resource library is a DLL
with a name of the form dblgXX11.dll, where XX is a two-letter language code.

Ensure that you have the appropriate language resource library on your computer when you change the
settings.

● Sybase Central This setting controls the resources used to display user interface elements for Sybase
Central and Interactive SQL. You must have purchased the appropriate localized version of SQL
Anywhere for this setting to take effect.

Exit codes are 0 (success) or non-zero (failure). See “Software component exit codes” [SQL Anywhere Server
- Programming].

This utility does not accept the @data parameter to read in options from a configuration file.

When the fast launcher option is enabled, changes to language settings are only detected by Sybase Central
or Interactive SQL once the process is stopped and restarted.

To change the language settings when the fast launcher option is enabled

1. Choose Tools » Options.

2. On the General tab of the Options window, clear the Enable Fast Launcher option.

Click OK.

3. Shut down Sybase Central or Interactive SQL.

4. Change the language settings as required. For example, running the following command changes the
language settings to German:

dblang DE
5. Start Sybase Central or Interactive SQL.

6. Re-enable the fast launcher option:

a. Choose Tools » Options.

b. On the General tab of the Options window, select the Enable Fast Launcher option.

c. Click OK.

To change the language settings when the fast launcher option is disabled

1. Shut down Sybase Central or Interactive SQL.

2. Change the language settings as required. For example, running the following command changes the
language settings to German:

Database administration utilities

792 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

dblang de
3. Restart Sybase Central or Interactive SQL.

Alternatively, you can shut down the scjview or dbisql process to stop the fast launcher.

See also
● “SALANG environment variable” on page 377
● “Using the fast launcher option” on page 728

Example
The following command displays a window containing the current settings:

dblang

The following command changes the settings to German, and displays a window containing the previous
and new settings:

dblang de

Language Selection utility (dblang)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 793

Log Transfer Manager utility (dbltm)
Reads a database transaction log and sends committed changes to Replication Server.

Syntax
dbltm [options]

Option Description

@data Reads in options from the specified environment variable or configuration file. See
“Using configuration files” on page 737.

If you want to protect passwords or other information in the configuration file, you can
use the File Hiding utility to obfuscate the contents of the configuration file. See “File
Hiding utility (dbfhide)” on page 768.

-A Prevents filtering of updates. By default, all changes made by the maintenance user are
not replicated. If the -A option is set, these changes are replicated. This may be useful
in non-hierarchical Replication Server installations, where a database acts as both a
replicate site and as a primary site.

-C config-file Uses the configuration file config-file to determine the LTM settings. The default con-
figuration file is dbltm.cfg. See “The LTM configuration file” on page 796.

-I interface-file (Uppercase I.) Uses the named interfaces file. The interfaces file is the file created by
DSEDIT and holds the connection information for Open Servers. The default interfaces
file is SQL.ini in the ini subdirectory of your Sybase directory.

-M Initiates recovery actions. The LTM starts reading logs from the earliest available po-
sition. If the offline directory is specified in the configuration file, the LTM reads from
the oldest offline log file.

-S LTM-name Provides the server name for this LTM. The default LTM name is DBLTM_LTM. The
LTM name must correspond to the Open Server name for the LTM that was entered in
DSEDIT.

-dl Displays all messages in the LTM window or at a command prompt, and in the log file
(if specified).

-ek key Specifies the encryption key for strongly encrypted databases directly in the command.
If you have a strongly encrypted database, you must provide the encryption key to use
the database or transaction log in any way, including offline transaction logs. For
strongly encrypted databases, you must specify either -ek or -ep, but not both. The
command fails if you do not specify a key for a strongly encrypted database.

Database administration utilities

794 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-ep Specifies that you want to be prompted for the encryption key. This option causes a
window to appear, in which you enter the encryption key. It provides an extra measure
of security by never allowing the encryption key to be seen in clear text. For strongly
encrypted databases, you must specify either -ek or -ep, but not both. The command
fails if you do not specify a key for a strongly encrypted database.

-o filename Uses a log file different from the default (dbltm.log). Output messages from log transfer
operations are written to this file.

-os size Specifies the maximum size of the output file, in bytes. The minimum value is 10000
(ten thousand). If the log file grows to the point where it would exceed this limit, it is
renamed to yymmddxx.ltm. The value of xx in yymmddxx.ltm is incremented for each
file created on a given day.

-ot file Uses a log file different from the default (dbltm.log), and truncates the log file (all
existing content is deleted) when the LTM starts. Output messages from log transfer
operations are sent to this file for later review.

-q Minimizes the window when the LTM is started.

-s Logs all LTL commands that are generated by the LTM. This should be used only to
diagnose problems, and is not recommended in a production environment. It carries a
significant performance penalty.

-ud Runs the LTM as a daemon on Unix operating systems. If you run in this manner, output
is logged to the log file.

-ux Opens the Log Transfer Manager window if dbltm can find a usable display on Unix
operating systems. If it cannot find one, for example because the DISPLAY environ-
ment variable is not set or because the X window server is not running, dbltm fails to
start. On Microsoft Windows, the dbltm window appears automatically.

-v Displays messages, other than LTL messages, for debugging purposes.

Remarks
The Log Transfer Manager (LTM) is also known as a replication agent. The LTM is required for any SQL
Anywhere database that participates in a Replication Server installation as a primary site.

The SQL Anywhere LTM reads a database transaction log and sends committed changes to Replication
Server. The LTM is not required at replicate sites.

The LTM sends committed changes to Replication Server in a language named Log Transfer Language
(LTL).

By default, the LTM uses a log file named DBLTM.LOG to hold status and other messages. You can use
options to change the name of this file and to change the volume and type of messages that are sent to it.

Log Transfer Manager utility (dbltm)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 795

Exit codes are 0 (success) or non-zero (failure). See “Software component exit codes” [SQL Anywhere Server
- Programming].

The LTM configuration file
The SQL Anywhere and Adaptive Server Enterprise LTM configuration files are very similar. This section
describes the entries in the SQL Anywhere LTM configuration file, and the differences from the Adaptive
Server Enterprise LTM configuration file.

The configuration file that an LTM uses is specified using the -C option.

LTM configuration file parameters
The following table describes each of the configuration parameters that the LTM recognizes. Options that
are used by the Adaptive Server Enterprise LTM but not by the SQL Anywhere LTM are included in this
list, and marked as either ignored (in which case they may be present in the configuration file, but have no
effect) or as unsupported (in which case they will cause an error if present in the configuration file).

Parameter Description

APC_pw The password for the APC_user login name. This entry is present only in SQL
Anywhere LTM configuration files.

APC_user A user ID that is used when executing asynchronous procedures at the primary
site. This user ID must have permissions appropriate for all asynchronous pro-
cedures at the primary site. This entry is present only in SQL Anywhere LTM
configuration files.

backup_only By default, this is off. If it is set to on, the LTM replicates only backed-up
transactions.

batch_ltl_cmds Set to on (the default) to use batch mode. Batch mode can increase overall
throughput, but may lead to longer response times.

batch_ltl_sz The number of commands that are saved in the buffer before being sent to Rep-
lication Server, when batch_ltl_cmds is on. The default is 200.

batch_ltl_mem The amount of memory that the buffer can use before its contents are sent to
Replication Server, when batch_ltl_cmds is on. The default is 256 KB.

Continuous By default, this is on. When set to off, the LTM automatically shuts down when
all committed data has been replicated.

LTM_admin_pw The password for the LTM_admin_user login name.

LTM_admin_user The system administrator LTM login name that is used to log in to the LTM.
This parameter is required so that the LTM can check whether a user logging
on to the LTM to shut it down has the correct login name.

Database administration utilities

796 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Parameter Description

LTM_charset The Open Client/Open Server character set for the LTM to use.

LTM_language The Open Client/Open Server language for the LTM to use.

LTM_sortorder The Open Client/Open Server sort order for the LTM to use to compare user
names. You can specify any Adaptive Server Enterprise-supported sort order
that is compatible with the LTM's character set. All sort orders in your replica-
tion system should be the same.

The default sort order is a binary sort.

maint_cmds_to_skip Ignored.

qualify_table_owners Set to on for the LTM to send LTLs with table names and columns names, and
table owners to Replication Server. The setting applies to all replicating tables,
and the create replication definition statements must match this setting. The
default is off.

rep_func Set to on to use asynchronous procedure calls (APCs). The default is off.

Retry The number of seconds to wait before retrying a failed connection to a SQL
Anywhere database server or Replication Server. The default is 10 seconds.

RS The name of the Replication Server to which the LTM is transferring the log.

RS_pw The password for the RS_user login name.

RS_source_db The name of the database whose log the LTM transfers to the Replication Server.
This name must match the name of the database as defined within the Replica-
tion Server connection definitions. Most configurations use the same setting for
both RS_Source_db and SQL_database configuration options.

RS_source_ds The name of the server whose log the LTM transfers to the Replication Server.
This name must match the name of the server as defined within the Replication
Server connection definitions. Most configurations use the same setting for both
RS_Source_ds and SQL_server configuration options.

RS_user A login name for the LTM to use to log in to the Replication Server. The login
name must have been granted connect source permission in the Replication
Server.

scan_retry The number of seconds that the LTM waits between scans of the transaction
log. The definition of this parameter is different than the Adaptive Server En-
terprise LTM. The SQL Anywhere server does not wake up and scan the log
when records arrive in the log. For this reason, you may want to set the scan_re-
try value to a smaller number then that for an Adaptive Server Enterprise LTM.

Log Transfer Manager utility (dbltm)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 797

Parameter Description

skip_ltl_cmd_err This parameter tells Replication Agent to continue or shut down when LTL
command errors occur. When skip_ltl_cmd_err=on is specified, Replication
Agent displays the LTL commands that caused the errors and then skips the
LTLs and continues replication. When this parameter is set to off, Replication
Agent displays the LTL commands that caused the errors and then shuts down.
By default, this parameter is set to off.

SQL_database The primary site database name on the server SQL_server to which the LTM
connects. For Adaptive Server Enterprise during recovery, this is the temporary
database whose logs the LTM will transfer to Replication Server. The SQL
Anywhere LTM uses the SQL_log_files parameter to locate offline transaction
logs.

SQL_log_files A directory that holds off-line transaction logs. The directory must exist when
the LTM starts up. This entry is present only in SQL Anywhere LTM config-
uration files.

SQL_pw The password for the SQL_user user ID.

SQL_server The name of the primary site SQL Anywhere server to which the LTM connects.
For Adaptive Server Enterprise during recovery, this is a data server with a
temporary database whose logs the LTM will transfer to Replication Server.
The LTM uses the SQL_log_files parameter to locate offline transaction logs.

SQL_user The login name that the LTM uses to connect to the database specified by
RS_source_ds and RS_source_db.

Example
The following is a sample LTM configuration file.

This is a comment line
Names are case sensitive.
SQL_user=SA
SQL_pw=sysadmin
SQL_server=PRIMESV
SQL_database=primedb
RS_source_ds=PRIMEOS
RS_source_db=primedb
RS=MY_REPSERVER
RS_user=sa
RS_pw=sysadmin
LTM_admin_user=DBA
LTM_admin_pw=sql
LTM_charset=cp850
scan_retry=2
SQL_log_files=e:\logs\backup
APC_user=sa
APC_pw=sysadmin

Database administration utilities

798 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Log Translation utility (dbtran)
Translates a transaction log into a SQL command file.

Syntax
Running against a database server:

dbtran [options] -c { connection-string } -n SQL-file

Running against a transaction log:

dbtran [options] [transaction-log] [SQL-file]

Option Description

@data Reads in options from the specified environment variable or configuration file. See
“Using configuration files” on page 737.

If you want to protect passwords or other information in the configuration file, you can
use the File Hiding utility to obfuscate the contents of the configuration file. See “File
Hiding utility (dbfhide)” on page 768.

-a Controls whether uncommitted transactions appear in the transaction log.

The transaction log contains changes made before the most recent COMMIT by any
transaction. Changes made after the most recent commit are not present in the trans-
action log.

If -a is not specified, only committed transactions appear in the output file. If -a is
specified, any uncommitted transactions found in the transaction log are output fol-
lowed by a ROLLBACK statement.

-c "key-
word=val-
ue; ..."

Specifies the connection string when running the utility against a database server. See
“Connection parameters” on page 262.

-d Specifies that transactions are written in order from earliest to latest. This feature is
provided primarily for use when auditing database activity: the output of dbtran should
not be applied against a database.

Log Translation utility (dbtran)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 799

Option Description

-ek key Specifies the encryption key for strongly encrypted databases. If you have a strongly
encrypted database, you must provide the encryption key to use the database or trans-
action log.

For strongly encrypted databases, you must specify either -ek or -ep, but not both. The
command fails if you do not specify the correct encryption key.

If you are running dbtran against a database server using the -c option, specify the key
using a connection parameter instead of using the -ek option. For example, the fol-
lowing command gets the transaction log information about database enc.db from the
database server sample, and saves its output in log.sql.

dbtran -n log.sql -c "ENG=sample;DBF=enc.db;
UID=DBA;PWD=sql;DBKEY=mykey"

-ep Prompts for the encryption key. This option causes a window to appear, in which you
enter the encryption key. It provides an extra measure of security by never allowing
the encryption key to be seen in clear text.

For strongly encrypted databases, you must specify either -ek or -ep, but not both. The
command fails if you do not specify the correct encryption key.

If you are running dbtran against a database server using the -c option, specify the key
using a connection parameter, instead of using the -ep option. For example, the fol-
lowing command gets the transaction log information about database enc.db from the
database server sample, and saves its output in log.sql.

dbtran -n log.sql -c "ENG=sample;DBF=enc.db;
UID=DBA;PWD=sql;DBKEY=mykey"

-f Outputs only transactions that were completed since the last checkpoint.

-g Adds auditing information to the transaction log if the auditing database option is
turned on. You can include this information as comments in the output file using this
option. See “auditing option [database]” on page 511.

The -g option implies the -a, -d, and -t options.

-ir offset1,off-
set2

Outputs a portion of the transaction log between two specified offsets.

Database administration utilities

800 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-is source,... Outputs operations on rows that have been modified by operations from one or more
of the following sources, specified as a comma-separated list:

● All All rows. This is the default setting.

● SQLRemote Include only rows that were modified using SQL Remote. You
can also use the short form SR.

● RepServer Include only rows that were modified using the Replication Agent
(LTM) and Replication Server. You can also use the short form RS.

● Local Include only rows that are not replicated.

-it owner.ta-
ble,...

Outputs those operations on the specified, comma-separated list of tables. Each table
should be specified as owner.table.

-j date/time Translates only transactions from the most recent checkpoint prior to the given date
and/or time. The user-provided argument can be a date, time, or date and time, enclosed
in quotes. If the time is omitted, the time is assumed to be the beginning of the day. If
the date is omitted, the current day is assumed. The following is an acceptable format
for the date and time: "YYYY/MMM/DD HH:NN".

-k Prevents partial .sql files from being erased if an error is detected. If an error is detected
while dbtran is running, the .sql file generated until that point is normally erased to
ensure that a partial file is not used by accident. Specifying this option may be useful
if you are attempting to salvage transactions from a damaged transaction log.

-m Specifies a directory that contains transaction logs. This option must be used in con-
junction with the -n option.

-n filename Specifies the output file that holds the SQL statements when you run the dbtran utility
against a database server.

-o filename Writes output messages to the named file.

-q Runs in quiet mode—messages are not displayed.

-r Removes any transactions that were not committed. This is the default behavior.

-rsu user-
name,...

Specifies a comma-separated list of user names to override the default Replication
Server user names. By default, the -is option assumes the default Replication Server
user names of dbmaint and sa.

-s Controls how UPDATE statements are generated. If the option is not used, and there
is no primary key or unique index on a table, the Log Translation utility generates
UPDATE statements with a non-standard FIRST keyword in case of duplicate rows.
If the option is used, the FIRST keyword is omitted for compatibility with the SQL
standard.

Log Translation utility (dbtran)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 801

Option Description

-sr Places generated comments in the output file describing how SQL Remote distributes
operations to remote sites.

-t Controls whether triggers are included in the command file. By default, actions per-
formed by triggers are not included in the command file. If the matching trigger is in
the database, when the command file is run against the database the trigger performs
the actions automatically. Trigger actions should be included if the matching trigger
does not exist in the database against which the command file is to run.

-u userid,... Limits the output from the transaction log to include only specified users.

-x userid,... Limits the output from the transaction log to exclude specified users.

-y Replaces existing command files without prompting you for confirmation. If you
specify -q, you must also specify -y or the operation fails.

-z Includes transactions that were generated by triggers only as comments in the output
file.

transaction-log Specifies the log file to be translated. Cannot be used together with -c or -m options.

SQL-file Names the output file containing the translated information. For use with transaction-
log only.

Remarks
The dbtran utility takes the information in a transaction log and places it as a set of SQL statements and
comments into an output file. The utility can be run in the following ways:

● Against a database server When dbtran is run against a database server, the utility is a standard
client application. It connects to the database server using the connection string specified following the
-c option, and places output in a file specified with the -n option. DBA authority is required to run in this
way.

The following command translates log information from the server demo11 and places the output in a
file named demo.sql.

dbtran -c "ENG=demo11;DBN=demo;UID=DBA;PWD=sql" -n demo.sql
● Against a transaction log file When dbtran is run against a transaction log, the utility acts directly

against a transaction log file. You should protect your transaction log file from general access if you
want to prevent users from having the capability of running this statement.

dbtran demo.log demo.sql

When the dbtran utility runs, it displays the earliest log offset in the transaction log. This can be an effective
method for determining the order in which multiple log files were generated.

Database administration utilities

802 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

If -c is used, dbtran attempts to translate the online transaction log file, and all the offline transaction log
files in the same directory as the online transaction log file. If the directory contains transaction log files for
more than one database, dbtran may give an error. To avoid this problem, ensure that each directory contains
transaction log files for only one database.

A transaction can span multiple transaction logs. If transaction log files contain transactions that span logs,
translating a single transaction log file (for example dbtran demo.log) can cause the spanning
transactions to be lost. In order for dbtran to generate complete transactions, use the -c or -m options with
the transaction log files in the directory. See “Recovering a database with multiple transaction
logs” on page 893.

You can access the Log Translation utility in the following ways:

● From Sybase Central, using the Translate Log File Wizard.

● At a command prompt, using the dbtran command. This is useful for incorporation into batch or command
files.

Exit codes are 0 (success) or non-zero (failure). See “Software component exit codes” [SQL Anywhere Server
- Programming].

Log Translation utility (dbtran)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 803

Ping utility (dbping)
Locates database servers and tests connections to databases.

Syntax
dbping [options]

Option Description

@data Reads in options from the specified environment variable or configuration file. See
“Using configuration files” on page 737.

If you want to protect passwords or other information in the configuration file, you can
use the File Hiding utility to obfuscate the contents of the configuration file. See “File
Hiding utility (dbfhide)” on page 768.

-c "key-
word=val-
ue; ..."

Specifies connection parameters that control the behavior of dbping. If connection pa-
rameters are not specified, connection parameters from the SQLCONNECT environment
variable are used, if set. See “Connection parameters” on page 262.

If you use the following command to start dbping and there is a database server named
demo11 already running, dbping attempts to connect to a database named demo. If no
such database is running on that database server, the database server attempts to load
demo.db. If no server called demo11 is found, dbping attempts to autostart one.

dbping -d -c "UID=DBA;PWD=sql;ENG=demo11;DBN=demo;DBF=samples-dir
\demo.db"

For information about samples-dir, see “Samples directory” on page 390.

-d Pings the database, not just the server.

If you supply the -d option, then dbping reports success only if it connects to the server
and also connects to a database. If you do not supply the -d option, then dbping reports
success if it finds the server specified by the -c option.

For example, if you have a database server named blair running the sample database, the
following succeeds:

dbping -c "ENG=blair;DBN=demo"

The following command fails, with the message Ping database failed --
specified database not found:

dbping -c "ENG=blair;DBN=demo" -d

-en Specifies that you want dbping to exit with a failed return code when NULL is returned
for any of the properties specified. By default, dbping prints NULL when the value for a
property specified by -pc, -pd, or -ps is unknown, and exits with a success return code.
This option can only be used in conjunction with -pc, -pd, and -ps.

Database administration utilities

804 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-l library Specifies the library to use (without its file extension). This option avoids the use of the
ODBC driver manager, and so is useful on Unix operating systems.

For example, the following command loads the ODBC driver directly:

dbping -m -c "DSN=SQL Anywhere 11 Demo" -l dbodbc11

On Unix, if you want to use a threaded connection library, you must use the threaded
version of the Ping utility, dbping_r.

-m Establishes a connection using ODBC. By default, the utility connects using the embed-
ded SQL interface.

-o filename Writes output messages to the named file.

-pc proper-
ty,...

Displays the specified connection properties. Supply the properties in a comma-separated
list. You must specify enough connection information to establish a database connection
if you use this option. See “Connection properties” on page 598.

For example, the following command displays the fire_triggers option setting, which is
available as a connection property.

dbping -c ... -pc fire_triggers

-pd proper-
ty[@db-
name],...

Displays the specified database properties. Supply the properties in a comma-separated
list. See “Database properties” on page 639.

For example, the following command displays the page size in use by the database:

dbping -c ... -pd PageSize

Optionally, you can specify the name of a database running on the database server you
want to obtain the value from. For each property listed, if the database name is not speci-
fied by appending @db-name to the property, then the database name used for the pre-
vious property is used.

The following command displays the page size and collation of the database mydb:

dbping -c ... -pd PageSize@mydb,Collation

-ps proper-
ty,...

Displays the specified database server properties. Supply the properties in a comma-
separated list. You must specify enough connection information to establish a database
connection if you use this option. See “Database server properties” on page 624.

For example, the following command displays the number of licensed seats or processors
for the database server:

dbping -c ... -ps LicenseCount

-q Runs in quiet mode—messages are not displayed.

Ping utility (dbping)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 805

Option Description

-s Returns information about the performance of the network between the computer running
dbping and the computer running the database server. Approximate connection speed,
latency, and throughput are displayed. The -c option is usually required to specify the
connection parameters to connect to a database on the server. You can only use dbping -
s for embedded SQL connections. This option is ignored if -m or -l is also specified. By
default, dbping -s loops through the requests for at least one second for each statistic it
measures. A maximum of 200 connect and disconnect iterations are performed, regardless
of the time they take, to avoid consuming too many resources. On slower networks, it can
take several seconds to perform the minimum number of iterations for each statistic. The
performance statistics are approximate, and are more accurate when both the client and
server computers are fairly idle. See “Testing embedded SQL connection perform-
ance” on page 139.

-st time This option is the same as -s, except that it specifies the length of time, in seconds, that
dbping loops through the requests for each statistic it measures. This option allows more
accurate timing information to be obtained that -s. See “Testing embedded SQL connec-
tion performance” on page 139.

-z Displays the network communication protocols used to attempt connection, and other
diagnostic messages. This option is available only when an embedded SQL connection
is being attempted. That is, it cannot be combined with -m or -l.

Remarks
The dbping utility is a tool to help debug connection problems. It takes a full or partial connection string and
returns a message indicating whether the attempt to locate a server or database, or to connect, was successful.

The utility can be used for embedded SQL or ODBC connections. It cannot be used for jConnect (TDS)
connections.

Exit codes are 0 (success) or non-zero (failure). See “Software component exit codes” [SQL Anywhere Server
- Programming].

Database administration utilities

806 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Rebuild utility (rebuild)
Rebuilds a database file.

Syntax
rebuild old-database new-database [DBA-password]

Remarks
This batch file or shell script uses dbunload to rebuild old-database into new-database. Both database names
should be specified without extensions. An extension of .db is automatically added.

The DBA-password must be specified if the password for the DBA user in the old-database is not the initial
password sql.

Rebuild runs the dbunload command with the -an option.

You can also rebuild databases as part of the unload process using the Unload Database Wizard in Sybase
Central. See “Export data with the Unload Database Wizard” [SQL Anywhere Server - SQL Usage].

Exit codes are 0 (success) or non-zero (failure). See “Software component exit codes” [SQL Anywhere Server
- Programming].

This utility does not accept the @data parameter to read in options from a configuration file.

See also
● “Unload utility (dbunload)” on page 845
● “Initialization utility (dbinit)” on page 774
● “Interactive SQL utility (dbisql)” on page 786

Rebuild utility (rebuild)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 807

Script Execution utility (dbrunsql)
Allows you to execute SQL commands and run command files against databases running on Windows
Mobile.

Syntax
dbrunsql [options] [SQL-script-file | SQL-command]

Option Description

-c "keyword=value; ..." Specify connection parameters. See “Connection parame-
ters” on page 262.

-d Write data exported from result sets to the output file. If you
do not specify -d, then all dbrunsql output is written to the
output file.

-e [c | p | s] Control the behavior when an error is encountered while
executing statements. By default, dbrunsql prompts the user
when an error occurs.

● c Ignore the error and continue executing statements.

● p Prompt the user to see if the user wants to continue.

● s Stop executing statements.

-f [f | a] Specifies the data format dbrunsql uses to export result sets.
You can specify one of the following values:

● a Use ASCII format when exporting data.

● f Use FIXED format when exporting data. This is the
default format.

-g [+ | -] Prevent the GUI from appearing. By default, the dbrunsql
GUI appears.

-o filename Writes output messages to the named file.

-q Suppress output messages. This is useful only if you start
Interactive SQL with a command or command file. Speci-
fying this option does not suppress error messages, but it
does suppress the following:

● warnings and other non-fatal messages
● the printing of result sets

Database administration utilities

808 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-qc Close the dbrunsql window once the command or script file
has been executed.

-s number Specify the maximum number of bytes fetched per column
when you are exporting result sets using the FIXED format.
The default value is 255.

-v Include all lines of each SQL statement in the dbrunsql out-
put. Otherwise, when you execute a script file, the number
of the line that is currently being executed appears.

Remarks
The dbrunsql utility allows you to execute SQL commands or run command files against a database. The
SQL Anywhere Script Execution utility (dbrunsql) is only supported on Windows Mobile.

Script Execution utility (dbrunsql)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 809

Server Enumeration utility (dblocate)
Locates database servers on the TCP/IP network.

Syntax
dblocate [options] [server-name]

Option Description

@data Reads in options from the specified environment variable
or configuration file. See “Using configuration
files” on page 737.

If you want to protect passwords or other information in
the configuration file, you can use the File Hiding utility
to obfuscate the contents of the configuration file. See
“File Hiding utility (dbfhide)” on page 768.

-d Lists the server name and address, for each server found,
followed by a comma-separated list of databases running
on that server. If the list exceeds 160 characters, it is trun-
cated and ends with an ellipsis (...).

Databases that are running on SQL Anywhere 9.0.2 and
earlier database servers or that were started with the -dh
database option are not listed. See “-dh database op-
tion” on page 251.

-dn database-name Lists the server name and address, for servers running a
database with the specified name. If the list exceeds 160
characters, it is truncated and ends with an ellipsis (...).

Databases that are running on SQL Anywhere 9.0.2 and
earlier database servers or that were started with the -dh
database option are not listed. See “-dh database op-
tion” on page 251.

-dv Displays the server name and address, for each server
found, listing each database running on that server on a
separate line. The list is not truncated, so this option can
be used to reveal lists that are truncated when the -d option
is used.

Databases that are running on SQL Anywhere 9.0.2 and
earlier database servers or that were started with the -dh
database option are not listed. See “-dh database op-
tion” on page 251.

Database administration utilities

810 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-n Lists IP addresses in the output, rather than computer
names. This may improve performance since looking up
computer names may be slow.

-o filename Writes output messages to the named file.

-p port-number Displays the server name and address only for servers us-
ing the specified TCP/IP port number. The TCP/IP port
number must be between 1 and 65535.

-q Runs in quiet mode—messages are not displayed.

-s name Displays the server name and address only for servers
with the specified server name. If this option is used, the
-ss option should not be used (if both options are used, it
is likely that no matching servers will be found).

-ss substr Displays the server name and address only for servers that
contain the specified substring anywhere in the server
name. If this option is used, the -s option should not be
used (if both options are used, it is likely that no matching
servers will be found).

-v Displays the full server name. By default, dblocate trun-
cates database server names that are longer than 40 bytes.

Version 9.0.2 and earlier clients, including dblocate, can-
not connect to version 10.0.0 and later database servers
with names longer than 40 bytes.

server-name Lists only database servers running on the computer with
the specified IP address or host name. For example, the
following command looks for servers on the computer
jfrancis:

dblocate jfrancis

The hostname or IP address can be of any format, regard-
less of whether -n is specified. For example, consider a
server is running on myhost.mycompany.com, which has
an IP address of 1.2.3.4. To list only servers running on
this computer from any computer with the mycompa-
ny.com domain, any of dblocate myhost, dblo-
cate myhost.mycompany.com, or dblocate
1.2.3.4 can be used.

Server Enumeration utility (dblocate)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 811

Remarks
The Server Enumeration utility (dblocate) locates any SQL Anywhere database servers running over TCP/
IP on the immediate network, and prints a list of the database servers and their addresses. This list includes
alternate server names. See “-sn database option” on page 257.

Depending on your network, it may take several seconds for dblocate to prints its results.

Note
If a database server is using a TCP/IP port other than 2638 on Mac OS X, dblocate will not find it, even if
the -p option is used to specify the TCP/IP port. See “ServerPort protocol option [PORT]” on page 321.

Exit codes are 0 (success) or non-zero (failure). See “Software component exit codes” [SQL Anywhere Server
- Programming].

The database server can register itself with an LDAP server, which keeps track of all servers in an enterprise.
This allows both clients and dblocate to find them, regardless of whether they are on a WAN or LAN, through
firewalls, and without specifying an IP address. LDAP is only used with TCP/IP, and only on network servers.
See “Connecting using an LDAP server” on page 146.

If the same database server name is found more than once, dblocate displays the IP address of each host,
even if the -n option is not specified. The same server name could be found in cases where a server is running
on a computer with multiple IP addresses (for example, if the computer has multiple network cards), or if a
network server is running on a remote computer and a personal server with the same name is running on the
local computer.

Database administration utilities

812 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Server Licensing utility (dblic)
Applies your software license to your SQL Anywhere database server or MobiLink server.

Syntax
dblic [options] license-file "user-name" "company-name"

Option Description

@data Reads in options from the specified environment variable or configuration file. See “Using
configuration files” on page 737.

If you want to protect passwords or other information in the configuration file, you can use
the File Hiding utility to obfuscate the contents of the configuration file. See “File Hiding
utility (dbfhide)” on page 768.

-l type Specifies the license type that matches the licensing model described in your software license
agreement. The following license types are supported:

● Perseat A perseat license restricts the number of client connections to the database
server. With perseat licensing, the network database server uses all CPUs available on
the computer unless the network database server is limited by the -gt option or by the
edition you are running. The personal server is limited to one CPU.

● Processor A processor license restricts the number of separate physical processors
that can be used by the database server. The number of CPUs that can be used by the
database server may be further limited by the -gt option or by the SQL Anywhere edition
you are running. The personal database server is limited to one CPU.

The database server treats each physical processor as a CPU for the purposes of this
license type, and does not treat a dual core or hyperthreaded processor as multiple pro-
cessors. When you have a processor license, there are no restrictions on the number of
client connections to the database server.

-o file-
name

Writes output messages to the named file.

-q Runs in quiet mode—messages are not displayed.

-u li-
cense-
number

Specifies the total number of users or processors for the license. If you are adding extra
licenses, this is the total, not the number of additional licenses.

license-
file

Specifies the path and file name of the server executable or license file for the personal
database server, network database server, or MobiLink server you are licensing.

You can view the current license information for a server executable by entering only the
license file name.

Server Licensing utility (dblic)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 813

Option Description

user-
name

Specifies the user name for the license. This name appears on the database server messages
window on startup. If there are spaces in the name, enclose it in double quotes.

company-
name

Specifies the company name for the license. This name appears on the database server mes-
sages window on startup. If there are spaces in the name, enclose it in double quotes.

Remarks

The Server Licensing utility adds licensed users or licensed processors to your SQL Anywhere database
server or MobiLink server. You must use this utility only in accordance with your license agreement to
license the number of users or processors to which you are entitled. Running this command does not grant
you license. The number of CPUs that the database server can use may also be affected by your SQL
Anywhere edition or the -gt server option. See:

● “Editions and licensing” [SQL Anywhere 11 - Introduction]
● “-gt server option” on page 196

This utility also modifies the user and company names displayed at startup by the personal or network
database servers, and the MobiLink server.

You can also use this utility to view the current license information for a personal or network database server
by entering only the license file name.

Licensing information is stored in a .lic file in the same directory as the server executable. The server looks
for a .lic file that has the same base file name as the executable that is being run. For example, if the database
server executable was named myserver.exe, then the server looks for a license file named myserver.lic. By
default, the following names are used:

Executable License file name

SQL Anywhere personal database server (dbeng11) dbeng11.lic

SQL Anywhere network database server (dbsrv11) dbsrv11.lic

MobiLink server (mlsrv11) mlsrv11.lic

When you attempt to start a server, if the corresponding .lic file is not available, then the server does not
start. The license file is created by the SQL Anywhere installation program. The dblic utility only modifies
existing licenses; it does not create new license files.

Exit codes are 0 (success) or non-zero (failure). See “Software component exit codes” [SQL Anywhere Server
- Programming].

On Unix, the database server executable is not writable by default, so using the Server Licensing (dblic)
utility will fail. Make sure the executable is writable (for example, using chmod +w) before you use the
Server Licensing utility.

For more information about SQL Anywhere licensing, visit http://www.sybase.com/detail?id=1056242.

Database administration utilities

814 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1056242

Example
The following command, executed in the same directory as the database server executable, applies a license
for 50 users, in the name of Sys Admin, for company My Co, to a Microsoft Windows network database
server. The command must be entered all on one line:

dblic -l perseat -u 50 dbsrv11.lic "Sys Admin" "My Co"

The following messages appear on the screen to indicate the success of the license:

Licensed nodes: 50
User: Sys Admin
Company: My Co

The following command returns information about the license for a database server:

dblic dbsrv11.lic

Server Licensing utility (dblic)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 815

Service utility (dbsvc) for Linux
Creates, modifies, and deletes SQL Anywhere services.

Syntax
dbsvc [modifier-options] -d svc

dbsvc [modifier-options] -g svc

dbsvc [modifier-options] -l

dbsvc [modifier-options] -status svc

dbsvc [modifier-options] -u svc

dbsvc [modifier-options] creation-options -w svc details

dbsvc [modifier-options] -x svc

details:

full-executable-path [options]

Major option Description

-d service-name Removes the named service from the list of services. If you supply -y, the service is
deleted without confirmation.

-g service-name Lists the definition of the service.

-l Lists the available SQL Anywhere services.

-u service-name Starts a service named service-name.

-w executable
parameters

Creates a new service, or overwrites one if one of the same name exists. If you supply
-y, the existing service is overwritten without confirmation.

You must supply parameters appropriate for the service you are creating.

See:

● dbsrv11 and dbeng11 “The SQL Anywhere database server” on page 156

● mlsrv11 “MobiLink server options” [MobiLink - Server Administration]

● dbmlsync “dbmlsync syntax” [MobiLink - Client Administration]

● dbremote “Message Agent (dbremote)” [SQL Remote]

-x service-name Stops a service named service-name.

Database administration utilities

816 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Creation op-
tion

Description

-a acct All services run under a Linux account. If you run under an account you have created,
you must name the account with the -a option.

The Login as a Service privilege is required for all accounts other than the daemon ac-
count.

-as All services run under a Linux account. When -as is specified, the service runs under the
Linux daemon account. No password is required. One of -a or -as must be used.

-od Specify the location of the system information file (if required).

-pr Set the nice level for the Linux process.

-rl Specify the runlevels on which to start the service.

-rs Specify service dependency when creating a service.

-s Set the startup behavior for SQL Anywhere services. You can set startup behavior to
Automatic or Manual. The default is Manual.

-status Return the state the service is running.

-t type Specifies the type for this service. You can choose from the following types:

● Network SQL Anywhere network database server (dbsrv11). See “The SQL Any-
where database server” on page 156.

● Standalone SQL Anywhere personal database server (dbeng11). See “The SQL
Anywhere database server” on page 156.

● DBRemote SQL Remote Message Agent (dbremote). See “Message Agent (dbre-
mote)” [SQL Remote].

● MobiLink MobiLink server (mlsrv11). See “mlsrv11 syntax” [MobiLink - Server
Administration].

● dbmlsync MobiLink synchronization client (dbmlsync). See “dbmlsync syntax”
[MobiLink - Client Administration].

The default setting for all service types is Standalone.

Service utility (dbsvc) for Linux

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 817

Modifier option Description

-cm Displays the command used to create the service. This option can be used to output
the creation command to a file, which can then be used to add the service on another
computer or restore a service to its original state if changes have been made to it. You
must specify the -g option or -l option with -cm or the command fails. Specifying -g
displays the creation command for the specified service, while specifying -l displays
the creation command for all services.

-q Suppress messages to the console. If you specify this option when modifying or de-
leting an existing service, you must also specify -y or the operation will fail.

-y Automatically performs the action without prompting for confirmation. This option
can be used with the -w or -d options. If you specify -q when modifying or deleting an
existing service, you must also specify -y or the operation will fail.

Remarks
A service runs a database server or other application with a set of options. This utility provides a
comprehensive way of managing SQL Anywhere services on Linux.

Because services typically run in a different environment, it is recommended that you fully qualify the name
of the database file when creating a service. It is also recommended that you do not use spaces in data source
names.

Like most Linux services, the dbsvc utility creates service files in /etc/init.d. The naming convention for the
service is SA_service-name. For example, if you created a service named myserv, you could issue the
following command to start the service:

/etc/init.d/SA_myserv start

The following command gets the status of the service:

/etc/init.d/SA_myserv status

The following command returns usage information for the service:

/etc/init.d/SA_myserv

Example
Create a personal server service called myserv, which starts the specified server with the specified
parameters. The server runs as the LocalSystem user:

dbsvc -as -w myserv -n myeng -c 8m "/tmp/demo.db"

Create a network server service called mynetworkserv. The server runs under the local account, and starts
automatically when the computer is restarted:

dbsvc -as -t network -w mynetworkserv -x tcpip -c 8m "/tmp/demo.db"

List all details about service myserv:

dbsvc -g myserv

Database administration utilities

818 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Delete the service called myserv, without prompting for confirmation:

dbsvc -y -d myserv

Create a service called mysyncservice:

dbsvc -as -t dbmlsync -o syncinfo.txt -w mysyncservice -c "/tmp/CustDB.db"

Generate the command to create the service_1 service and output it the console:

dbsvc -cm -g service_1

The console contains the following:

'dbsvc -t Standalone -as -y -w "service_1" -n'

Start a service using dbsvc:

dbsvc -u myserv

Use dbsvc to stop a service:

dbsvc -x myserv

Use dbsvc to obtain the status of a service:

dbsvc -status myserv

Service utility (dbsvc) for Linux

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 819

Service utility (dbsvc) for Windows
Creates, modifies, and deletes SQL Anywhere services.

Syntax
dbsvc [modifier-options] -d svc

dbsvc [modifier-options] -g svc

dbsvc [modifier-options] -l

dbsvc [modifier-options] -u svc

dbsvc [modifier-options] creation-options -w svc details

dbsvc [modifier-options] -x svc

details:

<full-executable-path> [options]

Major op-
tion

Description

@data Reads in options from the specified environment variable or configuration file. See “Using
configuration files” on page 737.

If you want to protect passwords or other information in the configuration file, you can
use the File Hiding utility to obfuscate the contents of the configuration file. See “File
Hiding utility (dbfhide)” on page 768.

-d service-
name

Removes the named service from the list of services. If you supply -y, the service is deleted
without confirmation.

-g service-
name

Lists the definition of the service, not including the password.

-l Lists the available SQL Anywhere services.

-u service-
name

Starts the service named service-name.

Database administration utilities

820 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Major op-
tion

Description

-w executa-
ble parame-
ters

Creates a new service, or overwrites one if one of the same name exists. If you supply -
y, the existing service is overwritten without confirmation.

You must supply the full path to the executable that you want to use as a service, as the
account under which the service is running may not have the appropriate SQL Anywhere
installation directory in its path.

You must supply parameters appropriate for the service you are creating.

See:

● dbsrv11 and dbeng11 “The SQL Anywhere database server” on page 156

● mlsrv11 “MobiLink server options” [MobiLink - Server Administration]

● dbmlsync “dbmlsync syntax” [MobiLink - Client Administration]

● dblsn “Listener utility for Windows devices” [MobiLink - Server-Initiated Syn-
chronization]

● dbremote “Message Agent (dbremote)” [SQL Remote]

● dbns “Broadcast Repeater utility (dbns11)” on page 745

● dbltm “Log Transfer Manager utility (dbltm)” on page 794

● rshost “Relay Server State Manager” [MobiLink - Server Administration]

● RSOE “Outbound Enabler” [MobiLink - Server Administration]

● SAVSSWriter “Using the SQL Anywhere Volume Shadow Copy Service
(VSS)” on page 884

-x service-
name

Stops the service named service-name.

Creation
option

Description

-a acct Names the Microsoft Windows account. All services run under a Microsoft Windows ac-
count. If you run under an account you have created, you must name the account with the
-a option and supply a password with the -p option.

The Login as a Service privilege is required for all accounts other than the LocalSystem
account. If an account does not have the Login as a Service privilege enabled, you are
prompted to enable it. If the -y option is also specified, dbsvc attempts to grant the Login
as a Service privilege without prompting you. If the -q option is specified without the -y
option, you are not prompted to grant the Login as a Service privilege and dbsvc fails.

Service utility (dbsvc) for Windows

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 821

Creation
option

Description

-as All services run under a Microsoft Windows account. When -as is specified, the service
runs under the Microsoft Windows LocalSystem account. No password is required. One of
-a or -as must be used.

-i Displays an icon that you can double-click to display the database server messages window.

-p Use this option with the -a option to specify the password for the account under which the
service runs.

-rg de-
penden-
cy,...

Specifies one or more load ordering groups that must be started before the service being
created is allowed to start.

-rs de-
penden-
cy,...

Specifies that all the services in the list must have started before the service being created
is allowed to start.

-s startup Sets startup behavior for SQL Anywhere services. You can set startup behavior to Auto-
matic, Manual, or Disabled. The default is Manual.

-sd de-
scription

Use this option to provide a description of the service. The description appears in the Win-
dows Service Manager.

-sn name Use this option to provide a name for the service. This name appears in the Windows Service
Manager. If you do not specify the -sn option, the default service name is SQL Anywhere
- svc. For example, the following service is named SQL Anywhere - myserv by default.

dbsvc -as -w myserv
"c:\Program Files\SQL Anywhere 11\bin32\dbeng11.exe"

To have the service name myserv appear in the Windows Service Manager, you need to
execute the following (entered all on one line):

dbsvc -as -sn myserv -w myserv
"c:\Program Files\SQL Anywhere 11\bin32\dbeng11.exe"

Database administration utilities

822 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Creation
option

Description

-t type Specifies the type for this service. You can choose from the following types:

● DBLTM SQL Anywhere Log Transfer Manager (LTM). You can also specify
LTM for this service type. See “Log Transfer Manager utility (dbltm)” on page 794.

● dbmlsync MobiLink synchronization client (dbmlsync). See “dbmlsync syntax”
[MobiLink - Client Administration].

● DBNS Broadcast Repeater (dbns11). See “Broadcast Repeater utility
(dbns11)” on page 745.

● dblsn Listener utility (dblsn). See “Listener utility for Windows devices” [MobiLink
- Server-Initiated Synchronization].

● DBRemote SQL Remote Message Agent (dbremote). See “Message Agent (dbre-
mote)” [SQL Remote].

● MobiLink MobiLink server (mlsrv11). See “mlsrv11 syntax” [MobiLink - Server
Administration].

● Network SQL Anywhere network database server (dbsrv11). See “The SQL Any-
where database server” on page 156.

● rshost “Relay Server State Manager” [MobiLink - Server Administration]

● RSOE “Outbound Enabler” [MobiLink - Server Administration]

● Standalone SQL Anywhere personal database server (dbeng11). See “The SQL
Anywhere database server” on page 156.

● vss The Volume Shadow Copy Service (VSS). See “Using the SQL Anywhere Vol-
ume Shadow Copy Service (VSS)” on page 884.

The default setting for all service types is Standalone.

Service utility (dbsvc) for Windows

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 823

Modifier
option

Description

-cm Displays the command used to create the service. This option can be used to output the creation
command to a file, which can then be used to add the service on another computer or restore
a service to its original state if changes have been made to it. You must specify the -g option
or -l option with -cm or the command fails. Specifying -g displays the creation command for
the specified service, while specifying -l displays the creation command for all services.

If the specified service does not exist, the command to delete the service is generated. For
example, if service_1 does not exist on the computer, dbsvc -cm -g service_1 would
return the following command to delete the service_1 service:

dbsvc -y -d "service_1"

If the service does not use the LocalSystem account, there is no way to retrieve the password,
so it is not included in the command that is generated. If you created the service with -a
user -p password, only -a user is included in the output.

-o log-
file

Writes output from the Service utility (dbsvc) to the specified file. The -o option must occur
before the -d, -g, -l, -u, and -x options. When you specify the -o option for both dbsvc and
for the executable that you are running as a service (for example, the database server), log
files are created for both. For example:

dbsvc -o out1.txt -y -as -w mydsn install-dir\bin32\dbsrv11 -n mysrv
-o c:\out2.txt

In this case, the output from dbsvc is logged to out1.txt, while the output from the database
server is logged to c:\out2.txt.

-q Do not display messages in the database server messages window. If you specify -q, it is also
recommended that you specify a file where messages are logged using the -o option. If you
specify this option when modifying or deleting an existing service, you must also specify -y
or the operation will fail.

-y Automatically performs the action without prompting for confirmation. This option can be
used with the -w or -d options. If you specify -q when modifying or deleting an existing
service, you must also specify -y or the operation will fail.

Remarks
A service runs a database server or other application with a set of options. This utility provides a
comprehensive way of managing SQL Anywhere services on Windows. You must be a member of the
Administrators group on the local computer to use the Service utility.

You can access the Service utility in the following ways:

● From Sybase Central, using the Create Service Wizard. See “Creating Windows
services” on page 65.

● At a command prompt, using the dbsvc command.

Database administration utilities

824 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Exit codes are 0 (success) or non-zero (failure). See “Software component exit codes” [SQL Anywhere Server
- Programming].

See also
● “Understanding Windows services” on page 64

Example
Create a personal server service called myserv, which starts the specified server with the specified
parameters. The server runs as the LocalSystem user:

dbsvc -as -w myserv "c:\Program Files\SQL Anywhere 11\bin32\dbeng11.exe" -n
myeng -c 8m "c:\temp\mysample.db"

Create a network server service called mynetworkserv. The server runs under the local account, and starts
automatically when the computer is restarted:

dbsvc -as -s auto -t network -w mynetworkserv "c:\Program Files\SQL Anywhere
11\bin32\dbsrv11.exe"
-x tcpip -c 8m "c:\temp\mysample.db"

List all details about service myserv:

dbsvc -g myserv

Delete the service called myserv, without prompting for confirmation:

dbsvc -y -d myserv

Create a service dependent on the Workstation service and the TDI group:

dbsvc -rs lanmanworkstation -rg TDI -w ...

Create a service called mysyncservice:

dbsvc -as -s manual -t dbmlsync -w mysyncservice "c:\Program Files\SQL
Anywhere 11\bin32\dbmlsync.exe"
-c "SQL Anywhere 11 CustDB"

Generate the command to create the service_1 service and output it to a file called restoreservice.bat:

dbsvc -cm -g service_1 > restoreservice.bat

The restoreservice.bat file contains the following:

dbsvc -t Standalone -s Manual -as -y -w "service_1"
"c:\Program Files\SQL Anywhere 11\bin32\dbeng11.exe"

Create a MobiLink listener service that is started manually:

dbsvc -as -i -w myListener "c:\Program Files\SQL Anywhere 11\bin32\dblsn.exe"
"@c:\temp\dblsn.opt"

Start the myListener service:

dbsvc -u myListener

Stop the myListener service:

Service utility (dbsvc) for Windows

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 825

dbsvc -x myListener

Create a Volume Shadow Copy Service (VSS) service that is started automatically when the database server
starts:

dbsvc -as -s Automatic -t vss -w SAVSSWriter "c:\Program Files\SQL Anywhere
11\bin32\dbvss11.exe"

Database administration utilities

826 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere Console utility (dbconsole)
Provides administration and monitoring facilities for database server connections.

Syntax
dbconsole [options]

Option Description

@data Use this option to read in options from the specified environment variable or con-
figuration file. See “Using configuration files” on page 737.

If you want to protect passwords or other information in the configuration file, you
can use the File Hiding utility to obfuscate the contents of the configuration file. See
“File Hiding utility (dbfhide)” on page 768.

-c "keyword=val-
ue; ..."

Specify connection parameters. See “Connection parameters” on page 262.

-datasource DSN-
name

Specify an ODBC data source to connect to. You do not need to be using the iA-
nywhere JDBC driver to use this option.

-host hostname Specify the hostname or IP address of the computer on which the database server is
running. You can use the name localhost to represent the current computer.

-port port-number Specify the port number on which the database server is running. The default port
number for SQL Anywhere is 2638.

Remarks
The SQL Anywhere Console allows you to monitor the server from a client computer. This utility is also
called the Network Server Monitor. You can use it to track who is logged on to a database server elsewhere
on your network. You can also display both server and client statistics on your local client screen, disconnect
users, and configure the database server. The SQL Anywhere Console can display information for multiple
connections.

To disconnect a user from a database

1. Connect to the database from the SQL Anywhere Console.

2. In the User ID column, right-click the user and choose Disconnect.

You can configure the columns that appear in the SQL Anywhere Console in the Options window, which
can be accessed by choosing File » Options. See “Using the SQL Anywhere Console
utility” on page 729.

The SQL Anywhere Console is available on all supported platforms except Windows Mobile, AIX, HP-UX,
and HP-UX Itanium. On these platforms, you can use the connection-level, server-level, and database-level
properties to obtain information or you can monitor your server from a computer running an operating system
that supports the SQL Anywhere Console (such as Windows, Mac OS X, or Linux).

SQL Anywhere Console utility (dbconsole)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 827

For more information about obtaining property values, see “Connection, database, and database server
properties” on page 597.

Database administration utilities

828 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Start Server in Background utility (dbspawn)
Starts a database server in the background.

Syntax
dbspawn [options] server-command

Option Description

@data Read in options from the specified environment variable or configuration file. If both exist
with the same name, the environment variable is used. The Start Server in Background utility
(dbspawn) does not expand the contents of configuration files specified with the @data option.
See “Using configuration files” on page 737.

If you want to protect passwords or other information in the configuration file, you can use the
File Hiding utility to obfuscate the contents of the configuration file. See “File Hiding utility
(dbfhide)” on page 768.

-f Force dbspawn to start a database server, even if a default database server already exists. If a
database server is running but is not the default, dbspawn starts another server.

If a database server is already running with the same name as the database server that dbspawn
is attempting to start, dbspawn returns success without starting a new server.

-p Specify the operating system process ID of the database server process. For example:

dbspawn -p dbeng11 -n newserver

reports a message of the following form to a command prompt:

New process ID is 306

-q Run in quiet mode—messages are not displayed.

server-
com-
mand

Specify the command line for starting the database server. See “The SQL Anywhere database
server” on page 156.

Remarks
The dbspawn utility is provided to start a server in the background. dbspawn starts the server in the
background and returns with an exit code of 0 (success) or non-zero (failure). If a database server is already
running on the same computer, dbspawn does not start the new server and reports failure. Otherwise, dbspawn
does not return until the database server has completed initialization and is ready to accept requests.

For more information about exit codes, see “Software component exit codes” [SQL Anywhere Server -
Programming].

The dbspawn utility is useful for starting a server from a batch file, especially when subsequent commands
in the batch file require a server that is accepting requests.

Start Server in Background utility (dbspawn)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 829

If the specified path includes at least one space, you must enclose the path in one set of double quotes. For
example,

dbspawn dbeng11 "c:\my databases\mysalesdata.db"

If the specified path does not contain spaces, then quotes are not required.

Database administration utilities

830 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Stop Server utility (dbstop)
Stops a database or database server.

Syntax
dbstop [options] [server-name]

Option Description

@data Read in options from the specified environment variable or configuration file. See
“Using configuration files” on page 737.

If you want to protect passwords or other information in the configuration file, you can
use the File Hiding utility to obfuscate the contents of the configuration file. See “File
Hiding utility (dbfhide)” on page 768.

-c "key-
word=val-
ue; ..."

Specify a connection string. When stopping a network server, the connection string must
include a user ID that has permissions to stop the server. By default, DBA authority is
required on the network server, and all users can shut down a personal server, but the -
gk server option can be used to change this.

If you supply connection parameters, do not supply a server name as well. See “Con-
nection parameters” on page 262, “Unconditional connection parameter
[UNC]” on page 298, and “-gk server option” on page 191.

-d Do not stop the database server. Instead, only stop the database specified in the con-
nection string.

-o filename Write output messages to the named file.

-q Run in quiet mode—messages are not displayed.

-x Do not stop the server if there are still active connections to the server. Including this
option prevents dbstop from prompting for confirmation if there are active connections.

-y Stop the server even if there are still active connections to the server. This is equivalent
to including Unconditional=YES in the connection parameters.

server-name Specify the name of a database server running on the current computer. The database
server must be started so that no permissions are required to shut it down. The personal
database server starts in this mode by default. For the network database server, you must
supply the -gk all option. See “-gk server option” on page 191.

If you supply a server name, do not supply connection parameters as well.

Remarks
The Stop Server utility stops a database server. You can use the -d option to stop a specified database.

Stop Server utility (dbstop)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 831

The Stop Server utility can only be run at a command prompt. In windowed environments, you can stop a
database server by clicking Shut Down on the database server messages window.

Options let you control whether a server is stopped, even if there are active connections, and whether to stop
a server or only a database.

The behavior of dbstop can be controlled if there are active connections on a server. If there are active
connections, dbstop provides a prompt asking if you want to shut down the server. The -x and -y options
can be used to change this behavior.

If dbstop is able to stop the database server, dbstop does not complete until all databases have stopped
running, and the database server has been stopped enough so that another server could be started with the
same name and databases. When dbstop successfully completes, the database server process may still be
running, and some of its resources, such as the output file specified by the -o server option, may still be in
use.

Exit codes are 0 (success) or non-zero (failure). See “Software component exit codes” [SQL Anywhere Server
- Programming].

If you want to use the SQLCONNECT environment variable with dbstop, you should specify the -c option.
Otherwise, you can get unexpected results.

Example
You are running the server named myserver without a database. To stop the server, specify the utility database
as a DatabaseName (DBN) connection parameter:

dbstop -c "UID=DBA;PWD=sql;ENG=myserver;DBN=utility_db"

You are running the server named myserver with the database demo.db started. To stop the server and
database:

dbstop -c "UID=DBA;PWD=sql;ENG=myserver"

You are running a personal server named myserver. To stop the server and databases even if there are
connections:

dbstop -y myserver

You are running a server named myserver with the database demo.db. To stop only the database named
demo, but not other databases or the server itself, execute the following command:

dbstop -c "UID=DBA;PWD=sql;ENG=myserver;DBN=demo" -d

Database administration utilities

832 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Support utility (dbsupport)
Sends information about errors and software usage to iAnywhere Solutions.

Syntax
dbsupport [options] operation [operation-specific-option]

dbsupport configuration-options

Option Description

@data Read in options from the specified environment variable or configuration file. See “Using
configuration files” on page 737.

If you want to protect passwords or other information in the configuration file, you can use
the File Hiding utility to obfuscate the contents of the configuration file. See “File Hiding
utility (dbfhide)” on page 768.

-o filename Send output to the specified file.

-q Display only critical messages.

Operation Description

-e configuration-option Display the setting for the specified configuration op-
tion. For example, suppose you ran the following com-
mand to configure dbsupport to prompt when possible:

dbsupport -cc promptdefy

When you run the command dbsupport -ecc, the
following setting is returned:

-cc "promptdefy"

-is submission-ID [-rr N] Check the status of a crash report that has been submitted
to iAnywhere Solutions.

For example, the following command inquires about the
status of submission ID 66:

dbsupport -is 66

-iu [-r N] Check for updates to your build of SQL Anywhere.

You can also check for updates using Interactive SQL
and Sybase Central. See “Checking for software up-
dates” on page 732.

Support utility (dbsupport)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 833

Operation Description

-lc Generate a list of all crash reports that have not been
submitted to iAnywhere Solutions. The report names
listed can be used with the -sc option.

-ls Generate a list of submission IDs for all reports that have
been submitted to iAnywhere Solutions. For example:

dbsupport -ls

This returns information similar to the following:

Submission ID: 4
Minicore dump 20051220_133828_32116
reported: Wed Mar 15 16:31:56 2006
Submission ID: 98
Minicore dump 20051229_221211_3221
reported: Wed Mar 22 16:33:26 2006

-pc filename Display crash report information. You can use this op-
tion to view information before it is submitted to iAny-
where Solutions.

-pd Display the diagnostic information that has been collec-
ted. You can use this option to view information before
it is submitted to iAnywhere Solutions.

-ps submission-ID Display information about a specific report that has been
submitted to iAnywhere Solutions. For example:

dbsupport -ps 4

This returns information about submission 4:

Minicore dump 20051220_133828_32116
reported: Wed Mar 15 16:31:56 2006

-sa [-r number-of-submission-retries] Submit all crash report and diagnostic information stor-
ed in the diagnostic directory to iAnywhere Solutions.

-sc reportname [-r number-of-submission-re-
tries] [-nr | -rr N]

Submit a crash report and diagnostic information to iA-
nywhere Solutions. For example:

dbsupport -sc 20051220_133828_32116

Use the -lc option to see a list of reports that have not
been submitted.

Database administration utilities

834 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Operation Description

-sd [-r number-of-submission-retries] Submit only diagnostic information to iAnywhere Sol-
utions.

For more information about the diagnostic directory, see
“SADIAGDIR environment variable” on page 375.

Configuration option Description

-cc [autosubmit | no | promptDefY | prompt-
DefN]

Change the prompting behavior of dbsupport. You can
specify one of the following options:

● autosubmit Submit reports automatically.

● no Do not prompt for permission to submit re-
ports. Reports and feature statistics are not submit-
ted.

● promptDefY If possible, prompt for permission
to submit the report. If no answer is given, submit
the report.

● promptDefN If possible, prompt for permission
to submit the report. If no answer is given, do not
submit the report. This is the default behavior.

For example, if you are using embedded SQL Any-
where in an application, you may want to configure
the Support utility to not submit reports to iAny-
where Solutions.

If you specify this option, its value becomes the default
used by the Support utility. The setting is stored in the
dbsupport.ini file in the diagnostic directory.

The following command configures the Support utility
so that it does not submit reports and never prompts the
user to submit reports:

dbsupport -cc no

Support utility (dbsupport)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 835

Configuration option Description

-cd retry-delay Specify the retry delay, in seconds, for submitting a re-
port if the previous attempt is unsuccessful. The default
delay is 30 seconds.

If you specify this option, its value becomes the default
used by the Support utility. The setting is stored in the
dbsupport.ini file in the diagnostic directory.

The following dbsupport command specifies that failed
submissions should be retried every 3 seconds, up to a
maximum of 4 times before giving up:

dbsupport -cr 4 -cd 3

-ce email-address;email-server[:port][;user-
id:password]

Specify the address where an email is sent after a crash
occurs. The email is sent using the email-server SMTP
server. Optionally, you can specify the port that should
be used, and the user-id and password used to authen-
ticate with the SMTP server.

-cet Test the email settings specified by the -ce option.

Database administration utilities

836 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Configuration option Description

-ch crash-handler-program Specify a program that is called when a crash occurs.

If you specify this option, its value becomes the default
used by the Support utility. The setting is stored in the
dbsupport.ini file in the diagnostic directory.

The database server supports three substitution param-
eters that set up information that is passed to the crash-
handler-program:

● %F This parameter is replaced with the full path
to the location of the generated report file.

● %P This parameter is replaced with the name of
the program that generated the report. For example,
if a version 11 personal database server generates
the report, dbeng11 is returned.

● %S This parameter is replaced with the name of
the database server that was in use when the crash
or fatal error occurred. For example, if a database
server named Sample generated the report, Sample
is returned.

You can use $F, $P, and $S as alternatives to %F, %P,
and %S. Because different command shells interpret
the characters % and $, both are provided. For example,
on 4NT, %F is substituted with the value of the envi-
ronment variable F; $F can be used to avoid this sub-
stitution.

Suppose you have a crash handler program in c:
\test.bat that contains the following commands:

copy %1 c:\archives
echo %2

On Windows, the following command tells dbsupport
to launch c:\test.bat with two parameters when a crash
occurs. If the report is being submitted, this program is
called before the report is submitted.

dbsupport -ch "c:\test.bat \"%F\" parm2"

The substituted path specified by %F is sent to c:
\test.bat as the first parameter. The parameter parm2 is
sent to c:\test.bat as the second parameter. Note that
quotation marks must be used to specify a crash handler
program that takes arguments.

Support utility (dbsupport)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 837

Configuration option Description

In the example above, additional quotes were used
around the full path to the generated report file. To
avoid problems accessing the report file that dbsupport
is using, the crash handler program should make its own
copy of the report file.

-ch- Remove the crash handler settings that are stored in the
dbsupport.ini file. For example:

dbsupport -ch-

-cid customer-id Specify a string that identifies you in the submission
report. If you specify this option, its value becomes the
default used by the Support utility. The configuration
is stored in the dbsupport.ini file in the diagnostic di-
rectory.

The following examples specify a customer identifica-
tion string for dbsupport:

dbsupport -cid myid@company.com
dbsupport -cid "MyClientApp 1.0"

-cid- Remove the customer identification string from the
dbsupport.ini file. For example:

dbsupport -cid-

-cp { email-server [:port] | autodetect } Configure the HTTP proxy host and port used to submit
error reports.

On Windows, the syntax -cp autodetect is also suppor-
ted. If you specify this option, then if a proxy server and
port have been set using Internet Explorer, and they are
currently enabled, dbsupport configures its proxy serv-
er and port using the system setting. You can set the
proxy server and port in Internet Explorer on Windows
by choosing Tools » Options » Lan Settings.

-cp- Remove HTTP proxy host and port settings from the
dbsupport.ini file. For example:

dbsupport -cp-

Database administration utilities

838 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Configuration option Description

-cr number-of-submission-retries Specify the number of times a failed submission should
be retried.

If you specify this option, its value becomes the default
used by the Support utility. The setting is stored in the
dbsupport.ini file in the diagnostic directory.

The following dbsupport command specifies that failed
operations should be retried every 3 seconds, up to a
maximum of 4 times before giving up:

dbsupport -cr 4 -cd 3

Operation-specific option Description

-nr Specify that dbsupport does not check the server for the
status of the submission. For example, the following
command submits the report, but does not check for the
status of the new submission:

dbsupport -nr -sc 20051220_133828_32116

By default, dbsupport checks whether there is already
a fix for the problem being submitted.

-r number-of-submission-retries Specify the maximum number of times dbsupport
should try to send the submission. Specifying 0 means
retry indefinitely. The default value is 10. Specifying -
r overrides the -cr value stored in the dbsupport.ini file,
if one exists.

-rd retry-delay Specify the number of seconds dbsupport waits be-
tween attempts to resend the report. The default value
is 30. Specifying -rd overrides the -cd value stored in
the dbsupport.ini file, if one exists.

-rr number-of-submission-response-retries Specify the maximum number of times dbsupport
should try to obtain a submission response. Specifying
0 means retry indefinitely. The default value is 10.

Remarks
The Support utility (dbsupport) can be used for any of the following tasks:

● submit diagnostic information and crash reports to iAnywhere Solutions over the Internet

● submit feature statistics

Support utility (dbsupport)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 839

● list information about submitted and unsubmitted crash reports

● print information about submitted and unsubmitted crash reports

● inquire about the status of a submission

● inquire whether there are software updates available for your build of SQL Anywhere

● configure what is to be done when a fatal error (assertion/crash) is detected by a database or MobiLink
server

By default, dbsupport checks whether there is already a fix for the problem being submitted.

Information from any of the following applications can be sent as an error report if a fatal error occurs:

● Interactive SQL (dbisql)
● MobiLink Listener (dblsn)
● MobiLink server (mlsrv)
● network server (dbsrv11)
● personal server (dbeng11)
● QAnywhere agent (qaagent)
● Replication Agent (dbltm)
● SQL Anywhere client for MobiLink (dbmlsync)
● SQL Anywhere Console utility (dbconsole)
● SQL Remote (dbremote)
● Sybase Central

When a report is successfully submitted, it is assigned a unique submission ID. Reports are written to the
diagnostic directory.

Platform Default diagnostic directory location

Windows (except Windows Mobile) %ALLUSERSPROFILE%\Application Data\SQL Anywhere
11\diagnostics

Windows Mobile Directory where the executable is running.

Unix $HOME/.sqlanywhere11/diagnostics

For information about the diagnostic directory, see “SADIAGDIR environment variable” on page 375.

For more information about error reports and how they are submitted, see “Error reporting in SQL
Anywhere” on page 83.

The Support utility can also be configured to perform certain actions when a problem is detected. For
example, it can be configured to execute a specified handler program each time the database server submits
an error report. This feature is useful for adding your own custom actions to the error handling process.

As well, the Support utility can be configured to retry certain operations. For example, when submitting a
report, it could be configured to retry the operation again in 30 seconds, up to a maximum of 10 times. This
feature is useful for handling the case where the service may be temporarily unavailable.

Settings for the Support utility are stored in the dbsupport.ini file in the diagnostic directory.

Database administration utilities

840 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The operation-specific options are useful for overriding default behavior, including those that have been
saved in the dbsupport.ini file.

See also
● “SADIAGDIR environment variable” on page 375
● “Software component exit codes” [SQL Anywhere Server - Programming]

Support utility (dbsupport)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 841

Transaction Log utility (dblog)
Administers the transaction log for a database.

Syntax
dblog [options] database-file

Option Description

@data Read in options from the specified environment variable or configuration file. See “Using
configuration files” on page 737.

If you want to protect passwords or other information in the configuration file, you can use
the File Hiding utility to obfuscate the contents of the configuration file. See “File Hiding
utility (dbfhide)” on page 768.

-ek key Specify the encryption key for strongly encrypted databases directly in the command. If
you have a strongly encrypted database, you must provide the encryption key to use the
database or transaction log in any way. For strongly encrypted databases, you must specify
either -ek or -ep, but not both. The command will fail if you do not specify the correct key
for a strongly encrypted database.

-ep Specify that you want to be prompted for the encryption key. This option causes a window
to appear, in which you enter the encryption key. It provides an extra measure of security
by never allowing the encryption key to be seen in clear text. For strongly encrypted data-
bases, you must specify either -ek or -ep, but not both. The command will fail if you do not
specify the correct key for a strongly encrypted database.

-g n Use this option if you are using the Log Transfer Manager to participate in a Replication
Server installation. It can be used after a backup is restored, to set the generation number.
It performs the same function as the following Replication Server function:

dbcc settrunc('ltm', 'gen_id', n)

For information about generation numbers and dbcc, see your Replication Server docu-
mentation.

-il Use this option if you have stopped using the Log Transfer Manager to participate in a
Replication Server installation on this database, but continue to use SQL Remote or Mo-
biLink synchronization. It resets the Log Transfer Manager log offset that is kept for the
delete_old_logs option, allowing transaction logs to be deleted when they are no longer
needed.

It performs the same function as the following Replication Server function:

dbcc settrunc('ltm', 'ignore')

For information about dbcc, see your Replication Server documentation.

Database administration utilities

842 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-ir Use this option if you have stopped using SQL Remote on this database, but continue to
use the Log Transfer Manager or MobiLink synchronization. It resets the SQL Remote log
offset that is kept for the delete_old_logs option, allowing transaction logs to be deleted
when they are no longer needed.

-is Use this option if you have stopped using MobiLink synchronization on this database, but
continue to use the Log Transfer Manager or SQL Remote. It resets the MobiLink log offset
that is kept for the delete_old_logs option, allowing transaction logs to be deleted when
they are no longer needed.

-m mirror-
name

Specify the file name for a new transaction log mirror. If the database is not currently using
a transaction log mirror, it starts using one. If the database is already using a transaction
log mirror, it changes to using the new file as its transaction log mirror.

-n Stop using a transaction log, and stop using a transaction log mirror. Without a transaction
log, the database can no longer participate in data replication or use the transaction log in
data recovery. If a SQL Remote, Log Transfer Manager, or dbmlsync truncation offset
exists, the transaction log cannot be removed unless the corresponding ignore option (-il
for the Log Transfer Manager, -ir for SQL Remote, or -is for dbmlsync) is also specified.
You cannot stop using a transaction log if the database has auditing turned on (unless you
first turn auditing off).

-o filename Write output messages to the named file.

-q Run in quiet mode—messages are not displayed.

-r Maintain a single transaction log for databases that maintain a transaction log mirror.

-t log-name Specify the file name for a new transaction log. If the database is not currently using a
transaction log, it starts using one. If the database is already using a transaction log, it
changes to using the new file as its transaction log.

-x n Reset the transaction log current relative offset to n, so that the database can take part in
replication. This option is used for reloading SQL Remote consolidated databases. See
“Extracting remote databases to a reload file” [SQL Remote].

-z n Reset the transaction log starting offset to n, so that the database can take part in replication.
This option is used for reloading SQL Remote consolidated databases. See “Extracting
remote databases to a reload file” [SQL Remote].

Remarks
The dblog utility allows you to display or change the name of the transaction log or transaction log mirror
associated with a database. You can also stop a database from maintaining a transaction log or mirror, or
start maintaining a transaction log or mirror.

A transaction log mirror is a duplicate copy of a transaction log, maintained by the database in tandem.

Transaction Log utility (dblog)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 843

The name of the transaction log is first set when the database is initialized. The Transaction Log utility works
with database files. The database server must not be running on that database when the transaction log file
name is changed (or an error message appears).

The utility displays additional information about the transaction log, including the following:

● Version number
● The name of the transaction log file
● The name of the transaction log mirror file, if any
● The current relative offset

You can access the Transaction Log utility in the following ways:

● From Sybase Central, using the Change Log File Settings Wizard. See “Changing the location of a
transaction log” on page 16.

● From Interactive SQL, using the ALTER DATABASE dbfile ALTER LOG statement. See “ALTER
DATABASE statement” [SQL Anywhere Server - SQL Reference].

● At a command prompt, using the dblog command.

Exit codes are 0 (success) or non-zero (failure). See “Software component exit codes” [SQL Anywhere Server
- Programming].

Database administration utilities

844 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Unload utility (dbunload)
Unloads a database into a SQL command file.

Syntax
dbunload [options] [directory]

Option Description

@data Read in options from the specified environment variable or configuration file. See “Using
configuration files” on page 737.

If you want to protect passwords or other information in the configuration file, you can
use the File Hiding utility to obfuscate the contents of the configuration file. See “File
Hiding utility (dbfhide)” on page 768.

-ac "key-
word=val-
ue; ..."

Connect to an existing database and reload the data directly into it, combining the oper-
ations of unloading a database and reloading the results into an existing database. This
option is not supported on Windows Mobile.

For example, you could create a new database using the Initialization utility, and then
reload it using this option. This method is useful when you want to change initialization
options.

The following command (entered all on one line) loads a copy of the c:\mydata.db database
into an existing database file named c:\mynewdata.db:

dbunload -c "UID=DBA;PWD=sql;DBF=c:\mydata.db"
 -ac "UID=DBA;PWD=sql;DBF=c:\mynewdata.db"

If the original database was created using version 9 or earlier of SQL Anywhere and the
new database is not already running, you must provide a database server name in the -ac
option. For example:

dbunload -c "UID=DBA;PWD=sql;DBF=c:\mydata.db"
 -ac "UID=DBA;PWD=sql;DBF=c:\mynewdata.db;ENG=newserver"

If you use this option, no interim copy of the data is created on disk, so do not specify an
unload directory in the command. This provides greater security for your data.

Unload utility (dbunload)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 845

Option Description

-an database Combine the operations of unloading a database, creating a new database, and loading the
data using this option. This option is not supported on Windows Mobile or when rebuilding
version 9 or earlier databases on Mac OS X on Intel.

The options specified when you created the source database are used to create the new
database. However, you can change the initialization options as necessary by specifying
other supported dbunload options (such as -ap to change the page size or -et to enable
table encryption).

For example, the following command (which should be entered all on one line) creates a
new database file named mydatacopy.db and copies the schema and data of mydata.db
into it:

dbunload -c "UID=DBA;PWD=sql;DBF=c:\mydata.db"
 -an c:\mydatacopy.db

If you use this option, no interim copy of the data is created on disk, so you do not specify
an unload directory in the command. This provides greater security for your data.

When the new database is created, the dbspace file names have an R appended to the file
name to prevent file name conflicts if the dbspace file for the new database is created in
the same directory as the dbspace for the original database. For example, if an unloaded
database has a dbspace called library in the file library.db, then the library dbspace for
the new database is library.dbR.

The file specified by -an is relative to the database server.

-ap size Set the page size of the new database. This option is ignored unless -an or -ar is also used.
The page size for a database can be (in bytes) 2048, 4096, 8192, 16384, or 32768, with
the default being the page size of the original database. You must specify either -an or -
ar with this option. If there are already databases running on the database server, the
server's page size (set with the -gp option) must be large enough to handle the new page
size. See “-gp server option” on page 194.

Database administration utilities

846 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-ar [directo-
ry]

Create a new database with the same settings as the old database, reload it, and replace
the old database. However, you can change the initialization options as necessary by
specifying other supported dbunload options (such as -ap to change the page size or -et to
enable table encryption).

If you use this option, there can be no other connections to the database, and the database
connection must be local, not over a network. This option is not supported on Windows
Mobile or when rebuilding version 9 or earlier databases on Mac OS X on Intel.

If you specify an optional directory, the transaction log offsets are reset for replication
purposes, and the transaction log from the old database is moved to the specified directory.
The named directory should be the directory that holds the old transaction logs used by
the Message Agent and the Replication Agent. The transaction log management is handled
only if the database is used in replication: if there is no SQL Remote publisher or LTM
check, then the old transaction log is not needed and is deleted instead of being copied to
the specified directory. See “Backing up databases involved in synchronization and rep-
lication” on page 904.

When the new database is created, the dbspace file names have an R appended to the file
name to prevent file name conflicts if the dbspace file for the new database is created in
the same directory as the dbspace for the original database. For example, if an unloaded
database has a dbspace called library in the file library.db, then the library dbspace for
the new database is library.dbR.

If you are rebuilding an encrypted database, the encryption key for the original and new
databases must be the same.

Using the -ar option resets the database truncation points to zero.

-c "key-
word=val-
ue; ..."

Specify the connection parameters for the source database. For a description of the con-
nection parameters, see “Connection parameters” on page 262. The user ID should have
DBA authority to ensure that the user has permissions on all the tables in the database.

For example, the following statement unloads the sample database, connecting as user ID
DBA with password sql. The data is unloaded into the c:\unload directory.

dbunload -c "DBF=samples-dir\demo.db;UID=DBA;PWD=sql" c:\unload

For information about samples-dir, see “Samples directory” on page 390.

Unload utility (dbunload)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 847

Option Description

-cm { sql |
dbinit }

Display in the server messages window the CREATE DATABASE or dbinit command
to create a database that is the same as the one being unloaded. If -an is also specified, the
command that is displayed is the command to create the new database.

● sql Displays the CREATE DATABASE statement that is written to the re-
load.sql file.

● dbinit Displays the Initialization utility (dbinit) command.

When displaying the statement or command for an existing strongly-encrypted database
(-an is not specified) the encryption key cannot be obtained from the database, so a ques-
tion mark (?) appears in the ENCRYPTED clause or -ek option.
The creation command or statement is not displayed if you unload a database that was
created with a version 10 or earlier database server.

-cp Compress the table data output files by appending the COMPRESSED keyword to the
UNLOAD TABLE statements it executes. This option has no effect when specified with
-an or -ar.

-d With this option, none of the database definition commands are generated (CREATE
TABLE, CREATE INDEX, and so on); reload.sql contains statements to reload the data
only.

-dc Force all computed columns in the database to be recalculated. By default, computed
column values are not recalculated. When the -dc option is specified, a new section is
added to the reload.sql script to recompute computed columns. Statements of the follow-
ing form are added.

ALTER TABLE "owner"."table-name"
ALTER "computed-column" SET COMPUTE (compute-expression);

If your tables contain context-sensitive computed values, such as CURRENT DATE, it
is recommended that you use the ALTER TABLE statement to recalculate computed
column values instead of using the -dc option. See “ALTER TABLE statement” [SQL
Anywhere Server - SQL Reference].

-e table, ... Exclude the specified tables from the reload.sql file. Table names are always case insen-
sitive, even in case sensitive databases.

A reload.sql file created with the -e option should not be used to rebuild a database because
the file will not include all the database tables. If a table has foreign keys referring to it,
the database cannot be rebuilt without the contents of the table.

It is recommended that you only use the -e option with the -d option to unload data for all
tables except those identified by -e.

Database administration utilities

848 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-ea algo-
rithm

Specify the encryption algorithm used for database or table encryption (-et). Specify -ea
simple for simple encryption (do not specify -ek or -ep). Simple encryption is equivalent
to obfuscation and is intended only to keep data hidden in the event of casual direct access
of the database file, to make it more difficult for someone to decipher the data in your
database using a disk utility to look at the file.

For greater security, specify AES or AES256 for 128-bit or 256-bit strong encryption,
respectively. Specify AES_FIPS or AES256_FIPS for 128-bit or 256-bit FIPS-approved
encryption, respectively. For strong encryption, you must also specify the -ek or -ep op-
tion. For more information about strong encryption, see “Strong encryp-
tion” on page 1082.

To create a database that is not encrypted, specify -ea none, or do not include the -ea option
(and do not specify -e, -et, -ep, or -ek).

If you do not specify the -ea option, the default behavior is as follows:

● -ea none, if -ek, -ep, or -et is not specified
● -ea AES, if -ek or -ep is specified (with or without -et)
● -ea simple, if -et is used without -ek or -ep

Algorithm names are case insensitive.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong en-
cryption technologies are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

-ek key Specify an encryption key in the dbunload command for the new database created if you
unload and reload a database (using the -an option). If you create a strongly encrypted
database, you must provide the encryption key to use the database or transaction log in
any way. The algorithm used to encrypt the database is the algorithm specified by the -ea
option. If you specify the -ek option without specifying -ea, the AES algorithm is used.
See “Strong encryption” on page 1082.

Protect your key. Be sure to store a copy of your key in a safe location. A lost key will
result in a completely inaccessible database, from which there is no recovery.

-ep Prompt for an encryption key for the new database created if you unload and reload your
database using the -an option. It provides an extra measure of security by never allowing
the encryption key to be seen in clear text. If you specify -ep without specifying -an, the
-ep option is ignored. If you specify -ep and -an, you must input the encryption key twice
to confirm that it was entered correctly. If the keys don't match, the unload fails. See
“Strong encryption” on page 1082.

Unload utility (dbunload)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 849

Option Description

-er Remove encryption from encrypted tables during an unload procedure.

When rebuilding a database that has table encryption enabled, you must specify either -
er or -et to indicate whether the new database has table encryption enabled, otherwise you
get an error when attempting to load the data into the new database.

The following command unloads a database (mydata.db) that has encrypted tables, into a
new database (mydatacopy.db) that does not have table encryption enabled, removing
encryption from any encrypted tables:

dbunload -an c:\mydatacopy.db -er
 -c "UID=DBA;PWD=sql;
 DBF=c:\mydata.db;
 DBKEY=29bN8cj1z"

-et Enable database table encryption in the new database (-an or -ar must also be specified).
If you specify the -et option without the -ea option, the AES algorithm is used. If you
specify the -et option, you must also specify -ep or -ek. You can change the table encryp-
tion settings for the new database to be different than those of the database you are un-
loading.

When rebuilding a database that has table encryption enabled, you must specify either -
er or -et to indicate whether the new database has table encryption enabled, otherwise you
get an error when attempting to load the data into the new database.

The following example unloads a database (mydata.db) that has tables encrypted with the
simple encryption algorithm, into a new database (mydatacopy.db) that has table encryp-
tion enabled, and uses AES_FIPS encryption with the key 34jh:

dbunload -an c:\mydatacopy.db -et -ea AES_FIPS
 -ek 34jh
 -c "UID=DBA;PWD=sql;DBF=c:\mydata.db"

Database administration utilities

850 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-g Materialized views By default, materialized views defined as MANUAL REFRESH
are not initialized after a reload. If you want these materialized views to be initialized as
part of the reload process, specify the -g option. Specifying -g causes the database server
to execute the sa_refresh_materialized_views system procedure. See “sa_refresh_mate-
rialized_views system procedure” [SQL Anywhere Server - SQL Reference].

When deciding whether to use the -g option, consider that initializing all materialized
views may cause the reload process to take significantly longer to complete. On the other
hand, not using the -g option means that the first query that attempts to use an uninitialized
materialized view must wait while the database server initializes the view, which may
cause an unexpected delay. If you do not use the -g option, you can also manually initialize
materialized views after the reload completes. See “Initialize materialized views” [SQL
Anywhere Server - SQL Usage].

Text indexes By default, text indexes defined as MANUAL REFRESH are not ini-
tialized after a reload. If you want the text indexes initialized as part of the reload process,
specify the -g option. Specifying -g causes the database server to execute the sa_re-
fresh_text_indexes system procedure. See “sa_refresh_text_indexes system procedure”
[SQL Anywhere Server - SQL Reference].

-ii Use the UNLOAD statement to extract data from the database, and uses the LOAD state-
ment in the reload.sql file to repopulate the database with data. This is the default.

-ix Use the UNLOAD statement to extract data from the database, and uses the Interactive
SQL INPUT statement in the reload.sql file to repopulate the database with data.

-k Populate the sa_diagnostic_auxiliary_catalog table. This table maps database object IDs
for tables, users, procedures, and so on, from the source database to the tracing database.
It also causes all histograms to be unloaded/reloaded. This option is used when creating
a tracing database, that is, a database that receives diagnostic tracing information. The
sa_diagnostic_auxiliary_catalog table allows the server to simulate conditions that were
present when tracing data was captured (for example, for use with Index Consultant, or
application profiling). This option is most useful when specified with the -n option. See
“Advanced application profiling using diagnostic tracing” [SQL Anywhere Server - SQL
Usage] and “sa_diagnostic_auxiliary_catalog table” [SQL Anywhere Server - SQL Ref-
erence].

Unload utility (dbunload)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 851

Option Description

-l Force the current value of SYSTABCOL.max_identity to be preserved across a database
rebuild.

By default, when a database containing tables with autoincrement columns is rebuilt, the
database server calculates the next available value for each autoincrement column based
on the current contents of the tables. In most cases, this is enough; however, if rows have
been deleted from the end of the range of values, values can be reused, which is not
desirable in some cases.

Specifying the -l option adds calls to the sa_reset_identity system procedure to the gen-
erated reload.sql script for each table that contains an autoincrement value, preserving the
current value of SYSTABCOL.max_identity.

See also:

● “Reloading tables with autoincrement columns” [SQL Anywhere 11 - Changes and
Upgrading]

● “SYSTABCOL system view” [SQL Anywhere Server - SQL Reference]
● “sa_reset_identity system procedure” [SQL Anywhere Server - SQL Reference]

-m Do not preserve user IDs for databases involved in replication.

-n Do not unload database data; reload.sql contains SQL statements to build the structure of
the database only. If you want the reload.sql file to contain LOAD TABLE or INPUT
statements, use -nl instead.

-nl Unload the structure (the same behavior as the -n option), but the resulting reload.sql file
also includes LOAD TABLE or INPUT statements for each table. No user data is unloaded
when this option is used. When you specify -nl, you must also include a data directory so
that the LOAD/INPUT statements can be generated, even though no files are written to
the directory. This option allows you to generate a reload script without unloading data.
You can unload the data by specifying -d. If a database contains a table whose data should
not be unloaded, unloading the data for that table can be skipped using dbunload -d
-e table-name.

Database administration utilities

852 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-no Unload the database objects ordered by name. By default, dbunload generates objects in
the order they were created. Specifying the -no option may be useful for comparing da-
tabase schemas when the databases contain the same objects, but the creation order was
different.

Object definitions are grouped by object type in alphabetical order in the reload.sql file
if -no is specified:

● users
● group memberships
● tables
● indexes and foreign keys
● views
● procedures
● functions
● triggers
● events
● web services

The object definitions are output in owner,name order. In some cases a third element is
included in the ordering (for example, foreign key role name, trigger name).

The -no option cannot be used with the -n, -nl, -ar, -an, or -ac option. To simplify com-
parisons, it is recommended that you use -no option when comparing the reload scripts
for databases that were created using the same version of the database server because of
minor differences in the object definitions.

Caution
The generated file should not be used to create a new database because in some cases the
object creation order can be important. For example, if procedure p2 calls procedure p1
and p1 returns a result set, it may be important to define p1 before p2. Attempting to
execute a reload.sql script generated with -no option results in an error.

-o filename Write output messages to the named file. The location of this file is relative to dbunload.

-p char Replace the default escape character (\) for external unloads (dbunload -x option) with
another character. This option is available only when you run this utility from a command
prompt.

-q Run in quiet mode—do not display messages or windows. This option is available only
when you run this utility from a command prompt. If you specify -q, you must also specify
-y or the unload will fail if reload.sql already exists.

-qc Close the messages window once the unload completes. By default, the dbunload mes-
sages window remains open until a user closes it. This option is only available on Windows
Mobile.

Unload utility (dbunload)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 853

Option Description

-r reload-file Modify the name and directory of the generated reload command file. The default is
reload.sql in the current directory. The directory is relative to the current directory of the
client application, not the server.

-t table,... Specify a list of tables to be unloaded. By default, all tables are unloaded. Together with
the -n option, this allows you to unload a set of table definitions only. Table names are
always case insensitive, even in case sensitive databases.

A reload.sql file created with the -t option should not be used to rebuild a database because
the file will not include all the database tables. If a table has foreign keys referring to it,
the database cannot be rebuilt without the contents of the table.

It is recommended that you only use the -t option with the -d option to unload data for the
tables identified by -t.

-u Use this option if you are unloading a database with a corrupt index, so that the corrupt
index is not used to order the data. Normally, the data in each table is ordered by the
primary key or clustered index if one is defined for the table.

-v Display the name of the table being unloaded, and the number of rows that have been
unloaded. This option is available only when you run dbunload from a command prompt.

-xi Perform an external unload by unloading data to the dbunload client, and then using the
LOAD statement in the generated reload command file, reload.sql, to repopulate the da-
tabase with data.

-xx Perform an external unload by unloading data to the dbunload client, and then using the
Interactive SQL INPUT statement in the generated reload command file, reload.sql, to
repopulate the database with data.

-y Replace existing command files without prompting for confirmation. If you specify -q,
you must also specify -y or the unload will fail if dbunload detects that a command file
already exists.

There are special considerations for unloading databases involved in replication. See
“Extracting remote databases” [SQL Remote] and “Upgrading SQL Remote” [SQL Any-
where 11 - Changes and Upgrading].

directory Specifies the directory where the unloaded data is to be placed. The reload.sql command
file is always relative to the current directory of the user.

Database administration utilities

854 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks

Upgrading to version 11
For information about rebuilding an existing database into a version 11 database, see “Upgrading SQL
Anywhere” [SQL Anywhere 11 - Changes and Upgrading].

When using dbunload with a version 10.0.0 or later database, the version of dbunload used must match the
version of the database server used to access the database. If an older version of dbunload is used with a
newer database server, or vice versa, an error is reported.

With the Unload utility, you can unload a database and put a set of data files in a named directory. The
Unload utility creates an Interactive SQL command file to rebuild your database. It also unloads all the data
in each of your tables into files in the specified directory, in comma-delimited format. Binary data is properly
represented with escape sequences.

An internal unload/reload will unload information about the current status of each user by issuing UPDATE
ISYSUSER statements. An external unload/reload does not include this information and the status of all
users is reset. See “Managing login policies overview” on page 440.

When you rebuild a database by unloading and reloading it, the rebuilt database may be smaller than the
original database. This decrease in database size may be the result of indexing changes in SQL Anywhere,
and does not indicate a problem or a loss of data.

Note
Version 9 and earlier databases that require recovery cannot be reloaded with version 10 or later of the
Unload utility (dbunload). You must reload the database with version 9 or earlier of dbunload.

You can also use the Unload utility to directly create a new database from an existing one. This avoids
potential security problems with the database contents being written to ordinary disk files.

If you only want to unload table data, you can do so in one step using the Unload Data window in Sybase
Central.

For more information, see “Export data with the Unload Data window” [SQL Anywhere Server - SQL
Usage].

There are special considerations for unloading databases involved in replication. See “Extracting remote
databases” [SQL Remote].

You can access the Unload utility in the following ways:

● From Sybase Central, using the Unload Database Wizard. See “Export data with the Unload Database
Wizard” [SQL Anywhere Server - SQL Usage].

● At a command prompt, using the dbunload command. This is useful for incorporation into batch or
command files.

The Unload utility should be run by a user ID with DBA authority. This is the only way you can be sure of
having the necessary privileges to unload all the data. In addition, the reload.sql file should be run by a user
with DBA authority. (Usually, it is run on a new database where the only user ID is DBA with password
sql.)

Unload utility (dbunload)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 855

The database server -gl option controls the permissions required to unload data from the database. See “-gl
server option” on page 192.

The dbo user ID owns a set of system objects in a database, including views and stored procedures.

The Unload utility does not unload the objects that were created for the dbo user ID during database creation.
Changes made to these objects, such as redefining a system procedure, are lost when the database is unloaded.
Any objects that were created by the dbo user ID since the initialization of the database are unloaded by the
Unload utility, and so these objects are preserved.

When you unload a database, changes to permissions on system objects are not unloaded. You must grant
or revoke these permissions in the new database.

Tip
Before rebuilding your database, it is recommended that you validate the reload process by reloading the
database without any data, by running a command similar to the following:

dbunload -n -an new.db -c "UID=your-user-id;PWD=your-password;DBF=original-
database-file"

You should fix any problems that are identified in the original database before rebuilding it.

In the default mode, or if -ii or -ix is used, the directory used by dbunload to hold the data is relative to the
database server, not to the current directory of the user.

If -xi or -xx is used, the directory is relative to the current directory of the user.

For more information about supplying a file name and path in this mode, see “UNLOAD statement” [SQL
Anywhere Server - SQL Reference].

If no list of tables is supplied, the whole database is unloaded. If a list of tables is supplied, only those tables
are unloaded.

Unloaded data includes the column list for the LOAD TABLE statements generated in the reload.sql file.
Unloading the column list facilitates reordering of the columns in a table. Tables can be dropped or recreated,
and then repopulated using reload.sql.

The LOAD TABLE statements generated by dbunload turn off check constraints and computed columns.

Exit codes are 0 (success) or non-zero (failure). See “Software component exit codes” [SQL Anywhere Server
- Programming].

Databases with materialized views
It is recommended that you refresh the materialized views in your database after rebuilding the database.
See “Refresh manual views” [SQL Anywhere Server - SQL Usage].

Databases running diagnostic tracing
Tracing information is not unloaded as part of a database unload or reload operation. If you want to transfer
tracing information from one database to another, you must do so manually by copying the contents of the
sa_diagnostic_* tables; however, this is not recommended.

Database administration utilities

856 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Internal versus external unloads and reloads

The following options offer combinations of internal and external unloads and reloads: -ii, -ix, -xi, and -xx.
A significant performance gain can be realized using internal commands (UNLOAD/LOAD) versus external
commands (Interactive SQL's INPUT and OUTPUT statements). However, internal commands are executed
by the server so that file and directory paths are relative to the location of the database server. Using external
commands, file and directory paths are relative to the current directory of the user.

In Sybase Central, you can specify whether to unload relative to the server or client. See “UNLOAD
statement” [SQL Anywhere Server - SQL Reference].

When you use an external unload and reload to unload, reload, or rebuild a database and the character set of
the database is incompatible with the character set of the host system on which dbunload is running, character
set conversion may cause data to be corrupted as it is converted between the database character set and the
host system's character set.

To avoid this problem, specify the database character set in the connection string for the database (-c and -
ac options). For example, if the database character set is UTF-8, you should include "charset=utf-8" in the
connection strings:

dbunload -c UID=user-ID;PWD=password;
CHARSET=utf-8;DBF=filename -ac UID=user-ID;
PWD=password;CHARSET=utf-8;ENG=server-name -xx

When you perform an external unload, the beginning of the reload.sql includes a commented CREATE
DATABASE statement. This statement can be used to create a database that is equivalent to the one being
unloaded.

If the unloaded database was created with version 9 or earlier of SQL Anywhere and had a custom collation,
the COLLATION clause appears as follows:

COLLATION collation-label DEFINITION collation-definition

where collation-definition is a string that specifies the custom collation.

The only way to preserve a custom collation is to rebuild the database in a single step (internal unload). If
you choose to unload the database, and then load the schema and data into a database that you create, then
you must use one of the supplied collations.

If the unloaded database was created with strong encryption, the value of the KEY clause in the CREATE
DATABASE statement appears as three question marks (???).

Failed unloads
If a failure occurs during an internal rebuild of a database using -ar or -an, after the table data has been
reloaded and any indexes on the table have been rebuilt, dbunload creates a file named unprocessed.sql in
the current directory. This file contains all the statements that were not executed as a result of the failure,
and also includes the statement that caused the failure as a comment. The following is an example of an
unprocessed.sql file:

-- The database reload failed with the following error:
-- ***** SQL error: the-SQL-ERROR
-- This script contains the statements that were not executed as a
-- result of the failure. The statement that caused the failure is
-- commented out below. To complete the reload, correct the failing
-- statement, remove the surrounding comments and execute this script.

Unload utility (dbunload)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 857

/*
the failing statement
go
*/
setuser "DBA"
go
... the remainder of the statements to be processed

Having this file gives you the opportunity to correct, remove, or alter the failing statement(s). The
unprocessed.sql file is only created after all the table data and referential integrity constraints have been
reloaded. Using Interactive SQL, you can connect to the new database and execute the updated
unprocessed.sql file. This allows you to complete the rebuild of the database without having to start the
rebuild over again, which can save considerable time.

When the unprocessed.sql file is generated, dbunload stops and returns a failed error code to make other
tools or scripts aware of the failed rebuild.

Encrypted databases
When you rebuild a database that has table encryption enabled, you must specify either -er or -et to indicate
whether the new database has table encryption enabled, otherwise you get an error when attempting to load
the data into the new database.

If you want to unload a strongly encrypted database, you must provide the encryption key. You can use the
DatabaseKey (DBKEY) connection parameter to provide the key in the command. Alternatively, if you want
to be prompted for the encryption key rather than entering it in plain view, you can use the -ep server option
as follows:

dbunload -c "DBF=enc.db;START=dbeng11 -ep"

If you are using the -an option to unload a database and reload into a new one, and you want to use the -ek
or -ep options to set the encryption key for the new database, keep the following in mind:

● If the original database is strongly encrypted, you need to specify the key for the original database using
the DatabaseKey (DBKEY) connection parameter in the -c option, rather than using -ek or -ep.

● Using the -ek and -ep options, it is possible to unload an unencrypted database and reload into a new,
strongly encrypted database. When you use -ep and -an, you must confirm the key correctly or the unload
fails.

● If the original database is strongly encrypted, but the -ek and -ep options are not used, then the new
database will be encrypted with simple encryption.

● The -ek and -ep options are ignored if -an is not specified. The dbunload -ek and -ep options apply to a
new database, while the database server (dbeng11/dbsrv11) options and DBKEY= apply to existing
databases.

● When rebuilding databases involved in synchronization or replication, dbunload assumes that the
encryption key specified with the -ek or -ep option is the encryption key of the original database, and
the encryption key of the newly-rebuilt database.

For more information about encryption, see “-ep server option” on page 183 and “DatabaseKey connection
parameter [DBKEY]” on page 274.

Database administration utilities

858 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Rebuilding a database
To unload a database, first ensure that the database is not already running. Then, run dbunload, specifying
a DBA user and password, and referencing the database with the DBF= connection parameter.

To reload a database, create a new database and then run the generated reload.sql command file through
Interactive SQL.

To combine the unload and reload steps, follow the directions for unloading above, but add the -an option
to specify the name of the new database file. See the descriptions of the -ac and -an options.

Unload utility (dbunload)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 859

Upgrade utility (dbupgrad)
Upgrade utility unsupported for upgrading to version 11
The Upgrade utility (dbupgrad) cannot be used to upgrade version 9.0.2 and earlier databases to version 11.
If you want to upgrade a version 9.0.2 or earlier database to version 11, you must rebuild the database by
performing an unload and reload. See “Upgrading SQL Anywhere” [SQL Anywhere 11 - Changes and
Upgrading].

Updates the system tables and views, adds new database options, and recreates all system stored procedures.
Installs jConnect support and changing support for Java in the database.

An error message is returned if you use the Upgrade utility to upgrade a database server that is currently
being mirrored.

Syntax
dbupgrad [options]

Option Description

@data Read in options from the specified environment variable or configuration file. See “Using
configuration files” on page 737.

If you want to protect passwords or other information in the configuration file, you can
use the File Hiding utility to obfuscate the contents of the configuration file. See “File
Hiding utility (dbfhide)” on page 768.

-c "key-
word=val-
ue; ..."

Specify connection parameters. See “Connection parameters” on page 262.

The user ID must have DBA authority.

For example, the following command upgrades a database called sample11 and does not
install jConnect support, connecting as user DBA with password sql:

dbupgrad -c "UID=DBA;PWD=sql;DBF=c:\sa11\sample11.db" -i

-i Exclude the jConnect system objects. If you want to use the jConnect JDBC driver to
access system catalog information, you need to install jConnect support. You can still
use JDBC when this option is specified, as long as you do not access system information.
If you want, you can add jConnect support later using Sybase Central or the ALTER
DATABASE UPGRADE statement. See “Installing jConnect system objects into a da-
tabase” [SQL Anywhere Server - Programming] and “ALTER DATABASE statement”
[SQL Anywhere Server - SQL Reference].

-o filename Write output messages to the specified file.

-q Run in quiet mode—do not display messages or windows.

Database administration utilities

860 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks

Caution
You should always back up your database files before upgrading. If you apply the upgrade to the existing
files, then these files become unusable if the upgrade fails. For information about backing up your database,
see “Backup and data recovery” on page 869.

The dbupgrad utility upgrades a database created with earlier versions of the software to enable features
from the current version of the software. The earliest version that can be upgraded is SQL Anywhere 10.0.0.
While later versions of the database server can run against databases that were created with earlier releases
of the software, some of the features introduced since the version that created the database are unavailable
unless the database is upgraded.

Databases with materialized views
It is recommended that you refresh the materialized views in your database after upgrading the database.
See “Refresh manual views” [SQL Anywhere Server - SQL Usage].

You can use the Upgrade utility to update the system tables and views, add new database options, restore
database options, and recreate all system stored procedures, and install jConnect support and change support
for Java in the database.

As new versions and software updates become available for SQL Anywhere, you can use the Upgrade utility
to take advantage of the new features.

Upgrading a database does not require you to unload and reload your database.

If you want to use replication on an upgraded database, you must also archive your transaction log and start
a new one on the upgraded database.

You can access the Upgrade utility in the following ways:

● From Sybase Central, using the Upgrade Database Wizard.

● From Interactive SQL, using the ALTER DATABASE UPGRADE statement. See “ALTER
DATABASE statement” [SQL Anywhere Server - SQL Reference].

● At a command prompt, using the dbupgrad command.

Exit codes are 0 (success) or non-zero (failure). See “Software component exit codes” [SQL Anywhere Server
- Programming].

Not all features made available
Features that require a physical reorganization of the database file are not made available by dbupgrad. Such
features include index enhancements and changes in data storage. To obtain the benefits of these
enhancements, you must unload and reload your database. See “Upgrading SQL Anywhere” [SQL Anywhere
11 - Changes and Upgrading].

Upgrade utility (dbupgrad)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 861

Validation utility (dbvalid)
Validates the indexes and keys on some or all the tables and materialized views in a database.

Syntax
dbvalid [options] [object-name, ...]

Option Description

@data Read in options from the specified environment variable or configuration file. See
“Using configuration files” on page 737.

If you want to protect passwords or other information in the configuration file, you can
use the File Hiding utility to obfuscate the contents of the configuration file. See “File
Hiding utility (dbfhide)” on page 768.

-c "key-
word=val-
ue; ..."

Specify database connection parameters. For a description of the connection parame-
ters, see “Connection parameters” on page 262. The user ID must have DBA authority
or VALIDATE authority.

For example, the following command validates the database, including all tables and
materialized views for c:\salesdata.db, connecting as user DBA with password sql:

dbvalid -c "UID=DBA;PWD=sql;DBF=c:\salesdata.db"

-d Validate that all table pages in the database belong to the correct object, and perform
a checksum validation. The -d option does not include validation of data or indexes.
The -d option cannot be used with the -i, -s, or -t options.

-fx Validate every row of the table, and make sure that the number of rows in the table
matches the number of rows in each index associated with the table. This option does
not perform individual index lookups for each row. Using this option can significantly
improve performance when validating large databases with a small cache.

-i Validate the specified index.

-o filename Write output messages to the named file.

-q Do not display output messages to the client. You can still log the messages to file
using the -o option, however.

-s Validate the database using checksums. Checksums are used to determine whether a
database page has been modified on disk. Checksum validation reads each page of the
database from disk and calculates its checksum. If the calculated checksum is different
from the checksum stored on the page, the page has been modified on disk and an error
is returned. The page numbers of any invalid pages appear in the database server mes-
sages window. The -s option cannot be used in conjunction with -d, -i, -t, or either of
the -f options.

Database administration utilities

862 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-t Specify a list of object-name values, which represents a list of tables and materialized
views.

object-name Specify the name of the table or materialized view to validate.

If -i is used, object-name refers to an index to validate instead.

Remarks
By default, dbvalid validates all the tables, materialized views, and indexes, in the database, and validates
the database itself.

With the Validation utility, you can validate the indexes and keys on some of, or all, the tables and
materialized views in a database. You can also use the Validation utility to verify that all table pages in the
database belong to the correct object, and that page checksums are correct. By default, dbvalid validates all
the tables and materialized views in the database (the same behavior as the -t option).

For each table or materialized view, the Validation utility scans the entire object, and then looks up each
record in every index and key defined on the table. You can also use the Validation utility to verify that all
table pages in the database belong to the correct object, and that page checksums are correct. To run the
Validation utility, you must have either DBA or VALIDATE authority.

You can also access the Validation utility in the following ways:

● From Sybase Central, using the Validate Database Wizard. See “Validate a database” on page 918.

● From Interactive SQL, using the VALIDATE statement. See “VALIDATE statement” [SQL Anywhere
Server - SQL Reference].

The Validation utility can be used in combination with regular backups to give you confidence in the integrity
of the data in your database. If you want to validate the backup copy of your database, it is recommended
that you make a copy of the backup and validate the copy. Doing this ensures that you do not make changes
to the file that is used in recovery. See “Backup and data recovery” on page 869.

Caution
Backup copies of the database and transaction log must not be changed in any way. If there were no
transactions in progress during the backup, or if you specified BACKUP DATABASE WITH
CHECKPOINT LOG RECOVER or WITH CHECKPOINT LOG NO COPY, you can check the validity of
the backup database using read-only mode or by validating a copy of the backup database.

However, if transactions were in progress, or if you specified BACKUP DATABASE WITH CHECKPOINT
LOG COPY, the database server must perform recovery on the database when you start it. Recovery modifies
the backup copy, which prevents subsequent transaction log files from the original database from being
applied.

If running the Validation utility autostarts a database, the database starts in read-only mode. This prevents
changes from being made to the database in case the validation is part of a backup or recovery plan.

Validation utility (dbvalid)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 863

If the Validation utility connects to a running database that was not started in read-only mode, the utility
displays a warning. This warning is a reminder that the database being validated cannot be used as part of a
recovery plan. Because of the way backups are performed, most databases created by dbbackup are marked
as needing recovery. If the database you are validating requires recovery and you want to force it to start as
read-write, you can either start the database before running dbvalid or specify a valid value for the DBS
connection parameter. See “DatabaseSwitches connection parameter [DBS]” on page 276.

Both of the following commands allow dbvalid to run if the mycopy.db database needs to be recovered:

dbvalid -c "UID=DBA;PWD=sql;DBF=mycopy.db;DBS=-n mycopy"
dbvalid -c "UID=DBA;PWD=sql;DBF=mycopy.db;DBS=-dh"

Caution
Validating a table or an entire database should be performed while no connections are making changes to
the database; otherwise, errors may be reported indicating some form of database corruption even though
no corruption actually exists.

The Validation utility may return warnings about checksum violations for databases that do not have
checksums enabled. This is because the database server automatically still calculates checksums for critical
database pages, regardless of whether checksums are enabled. The database server also creates checksums
automatically for databases running on Windows Mobile and for databases running on storage media that
may be less reliable, such as removable drives. See “Using checksums to detect corruption” on page 917.

Validation requires exclusive access to each table. For this reason, it is best to validate when there is no other
activity on the database.

Exit codes are 0 (success) or non-zero (failure). See “Software component exit codes” [SQL Anywhere Server
- Programming].

For more information about specific checks made during validation, see “VALIDATE statement” [SQL
Anywhere Server - SQL Reference].

Database administration utilities

864 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Version Diagnostic utility (dbversion)
Returns information about the specified executable.

Syntax
dbversion executable-name

Remarks
This utility is only available on Unix, and returns information about SQL Anywhere executables.

See also
● “-v server option” on page 233

Example
The following command:

$ dbversion /opt/sqlanywhere11/bin32/dbversion

returns information about the dbversion executable:

SQL Anywhere Version Diagnostic Utility Version 11.0.1.1283
/opt/sqlanywhere11/bin32/dbversion: dbversion xx 11 0 1 1283 linux 2008/04/02
23:31:54
nothr 32 production

Field Description

dbversion Returns the executable name.

xx Returns a two-letter code designating an install type.

11 Returns the major version number.

0 Returns the minor version number.

1 Returns the patch number.

1180 Returns the build number.

linux Returns the operating system code.

2008/04/02 23:31:54 Returns the build time/datestamp.

nothr Returns the threading model (nothr or posix).

32 Returns the bitness of the executable (32 or 64).

production Returns either production or debug.

Version Diagnostic utility (dbversion)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 865

866

Maintaining Your Database

This section describes how to back up database files and how to use events and schedules to automate database
administration.

Backup and data recovery ... 869
Validating databases ... 915
Automating tasks using schedules and events .. 921
SQL Anywhere high availability .. 937

Backup and data recovery

Contents
Backup quick start ... 871
Types of backup .. 872
Choosing a backup format ... 877
Backup and recovery restrictions .. 879
Making a server-side backup ... 880
Making a client-side backup .. 886
Validating backups .. 888
Recovering your database ... 889
Designing a backup and recovery plan ... 900
Backing up databases involved in synchronization and replication 904
The internal backup process ... 909

A backup is a full or partial copy of the information in a database, held in a physically separate location. If
the database becomes unavailable, you can restore it from the backup. You can use your backups to restore
all committed changes to the database up to the time it became unavailable.

Backing up a running database provides a snapshot of the database where the data is in a consistent state,
even though other users are modifying the database.

If the operating system or database server fails, or the database server does not shut down properly, then the
database must be recovered. On database startup, the database server checks whether the database was shut
down cleanly at the end of the previous session. If it was not, the database server executes an automatic
recovery process to restore all changes up to the most recently committed transaction.

SQL Anywhere tools make online backups that are executed against a running database. You must have
BACKUP authority or REMOTE DBA authority to make online backups of a database. You can make
offline backups by copying the database files when the database is not running.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 869

See also
● “Types of backup” on page 872
● “Backup quick start” on page 871
● “Backup utility (dbbackup)” on page 740
● “BACKUP statement” [SQL Anywhere Server - SQL Reference]
● “Designing a backup and recovery plan” on page 900
● “Recovering your database” on page 889

Backup and data recovery

870 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Backup quick start
When you make a backup, you must decide where you want to store the backup files: on the database server
computer or on the client computer. You must have BACKUP authority or REMOTE DBA authority to back
up the database using the following procedures.

To make a server-side backup

● Run a BACKUP DATABASE statement. For example:

BACKUP DATABASE DIRECTORY 'd:\\temp\\backup';

This statement creates a backup copy of the database files in the directory d:\temp\backup on the server
computer.

Alternatively, you can run dbbackup with the -s option to create the backup. For example:

dbbackup -s -c "ENG=sample_server;DBN=demo;UID=DBA;PWD=sql"
"c:\SQLAnybackup"

To make a client-side backup

● Run the Backup utility (dbbackup) on the client computer. For example:

dbbackup -c "ENG=sample_server;DBN=demo;UID=DBA;PWD=sql" "c:\SQLAnybackup"

See also
● “Backup utility (dbbackup)” on page 740
● “BACKUP statement” [SQL Anywhere Server - SQL Reference]
● “Types of backup” on page 872
● “Designing a backup and recovery plan” on page 900
● “Recovering your database” on page 889

Backup quick start

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 871

Types of backup
The following table summarizes the types of backup supported by SQL Anywhere:

Backup type Description More information

Online A backup that is performed while the
database is running.

See “Online and offline backups” on page 873.

Offline A backup that is performed when the
database is not running. This type of
backup should only be performed
when the database server has shut
down properly.

See “Online and offline backups” on page 873.

Full A full backup is a backup of the da-
tabase files and the transaction log.
Typically, full backups are inter-
spersed with several incremental
backups.

“Full backups” on page 873

Incremental A backup of the transaction log only. “Incremental backups” on page 874

Live A continuous backup of the database
that runs while the database is run-
ning.

“Live backups” on page 875

Archive A collection of one or more files that
together contain all the required in-
formation for the backup, including
the main database file, the transac-
tion log, and any additional dbspa-
ces.

“Archive backups” on page 877

Image A copy of the database file and/or the
transaction log, each as separate
files.

“Image backups” on page 877

Server-side A backup made on the database serv-
er computer.

“Making a server-side backup” on page 880

Client-side A backup made on the client com-
puter.

“Making a client-side backup” on page 886

Backup and data recovery

872 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Online and offline backups
An offline backup is a copy of the database files. You should only perform an offline backup when the
database is not running, and when the database server has shut down properly.

All of the tools included with SQL Anywhere, such as the Backup Database utility (dbbackup), BACKUP
DATABASE statement, and Sybase Central wizards, perform online backups while the database is running.

Backing up a running database provides a snapshot of the database where the data is in a consistent state,
even though other users are modifying the database.

See also
● “Types of backup” on page 872

Full backups
A full backup is a backup of both the database file and the transaction log. You must have BACKUP or
REMOTE DBA authority to perform a full backup.

To make a full backup (overview)

1. Perform a validity check on your database to ensure that it is not corrupt. You can use the Validation
utility or the sa_validate stored procedure. See “Validate a database” on page 918.

2. Make a backup of your database file and transaction log.

For information about how to perform the backup operation, see:

● “Making a server-side backup” on page 880
● “Making a client-side backup” on page 886
● “Make a backup and delete the original transaction log” on page 907
● “Make a backup and rename the original transaction log” on page 905

The simplest form of backup is an image backup (which consists of a copy of the database file and/or the
transaction log, each as separate files) that makes copies of the database file and transaction log, and leaves
the transaction log in place without truncating or replacing it. All backups leave the database file in place.
A full backup of this kind is illustrated in the following figure.

Types of backup

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 873

See also
● “Incremental backups” on page 874
● “Types of backup” on page 872

Incremental backups
An incremental backup is a backup of the transaction log only. Typically, full backups are interspersed
with several incremental backups. See “Full backups” on page 873.

The backup copies of the database file and transaction log file have the same names as the online versions
of these files. For example, if you make a backup of the sample database, the backup copies are called
demo.db and demo.log. When you repeat the backup statement, choose a new backup directory to avoid
overwriting the backup copies.

For more information about making a repeatable incremental backup command by renaming the backup
copy of the transaction log, see “Rename the backup copy of the transaction log during
backup” on page 906.

To make an incremental backup (overview)

1. Ensure that you have BACKUP or REMOTE DBA authority on the database.

2. Make a backup of your transaction log, not your database file.

Backup and data recovery

874 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Making a server-side backup” on page 880
● “Making a client-side backup” on page 886
● “Make a backup and delete the original transaction log” on page 907
● “Make a backup and rename the original transaction log” on page 905
● “Full backups” on page 873
● “Types of backup” on page 872

Live backups
A live backup is a continuous backup of the database that helps protect against total computer failure. You
can use the redundant copy of the transaction log to restart your system on a secondary computer.

If your system fails, the backed up transaction log can be used for a rapid restart of the system. However,
depending on the load that the database server is processing, the live backup may lag behind and may not
contain all committed transactions.

An alternative to a live backup is to use database mirroring. See “Introduction to database
mirroring” on page 938.

You should normally run the dbbackup utility from the secondary computer.

If the primary computer becomes unusable, you can restart your database using the secondary computer.
The database file and the transaction log hold the information needed to restart the database.

Live backups and regular backups
The live backup of the transaction log is always the same length or shorter than the active transaction log.
When a live backup is running, and another backup restarts the transaction log (dbbackup -r or dbbackup -
x), the live backup automatically truncates the live backup log and restarts the live backup at the beginning
of the new transaction log.

See also
● “Make a live backup” on page 886
● “Restart from a live backup” on page 892
● “Types of backup” on page 872

Differences between live backups and transaction log mirrors
Both a live backup and a transaction log mirror provide a secondary copy of the transaction log. However,
there are several differences between using a live backup and using a transaction log mirror:

● In general, a live backup is made to a different computer By running the Backup utility on a
separate computer, the database server does not do the writing of the backed up log file, and the data
transfer is done by the SQL Anywhere client/server communications system. Therefore, the performance
impact is decreased and reliability is greater.

Types of backup

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 875

Running a transaction log mirror on a separate computer is not recommended. It can lead to performance
and data corruption problems, and stops the database server if the connection between the computers
fails.

● A live backup provides protection against a computer becoming unusable Even if a
transaction log mirror is kept on a separate device, it does not provide immediate recovery if the whole
computer becomes unusable. You could consider an arrangement where two computers share access to
a set of disks.

● A live backup may lag behind the database server A transaction log mirror contains all the
information required for complete recovery of committed transactions. Depending on the load that the
database server is processing, the live backup may lag behind the transaction log mirror and may not
contain all the committed transactions.

Backup and data recovery

876 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Choosing a backup format
An archive backup copies the database file and the transaction log into one or more files, typically on a
tape drive. An image backup makes a copy of the database files and/or the transaction log, each as separate
files. You can only perform archive backups as server-side backups.

You should use an archive backup if you are backing up directly to tape. Otherwise, an image backup should
be used because image backups are easier to restore.

Archive backups
An archive backup is a collection of one or more files that together contain all the required information for
the backup, including the main database file, the transaction log, and any additional dbspaces. You can only
perform archive backups as server-side backups. You can save an archive backup to either a file or a tape
drive. Archive backups can be made using the BACKUP DATABASE statement or the Backup Database
Wizard in Sybase Central.

When making archive backups, an extension is added to the file name you specify in the BACKUP statement
for each file that is created (.1, .2, .3, and so on).

You restore a database from an archive backup using the Restore Database Wizard in Sybase Central or
using the RESTORE DATABASE statement.

Archive backups are supported on Windows and Unix platforms only. On Windows Mobile, only image
backups are permitted. See “Image backups” on page 877.

For information about making an archive backup, see:

● “Use the Backup Database Wizard” on page 883
● “Use the BACKUP DATABASE statement to make a server-side backup” on page 880
● “Types of backup” on page 872

Image backups
An image backup consists of a copy of the database file and/or the transaction log, each as separate files.

You can make an image backup using the Backup utility (dbbackup), the Create Backup Images
Wizard, or the BACKUP DATABASE statement. Image backups are available on all supported platforms,
and are the only supported type of backup on Windows Mobile.

If you want to make a backup to tape, use an archive backup. See “Archive backups” on page 877.

Choosing a backup format

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 877

See also
● “BACKUP statement” [SQL Anywhere Server - SQL Reference]
● “Backup utility (dbbackup)” on page 740
● “RESTORE DATABASE statement” [SQL Anywhere Server - SQL Reference]
● “Use the BACKUP DATABASE statement to make a server-side backup” on page 880
● “Use the Create Backup Images Wizard” on page 883
● “Types of backup” on page 872

Backup and data recovery

878 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Backup and recovery restrictions
The database server prevents the following operations from being executed while a backup is in progress:

● Another backup, with the exception of a live backup.

● A checkpoint, other than one issued by the backup instruction.

● Any statement that causes a checkpoint. This includes data definition statements and the LOAD TABLE
and TRUNCATE TABLE statements.

During recovery, including recovering backups, no action is permitted by other users of the database.

See also
● “Understanding the checkpoint log” on page 18

Backup and recovery restrictions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 879

Making a server-side backup
Making a backup on the database server computer is generally faster than a backup on a client computer
because the data does not have to be transported across the client/server communications system. To build
a server-side backup into your application, use a SQL statement. The following methods are supported for
making a server-side backup:

Tool More information

BACKUP statement “Use the BACKUP DATABASE statement to
make a server-side backup” on page 880

Backup utility (dbbackup) “Use the Backup utility (dbbackup) to make a
server-side backup” on page 882

Backup Database Wizard “Using Sybase Central to make a server-side back-
up” on page 882

Create Backup Images Wizard “Using Sybase Central to make a server-side back-
up” on page 882

Create Maintenance Plan Wizard “Using Sybase Central to make a server-side back-
up” on page 882

DBBackup function “a_backup_db structure” [SQL Anywhere Server -
Programming]

SQL Anywhere Volume Shadow Copy Service
(dbvss)

“Using the SQL Anywhere Volume Shadow Copy
Service (VSS)” on page 884

Both the Backup utility (dbbackup) and BACKUP DATABASE statement use physical device-level
parallelism to decrease the time required to complete a backup operation. Parallel backups are not supported
on Windows Mobile. See “Understanding parallel database backups” on page 912.

See also
● “Making a client-side backup” on page 886
● “Types of backup” on page 872

Use the BACKUP DATABASE statement to make a server-
side backup

This topic describes a backup that leaves the transaction log untouched. For information about other
transaction log management options when making a backup, see “BACKUP statement” [SQL Anywhere
Server - SQL Reference].

Backup and data recovery

880 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The BACKUP statement makes an entry in the text file backup.syb that is stored in the same directory as
the database server executable.

Make an image backup

To make an image backup (SQL)

● Use the following clauses to execute a backup statement:

BACKUP DATABASE
DIRECTORY directory-name;

For information about recovering from an image backup, see “Restore from an image
backup” on page 891.

Make an archive backup

To make an archive backup to tape (SQL)

● Use the BACKUP statement with the following clauses:

BACKUP DATABASE
TO archive-root
[ATTENDED { ON | OFF }]
[WITH COMMENT comment-string];

If you set the ATTENDED option to OFF, the backup fails if it runs out of tape or disk space. If
ATTENDED is set to ON, you are prompted to take an action when there is no more space on the backup
archive device.

For information about recovering from an archive backup, see “Restore from an archive
backup” on page 891.

Examples
The following statement makes an image backup of the current database and the transaction log, saves them
to different files, and renames the existing transaction log.

BACKUP DATABASE
DIRECTORY 'd:\\temp\\backup'
TRANSACTION LOG RENAME;

The following statement makes an archive backup to the first tape drive on a Windows computer:

BACKUP DATABASE
TO '\\\\.\\tape0'
ATTENDED OFF
WITH COMMENT 'May 6 backup';

The first tape drive on Windows is \\.\tape0. Because the backslash is an escape character in SQL
strings, each backslash is preceded by another.

Making a server-side backup

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 881

See also
● “BACKUP statement” [SQL Anywhere Server - SQL Reference]
● “Archive backups” on page 877
● “Image backups” on page 877
● “Recovering your database” on page 889

Use the Backup utility (dbbackup) to make a server-side
backup

This topic describes a backup that leaves the transaction log untouched. For information about other
transaction log management options when making a backup, see “Backup utility (dbbackup)” on page 740.

The dbbackup utility makes an image backup that consists of a copy of the database file and/or the transaction
log, each as separate files.

To make a backup, continuing to use the original transaction log (command line)

● If you are using the dbbackup utility, use the following syntax:

dbbackup -c "connection-string" [-t] backup-directory

Include the -t option only if you are making an incremental backup. See “Incremental
backups” on page 874.

Example
The following example makes a backup on the database server computer in the directory c:
\SQLAnybackup.

dbbackup -s -c "ENG=sample_server;DBN=demo;UID=DBA;PWD=sql" "c:\SQLAnybackup"

See also
● “Image backups” on page 877
● “Restore from an image backup” on page 891
● “Recovering your database” on page 889

Using Sybase Central to make a server-side backup
To make a server-side backup from Sybase Central, use one of the following wizards:

● Backup Database Wizard This wizard creates an archive backup. You can specify a file name or
tape drive where the backup is stored. See “Use the Backup Database Wizard” on page 883.

● Create Backup Images Wizard This wizard creates a copy of each database file while the database
is running. To recover, you copy all the files back in place on the database server computer. See “Use
the Create Backup Images Wizard” on page 883.

Backup and data recovery

882 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Create Maintenance Plan Wizard This wizard lets you create a schedule for a variety of tasks,
including backing up the database. You can choose to create an archive, a file image, or an incremental
backup. See “Creating a maintenance plan” on page 902.

See also
● “Archive backups” on page 877
● “Image backups” on page 877
● “Incremental backups” on page 874

Use the Backup Database Wizard
The Backup Database Wizard creates an archive backup. When you make an archive backup in Sybase
Central, you have the option of backing up the database directly to tape or to disk.

To create a backup from Sybase Central (Backup Database Wizard)

1. Connect to the database as a user with BACKUP or REMOTE DBA authority.

2. Right-click the database and choose Backup Database.

3. Follow the instructions in the wizard.

See also
● “Archive backups” on page 877
● “Restore from an archive backup” on page 891
● “Recovering your database” on page 889

Use the Create Backup Images Wizard
The Create Backup Images Wizard creates a copy of each database file. To recover, copy all the files back
in place on the database server computer.

This procedure describes the simplest kind of backup, which leaves the transaction log untouched.

To make a backup, continuing to use the original transaction log (Sybase Central)

1. Connect to the database as a user with BACKUP or REMOTE DBA authority.

2. Right-click the database and choose Create Backup Images.

3. Click Next.

4. In the Which Database Do You Want To Back Up list, select the database and click Next.

5. In the Save The Backup Images In The Following Directory field, type the name of a directory to
save the backup copies.

6. Select an option in the Which Files Do You Want To Back Up list and click Next.

Making a server-side backup

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 883

7. In the What Do You Want To Do With The Transaction Log list, click Continue To Use The Same
Transaction Log.

8. Click Next.

9. Click Finish.

10. Click Close.

Tip
You can also access the Create Backup Images Database Wizard from Sybase Central by using the
following methods:

● Selecting a database, and choosing File » Create Backup Images.

● Choose Tools » SQL Anywhere 11 » Create Backup Images.

See also
● “Image backups” on page 877
● “Restore from an image backup” on page 891
● “Recovering your database” on page 889

Using the SQL Anywhere Volume Shadow Copy Service
(VSS)

SQL Anywhere is compatible with the Microsoft Volume Shadow Copy Service (VSS). You can use VSS
to create point-in-time snapshots of entire disk volumes or volume sets and to make copies of files that are
open for exclusive use by applications such as the SQL Anywhere database server. VSS is supported on 32-
bit Windows XP operating systems and on 32-bit and 64-bit editions of Windows 2003 and later operating
systems, including Windows Vista.

By default, all SQL Anywhere databases can use the VSS service for backups if the SQL Anywhere VSS
writer (dbvss11.exe) is running. You can use VSS without the SQL Anywhere VSS writer to back up
databases. However, you might need to use the full SQL Anywhere recovery procedures to restore those
databases. To prevent a database server from participating in the VSS service, include -vss- when starting
the database server. Alternatively, you can use the Service utility (dbsvc) for Windows to specify when the
VSS service is started.

How VSS works with SQL Anywhere:

● Your backup application sends a command to VSS to take a snapshot.

● VSS issues an identify command to the SQL Anywhere VSS writer (dbvss11.exe).

● VSS issues a prepare to snapshot command to suspend all transactions and write all modified pages to
disk on all databases on all database servers. If transactions are not suspended on a database within 10
seconds, the snapshot might contain uncommitted transactions and full recovery may be necessary.

Backup and data recovery

884 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● VSS issues a freeze command to checkpoint and then suspend all activity on all databases on all database
servers. Each SQL Anywhere database server waits a maximum of 60 seconds for all databases to suspend
all activity. Typically, this process takes a few seconds.

● VSS issues a thaw command to the SQL Anywhere VSS writer to resume all transactions on all databases
on all database servers.

In rare circumstances, SQL Anywhere might be unable to suspend transactions or complete a checkpoint
within the maximum time allowed by VSS. If this occurs, you must use the transaction log file and the full
recovery process to recover the backed up database.

See also
● “Service utility (dbsvc) for Windows” on page 820
● “Creating Windows services” on page 65

Making a server-side backup

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 885

Making a client-side backup
You can use the Backup utility (dbbackup) to make a backup on the client computer. The Backup utility
(dbbackup) uses physical device-level parallelism to decrease the overall time required to complete a backup
operation. Parallel backups are not supported on Windows Mobile. See “Understanding parallel database
backups” on page 912.

The following methods are supported for making a client-side backup:

Tool More information

Backup utility (dbbackup) “Make a client-side backup by using the dbbackup utility” on page 886

DBBackup function “a_backup_db structure” [SQL Anywhere Server - Programming]

Make a client-side backup by using the dbbackup utility
The dbbackup utility makes an image backup, which consists a copy of the database file and/or the transaction
log, each as separate files.

To make a client-side backup (dbbackup)

● Run the Backup utility (dbbackup) on the client computer. For example:

dbbackup -c "ENG=sample_server;DBN=demo;UID=DBA;PWD=sql" SQLAnybackup

See also
● “Backup utility (dbbackup)” on page 740
● “Making a server-side backup” on page 880
● “Recovering your database” on page 889
● “Types of backup” on page 872

Make a live backup
You can use a live backup to provide a redundant copy of the transaction log. This copy can be used to restart
a secondary system in case the primary system running the database server becomes unusable. A live backup
runs continuously, terminating only if the server shuts down. If a system failure occurs, the backed up
transaction log can be used for a rapid restart of the system. However, depending on the load that the server
is processing, the live backup may lag behind and may not contain all committed transactions.

You should run the dbbackup utility from the secondary computer. If the primary computer becomes
unusable, you can restart your database using the secondary computer. The database file and the transaction
log hold the information needed to restart.

You carry out a live backup of the transaction log by using the dbbackup utility with the -l option.

Backup and data recovery

886 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To make a live backup (dbbackup utility)

1. Set up a secondary computer from which you can run the database if the online computer fails. Ensure
that you have SQL Anywhere installed on the secondary computer.

2. Periodically, perform a full backup to the secondary computer.

For example:

dbbackup -c "UID=DBA;PWD=sql;ENG=testsrv;DBN=test;LINKS=tcpip" c:\backup
3. Run a live backup of the transaction log to the secondary computer.

dbbackup -l path\filename.log -c "connection-string"
4. Regularly run the dbbackup utility from the secondary computer.

If the primary computer becomes unusable, the database can be restarted using the secondary computer.
The database file and the transaction log hold the required information needed for a restart.

See also
● “Live backups” on page 875
● “Recovering your database” on page 889
● “Restart from a live backup” on page 892
● “Types of backup” on page 872

Making a client-side backup

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 887

Validating backups
Database file corruption may not be confirmed until the database server tries to access the affected part of
the database. As part of your backup and recovery plan, you should periodically check that your database is
valid by using tools such as the Validate Database Wizard in Sybase Central, or the Validation utility
(dbvalid). You should validate your database both before and after you perform a backup. You must have
VALIDATE authority to perform validation activities. See “VALIDATE authority” on page 451.

When you start a backup copy of a database to validate it, you can use the -ds database option to specify the
location of dbspace files and the transaction log. This allows you to start the backed up copy of the database
on the same computer as the original database while the original database is still running. See “-ds database
option” on page 251.

Depending on the options you specify, validation can include checksums, correctness of index data, and
whether all table pages belong to objects in the database. Express database validation (the -fx option) does
not validate data, continued row structure, or foreign key relationships.

Caution
Backup copies of the database and transaction log must not be changed in any way. If there were no
transactions in progress during the backup, or if you specified BACKUP DATABASE WITH
CHECKPOINT LOG RECOVER or WITH CHECKPOINT LOG NO COPY, you can check the validity of
the backup database using read-only mode or by validating a copy of the backup database.

However, if transactions were in progress, or if you specified BACKUP DATABASE WITH CHECKPOINT
LOG COPY, the database server must perform recovery on the database when you start it. Recovery modifies
the backup copy, which is not desirable.

If you can be sure that no transactions are in progress when the backup is being made, the database server
does not need to perform recovery steps. In this case, you can perform a validity check on the backup using
the read-only database option. See “-r server option” on page 216.

Tip
Using the BACKUP statement with the WAIT BEFORE START clause ensures that no transactions are in
progress when you start a backup.

Validation requires exclusive access to the object being validated. For this reason, it is best to validate when
there is no other activity on the database.

If a base table in the database file is corrupt, treat it as a media failure, and recover from your previous
backup. If an index is corrupt, you may want to unload the database without indexes, and reload.

See also
● “Validate a database” on page 918
● “Validating the transaction log” on page 908
● “Validate a table” on page 919
● “VALIDATE statement” [SQL Anywhere Server - SQL Reference]
● “Improving performance when validating databases” on page 920
● “Recovering your database” on page 889

Backup and data recovery

888 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Recovering your database
Recovery is the process of restoring your database file, transaction log, and dbspaces, and bringing the
database file as up-to-date as possible with incremental transaction log files.

It is important that you validate your backup as part of your backup and recovery plan. You should only
recover from a valid backup copy of the database.

The steps you need to take in the recovery process depend on whether you leave the transaction log untouched
on incremental backup in your backup process. If your backup operation deletes or renames the transaction
log, you may have to apply changes from several transaction logs. If your backup operation leaves the
transaction log untouched, you need to use only the online transaction log in recovery.

If you have multiple transaction logs, it is possible that transactions may span several transaction logs. You
must apply the transaction logs in the correct order when recovering; otherwise, transactions that span
multiple transaction logs are rolled back. You can specify the -ad database server option if you want the
database server to determine the correct order in which to apply the transaction logs. See “Recovering a
database with multiple transaction logs” on page 893.

The automatic recovery process
When a database is shut down during normal operation, the database server performs a checkpoint so that
all the information in the database is held in the database file. This is a clean shutdown.

Each time you start a database, the database server checks whether the last shutdown was clean or the result
of a system failure. If the database was not shut down cleanly, it automatically takes the following steps to
recover from a system failure:

1. Recover to the most recent checkpoint

To restore all pages to their state at the most recent checkpoint, the checkpoint log pages are copied over
the changes made since the checkpoint.

2. Apply changes made since the checkpoint

Recovering your database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 889

Changes made between the checkpoint and the system failure, which are held in the transaction log, are
applied.

3. Rollback uncommitted transactions

Any uncommitted transactions are rolled back, using the rollback logs.

Recover uncommitted operations
When recovering from media failure on the database file, the transaction log is intact. Recovery reapplies
all committed transactions to the database. In some circumstances, you may want to find information about
transactions that were incomplete at the time of the failure.

The Translate Log File Wizard helps you translate a log file into a .sql file from Sybase Central. You can
also use the dbtran utility to translate a log file into a .sql file.

To recover uncommitted operations from a transaction log (Sybase Central)

1. Choose Tools » SQL Anywhere 11 » Translate Log File.

2. Follow the instructions in the wizard.

3. Edit the translated log (SQL command file) in a text editor and identify the instructions you need.

To recover uncommitted operations from a transaction log (command line)

1. Run dbtran to convert the transaction log into a SQL command file, using the -a option to include
uncommitted transactions. For example, the following command uses dbtran to convert a transaction
log:

dbtran -a sample.log changes.sql
2. Edit the translated log (SQL command file) in a text editor and identify the instructions you need.

For more information about the Log Translation utility, see “Log Translation utility
(dbtran)” on page 799.

Note
The transaction log may or may not contain changes right up to the point where a failure occurred. It does
contain any changes made before the end of the most recently committed transaction that made changes to
the database.

See also
● “Restore from an image backup” on page 891
● “Restore from an archive backup” on page 891
● “Restart from a live backup” on page 892
● “Recovering a database with multiple transaction logs” on page 893
● “Recovering from media failure” on page 896

Backup and data recovery

890 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Restore from an image backup
The following procedure assumes that you do not have any incremental backups of the transaction log that
you need to apply as part of the recovery process. For information about recovering a database when you
have backed up multiple copies of the transaction log, see “Recovering a database with multiple transaction
logs” on page 893.

To restore a database from an image backup

1. Copy the database files back to their original location.

2. Restart the database server.

See also
● “Image backups” on page 877
● “The automatic recovery process” on page 889
● “Recover uncommitted operations” on page 890
● “Types of backup” on page 872

Restore from an archive backup
The following procedure assumes that you do not have any incremental backups of the transaction log that
you need to apply as part of the recovery process. For information about recovering a database when you
have backed up multiple copies of the transaction log, see “Recovering a database with multiple transaction
logs” on page 893.

To restore a database from an archive backup (Sybase Central)

1. Start a personal database server.

For example, the following command starts a database server named restore:

dbeng11 -n restore
2. Start Sybase Central and connect to the utility database.

a. On the Identification tab of the Connect window, enter a user ID of DBA and a password of sql.
Leave all other fields on this tab blank.

b. Click the Database tab and enter a database name of utility_db. Leave all other fields on this tab
blank.

c. Click OK.

3. Choose Tools » SQL Anywhere 11 » Restore Database.

4. Follow the instructions in the wizard.

To restore a database from an archive backup (Interactive SQL)

1. Start a personal database server.

Recovering your database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 891

For example, the following command starts a database server named restore:

dbeng11 -n restore
2. Start Interactive SQL and connect to the utility database.

a. On the Identification tab of the Connect window, enter a user ID of DBA and a password of sql.
Leave all other fields on this tab blank.

b. Click the Database tab and enter a database name of utility_db. Leave all other fields on this tab
blank.

c. Click OK.

3. Execute the RESTORE DATABASE statement, specifying the archive root.

At this time, you can choose to restore an archived database to its original location (the default), or to a
different computer with different device names using the RENAME clause. See “RESTORE
DATABASE statement” [SQL Anywhere Server - SQL Reference].

Example
The following statement restores a database from a tape archive to the database file c:\newdb\newdb.db.

RESTORE DATABASE 'c:\\newdb\\newdb.db'
FROM '\\\\.\\tape0';

The following statement restores a database from an archive backup in file c:\backup\archive.1 to the
database file c:\newdb\newdb.db. The transaction log name and location are specified in the database.

RESTORE DATABASE 'c:\\newdb\\newdb.db'
FROM 'c:\\backup\\archive';

See also
● “Using the utility database” on page 30
● “Archive backups” on page 877
● “The automatic recovery process” on page 889
● “Recover uncommitted operations” on page 890
● “Types of backup” on page 872

Restart from a live backup
A live backup is made to a separate computer from the primary computer that is running your production
database. To restart a database from a live backup, you must have SQL Anywhere installed on the secondary
computer. For more information about live backups, see “Live backups” on page 875.

To restart a database using a live backup

1. Copy the full backup transaction log file and the live backup transaction log to a directory where they
can be applied to the backup copy of the database file.

2. Rename or delete the current transaction log file whose name matches the expected transaction log file
name, if one exists.

Backup and data recovery

892 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

3. Start the database server with the -ad option to apply the transaction logs in the directory created in step
1 and bring the database up to date:

dbeng11 samples-dir\demo.db -ad directory-name

The database server shuts down automatically once the transaction log is applied.

4. Start the database server in the normal way, allowing user access. Any new activity is written to a new
transaction log.

5. Run a live backup of the transaction log to the secondary computer.

dbbackup -l path\filename.log -c "connection-string"

See also
● “Live backups” on page 875
● “The automatic recovery process” on page 889
● “Recover uncommitted operations” on page 890
● “Types of backup” on page 872

Recovering a database with multiple transaction logs
If you need to recover your database and you have multiple transaction logs, you must apply the transaction
log files to the backup copy of your database in the correct order.

You can use any of the following methods to apply transaction logs in the correct order:

● Use the -a server option to apply each log individually to the backup copy of the database. You can use
the Transaction Log utility (dblog) to determine the order in which transaction log files were generated.
The utility generates and displays the earliest log offset in the transaction log, which can be an effective
method for determining the order in which to apply multiple log files. See “-a database
option” on page 248.

● Use the -ad server option to specify the location of the transaction log files. The database server
determines the correct order for applying the transaction logs to the backup copy of the database based
on the log offsets. See “-ad database option” on page 248.

● Use the -ar server option to have the database server apply log files associated with the database that are
located in the same directory as the transaction log. The transaction log location is obtained from the
database. The database server determines the correct order for applying the transaction logs to the backup
copy of the database based on the log offsets. See “-ar database option” on page 249.

● Use the Log Translation utility (dbtran) to translate one or more transaction logs into a .sql file that can
be applied to the backup copy of the database. See “Transaction Log utility (dblog)” on page 842.

Recovering your database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 893

Recover a database with multiple transaction logs using the -ad
server option

The -ad server option is used to recover a database by applying all the transaction logs from a specified
directory to the backup copy of a database. When this option is specified, the database server applies the
transaction logs and then shuts down the database.

To recover from multiple transaction logs using the -ad server option

● Start the database server using -ad to apply the transaction logs to the backup copy of your database. See
“-ad database option” on page 248.

Example
The following example applies the offline (backup) and current transaction logs to the backup copy of the
sample database using the -ad database server option. The database server uses the log offsets in the
transaction logs to determine the correct order in which to apply the log files.

1. Copy the backup transaction log and current transaction log into a directory, for example, c:
\backuplogs.

2. Start the database server and apply the transaction logs to a backup copy of a database called
backupdemo.db:

dbeng11 backupdemo.db -ad c:\backuplogs

The database server applies the transaction logs to the backup copy of the database and then shuts down.

See also
● “Recover a database with multiple transaction logs using the -a server option” on page 894
● “Recover a database with multiple transaction logs using the dbtran utility” on page 895
● “The automatic recovery process” on page 889
● “Recover uncommitted operations” on page 890

Recover a database with multiple transaction logs using the -a server
option

The -a server option is used recover a database by applying a single transaction log file to the backup copy
of a database. When this option is specified, the database server applies the log and then shuts down. If you
have multiple transaction logs, you must apply them one at a time in the correct order, from oldest to most
recent.

To recover from multiple transaction logs using the -a server option

1. Start the database server using -a to apply the backup transaction log to the offline (backup) copy of your
database.

See “-a database option” on page 248.

2. Start the database server and apply the current transaction log to the backup copy of your database.

Backup and data recovery

894 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
The following example applies the offline (backup) and current transaction logs to the backup copy of the
sample database using the -a database server option.

1. Start the database server and apply a backup transaction log called backupdemo.log to the backup copy
of a database called backupdemo.db:

dbeng11 backupdemo.db -a backupdemo.log

The database server applies the backup transaction log to the backup copy of the database and then shuts
down.

2. Start the database server and apply the current transaction log called demo.log to the backup copy of the
database:

dbeng11 backupdemo.db -a demo.log

The database server applies the current transaction log to the backup copy of the database and then shuts
down.

See also
● “Recover a database with multiple transaction logs using the -ad server option” on page 894
● “Recover a database with multiple transaction logs using the dbtran utility” on page 895
● “The automatic recovery process” on page 889
● “Recover uncommitted operations” on page 890

Recover a database with multiple transaction logs using the dbtran
utility

To maintain the integrity of your data when you use dbtran to translate multiple transaction logs, you must
specify both the -m and -n options. The -m option instructs the Log Translation utility (dblog) to generate a
file (named by -n) containing all the transactions from the logs in the specified directory.

You need to use -m because any transactions that span transaction log files could be rolled back if you
translate each log individually using dbtran. When dbtran translates a log, it adds a ROLLBACK statement
to the end of the log to undo any uncommitted transactions. In cases where a transaction spans two logs, the
COMMIT for the transaction occurs in the second log file. Operations at the end of the first log file would
be rolled back by dbtran because the file does not contain a COMMIT for the transaction. Translating all
the transaction log files in a directory using -m ensures that all of your transactions are translated. See
“Transaction Log utility (dblog)” on page 842.

To recover from multiple transaction logs using the dbtran utility

1. Run the Log Translation utility (dbtran) against the directory containing the transaction log files and
output the resulting SQL statements into a .sql file.

2. Start the backup copy of your database.

3. Apply the .sql file generated by dbtran in step 1 to the backup copy of your database from Interactive
SQL.

Recovering your database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 895

Example
The following example uses the dbtran utility to apply the backup and current transaction logs to the backup
copy of the database.

1. Run the Log Translation utility against the c:|backup directory and output the SQL statements into a file
called recoverylog.sql:

dbtran -m "c:\backup" -n recoverylog.sql
2. Start the backup copy of the database called backupdemo.db:

dbeng11 backupdemo.db
3. Apply the recoverylog.sql file to the database from Interactive SQL:

dbisql -c "UID=DBA;PWD=sql;ENG=backupdemo" READ recoverylog.sql

See also
● “Recover a database with multiple transaction logs using the -ad server option” on page 894
● “Recover a database with multiple transaction logs using the -a server option” on page 894
● “The automatic recovery process” on page 889
● “Recover uncommitted operations” on page 890

Recovering from media failure
If your database is unusable, you have experienced a database failure. SQL Anywhere provides protection
against the following types of failure:

Type of failure Description Examples

Media The database file and/or the trans-
action log become unusable. This
type of failure can occur because the
file system or the device storing the
database file becomes unusable, or
because of file corruption. Backups
protect your data against media fail-
ure.

● The disk drive storing the da-
tabase file or the transaction
log file becomes unusable.

● The database file or the trans-
action log file becomes cor-
rupt. This can happen because
of hardware or software prob-
lems.

Backup and data recovery

896 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Type of failure Description Examples

System A system failure occurs when the
computer or operating system fails
while there are partially completed
transactions. This type of failure can
occur when the computer is inap-
propriately turned off or restarted,
when another application causes the
operating system to fail, or because
of a power failure.

After a system failure occurs, the
database server recovers automati-
cally when you next start the data-
base. The results of each transaction
committed before the system error
are intact. All changes by transac-
tions that were not committed be-
fore the system failure are canceled.

● The computer or operating
system becomes temporarily
unavailable while there are
partially completed transac-
tions, perhaps because of a
power failure or operating
system failure, or because the
computer is inappropriately
restarted.

Recover from media failure on the data
This procedure describes the steps for recovering from media failure if the only file that you lost is the
database.

To recover from media failure on the database file

1. Make an extra backup copy of the current transaction log. Since the database file is unavailable, the
transaction log contains the only record of the changes that have been made since the last backup.

2. Create a recovery directory to hold the files you use during recovery.

3. Copy the database file from the last full backup to the recovery directory.

4. Apply the transactions held in the backed up transaction logs to the recovery database. Use one of the
following methods.

To apply each transaction log manually, for each log file, chronologically, do the following:

a. Copy the log file into the recovery directory.

b. Start the database server with the apply transaction log (-a) option, to apply the transaction log:

dbeng11 database-name.db -a log-name.log

The database server shuts down automatically once the transactions are applied.

c. Once you have applied all the backed up transaction logs, copy the online transaction log into the
recovery directory.
Apply the transactions from the online transaction log to the recovery database.

Recovering your database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 897

dbeng11 database-name.db -a log-name.log
If you want the database server to determine the correct order of the transaction logs and apply them
automatically, do the following:

a. Copy the offline and online transaction log files into the recovery directory.

b. Start the database server with the -ad option, to specify the location of the transaction logs. The
database server determines the correct order in which to apply the transaction logs based on the log
offsets:

dbeng11 database-name.db -ad log-directory

The database server shuts down automatically once the transactions are applied.

5. Perform validity checks on the recovery database.

See “Validate a database” on page 918.

6. Make a backup.

7. Move the database file to the production directory.

8. Notify users that they can access the production database.

See also
● “The automatic recovery process” on page 889
● “Recover uncommitted operations” on page 890

Recover from media failure on a transaction log mirror
The following procedure explains how to recover from a media failure when you are using a transaction log
mirror. If your database is a primary site in a Replication Server installation, or a consolidated database in
a SQL Remote installation, you should use a transaction log mirror, or a hardware equivalent.

To recover from media failure on a transaction log mirror

1. Make an extra copy of the backup of your database file taken at the time the transaction log was started.

2. Identify which of the two files is corrupt. Run the Log Translation utility (dbtran) on the transaction log
and on its mirror. The file that generates an error message is corrupt. The Log Translation utility is
accessible from Sybase Central or as the dbtran utility.

The following command line translates a transaction log named demo.log, placing the translated output
into demo.sql:

dbtran demo.log

The Log Translation utility properly translates the intact file, and reports an error while translating the
corrupt file.

3. Copy the correct file over the corrupt file.

4. Restart the database server.

Backup and data recovery

898 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Transaction log mirrors” on page 15
● “The automatic recovery process” on page 889
● “Recover uncommitted operations” on page 890

Recover from media failure on an unmirrored transaction log
If your database is a primary site in a Replication Server installation, or a consolidated database in a MobiLink
or SQL Remote installation, you should use a transaction log mirror, or hardware equivalent. See
“Transaction log mirrors” on page 15.

To recover from media failure on an unmirrored transaction log (partial recovery)

1. Make an extra backup copy of the database file. Without a transaction log, the database file contains the
only record of the changes made since the last backup and the most recent checkpoint.

2. Delete or rename the transaction log file.

3. Restart the database with the -f option.

dbeng11 samples-dir\demo.db -f

Caution
This command should only be used when the database is not participating in a MobiLink, SQL Remote,
or Replication Server system. If your database is a consolidated database in a SQL Remote replication
system, you may have to re-extract the remote databases.

Without the -f option, the database server reports the lack of a transaction log as an error. With the -f
option, the database server restores the database to the most recent checkpoint and then rolls back any
transactions that were not committed at the time of the checkpoint. A new transaction log is then created.

See also
● “The transaction log” on page 14
● “The automatic recovery process” on page 889
● “Recover uncommitted operations” on page 890
● “-f recovery option” on page 184

Recovering your database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 899

Designing a backup and recovery plan
It is recommended that you develop and implement a backup schedule to protect your data. You should also
ensure that you have created and tested your backup and recovery commands as part of your backup and
recovery plan.

Some of the factors that you need to consider when developing your backup and recovery plan include:

● where are the database files located?

● what files need to be backed up?

● where are the backup files stored?

● how does the backup affect performance of your database or application?

● will the database server be running while you run the backup?

Some of the most common situations where you require a backup include:

● failed media
● failed hardware
● file corruption

Typically, a backup uses a combination of full and incremental backups. The frequency of each backup type
depends on the type of data that you are protecting. You should also validate your backups to ensure that
they can be used for recovery. See “Validating backups” on page 888.

You can use the scheduling features in SQL Anywhere to automate the task of backing up your database.
Once you specify a schedule, the backups are performed automatically by the database server. See
“Automating tasks using schedules and events” on page 921 and “Creating a maintenance
plan” on page 902.

The length of time your organization can function without access to the data in your database determines
the maximum recovery time.

You should verify that you have the protection you need against media failure on the database file and on
the transaction log file. If you are running in a replication environment, you should consider using a
transaction log mirror. See “Protecting against media failure” on page 903.

External factors such as available hardware, the size of database files, recovery medium, disk space, and
unexpected errors can affect your recovery time. When planning a backup strategy, you should allow
additional recovery time for tasks such as entering recovery commands or retrieving and loading tapes.

See also
● “Understanding backups” on page 909
● “Backing up databases involved in synchronization and replication” on page 904
● “Backup and recovery restrictions” on page 879
● “Types of backup” on page 872
● “Choosing a backup format” on page 877
● “Full backups” on page 873
● “Incremental backups” on page 874

Backup and data recovery

900 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Implement a backup and recovery plan
To implement a backup and recovery plan

1. Create and verify your backup and recovery commands, including commands for database validation.
See “Validating backups” on page 888.

2. Measure the time it takes to execute backup and recovery commands.

3. Document the backup commands and create written procedures outlining where your backups are kept.
The procedures should identify any naming conventions that are used, and the type of backups that are
performed.

4. Set up your backup procedures on the production server.

5. Monitor backup procedures to avoid unexpected errors. Make sure any changes in the process are
reflected in your documentation.

See also
● “Full backups” on page 873
● “Incremental backups” on page 874
● “Understanding backups” on page 909
● “Backing up databases involved in synchronization and replication” on page 904
● “Backup and recovery restrictions” on page 879
● “Types of backup” on page 872
● “Choosing a backup format” on page 877

Scheduling considerations
Typically, a backup uses a combination of full and incremental backups. The frequency with which you
make backups depends on such factors as the importance of your data and how often it changes.

A common starting point for backups is to perform a weekly full backup, with daily incremental backups of
the transaction log. Both full and incremental backups can be performed online (while the database is
running) or offline, on the server side or the client side.

The kinds of failure against which a backup schedule provides protection is dependent not only the frequency
of your backup schedule, but also on how you operate your database server.

You should always keep more than one full backup. If you make a backup on top of a previous backup, a
media failure in the middle of the backup leaves you with no backup at all. You should also keep some of
your full backups offsite to protect against fire, flood, earthquake, theft, or vandalism.

You can use the event scheduling features of SQL Anywhere to perform online backups automatically at
scheduled times. See “Creating a maintenance plan” on page 902.

Designing a backup and recovery plan

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 901

Creating a maintenance plan
To simplify administration, you can set up a maintenance plan for your database that is executed
automatically by the database server. A maintenance plan consists of a schedule for performing one or more
of the following tasks:

● validating the database
● backing up the database
● managing maintenance plan reports

In Sybase Central you create a maintenance plan by using the Create Maintenance Plan Wizard. Only one
instance of a maintenance plan can run at a time. Each time the maintenance plan runs, a maintenance plan
report is saved in the database. You can view this report from Sybase Central and optionally you can have
the maintenance plan report emailed to you after the maintenance plan executes on the database.

Customizing maintenance plans
Maintenance plans can contain user-defined operations. In the Create Maintenance Plan Wizard you can
add user-defined operations as SQL statements that run either before validation or after backup.

Create a maintenance plan report

To create a maintenance plan

1. Connect to the database as a user with DBA authority.

2. In the left pane, right-click Maintenance Plans and choose New » Maintenance Plan.

3. Follow the instructions in the wizard.

For information about the available settings, see:

● “Defining schedules” on page 924
● “VALIDATE statement” [SQL Anywhere Server - SQL Reference]
● “Types of backup” on page 872
● “xp_startsmtp system procedure” [SQL Anywhere Server - SQL Reference]

See also
● “Archive backups” on page 877
● “Image backups” on page 877
● “Incremental backups” on page 874
● “Creating a maintenance plan” on page 902

View the maintenance plan report
After the maintenance plan has executed, you can view a report in Sybase Central.

Backup and data recovery

902 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To view the maintenance plan report (Sybase Central)

1. Connect to the database from the SQL Anywhere plug-in as a user with DBA authority.

2. In the left pane, double-click Maintenance Plans.

3. Double-click your maintenance plan.

4. In the right pane, double-click the report.

The Maintenance Plan Properties window appears. The Details pane contains the log for the
maintenance plan.

Protecting against media failure
Backups protect your data against media failure.

When you create a database, the default location for the transaction log is the same device and in the same
directory as the database file. This arrangement does not protect against media failure, and you should
consider placing the transaction log in another location for production use.

Media failure on the database file If your database file is unusable and your transaction log is usable,
you can recover all committed changes to the database as long as you have a proper backup procedure in
place. All information since the last backed up copy of the database file is held in backed up transaction logs,
or in the online transaction log.

Media failure on the transaction log file Unless you use a transaction log mirror, you cannot recover
information entered between the last database checkpoint and a media failure on the transaction log. For this
reason, it is recommended that you use a transaction log mirror in setups such as SQL Remote consolidated
databases, where loss of the transaction log can lead to loss of key information, or the breakdown of a
replication system.

How quickly you can recover from media failure depends on whether the media failure is on the database
file or the transaction log file.

For comprehensive protection against media failure, you should keep the transaction log on a different device
from the database file. Some computers with two or more hard drives have only one physical disk drive with
several logical drives or partitions: if you want reliable protection against media failure, make sure that you
have a computer with at least two physical storage devices.

Placing the transaction log on a separate device can also improve performance by eliminating the need for
disk head movement between the transaction log and the main database file.

Caution
You should not place the transaction log on a network directory. Reading and writing pages over a network
results in poor performance and possible file corruption.

See also
● “Creating a database” on page 21
● “Changing the location of a transaction log” on page 16

Designing a backup and recovery plan

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 903

Backing up databases involved in synchronization
and replication

If your database is part of a SQL Remote installation, the Message Agent must have access to old transactions.
If it is a consolidated database, it holds the master copy of the entire SQL Remote installation, and thorough
backup procedures are essential to ensure that no data is lost.

If your database is a primary site in a Replication Server installation, the Replication Agent requires access
to old transactions. However, disk space limitations often make it impractical to let the transaction log grow
indefinitely.

If your database is participating in a MobiLink setup using dbmlsync, the same considerations apply.
However, if your database is a MobiLink consolidated database, old transaction logs are not required.

For synchronization and replication environments, you can choose backup options to rename and restart the
transaction log. This kind of backup prevents open-ended growth of the transaction log, while maintaining
information about the old transactions.

This kind of backup is illustrated in the figure below.

For more information, see “Make a backup and rename the original transaction log” on page 905.

Backup procedures are not as crucial on remote databases as they are on the consolidated database. You may
choose to rely on replication to the consolidated database as a data backup method. In the event of a media
failure, the remote database would have to be re-extracted from the consolidated database, and any operations

Backup and data recovery

904 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

that have not been replicated would be lost. (You could use the Log Translation utility to attempt to recover
lost operations. See “Log Translation utility (dbtran)” on page 799).

Even if you do choose to rely on replication to protect remote database data, backups may still need to be
done periodically at remote databases to prevent the transaction log from growing too large. You should use
the same option (rename and restart the log) as at the consolidated database, running the Message Agent so
that it has access to the renamed log files. If you set the delete_old_logs option to On at the remote database,
the old log files are deleted automatically by the Message Agent when they are no longer needed.

Automatic transaction log renaming in SQL Remote

Use the -x Message Agent option to eliminate the need to rename the transaction log on the remote computer
when the database server is shut down. The -x option renames the transaction log after it has been scanned
for outgoing messages. See “Message Agent (dbremote)” [SQL Remote].

Managing the transaction log
When you back up your database, you must decide whether you want to continue to use the existing
transaction log or create a new one. If your database is involved in synchronization or replication, you must
maintain copies of old transaction logs until you are certain that they are no longer needed.

Make a backup and rename the original transaction log

To make a backup, renaming the transaction log (Sybase Central)

1. Connect to the database as a user with BACKUP authority.

2. Right-click the database and choose Create Backup Images.

3. Click Next.

4. In the Which Database Do You Want To Back Up list, select the database and click Next.

5. In the Save The Backup Images In The Following Directory field, type the name of a directory to
save the backup copies.

6. Select an option in the Which Files Do You Want To Back Up list and click Next.

7. In the What Do You Want To Do With The Transaction Log list, click Rename The Transaction
Log.

8. Click Next.

9. Click Finish.

10. Click Close.

To make a backup, renaming the transaction log (SQL)

● Use the BACKUP statement with the following clauses:

Backing up databases involved in synchronization and replication

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 905

BACKUP DATABASE
DIRECTORY backup-directory
[TRANSACTION LOG ONLY]
TRANSACTION LOG RENAME;

Include the TRANSACTION LOG ONLY clause only if you are making an incremental backup.

The backup copies of the transaction log and database file are placed in backup-directory. If you enter
a path, it is relative to the working directory of the database server, not your client application.

To make a backup, renaming the transaction log (command line)

● Run the following command (it must be typed on one line):

dbbackup -c "connection-string" -r [-t] backup-directory

Include the -t option if you are making an incremental backup.

The backup copies of the transaction log and database file are placed in backup-directory. If you enter
a path, it is relative to the directory from which you run the command.

See also
● “Backup utility (dbbackup)” on page 740
● “BACKUP statement” [SQL Anywhere Server - SQL Reference]
● “The transaction log” on page 14
● “Recovering your database” on page 889

Rename the backup copy of the transaction log during backup
By default, the backup copy of the transaction log file has the same name as the online file. For each backup
operation, you must assign a different name or location for the backup copy, or you must move the backup
copy before the next backup is done.

To make a repeatable incremental backup command, rename the backup copy of the transaction log.

To rename the backup copy of the transaction log (SQL)

● Use the MATCH keyword in the BACKUP statement. For example, the following statement makes an
incremental backup of the transaction log to the directory c:\backup. The backup copy of the transaction
log is called YYMMDDxx.log, where YYMMDD is the date and xx is a counter, starting from AA.

BACKUP DATABASE
DIRECTORY 'c:\\backup'
TRANSACTION LOG ONLY
TRANSACTION LOG RENAME MATCH;

To rename the backup copy of the transaction log (command line)

● Supply the -n option to dbbackup. For example, the following command makes an incremental backup
of the sample database, renaming the backup copy of the transaction log.

dbbackup -c "UID=DBA;PWD=sql;DBN=demo" -r -t -n c:\backup

Backup and data recovery

906 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Notes
The backup copy of the transaction log is named YYMMDDxx.log, where YY is the year, MM is the month,
DD is the day of the month, and xx runs from AA to ZZ, incrementing if there is more than one backup per
day. The YYMMDDxx.log file names are used to distinguish between files, not for ordering.

This set of backup options is typically used for databases involved in replication. In addition to making
backup copies of the database file and transaction log, the transaction log at backup time is renamed to an
offline log, and a new transaction log is started with the same name as the log in use at backup time.

See also
● “Backing up databases involved in synchronization and replication” on page 904
● “Backup utility (dbbackup)” on page 740
● “BACKUP statement” [SQL Anywhere Server - SQL Reference]
● “The transaction log” on page 14
● “Recovering your database” on page 889

Make a backup and delete the original transaction log
If your database is not involved in replication and you have limited disk space on your computer, you can
delete the contents of the online transaction log (truncate the log) when you make a backup. To recover
your database when using this type of backup, you must use every backup copy made since the last full
backup during recovery from media failure on the database file.

To make a backup, deleting the transaction log (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Right-click the database and choose Create Backup Images.

3. Click Next.

4. In the Which Database Do You Want To Back Up list, select the database and click Next.

5. In the Save The Backup Images In The Following Directory field, type the name of a directory to
save the backup copies.

6. Select an option in the Which Files Do You Want To Back Up list and click Next.

7. In the What Do You Want To Do With The Transaction Log list, click Truncate The Transaction
Log.

8. Click Next.

9. Click Finish.

10. Click Close.

To make a backup, deleting the transaction log (SQL)

● Use the BACKUP statement with the following clauses:

Backing up databases involved in synchronization and replication

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 907

BACKUP DATABASE
DIRECTORY backup-directory
[TRANSACTION LOG ONLY]
TRANSACTION LOG TRUNCATE;

Include the TRANSACTION LOG ONLY clause only if you are making an incremental backup.

The backup copies of the transaction log and database file are placed in backup-directory. If you enter
a path, it is relative to the working directory of the database server, not your client application.

To make a backup, deleting the transaction log (command line)

● Run the following command:

dbbackup -c "connection-string" -x [-t] backup-directory

Include the -t option only if you are making an incremental backup.

The backup copies of the transaction log and database file are placed in backup-directory. If you enter
a path, it is relative to the directory from which you run the command.

See also
● “Backup utility (dbbackup)” on page 740
● “BACKUP statement” [SQL Anywhere Server - SQL Reference]
● “The transaction log” on page 14
● “Recovering your database” on page 889

Validating the transaction log
When a database using a transaction log mirror starts up, the database server performs a series of checks and
automatic recovery operations to confirm that the transaction log and its mirror are not corrupt, and to correct
some problems if corruption is detected.

On startup, the server checks that the transaction log and its mirror are identical by performing a full
comparison of the two files; if they are identical, the database starts as usual. The comparison of log and
mirror adds to database startup time.

If the database stopped because of a system failure, it is possible that some operations were written into the
transaction log but not into the mirror. If the server finds that the transaction log and the mirror are identical
up to the end of the shorter of the two files, the remainder of the longer file is copied into the shorter file.
This produces an identical log and mirror. After this automatic recovery step, the server starts as usual.

If the check finds that the transaction log and the transaction log mirror are different in the body, one of the
two files is corrupt. In this case, the database does not start, and an error message is generated saying that
the transaction log or its mirror is invalid.

You can also use the Log Translation utility (dbtran) to validate transaction logs whether you have an online
or offline transaction log. If the Log Translation utility can successfully read the log file, it is valid. See
“Log Translation utility (dbtran)” on page 799.

Backup and data recovery

908 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The internal backup process
This section describes the internal mechanisms used during backup.

What happens when I run a backup?
When you start a backup, the database may be in use by many people. If you need to restore your database
from a backup, you need to know what information has been backed up, and what has not.

When making a backup, the database server:

1. Issues a checkpoint. Further checkpoints are disallowed until the backup is complete.

2. Makes a backup of the database files, if performing a full backup.

3. Makes a backup of the transaction log.

The backup includes all operations recorded in the transaction log before the final page of the log is read.
This may include instructions issued after the backup started.

The backup copy of the transaction log is generally smaller than the online transaction log. The database
server allocates space to the online transaction logs in multiples of 64 KB, so the transaction log file size
generally includes empty pages. However, only the non-empty pages are backed up.

4. Marks the backup image of the database to indicate that recovery is needed. This step causes any
operations that happened since the start of the backup to be applied when the backup copy of the database
is started. It also causes operations that were incomplete at the checkpoint to be undone if they were not
committed.

Understanding backups
When a database shuts down cleanly, the database file holds a complete and current copy of all the data in
the database. When a database is running, however, the database file is generally not current or complete.

The only time a database file is guaranteed to hold a complete and current copy of all data is immediately
after a checkpoint completes. Following a checkpoint, all the contents of the database cache are on disk.

The database server checkpoints a database under the following conditions:

● As part of the database shutdown operations

● When the amount of time since the last checkpoint exceeds the setting of the -gc server option

● When the estimated time to do a recovery operation exceeds the setting of the -gr server option

● When the database server is idle long enough to write all dirty pages

● When certain DDL statements (such as ALTER TABLE, DROP TABLE, DROP INDEX, LOAD
TABLE, or BACKUP) are executed

● When a connection issues a CHECKPOINT statement

● When the database server is running without a transaction log and a transaction is committed

The internal backup process

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 909

To ensure that you have a complete copy of all committed transactions between checkpoints, you need the
database file and the transaction log.

See also
● “Understanding the checkpoint log” on page 18
● “How the database server decides when to checkpoint” on page 910
● “-gc server option” on page 189
● “-gr server option” on page 194

How the database server decides when to checkpoint
The priority of writing dirty pages to the disk increases as the time and the amount of work since the last
checkpoint increases. The priority is determined by the following factors:

● Checkpoint Urgency The time that has elapsed since the last checkpoint, as a percentage of the
checkpoint time setting of the database. You can set the maximum time, in minutes, between checkpoints
by using the -gc server option or the checkpoint_time database option. If -gc is specified, the
checkpoint_time option setting in the database is ignored.

● Recovery Urgency A heuristic to estimate the amount of time required to recover the database if it
fails right now. You can set the maximum time, in minutes, for recovery in the event of system failure
by using the -gr server option or recovery_time database option. If -gr is specified, the recovery_time
option setting in the database is ignored.

The checkpoint and recovery urgency values are important only if the database server does not have enough
idle time to write dirty pages. The lower boundary on the interval between checkpoints is based on a
combination of the recovery_time and checkpoint_time options. The recovery_time option setting is not
respected in cases where it would force a checkpoint too soon.

Frequent checkpoints make recovery quicker, but also create work for the server writing out dirty pages.

If, because of other activity in the database, the number of dirty pages falls to zero, and if the checkpoint
urgency is 33% or more, then a checkpoint takes place automatically since it is a convenient time.

Both the checkpoint urgency and recovery urgency values increase until the checkpoint occurs, at which
point they drop to zero.

See also
● “Understanding the checkpoint log” on page 18
● “-gc server option” on page 189
● “checkpoint_time option [database]” on page 514
● “-gr server option” on page 194
● “recovery_time option [database]” on page 568

Backup and data recovery

910 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Managing the transaction log
When you make a backup, by default the backup makes a copy of the current state of the transaction log,
and leaves the transaction log in place. If your database is involved in synchronization or replication, then
you may need to access old copies of the transaction log after recovering your database.

In many circumstances, disk space limitations make it impractical to let the transaction log grow indefinitely.
To free disk space, you can choose to delete the contents of the transaction log when the backup is complete,
freeing the disk space. Do not choose this option if the database is involved in replication because replication
requires access to the transaction log.

A full backup, which truncates the log file, is illustrated in the figure below. In an incremental backup, only
the transaction log is backed up.

Deleting the transaction log after each incremental backup makes recovery from a media failure on the
database file a more complex task. Each transaction log needs to be applied in sequence to bring the database
up to date, and there may then be several different transaction logs since the last full backup.

You can use this kind of backup on a database that is operating as a MobiLink consolidated database because
MobiLink does not rely on the transaction log. If you are running SQL Remote or the MobiLink
dbmlsync.exe application, you must use a scheme suitable for preserving old transaction logs.

See:

● “Make a backup and rename the original transaction log” on page 905
● “Rename the backup copy of the transaction log during backup” on page 906
● “Make a backup and delete the original transaction log” on page 907

The internal backup process

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 911

Offline transaction logs
In addition to backing up the transaction log, a backup operation can rename the online transaction log to a
file name of the form YYMMDDxx.log. This file is no longer used by the database server, but is available
for the Message Agent and the Replication Agent. It is called an offline transaction log. A new online
transaction log is started with the same name as the old online transaction log.

The YYMMDDxx.log file names are used to distinguish between the files, not for ordering. For example, the
renamed log file from the first backup on December 10, 2000, is named 001210AA.log. The first two digits
indicate the year, the second two digits indicate the month, the third two digits indicate the day of the month,
and the final two characters distinguish among different backups made on the same day.

The Message Agent and the Replication Agent can use the offline copies to provide the old transactions as
needed. If you set the delete_old_logs database option to On, then the Message Agent and Replication Agent
delete the offline files when they are no longer needed, saving disk space.

The rollback log
As changes are made to the contents of a database, a rollback log is kept for the purpose of canceling changes
if a transaction is rolled back or if a transaction is uncommitted when a system failure occurs. There is a
separate rollback log for each connection. When a transaction is committed or rolled back, the contents of
the rollback log for that connection are deleted. The rollback logs are stored in the database, and rollback
log pages are copied into the checkpoint log along with other pages that are changed.

The rollback log is also called the undo log.

For more information about transaction processing, see “Using transactions and isolation levels” [SQL
Anywhere Server - SQL Usage].

Understanding parallel database backups
When you perform a server-side image backup using the Backup utility (dbbackup) by specifying the -s
option, or by using the BACKUP DATABASE statement, a parallel database backup is performed. Parallel
backups use physical device-level parallelism to decrease the overall time required to complete a backup
operation. Parallel backups are not supported on Windows Mobile.

The database server creates a reader thread for each drive on which database files are stored. A writer thread
is created for the destination drive where the backup directory is located. Using separate readers and writers
allows I/O operations to be performed in parallel, instead of sequentially.

The performance of a parallel backup is limited by the slowest component in the system. It is typically a
physical disk, but it could also be other components, such as the I/O controller or the system bus. Each of
these components has a maximum rate at which they can transfer data.

The BACKUP DATABASE statement and the Backup utility (dbbackup) provide options that let you
configure the behavior of a parallel backup, including:

● when and how the checkpoint log is copied

Backup and data recovery

912 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● the maximum number of pages used at a time to transfer data from the database server to dbbackup (only
available when using dbbackup)

● adding more writers (BACKUP statement only)

Backups should always be made to a separate physical drive. This provides a performance benefit from the
I/O parallelism, and also improves the safety of the data in the event of a hardware failure.

See also
● “BACKUP statement” [SQL Anywhere Server - SQL Reference]
● “Backup utility (dbbackup)” on page 740

The internal backup process

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 913

914

Validating databases

Contents
Introduction to validation .. 916
Using checksums to detect corruption ... 917
Improving performance when validating databases .. 920

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 915

Introduction to validation
Database file corruption may not be confirmed until the database server tries to access the affected part of
the database. You should periodically check that your database is valid by using tools such as the Validate
Database Wizard in Sybase Central, or the Validation utility (dbvalid). You must have VALIDATE
authority to perform validation activities. See “VALIDATE authority” on page 451.

Depending on the options you specify, validation can include checksums, correctness of index data, and
whether all table pages belong to objects in the database. Express database validation (the -fx option) does
not validate data, continued row structure, or foreign key relationships.

Validation requires exclusive access to the object being validated. For this reason, it is best to validate when
there is no other activity on the database. If you can be sure that no transactions are in progress when the
backup is being made, the database server does not need to perform recovery steps. In this case, you can
perform a validity check on the backup using the read-only database option. See “-r server
option” on page 216.

Tip
Using the BACKUP statement with the WAIT BEFORE START clause ensures that no transactions are in
progress when you start a backup.

If a base table in the database file is corrupt, you should treat the situation as a media failure, and recover
from your previous backup. If an index is corrupt, you may want to unload the database without indexes,
and reload.

See also
● “Validate a database” on page 918
● “Validating the transaction log” on page 908
● “Validate a table” on page 919
● “VALIDATE statement” [SQL Anywhere Server - SQL Reference]
● “Improving performance when validating databases” on page 920

Validating databases

916 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using checksums to detect corruption
Checksums are used to determine whether a database page has been modified on disk. When you create a
database with checksums enabled, a checksum is calculated for each page just before it is written to disk.
The next time the page is read from disk, the page's checksum is recalculated and compared to the checksum
stored on the page. If the checksums are different, then the page has been modified on disk and an error
occurs.

You can check whether a database was created with checksums enabled by executing the following
statement:

SELECT DB_PROPERTY ('Checksum');

This query returns ON if checksums are turned on; otherwise, it returns OFF.

Validating checksums

If you created your database with checksums enabled, you can check the validity of the disk pages. Checksum
validation requires either DBA or VALIDATE authority.

For databases with checksums enabled, a checksum is calculated for each database page and this value is
stored when the page is written to disk. You can use the Validation utility (dbvalid) or the Validate Database
Wizard in Sybase Central to perform checksum validation, which consists of reading the database pages
from disk and calculating the checksum for the page. If the calculated checksum does not match the stored
checksum for a page, the page has been modified or corrupted while on disk or while writing to the page. If
one or more pages has been corrupted, an error is returned and information about the invalid pages appears
in the database server messages window.

For more information about checksum validation, see “VALIDATE statement” [SQL Anywhere Server -
SQL Reference] and “Validation utility (dbvalid)” on page 862.

Automatic checksum creation
In the following situations, checksums are enabled for the database, regardless of the checksum setting that
was specified when the database was created:

● Critical pages The database server calculates checksums for critical database pages in all databases,
regardless of whether checksums are enabled. These checksums are used to detect offline corruption,
which can help reduce the chances of other data being corrupted as the result of a bad critical page.
Because the database server calculates these checksums, if a database becomes corrupt that does not
have checksums enabled, the database server shuts down with a fatal error.

As well, if you validate a database that does not have checksums enabled, but that has a bad critical page,
dbvalid can still return warnings about checksum violations.

● Windows Mobile databases The database server automatically enables checksums for databases
running on Windows Mobile to help provide early detection if the database file becomes corrupt.

● Databases running on some storage media When the database is running on storage media that
may be less reliable, such as network or removable drives, the database server automatically enables
checksums for the database. Checksums remain enabled as long as the database resides on such a device,
and the pages are checksummed when they are written. If the database is moved to a more reliable storage

Using checksums to detect corruption

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 917

device, the database server verifies the checksum for checksummed pages when they are brought into
the database server cache.

Validate a database
You must have either DBA or VALIDATE authority to validate a database.

Caution
Validating a table or an entire database should be performed while no connections are making changes to
the database; otherwise, errors may be reported indicating some form of database corruption even though
no corruption actually exists.

To check the validity of an entire database (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, select the database.

3. From the File menu, choose Validate Database.

4. Follow the instructions in the Validate Database Wizard.

Tip
You can also access the Validate Database Wizard from within Sybase Central using any of the following
methods:

● Right-clicking the database, and choosing Validate Database.

● Selecting the database, and choosing Tools » SQL Anywhere 11 » Validate Database.

To check the validity of an entire database (SQL)

● Execute the sa_validate stored procedure:

CALL sa_validate;

The procedure returns a single column, named Messages. If all tables are valid, the column contains No
errors detected.

For more information, see “sa_validate system procedure” [SQL Anywhere Server - SQL Reference].

To check the validity of an entire database (command line)

● Run the dbvalid utility:

dbvalid -c "connection-string"

See “Validation utility (dbvalid)” on page 862.

Validating databases

918 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Note
If you are checking the validity of a backup copy, run the database in read-only mode so that it is not modified
in any way. You can only do this if there were no transactions in progress during the backup. See “-r server
option” on page 216.

Validate a table
You must have either DBA or VALIDATE authority to validate a table.

To check the validity of a table (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, double-click Tables.

3. Right-click the table and choose Validate.

4. Click OK.

To check the validity of a table (SQL)

● Execute the VALIDATE TABLE statement:

VALIDATE TABLE table-name;

Notes
● If errors are reported, you can drop all the indexes and keys on a table and recreate them. Any foreign

keys to the table also need to be recreated.

● If you suspect a particular index, you can execute an ALTER INDEX ... REBUILD statement to rebuild
the corrupted index. See “ALTER INDEX statement” [SQL Anywhere Server - SQL Reference].

● Another solution for errors reported by VALIDATE TABLE is to unload and reload your entire database.
You should use the dbunload -u option so that the unload process does not try to use a possibly corrupt
index to order the data.

Using checksums to detect corruption

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 919

Improving performance when validating databases
The VALIDATE TABLE statement can be slow when used on large databases running on servers with a
cache size too small to contain the table and its largest index. It is often the case that all pages in the table
are read at least once for each index. As well, if full compares are required for index lookups, the number
of page reads can be proportional to the number of rows (not pages) in the table.

If you want to reduce the time taken to validate, you can use the WITH EXPRESS CHECK option with the
VALIDATE TABLE statement, or the -fx option with the dbvalid utility. Depending on the size of your
database, the size of your cache, and the type of validation you require, these two features can significantly
reduce the time taken to perform validation.

Express validation causes each row of the table to be read and all columns evaluated. Each index is completely
scanned once, and checks are done to ensure that the rows referenced in the index exist in the table. The
express check option also does checks on the validity of individual index pages. The number of rows in the
table must match the number of entries in the index. The express option saves time because it does not
perform individual index lookups for each row.

Because the express check feature does not perform individual lookups, it is possible (though unlikely) for
some form of index corruption to go unnoticed by the express validation feature. If index corruption should
occur, data can be recovered by unloading and rebuilding the database since validation has confirmed that
all the data can be read. You can also use the REBUILD clause of the ALTER INDEX statement to correct
index corruption. See “ALTER INDEX statement” [SQL Anywhere Server - SQL Reference].

● “VALIDATE statement” [SQL Anywhere Server - SQL Reference]
● “Validation utility (dbvalid)” on page 862
● “sa_validate system procedure” [SQL Anywhere Server - SQL Reference]

Validating databases

920 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Automating tasks using schedules and events

Contents
Introduction to using schedules and events .. 922
Understanding events .. 923
Understanding schedules .. 924
Understanding system events ... 926
Understanding event handlers ... 930
Schedule and event internals .. 932
Event handling tasks ... 934

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 921

Introduction to using schedules and events
Many database administration tasks are best performed systematically. For example, a regular backup
procedure is an important part of proper database administration procedures.

You can automate routine tasks in SQL Anywhere by adding an event to a database, and providing a schedule
for the event. Whenever one of the times in the schedule passes, the database server executes a sequence of
actions called an event handler.

Database administration also requires taking action when certain conditions occur. For example, it may be
appropriate to email a notification to a system administrator when a disk containing the transaction log is
filling up so that the administrator can handle the situation. These tasks too can be automated by defining
event handlers for one of a set of system events.

Questions and answers

To answer the question ... Consider reading ...

What is a schedule? “Understanding schedules” on page 924

What is an event? “Understanding events” on page 923

What is a system event? “Understanding system events” on page 926

What is an event handler? “Understanding event handlers” on page 930

How do I debug event handlers? “Developing event handlers” on page 930

How does the database server use schedules to trigger
event handlers?

“How the database server checks for scheduled
events” on page 932

How can I schedule regular backups? “Understanding schedules” on page 924

What kind of system events can the database server
use to trigger event handlers?

“Understanding system events” on page 926

“CREATE EVENT statement” [SQL Anywhere
Server - SQL Reference]

What connection do event handlers get executed on? “How event handlers are execu-
ted” on page 933

How do event handlers get information about what
triggered them?

“Developing event handlers” on page 930

“EVENT_PARAMETER function [System]”
[SQL Anywhere Server - SQL Reference]

Automating tasks using schedules and events

922 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Understanding events
You can automate routine tasks in SQL Anywhere by adding an event to a database, and providing a schedule
for the event. SQL Anywhere supports three types of events:

● Scheduled events have an associated schedule and execute at specified times. See “Understanding
schedules” on page 924.

● System events are associated with a particular type of condition that is tracked by the database server.
See “Understanding system events” on page 926.

● Manual events are fired explicitly using the TRIGGER EVENT statement. See “Triggering an event
handler” on page 935.

After each execution of an event handler, a COMMIT occurs if no errors occurred. A ROLLBACK occurs
if there was an error.

Understanding events

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 923

Understanding schedules
By scheduling activities you can ensure that a set of actions is executed at a set of preset times. The scheduling
information and the event handler are both stored in the database itself.

Although this is not usually necessary, you can define complex schedules by associating more than one
schedule with a named event. For example, a retail outlet might want an event to occur once per hour during
hours of operation, where the hours of operation vary based on the day of the week. You can achieve the
same effect by defining multiple events, each with its own schedule, and by calling a common stored
procedure.

When scheduling events, you can use either full-length English day names (Monday, Tuesday, and so on)
or the abbreviated forms of the day (Mon, Tue, and so on). Note that you must use the full-length English
day names if you want the day names to be recognized by a server running in a language other than English.

The following examples give some ideas for scheduled actions that may be useful.

Examples
Perform an incremental backup daily at 1:00 A.M.:

CREATE EVENT IncrementalBackup
SCHEDULE
 START TIME '1:00 AM' EVERY 24 HOURS
HANDLER
BEGIN
 BACKUP DATABASE DIRECTORY 'c:\\backup'
 TRANSACTION LOG ONLY
 TRANSACTION LOG RENAME MATCH
END;

Summarize orders at the end of each business day:

CREATE EVENT Summarize
SCHEDULE
 START TIME '6:00 pm'
 ON ('Monday', 'Tuesday', 'Wednesday', 'Thursday',
 'Friday')
HANDLER
 BEGIN
 INSERT INTO OrderSummary
 SELECT CURRENT DATE,
 COUNT(*),
 SUM(amount)
 FROM Orders
 WHERE date_ordered = current date
END;

See also
● “CREATE EVENT statement” [SQL Anywhere Server - SQL Reference]

Defining schedules
To permit flexibility, schedule definitions have several components to them:

Automating tasks using schedules and events

924 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Name Each schedule definition has a name. You can assign more than one schedule to a particular
event, which can be useful in designing complex schedules.

● Start time You can define a start time for the event, which is the time when execution begins.

● Range As an alternative to a start time, you can specify a range of times for which the event is active.
The event occurs between the start and end time specified. Frequency is determined by the specified
recurrence.

● Recurrence Each schedule can recur. The event is triggered on a frequency that can be given in hours,
minutes, or seconds on a set of days that can be specified as days of the week or days of the month.
Recurring events include an EVERY or ON clause.

You can define the schedule for an event in the CREATE EVENT statement, or using the Create Schedule
Wizard.

For information about adding a schedule when creating an event, see “CREATE EVENT statement” [SQL
Anywhere Server - SQL Reference].

To create a schedule for an event (Sybase Central)

1. Connect to your database as a user with DBA authority.

2. Double-click Events.

3. Double-click the event for which you want to create a schedule.

4. Click the Schedules tab.

5. From the File menu, choose New » Schedule.

6. Follow the instructions in the Create Schedule Wizard.

Understanding schedules

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 925

Understanding system events
SQL Anywhere tracks several system events. Each system event provides a hook on which you can hang a
set of actions. The database server tracks the events for you, and executes the actions (as defined in the event
handler) when the system event satisfies a provided trigger condition.

For more information about trigger conditions, see “Defining trigger conditions for events” on page 927.

By defining event handlers to execute when a chosen system event occurs and satisfies a trigger condition
that you define, you can improve the security and safety of your data, and help ease administration. The
actions of an event handler are committed if no error is detected during execution, and rolled back if errors
are detected.

The available system events include the following:

● BackupEnd You can use the BackupEnd event type to take action at the end of a backup.

● Connection events When a connection is made (Connect) or when a connection attempt fails
(ConnectFailed). You may want to use these events for security purposes. As an alternative to a connect
event handler, you may want to consider using a login procedure. See “login_procedure option
[database]” on page 541.

● DatabaseStart You can use the DatabaseStart event type to take action when a database is started.

● Deadlock You can use the Deadlock event to take action when a deadlock occurs. The event handler
can use the sa_report_deadlocks procedure to obtain information about the conditions that led to the
deadlock. When using the Deadlock event, you should configure the database server to capture deadlock
information by setting the log_deadlocks option to On, and by enabling the RememberLastStatement
feature using sa_server_option or the -zl server option.

Deadlock events fire for connection deadlocks and thread deadlocks. A deadlock event provides no
information beyond what is available via the sa_report_deadlocks system procedure. However, using
this event allows you to act on the deadlock in a timely manner. A quick response may be important
since the amount of deadlock-related information the database server maintains is limited. See:

○ “sa_report_deadlocks system procedure” [SQL Anywhere Server - SQL Reference]
○ “log_deadlocks option [database]” on page 539
○ “Deadlock” [SQL Anywhere Server - SQL Usage]

● Disconnect You can use the Disconnect event to take action when a user or application disconnects.

● Free disk space Tracks the available disk space on the device holding the database file
(DBDiskSpace), the log file (LogDiskSpace), or temporary file (TempDiskSpace). This system event is
not available on Windows Mobile.

You may want to use disk space events to alert administrators in case of a disk space shortage.

You can specify the -fc option when starting the database server to implement a callback function when
the database server encounters a file system full condition. See “-fc server option” on page 185.

● File size The file reaches a specified size. This can be used for the database file (GrowDB), the
transaction log (GrowLog), or the temporary file (GrowTemp).

You may want to use file size events to track unusual actions on the database, or monitor bulk operations.

Automating tasks using schedules and events

926 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● GlobalAutoIncrement When the number of remaining values for a column defined with GLOBAL
AUTOINCREMENT is less than one percent of its range, the GlobalAutoIncrement event fires. This
can be used to request a new value for the global_database_id option based on the table and number of
remaining values that are supplied as parameters to this event. To get the remaining values for the table
within the event, use the EVENT_PARAMETER function with the RemainingValues and TableName
parameters. RemainingValues returns the number of remaining values that can be generated for the
column, while TableName returns the table containing the GLOBAL AUTOINCREMENT column that
is near the end of its range. See “EVENT_PARAMETER function [System]” [SQL Anywhere Server -
SQL Reference].

● RAISERROR error When a RAISERROR statement is executed, you can use the RAISERROR event
type to take actions. The error number used in the RAISERROR statement can be determined within the
event handler using the EVENT_CONDITION function (for example,
EVENT_CONDITION('ErrorNumber')).

● Idle time The database server has been idle for a specified time (ServerIdle). You may want to use
this event type to perform routine maintenance operations at quiet times.

● Database mirroring When the connection from the primary server to a mirror server or arbiter server
is lost, the MirrorServerDisconnect event fires. To get the name of the server whose connection was lost,
use the EVENT_PARAMETER function with the MirrorServerName parameter. See
“EVENT_PARAMETER function [System]” [SQL Anywhere Server - SQL Reference].

The MirrorFailover event fires whenever a server takes ownership of the database. For example, it fires
when a server first starts and determines that it should own the database. It also fires when a server
previously acting as the mirror determines that the primary server has gone down and, after consulting
with the arbiter, determines that it should take ownership.

Events are not fired on a server that is currently acting as the mirror server since its copy of the database
is still being started. As well, mirroring events cannot be defined to execute on an arbiter, since events
only run in the context of the database in which they are defined, and the arbiter does not use a copy of
the database being mirrored. See “Database mirroring system events” on page 960.

Defining trigger conditions for events
Each event definition has a system event associated with it. It also has one or more trigger conditions. The
event handler is triggered when the trigger conditions for the system event are satisfied.

The trigger conditions are included in the WHERE clause of the CREATE EVENT statement, and can be
combined using the AND keyword. Each trigger condition is of the following form:

event_condition(condition-name) comparison-operator value

The condition-name argument is one of a set of preset strings, which are appropriate for different event types.
For example, you can use DBSize (the database file size in megabytes) to build a trigger condition suitable
for the GrowDB system event. The database server does not check that the condition-name matches the
event type: it is your responsibility to ensure that the condition is meaningful in the context of the event type.

Examples
● Limit the transaction log size to 10 MB:

Understanding system events

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 927

CREATE EVENT LogLimit
TYPE GrowLog
WHERE event_condition('LogSize') > 10
HANDLER
BEGIN
 IF EVENT_PARAMETER('NumActive') = 1 THEN
 BACKUP DATABASE
 DIRECTORY 'c:\\logs'
 TRANSACTION LOG ONLY
 TRANSACTION LOG RENAME MATCH;
 END IF;
END;

● Notify an administrator when free disk space on the device containing the database file falls below 10%,
but do not execute the handler more than once every five minutes (300 seconds):

CREATE EVENT LowDBSpace
TYPE DBDiskSpace
WHERE event_condition('DBFreePercent') < 10
AND event_condition('Interval') >= 300
HANDLER
BEGIN
 CALL xp_sendmail(recipient='DBAdmin',
 subject='Low disk space',
 "message"='Database free disk space '
 || EVENT_PARAMETER('DBFreeSpace'));
END;

● Notify an administrator of a possible attempt to break into the database:

CREATE EVENT SecurityCheck
TYPE ConnectFailed
HANDLER
BEGIN
 DECLARE num_failures INT;
 DECLARE mins INT;
 INSERT INTO FailedConnections(log_time)
 VALUES (CURRENT TIMESTAMP);
 SELECT COUNT(*) INTO num_failures
 FROM FailedConnections
 WHERE log_time >= DATEADD(minute, -5,
 current timestamp);
 IF(num_failures >= 3) THEN
 SELECT DATEDIFF(minute, last_notification,
 current timestamp) INTO mins
 FROM Notification;
 IF(mins > 30) THEN
 UPDATE Notification
 SET last_notification = current timestamp;
 CALL xp_sendmail(recipient='DBAdmin',
 subject='Security Check', "message"=
 'over 3 failed connections in last 5 minutes')
 END IF
 END IF
END;

● Run a process when the server has been idle for ten minutes. Do not execute more frequently than once
per hour:

Automating tasks using schedules and events

928 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

CREATE EVENT Soak
TYPE ServerIdle
WHERE event_condition('IdleTime') >= 600
AND event_condition('Interval') >= 3600
HANDLER
BEGIN
 MESSAGE ' Insert your code here ... '
END;

Understanding system events

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 929

Understanding event handlers
Event handlers execute on a separate connection from the action that triggered the event, and so do not
interact with client applications. They execute with the permissions of the creator of the event.

Developing event handlers
Event handlers, whether for scheduled events or for system event handling, contain compound statements,
and are similar in many ways to stored procedures. You can add loops, conditional execution, and so on,
and you can use the SQL Anywhere debugger to debug event handlers.

After each execution of an event handler, a COMMIT occurs if no errors occurred. A ROLLBACK occurs
if there was an error.

Context information for event handlers
Unlike stored procedures, event handlers do not take any arguments. You can use the
EVENT_PARAMETER function to access information about the context in which an event was triggered.
The information returned includes the connection ID and user ID that caused an event to be triggered, and
the event name and the number of times it has been executed. See “EVENT_PARAMETER function
[System]” [SQL Anywhere Server - SQL Reference].

Testing event handlers
During development, you want event handlers to be triggered at convenient times. You can use the TRIGGER
EVENT statement to explicitly cause an event to execute, even when the trigger condition or scheduled time
has not occurred. However, TRIGGER EVENT does not cause disabled event handlers to be executed. See
“TRIGGER EVENT statement” [SQL Anywhere Server - SQL Reference].

While it is not good practice to develop event handlers on a production database, you can disable event
handlers from Sybase Central or explicitly using the ALTER EVENT statement.

Code sharing
It can be useful to use a single set of actions to handle multiple events. For example, you may want to take
a notification action if disk space is limited on any of the devices holding the database or log files. To do
this, create a stored procedure and call it in the body of each event handler, passing any needed context
information as parameters to the procedure.

Debugging event handlers
Debugging event handlers is very similar to debugging stored procedures. The event handlers appear in the
events list.

For more information and step-by-step instructions, see “Debugging an event handler” on page 936.

Hiding event handlers
You can use the SET HIDDEN clause to hide the definition of an event handler. Specifying the SET HIDDEN
clause results in the permanent obfuscation of the event handler definition stored in the action column of the
ISYSEVENT system table. See “ALTER EVENT statement” [SQL Anywhere Server - SQL Reference].

Automating tasks using schedules and events

930 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Limiting active events
You can also determine how many instances of a particular event handler are currently active using the
NumActive event parameter. This function is useful if you want to limit an event handler so that only one
instance executes at any given time.

For more information about the NumActive event parameter, see “EVENT_PARAMETER function
[System]” [SQL Anywhere Server - SQL Reference].

Understanding event handlers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 931

Schedule and event internals
This section describes how the database server processes schedules and event definitions.

How the database server checks for system events
System events are classified according to their event type, as specified directly in the CREATE EVENT
statement or using Sybase Central. There are two kinds of event types:

● Active event types Some event types are the result of action by the database server itself. These
active event types include growing database files, or the start and end of different database actions
(BackupEnd and so on) or RAISERROR.

When the database server takes the action, it checks to see whether the trigger conditions defined in the
WHERE clause are satisfied, and if so, triggers any events defined for that event type.

● Polled event types Some event types, such as free disk space types (DBDiskSpace and so on) and
IdleTime type, are not triggered solely by database actions.

For these types of events, the database server polls every thirty seconds, starting approximately thirty
seconds after the database server is started.

For the IdleTime event type, the database server checks whether the server has been idle for the entire
thirty seconds. If no requests have started and none are currently active, it adds the idle check interval
time in seconds to the idle time total; otherwise, the idle time total is reset to 0. The value for IdleTime
is therefore always a multiple of thirty seconds. When IdleTime is greater than the interval specified in
the trigger condition, event handlers associated with IdleTime are fired.

How the database server checks for scheduled events
The calculation of scheduled event times is done when the database server starts, and each time a scheduled
event handler completes.

The calculation of the next scheduled time is based on the increment specified in the schedule definition,
with the increment being added to the previous start time. If the event handler takes longer to execute than
the specified increment, so that the next time is earlier than the current time, the database server increments
until the next scheduled time is in the future.

For example, an event handler that takes sixty-five minutes to execute and is requested to run every hour
between 9:00 and 5:00 will run every two hours, at 9:00, 11:00, 1:00, and so on.

To run a process such that it operates between 9:00 and 5:00 and delays for some period before the next
execution, you could define a handler to loop until its completion time has passed, with a WAITFOR
statement between each iteration.

If you are running a database server intermittently, and it is not running at a scheduled time, the event handler
does not run at startup. Instead, the next scheduled time is computed at startup. If, for example, you schedule

Automating tasks using schedules and events

932 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

a backup to take place every night at one o'clock, but regularly shut down the database server at the end of
each work day, the backup never takes place.

If the next scheduled execution of an event is more than one hour away, the database server will recalculate
its next scheduled time on an hourly basis. This allows events to fire when expected when the system clock
is adjusted because of a change to or from Daylight Savings Time.

How event handlers are executed
When an event handler is triggered, a temporary internal connection is made on which the event handler is
executed. The handler is not executed on the connection that caused the handler to be triggered, so statements
such as MESSAGE ... TO CLIENT, which interact with the client application, are not meaningful within
event handlers. Similarly, statements that return result sets are not permitted.

The temporary connection on which the handler is executed does not count towards the connection limit for
licensing purposes, and the procedure specified by the login_procedure option is not executed for event
connections.

Event creation requires DBA authority, and events execute with the permissions of their creator. If you want
event handlers to execute with non-DBA authority, you can call a procedure from within the handler, as
stored procedures run with the permissions of their creator.

Any event errors are logged to the database server message log.

Event handlers and errors
The transaction in an event handler is committed if no errors are detected during execution, and rolled back
if errors are detected.

If an error occurs within an atomic compound statement and that statement has an exception handler that
handles the error, then any changes made within the statement are left outstanding. If the exception handler
does not handle the error or causes another error (including via RESIGNAL), then changes made within the
atomic statement are undone.

Schedule and event internals

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 933

Event handling tasks
This section collects together instructions for tasks related to automating tasks with events.

Adding an event to a database
You can add events from Sybase Central and by using SQL.

To add an event to a database (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, right-click Events and choose New » Event.

3. Follow the instructions in the Create Event Wizard.

Detailed explanations for event options are explained in other tasks.

To add an event to a database (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE EVENT statement.

The CREATE EVENT statement contains many options, depending on the event you want to create.
These are explained in detail in other tasks.

See “CREATE EVENT statement” [SQL Anywhere Server - SQL Reference].

Adding a manually-triggered event to a database
If you create an event handler without a schedule or system event to trigger it, it is executed only when
manually triggered.

To add a manually-triggered event to a database (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, right-click Events and choose New » Event.

3. In the What Do You Want To Name The New Event field, type a name for the event and click Next.

4. Select Manually and click Next.

5. Select Enable This Event, Execute At All Databases, and then click Next.

6. Type a comment describing the event and click Finish.

7. In the SQL pane, type the SQL statements for your event.

8. From the File menu, choose Save.

Automating tasks using schedules and events

934 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To add a manually-triggered event to a database (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE EVENT statement with no schedule or WHERE clause. The restricted syntax of the
CREATE EVENT is as follows:

CREATE EVENT event-name
HANDLER
BEGIN
... //event handler
END

If you are developing event handlers, you can add schedules or system events to control the triggering of an
event later, either using Sybase Central or the ALTER EVENT statement.

See also
● “Triggering an event handler” on page 935
● “ALTER EVENT statement” [SQL Anywhere Server - SQL Reference]

Triggering an event handler
Any event handler can be triggered manually, in addition to those occasions when it executes because of a
schedule or system event. Triggering events manually can be useful during development of event handlers,
and also, for certain events, in production environments. For example, if you have a monthly sales report
scheduled, you might want to obtain a sales report for a reason other than the end of the month.

For more information about developing event handlers, see “Developing event handlers” on page 930.

To trigger an event handler (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, double-click Events.

3. Right-click the event and choose Trigger.

The event must be enabled before you can trigger it. To enable an event, right-click it and choose
Enabled.

4. In the Parameters field, type a comma-separated list of parameters for the event. For example:

parameter=value,parameter=value
5. Click OK.

To trigger an event handler (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute the TRIGGER EVENT statement, supplying the name of the event. For example:

TRIGGER EVENT sales_report_event;

Event handling tasks

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 935

See “TRIGGER EVENT statement” [SQL Anywhere Server - SQL Reference].

Debugging an event handler
Debugging is a regular part of any software development. Event handlers can be debugged during the
development process.

To debug an event handler (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. From the Mode menu, choose Debug.

3. In the left pane, double-click Events.

4. Double-click the event you want to debug.

5. On the SQL tab in the right pane, press F9 to set a breakpoint.

6. From Interactive SQL or another application, trigger the event handler using the TRIGGER EVENT
statement.

7. The execution stops at the breakpoint you set.

See also
● “Developing event handlers” on page 930
● “Debugging procedures, functions, triggers, and events” [SQL Anywhere Server - SQL Usage]

Hiding an event handler
For improved security, you can hide the definition for an event handler using the ALTER EVENT statement.
This results in the obfuscation of the event handler definition stored in the action column of the ISYSEVENT
system table.

To hide an event handler (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute the ALTER EVENT event-name SET HIDDEN statement, where event-name is the name of
the event for which you are hiding the handler.

See also
● “ALTER EVENT statement” [SQL Anywhere Server - SQL Reference]
● “SYSEVENT system view” [SQL Anywhere Server - SQL Reference]

Automating tasks using schedules and events

936 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere high availability

Contents
Introduction to database mirroring ... 938
Tutorial: Using database mirroring .. 945
Tutorial: Using database mirroring with multiple databases sharing an arbiter
server ... 949
Setting up database mirroring ... 954
Using the SQL Anywhere Veritas Cluster Server agents .. 965

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 937

Introduction to database mirroring
Separately licensed component required
Database mirroring requires a separate license. See “Separately licensed components” [SQL Anywhere 11 -
Introduction].

Database mirroring is a configuration of either two or three database servers, running on separate
computers, that co-operate to maintain copies of the database and transaction log files.

The primary server and mirror server each maintain a copy of the database files and transaction log files,
while the third server, called the arbiter server, is used when it is necessary to determine which of the other
two servers can take ownership of the database. The arbiter does not maintain a copy of the database. The
configuration of three database servers (the primary, mirror, and arbiter servers) is called a mirroring
system, and the primary and mirror servers together are called the operational servers or partners.

Clients connect to the primary server to access the database. Any changes that are made to the database are
recorded in the transaction log on the primary server. When the changes are committed, the transaction log
pages are sent to the mirror server where they are applied to a mirror copy of the database. The copy of the
database on the mirror server can only be accessed in read-only mode while that server is acting as the mirror
server. See “Configuring read-only access to a database running on the mirror server” on page 956.

If the primary server becomes unavailable because of hardware or software failure, the mirror server
negotiates with the arbiter to take ownership of the database and assume the role of primary server. For an

SQL Anywhere high availability

938 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ownership transfer, or role switch, to take place, the surviving operational server and the arbiter must agree
that the mirror was in a current, synchronized state at the time the role switch is attempted. Any clients that
were connected to the original primary server are disconnected, and any uncommitted transactions are lost.
Clients must then reconnect to the database on the new primary server to continue accessing the database.
When the original primary server becomes available again, it assumes the role of mirror server.

The database servers display status messages in the database server messages window on startup to indicate
which role the server is assuming and how far the startup process has progressed. A message appears if the
database must be restarted because of the loss of one or more of the other servers in the mirroring system,
or if its role changes from mirror to primary.

If an assertion failure occurs on a server that is part of a mirroring system, the server writes the error to the
database server message log and then exits. This notifies the other servers that it has failed so that they can
take appropriate action.

There are no special hardware or software requirements for database mirroring, and the database servers can
be running in separate geographical locations. Database servers that are participating in a database mirroring
system can run both mirrored and non-mirrored databases. As well, the arbiter server can be the arbiter for
multiple database mirroring systems.

Details about the state of each database in the database mirroring system are stored in a state information
file. See “State information files” on page 944.

Note
Database mirroring is not a replacement for a backup and recovery plan. You should always implement a
backup and recovery strategy for your database. See “Database mirroring and backups” on page 961 and
“Backup and data recovery” on page 869.

For information about upgrading SQL Anywhere or rebuilding a database involved in a database mirroring
system, see “Upgrading SQL Anywhere software and databases in a database mirroring system” [SQL
Anywhere 11 - Changes and Upgrading].

Quorum

Before a server can assume the role of primary server, it must have a quorum, which means that at least one
other server must agree that a server can own the database. If the mirror server becomes unavailable while
the primary server and arbiter are connected, the primary server continues to provide access to the database.
If the primary server loses quorum, it can no longer permit access to the database. At that point, it stops the
mirrored database, attempts to restart it, and then waits to regain quorum before making the database
available.

When you start a database mirroring system, the database servers go through a startup process to reach
quorum and accept client connections. The following steps describe a typical sequence of events for this
process:

1. The arbiter server waits for Server 1 and Server 2.

2. Server 1 looks for the arbiter server or Server 2.

3. Server 1 connects to the arbiter server.

4. Server 1 negotiates with the arbiter server to become the primary server.

Introduction to database mirroring

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 939

5. The arbiter server and Server 1 agree that Server 1 can become the primary server.

6. Server 1 starts accepting connections.

7. Server 2 looks for Server1 and the arbiter.

8. Server 2 connects to the arbiter and to Server 1.

9. Server 2 requests quorum. It does not receive quorum because Server 1 is the primary, and so it stands
by waiting for transactions from Server 1.

10. Server 1 sends transactions to Server 2.

Restrictions

The following restrictions apply when using database mirroring:

● Network database server required Because mirroring involves network communication between
the database servers, you must use the network database server (dbsrv11); the personal database server
cannot be used.

● LOAD TABLE statement If you execute a LOAD TABLE statement on a base table, you must specify
either WITH ROW LOGGING or WITH CONTENT LOGGING as the logging level for the statement.
These clauses allow the loaded data to be recorded in the transaction log so that it can be loaded into the
mirroring database as well. If these clauses are not specified, an error is reported. See “LOAD TABLE
statement” [SQL Anywhere Server - SQL Reference] and “Import data with the LOAD TABLE statement”
[SQL Anywhere Server - SQL Usage].

● TCP/IP required Only TCP/IP connections are permitted between mirroring servers.

● Failover and scheduled events If your database has scheduled events, and failover occurs,
scheduled events run on the mirror server as long as failover completes before the scheduled start time
for the event. Otherwise, the next scheduled occurrence of the event runs on the mirror server.

● Transaction log restrictions You cannot truncate the transaction log when you are using database
mirroring because this may result in lost transactions. You can rename the transaction log as often as
necessary. If you want to remove old transaction logs, you can use a scheduled event to delete them once
you are certain that they are no longer needed. For example, you could create an event that runs each
day and deletes copies of the transaction log that are more than a week old. See “Database mirroring and
transaction log files” on page 959.

● Web servers cannot participate in a mirroring system You cannot use a SQL Anywhere database
server as a web server if the database server is participating in a database mirroring system because when
failover occurs, the IP address of the database server changes.

Considerations when developing applications
When you are using database mirroring, in almost all cases, applications should be able to run in the same
manner as they do when connected to a non-mirrored database. However, there are a few considerations to
take into account when developing applications that are used with database mirroring:

● Create clients that can reconnect to the database (for example, when failover occurs the user may need
to shut down the application and then restart it).

SQL Anywhere high availability

940 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● When running in asynchronous or asyncfullpage mode, you must determine what happens when failover
occurs and transactions are not committed to the database.

● Incomplete transactions must be rolled back when the mirror server takes ownership of the database, and
the longer a transaction is, the longer it takes to roll the transaction back. The recovery speed for failover
is affected by the number of clients and the length of their transactions that need to be rolled back. If
recovery speed is a concern, you may want to design your application to use short transactions whenever
possible.

Upgrading SQL Anywhere
For information about upgrading SQL Anywhere for a database mirroring system, including applying EBFs,
see “Upgrading SQL Anywhere software and databases in a database mirroring system” [SQL Anywhere 11
- Changes and Upgrading].

Benefits of database mirroring
Mirroring offers several benefits:

● When an arbiter is present, failover from primary to mirror is automatic. If you are running in synchronous
mode, no committed transactions are lost during failover.

● Failover is very fast because the mirror server has already applied the transaction log. When the mirror
detects that the primary has failed, it rolls back any uncommitted transactions and then makes the database
available.

● No special hardware, such as a shared disk is required.

● No special software (for clustering, for example) is required.

● No particular operating system version is required.

● The servers do not need to be located near each other geographically. In fact, locating them far apart
provides additional protection against disasters such as fire.

● Database servers in a mirroring system can also be used to run other databases.

Understanding the role of the arbiter server
The arbiter server resolves disputes between the servers regarding which server should be the primary server.
Without an arbiter, if server A starts up when server B is unavailable, server A can not determine if its copy
of the database files is the most current. Starting a database using files that are not current results in the loss
of transactions that have already been applied and committed to the other copy of the database. In addition,
the other copy of the database would be unusable for mirroring once the two operational servers re-
established communication.

In addition to resolving disputes at startup, the arbiter is involved if the communication link between two
servers is broken, but both of those servers are still running. Without an arbiter, both servers could assume
that they should take ownership of a database. Again, this would result in lost transactions and incompatible
databases. With an arbiter, the primary server can verify that it still owns the database and can remain

Introduction to database mirroring

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 941

available to clients. If the primary server loses communications with both the mirror and the arbiter, it must
shut down and wait for either one to become available.

An arbiter server can function as arbiter for more than one mirror system. It can also act as a database server
for other databases.

Choosing a database mirroring mode
Three operational modes are provided for mirroring:

● synchronous
● asynchronous
● asyncfullpage

Synchronous mode is the default. These modes control when and how transactions are recorded on the mirror
server, and you set them with the -xp server option.

When choosing a synchronization mode for your database mirroring system, you must determine whether
recovery speed or the state of the data is more important when failover occurs.

You can check the database mirroring mode by querying the value of the MirrorMode database property:

SELECT DB_PROPERTY('MirrorMode');

Synchronous mode

In synchronous mode, committed transactions are guaranteed to be recorded on the mirror server. Should a
failure occur on the primary server, no committed transactions are lost when the mirror server takes over.
In this mode, the primary server sends transaction log pages to the mirror when a transaction is committed.
The mirror server acknowledges that transmission when it has written those pages to its copy of the
transaction log. The primary server does not reply to the application until it receives this acknowledgement.

Using synchronous mode provides transaction safety because the operational servers are in a synchronized
state, and changes sent to the mirror must be acknowledged before the primary can proceed.

Asynchronous mode

In asynchronous mode, committed transactions are not guaranteed to be recorded on the mirror server. In
this mode, the primary server sends transaction log pages to the mirror when a transaction is committed. It
does not wait for an acknowledgement from the mirror before replying to the application that the COMMIT
has completed. Should a failure occur on the primary server, it is possible that some committed transactions
may be lost when the mirror server takes over.

Asyncfullpage mode

In asyncfullpage (or page) mode, pages are not sent on COMMIT; instead, they are sent when the page is
full. This reduces the amount of traffic between the two database servers and improves the performance of
the primary server. If the current log page has not been sent to the mirror for the number of seconds specified
by the pagetimeout parameter, it is sent even though it is not yet full. The default pagetimeout is 5 seconds.
Using this mode provides a limit on how long committed transactions are exposed to being lost if the primary

SQL Anywhere high availability

942 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

server goes down and the mirror server takes ownership of the database. Asyncfullpage mode implies
asynchronous operation, so the primary server does not wait for an acknowledgement from the mirror.

Asynchronous and asyncfullpage mode are faster than synchronous mode, but are less reliable for the above
reasons. In asynchronous or asyncfullpage mode, failover from the primary server to the mirror server is not
automatic because the mirror server may not have all committed transactions that were applied on the primary
server. For this reason, when using one of the asynchronous modes, a mirror server, by default, cannot take
ownership of a database when the primary fails. If automatic failover is desirable in this situation (despite
the likelihood of lost transactions), set the autofailover option to yes using the -xp server option. Otherwise,
when the failed server is restarted, it detects whether transactions were lost. If transactions were lost, it writes
a message to the database server message log and shuts down the database. The current database and
transaction log must then be replaced using a backup before mirroring can continue.

For information about bringing up a server after it fails in asynchronous or asyncfullpage mode, see
“Recovering from primary server failure” on page 959.

Note
It is recommended that you set the -xp autofailover option to yes if you are using asynchronous or
asyncfullpage mode. Then, if the primary server goes down, the mirror server automatically takes over as
the primary server.

The synchronize_mirror_on_commit option lets you control when database changes are guaranteed to have
been sent to a mirror server when running in asynchronous or asyncfullpage mode. When you set this option
to On, each COMMIT causes any changes recorded in the transaction log to be sent to the mirror server, and
an acknowledgement to be sent by the mirror server to the primary server once the changes are received by
the mirror server. The option can be set for specific transactions using SET TEMPORARY OPTION. It may
also be useful to set the option for specific applications by examining the APPINFO string in a login
procedure.

SQL Anywhere supports system events that fire when failover occurs in a database mirroring system,
regardless of which mode you are using. You can use these events for such tasks as notifying the administrator
when failover occurs. See “Database mirroring system events” on page 960.

See also
● “synchronize_mirror_on_commit option [database]” on page 582
● “-xp database option” on page 258
● “SET OPTION statement” [SQL Anywhere Server - SQL Reference]

Synchronization states
When a mirroring system is using synchronous mode, it can be in one of two states: synchronizing or
synchronized.

Once an operational server starts and determines that it will act as the mirror, it first requests any log pages
from the primary server that it does not already have. This may involve copying pages from log files other
than the current active log on the primary server. As it receives these pages, the mirror applies the changes
they contain to its copy of the database. Once all pages from the primary have been received, the primary

Introduction to database mirroring

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 943

and mirror are in a synchronized state. From that point onward, any changes committed on the primary must
be sent to the mirror and acknowledged by the mirror.

In asynchronous and asyncfullpage mode, the mirror requests log pages as above; however, the two servers
never enter a synchronized state. Once the mirror has requested all log pages available at the primary, the
primary is notified that it must send any updated pages to the mirror.

State information files
Each server in the mirroring system maintains a state information file that records that server's view of the
state of the mirroring system.

The state information file is used during startup when determining the role to be assumed by a server. The
server's local state is compared against that of the other servers in the database mirroring system. You must
always specify a state information file for each server in the mirroring system using the -xf option. See “-xf
server option” on page 237.

The state information file contains the following information:

Field Description

Owner Indicates which database server is the primary server.

State Contains the synchronization state (one of synchronizing or synchronized) to indicate whether
the server is receiving log pages or is up to date. See “Synchronization states” on page 943.

Mode Specifies the synchronization mode (one of synchronous, asynchronous, or page). See
“Choosing a database mirroring mode” on page 942.

Se-
quence

Contains a value indicating how many times failover has occurred on the database mirroring
system. The sequence number is incremented on each role switch. It helps to determine
whether a server's view of the state of the mirroring system is current. See “Introduction to
database mirroring” on page 938.

The following shows sample contents for a state information file:

[demo]
Owner=server2
State=synchronizing
Mode=asynchronous
Sequence=35

If a state information file does not exist, it is created automatically. State information files should only be
modified by the database server.

SQL Anywhere high availability

944 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Tutorial: Using database mirroring
This tutorial shows you how to set up a database mirroring system and what happens when failover occurs.
For the purposes of this tutorial, all the database servers are running on the same computer. However in a
real mirroring system, you would likely run the database servers on separate computers.

To simulate failover in a database mirroring system

1. Create the following directories: c:\server1, c:\server2, and c:\arbiter.

2. Make a copy the sample database located in samples-dir\demo.db, and add it to c:\server1.

For information about samples-dir, see “Samples directory” on page 390.

3. Create a transaction log for the database located in c:\server1 by executing the following command:

dbping -d -c "UID=DBA;PWD=sql;DBF=c:\server1\demo.db"
4. Make copies of the database file and transaction log in c:\server1, and add them to c:\server2.

5. Run the following command to start the arbiter server:

dbsrv11 -x tcpip(PORT=2639) -su sql -n arbiter -xa "auth=abc;DBN=demo" -xf
c:\arbiter\arbiterstate.txt

This command line specifies the following dbsrv11 options:

● -x Instructs the database server to use TCP/IP communications over port 2639. The other servers
also use TCP/IP, but communicate on different ports.

● -su Specifies the password for the utility database.

● -n Names the database server arbiter.

● -xa Specifies the names of the database(s) being mirrored and the authentication string (in this
case abc) for the arbiter server. This authentication string must be used amongst all the servers
(arbiter, primary, and mirror) in a database mirroring system.

● -xf Specifies the location of the state information file for the arbiter.

6. Run the following command (it must be typed on one line) to start server1:

dbsrv11 -n server1 -x tcpip(PORT=2638) -xf c:\server1\server1state.txt -su
sql
c:\server1\demo.db -sn mirrordemo
-xp "partner=(ENG=server2;LINKS=tcpip(PORT=2637;TIMEOUT=1));auth=abc;
arbiter=(ENG=arbiter;LINKS=tcpip(PORT=2639;TIMEOUT=1));mode=sync"

This command line specifies the following dbsrv11 options:

● -n Names the database server server1.

● -x Specifies the port on which the database server runs.

● -xf Specifies the location of the state information file for server1.

● -su Specifies the password for the utility database.

Tutorial: Using database mirroring

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 945

● -sn Specifies the alternate name for the database server. Both the primary and mirror server must
have the same name so clients can connect without knowing in advance which server is the primary
server, and which server is the mirror server.

● -xp Provides information to the server that is being started so it can connect to its partner and the
arbiter server.

7. Run the following command (it must be typed on one line) to start server2:

dbsrv11 -n server2 -x tcpip(PORT=2637) -xf c:\server2\server2state.txt
-su sql c:\server2\demo.db -sn mirrordemo
-xp "partner=(ENG=server1;LINKS=tcpip(PORT=2638;TIMEOUT=1));auth=abc;
arbiter=(ENG=arbiter;LINKS=tcpip(PORT=2639;TIMEOUT=1));mode=sync"

This command line specifies the following dbsrv11 options:

● -n Names the database server server2.

● -x Specifies the port on which the database server runs.

● -xf Specifies the location of the state information file for server2.

● -su Specifies the password for the utility database.

● -sn Specifies the alternate name for the database server. Both the primary and mirror server must
have the same name so clients can connect without knowing in advance which server is the primary
server, and which server is the mirror server.

● -xp Provides information to the server that is being started so it can connect to its partner and the
arbiter server.

8. Start Interactive SQL and connect to the primary server by running the following command:

dbisql -c "UID=DBA;PWD=sql;ENG=mirrordemo;LINKS=tcpip"
9. Add sample data to the SQL Anywhere sample database by executing the following statements:

CREATE TABLE test (col1 INTEGER, col2 CHAR(32));
INSERT INTO test VALUES(1, 'Hello from server1');
COMMIT;

10. Determine which database server you are connected to by executing the following statement:

SELECT PROPERTY('ServerName');

The name of the primary server appears.

11. Initiate failover. You can do this by stopping the primary server identified in the previous step in one of
the following ways:

● Click Shut Down in the database server messages window.

● Use the Windows Task Manager to end its task.

● Issue the following command:

dbstop -y -c "UID=DBA;PWD=sql;ENG=mirrordemo"
If a warning message appears indicating that the database server still has one connection, click Yes to
shut it down.

SQL Anywhere high availability

946 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The arbiter database server messages window displays a message indicating that the primary server is
disconnected.

The database server messages window for server2 displays a message indicating that it is the new primary
server:

12. Close Interactive SQL. If you receive an error message, click OK.

Tutorial: Using database mirroring

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 947

13. Restart Interactive SQL by running the following command:

dbisql -c "UID=DBA;PWD=sql;ENG=mirrordemo;LINKS=tcpip"
14. Execute the following statement to see that you are now connected to the mirror server:

SELECT PROPERTY ('ServerName');
15. Execute the following statement to verify that all transactions were mirrored to the mirror database:

SELECT * FROM test;
16. Disconnect from Interactive SQL, and then click Shut Down on the database server messages window

for the arbiter and server2 database servers.

SQL Anywhere high availability

948 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Tutorial: Using database mirroring with multiple
databases sharing an arbiter server

In this configuration the primary and mirror servers each host three individual databases participating in
mirroring systems. All three mirroring systems communicate with the same arbiter server. Each mirroring
system uses a unique alternate server name that is specified using the -sn option. With this type of
configuration, the primary, mirror, and arbiter servers can all run on separate computers.

If the primary server becomes unavailable, then a role switch occurs and the mirror server takes ownership
of the databases. The mirror server becomes the primary server. The client must re-establish a connection
to the primary server. The alternate server name is all that needs to be specified to re-establish the connection
to the primary server. This configuration also has the ability to protect against failure of a single database.
If a database running on the primary server becomes unavailable, then a role switch occurs and the mirror
server takes ownership for the failed database. The mirror server becomes the primary server for only this
database. The client must re-establish a connection to the primary server for this database using the alternate
server name.

To set up a mirroring system with three databases and one arbiter server

1. Create the following directories:

● c:\server1

Tutorial: Using database mirroring with multiple databases sharing an arbiter server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 949

● c:\server2
● c:\arbiter

2. Run the following commands from the c:\server1 directory:

dbinit one.db
dbinit two.db
dbinit three.db

3. Create a transaction log for each database by running the following commands:

dbping -d -c "UID=DBA;PWD=sql;DBF=c:\server1\one.db"
dbping -d -c "UID=DBA;PWD=sql;DBF=c:\server1\two.db"
dbping -d -c "UID=DBA;PWD=sql;DBF=c:\server1\three.db"

4. Copy the databases from the c:\server1 directory to the c:\server2 directory.

5. Start the arbiter server:

dbsrv11
-x tcpip(port=2640)
-n arbiter
-xa "AUTH=abc,def,ghi;DBN=one,two,three"
-xf c:\arbiter\arbiterstate.txt
-su sql

6. Start the databases on server1:

dbsrv11
-n server1
-x tcpip(PORT=2638)
-xf c:\server1\server1state.txt
-su sql
c:\server1\one.db
-sn mirrortutorial_one
-xp "partner=(ENG=server2;LINKS=tcpip(PORT=2639;TIMEOUT=1));
auth=abc;arbiter=(ENG=arbiter;LINKS=tcpip(PORT=2640;TIMEOUT=1));
mode=sync"
c:\server1\two.db
-sn mirrortutorial_two
-xp "partner=(ENG=server2;LINKS=tcpip(PORT=2639;TIMEOUT=1));
auth=def;arbiter=(ENG=arbiter;LINKS=tcpip(PORT=2640;TIMEOUT=1));
mode=sync"
c:\server1\three.db
-sn mirrortutorial_three
-xp "partner=(ENG=server2;LINKS=tcpip(PORT=2639;TIMEOUT=1));
auth=ghi;arbiter=(ENG=arbiter;LINKS=tcpip(PORT=2640;TIMEOUT=1));
mode=sync"

7. Start the databases on server2:

dbsrv11
-n server2
-x tcpip(PORT=2639)
-xf c:\server2\server2state.txt
-su sql
c:\server2\one.db
-sn mirrortutorial_one
-xp "partner=(ENG=server1;LINKS=tcpip(PORT=2638;TIMEOUT=1));

SQL Anywhere high availability

950 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

auth=abc;arbiter=(ENG=arbiter;LINKS=tcpip(PORT=2640;TIMEOUT=1));
mode=sync"
c:\server2\two.db
-sn mirrortutorial_two
-xp "partner=(ENG=server1;LINKS=tcpip(PORT=2638;TIMEOUT=1));
auth=def;arbiter=(ENG=arbiter;LINKS=tcpip(PORT=2640;TIMEOUT=1));
mode=sync"
c:\server2\three.db
-sn mirrortutorial_three
-xp "partner=(ENG=server1;LINKS=tcpip(PORT=2638;TIMEOUT=1));
auth=ghi;arbiter=(ENG=arbiter;LINKS=tcpip(PORT=2640;TIMEOUT=1));
mode=sync"

After starting server2, the server1 database server messages window shows that server1 is the primary
server in the mirroring system for databases one, two, and three. The messages also indicate that the
mirror databases for one, two, and three (partners) are connected to server1.

The arbiter messages show that both server1 and server2 are connected.

8. Run the following command to start Interactive SQL and connect to database one on the primary server:

dbisql -c "UID=DBA;PWD=sql;ENG=mirrortutorial_one;LINKS=TCPIP"
9. Add sample data to the SQL Anywhere sample database by executing the following statements:

CREATE TABLE test (col1 INTEGER, col2 CHAR(32));
INSERT INTO test VALUES(1, 'Hello from server1');
COMMIT;

10. Determine which database server you are connected to by executing the following statement:

SELECT PROPERTY('ServerName');

The name of the primary server appears.

11. Disconnect from Interactive SQL.

12. Initiate failover. You can do this by stopping the primary server in one of the following ways:

● Click Shut Down in the database server messages window.

● Use the Windows Task Manager to end its task.

● Issue the following command:

dbstop -y -c "UID=DBA;PWD=sql;ENG=server1"
If a warning message appears indicating that the database server still has one connection, click Yes to
shut it down.

The arbiter database server messages window displays a message indicating that the primary server is
disconnected.

Tutorial: Using database mirroring with multiple databases sharing an arbiter server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 951

The database server messages window for server2 displays a message indicating that it is the new primary
server:

13. Restart Interactive SQL by running the following command:

dbisql -c "UID=DBA;PWD=sql;ENG=mirrortutorial_one;LINKS=tcpip"
14. Execute the following statement to see that you are now connected to the mirror server:

SELECT PROPERTY ('ServerName');

SQL Anywhere high availability

952 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

15. Execute the following statement to verify that all transactions were mirrored to the mirror database:

SELECT * FROM test;
16. Disconnect from Interactive SQL, and then click Shut Down on the database server messages window

for the arbiter and server2 database servers.

Tutorial: Using database mirroring with multiple databases sharing an arbiter server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 953

Setting up database mirroring
The following steps assume that one database server is already running the database for which you want to
set up a mirroring system.

When starting database servers that will be participating in a mirroring system, it is recommended that you
include the -su option to specify the password for the utility database. Then, you can use the utility database
to shut down the server, or force the mirror server to become the primary server should such a need arise.
See “-su server option” on page 224.

For information about upgrading SQL Anywhere or rebuilding a database involved in a database mirroring
system, see “Upgrading SQL Anywhere software and databases in a database mirroring system” [SQL
Anywhere 11 - Changes and Upgrading].

To set up a mirroring system

1. Make a copy of the database and current transaction log on a second server.

If the existing database server is stopped, you can copy files; otherwise, use the BACKUP DATABASE
statement or the Backup utility (dbbackup). See “BACKUP statement” [SQL Anywhere Server - SQL
Reference] and “Backup utility (dbbackup)” on page 740.

2. Stop the running database server and modify its command line configuration to include the mirroring
options and then start the server.

For example:

dbsrv11 -n server1 -x tcpip(PORT=2638) -xf c:\server1\server1state.txt
 -su sql c:\server1\mirrordemo.db -sn mirrordemo
-xp "partner=(ENG=server2;LINKS=tcpip(PORT=2637;TIMEOUT=1));auth=abc;
arbiter=(ENG=arbiter;LINKS=tcpip(PORT=2639;TIMEOUT=1));mode=page;autofailo
ver=YES"

3. Start another operational server.

For example:

dbsrv11 -n server2 -x tcpip(port=2637) -xf c:\server2\server1state.txt
-su sql c:\server2\mirrordemo.db -sn mirrordemo
-xp "partner=(ENG=server1;LINKS=tcpip(PORT=2638;TIMEOUT=1));auth=abc;
arbiter=(ENG=arbiter;LINKS=tcpip(PORT=2639;TIMEOUT=1));mode=page;autofailo
ver=YES"

4. Start the arbiter server.

For example:

dbsrv11 -x tcpip -n arbiter
-xa "AUTH=abc;DBN=mirrordemo" -xf arbiterstate.txt
-su sql

Clients can now connect to the mirrored database.

Connecting to a mirrored database server

When connecting to a mirrored database, clients must use the server name that was specified by the -sn
option in the commands used to start the primary and mirror servers. Using the example above (database

SQL Anywhere high availability

954 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

servers were started with the option -sn mirrordemo), clients specify the connection parameter
ENG=mirrordemo in their connection string:

...UID=user12;PWD=x92H4pY;ENG=mirrordemo;LINKS=tcpip...

If the primary and mirror servers are running on different subnets, then you must specify a range of IP
addresses that the client should use to connect to the primary server. For example:

...UID=user12;PWD=x92H4pY;ENG=mirrordemo;LINKS=tcpip(HOST=ip1,ip2...)...

You may also want to specify the RetryConnectionTimeout connection parameter to control how long clients
keep retrying the connection attempt to the primary server. See “RetryConnectionTimeout connection
parameter [RetryConnTO]” on page 295.

If you are having trouble locating the server to which clients need to connect, try the following:

1. Specify the host name of the computers running the primary and mirror servers. For example, if they are
running on computers named MirrorServ1 and MirrorServ2, you can use
LINKS=tcpip(HOST=MirrorServ1,MirrorServ2) in the client connection string.

2. Register the servers with LDAP. See “Connecting using an LDAP server” on page 146.

3. Use the SQL Anywhere Broadcast Repeater utility (dbns11) to locate the servers. This utility listens for
broadcasts and responses on one subnet, and then re-broadcasts them on another subnet. See “Broadcast
Repeater utility (dbns11)” on page 745.

Determining the initial primary server
When you first set up a database mirroring system and there are no state information files, and the copies of
the database and transaction log are identical, both servers are eligible to act as the primary. In this situation,
the server names are compared, and server with the lower name acts as primary. For example, the name
server1 is lower than server2.

For the initial startup, both servers must be running and connected for them to agree on roles; the presence
of an arbiter is not enough since the prior state information recorded in the state information files does not
exist.

During a normal startup, the following inputs affect which server becomes the primary server:

● the contents of the state information files

● the transaction log position on each database server

● the designation of a preferred primary server

See also
● “State information files” on page 944

Setting up database mirroring

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 955

Specifying a preferred database server
In a database mirroring system, you can identify one of the two operational servers as the preferred server.
If all the database servers are running, then the preferred server becomes the primary server and takes
ownership of the database. If the server that is marked as preferred becomes unavailable, then the server that
was acting as the mirror server becomes the primary server. When the preferred server restarts, it obtains
any transaction log entries it does not already have from the current primary server. It then asks the current
primary server to relinquish ownership of the database. The servers then change roles, with the preferred
server becoming the primary server and the other server becoming the mirror server. Any connections to the
database on the non-preferred server are lost when the database ownership changes.

You specify a preferred server by adding "preferred=YES" to the -xp database option when starting the
database server. For example:

dbsrv11 -n server1 mydata.db -sn mydata
-xp "partner=(ENG=server2;LINKS=tcpip(TIMEOUT=1));
AUTH=abc;arbiter=(ENG=arbsrv;LINKS=tcpip(TIMEOUT=1));preferred=YES"

See also
● “-xp database option” on page 258
● “Initiating failover on the primary server” on page 958
● “Choosing a database mirroring mode” on page 942

Configuring read-only access to a database running on the
mirror server

When using database mirroring, you can access the database running on the mirror server using a read-only
connection. This functionality is useful if you want to offload reporting or other operations that require read-
only access to this database.

In a mirroring system, you do not necessarily know which database is acting as the primary server and the
mirror server. If you want to be able to connect to the database running on the mirror server, include the -
sm server option when you start the database server. This allows connections to find the mirror server by
providing a server name that is used to access the read-only mirror database. The server name specified by
the -sm option is only active when the database server is acting as mirror for the database. Typically, you
would specify the -sm option for both database servers because you do not know which server is acting as
the primary or the mirror server. For example, the -sm option instructs the database server to use
mysamplemirror as an alternate server name when connecting to the database running on the mirror server:

dbsrv11 -n myserver satest.db sample.db -sn mysampleprimary
-sm mysamplemirror
-xp "partner=(ENG=server2;LINKS=TCPIP(PORT=2637;TIMEOUT=1));auth=abc;
arbiter=(ENG=arbiter;LINKS=TCPIP;(PORT=2639;TIMEOUT=1));mode=sync"

Any attempt to make a change to the database results in an error, which is the same behavior as when a
database is started as read-only using the -r option. You can perform operations on temporary tables, but
events are not fired on the mirror database. Event firing only starts after failover from the primary server to
the mirror server takes place. The DatabaseStart and MirrorFailover events fire at that time, if they are
defined. For more information, see “Understanding system events” on page 926.

SQL Anywhere high availability

956 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connections to the mirror database are maintained if failover occurs and the mirror server becomes the
primary server. After failover, a connection can make changes to the database. You can query the value of
the ReadOnly database property to determine whether the database you are connected to is updatable:

SELECT DB_PROPERTY('ReadOnly');

See also
● “-sm database option” on page 255
● ReadOnly property: “Database properties” on page 639

Running queries against the mirror database
Queries that are executed against the mirror database can place locks, depending on the isolation level
specified. If locks interfere with operations being applied from the primary server, then the connections
holding the locks have their transactions rolled back and any open cursors for those connections are closed.
Applications running at isolation level 0 do not add row locks, but still acquire schema locks. If the schema
locks interfere with operations being applied from the primary server, the transaction on the mirror database
is rolled back.

Applications that require a consistent view of the database (and so cannot use isolation level 0) should
consider using snapshot isolation. To do so, the allow_snapshot_isolation option must be set to On. This
option takes effect on both the primary server and the mirror server, so the costs associated with snapshot
isolation need to be considered.

Connections to the mirror database are affected by transactions against the primary server, since those
operations are then processed and applied by the mirror server. There can be a small delay between the time
an update on the primary server is committed and the time that the update is available on the mirror server.
Normally this delay is short, but you should keep this in mind when you are accessing the database running
on the mirror server.

See also
● “-sm database option” on page 255
● “Snapshot isolation” [SQL Anywhere Server - SQL Usage]
● “allow_snapshot_isolation option [database]” on page 504

Forcing a database server to become the primary server
In situations where you need to force the primary server to shut down (for example, if you are replacing the
computer it is running on), you can force the mirror server to become the primary server when it would not
otherwise take ownership of the database by using the ALTER DATABASE statement.

You must connect to the utility database on the mirror database server to use this feature. You can connect
to the utility database by specifying -su option in the command to start the mirroring servers. The following
command forces the mirror server for the database mymirroreddb.db to become the primary server:

ALTER DATABASE mymirroreddb FORCE START;

Setting up database mirroring

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 957

The FORCE START clause forces a database server that is currently acting as the mirror server to take
ownership of the database. This statement can be executed from within a procedure or event, and must be
executed while connected to the utility database on the mirror server. See “Connecting to the utility
database” on page 31.

If you want to force a failover from the primary to the mirror, you can:

● stop the primary server
● execute ALTER DATABASE SET PARTNER FAILOVER while connected to the database on the

primary server (this statement causes the primary server to restart the database and become the mirror)

See also
● “ALTER DATABASE statement” [SQL Anywhere Server - SQL Reference]

Initiating failover on the primary server
You can initiate a database mirroring failover from the primary server to the mirror server by executing the
following statement:

ALTER DATABASE SET PARTNER FAILOVER;

This statement is an alternative to specifying a preferred server, and can be used with logic that controls
when ownership of the database is given to a specific database server. For example, you may want to initiate
failover based on the availability of the partner server (determined by the value of the PartnerState database
property), or the number of connections to the database (determined by the value of the ConnCount database
property).

When this statement is executed, any existing connections to the database are closed, including the
connection that executed the statement. If the statement is contained in a procedure or event, other statements
that follow it may not be executed. The permissions required to execute this statement are controlled by the
-gk server option.

See also
● “Specifying a preferred database server” on page 956
● “ALTER DATABASE statement” [SQL Anywhere Server - SQL Reference]
● “-gk server option” on page 191
● ConnCount and PartnerState properties: “Database properties” on page 639

Stopping a database server in a mirroring system
There may be situations where you need to stop the primary, mirror, or arbiter server. You can use the Stop
Database utility (dbstop) to do this.

You must use a connection to the utility database to stop the server, so it is recommended that you include
the -su server option when starting the database server. See “Using the utility database” on page 30.

To use the alternate server name for the database server running the mirror database, you must use the -sm
option when starting the database server. See “-sm database option” on page 255.

SQL Anywhere high availability

958 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To stop a primary, mirror, or arbiter server

● Issue a dbstop command to stop the database server.

For example, the following command stops a database server named myarbiter:

dbstop -c "UID=DBA;PWD=sql;DBN=utility_db;LINKS=tcpip" myarbiter

Recovering from primary server failure
The steps for recovering from primary server failure depend on the synchronization mode you are using for
your database mirroring system.

If you are running in synchronous mode, then all the transactions that are present on the primary server are
also guaranteed to be committed on the mirror server. The mirror server can take over as the new primary
server without any user intervention.

In asynchronous or asyncfullpage mode, failover from the primary server to the mirror server is not automatic
because the mirror server may not have all committed transactions that were applied on the primary server.
Unless you specified that autofailover should take place, when using one of the asynchronous modes, a
mirror server, by default, cannot take ownership of a database when the primary fails. When the failed server
is restarted, it detects whether transactions were lost. If transactions were lost, it writes a message to the
database server message log and shuts down the database.

When starting the original mirror server as the new primary server, you have two options for getting the
database files on both servers into the same state:

● Copy the database and transaction log files from the original primary server to the mirror server and then
start the mirror server as the new primary server. You can force a server to be the primary server using
the ALTER DATABASE statement. See “ALTER DATABASE statement” [SQL Anywhere Server -
SQL Reference].

● Perform a backup (using dbbackup) on the original mirror server. Copy the files to the original primary
server, and then start the database servers.

Database mirroring and transaction log files
When an operational server starts, it examines all the transaction log files in the same directory as the current
transaction log file and determines which ones need to be applied. The database server then applies the
operations in these transaction logs to the database before determining whether to act as the primary or mirror
server.

Once a server takes on the role of mirror, it starts receiving transaction log pages from the primary server.
When a transaction log rename occurs on the primary, the rename is also performed on the mirror. The mirror
then writes new transaction log pages to a new file with the name specified for the transaction log.

Transaction log files can be deleted periodically on the primary. Each time a transaction log file is renamed,
the mirror is notified about which transaction log file is the oldest surviving file on the primary. Any
transaction log files older than this are deleted on the mirror.

Setting up database mirroring

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 959

Because a mirror server may not be available when a backup is performed against the primary server that
requests a transaction log truncation, deletion of transaction logs on the primary must be performed using
different method than truncating the transaction log (such as a scheduled event that uses xp_cmdshell to
delete files more than one week old).

Database mirroring system events
The following system events are supported for database mirroring:

● MirrorFailover This event fires each time a database server takes ownership of the mirrored database.
For example, it fires when a server first starts and determines that it should own the database. It also fires
when a server previously acting as the mirror determines that the primary server has gone down and,
after consulting with the arbiter, determines that it should take ownership.

● MirrorServerDisconnect When the connection between the primary server and mirror server or
arbiter server is lost, the MirrorServerDisconnect event fires. Within the handler for this event, the value
of EVENT_PARAMETER('MirrorServerName') is the name of the server whose connection was lost.

Events are not fired on a server that is currently acting as the mirror server. As well, mirroring events cannot
be defined to execute on an arbiter, since events only run in the context of the database in which they are
defined, and the arbiter does not use a copy of the database being mirrored.

You can use these events as a mechanism to send notification via email that action may be required on the
mirror database. These events may not fire in all situations that result in the database running on the primary
server becoming unavailable. For example, a power outage affecting both the primary and mirror servers
would prevent either of these events from being fired. If this type of monitoring is required, it can be
implemented on a separate computer via a scripting language by calling dbping to periodically connect to
the mirror database. See “Ping utility (dbping)” on page 804.

The following example creates an event that notifies an administrator when failover occurs:

CREATE EVENT mirror_server_unavailable
TYPE MirrorServerDisconnect
HANDLER
BEGIN
 CALL xp_startmail (mail_user ='George Smith',
 mail_password ='mypwd');
 CALL xp_sendmail(recipient='DBAdmin',
 subject='Database failover occurred',
 "message"='The following server is unavailable in the mirroring system: '
 || event_parameter('MirrorServerName'));
 CALL xp_stopmail ();
END;

See also
● “Understanding system events” on page 926

SQL Anywhere high availability

960 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database mirroring and performance
Ideally, the computers running the primary and mirror servers should be configured with similar hardware
(processor, disk, memory, and so on). At any given time, the database server running on either computer
can be acting as the primary server for the database being mirrored. The mirror server utilization will typically
be low, depending on update activity on the primary.

Query performance against the primary server is not affected by mirroring. The performance of transactions
that update the database depends on the size of the transaction and the frequency of commits. A mirror server
operating in asynchronous mode has better performance than one in synchronous mode, but is still slower
than a database server that is not participating in a mirroring system. Performance is highly dependent on
the speed of the network connection between the operational servers.

Database mirroring and backups
Although database mirroring can help minimize the risk of data loss, it is still recommended that you back
up and validate databases that are participating in a database mirroring system.

You can use the BACKUP DATABASE statement to perform a back up relative to the database server. The
BACKUP DATABASE statement is executed on the primary database server, so the file name that is
provided should specify a network drive or UNC name that is consistent for both the primary and mirror
database servers. See “BACKUP statement” [SQL Anywhere Server - SQL Reference].

Alternatively, you can perform client-side backups using the dbbackup utility. See “Backup utility
(dbbackup)” on page 740.

See also
● “Backup and data recovery” on page 869
● “Introduction to validation” on page 916

Database mirroring scenarios
The following scenarios help you understand what happens when a server becomes unavailable in a mirroring
system. The scenarios use the following database mirroring configuration, which consists of Server 1, Server
2, and an arbiter server running in synchronous mode:

Setting up database mirroring

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 961

At any time, you can use the MirrorState, PartnerState, and ArbiterState database properties to determine
the status of the database servers in the mirroring system. See “Database properties” on page 639.

Scenario 1: Primary server becomes unavailable
1. The primary server (Server 1) becomes unavailable. All clients are disconnected.

2. The arbiter and Server 2 detect that Server1 is no longer available.

3. The arbiter and Server 2 reach quorum, and Server 2 becomes the primary server.

4. Server 2 begins accepting client connections.

In this scenario, if you are running in asynchronous or asyncfullpage mode and did not specify that
autofailover should occur, then you may need to make a copy of the database and restart the server that is
still operational before clients can connect again.

For more information about recovering when the primary server becomes unavailable, see “Recovering from
primary server failure” on page 959.

Scenario 2: Primary server becomes unavailable and then restarts
1. The arbiter and mirror server (Server 2) detect that the primary server (Server 1) is no longer available.

2. The arbiter and Server 2 reach quorum, and Server 2 becomes the primary server.

3. Server 2 begins accepting client connections.

SQL Anywhere high availability

962 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

4. Server 1 comes back online and reconnects to Server 2 and the arbiter.

5. Server 1 requests quorum, but Server 2 is already the primary server.

6. Server 1 is the mirror server, and waits for changes from Server 2.

7. Server 2 sends changes to Server 1.

Should Server 2 become unavailable before Server 1 has received all the transactions from Server 2, Server
1 will not be able to reach a synchronized state. It must wait for Server 2 to become available again so it can
obtain and apply the transactions it does not yet have.

For more information about recovering when the primary server becomes unavailable, see “Recovering from
primary server failure” on page 959.

Scenario 3: Mirror server becomes unavailable
1. The mirror server (Server 2) becomes unavailable.

2. The arbiter and Server 1 detect that the mirror server (Server 2) is no longer available.

Client connections are not affected. They can continue to connect to the primary server. However, if
either Server 1 or the arbiter server becomes unavailable, the clients will not be able to connect.

Scenario 4: Mirror server becomes unavailable and then restarts
1. The mirror server (Server 2) becomes unavailable.

2. Client connections are not affected because there is no change in availability. They can continue to
connect to the primary server. However, if either Server 1 or the arbiter server becomes unavailable, then
clients will not be able to connect.

3. Server 2 comes back online and reconnects to Server 1 and the arbiter.

4. Server 2 requests quorum, but Server 1 is already the primary server.

5. Server 2 is the mirror server, and waits for changes from Server 1.

6. Server 1 sends changes to Server 2.

Client connections are not affected because there is no change in availability. They continue connecting
to Server 1.

Scenario 5: Arbiter becomes unavailable
1. Server 1 (primary server) and Server 2 (mirror server) detect that the arbiter is gone.

2. Both servers remain available. Clients are not disconnected.

When the arbiter comes back online, Server 1 and Server 2 will detect it, and begin communicating with
it. There is no change in database availability for clients.

If Server 1 or Server 2 becomes unavailable when there isn't an arbiter server, the other server cannot
reach quorum by itself, and the database will not be available.

Scenario 6: Arbiter restarts
1. Arbiter comes back online and reconnects to Server 1 and Server 2.

Setting up database mirroring

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 963

Client connections are not affected because there is no change in availability.

SQL Anywhere high availability

964 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using the SQL Anywhere Veritas Cluster Server
agents

Separately licensed component required
The SQL Anywhere Veritas Cluster Server agents require a separate license. See “Separately licensed
components” [SQL Anywhere 11 - Introduction].

A cluster is a group of computers, called nodes, that work together to run a set of applications. Clients
connecting to applications running on a cluster treat the cluster as a single system. If a node fails, other nodes
in the cluster can automatically take over the services provided by the failed node. Clients may see a slight
disruption in availability (the time it takes to resume the services on the remaining nodes), but are otherwise
unaware that the node has failed.

When you use clustering with SQL Anywhere, any uncommitted transactions are lost when a database or
database server fails over to another node in the cluster, and clients must reconnect to the database after
failover occurs.

SQL Anywhere supports a variety of cluster environments where the cluster software can make any
application into a generic resource subject to automatic failover so that high availability can be provided.
However, only the database server process can be failed over, and the monitoring and control processes are
limited.

For more information, see http://www.sybase.com/detail?id=1034743.

Most cluster software provides an API for creating custom resources tailored to a specific application. SQL
Anywhere includes two custom failover resources for Veritas Cluster Server: SAServer and SADatabase.
The SAServer agent is responsible for database server failover, while the SADatabase agent is responsible
for the failover of a specific database file. You can use one or both agents, depending on your application.

Your systems must be set up as follows to use the SQL Anywhere Veritas Cluster Server agents:

● You must use Veritas Cluster Server 4.1 or later.

● SQL Anywhere must be installed identically on each system node within the cluster.

● Database files must be stored on a shared storage device that is accessible to all systems within the cluster.

● The utility database password must be the same for all systems within the cluster.

The SADatabase agent uses the utility database to start and stop specific database files. All systems
participating in the cluster must have the same utility database password. You can set the utility database
password by specifying the -su server option when starting the database server.

On Unix, the VCS agent is installed in install-dir/vcsagent/saserver.

There are three ways to configure and add a new agent to Veritas Cluster Server:

1. Using the Cluster Manager.

2. Using command line utilities.

3. Using a text editor and editing the main.cf configuration files.

Using the SQL Anywhere Veritas Cluster Server agents

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 965

http://www.sybase.com/detail?id=1034743

The instructions in the following sections use the Cluster Manager.

For information about the available utilities, see Veritas Cluster Server Administration Guide.

If you want to configure main.cf manually using a text editor, you must stop all Veritas Cluster Server services
before editing the main.cf file. Otherwise, the changes do not take effect.

Configuring the SAServer agent
The SAServer agent controls the failover of a SQL Anywhere database server to another node in the cluster.

To set up the SAServer agent

1. Shut down all SQL Anywhere database servers running on nodes in the cluster.

2. Choose a node in the cluster and create a directory named SAServer under the %VCS_HOME%\bin
directory on that node. You will see other Veritas Cluster Server agents within this folder (such as NIC
and IP).

3. Copy the following files from the install-dir\VCSAgent\SAServer directory to the SAServer directory
you created in Step 2:

● Online.pl
● Offline.pl
● Monitor.pl
● Clean.pl
● SAServer.xml

4. Copy the file %VCS_HOME%\bin\VCSdefault.dll into the %VCS_HOME%\bin\SAServer directory and
rename it to SAServer.dll.

5. Copy the file install-dir\VCSAgent\SAServer\SAServerTypes.cf into the %VCS_HOME%\conf\config
directory.

6. Repeat Steps 1-5 for all other nodes in the cluster.

7. Start the Veritas Cluster Server Manager and enter your user name and password to connect to the cluster.

8. Add the SAServer agent:

a. Choose File » Import Types.

b. Navigate to %VCS_HOME%\conf\config\SAServerTypes.cf, and then click Import.

To set up a database server for failover using the SAServer agent

1. Start the Veritas Cluster Server Manager and enter your user name and password to connect.

2. Add SAServer as a resource to a service group:

a. Choose Edit » Add » Resource.

b. In the Resource Type list, choose SAServer.

SQL Anywhere high availability

966 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

On Windows, if SAServer does not appear in the Resource Type list under Windows, you may have
to add the SAServer.xml file to the %VCS_ROOT%\cluster manager\attrpool\Win2K\400 and restart
the cluster services.

c. In the Resource Name field, type a name.

d. Add the following attribute values to the following attributes:

● cmdStart dbsrv11 -x tcpip database-file-on-shared-disk -n server-name

● cmdMonitor dbping -c "ENG=server-name"

● cmdStop dbstop -c user-id,password -y

e. Select Enabled.
This indicates that the resource is ready to be used.

f. Click OK.

3. Ensure that the resource dependencies are configured correctly. There are other resources that must be
started and grouped together before SAServer can be started, such as the shared disk resources and the
IP address resources.

4. Right-click the service group and choose Online » node-name, where node-name is the name of the
computer in the cluster on which you want the resource to run.

The service group is now online.

Testing the SAServer agent
The following steps describe how you can test a failover situation for the SAServer agent.

To test SAServer agent failover

1. Connect to the database from Interactive SQL. For example:

dbisql -c "UID=DBA;PWD=sql;ENG=VCS;LINKS=tcpip"
2. Execute the following query:

SELECT * FROM Departments;

The query should execute without errors.

3. Shut down the system running the database server.

Failover should occur, and all resources should start on the alternate server.

4. Reconnect from Interactive SQL using the same connection string and executing the query again. You
should be able to connect and execute the query successfully.

Configuring the SADatabase agent
The SADatabase agent controls the failover of a SQL Anywhere database to another node in the cluster.

Using the SQL Anywhere Veritas Cluster Server agents

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 967

To set up the SADatabase agent

1. Shut down all SQL Anywhere database servers running on nodes in the cluster.

2. Create a directory named %VCS_HOME%\bin\SADatabase on one of the nodes in the cluster.

3. Copy the following files from the install-dir\SADatabase directory to the %VCS_HOME%\bin
\SADatabase directory you created in Step 2:

● Online.pl
● Offline.pl
● Monitor.pl
● Clean.pl
● SADatabase.xml

4. Copy the file %VCS_HOME%\bin\VCSdefault.dll into the %VCS_HOME%\bin\SADatabase directory
and rename it to SADatabase.dll.

5. Copy the file install-dir\SADatabase\SADatabaseTypes.cf into the %VCS_HOME%\conf\config
directory.

6. Repeat Steps 1-5 for all systems participating in the cluster.

7. Start the Veritas Cluster Server Manager and enter your user name and password to connect to the cluster.

8. Add the SADatabase agent:

a. From the File menu, choose Import Types.

b. Navigate to %VCS_HOME%\conf\config\, and click Import.

To set up a database for failover using the SADatabase agent

1. Add SADatabase as a resource to the service group:

a. From the Edit menu, choose Add » Resource.

b. From the Resource Type list, choose SADatabase.
On Windows, if SADatabase does not appear in the Resource Type list, you may have to add the
SADatabase.xml file to the %VCS_ROOT%\cluster manager\attrpool\Win2K\400 and restart the
cluster services.

c. In the Resource Name field, type a name.

d. Add the specified values to the following attributes by clicking the button in the Edit column for
each attribute:

● DatabaseFile The location of the database file, for example, E:\demo.db.

● DatabaseName A name for the database.

● ServerName A name for the database server. A different server name can be supplied on each
system within the cluster. The scope of the attribute should be Per System, not Global.

● UtilDBpwd The utility database password used for all systems within the cluster.

e. Select Enabled.
This indicates that the resource is ready to be used.

SQL Anywhere high availability

968 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

f. Click OK.

2. Ensure that the resource dependencies are configured correctly. There are other resources that must be
started/grouped together before SADatabase can be started, such as the shared disk resources and the IP
address resources.

3. Right-click the service group, and choose Online » node-name, where node-name is the name of the
computer in the cluster on which you want the resource to run.

The service group is now online.

Testing the SADatabase agent
The following steps describe how you can test a failover situation for the SADatabase agent.

To test SADatabase agent failover

1. Connect to the database from Interactive SQL. For example:

dbisql -c "UID=DBA;PWD=sql;ENG=VCS;LINKS=tcpip"
2. Execute the following query:

SELECT * FROM Departments;

The query should execute without errors.

3. Suppose the database failed, and the database server running on the first system node cannot access the
database file. This would create a failover of the database file to the database server started on the second
system node. You can cause the database file on the first node to fail by issuing a command similar to
the following:

dbisql -q -c "UID=DBA;PWD=sql;ENG=VCS1;DBN=utility_db" STOP DATABASE DEMO
ON VCS1 UNCONDITIONALLY;

The database file on the first computer fails. There is a delay before Veritas Cluster Server recognizes
that the file has failed because Veritas Cluster Server monitors the health of its resource, every 60 seconds
by default (you can make this interval smaller in your resource configuration). The database file then
fails over to the second computer, and that database file will be started using the database server on the
second computer, which may have a different name than the original database server.

For example, if the new database server is called VCS2, then clients must specify the new database server
name in their connection strings:

"UID=DBA;PWD=sql;ENG=VCS2;DBN=DEMO;LINKS=tcpip"
4. Reconnect from Interactive SQL. You should be able to connect and execute the query successfully.

Using the SQL Anywhere Veritas Cluster Server agents

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 969

970

Monitoring Your Database

This section describes how to use the SQL Anywhere Monitor to monitor your SQL Anywhere databases and
MobiLink servers. It also describes how to set up and configure the SQL Anywhere SNMP Extension Agent.

SQL Anywhere Monitor ... 973
The SQL Anywhere SNMP Extension Agent ... 1015

SQL Anywhere Monitor

Contents
Introducing the SQL Anywhere Monitor ... 974
Monitor quick start ... 977
Tutorial: Using the Monitor .. 978
Start the Monitor .. 983
Exit the Monitor .. 984
Connect to the Monitor .. 985
Disconnect from the Monitor .. 986
Monitoring resources ... 987
Administering resources .. 995
Working with Monitor users ... 1002
Alerts ... 1006
Installed objects ... 1010
Installing the SQL Anywhere Monitor on a separate computer 1011
Troubleshooting the Monitor .. 1012

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 973

Introducing the SQL Anywhere Monitor
The SQL Anywhere Monitor, also referred to as the Monitor, is a web browser-based administration tool
that provides you with information about the health and availability of SQL Anywhere databases and
MobiLink servers.

This chapter describes how to use the Monitor to collect metrics about SQL Anywhere databases. For
information about using the Monitor with MobiLink servers, see “SQL Anywhere Monitor for MobiLink”
[MobiLink - Server Administration].

The Monitor provides the following functionality:

● Constant data collection Unlike many of the other administration tools available with SQL
Anywhere 11, the Monitor collects metrics all the time, even when you are not logged in to the web
browser. The Monitor collects metrics until you shut it down.

● Email alert notification As the metrics are collected, the Monitor examines the metrics and can send
email alerts when it detects conditions that indicate something is wrong with a database.

● Browser-based interface At any time, you can connect to the Monitor using a web browser to review
alerts and metrics that have been collected.

● Monitor multiple databases and MobiLink servers From one tool, you can simultaneously
monitor SQL Anywhere databases and MobiLink servers running on the same or different computers.

For information about monitoring MobiLink servers, see “SQL Anywhere Monitor for MobiLink”
[MobiLink - Server Administration].

● Minimal performance impact The Monitor can be used routinely in development and production
environments because monitoring does not degrade performance.

Requirements
● It is recommended that install the latest version of Adobe Flash Player that is available for your operating

system. The Monitor is backwards compatible with version 9 of Adobe Flash Player. To determine the
correct version, visit http://www.adobe.com/products/flashplayer/systemreqs/.

● You must enable JavaScript in your web browser.

● You must have SQL Anywhere 11.0.1 installed.

Running the Monitor in a production environment

You can install and run the Monitor on a separate computer. This prevents the Monitor resources and
configuration from being overwritten during subsequent SQL Anywhere upgrades or updates. Installing on
a separate computer is recommended if you want to use the Monitor in a production environment. See
“Installing the SQL Anywhere Monitor on a separate computer” on page 1011.

Limitations

● You can use the Monitor to collect metrics about the following types of SQL Anywhere databases and
MobiLink servers:

SQL Anywhere Monitor

974 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.adobe.com/products/flashplayer/systemreqs/

○ SQL Anywhere 9.0.2, 10.0.0, 10.0.1, 11.0.0, and 11.0.1

○ MobiLink 11.0.0 with at least the first EBF applied and 11.0.1

● You can only run one Monitor on a computer.

● You cannot use the Monitor to optimize queries or determine the speed of your application. If you are
interested in tuning database and application performance, you can use such tools as the Application
Profiling Wizard, the Sybase Central Performance Monitor, or the Windows Performance Monitor.

See also
For information about other administration and performance tools that are available for SQL Anywhere
databases, see:

● “Application profiling” [SQL Anywhere Server - SQL Usage]
● “SQL Anywhere Console utility (dbconsole)” on page 827
● “Monitoring statistics using Sybase Central Performance Monitor” [SQL Anywhere Server - SQL

Usage]
● “Monitor statistics using Windows Performance Monitor” [SQL Anywhere Server - SQL Usage]

Monitor architecture
The Monitor collects metrics and performance data from SQL Anywhere databases and MobiLink servers
running on other computers, while a separate computer accesses the Monitor via a web browser.

Introducing the SQL Anywhere Monitor

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 975

The Monitor is designed to help any type of user, whether they are a DBA or not, who is responsible for
such tasks as:

● Ensuring that a database is connected to the network.

● Ensuring that there is enough disk space or memory available for a database.

● Ensuring that users aren't blocked or that queries aren't taking too long.

See also
● “Monitor quick start” on page 977

SQL Anywhere Monitor

976 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Monitor quick start
The following steps are required to set up SQL Anywhere database monitoring:

1. Install SQL Anywhere 11.0.1 on a computer that is always connected to your network. The Monitor uses
SQL Anywhere to monitor databases.

The Monitor can run on the same computer as the resources it is monitoring, but it is recommended,
particularly in production environments, that you run the Monitor on a different computer to minimize
the impact on the database server, or other applications.

2. Ensure that your web browser has the appropriate version of Adobe Flash Player installed and that
JavaScript is enabled. See “Requirements” on page 974.

3. Start your database (if it is not already running).

4. Start the Monitor and open it in your web browser. See “Start the Monitor” on page 983.

The computer where you are using a web browser to access the Monitor must be connected to the network
where the Monitor is running.

5. Log in as an administrator. The default user name is admin and the default password is also admin.

6. Click the Administration tab and add a SQL Anywhere database as a resource to be monitored. See
“Add resources” on page 995.

7. Add new users and change the password for the admin user. See “Create Monitor
users” on page 1002.

8. Configure alerts for the database you want to monitor. See “Alerts” on page 1006.

9. Click the Monitoring tab to see the collected metrics for your database. See “Monitoring
resources” on page 987.

Monitor quick start

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 977

Tutorial: Using the Monitor
Use this tutorial to set up monitoring of the SQL Anywhere sample database.

Lesson 1: Start the Monitor
To start and open the Monitor

1. Start the Monitor. Choose Start » Programs » SQL Anywhere 11 » SQL Anywhere Monitor » SQL
Anywhere Monitor.

You do not have to perform this step if you installed the Monitor on a separate computer. When the
Monitor is installed on a separate computer than the one SQL Anywhere is running on, it runs as a service
and is automatically started when the computer starts.

2. Browse data. This step is different depending on whether the Monitor is installed on a separate computer.

In the system tray, right-click the SQL Anywhere Monitor icon and choose Browse Data.

If the Monitor is installed on a separate computer, choose Start » Programs » SQL Anywhere Monitor
11 » Browse Data. No icon appears in the system tray.

Alternatively, you can open a web browser and browse to http://localhost:4950.

The top pane of the Monitoring tab lists the resources that are being monitored. When you first open
the Monitor, it is only monitoring itself.

SQL Anywhere Monitor

978 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Lesson 2: Set up the Monitor to monitor a database” on page 979

Lesson 2: Set up the Monitor to monitor a database
The Monitor collects metrics from databases and MobiLink servers. In this section, you start the SQL
Anywhere sample database, demo.db, and then add the database as a resource to be monitored. To collect
metrics from a MobiLink server, see “Lesson 2: Set up the Monitor to monitor a MobiLink server” [MobiLink
- Server Administration].

To add a resource to monitor

1. Start the SQL Anywhere sample database. From the Start menu, choose Programs » SQL Anywhere
11 » SQL Anywhere » Network Server Sample.

2. Log in to the Monitor as the default administrator:

a. Click Login.

b. In the User Name field, type admin, and in the Password field, type admin.

c. Click Login.

3. Click the Administration tab.

4. Click the Resources tab.

5. Click Add.

6. Select SQL Anywhere Server, and then click Next.

7. Name the resource demo11, and then click Next.

8. In the Host field, type localhost, and in the Server field, type demo11.

9. Click Create.

10. When you are prompted for the required authorization, in the DBA User ID field, type DBA, and in the
Password field, type sql. Click OK.

The Monitor installs the monitoring objects in the demo11 database. The new resource, demo11, is
created and monitoring starts.

11. Click OK.

12. Click the Monitoring tab.

The demo11 resource appears on the Monitoring tab, and the collected metrics appear on the tabs in the
bottom pane.

Lesson 3: Test an alert
In this lesson, you intentionally trigger an alert so you can practice handling alerts.

Tutorial: Using the Monitor

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 979

To view and resolve an alert

1. Trigger an alert by shutting down the demo11 database.

a. On Windows, double-click the network server icon in the system tray for the demo11 database server.

b. Click Shut Down in the database server messages window.

c. Click Yes.

2. In the Monitor, click the Monitoring tab.

The State for the demo11 resource changes to Database Down and the Status for the demo11 resource
changes to Needs Attention!.

It can take a few seconds for these changes in state and status to occur. By default, the Monitor collects
information from the resource every 30 seconds.

3. In the bottom pane, click Alerts.

4. Select the Availability Alert and click Details to read the description.

5. Click OK.

6. Restart the sample database.

Start the SQL Anywhere sample database. From the Start menu, choose Programs » SQL Anywhere
11 » SQL Anywhere » Network Server Sample.

The State for the demo11 resource changes to Alive, but the Status remains unchanged. It can take a
few minutes for the change to appear.

7. Delete the alert by selecting the alert and clicking Delete.

The Status changes to Healthy.

Lesson 4: Set up the Monitor to send emails when alerts
occur

When an alert occurs, it is always listed in the Alerts tab in the lower pane of the Monitoring tab. In the
following procedure, you set up the Monitor to send you an email whenever an alert occurs.

To set up email notification

1. Create a user who can receive emails.

a. Click the Administration tab.

b. Click the Users tab.

c. Click New.

d. In the User Name field, type JoeSmith.

e. In the Password and the Confirm Password fields, type sql.

f. In the Email field, enter a valid email address.

SQL Anywhere Monitor

980 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

g. Choose English in the Preferred Language field.

h. Select Operator for the User Type.
An operator can receive alerts via email and can resolve and delete alerts. This user can access the
Monitoring tab, but cannot access the Administration tab.
For information about the different types of users, see “Working with Monitor
users” on page 1002.

i. Click Save.
The new user is created.

2. Associate the user with the demo11 resource.

a. Click the Resources tab.

b. Select the demo11 resource and click Configure.

c. In the Configure Resource window, click Operators.

d. In the Available Operators list, select JoeSmith and click Add.

e. Click Save.

f. Click OK.

3. Configure email alert notification.

a. Click the Administration tab.

b. Click the Configuration tab.

c. Click Edit.

d. Select Send Alert Notifications By Email.

e. Configure the other settings as required.

f. Test that you have properly configured email notification.
Click Send Test Email.

g. When prompted, enter an email address to send the test email to and click OK.
A test email is sent to the email address specified.

h. Click Save.

When an alert occurs, an email is sent to the specified user with information about the alert. For information
about setting up alerts, see “Lesson 3: Test an alert” on page 979.

Lesson 5: Cleanup
The following procedure removes the demo11 resource, which deletes the collected metrics and stops data
collection. In a production environment when you want to continue monitoring your database, you leave
both the database and the Monitor running.

Tutorial: Using the Monitor

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 981

To stop monitoring

1. Remove the demo11 resource.

a. Click the Administration tab.

b. Click the Resources tab.

c. Select the demo11 resource, and click Stop.

d. Click Remove.

e. Click Yes to confirm that you want to remove the resource.

2. Log out of the Monitor.

Click Logout.

3. Close the web browser window where you are viewing the Monitor.

4. Exit the Monitor.

In the system tray, right-click the SQL Anywhere Monitor icon and choose Exit SQL Anywhere
Monitor.

5. Shut down the SQL Anywhere database.

a. Double-click the network server icon in the system tray for the demo11 database server.

b. Click Shut Down in the database server messages window.

c. Click Yes.

SQL Anywhere Monitor

982 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Start the Monitor
Starting the Monitor causes the Monitor to start collecting metrics for all resources in the Monitor.

The procedure for starting the Monitor is different depending on whether the Monitor is running on a separate
computer.

To start the Monitor

1. Choose Start » Programs » SQL Anywhere 11 » SQL Anywhere Monitor » Start SQL Anywhere
Monitor.

The SQL Anywhere Monitor icon appears in the system tray.

2. Connect to the Monitor. See “Connect to the Monitor” on page 985.

To start the Monitor on a separate computer

1. The Monitor runs automatically as a service when installed on a separate computer. However, if you
stop monitoring, you can restart it. To do so, browse to install-dir\bin32.

2. On Windows, run the following:

samonitor.bat start service

On Linux, run the following:

samonitor.sh start service

When the Monitor runs as a service, no SQL Anywhere Monitor icon appears the system tray.

3. Connect to the Monitor. See “Connect to the Monitor” on page 985.

See also
● “Exit the Monitor” on page 984
● “Connect to the Monitor” on page 985
● “Disconnect from the Monitor” on page 986
● “Monitoring resources” on page 987

Start the Monitor

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 983

Exit the Monitor
Exiting the Monitor stops the collection of metrics for all resources. It is recommended that you leave the
Monitor running, but close the web browser. To stop monitoring a specific database, see “Stop monitoring
resources” on page 998.

The procedure for exiting the Monitor is different depending on whether the Monitor is running on a separate
computer.

To exit the Monitor

● In the system tray, right-click the SQL Anywhere Monitor icon and choose Exit SQL Anywhere
Monitor.

To exit the Monitor on a separate computer

1. Browse to install-dir\bin32.

2. On Windows, run the following:

samonitor.bat stop service

On Linux, run the following:

samonitor.sh stop service

See also
● “Start the Monitor” on page 983
● “Connect to the Monitor” on page 985
● “Disconnect from the Monitor” on page 986
● “Monitoring resources” on page 987

SQL Anywhere Monitor

984 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connect to the Monitor
The computer that you are using to connect to the Monitor must be connected to the network where the
Monitor is running.

To connect to the Monitor

1. Start the Monitor, if it isn't already running. See “Start the Monitor” on page 983.

2. Browse data. This step is different depending on whether the Monitor is installed on a separate computer.

From the Start menu, choose Programs » SQL Anywhere 11 » SQL Anywhere Monitor » Browse
Data.

If the Monitor is installed on a separate computer, choose Start » Programs » SQL Anywhere Monitor
11 » Browse Data.

A web browser opens the default URL for connecting to the Monitor: http://computer-name:4950, where
computer-name is the name of the computer the Monitor is running. For example, http://localhost:
4950.

3. If prompted, enter your user name and password for the Monitor. The user name and password for the
Monitor are case sensitive. See “Working with Monitor users” on page 1002.

See also
● “Start the Monitor” on page 983
● “Exit the Monitor” on page 984
● “Disconnect from the Monitor” on page 986
● “Monitoring resources” on page 987

Connect to the Monitor

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 985

Disconnect from the Monitor
You can disconnect from the Monitor by logging out or closing the web browser.

Disconnecting from the Monitor has no effect on the collection of metrics. If you want to stop collecting
metrics, then stop monitoring the resource or exit the monitor. See “Stop monitoring
resources” on page 998, or “Exit the Monitor” on page 984.

To disconnect from the Monitor

● Click Logout.

See also
● “Start the Monitor” on page 983
● “Exit the Monitor” on page 984
● “Connect to the Monitor” on page 985
● “Monitoring resources” on page 987

SQL Anywhere Monitor

986 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Monitoring resources
In the Monitor, the Monitoring tab provides an overview of the health and availability of the SQL Anywhere
databases being monitored.

Monitoring tab
The top pane contains a table that lists the resources that are being monitored. A resource is a database. This
table also indicates whether the resources are currently running and whether they require a user to perform
any actions on them. See “Interpreting resource states and status” on page 987.

The bottom pane of the Monitoring tab contains the alerts and a variety of current metrics for the selected
database. Most of these tabs contain links to graphs. You can change the range of the graphs with the
dropdown list and arrows at the top right of each graph.

Administration tab
The Administration tab is reserved for administrators. On it, you can select the databases that you want to
monitor, add and edit users, and configure the Monitor.

See also
● “Working with Monitor users” on page 1002
● “Monitor metrics” on page 988

Interpreting resource states and status
The top pane of the Monitoring tab contains a table that lists the SQL Anywhere databases that are being
monitored. In this table, the State column provides information about the connections between the Monitor

Monitoring resources

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 987

and its resources. The Status column indicates whether the resources require an operator or an administrator
user to perform actions on them. See “Working with Monitor users” on page 1002.

Resource state
A resource is always in one of the following states:

● Alive The resource is connected and the Monitor is collecting metrics.

● Blackout The Monitor is waiting for the blackout period to end before it resumes monitoring of the
resource.

● Database Down The SQL Anywhere database being monitored is stopped.

● Host Down The Monitor cannot locate the computer that is hosting the resource.

● Unknown The Monitor is not monitoring the resource.

Resource status
A resource has one of the following statuses:

● Healthy There are no unresolved alerts for the resources.

● Needs Attention There are one or more alerts for the resource.

● Monitoring Stopped The resource is not being monitored.

● Unknown The resource is not alive and there are no alerts for it.

Monitor metrics
The Monitor collects and stores metrics from databases, including, but not limited to:

● Whether the resource is running.

● Whether the computer that the resource is running on is running properly and is connected to the network.

● Whether the resource is listening and processing requests.

● Whether there are any obvious problems such as long running queries or blocked users.

The rate at which metrics are collected is determined by the collection interval settings that are set by
administrators. See “Collection intervals” on page 996.

Which metrics are collected and what thresholds should be used to issue alerts are determined by the metric
settings that are set by the administrators. See “Specify metrics to collect” on page 996.

Displaying metrics
The Monitor display is automatically refreshed every minute. You can change the refresh the interval by
clicking User Settings. This setting is independent of the collection interval rate for a resource, which
specifies how often the Monitor collects metrics from the resource being monitored.

SQL Anywhere Monitor

988 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To set the refresh rate

1. Click User Settings in the top, right corner.

2. Set a time for the Refresh Interval. The default is one minute.

3. Click OK.

When you click Refresh Data on the Monitoring tab, the Monitor retrieves and displays the latest metrics.

To refresh metrics

● Click Refresh Data.

When you press F5, the Monitor reloads the web browser and retrieves and displays the metrics that the
Monitor has collected to date.

To reload the Monitor

● Press F5.

Metric tab descriptions
The following tabs are used by both SQL Anywhere and MobiLink server resources.

● “Monitoring tab: Alerts tab” on page 990

● “Monitoring tab: Server tab” on page 990

The following tabs are used only by SQL Anywhere resources.

● “Monitoring tab: CPU tab” on page 991

● “Monitoring tab: Unscheduled Requests tab” on page 991

● “Monitoring tab: Memory tab” on page 991

● “Monitoring tab: Disk tab” on page 992

● “Monitoring tab: HTTP tab” on page 992

● “Monitoring tab: Connections tab” on page 992

● “Monitoring tab: Failed Connections tab” on page 993

● “Monitoring tab: Queries tab” on page 993

● “Monitoring tab: Mirror tab” on page 993

The following tabs are used only by MobiLink server resources.

● “Monitoring tab: Synchronization tab” [MobiLink - Server Administration]

● “Monitoring tab: Consolidated Database tab” [MobiLink - Server Administration]

Monitoring resources

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 989

● “Monitoring tab: Machine Resources tab” [MobiLink - Server Administration]

Monitoring tab: Alerts tab
Lists the fifty most recent alerts. Once the list exceeds 50 alerts, old alerts are removed as new alerts arrive.
See “Alerts” on page 1006.

Monitoring tab: Server tab

SQL Anywhere Server
● Server Name The name of the database server for the current connection. See the ServerName

property in “Database server properties” on page 624.

● Database Name Shows name of the database. See “PROPERTY function [System]” [SQL Anywhere
Server - SQL Reference].

● Version Shows the version of the software being run. See the ProductVersion property in “Database
server properties” on page 624.

● Type Shows the type of database server being monitored. Values include Personal and Network.

● Language Shows the locale language, which is the language that is expected to be used by users of
the database server. See “Understanding the locale language” on page 413.

● Start Time Shows the time when the SQL Anywhere database started.

● Unsubmitted error reports Shows the number of unsubmitted error reports for the database. An
error report is submitted when SQL Anywhere software crashes. See “Suppress alerts for unsubmitted
error reports from resources” on page 1009.

License
● Type Returns the license type. Can be networked seat (per-seat) or CPU-based. See the LicenseType

property in “Database server properties” on page 624.

● Number Of Licensed Seats Shows the number of licensed seats or processors. See the LicenseCount
property in “Database server properties” on page 624.

● Name Of Licensed Company Shows the name of the licensed company. See the CompanyName
property in “Database server properties” on page 624.

● Name of Licensed User Shows the name of the licensed user. See the LicensedUser property in
“Database server properties” on page 624.

Host
● Name Shows the name of the computer running the database server. Typically, this is the computer's

host name. See the MachineName property in “Database server properties” on page 624.

● Operating System Platform Shows the operating system on which the software is running. See the
Platform property in “Database server properties” on page 624.

SQL Anywhere Monitor

990 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Operating System Platform Version Shows the operating system on which the software is running,
including build numbers and service packs. See the PlatformVer property in “Database server
properties” on page 624.

● Processor Architecture Shows a string that identifies the processor type. See the
ProcessorArchitecture property in “Database server properties” on page 624.

See also
● “Monitoring tab: Server tab” on page 990

Monitoring tab: CPU tab
This tab is used when monitoring databases.

● Database Server CPU Usage Shows the percentage of CPU space that the database server. This
percentage is based on the ProcessCPU property. See “Database server properties” on page 624.

Monitoring tab: Unscheduled Requests tab
This tab is used when monitoring databases.

Lists the number of requests that are currently queued up waiting for an available database server thread.
See the UnSchReq property in “Database server properties” on page 624.

Monitoring tab: Memory tab
This tab is used when monitoring databases.

● Current Cache Size The current cache size, in kilobytes. See the CurrentCacheSize property in
“Database server properties” on page 624.

● Main Heap Pages The number of pages used for global server data structures. See the
MainHeapPages property in “Database server properties” on page 624.

● Peak Cache Size The largest value the cache has reached in the current session, in kilobytes. See
the PeakCacheSize property in “Database server properties” on page 624.

● Cache Pinned The number of pinned cache pages. See the CachePinned property in “Database server
properties” on page 624.

● Cache File Dirty The number of cache pages that are dirty (needing a write). See the CacheFileDirty
property in “Database server properties” on page 624.

● Cache Replacements The number of pages in the cache that have been replaced. See the
CacheReplacements property in “Database server properties” on page 624.

Monitoring resources

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 991

Monitoring tab: Disk tab
This tab is used when monitoring databases.

● Dbspace: system Shows the size of the main database file. See “Pre-defined
dbspaces” on page 13.

● Dbspace: translog Shows the size of the transaction log. See “Pre-defined dbspaces” on page 13.

● Dbspace: temporary Shows the size of the temporary dbspace. See “Pre-defined
dbspaces” on page 13.

● Disk Reads Measures the rate at which data is being read from the disk (in kilobytes per second).
This value is calculated based on the DiskRead property. See the DiskRead property in “Database server
properties” on page 624.

● Disk Writes Measures the rate at which data being written to the disk (in kilobytes per second). This
value is calculated based on the DiskWrite property. See the DiskWrite property in “Database server
properties” on page 624.

Monitoring tab: HTTP tab
This tab is used when monitoring databases.

● Sessions Returns the number of active and dormant HTTP sessions within the database server. See
the HttpNumSessions property in “Database server properties” on page 624.

● HTTP Connections Returns the number of HTTP connections that are currently open within the
database server. They may be actively processing a request or waiting in a queue of long lived (keep-
alive) connections. See the HttpNumConnections property in “Database server
properties” on page 624.

● HTTP Active Requests Returns the number of HTTP connections that are actively processing an
HTTP request. An HTTP connection that has sent its response is not included. See the
HttpNumActiveReq property in “Database server properties” on page 624.

● HTTPS Connections Returns the number of HTTPS connections that are currently open within the
database server. They may be actively processing a request or waiting in a queue of long lived (keep-
alive) connections. See the HttpsNumConnections property in “Database server
properties” on page 624.

● HTTPS Active Requests Returns the number of secure HTTPS connections that are actively
processing an HTTPS request. An HTTPS connection that has sent its response is not included. See the
HttpsNumActiveReq property in “Database server properties” on page 624.

Monitoring tab: Connections tab
This tab is used when monitoring databases.

● Connection Count Shows the current number of connections to the database. See “sa_conn_info
system procedure” [SQL Anywhere Server - SQL Reference].

SQL Anywhere Monitor

992 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Seat Count Shows the number of unique client network addresses connected to a network database
server. See the UniqueClientAddresses property in “Database server properties” on page 624.

Monitoring tab: Failed Connections tab
This tab is used when monitoring databases.

Lists failed connections to the database.

Monitoring tab: Queries tab
This tab is used when monitoring databases.

● Queries Processed Shows the rate at which queries are processed. See the QueryOptimized,
QueryReused, and QueryBypassed properties in “Database properties” on page 639.

● Long Running Queries Lists queries that exceed the specified long running query threshold.

Monitoring tab: Mirror tab
This tab is used when monitoring databases.

● Mirror Mode Shows Mirroring Is Not Enabled On This Database if database mirroring is not in
use. If mirroring is enabled, shows Synchronous if the mirroring mode specified with the -xp command
line option is synchronous, and Asynchronous otherwise.

● Mirror State Returns one of the following values:

○ Synchronizing The mirror server is not connected or has not yet read all the primary server's log
pages. This value is also returned if the synchronization mode is asynchronous.

○ Synchronized The mirror server is connected and has all changes that have been committed on
the primary server.

● Partner State Shows one of the following values:

○ Connected The mirror server is connected to the primary server.

○ Disconnected The mirror server is not connected to the primary server.

● Arbiter State Shows one of the following values:

○ connected The arbiter server is connected to the primary server.

○ disconnected The arbiter server is not connected to the primary server.

See also
● “Introduction to database mirroring” on page 938

Monitoring resources

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 993

Delete old Monitor metrics
You can customize how long the Monitor keeps historical metrics. You can choose to use any or all of the
settings. By default, the Monitor performs maintenance on itself once a day at midnight. Maintenance affects
metrics, not alerts.

To configure the deletion of historical metrics

1. Click Administration.

2. Click the Configuration tab.

3. Click Edit.

4. Click Maintenance.

5. Specify a time when the Monitor should perform maintenance. By default, it performs maintenance at
midnight. The time is local to the computer where the Monitor is running.

6. Customize the Data Reduction settings:

● Take A Daily Average Of Values Older Than When you select this option, an average is taken
for all numeric metrics that are older than the specified number of days, and then the numeric metrics
are deleted. Non-numeric metrics are not deleted.

● Delete Values Older Than When you select this option, all metrics that are older than the
specified length of time are deleted.

● Delete Old Values When The Total Disk Space Used By The SQL Anywhere Monitor
Becomes Greater Than X (MB) When you select this option, you specify the maximum amount
of space that can be used to store the metrics. When the amount of disk space used reaches or exceeds
the amount specified, the Monitor deletes metrics, starting with the oldest metrics, preventing the
Monitor from using more disk space for its metrics. Metrics are deleted until a sufficient amount of
free space exists to store new metrics.

7. Click Save.

SQL Anywhere Monitor

994 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Administering resources
A resource is a SQL Anywhere database. You add resources to the Monitor, and then you start monitoring
them.

The default resource, named SQL Anywhere Monitor, reports on the health of the Monitor itself. You
cannot modify this resource, nor can you stop monitoring it.

Start monitoring resources
When you start monitoring a resource, the Monitor starts collecting metrics.

Monitoring of a resource starts:

● Automatically when you add a resource. See “Add resources” on page 995.

● Automatically when you start the Monitor. By default, all existing resources are started automatically
when you start the Monitor.

● Automatically at the end of a blackout period. The Monitor automatically attempts to connect to the
resource and resume monitoring.

● When an administrator opens the Administration tab, clicks Resources, selects a resource from the list,
and clicks Start.

Add resources
To monitor a database, you must first add the resource to the Monitor.

When you add a database as a resource to be monitored, the Monitor installs objects into the database to
help the Monitor collect data. When adding the resource, you must supply the DBA user ID and password
for the database. These credentials are used to connect to the database and install the database objects needed
to monitor it. The DBA credentials are then discarded. For a list of the objects installed, see “Installed
objects” on page 1010.

Only administrators can add resources. By default, resource monitoring starts when the resource is added.

To add a resource to monitor

1. Log in to the Monitor.

2. Click the Administration tab.

3. On the Resources tab, click Add.

4. Follow the instructions in the Add Resource window to add a resource to monitor a database.

5. Click Create.

The resource is added and monitoring of the resource starts.

Administering resources

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 995

6. When you add a SQL Anywhere database, you must supply the DBA user ID and password for the
database. These credentials are used to connect to the database and install the database objects needed
to monitor it. The DBA credentials are then discarded.

7. Click OK.

Collection intervals
There are three types of collection intervals:

● High collection interval This rate is used for information that changes frequently, such as long-
running queries.

● Medium collection interval This rate is used for information that changes less frequently, such as
the amount of available disk space.

● Low collection interval This rate is used for information that changes infrequently, such as
unsubmitted error reports.

Administrators can configure how often the Monitor collects a resource's metrics. Collection intervals are
set per resource. You cannot configure the default resource, the SQL Anywhere Monitor.

To edit the collection intervals

1. Click the Administration tab.

2. Click the Resources tab, and select a resource from the list.

3. Click Configure.

4. Click Collection Intervals.

5. Configure the other settings as required, and then click Save.

6. Click OK.

See also
● “Monitor metrics” on page 988
● “Specify metrics to collect” on page 996

Specify metrics to collect
Administrators can configure what metrics the Monitor collects and when alerts should be issued. You cannot
configure the default resource, the SQL Anywhere Monitor.

To configure what metrics are collected

1. Click the Administration tab.

2. Click the Resources tab, and select a resource from the list.

SQL Anywhere Monitor

996 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

3. Click Configure.

4. Click Metrics. Select the metrics and alerts. For definitions of the metrics and alerts, see “Types of
metrics and alerts” on page 997.

5. Configure the other settings as required.

6. Click Save.

7. When you edit the resource for a SQL Anywhere database, you must supply the DBA user ID and
password for the database. These credentials are used to connect to the database and alter the installed
database objects needed to monitor it. The DBA credentials are then discarded.

8. Click OK.

See also
● “Monitor metrics” on page 988
● “Collection intervals” on page 996

Types of metrics and alerts
The following list describes the metrics that are available for your resource in the Configure Resource
window: Metrics tab.

● CPU Usage (High Collection Interval) Select this option to collect metrics about the database CPU
usage. You can view these metrics on the CPU tab. See “Monitoring tab: CPU tab” on page 991.

○ Alert When CPU Use Reaches X% For Two Collection Intervals In A Row Issue an alert
when the CPU use reaches the specified percentage. The default is 95 percent.

● Memory Usage (High Collection Interval) Select this option to collect metrics about the cache.
You can view these metrics on the Memory tab. See “Monitoring tab: Memory tab” on page 991.

○ Alert When Memory Usage Reaches X% Issue an alert when the memory usage of the resource
reaches the specified percentage. The default is 85 percent.

● Disk Usage (High Collection Interval) Select this option to collect metrics about the database's
dbspaces, as well as disk reads and writes. You can view these metrics on the Disk tab. See “Monitoring
tab: Disk tab” on page 992.

○ Alert When Free Disk Space Per Dbspace Is Less Than X Megabytes Issue an alert when
the free disk space per dbspace is less than the specified amount. The default is 100 MB.

● Connections (High Collection Interval) Select this option to collect metrics about connections.
You can view these metrics on the Connections tab. See “Monitoring tab: Connections
tab” on page 992.

○ Alert When A Connection Has Been Blocked For Longer Than X Seconds Issue an alert
when a connection has been blocked for longer than the specified time. The default is 10 seconds.

● Connection Count (Medium Collection Interval) Select this option to collect metrics about the
number of connections. You can view these metrics on the Connections tab. See “Monitoring tab:
Connections tab” on page 992.

Administering resources

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 997

○ Alert When The Number Of Connections In Use Reaches X % Of The License Limit Issue
an alert when the number of connections in use reaches the specified percentage of the license limit.
The default is 85 percent.

● Queries Processed (High Collection Interval) Select this option to collect metrics on the rate that
queries are processed. You can view these metrics on the Queries tab. See “Monitoring tab: Queries
tab” on page 993.

● Long Running Query (Medium Collection Interval) Select this option to collect metrics on the
long running queries. You can view these metrics on the Queries tab. See “Monitoring tab: Queries
tab” on page 993.

○ Alert When A Query Has Run For Longer Than X Seconds Issue an alert when a query has
run for longer than the specified time. The default is 10 seconds.

● Failed Connections (Medium Collection Interval) Select this option to collect metrics about failed
connections. You can view these metrics on the Failed Connections tab. See “Monitoring tab: Failed
Connections tab” on page 993.

● HTTP Server Usage (Medium Collection Interval) Select this option to collect metrics about the
HTTP server usage. You can view these metrics on the HTTP tab. See “Monitoring tab: HTTP
tab” on page 992.

● Mirror Information (Medium Collection Interval) Select this option to collect metrics about
database mirroring. You can view these metrics on the Mirror tab. See “Monitoring tab: Mirror
tab” on page 993.

● Unscheduled Requests (High Collection Interval) Select this option to collect metrics about
unscheduled requests. You can view these metrics on the Unscheduled Requests tab. See “Monitoring
tab: Unscheduled Requests tab” on page 991, and “Troubleshooting the Monitor” on page 1012.

○ Alert When The Number Of Unscheduled Requests Reaches X Issue an alert when the
number of unscheduled requests reaches the specified amount. The default is 5.

● Suppress Alerts For The Same Condition That Occur Within X Minutes Select this option to
prevent receiving duplicate alerts within a specified time. The default is 30 minutes.

Stop monitoring resources
You stop monitoring resources when you do not want the Monitor to collect metrics from a SQL Anywhere
database. For example, you want to stop monitoring when you know that the resource will be unavailable;
otherwise, you receive alerts until the resource is available. Except for the default Monitor resource, you can
stop monitoring any resource at any time.

When you stop monitoring a resource, the Monitor:

● Stops collecting metrics for the resource.

● Stops issuing alerts for the resource.

There are two ways to stop monitoring a resource:

SQL Anywhere Monitor

998 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Schedule a regular, repeating, blackout period This method is a good choice when the following
conditions apply:

○ You must repeatedly stop monitoring the database. For example, you perform regular maintenance
at the end of each month.

○ You know in advance how long the database is unavailable. For example, you know that your regular
maintenance takes four hours.

○ You need monitoring to automatically restart. When a blackout completes, the Monitor attempts to
reconnect to the resource and to continue collecting data.

To use this method, you create blackouts to make the Monitor stop monitoring at specified times. See
“Automatically stop monitoring resources using blackouts” on page 1000.

● Manually stop the monitoring This method is a good choice when the following conditions are
met:

○ You need to stop monitoring for infrequent or one-time tasks. For example, you need to stop
monitoring because the computer that the resource is running on needs to be taken off-line for special
maintenance.

○ You are available to restart the monitoring afterwards. When a resource has been stopped manually,
the Monitor waits for you to restart the monitoring.

To use this method, see “Manually stop monitoring resources” on page 999.

If you want to permanently stop monitoring a resource, you can remove it from the Monitor. See “Remove
resources” on page 1001.

Manually stop monitoring resources
The following procedure describes how to manually stop a resource. For information about what happens
when you stop a resource, see “Stop monitoring resources” on page 998.

To manually stop a resource

1. Click the Administration tab.

2. Select the resource to stop.

3. On the Resources tab, click Stop.

See also
● “Start monitoring resources” on page 995
● “Automatically stop monitoring resources using blackouts” on page 1000

Administering resources

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 999

Automatically stop monitoring resources using blackouts
The following procedure describes how to stop a resource using blackouts. For information about what
happens when you stop a resource and about when you should use blackouts, see “Stop monitoring
resources” on page 998.

Blackouts are times when you do not want the Monitor to collect metrics. When a blackout completes, the
Monitor attempts to reconnect to the resources and to continue collecting data.

Blackouts occur in the local time of the resource.

To configure the blackout time

1. Log in to the Monitor as an administrator.

2. Click the Administration tab.

3. On the Resources tab, select the resource you want to specify the blackout time for.

4. Click Configure.

5. Click the Blackouts tab.

6. Click New.

7. In the New Blackout Period window, specify the date and time for the blackout.

The time is local to the computer where the resource database resides.

8. Click Save.

9. Click Save.

10. Click OK.

See also
● “Start monitoring resources” on page 995
● “Manually stop monitoring resources” on page 999

Repair database resources
Repairing a resource reinstalls the database objects needed to monitor the resource. The monitoring options
are left unchanged.

You can repair only SQL Anywhere database resources. You cannot repair the default resource for the
Monitor (named SQL Anywhere Monitor). Only administrators can repair resources. Each time you repair
a resource, you must specify the DBA user ID and password for the database.

To repair a SQL Anywhere resource

1. Click the Administration tab.

2. Click the Resources tab.

SQL Anywhere Monitor

1000 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

3. Select the database resource to repair.

4. If the resource is currently being monitored, click Stop.

5. Click Repair.

6. When prompted, type the DBA user ID and password for the SQL Anywhere database. The DBA
credentials are used to connect to the database, and then they are discarded.

7. Click Repair.

8. Click OK.

9. Restart monitoring the resource. See “Administering resources” on page 995.

Remove resources
You should only remove resources when you are certain that you don't need to monitor them; for example,
if the database is no longer being used.

Removing a resource causes the Monitor to:

● Permanently stop monitoring the resource.

● Discard the metrics collected for the resource.

When you remove a database resource, the Monitor does not delete the monitoring objects installed in the
database. For information about deleting these objects, see “Deleting monitoring objects” on page 1010.

Only administrators can remove resources. You cannot delete the SQL Anywhere Monitor resource.

To remove a resource

1. Click the Administration tab.

2. On the Resources tab, select a resource, and then click Remove.

3. Click Yes.

See also
● “Stop monitoring resources” on page 998

Administering resources

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1001

Working with Monitor users
The Monitor supports three types of users:

● Read-only user Has read-only access to monitor resources. Read-only users can view the metrics on
the Monitoring tab, but cannot access the Administration tab. A user name and password are required.

● Operator Has read-only access to monitor resources and can receive alerts. These users can view the
metrics on the Monitoring tab, can receive email alerts, and can resolve and delete alerts. However,
operators cannot access the Administration tab. A user name and password are required.

● Administrator Has the same access as an operator, and can also configure resources and add users.
Administrators can also access the Administration tab. The default user, admin, is an administrator. A
user name and password are required.

The user name and password for logging in to the Monitor are case sensitive.

Default user

By default, when you first start the Monitor, it has one administrator user, named admin, with password
admin. By default, this user has full permissions. It is recommended that you change the default administrator
password to restrict access to the Monitor. See “Edit Monitor users” on page 1003.

Read-only access without a user name
By default, the Monitor does not require anyone to log in to have read-only access. However, for security
and other reasons, the administrator can require that users log in. See “Require Monitor users to
login” on page 1004.

Create Monitor users
You must be an administrator to add Monitor users.

To add a new Monitor user

1. Click the Administration tab.

2. Click the Users tab.

3. Click New.

4. Fill in the information for the new user. An email address is only required for users who should receive
email alerts from the Monitor.

Click Save.

5. If you create an operator or an administrator, you can associate the user with a resource. See “Associate
Monitor users with resources” on page 1003.

SQL Anywhere Monitor

1002 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Edit Monitor users” on page 1003

Associate Monitor users with resources
You must associate a user with a resource if you want the user to receive email alerts about the associated
resource. You can only associate an operator or an administrator with a resource.

To associate an operator or administrator with a resource

1. Click the Administration tab.

2. Click the Resources tab.

3. Select the resource and click Configure.

4. Click Operators.

5. From the Available Operators list, select the user and click Add.

6. Click Save.

7. Click OK.

8. Verify that the Monitor is set up to send alert notifications by email. See “Send alert
emails” on page 1007.

See also
● “Working with Monitor users” on page 1002

Edit Monitor users
As an administrator, you can edit Monitor users to change their:

● Passwords

● Email addresses

● Language settings

● User types

To edit an existing Monitor user

1. Click the Administration tab.

2. Click the Users tab.

3. Select the user to edit.

4. Click Edit.

Working with Monitor users

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1003

5. Change the settings for the user as required.

6. Click Save.

7. If you are editing an operator or an administrator, you can associate the user with a resource. See
“Associate Monitor users with resources” on page 1003.

See also
● “Working with Monitor users” on page 1002
● “Create Monitor users” on page 1002
● “Delete Monitor users” on page 1004

Delete Monitor users
Deleting a user removes the user from the Monitor and disassociates the user from any resource.

You must be an administrator to delete Monitor users.

To delete an existing Monitor user

1. Click the Administration tab.

2. Click the Users tab.

3. Select the user to delete.

4. Click Delete.

5. Click Yes to delete the selected user. Click Delete All to delete all users.

The user is deleted from the Monitor.

See also
● “Create Monitor users” on page 1002
● “Edit Monitor users” on page 1003
● “Associate Monitor users with resources” on page 1003

Require Monitor users to login
By default, anyone can have read-only access to the Monitor. You can change this behavior so that whenever
a user opens the Monitor in a web browser, they must provide a user name and password before they can
see any monitoring data.

To restrict access to the Monitor

1. Click the Administration tab.

2. On the Configuration tab, click Edit.

3. Click Authentication.

SQL Anywhere Monitor

1004 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

4. Clear the Allow Anyone Read-only Access To The SQL Anywhere Monitor option.

5. Click Save.

See also
● “Create Monitor users” on page 1002
● “Edit Monitor users” on page 1003

Working with Monitor users

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1005

Alerts
An alert is a condition or state of interest that should be brought to an administrator's or operator's attention.
Alerts include information about the cause of the problem, and provide advice for resolving the problem.

There are several predefined alerts for conditions such as low disk space, critical software updates, failed
login attempts, and high memory usage. When an alert condition is met, the alert is listed in the bottom pane
on the Monitoring tab. In the top pane, the database Status changes to indicate that an alert exists. You can
configure the Monitor to send an email to operators and administrators when an alert occurs. See “Send alert
emails” on page 1007.

Alerts are detected by the Monitor based on metrics that are collected. They are not detected at the database
being monitored. You can change the default threshold values and choose which alerts are enabled by editing
the resource. See “Monitor metrics” on page 988.

View alerts
Any user can view alerts; however, only operators and administrators can resolve and delete alerts.

To view an alert

1. Click the Monitoring tab.

2. Select a resource from the list.

3. In the bottom pane, click the Alerts tab.

4. Select a row in the alerts list.

5. Click Details.

6. Click OK.

See also
● “Resolve alerts” on page 1006
● “Delete alerts” on page 1007
● “Send alert emails” on page 1007

Resolve alerts
Once the issue that triggered an alert has been addressed, you can mark an alert as resolved. Resolving an
alert causes the Monitor to change the alert's status column, but leave the alert in the alert list. If you want
to remove the alert, you must delete it. See “Delete alerts” on page 1007.

Only operators and administrators can resolve alerts.

To resolve an alert

1. Click the Monitoring tab.

SQL Anywhere Monitor

1006 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

2. Select a resource from the list.

3. In the bottom pane, click the Alerts tab.

4. Select the row in the alerts list.

5. Click Mark Resolved to resolve the selected alert. Click Mark All Resolved to resolve all alerts in the
list.

The value in the Status column on the Alerts tab changes to Resolved.

If this was the resource's only unresolved alert, the resource's status changes to Healthy.

See also
● “Delete alerts” on page 1007
● “Resolve alerts” on page 1006
● “Send alert emails” on page 1007
● “View alerts” on page 1006
● “Alerts” on page 1006

Delete alerts
The Monitor keeps only the most recent 50 alerts in the alert list. If you do not want an alert to appear in the
alerts list any more, you can delete the alert. You can delete alerts, regardless of their status.

Only operators and administrators can delete alerts.

To delete alerts

1. Click the Monitoring tab.

2. Select a resource from the list.

3. In the bottom pane, click the Alerts tab.

4. Select a row in the alerts list.

5. Click Delete.

The alert is removed from the alerts list.

See also
● “Resolve alerts” on page 1006
● “Send alert emails” on page 1007
● “View alerts” on page 1006
● “Alerts” on page 1006

Send alert emails
You can configure the Monitor to send an email to operators and administrators when an alert occurs.

Alerts

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1007

To have the Monitor send alert notifications by email, you must:

1. Create an administrator or operator with an email address. See “Create Monitor users” on page 1002.

2. Associate the administrator or operator with a resource. See “Associate Monitor users with
resources” on page 1003.

3. Enable the Monitor to send emails. See “Enable the Monitor to send alert emails” on page 1008.

Enable the Monitor to send alert emails
As an administrator, you can configure the Monitor to send emails when an alert occurs. The Monitor supports
the SMTP and MAPI protocols for sending emails.

To enable the Monitor to send alert notifications by email

1. Click the Administration tab.

2. Click the Configuration tab.

3. Click Edit.

4. Click Alert Notification.

5. Select Send Alert Notifications By Email.

6. Choose either SMTP or MAPI for the Which Protocol Do You Want To Use To Send Alerts By
Email? field.

7. Configure the other settings as required.

● MAPI

○ User Name Type the user name for the MAPI server.

○ Password Type the password for the MAPI server.

● SMTP

○ Server Specify which SMTP server to use. Type the server name or the IP address for the
SMTP server. For example, SMTP.yourcompany.com.

○ Port Specify the port number to connect to on the SMTP server. The default is 25.

○ Sender Name Specify an alias for the sender's email address. For example, JoeSmith.

○ Sender Address Specify the email address of the sender. For example,
jsmith@emailaddress.com.

○ This SMTP Server Requires Authentication Select this option if your SMTP server
requires authentication.

● User Name Specify the user name to provide to SMTP servers requiring authentication.

● Password Specify the password to provide to SMTP servers requiring authentication.

8. Test that you have properly configured email notification.

SQL Anywhere Monitor

1008 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Click Send Test Email.

9. When prompted, enter an email address to send the test email to and click OK.

A test email is sent to the email address specified.

10. Click Save.

See also
● “Resolve alerts” on page 1006
● “Delete alerts” on page 1007
● “View alerts” on page 1006

Suppress alerts for unsubmitted error reports from
resources

As an administrator, you can configure whether the Monitor sends out alerts when resources have
unsubmitted error reports. By default, the Monitor does not send these alerts. For information about error
reports and about how to submit them, see “Error reporting in SQL Anywhere” on page 83.

To suppress alerts for unsubmitted error reports

1. Click the Administration tab

2. Click the Configuration tab.

3. Click Edit.

4. Click Options.

5. Click Save.

Alerts

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1009

Installed objects
The following table lists the objects that are installed when you monitor a SQL Anywhere database.

Object name Object type Description

sa_monitor_user Database user This read-only user is added to the database to
collect metrics. Because this user is added to the
database being monitored, it is not necessary to
store the DBA credentials anywhere outside the
database that is being monitored. It may be nec-
essary to allow sa_monitor_user to bypass pass-
word verification. The sa_monitor_user has a ran-
dom password known only to the Monitor and it
does not have administrator privileges.

sa_monitor_connection_failure Table This table contains metrics about failed connec-
tion attempts, and is used with sa_monitor_con-
nection_failed_event. The metrics in this table are
deleted as metrics are retrieved from the Monitor.

sa_monitor_connec-
tion_failed_event

Event This event fires on the ConnectFailed system
event (every time a connection attempt fails), and
inserts a record into the sa_monitor_connec-
tion_failure table.

sa_monitor_count_unsubmit-
ted_crash_reports

Function This function calls the xp_srvmon_count_unsub-
mitted_crash_reports procedure to gather a count
of the number of unsubmitted crash reports.

Deleting monitoring objects

Because the database objects are owned by a single owner, you can delete all of them by executing the
following statement:

DROP USER sa_monitor_user;

Reinstalling monitoring objects
To reinstall the database objects, see “Repair database resources” on page 1000.

SQL Anywhere Monitor

1010 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Installing the SQL Anywhere Monitor on a separate
computer

These instructions explain how to install SQL Anywhere Monitor on a separate computer than the one that
SQL Anywhere is running on.

Some advantages to running the SQL Anywhere Monitor on a separate computer include:

● The Monitor runs in the background as a service.

● The Monitor starts automatically when the computer starts.

● Upgrades and updates of SQL Anywhere do not overwrite the Monitor when it is installed on a separate
computer. This is important if the separate computer is in a production environment.

To install the Monitor on a separate computer

● Run the setup.exe file from the Monitor directory on your installation media, and follow the instructions
provided.

Installing the SQL Anywhere Monitor on a separate computer

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1011

Troubleshooting the Monitor
Problem Recommendation

When you press F5 to refresh the web browser
window, you are required to log in to the Monitor.

Enable JavaScript in your web browser.

You receive a network communication error when
you try to connect to the Monitor.

Start the Monitor. See “Start the Moni-
tor” on page 983.

After upgrading to the latest version of Adobe
Flash Player you continue to receive instructions
to upgrade Adobe Flash Player.

Verify that the installed version Adobe Flash Player
is supported by your operating system. The Monitor
is backwards compatible with version 9 of Adobe
Flash Player. To determine the correct version, visit:
http://www.adobe.com/products/flashplayer/sys-
temreqs/.

The Monitor is unable to start monitoring a SQL
Anywhere database resource.

Verify that the resource's password verification
functions and login procedures allow the user
sa_monitor_user to connect to the resource.

You are not receiving any alert emails. Verify that the Monitor is properly configured to
send emails and send a test email. See “Enable the
Monitor to send alert emails” on page 1008.

Verify that the alert emails from the Monitor are not
being blocked by a virus scanner. See “xp_startsmtp
system procedure” [SQL Anywhere Server - SQL
Reference].

The number of unscheduled requests reported by
the Monitor appears to be less than the actual num-
ber of unscheduled requests.

When collecting metrics about the number of un-
scheduled requests, the Monitor executes query on
the resource. This query could be an unscheduled
request.

Unscheduled queries are processed sequentially as
they arrive. Therefore, if there are unscheduled re-
quests when the Monitor attempts to execute its
query, then this query must wait for the existing un-
scheduled requests to complete before it can execute.

As a result, when the Monitor collects the number of
unscheduled requests, this number does not include
the unscheduled requests that existed between the
time when the Monitor issued its query and the query
executed.

SQL Anywhere Monitor

1012 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.adobe.com/products/flashplayer/systemreqs/
http://www.adobe.com/products/flashplayer/systemreqs/

Problem Recommendation

You are not receiving alerts when the database disk
space surpasses the specified threshold.

Between Monitor collection intervals, it is possible
for a database to exceed the specified disk space alert
threshold and the amount of space available. In such
a case, the database would stop responding before
the Monitor could collect the disk usage metrics and
issue an alert

If your database grows quickly, set the disk space
alert threshold to a higher number so that you can
receive an alert before the database runs out of space.
See “Types of metrics and alerts” on page 997.

When you open the Monitor in a Firefox web
browser from a non-English computer, the Moni-
tor appears in English.

Firefox does not correctly use your computer's pre-
ferred locale. You can use Internet Explorer or try
the following Firefox workaround:

1. In Firefox, open a new tab.

2. In the address bar, type the following:

about:config

Press Enter.

If prompted, click I'll Be careful, I Promise!

3. In the Filter field, type the following:

general.useragent.locale
4. In the preference list, double-click general.user-

agent.locale.

5. In the Enter String Value window, enter your
locale. For example, type fr-FR for French, de-
DE for German, zh-CN for Chinese, and ja-JP
for Japanese.

6. Click OK.

Troubleshooting the Monitor

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1013

1014

The SQL Anywhere SNMP Extension Agent

Contents
Introduction to the SQL Anywhere SNMP Extension Agent 1016
Understanding SNMP .. 1017
Using the SQL Anywhere SNMP Extension Agent .. 1021
SQL Anywhere MIB reference ... 1029
RDBMS MIB reference .. 1055

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1015

Introduction to the SQL Anywhere SNMP Extension
Agent

If you are running SQL Anywhere on Windows (32-bit versions), you can use the SQL Anywhere SNMP
Extension Agent in conjunction with SNMP management applications to manage your SQL Anywhere
databases. One agent can be used to monitor several different databases running on different database servers
running on different computers.

Using the SQL Anywhere SNMP Extension Agent, you can:

● Retrieve the value of all server and database statistics.

● Retrieve the value of all server and database properties.

● Retrieve the value of all PUBLIC database options.

● Set the value for any PUBLIC database option.

● Execute stored procedures.

● Generate traps based on property or statistic values.

Supplied files
The following files for the SQL Anywhere SNMP Extension Agent are included in your SQL Anywhere
installation:

● dbsnmp11.dll The SQL Anywhere SNMP Extension Agent. This file is located in install-dir
\bin32.

● iAnywhere.mib The SQL Anywhere MIB contains all the OIDs for database server and database
properties, statistics, and options that can be accessed using the SQL Anywhere SNMP Extension Agent.

● RDBMS-MIB.mib This is a generic MIB for relational database management systems and contains
OIDs that can be accessed using the SQL Anywhere SNMP Extension Agent.

● SNMPv2-SMI.mib This MIB is referenced by the SQL Anywhere and RDBMS MIBs.

● SNMPv2-TC.mib This MIB is referenced by the SQL Anywhere and RDBMS MIBs.

● SYBASE-MIB.mib The Sybase MIB. This MIB is referenced by the SQL Anywhere MIB.

● sasnmp.ini This file lists the databases that the SQL Anywhere SNMP Extension Agent monitors.
By default, this file is located in install-dir\bin32.

The SQL Anywhere SNMP Extension Agent

1016 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Understanding SNMP
Simple Network Management Protocol (SNMP) is a standard protocol used for network management. SNMP
allows managers and agents to communicate: managers send requests to agents, and agents respond to
queries from managers. Additionally, agents can notify managers when specific events occur using
notifications called traps.

SNMP agents handle requests to get and set the values of variables for managed objects. Each variable has
a single value, and values are generally strings or integers, although they may also be other types.

Variables are kept in a global hierarchy, and each variable has a unique number under its parent. The full
name of a variable (including all its parents) is called the Object Identifier (OID). All OIDs that are owned
by Sybase begin with 1.3.6.1.4.1.897.

The list of OIDs that an agent supports, including their names, types, and other information are stored in a
file called a Management Information Base (MIB).

A MIB is a database that stores network management information about managed objects. The MIB is
separate from the SQL Anywhere database you are monitoring using the SQL Anywhere SNMP Extension
Agent. The values of MIB objects can be changed or retrieved using SNMP. MIB objects are organized in
a hierarchy with the most general information about the network located at the top level of the hierarchy.
The SQL Anywhere SNMP Extension Agent supports the following MIBs:

● SQL Anywhere MIB A MIB created specifically for the SQL Anywhere SNMP Extension Agent.
All the OIDs in the SQL Anywhere MIB begin with 1.3.6.1.4.1.897.2. The SQL Anywhere MIB lists
the OIDs for the statistics, properties, and option values that can be retrieved, and in some cases set,
using the SQL Anywhere SNMP Extension Agent. See “The SQL Anywhere MIB” on page 1017.

● RDBMS MIB A generic, vendor-independent MIB for relational databases. This MIB contains
information about the database servers and databases in your system. See “The RDBMS
MIB” on page 1020.

The SQL Anywhere MIB
The SQL Anywhere MIB was created for the SQL Anywhere SNMP Extension Agent. It includes all database
server statistics and properties, and all database statistics, properties, and options. The statistics and properties
are all read-only (with a few exceptions), and the database options are all read-write.

By default, the SQL Anywhere MIB is located in install-dir\snmp\iAnywhere.mib.

For more information about the tables in the SQL Anywhere MIB, see “SQL Anywhere MIB
reference” on page 1029.

For more information about setting values in the SQL Anywhere MIB, see “Setting values using the SQL
Anywhere SNMP Extension Agent” on page 1025.

The following hierarchy describes the SQL Anywhere MIB:

Understanding SNMP

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1017

OID Name Description

1.3.6.1.4.897.2.1.1.n.db saServer.saSrvStat Returns the value of server statistic
n on database db.

1.3.6.1.4.897.2.1.2.n.db saServer.saSrvProp Returns the value of server proper-
ty n on database db.

1.3.6.1.4.897.2.2.1.n.db saDb.saDbStat Returns the value of database sta-
tistic n on database db.

1.3.6.1.4.897.2.2.2.n.db saDb.saDbProp Returns the value of database prop-
erty n on database db.

1.3.6.1.4.897.2.2.3.n.db saDb.saDbOpt Returns the value of database op-
tion n on database db.

1.3.6.1.4.897.2.3.1 saAgent.saVersion Returns the version of the SQL
Anywhere Extension Agent.

1.3.6.1.4.897.2.3.2.db saAgent.saDbConnStr Returns the connection string for
database db.

1.3.6.1.4.897.2.3.3.db saAgent.saConnected Returns whether the SQL Any-
where Extension Agent is connec-
ted to database db. Setting this val-
ue to 0 causes the SQL Anywhere
Extension Agent to disconnect
from the database, while setting
this value to 1 causes the SQL Any-
where Extension Agent to attempt
to connect to the database.

1.3.6.1.4.897.2.3.4.db saAgent.saStarted Returns whether database db is
running. Setting this value to 0 cau-
ses the SQL Anywhere Extension
Agent to shut down the database1,
while setting this value to 1 at-
tempts to start the database2.

The SQL Anywhere SNMP Extension Agent

1018 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

OID Name Description

1.3.6.1.4.897.2.3.5.db saAgent.saProc Setting this value to a string
proc_name causes the SQL Any-
where Extension Agent to executed
the procedure proc_name in the da-
tabase.

Arguments can be supplied (for ex-
ample, proc_name('string', 4)); if
no arguments are supplied, paren-
theses () are appended to the name.
Getting the value returns "".

1.3.6.1.4.897.2.3.6 saAgent.saRestart Setting the value of this variable to
1 causes the agent to restart itself (it
disconnects from all databases and
reloads the .ini file). Getting the
value returns 0.

1.3.6.1.4.897.2.3.7 saAgent.saInifile Returns the full path of the
sasnmp.ini file the SQL Anywhere
Extension Agent is using.

1.3.6.1.4.897.2.4 saMetaData Several virtual tables; each row
represents a variable supported by
the SQL Anywhere MIB.

1 When stopping a database by setting this variable, the stop is unconditional, meaning that the database will
be stopped even if it has active connections.
2 To be able to start a database by setting this variable, the DBF parameter must be specified in the connection
string (including the DBN, and DBKEY if it is required), and either the UtilDbPwd field must be set in the
sasnmp.ini file, or the start database permission on the server (specified with the -gd server option) must be
set to all.

saMetaData tables
The SQL Anywhere MIB includes metadata tables that provide a way to query the SQL Anywhere Extension
Agent to find out which variables are supported.

● saSrvMetaData.saSrvStatMetaDataTable Lists the database server statistics (variables under
sa.saServer.saSrvStat).

● saSrvMetaData.saSrvpropMetaDataTable Lists the database server properties (variables under
sa.saServer.saSrv.Prop).

● saDbMetaData.saDbStatMetaDataTable Lists the database statistics (variables under
sa.saDb.saDbStat).

Understanding SNMP

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1019

● saDbMetaData.saDbpropMetaDataTable Lists the database properties (variables under
sa.saDb.saDbProp).

● saDbMetaData.saDbOptMetaDataTable Lists the database options (variables under
sa.saDb.saDbOpt).

For more information about the information stored in the SQL Anywhere MIB metadata tables, see
“saMetaData tables” on page 1029.

The RDBMS MIB
The RDBMS MIB is a generic and vendor-independent MIB (RFC 1697) for relational database management
system products. The RDBMS MIB uses virtual tables to return information on the servers and databases.
The base OID is 1.3.6.1.2.1.39, and there are 9 virtual tables in this MIB. The SQL Anywhere SNMP
Extension Agent supports eight of these virtual tables.

For more information about the tables contained in the RDBMS MIB, see “RDBMS MIB
reference” on page 1055.

The SQL Anywhere Extension Agent provides read-only access to all the supported variables in the RDBMS
MIB. None of the variables in the RDBMS MIB are writable through the SQL Anywhere Extension Agent.

A virtual table contains a fixed number of attributes and any number for rows. Elements in the table are
retrieved using GET requests by appending the column number and row number to the OID of the table. A
1 must be appended to the table OID, so the OID looks as follows:

table.1.column.rownum

By default, the RDBMS MIB is located in install-dir\snmp\RDBMS-MIB.mib.

The SQL Anywhere SNMP Extension Agent

1020 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using the SQL Anywhere SNMP Extension Agent
To use the SQL Anywhere SNMP Extension Agent, you must have SNMP installed on your computer and
you must create an sasnmp.ini file that contains information about the databases that are monitored by the
SQL Anywhere SNMP Extension Agent.

Installing SNMP
Before you can use the SQL Anywhere Extension Agent, you must install SNMP on your computer. By
default, SNMP is not installed on Windows.

For information about installing SNMP, see your operating system documentation.

Once you install SNMP on your computer, the following services should be running on your computer:
SNMP Service and SNMP Trap Service.

If you installed SNMP before you installed SQL Anywhere, you need to stop and restart the SNMP service
so it can detect the SQL Anywhere SNMP Extension Agent. If you installed SQL Anywhere and then
installed SNMP, the SNMP service detects the SQL Anywhere SNMP Extension Agent automatically.

To restart the SNMP service (Command line)

1. Run the following command:

net stop snmp

This stops the SNMP service.

2. Run the following command:

net start snmp

This starts the SNMP service.

Configuring the SQL Anywhere SNMP Extension Agent
The SQL Anywhere Extension Agent can monitor one or more databases. The databases to be monitored
are stored in the sasnmp.ini file with the following format:

[SAAgent]
TrapPollTime=time-in-seconds
[DBn]
ConnStr=connection-string
UtilDbPwd=utility-database-password
CacheTime=time-in-seconds
DBSpaceCacheTime=time-in-seconds
Trapt=trap-information
Disabled=1 or 0

By default, your SQL Anywhere installation places the sasnmp.ini file in the install-dir\bin32 directory.

Using the SQL Anywhere SNMP Extension Agent

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1021

The SAAgent section
The SAAgent section of the sasnmp.ini file contains information about the SQL Anywhere Extension Agent.
If the TrapPollTime field is not required, you can omit the entire section.

TrapPollTime This value specifies the poll frequency for dynamic traps if they are specified. The SQL
Anywhere SNMP Extension Agent polls the values every 5 seconds by default. Setting this value to 0 disables
dynamic traps. This field is optional.

The DBn section
Each DBn section of the sasnmp.ini file describes a database, how to connect to it, and any dynamic traps
that exist for the database. The fields in this section are case sensitive.

The value for n is a number that identifies the database. The numbers must start with 1, and numbers cannot
be skipped. For example, if the sasnmp.ini file contained entries for [DB1], [DB2], and [DB4], the [DB4]
entry would be ignored because the file is missing the entry for [DB3].

ConnStr The connection string used to connect to the database. You must supply enough information to
be able to connect to the database. This field is required.

● If you want to use an ODBC data source to connect to the database, it must be a system data source, not
a user data source.

● If you want to use an integrated login, you must map to the SYSTEM account because the SNMP Agent
runs as a service. However, this means that anything that runs as a service can then connect to the database
without a password. Alternatively, you can change the account that the service runs under and then create
an integrated login for that account.

● The string ASTART=NO;IDLE=0;CON=SNMP;ASTOP=NO is prepended to the connection string.
This string does the following:

○ prevents the SQL Anywhere SNMP Extension Agent from trying to autostart a database server

○ disables idle timeout since it is likely that the SQL Anywhere SNMP Extension Agent will sit idle
for some time

○ names the connection so it can be identified

○ prevents the database from being shut down when the SQL Anywhere SNMP Extension Agent
disconnects

If you specify any of these values in the connection string in the sasnmp.ini file, the values in the
sasnmp.ini file will override the default settings.

UtilDbPwd When setting sa.agent.saStarted to start a database, the SQL Anywhere SNMP
Extension Agent attempts to connect to the database with the DBF parameter, which tells the database server
where to find the database file. However, if the permission required to start the database is DBA (the default
for the network server, which can also be set using the -gd dba option for both the personal and network
servers), then the server will not allow the connection.

To start a database on such a server, the SQL Anywhere SNMP Extension Agent must connect as a user
with DBA authority to a database already running on the same server. This can be done by connecting to
the utility database. If you specify the utility database password (specified by the -su server option) in the

The SQL Anywhere SNMP Extension Agent

1022 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sasnmp.ini file, then to start a database, the SQL Anywhere Extension Agent connects to the utility database
on the same server, executes the START DATABASE statement, and then disconnects. This field is optional.

CacheTime When data is retrieved from the database, it can be cached inside the SQL Anywhere SNMP
Extension Agent, so that subsequent retrievals of the same type of data (for example, server properties or
database statistics) do not require communication with the database. While caching the data means that you
can obtain the data more quickly on subsequent retrievals, the data may be out of date. The CacheTime field
can be used to change the cache time, or disable the cache by setting the value to 0. By default, the cache
time is 0 seconds. When the CacheTime parameter is set to 0, the data retrieved is always up-to-date because
data is retrieved from the database for every request. This field is optional.

DBSpaceCacheTime The rdbmsDbLimitedResourceTable in the RDBMS MIB contains information
about dbspaces. When this information is retrieved from the database, it can also be cached inside the SQL
Anywhere Extension Agent. The default cache time for dbspace information is 600 seconds (10 minutes).
This field can be used to change the cache time (or disable the cache by setting the value to 0). This field is
optional. See “rdbmsDbLimitedResourceTable” on page 1057.

Trapt Creates a dynamic trap. The value t must be a positive integer starting at 1. Skipping numbers is
not allowed. This field is optional. See “Creating dynamic traps” on page 1027.

Disabled If set to 1, this database entry is skipped by the SQL Anywhere SNMP Extension Agent. This
is useful for temporarily removing one database from the list of databases managed by the SQL Anywhere
SNMP Extension Agent, without renumbering the rest. This field is optional.

Once you edit this file, you must restart the SNMP service or reset the SQL Anywhere SNMP Extension
Agent so that the new settings are used by the Agent.

To restart the SNMP service (Command line)

1. Run the following command:

net stop snmp

This stops the SNMP service.

2. Execute the following command:

net start snmp

This starts the SNMP service.

To restart the SQL Anywhere SNMP Extension Agent

● Using your SNMP management tool, change the value of the saAgent.saRestart property,
1.3.6.1.4.1.897.2.3.6, to 1.

You can obfuscate the contents of the sasnmp.ini file with simple encryption using the File Hiding utility
(dbfhide). See “Hiding the contents of .ini files” on page 768.

Sample sasnmp.ini file
The following is a sample sasnmp.ini file for the SQL Anywhere SNMP Extension Agent.

Using the SQL Anywhere SNMP Extension Agent

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1023

[SAAgent]
[DB1]
ConnStr=UID=DBA;PWD=sql;ENG=server1;DBN=sales;DBF=sales.db
Trap1=1.1.5 > 50000
UtilDbPwd=test
[DB2]
ConnStr=UID=DBA;PWD=sql;ENG=server1;DBN=field;DBF=field.db
UtilDbPwd=test
Disabled=1
[DB3]
ConnStr=UID=DBA;PWD=sql;LINKS=tcpip;ENG=server2;DBN=hq;DBF=hq.db
UtilDbPwd=test

Because there are no parameters specified in the SAAgent section, the SQL Anywhere SNMP Extension
Agent will poll values every 5 seconds.

The SQL Anywhere SNMP Extension Agent is monitoring 3 different databases running on two different
servers. Database 3 is running on a different computer, so the LINKS connection parameter is required to
specify the protocol. A trap is specified for DB1, which fires when the number of bytes sent by the database
server is greater than 50000.

Obtaining values using the SQL Anywhere SNMP Extension
Agent

Using the SQL Anywhere SNMP Extension Agent, you can retrieve the values of all the following:

● Database server properties. See “SQL Anywhere MIB server properties” on page 1035.

● Database server statistics. See “SQL Anywhere MIB server statistics” on page 1032.

● Database options. See “SQL Anywhere MIB database options” on page 1047.

● Database properties. See “SQL Anywhere MIB database properties” on page 1044.

● Database statistics. See “SQL Anywhere MIB database statistics” on page 1040.

The way you retrieve these values depends on your SNMP management software.

Examples
The table below provides a description and sample value that could be returned for the following OIDs.

OID Explanation Sample value

1.3.6.1.4.1.897.2.1.1.1.1 Server statistic ActiveReq on da-
tabase 1

1

1.3.6.1.4.1.897.2.2.1.4.1 Database statistic CacheRead on
database 1

11397

1.3.6.1.4.1.897.2.3.1 Agent version 11.0.1(2459)

The SQL Anywhere SNMP Extension Agent

1024 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

OID Explanation Sample value

1.3.6.1.4.1.897.2.3.2.1 Connection string for database 1 UID=DBA;PWD=sql;
ENG=server1; DBN=sales;
DBF=sales.db

Setting values using the SQL Anywhere SNMP Extension
Agent

The SQL Anywhere SNMP Extension Agent responds to SNMP get, get-next, and set queries.

You can set any database option, some server properties, and one database property using the SQL Anywhere
SNMP agent.

When setting database options, the SQL Anywhere SNMP agent executes the statement:

SET OPTION PUBLIC.option-name = 'value'

When setting database and server properties, the sa_server_option system procedure is used.

The way you set these values depends on your SNMP management software.

For more information about the options and properties that can be set with the SQL Anywhere SNMP
Extension Agent, see “SQL Anywhere MIB reference” on page 1029.

See also
● “SET OPTION statement” [SQL Anywhere Server - SQL Reference]
● “Introduction to database options” on page 488
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]

Executing stored procedures using the SQL Anywhere
SNMP Extension Agent

The SQL Anywhere MIB includes an OID that allows you to execute a stored procedure using the SQL
Anywhere SNMP Extension Agent. To execute the stored procedure, the user that the SQL Anywhere SNMP
Extension Agent uses to connect must have one of the following:

● execute permission on the procedure

● be the owner of the procedure

● have DBA authority

Any result sets or return values generated by the procedure are ignored.

To execute a stored procedure using the SQL Anywhere SNMP Extension Agent, set the value of
saAgent.saProc (OID 1.3.6.1.4.1.897.2.3.5.db, where db is the database number in the sasnmp.ini file)

Using the SQL Anywhere SNMP Extension Agent

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1025

to a string that is the name of a stored procedure. Optionally, you can supply arguments to the procedure; if
no arguments are supplied, parentheses are appended to the procedure name.

For example, setting the value of saAgent.saProc to the
string "pchin.updatesales('param1', 2)" calls the updatesales stored procedure owned by user
pchin.

The way you set the value of this OID to the procedure name depends on your SNMP management software.
See “The SQL Anywhere MIB” on page 1017.

Using traps
A trap is an OID that is sent by an SNMP agent when a particular event occurs. Traps are initiated by the
SNMP agent and can be detected by SNMP management software, which can then either deal with the event
directly or query the SNMP agent for more information.

To receive traps, you must configure the SNMP service. The SNMP service will receive the trap information
and then forward it on somewhere; however, by default, this is nowhere, so any trap listeners you have
running will not detect anything. The following steps show how to configure your SNMP Service to send
traps to your computer.

To configure the SNMP service

1. Right-click My Computer and choose Manage.

2. In the left pane, double-click Services And Applications.

3. In the left pane, double-click Services.

4. Locate SNMP Service in the list of services in the right pane, right-click it and choose Properties.

5. Click the Traps tab.

6. Click Add.

7. In the SNMP Service Configuration window, type localhost in the text box and then click Add.

8. Click OK.

SQL Anywhere SNMP Extension Agent traps

The SQL Anywhere SNMP Extension Agent sends a trap whenever a connection is dropped by the database
server. The OID of this trap is 1.3.6.1.2.1.39.2.1.

If you are using database mirroring, and the SQL Anywhere SNMP Extension Agent connection to the
database server drops, every 30 seconds the SQL Anywhere SNMP Extension Agent attempts to reconnect
to the database server. When the agent reconnects, if it finds that it is connected to a different database server
(as determined by the ServerName property), then it sends a trap with the OID 1.3.6.1.4.1.897.2.6.3, and the
database ID from the sasnmp.ini file. In this case, the SQL Anywhere SNMP Extension Agent was connected
to the primary database server, which went down, and now the mirror server is acting as the primary server.
See “Introduction to database mirroring” on page 938.

The SQL Anywhere SNMP Extension Agent

1026 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The only other traps sent by the SQL Anywhere SNMP Extension Agent are dynamic traps. See “Creating
dynamic traps” on page 1027.

Creating dynamic traps
A dynamic trap is a trap that is sent by the SQL Anywhere Extension Agent when a simple expression
involving the value of a particular property, statistic, or option is true. Dynamic traps are created in the
sasnmp.ini file. The format of the trap information in the sasnmp.ini file entry is as follows:

Traptrapnum=[1.3.6.1.4.1.897.2.]oid[.dbnum] op value

trapnum is the dynamic trap number. It must start at 1 and be sequential.

oid is the OID of the property, statistic, or option. OIDs in either the SQL Anywhere MIB or the RDBMS
MIB are supported. If the OID given is an invalid SQL Anywhere or RDBMS OID, the SQL Anywhere MIB
prefix (1.3.6.1.4.1.897.2.) is prepended.

For information about the OIDs in the SQL Anywhere MIB, see “SQL Anywhere MIB
reference” on page 1029.

For information about the OIDs in the RDBMS MIB, see “RDBMS MIB reference” on page 1055.

Note
You can only use OIDs corresponding to database server or database properties, statistics, or options in
dynamic traps.

dbnum is the database number. This field is optional, but if specified, it must match the database number
of the [DBn] section of the sasnmp.ini file.

op must have one of the following values:

● = or == (equality)

● !=, <>, or >< (inequality)

● <= or =< (less than or equal)

● >= or => (greater than or equal)

● < (less than)

● > (greater than)

Note
Only equality or inequality is supported for string values.

value is the value to use in the expression. String values may be enclosed in single or double quotes; these
quotes are not included in the value. If you want the beginning or closing quotation marks to be included in
the string, you must double them. Note that single quotes occurring within the string should not be doubled.

When setting dynamic traps, use k, m, g, or t to specify units of kilobytes, megabytes, gigabytes, or terabytes.
For example, you can set a dynamic trap to fire if the current cache size exceeds 200 MB by using:

Using the SQL Anywhere SNMP Extension Agent

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1027

Trap1=1.3.6.1.4.1.897.2.1.1.11.1 > 200M

You can specify as many Trap fields as you want in the sasnmp.ini file. The OID used for the trap is
1.3.6.1.4.1.897.2.4.1, and the data sent with the trap includes the following:

● the trap number (starts at 1 for the first dynamic trap sent by the SQL Anywhere SNMP agent)

● the database index

● the database name trap index (from the sasnmp.ini file)

● the variable name

● the variable value (this is the current value of the variable, not necessarily the threshold value)

Dynamic trap behavior
Once a dynamic trap is triggered, the trap is not sent again until the condition that caused it to be triggered
changes to FALSE and then back to TRUE again.

For example, if you have a dynamic trap set using 1.1.11.1 >= 51200K, then the trap is triggered when the
server's cache size reaches 50 MB (= 51200 KB) and the dynamic trap is disabled, so no more traps are sent.
The only way the trap is re-enabled is if the cache size later drops below 50 MB. You would then be notified
if the cache size grew to 50 MB again.

Trap examples

Trap information Description

Trap1=1.1.5 > 10000 Trap sent when the number of bytes sent from the
server is greater than 10000.

Trap2=1.3.6.1.2.1.39.1.4.1.4.14.1 >= 10485760 Trap sent if the size of the transaction log file is larger
than 10 MB.

The SQL Anywhere SNMP Extension Agent

1028 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere MIB reference
The list of object identifiers (OIDs) that an SNMP agent supports, including their names, types, and other
information are stored in a file called a Management Information Base (MIB). The following sections list
the statistics, properties, and options that can be retrieved and set using the SQL Anywhere SNMP Extension
Agent.

See also
● “Understanding SNMP” on page 1017

Agent
The Agent table lists information about the SQL Anywhere SNMP Extension Agent.

Writable properties are marked with an asterisk (*). The value n is the database number in the sasnmp.ini
file.

OID Type Name Value returned

1.3.6.1.4.1.897.2.3.1 String saVersion Agent version

1.3.6.1.4.1.897.2.3.2.n String saDBConnStr Connection string

1.3.6.1.4.1.897.2.3.3.n Integer32 saConnected* 1 if the agent is connected, 0 other-
wise

1.3.6.1.4.1.897.2.3.4.n Integer32 saStarted* 1 if the database is started, 0 other-
wise

1.3.6.1.4.1.897.2.3.5.n String saProc* " "

1.3.6.1.4.1.897.2.3.6 String saRestart* 0

saMetaData tables
The following metadata tables are included in the SQL Anywhere MIB:

● saSrvMetaData.saSrvStatMetaDataTable
● saSrvMetaData.saSrvPropMetaDataTable
● saSrvMetaData.saDbStatMetaDataTable
● saSrvMetaData.saDbPropMetaDataTable
● saSrvMetaData.saDbOptMetaDataTable

SQL Anywhere MIB reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1029

saSrvMetaData.saSrvStatMetaDataTable
This table contains metadata about the database server statistics.

The value db is the database number in the sasnmp.ini file.

OID Type Name Value returned

1.3.6.1.4.1.897.2.4.1.1.1.1.db Integer32 saSrvStatIndex db

1.3.6.1.4.1.897.2.4.1.1.1.2.db Integer32 saSrvStatObjType 11

1.3.6.1.4.1.897.2.4.1.1.1.3.db Integer32 saSrvStatType 12

1.3.6.1.4.1.897.2.4.1.1.1.4.db OID saSrvStatOID OID of SQL Anywhere MIB
entry3

1.3.6.1.4.1.897.2.4.1.1.1.5.db String saSrvStatName Statistic name

1 Values: 1=Server, 2=Database
2 Values: 1=Statistic, 2=Property, 3=Option
3 The OID returned does not include the database number. You must append the database number to the OID
before it can be used in a query.

saSrvMetaData.saSrvPropMetaDataTable
This table contains metadata about the database server properties.

The value db is the database number in the sasnmp.ini file.

OID Type Name Value returned

1.3.6.1.4.1.897.2.4.1.2.1.1.db Integer32 saSrvPropIndex db

1.3.6.1.4.1.897.2.4.1.2.1.2.db Integer32 saSrvPropObjType 11

1.3.6.1.4.1.897.2.4.1.2.1.3.db Integer32 saSrvPropType 22

1.3.6.1.4.1.897.2.4.1.2.1.4.db OID saSrvPropOID OID of SQL Any-
where MIB entry3

1.3.6.1.4.1.897.2.4.1.2.1.5.db String saSrvPropName Property name

1 Values: 1=Server, 2=Database
2 Values: 1=Statistic, 2=Property, 3=Option
3 The OID returned does not include the database number. You must append the database number to the OID
before it can be used in a query.

The SQL Anywhere SNMP Extension Agent

1030 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

saDbMetaData.saDbStatMetaDataTable
This table contains metadata about the database statistics.

The value db is the database number in the sasnmp.ini file.

OID Type Name Value returned

1.3.6.1.4.1.897.2.4.2.1.1.1.db Integer32 saDbStatIndex db

1.3.6.1.4.1.897.2.4.2.1.1.2.db Integer32 saDbStatObjType 21

1.3.6.1.4.1.897.2.4.2.1.1.3.db Integer32 saDbStatType 12

1.3.6.1.4.1.897.2.4.2.1.1.4.db OID saDbStatOID OID of SQL Anywhere
MIB entry3

1.3.6.1.4.1.897.2.4.2.1.1.5.db String saDbStatName Statistic name

1 Values: 1=Server, 2=Database
2 Values: 1=Statistic, 2=Property, 3=Option
3 The OID returned does not include the database number. You must append the database number to the OID
before it can be used in a query.

saDbMetaData.saDbPropMetaDataTable
This table contains metadata about the database properties.

The value db is the database number in the sasnmp.ini file.

OID Type Name Value returned

1.3.6.1.4.1.897.2.4.2.2.1.1.db Integer32 saDbPropIndex db

1.3.6.1.4.1.897.2.4.2.2.1.2.db Integer32 saDbPropObjType 21

1.3.6.1.4.1.897.2.4.2.2.1.3.db Integer32 saDbPropType 22

1.3.6.1.4.1.897.2.4.2.2.1.4.db OID saDbPropOID OID of SQL Anywhere
MIB entry3

1.3.6.1.4.1.897.2.4.2.2.1.5.db String saDbPropName Property name

1 Values: 1=Server, 2=Database
2 Values: 1=Statistic, 2=Property, 3=Option
3 The OID returned does not include the database number. You must append the database number to the OID
before it can be used in a query.

SQL Anywhere MIB reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1031

saDbMetaData.saDbOptMetaDataTable
This table contains metadata about the database options.

The value db is the database number in the sasnmp.ini file.

OID Type Name Value returned

1.3.6.1.4.1.897.2.4.2.1.1.1.db Integer32 saDbOptIndex db

1.3.6.1.4.1.897.2.4.2.1.1.2.db Integer32 saDbOptObjType 21

1.3.6.1.4.1.897.2.4.2.1.1.3.db Integer32 saDbOptType 32

1.3.6.1.4.1.897.2.4.2.1.1.4.db OID saDbOptOID OID of SQL Anywhere MIB
entry3

1.3.6.1.4.1.897.2.4.2.1.1.5.db String saDbOptName Option name

1 Values: 1=Server, 2=Database
2 Values: 1=Statistic, 2=Property, 3=Option
3 The OID returned does not include the database number. You must append the database number to the OID
before it can be used in a query.

SQL Anywhere MIB server statistics
This table lists the OIDs and names of the database server statistics that can be retrieved using the SQL
Anywhere SNMP Extension Agent.

The value n is the database number in the sasnmp.ini file.

For more information about the database server statistics, see “Database server properties” on page 624 and
“Database properties” on page 639.

OID Type Name Statistic

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatActiveReq ActiveReq

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatAvailIO AvailIO

1.3.6.1.4.1.897.2.1.1.n Counter64 srvStatBytesReceived BytesReceived

1.3.6.1.4.1.897.2.1.1.n Counter64 srvStatBytesReceivedUn-
comp

BytesReceivedUncomp

1.3.6.1.4.1.897.2.1.1.n Counter64 srvStatBytesSent BytesSent

1.3.6.1.4.1.897.2.1.1.n Counter64 srvStatBytesSentUncomp BytesSentUncomp

The SQL Anywhere SNMP Extension Agent

1032 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

OID Type Name Statistic

1.3.6.1.4.1.897.2.1.1.n Counter64 srvStatCacheHits CacheHits

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatCachePinned CachePinned

1.3.6.1.4.1.897.2.1.1.n Counter64 srvStatCacheRead CacheRead

1.3.6.1.4.1.897.2.1.1.n Counter64 srvStatCacheReplacements CacheReplacements

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatCurrentCacheSize CurrentCacheSize

1.3.6.1.4.1.897.2.1.1.n Counter64 srvStatDiskRead DiskRead

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatFreeBuffers FreeBuffers

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatInternal Internal

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatUniqueClientAddress-
es

UniqueClientAddresses

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatLockedHeapPages LockedHeapPages

1.3.6.1.4.1.897.2.1.1.n Counter64 srvStatMainHeapBytes MainHeapBytes

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatMainHeapPages MainHeapPages

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatMapPhysicalMemor-
yEng

MapPhysicalMemoryEng

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatMaxCacheSize MaxCacheSize

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatMinCacheSize MinCacheSize

1.3.6.1.4.1.897.2.1.1.n Counter64 srvStatMultiPacketsReceived MultiPacketsReceived

1.3.6.1.4.1.897.2.1.1.n Counter64 srvStatMultiPacketsSent MultiPacketsSent

1.3.6.1.4.1.897.2.1.1.n Counter64 srvStatPacketsReceived PacketsReceived

1.3.6.1.4.1.897.2.1.1.n Counter64 srvStatPacketsReceivedUn-
comp

PacketsReceivedUncomp

1.3.6.1.4.1.897.2.1.1.n Counter64 srvStatPacketsSent PacketsSent

1.3.6.1.4.1.897.2.1.1.n Counter64 srvStatPacketsSentUncomp PacketsSentUncomp

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatPeakCacheSize PeakCacheSize

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatRemoteputWait RemoteputWait

SQL Anywhere MIB reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1033

OID Type Name Statistic

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatReq Req

1.3.6.1.4.1.897.2.1.1.n Counter64 srvStatSendFail SendFail

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatTotalBuffers TotalBuffers

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatUnschReq UnschReq

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatInternal Internal

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatCacheFile CacheFile

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatCacheFileDirty CacheFileDirty

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatCacheAllocated CacheAllocated

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatCachePanics CachePanics

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatCacheFree CacheFree

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatCacheScavenges CacheScavenges

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatCacheScavengeVisited CacheScavengeVisited

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatLockedCursorPages LockedCursorPages

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatQueryHeapPages QueryHeapPages

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatCarverHeapPages CarverHeapPages

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatHeapsRelocatable HeapsRelocatable

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatHeapsLocked HeapsLocked

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatHeapsQuery HeapsQuery

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatHeapsCarver HeapsCarver

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatMultiPageAllocs MultiPageAllocs

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatRequestsReceived RequestsReceived

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatExchangeTasks ExchangeTasks

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatClientStmtCacheHits ClientStmtCacheHits

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatClientStmtCacheMiss-
es

ClientStmtCacheMisses

The SQL Anywhere SNMP Extension Agent

1034 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

OID Type Name Statistic

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatQueryMemActiveCurr QueryMemActiveCurr

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatQueryMemActiveEst QueryMemActiveEst

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatQueryMemGrantWait-
ing

QueryMemGrantWaiting

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatQueryMemGrantRe-
quested

QueryMemGrantReques-
ted

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatQueryMemGrantWai-
ted

QueryMemGrantWaited

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatQueryMemGrant-
Failed

QueryMemGrantFailed

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatQueryMemGrantGran-
ted

QueryMemGrantGranted

1.3.6.1.4.1.897.2.1.1.n Integer32 srvStatQueryMemExtraAvail QueryMemExtraAvail

SQL Anywhere MIB server properties
The following table lists OIDs and names of the database server properties that can be retrieved using the
SQL Anywhere SNMP Extension Agent.

Writable properties are marked with an asterisk (*). The value n is the database number in the sasnmp.ini
file.

For more information about the database server properties, see “Database properties” on page 639.

OID Type Name Property

1.3.6.1.4.1.897.2.1.2.1..n String srvPropInternal Internal

1.3.6.1.4.1.897.2.1.2.2..n String srvPropCharSet CharSet

1.3.6.1.4.1.897.2.1.2.3..n String srvPropCommandLine CommandLine

1.3.6.1.4.1.897.2.1.2.4..n String srvPropCompactPlatformVer CompactPlatformVer

1.3.6.1.4.1.897.2.1.2.5..n String srvPropCompanyName CompanyName

1.3.6.1.4.1.897.2.1.2.6..n String srvPropConnsDisabled* ConnsDisabled

1.3.6.1.4.1.897.2.1.2.7..n String srvPropConsoleLogFile ConsoleLogFile

SQL Anywhere MIB reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1035

OID Type Name Property

1.3.6.1.4.1.897.2.1.2.8..n String srvPropDefaultCollation DefaultCollation

1.3.6.1.4.1.897.2.1.2.9..n String srvPropIdleTimeout IdleTimeout

1.3.6.1.4.1.897.2.1.2.10..n String srvPropIsIQ IsIQ

1.3.6.1.4.1.897.2.1.2.11..n String srvPropInternal Internal

1.3.6.1.4.1.897.2.1.2.12..n String srvPropIsNetworkServer IsNetworkServer

1.3.6.1.4.1.897.2.1.2.13..n String srvPropIsRuntimeServer IsRuntimeServer

1.3.6.1.4.1.897.2.1.2.14..n String srvPropInternal Internal

1.3.6.1.4.1.897.2.1.2.15..n String srvPropLanguage Language

1.3.6.1.4.1.897.2.1.2.16..n String srvPropLegalCopyright LegalCopyright

1.3.6.1.4.1.897.2.1.2.17..n String srvPropLegalTrademarks LegalTrademarks

1.3.6.1.4.1.897.2.1.2.18..n String srvPropLicenseCount LicenseCount

1.3.6.1.4.1.897.2.1.2.19..n String srvPropLicensedCompany LicensedCompany

1.3.6.1.4.1.897.2.1.2.20..n String srvPropLicensedUser LicensedUser

1.3.6.1.4.1.897.2.1.2.21..n String srvPropLicenseType LicenseType

1.3.6.1.4.1.897.2.1.2.22..n String srvPropLivenessTimeout* LivenessTimeout

1.3.6.1.4.1.897.2.1.2.23..n String srvPropMachineName MachineName

1.3.6.1.4.1.897.2.1.2.24..n String srvPropMaxMessage MaxMessage

1.3.6.1.4.1.897.2.1.2.25..n String srvPropMessageWindowSize MessageWindowSize

1.3.6.1.4.1.897.2.1.2.26..n String srvPropName Name

1.3.6.1.4.1.897.2.1.2.27..n String srvPropNativeProcessorArch-
itecture

NativeProcessorArchitec-
ture

1.3.6.1.4.1.897.2.1.2.28..n String srvPropNumPhysicalProces-
sors

NumPhysicalProcessors

1.3.6.1.4.1.897.2.1.2.29..n String srvPropInternal Internal

1.3.6.1.4.1.897.2.1.2.30..n String srvPropOmniIdentifier OmniIdentifier

The SQL Anywhere SNMP Extension Agent

1036 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

OID Type Name Property

1.3.6.1.4.1.897.2.1.2.31..n String srvPropPageSize PageSize

1.3.6.1.4.1.897.2.1.2.32..n String srvPropPlatform Platform

1.3.6.1.4.1.897.2.1.2.33..n String srvPropPlatformVer PlatformVer

1.3.6.1.4.1.897.2.1.2.34..n String srvPropProcessCPU ProcessCPU

1.3.6.1.4.1.897.2.1.2.35..n String srvPropProcessCPUSystem ProcessCPUSystem

1.3.6.1.4.1.897.2.1.2.36..n String srvPropProcessCPUUser ProcessCPUUser

1.3.6.1.4.1.897.2.1.2.37..n String srvPropProcessorArchitecture ProcessorArchitecture

1.3.6.1.4.1.897.2.1.2.38..n String srvPropProductName ProductName

1.3.6.1.4.1.897.2.1.2.39..n String srvPropProductVersion ProductVersion

1.3.6.1.4.1.897.2.1.2.40..n String srvPropQuittingTime* QuittingTime

1.3.6.1.4.1.897.2.1.2.41..n String srvPropRememberLastState-
ment*

RememberLastStatement

1.3.6.1.4.1.897.2.1.2.42..n String srvPropRequestFilterConn RequestFilterConn

1.3.6.1.4.1.897.2.1.2.43..n String srvPropRequestFilterDB RequestFilterDB

1.3.6.1.4.1.897.2.1.2.44..n String srvPropRequestLogFile* RequestLogFile

1.3.6.1.4.1.897.2.1.2.45..n String srvPropRequestLogging* RequestLogging

1.3.6.1.4.1.897.2.1.2.46..n String srvPropRequestLogMaxSize RequestLogMaxSize

1.3.6.1.4.1.897.2.1.2.47..n String srvPropStartTime StartTime

1.3.6.1.4.1.897.2.1.2.48..n String srvPropTempDir TempDir

1.3.6.1.4.1.897.2.1.2.49..n String srvPropMultiProgrammin-
gLevel

MultiProgrammingLevel

1.3.6.1.4.1.897.2.1.2.50..n String srvPropTimeZoneAdjustment TimeZoneAdjustment

1.3.6.1.4.1.897.2.1.2.51..n String srvPropHttpPorts HttpPorts

1.3.6.1.4.1.897.2.1.2.52..n String srvPropHttpsPorts HttpsPorts

1.3.6.1.4.1.897.2.1.2.53..n String srvPropProfileFilterConn ProfileFilterConn

SQL Anywhere MIB reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1037

OID Type Name Property

1.3.6.1.4.1.897.2.1.2.54..n String srvPropProfileFilterUser ProfileFilterUser

1.3.6.1.4.1.897.2.1.2.55..n String srvPropRequestLogNumFiles RequestLogNumFiles

1.3.6.1.4.1.897.2.1.2.56..n String srvPropIsFipsAvailable IsFipsAvailable

1.3.6.1.4.1.897.2.1.2.57..n String srvPropFipsMode FipsMode

1.3.6.1.4.1.897.2.1.2.58..n String srvPropStartDBPermission StartDBPermission

1.3.6.1.4.1.897.2.1.2.59..n String srvPropServerName ServerName

1.3.6.1.4.1.897.2.1.2.60..n String srvPropRememberLastPlan RememberLastPlan

1.3.6.1.4.1.897.2.1.2.61..n String srvPropInternal Internal

1.3.6.1.4.1.897.2.1.2.62..n String srvPropInternal Internal

1.3.6.1.4.1.897.2.1.2.63..n String srvPropRequestTiming RequestTiming

1.3.6.1.4.1.897.2.1.2.64..n String srvPropCacheSizingStatistics CacheSizingStatistics

1.3.6.1.4.1.897.2.1.2.65..n String srvPropConsoleLogMaxSize ConsoleLogMaxSize

1.3.6.1.4.1.897.2.1.2.66..n String srvPropDebuggingInforma-
tion

DebuggingInformation

1.3.6.1.4.1.897.2.1.2.67..n String srvPropMessage Message

1.3.6.1.4.1.897.2.1.2.68..n String srvPropMessageText MessageText

1.3.6.1.4.1.897.2.1.2.69..n String srvPropMessageTime MessageTime

1.3.6.1.4.1.897.2.1.2.70..n String srvPropIsRsaAvailable IsRsaAvailable

1.3.6.1.4.1.897.2.1.2.71..n String srvPropIsEccAvailable IsEccAvailable

1.3.6.1.4.1.897.2.1.2.72..n String srvPropMaxConnections MaxConnections

1.3.6.1.4.1.897.2.1.2.73..n String srvPropNumLogicalProces-
sors

NumLogicalProcessors

1.3.6.1.4.1.897.2.1.2.74..n String srvPropNumLogicalProces-
sorsUsed

NumLogicalProcessor-
sUsed

1.3.6.1.4.1.897.2.1.2.75..n String srvPropNumPhysicalProces-
sorsUsed

NumPhysicalProcessor-
sUsed

The SQL Anywhere SNMP Extension Agent

1038 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

OID Type Name Property

1.3.6.1.4.1.897.2.1.2.76..n String srvPropDefaultNcharColla-
tion

DefaultNcharCollation

1.3.6.1.4.1.897.2.1.2.77..n String srvPropCollectStatistics CollectStatistics

1.3.6.1.4.1.897.2.1.2.78..n String srvPropFirstOption FirstOption

1.3.6.1.4.1.897.2.1.2.79..n String srvPropLastOption LastOption

1.3.6.1.4.1.897.2.1.2.80..n String srvPropLastConnectionProp-
erty

LastConnectionProperty

1.3.6.1.4.1.897.2.1.2.81..n String srvPropLastDatabaseProperty LastDatabaseProperty

1.3.6.1.4.1.897.2.1.2.82..n String srvPropLastServerProperty LastServerProperty

1.3.6.1.4.1.897.2.1.2.83..n String srvPropWebClientLogging WebClientLogging

1.3.6.1.4.1.897.2.1.2.84..n String srvPropWebClientLogFile WebClientLogFile

1.3.6.1.4.1.897.2.1.2.85..n String srvPropHttpNumConnections HttpNumConnections

1.3.6.1.4.1.897.2.1.2.86..n String srvPropHttpsNumConnec-
tions

HttpsNumConnections

1.3.6.1.4.1.897.2.1.2.87..n String srvPropInternal Internal

1.3.6.1.4.1.897.2.1.2.88..n String srvPropHttpNumActiveReq HttpNumActiveReq

1.3.6.1.4.1.897.2.1.2.89..n String srvPropHttpsNumActiveReq HttpsNumActiveReq

1.3.6.1.4.1.897.2.1.2.90..n String srvPropHttpNumSessions HttpNumSessions

1.3.6.1.4.1.897.2.1.2.91..n String srvPropQueryMemPages QueryMemPages

1.3.6.1.4.1.897.2.1.2.92..n String srvPropQueryMemGrantBase QueryMemGrantBase

1.3.6.1.4.1.897.2.1.2.93..n String srvPropQueryMemGrantBa-
seMI

QueryMemGrantBaseMI

1.3.6.1.4.1.897.2.1.2.94..n String srvPropQueryMemGrantEx-
tra

QueryMemGrantExtra

1.3.6.1.4.1.897.2.1.2.95..n String srvPropQueryMemActive-
Max

QueryMemActiveMax

SQL Anywhere MIB reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1039

OID Type Name Property

1.3.6.1.4.1.897.2.1.2.96..n String srvPropQueryMemPercen-
tOfCache

QueryMemPercentOfC-
ache

1.3.6.1.4.1.897.2.1.2.97..n String srvPropMessageCategoryLi-
mit

MessageCategoryLimit

1.3.6.1.4.1.897.2.1.2.98..n String srvPropInternal Internal

1.3.6.1.4.1.897.2.1.2.99..n String srvPropInternal Internal

1.3.6.1.4.1.897.2.1.2.100..n String srvPropIsService IsService

1.3.6.1.4.1.897.2.1.2.101..n String srvPropTcpIpAddresses TcpIpAddresses

1.3.6.1.4.1.897.2.1.2.102..n String srvPropHttpAddresses HttpAddresses

1.3.6.1.4.1.897.2.1.2.103..n String srvPropHttpsAddresses HttpsAddresses

1.3.6.1.4.1.897.2.1.2.104..n String srvPropInternal Internal

1.3.6.1.4.1.897.2.1.2.105..n String srvPropRemoteCapability RemoteCapability

1.3.6.1.4.1.897.2.1.2.106..n String srvPropMaxRemoteCapabili-
ty

MaxRemoteCapability

1.3.6.1.4.1.897.2.1.2.107..n String srvPropEventTypeName EventTypeName

1.3.6.1.4.1.897.2.1.2.108..n String srvPropEventTypeDesc EventTypeDesc

1.3.6.1.4.1.897.2.1.2.109..n String srvPropMaxEventType MaxEventType

1.3.6.1.4.1.897.2.1.2.110..n String srvPropInternal Internal

1.3.6.1.4.1.897.2.1.2.111..n String srvPropInternal Internal

1.3.6.1.4.1.897.2.1.2.112..n String srvPropServerEdition ServerEdition

SQL Anywhere MIB database statistics
The following table lists the OIDs and names the database statistics that can be retrieved using the SQL
Anywhere SNMP Extension Agent.

The value n is the database number in the sasnmp.ini file.

For more information about the database statistics, see “Database server properties” on page 624 and
“Database properties” on page 639.

The SQL Anywhere SNMP Extension Agent

1040 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

OID Type Name Statistic

1.3.6.1.4.1.897.2.2.1.n Counter64 dbStatCacheHits CacheHits

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatCacheReadIndInt CacheReadIndInt

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatCacheReadIndLeaf CacheReadIndLeaf

1.3.6.1.4.1.897.2.2.1.n Counter64 dbStatCacheRead CacheRead

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatCacheReadTable CacheReadTable

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatChkpt Chkpt

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatChkptFlush ChkptFlush

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatChkptPage ChkptPage

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatCheckpointUrgency CheckpointUrgency

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatCheckpointLogBitmap-
Size

CheckpointLogBitmap-
Size

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatCheckpointLogBitmap-
PagesWritten

CheckpointLogBitmap-
PagesWritten

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatCheckpointLogCom-
mitToDisk

CheckpointLogCommit-
ToDisk

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatCheckpointLogPageI-
nUse

CheckpointLogPageI-
nUse

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatCheckpointLogPages-
Relocated

CheckpointLogPagesRe-
located

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatCheckpointLogSave-
Preimage

CheckpointLogSavePre-
image

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatCheckpointLogSize CheckpointLogSize

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatCheckpointLogWrites CheckpointLogWrites

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatCheckpointLogPages-
Written

CheckpointLogPages-
Written

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatCommitFile CommitFile

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatConnCount ConnCount

SQL Anywhere MIB reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1041

OID Type Name Statistic

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatCurrIO CurrIO

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatCurrRead CurrRead

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatCurrWrite CurrWrite

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatDiskReadIndInt DiskReadIndInt

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatDiskReadIndLeaf DiskReadIndLeaf

1.3.6.1.4.1.897.2.2.1.n Counter64 dbStatDiskRead DiskRead

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatDiskReadTable DiskReadTable

1.3.6.1.4.1.897.2.2.1.n Counter64 dbStatDiskWrite DiskWrite

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatExtendDB ExtendDB

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatExtendTempWrite ExtendTempWrite

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatFullCompare FullCompare

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatGetData GetData

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatIdleCheck IdleCheck

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatIdleChkpt IdleChkpt

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatIdleChkTime IdleChkTime

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatIdleWrite IdleWrite

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatIndAdd IndAdd

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatIndLookup IndLookup

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatIOToRecover IOToRecover

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatInternal Internal

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatInternal Internal

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatLockTablePages LockTablePages

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatInternal Internal

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatMaxIO MaxIO

The SQL Anywhere SNMP Extension Agent

1042 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

OID Type Name Statistic

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatMaxRead MaxRead

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatMaxWrite MaxWrite

1.3.6.1.4.1.897.2.2.1.n Counter64 dbStatPageRelocations PageRelocations

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatProcedurePages ProcedurePages

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatQueryCachePages QueryCachePages

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatQueryLowMemory-
Strategy

QueryLowMemoryStrat-
egy

1.3.6.1.4.1.897.2.2.1.n Counter64 dbStatQueryRowsMaterial-
ized

QueryRowsMaterialized

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatRecoveryUrgency RecoveryUrgency

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatLogFreeCommit LogFreeCommit

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatLogWrite LogWrite

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatRelocatableHeapPages RelocatableHeapPages

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatRollbackLogPages RollbackLogPages

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatTempTablePages TempTablePages

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatTriggerPages TriggerPages

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatViewPages ViewPages

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatVersionStorePages VersionStorePages

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatSnapshotCount SnapshotCount

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatLockCount LockCount

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatCacheReadWorkTable CacheReadWorkTable

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatDiskReadWorkTable DiskReadWorkTable

1.3.6.1.4.1.897.2.2.1.n Integer32 dbStatPrepares Prepares

SQL Anywhere MIB reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1043

SQL Anywhere MIB database properties
The following table lists the OIDs and names of the database properties that can be retrieved using the SQL
Anywhere SNMP Extension Agent.

Writable properties are marked with an asterisk (*). The value n is the database number in the sasnmp.ini
file.

For more information about the database properties, see “Database properties” on page 639.

OID Type Name Property

1.3.6.1.4.1.897.2.2.2.1..n String dbPropAlias Alias

1.3.6.1.4.1.897.2.2.2.2..n String dbPropAuditingTypes AuditingTypes

1.3.6.1.4.1.897.2.2.2.3..n String dbPropBlankPadding BlankPadding

1.3.6.1.4.1.897.2.2.2.4..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.5..n String dbPropCapabilities Capabilities

1.3.6.1.4.1.897.2.2.2.6..n String dbPropCaseSensitive CaseSensitive

1.3.6.1.4.1.897.2.2.2.7..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.8..n String dbPropCharSet CharSet

1.3.6.1.4.1.897.2.2.2.9..n String dbPropChecksum Checksum

1.3.6.1.4.1.897.2.2.2.10..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.11..n String dbPropCollation Collation

1.3.6.1.4.1.897.2.2.2.12..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.13..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.14..n String dbPropCurrentRedoPos CurrentRedoPos

1.3.6.1.4.1.897.2.2.2.15..n String dbPropDBFileFragments DBFileFragments

1.3.6.1.4.1.897.2.2.2.16..n String dbPropDriveType DriveType

1.3.6.1.4.1.897.2.2.2.17..n String dbPropEncryption Encryption

1.3.6.1.4.1.897.2.2.2.18..n String dbPropFile File

1.3.6.1.4.1.897.2.2.2.19..n String dbPropFileSize FileSize

The SQL Anywhere SNMP Extension Agent

1044 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

OID Type Name Property

1.3.6.1.4.1.897.2.2.2.20..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.21..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.22..n String dbPropFreePages FreePages

1.3.6.1.4.1.897.2.2.2.23..n String dbPropGlobalDBID GlobalDBID

1.3.6.1.4.1.897.2.2.2.24..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.25..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.26..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.27..n String dbPropIQStore IQStore

1.3.6.1.4.1.897.2.2.2.28..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.29..n String dbPropLanguage Language

1.3.6.1.4.1.897.2.2.2.30..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.31..n String dbPropLogFileFragments LogFileFragments

1.3.6.1.4.1.897.2.2.2.32..n String dbPropLogMirrorName LogMirrorName

1.3.6.1.4.1.897.2.2.2.33..n String dbPropLogName LogName

1.3.6.1.4.1.897.2.2.2.34..n String dbPropLTMGeneration LTMGeneration

1.3.6.1.4.1.897.2.2.2.35..n String dbPropLTMTrunc LTMTrunc

1.3.6.1.4.1.897.2.2.2.36..n String dbPropMultiByteCharSet MultiByteCharSet

1.3.6.1.4.1.897.2.2.2.37..n String dbPropName Name

1.3.6.1.4.1.897.2.2.2.38..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.39..n String dbPropPageSize PageSize

1.3.6.1.4.1.897.2.2.2.40..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.41..n String dbPropProcedureProfiling* ProcedureProfiling

1.3.6.1.4.1.897.2.2.2.42..n String dbPropReadOnly ReadOnly

1.3.6.1.4.1.897.2.2.2.43..n String dbPropRemoteTrunc RemoteTrunc

SQL Anywhere MIB reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1045

OID Type Name Property

1.3.6.1.4.1.897.2.2.2.44..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.45..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.46..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.47..n String dbPropSyncTrunc SyncTrunc

1.3.6.1.4.1.897.2.2.2.48..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.49..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.50..n String dbPropTempFileName TempFileName

1.3.6.1.4.1.897.2.2.2.51..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.52..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.53..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.54..n String dbPropNextScheduleTime NextScheduleTime

1.3.6.1.4.1.897.2.2.2.55..n String dbPropIdentitySignature IdentitySignature

1.3.6.1.4.1.897.2.2.2.56..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.57..n String dbPropSnapshotIsolationState SnapshotIsolationState

1.3.6.1.4.1.897.2.2.2.58..n String dbPropConnsDisabled ConnsDisabled

1.3.6.1.4.1.897.2.2.2.59..n String dbPropPartnerState PartnerState

1.3.6.1.4.1.897.2.2.2.60..n String dbPropArbiterState ArbiterState

1.3.6.1.4.1.897.2.2.2.61..n String dbPropMirrorState MirrorState

1.3.6.1.4.1.897.2.2.2.62..n String dbPropAlternateServerName AlternateServerName

1.3.6.1.4.1.897.2.2.2.63..n String dbPropEncryptionScope EncryptionScope

1.3.6.1.4.1.897.2.2.2.64..n String dbPropNcharCharSet NcharCharSet

1.3.6.1.4.1.897.2.2.2.65..n String dbPropNcharCollation NcharCollation

1.3.6.1.4.1.897.2.2.2.66..n String dbPropAccentSensitive AccentSensitive

1.3.6.1.4.1.897.2.2.2.67..n String dbPropSendingTracingTo SendingTracingTo

The SQL Anywhere SNMP Extension Agent

1046 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

OID Type Name Property

1.3.6.1.4.1.897.2.2.2.68..n String dbPropReceivingTracing-
From

ReceivingTracingFrom

1.3.6.1.4.1.897.2.2.2.69..n String dbPropIOParallelism IOParallelism

1.3.6.1.4.1.897.2.2.2.70..n String dbPropJavaVM JavaVM

1.3.6.1.4.1.897.2.2.2.71..n String dbPropDatabaseCleaner DatabaseCleaner

1.3.6.1.4.1.897.2.2.2.72..n String dbPropHasCollationTailoring HasCollationTailoring

1.3.6.1.4.1.897.2.2.2.73..n String dbPropCatalogCollation CatalogCollation

1.3.6.1.4.1.897.2.2.2.74..n String dbPropHasEndianSwapFix HasEndianSwapFix

1.3.6.1.4.1.897.2.2.2.75..n String dbPropAlternateMirrorSer-
verName

AlternateMirrorServer-
Name

1.3.6.1.4.1.897.2.2.2.76..n String dbPropOptionWatchList OptionWatchList

1.3.6.1.4.1.897.2.2.2.77..n String dbPropOptionWatchAction OptionWatchAction

1.3.6.1.4.1.897.2.2.2.78..n String dbPropMirrorMode MirrorMode

1.3.6.1.4.1.897.2.2.2.79..n String dbPropHasNCHARLegacy-
CollationFix

HasNCHARLegacyCol-
lationFix

1.3.6.1.4.1.897.2.2.2.80..n String dbPropInternal Internal

1.3.6.1.4.1.897.2.2.2.81..n String dbPropAuthenticated Authenticated

SQL Anywhere MIB database options
The following table lists the OIDs and names of the database options that can be retrieved using the SQL
Anywhere SNMP Extension Agent.

Writable options are marked with an asterisk (*). The value n is the database number in the sasnmp.ini file.

For more information about the database options, see “Alphabetical list of options” on page 503.

OID Type Name Option

1.3.6.1.4.1.897.2.2.3.1..n String dbOptAllowNullsByDefault* allow_nulls_by_default

1.3.6.1.4.1.897.2.2.3.2..n String dbOptAnsinull* ansinull

SQL Anywhere MIB reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1047

OID Type Name Option

1.3.6.1.4.1.897.2.2.3.3..n String dbOptAnsiBlanks* ansi_blanks

1.3.6.1.4.1.897.2.2.3.4..n String dbOptAnsiCloseCursorsOn-
Rollback*

ansi_close_cur-
sors_on_rollback

1.3.6.1.4.1.897.2.2.3.5..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.6..n String dbOptAnsiPermissions* ansi_permissions

1.3.6.1.4.1.897.2.2.3.7..n String dbOptAnsiUpdateCon-
straints*

ansi_update_constraints

1.3.6.1.4.1.897.2.2.3.8..n String dbOptAuditing* auditing

1.3.6.1.4.1.897.2.2.3.9..n String dbOptAuditingOptions* auditing_options

1.3.6.1.4.1.897.2.2.3.10..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.11..n String dbOptBackgroundPriority* background_priority

1.3.6.1.4.1.897.2.2.3.12..n String dbOptBlocking* blocking

1.3.6.1.4.1.897.2.2.3.13..n Integer32 dbOptBlockingTimeout* blocking_timeout

1.3.6.1.4.1.897.2.2.3.14..n String dbOptChained* chained

1.3.6.1.4.1.897.2.2.3.15..n Integer32 dbOptCheckpointTime* checkpoint_time

1.3.6.1.4.1.897.2.2.3.16..n Integer32 dbOptCisOption* cis_option

1.3.6.1.4.1.897.2.2.3.17..n Integer32 dbOptCisRowsetSize* cis_rowset_size

1.3.6.1.4.1.897.2.2.3.18..n String dbOptCloseOnEndtrans* close_on_endtrans

1.3.6.1.4.1.897.2.2.3.19..n String dbOptConnectionAuthentica-
tion*

connection_authentica-
tion

1.3.6.1.4.1.897.2.2.3.20..n String dbOptContinueAfterRaiser-
ror*

continue_after_raiserror

1.3.6.1.4.1.897.2.2.3.21..n String dbOptConversionError* conversion_error

1.3.6.1.4.1.897.2.2.3.22..n String dbOptCooperativeCommits* cooperative_commits

1.3.6.1.4.1.897.2.2.3.23..n Integer32 dbOptCooperativeCommitTi-
meout*

cooperative_com-
mit_timeout

The SQL Anywhere SNMP Extension Agent

1048 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

OID Type Name Option

1.3.6.1.4.1.897.2.2.3.24..n String dbOptDatabaseAuthentica-
tion*

database_authentication

1.3.6.1.4.1.897.2.2.3.25..n String dbOptDateFormat* date_format

1.3.6.1.4.1.897.2.2.3.26..n String dbOptDateOrder* date_order

1.3.6.1.4.1.897.2.2.3.27..n String dbOptDebugMessages* debug_messages

1.3.6.1.4.1.897.2.2.3.28..n String dbOptDedicatedTask* dedicated_task

1.3.6.1.4.1.897.2.2.3.29..n Integer32 dbOptDefaultTimestam-
pIncrement*

default_timestamp_incre-
ment

1.3.6.1.4.1.897.2.2.3.30..n String dbOptDelayedCommits* delayed_commits

1.3.6.1.4.1.897.2.2.3.31..n Integer32 dbOptDelayedCommitTime-
out*

delayed_commit_timeout

1.3.6.1.4.1.897.2.2.3.32..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.33..n String dbOptEscapeCharacter* escape_character

1.3.6.1.4.1.897.2.2.3.34..n String dbOptExcludeOperators* exclude_operators

1.3.6.1.4.1.897.2.2.3.35..n String dbOptExtendedJoinSyntax* extended_join_syntax

1.3.6.1.4.1.897.2.2.3.36..n String dbOptFireTriggers* fire_triggers

1.3.6.1.4.1.897.2.2.3.37..n Integer32 dbOptFirstDayOfWeek* first_day_of_week

1.3.6.1.4.1.897.2.2.3.38..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.39..n String dbOptForceViewCreation* force_view_creation

1.3.6.1.4.1.897.2.2.3.40..n String dbOptForXmlNullTreatment* for_xml_null_treatment

1.3.6.1.4.1.897.2.2.3.41..n Integer32 dbOptGlobalDatabaseId* global_database_id

1.3.6.1.4.1.897.2.2.3.42..n Integer32 dbOptIsolationLevel* isolation_level

1.3.6.1.4.1.897.2.2.3.43..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.44..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.45..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.46..n Integer32 dbOptInternal Internal

SQL Anywhere MIB reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1049

OID Type Name Option

1.3.6.1.4.1.897.2.2.3.47..n String dbOptLockRejectedRows* lock_rejected_rows

1.3.6.1.4.1.897.2.2.3.48..n String dbOptLoginMode* login_mode

1.3.6.1.4.1.897.2.2.3.49..n String dbOptLoginProcedure* login_procedure

1.3.6.1.4.1.897.2.2.3.50..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.51..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.52..n Integer32 dbOptMaxCursorCount* max_cursor_count

1.3.6.1.4.1.897.2.2.3.53..n Integer32 dbOptMaxHashSize* max_hash_size

1.3.6.1.4.1.897.2.2.3.54..n Integer32 dbOptMaxPlansCached* max_plans_cached

1.3.6.1.4.1.897.2.2.3.55..n Integer32 dbOptMaxRecursiveItera-
tions*

max_recursive_iterations

1.3.6.1.4.1.897.2.2.3.56..n Integer32 dbOptMaxStatementCount* max_statement_count

1.3.6.1.4.1.897.2.2.3.57..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.58..n Integer32 dbOptMinPasswordLength* min_password_length

1.3.6.1.4.1.897.2.2.3.59..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.60..n Integer32 dbOptNearestCentury* nearest_century

1.3.6.1.4.1.897.2.2.3.61..n String dbOptNonKeywords* non_keywords

1.3.6.1.4.1.897.2.2.3.62..n String dbOptOdbcDistinguishChar-
AndVarchar*

odbc_distin-
guish_char_and_varchar

1.3.6.1.4.1.897.2.2.3.63..n String dbOptOnCharsetConversion-
Failure*

on_charset_conver-
sion_failure

1.3.6.1.4.1.897.2.2.3.64..n String dbOptOnTsqlError* on_tsql_error

1.3.6.1.4.1.897.2.2.3.65..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.66..n String dbOptOptimizationGoal* optimization_goal

1.3.6.1.4.1.897.2.2.3.67..n Integer32 dbOptOptimizationLevel* optimization_level

1.3.6.1.4.1.897.2.2.3.68..n Integer32 dbOptInternal Internal

The SQL Anywhere SNMP Extension Agent

1050 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

OID Type Name Option

1.3.6.1.4.1.897.2.2.3.69..n String dbOptOptimizationWork-
load*

optimization_workload

1.3.6.1.4.1.897.2.2.3.70..n Integer32 dbOptPinnedCursorPercen-
tOfCache*

pinned_cursor_per-
cent_of_cache

1.3.6.1.4.1.897.2.2.3.71..n Integer32 dbOptPrecision* precision

1.3.6.1.4.1.897.2.2.3.72..n String dbOptPrefetch* prefetch

1.3.6.1.4.1.897.2.2.3.73..n String dbOptPreserveSourceFormat* preserve_source_format

1.3.6.1.4.1.897.2.2.3.74..n String dbOptPreventArticlePkeyUp-
date*

prevent_article_pkey_up-
date

1.3.6.1.4.1.897.2.2.3.75..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.76..n String dbOptQuotedIdentifier* quoted_identifier

1.3.6.1.4.1.897.2.2.3.77..n String dbOptReadPastDeleted* read_past_deleted

1.3.6.1.4.1.897.2.2.3.78..n Integer32 dbOptRecoveryTime* recovery_time

1.3.6.1.4.1.897.2.2.3.79..n String dbOptReplicateAll* replicate_all

1.3.6.1.4.1.897.2.2.3.80..n String dbOptReturnDateTimeAs-
String*

re-
turn_date_time_as_string

1.3.6.1.4.1.897.2.2.3.81..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.82..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.83..n String dbOptRowCounts* row_counts

1.3.6.1.4.1.897.2.2.3.84..n Integer32 dbOptScale* scale

1.3.6.1.4.1.897.2.2.3.85..n String dbOptSortCollation* sort_collation

1.3.6.1.4.1.897.2.2.3.86..n String dbOptSqlFlaggerErrorLevel* sql_flagger_error_level

1.3.6.1.4.1.897.2.2.3.87..n String dbOptSqlFlaggerWarningLe-
vel*

sql_flagger_warning_lev-
el

1.3.6.1.4.1.897.2.2.3.88..n String dbOptStringRtruncation* string_rtruncation

1.3.6.1.4.1.897.2.2.3.89..n String dbOptSubsumeRowLocks* subsume_row_locks

SQL Anywhere MIB reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1051

OID Type Name Option

1.3.6.1.4.1.897.2.2.3.90..n String dbOptSuppressTdsDebug-
ging*

suppress_tds_debugging

1.3.6.1.4.1.897.2.2.3.91..n String dbOptTdsEmptyStringIsNull* tds_empty_string_is_null

1.3.6.1.4.1.897.2.2.3.92..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.93..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.94..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.95..n String dbOptTimestampFormat* timestamp_format

1.3.6.1.4.1.897.2.2.3.96..n String dbOptTimeFormat* time_format

1.3.6.1.4.1.897.2.2.3.97..n Integer32 dbOptTimeZoneAdjustment* time_zone_adjustment

1.3.6.1.4.1.897.2.2.3.98..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.99..n String dbOptTruncateTimestamp-
Values*

truncate_timestamp_val-
ues

1.3.6.1.4.1.897.2.2.3.100..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.101..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.102..n String dbOptTsqlVariables* tsql_variables

1.3.6.1.4.1.897.2.2.3.103..n String dbOptUpdateStatistics* update_statistics

1.3.6.1.4.1.897.2.2.3.104..n String dbOptUpgradeDatabaseCapa-
bility*

upgrade_database_capa-
bility

1.3.6.1.4.1.897.2.2.3.105..n String dbOptUserEstimates* user_estimates

1.3.6.1.4.1.897.2.2.3.106..n String dbOptWaitForCommit* wait_for_commit

1.3.6.1.4.1.897.2.2.3.107..n String dbOptTempSpaceLimitCh-
eck*

temp_space_limit_check

1.3.6.1.4.1.897.2.2.3.108..n Integer32 dbOptRemoteIdleTimeout* remote_idle_timeout

1.3.6.1.4.1.897.2.2.3.109..n String dbOptAnsiSubstring* ansi_substring

1.3.6.1.4.1.897.2.2.3.110..n String dbOptOdbcDescribeBinar-
yAsVarbinary*

odbc_describe_bina-
ry_as_varbinary

The SQL Anywhere SNMP Extension Agent

1052 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

OID Type Name Option

1.3.6.1.4.1.897.2.2.3.111..n String dbOptRollbackOnDeadlock* rollback_on_deadlock

1.3.6.1.4.1.897.2.2.3.112..n String dbOptIntegratedServerName* integrated_server_name

1.3.6.1.4.1.897.2.2.3.113..n String dbOptLogDeadlocks* log_deadlocks

1.3.6.1.4.1.897.2.2.3.114..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.115..n String dbOptWebserviceNamespa-
ceHost*

webservice_name-
space_host

1.3.6.1.4.1.897.2.2.3.116..n Integer32 dbOptMaxQueryTasks* max_query_tasks

1.3.6.1.4.1.897.2.2.3.117..n Integer32 dbOptRequestTimeout* request_timeout

1.3.6.1.4.1.897.2.2.3.118..n String dbOptSynchronizeMirrorOn-
Commit*

synchronize_mir-
ror_on_commit

1.3.6.1.4.1.897.2.2.3.119..n Integer32 dbOptHttpSessionTimeout* http_session_timeout

1.3.6.1.4.1.897.2.2.3.120..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.121..n String dbOptAllowSnapshotIsola-
tion*

allow_snapshot_isolation

1.3.6.1.4.1.897.2.2.3.122..n String dbOptVerifyPasswordFunc-
tion*

verify_password_func-
tion

1.3.6.1.4.1.897.2.2.3.123..n String dbOptDefaultDbspace* default_dbspace

1.3.6.1.4.1.897.2.2.3.124..n String dbOptCollectStatisticsOnDm-
lUpdates*

collect_statis-
tics_on_dml_updates

1.3.6.1.4.1.897.2.2.3.125..n String dbOptJavaMainUserid* java_main_userid

1.3.6.1.4.1.897.2.2.3.126..n String dbOptJavaLocation* java_location

1.3.6.1.4.1.897.2.2.3.127..n String dbOptOemString* oem_string

1.3.6.1.4.1.897.2.2.3.128..n Integer32 dbOptMaxTempSpace* max_temp_space

1.3.6.1.4.1.897.2.2.3.129..n String dbOptSecureFeatureKey* secure_feature_key

1.3.6.1.4.1.897.2.2.3.130..n String dbOptMaterializedViewOp-
timization*

materialized_view_opti-
mization

SQL Anywhere MIB reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1053

OID Type Name Option

1.3.6.1.4.1.897.2.2.3.131..n Integer32 dbOptUpdatableStatementI-
solation*

updatable_statement_iso-
lation

1.3.6.1.4.1.897.2.2.3.132..n String dbOptTsqlOuterJoins* tsql_outer_joins

1.3.6.1.4.1.897.2.2.3.133..n String dbOptPostLoginProcedure* post_login_procedure

1.3.6.1.4.1.897.2.2.3.134..n String dbOptConnAuditing* conn_auditing

1.3.6.1.4.1.897.2.2.3.135..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.136..n String dbOptJavaVmOptions* java_vm_options

1.3.6.1.4.1.897.2.2.3.137..n Integer32 dbOptInternal Internal

1.3.6.1.4.1.897.2.2.3.138..n Integer32 dbOptMaxClientState-
mentsCached*

max_client_state-
ments_cached

1.3.6.1.4.1.897.2.2.3.139..n String dbOptQueryMemTimeout* query_mem_timeout

1.3.6.1.4.1.897.2.2.3.140..n String dbOptAllowReadClientFile* allow_read_client_file

1.3.6.1.4.1.897.2.2.3.141..n String dbOptAllowWriteClientFile* allow_write_client_file

1.3.6.1.4.1.897.2.2.3.142..n String dbOptPriority* priority

1.3.6.1.4.1.897.2.2.3.143..n String dbOptMaxPriority* max_priority

The SQL Anywhere SNMP Extension Agent

1054 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

RDBMS MIB reference
The following sections list the OIDs of the values that can be retrieved using the SQL Anywhere SNMP
Extension Agent. By default, the RDBMS MIB is located in C:\Program Files\SQL Anywhere 11\snmp
\RDBMS-MIB.mib.

rdbmsDbTable
This table lists information about the databases installed on a system.

The value db is the database number in the sasnmp.ini file.

OID Type Name Value returned

1.3.6.1.2.1.39.1.1.1.1.db Integer rdbmsDbIndex db

1.3.6.1.2.1.39.1.1.1.2.db OID rdbmsDbPrivateMibOID 1.3.6.1.4.1.897.2

1.3.6.1.2.1.39.1.1.1.3.db String rdbmsDbVendorName PROPERTY('Company-
Name')

1.3.6.1.2.1.39.1.1.1.4.db String rdbmsDbName DB_PROPERTY('Name')

1.3.6.1.2.1.39.1.1.1.5.db String rdbmsDbContact PROPERTY('LicensedUser')

rdbmsDbInfoTable
This table provides additional information about the databases on the system.

The value db is the database number in the sasnmp.ini file.

OID Type Name Value returned

1.3.6.1.2.1.39.1.2.1.1.db String rdbmsDbInfoProduct-
Name

PROPERTY('ProductName')

1.3.6.1.2.1.39.1.2.1.2.db String rdbmsDbInfoVersion PROPERTY('ProductVersion')

RDBMS MIB reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1055

OID Type Name Value returned

1.3.6.1.2.1.39.1.2.1.3.db Integer rdbmsDbInfoSizeUnits Calculated based on dbInfoSizeAl-
located and dbInfoSizeUsed.

● 1=bytes

● 2=KB

● 3=MB

● 4=GB

● 5=TB

(Each unit is 1024 times the previ-
ous.)

1.3.6.1.2.1.39.1.2.1.4.db Integer rdbmsDbInfoSizeAllo-
cated

DB_PROPERTY('PageSize') *
DB_PROPERTY('FileSize')

1.3.6.1.2.1.39.1.2.1.5.db Integer rdbmsDbInfoSizeUsed DB_PROPERTY('PageSize') *
(DB_PROPERTY('FileSize') -
DB_PROPERTY('FreePages'))

1.3.6.1.2.1.39.1.2.1.6.db String rdbmsDbInfoLastBack-
up

NULL1

1 This OID is not supported by the SQL Anywhere SNMP Extension Agent.

rdbmsDbParamTable
This table lists the configuration parameters for the databases on the system.

The value db is the database number in the sasnmp.ini file, while n is the index of the option in the sa.
2.3 subtree.

OID Type Name Value returned

1.3.6.1.2.1.39.1.3.1.1.db String rdbmsDbParamName Option name

1.3.6.1.2.1.39.1.3.1.2.db Integer rdbmsDbParamSubIndex n

1.3.6.1.2.1.39.1.3.1.3.db OID rdbmsDbParamID OID in SQL Anywhere MIB
corresponding to this option

1.3.6.1.2.1.39.1.3.1.4.db String rdbmsDbParamCurrValue Option value

1.3.6.1.2.1.39.1.3.1.5.db String rdbmsDbParamComment NULL1

The SQL Anywhere SNMP Extension Agent

1056 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

1 This OID is not supported by the SQL Anywhere SNMP Extension Agent.

rdbmsDbLimitedResourceTable
This table lists free space information on each dbspace. In this table, n represents each dbspace as follows:

● 1-13 are for normal dbspaces (numbered 0-12 in the database)

● 14 is the transaction log file

● 15 is the transaction log mirror file

● 16 is the temporary file

The value db is the database number in the sasnmp.ini file.

OID Type Name Value returned

1.3.6.1.2.1.39.1.4.1.1.n.d
b

String rdbmsDbLimitedResource-
Name

Name of dbspace, or Transac-
tion Log, Transaction Log Mir-
ror, or Temporary File.

1.3.6.1.2.1.39.1.4.1.2.n.d
b

OID rdbmsDbLimitedResour-
ceID

1.3.6.1.4.1.897.2

1.3.6.1.2.1.39.1.4.1.3.n.d
b

Integer rdbmsDbLimitedResource-
Limit

Free space available on disk +
current file size

1.3.6.1.2.1.39.1.4.1.4.n.d
b

Integer rdbmsDbLimitedResource-
Current

Current file size

1.3.6.1.2.1.39.1.4.1.5.n.d
b

Integer rdbmsDbLimitedResource-
Highwater

Current size

1.3.6.1.2.1.39.1.4.1.6.n.d
b

Integer rdbmsDbLimitedResource-
Failure

01

1.3.6.1.2.1.39.1.4.1.7.n.d
b

String rdbmsDbLimitedResource-
Description

One of Bytes, KB, MB, GB, or
TB.

1 This OID is not supported by the SQL Anywhere SNMP Extension Agent.

rdbmsSrvTable
This table lists the database servers running or installed on your system.

The value db is the database number in the sasnmp.ini file.

RDBMS MIB reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1057

OID Type Name Value returned

1.3.6.1.2.1.39.1.5.1.1.db OID rdbmsSrvPrivateMibOID 1.3.6.1.4.1.897.2

1.3.6.1.2.1.39.1.5.1.2.db String rdbmsSrvVendorName PROPERTY('CompanyName')

1.3.6.1.2.1.39.1.5.1.3.db String rdbmsSrvProductName PROPERTY('ProductName')

1.3.6.1.2.1.39.1.5.1.4.db String rdbmsSrvContact PROPERTY('LicensedCompa-
ny')

rdbmsSrvInfoTable
This table lists additional information about the database servers in your system.

The value db is the database number in the sasnmp.ini file.

OID Type Name Value returned

1.3.6.1.2.1.39.1.6.1.1.db Integer rdbmsSrvInfoStartupTime PROPERTY('Start-
Time')

1.3.6.1.2.1.39.1.6.1.2.db Integer rdbmsSrvInfoFinishedTransactions 01

1.3.6.1.2.1.39.1.6.1.3.db Integer rdbmsSrvInfoDiskReads PROPERTY('DiskRea-
dEng')

1.3.6.1.2.1.39.1.6.1.4.db Integer rdbmsSrvInfoLogicalReads 01

1.3.6.1.2.1.39.1.6.1.5.db Integer rdbmsSrvInfoDiskWrites PROPERTY('DiskWri-
teEng')

1.3.6.1.2.1.39.1.6.1.6.db Integer rdbmsSrvInfoLogicalWrites 01

1.3.6.1.2.1.39.1.6.1.7.db Integer rdbmsSrvInfoPageReads 01

1.3.6.1.2.1.39.1.6.1.8.db Integer rdbmsSrvInfoPageDiskOutOfWrites 01

1.3.6.1.2.1.39.1.6.1.9.db Integer rdbmsSrvInfoSpaces 01

1.3.6.1.2.1.39.1.6.1.10.db Integer rdbmsSrvInfoHandledRequests PROPERTY('Req')

1.3.6.1.2.1.39.1.6.1.11.db Integer rdbmsSrvInfoRequestRecvs PROPERTY('Packets-
ReceivedUncomp')

1.3.6.1.2.1.39.1.6.1.12.db Integer rdbmsSrvInfoRequestSends PROPERTY('Packets-
SentUncomp')

The SQL Anywhere SNMP Extension Agent

1058 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

OID Type Name Value returned

1.3.6.1.2.1.39.1.6.1.13.db Integer rdbmsSrvInfoHighwaterInboundAs-
sociations

01

1.3.6.1.2.1.39.1.6.1.14.db Integer rdbmsSrvInfoMaxInboundAssocia-
tions

01

1 This OID is not supported by the SQL Anywhere SNMP Extension Agent.

rdbmsSrvParamTable
This table lists the server options that can be set by the SQL Anywhere SNMP Extension Agent through the
SQL Anywhere MIB. n is the index, as follows:

n Server option

1 ConnsDisabled

2 LivenessTimeout (default)

3 QuittingTime

4 RememberLastStatement

5 RequestLogFile

6 RequestLogging

The value db is the database number in the sasnmp.ini file.

OID Type Name Value returned

1.3.6.1.2.1.39.1.7.1.1.n.db String rdbmsDbSrvParamName Name of option n

1.3.6.1.2.1.39.1.7.1.2.n.db Integer rdbmsDbSrvParamSubIn-
dex

n

1.3.6.1.2.1.39.1.7.1.3.n.db OID rdbmsDbSrvParamID 1.3.6.1.4.1.897.2

1.3.6.1.2.1.39.1.7.1.4.n.db String rdbmsDbSrvParamCurrVal-
ue

Current value of option n

1.3.6.1.2.1.39.1.7.1.5.n.db String rdbmsDbSrvParamCom-
ment

Full name of option n

RDBMS MIB reference

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1059

rdbmsSrvLimitedResourceTable
This table contains information about server configuration parameters.

The value db is the database number in the sasnmp.ini file, while n is the index of the resource as follows:

n Name Resource Resource limit

1 Connections PROPERTY('UniqueClientAddress-
es')

PROPERTY('LicenseCount')

2 Processors PROPERTY('NumLogicalProcessor-
sUsed')

PROPERTY('NumLogicalProcessor-
sUsed')

OID Type Name Value returned

1.3.6.1.2.1.39.1.8.1.1.db String rdbmsSrvLimitedResour-
ceName

Name of resource n

1.3.6.1.2.1.39.1.8.1.2.db OID rdbmsSrvLimitedResour-
ceID

OID in SQL Anywhere MIB cor-
responding to this option

1.3.6.1.2.1.39.1.8.1.3.db Integer rdbmsSrvLimitedResour-
ceLimit

Upper limit of resource n

1.3.6.1.2.1.39.1.8.1.4.db Integer rdbmsSrvLimitedResour-
ceCurrent

Current value of resource n

1.3.6.1.2.1.39.1.8.1.5.db Integer rdbmsSrvLimitedResour-
ceHighwater

Current value of resource n

1.3.6.1.2.1.39.1.8.1.6.db Integer rdbmsSrvLimitedResour-
ceFailures

01

1.3.6.1.2.1.39.1.8.1.7.db String rdbmsSrvLimitedResour-
ceDescription

Name of resource n

1 This OID is not supported by the SQL Anywhere SNMP Extension Agent.

The SQL Anywhere SNMP Extension Agent

1060 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Security

This section describes security features in SQL Anywhere.

Keeping your data secure .. 1063
Transport-layer security ... 1095

Keeping your data secure

Contents
Introduction to security features .. 1064
Security tips ... 1066
Controlling database access ... 1068
Auditing database activity .. 1074
Running the database server in a secure fashion ... 1081
Encrypting and decrypting a database .. 1082
Keeping your Windows Mobile database secure ... 1093

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1063

Introduction to security features
Since databases may contain proprietary, confidential, or private information, ensuring that the database and
the data in it are designed for security is very important.

SQL Anywhere has several features to assist in building a secure environment for your data:

● User identification and authentication These features control who has access to a database. See
“Creating new users” on page 455.

● Discretionary access control features These features control the actions a user can perform while
connected to a database. See “Database permissions and authorities overview” on page 446.

● Auditing This feature helps you maintain a record of actions on the database. See “Auditing database
activity” on page 1074.

● Database server options These features let you control who can perform administrative operations
(for example, loading databases). These options are set when you start the database server. See
“Controlling permissions from the command line” on page 49.

● Views and stored procedures These features allow you to specify the data a user can access and
the operations a user can execute. See “Using views and procedures for extra security” on page 477.

● Database and table encryption You can choose to secure your database either with simple
encryption, or with strong encryption. Simple encryption is equivalent to obfuscation. Strong encryption
renders the database completely inaccessible without an encryption key. See “-ek database
option” on page 252 and “DatabaseKey connection parameter [DBKEY]” on page 274.

Table encryption features allow you to encrypt individual tables, instead of encrypting the entire database.
See “Table encryption” on page 1090.

● Transport-layer security You can use transport-layer security to authenticate communications
between client applications and the database server. Transport-layer security uses elliptic-curve or RSA
encryption technology. See “Transport-layer security” on page 1095.

Note
If you are concerned about other processes on the computer running the database server being able to
access the contents of your client/server communications, it is recommended that you use encryption.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption
technologies are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

● Secured features You can disable features for all databases running on a database server.

● SELinux support SELinux policies control an application's access to system resources. SQL
Anywhere includes a policy that secures it on Red Hat Enterprise Linux 5.

For information about compiling and installing the SQL Anywhere SELinux policy, see install-dir/
selinux/readme.

Keeping your data secure

1064 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database administrators are responsible for data security. In this chapter, unless otherwise noted, you require
DBA authority to perform the tasks described.

User IDs and permissions are security-related topics. See “Managing user IDs, authorities, and
permissions” on page 439.

Introduction to security features

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1065

Security tips
As database administrator, there are many actions you can take to improve the security of your data. For
example, you can:

● Choose passwords carefully Do not deploy databases that use the default user ID and password.
See “Increasing password security” on page 1068.

● Restrict DBA authority You should restrict DBA authority only to users who absolutely require it
since it is very powerful. Users with DBA authority can see and do anything in the database.

You may consider giving users with DBA authority two user IDs: one with DBA authority and one
without, so they can connect as a DBA user only when necessary.

● Use secured database features The database server -sf option lets you enable and disable features
for all databases running on a database server. The features you can disable include the use of external
stored procedures, Java, remote data access, and the ability to change the request log settings. See “-sf
server option” on page 218 and “Specifying secured features” on page 1072.

● Drop external system functions The following external functions present possible security risks:
xp_cmdshell, xp_startmail, xp_startsmtp, xp_sendmail, xp_stopmail, and xp_stopsmtp.

The xp_cmdshell procedure allows users to execute operating system commands or programs.

The email commands allow users to have the server send email composed by the user. Malicious users
could use either the email or command shell procedures to perform operating-system tasks with
authorities other than those they have been given by the operating system. In a security-conscious
environment, you should drop these functions.

For information about dropping procedures, see “DROP PROCEDURE statement” [SQL Anywhere
Server - SQL Reference].

● Protect your database files You should protect the database file, log files, and dbspace files from
unauthorized access. Do not store them within a shared directory or volume.

● Protect your database software You should similarly protect SQL Anywhere software. Only give
users access to the applications, DLLs, and other resources they require.

● Run the database server as a service or a daemon To prevent unauthorized users from shutting
down or gaining access to the database or log files, run the database server as a Windows service. On
Unix, running the server as a daemon serves a similar purpose. See “Running the server outside the
current session” on page 62.

● Set SATMP to a unique directory To make the database server secure on Unix platforms, set
SATMP to a unique directory, and make the directory read, write, and execute protected against all other
users. Doing so forces all other connections to use TCP/IP, which is more secure than the shared memory
connection.

The shared memory buffers that are used between the client and server are removed from the directory
tree before any actual data is sent between the two sides. This means that another process cannot see any
of the communication data because the shared memory buffer/file is hidden, and so a process cannot get
a handle to it.

Keeping your data secure

1066 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Strongly encrypt your database Strongly encrypting your database makes it completely
inaccessible without the key. You cannot open the database, or view the database or transaction log files
using any other means.

For more information, see “-ep server option” on page 183 and “-ek database option” on page 252.

Security tips

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1067

Controlling database access
By assigning user IDs and passwords, the database administrator controls who has access to a database. By
granting permissions to each user ID, the database administrator controls which tasks each user can perform
when connected to the database.

Permission scheme is based on user IDs
When a user logs on to the database, they have access to all database objects that meet any of the following
criteria:

● objects the user created
● objects to which the user has received explicit permission
● objects to which a group the user belongs to received explicit permission

The user cannot access any database object that does not meet these criteria. In short, users can access only
the objects they own or objects to which they explicitly received access permissions.

For more information, see:

● “Managing user IDs, authorities, and permissions” on page 439
● “CONNECT statement [ESQL] [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “GRANT statement” [SQL Anywhere Server - SQL Reference]
● “REVOKE statement” [SQL Anywhere Server - SQL Reference]

Using integrated logins
Integrated logins allow users to use a single login name and password to log onto both your Windows
operating system and onto a database. An external login name is associated with a database user ID. When
you attempt an integrated login, you log onto the operating system by giving both a login name and password.
The operating system then tells the server who you are, and the server logs you in as the associated database
user ID. No additional login name or password are required.

When using integrated logins, leaving the user profile Guest enabled with a blank password can permit
unrestricted access to a database that is hosted by the server that accepts integrated logins. Literally any user
can log in to the server using any login ID and any password because they are logged in by default to the
Guest user profile.

For more information, see:

● “Security concerns: Unrestricted database access” on page 112
● “Using integrated logins” on page 106
● “login_mode option [database]” on page 540

Increasing password security
Passwords are an important part of any database security system. To be secure, passwords must be difficult
to guess, and they must not be easily accessible on users' hard drives or other locations. SQL Anywhere

Keeping your data secure

1068 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

passwords are always case sensitive. You can specify a function used for password authentication with the
verify_password_function option. See “verify_password_function option [database]” on page 591.

Implement a login policy

Use a login policy to control the frequency of user password changes and to specify the number of login
attempts allowed before an account is locked. See “Managing login policies overview” on page 440, or
“CREATE LOGIN POLICY statement” [SQL Anywhere Server - SQL Reference].

Change the default user ID and password
The default user ID and password for a newly created database is DBA and sql. You should change this
password before deploying the database.

Implement minimum password lengths

By default, passwords can be any length. For greater security, you can enforce a minimum length requirement
on all new passwords to disallow short (and therefore easily guessed) passwords. You do this by setting the
min_password_length database option to a value greater than zero. The following statement enforces
passwords to be at least 8 bytes long.

SET OPTION PUBLIC.min_password_length = 8;

See “min_password_length option [database]” on page 551.

Implement password expiration

By default, database passwords never expire. You can use a login policy to implement password expiry. See
“Managing login policies overview” on page 440.

Do not include passwords in ODBC data sources
Passwords are the key to accessing databases. They should not be easily available to unauthorized people
in a security-conscious environment.

When you create an ODBC data source or a Sybase Central connection profile, you can optionally include
a password. Avoid including passwords to ensure that they are not viewed by unauthorized users.

See “Creating ODBC data sources” on page 97.

Encrypt configuration files containing passwords
When you create a configuration file, you can optionally include password information. To protect your
passwords, consider hiding the contents of configuration files with simple encryption, using the File Hiding
(dbfhide) utility. See “File Hiding utility (dbfhide)” on page 768.

Use password verification

You can use the verify_password_function option to specify a function that implements password rules. See
“verify_password_function option [database]” on page 591.

The following example defines a table and function and sets some login policy options. Together they
implement advanced password rules that include requiring certain types of characters in the password,

Controlling database access

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1069

disallowing password reuse, and expiring passwords. The function is called by the database server with the
verify_password_function option when a user ID is created or a password is changed. The application can
call the procedure specified by the post_login_procedure option to report that the password should be
changed before it expires.

The code for this sample is also available in the following location: samples-dir\SQLAnywhere\SQL
\verify_password.sql. (For information about samples-dir, see “Samples directory” on page 390.)

-- This example defines a function that implements advanced password rules
-- including requiring certain types of characters in the password and
-- disallowing password reuse. The f_verify_pwd function is called by the
-- server using the verify_password_function option when a user ID is
-- created or a password is changed.
--
-- The "root" login profile is configured to expire passwords every 180 days
-- and lock non-DBA accounts after 5 consecutive failed login attempts.
--
-- The application may call the procedure specified by the
-- post_login_procedure option to report that the password should be changed
-- before it expires.

-- only DBA should have permissions on this table
CREATE TABLE DBA.t_pwd_history(
 pk INT DEFAULT AUTOINCREMENT PRIMARY KEY,
 user_name CHAR(128), -- the user whose password is set
 pwd_hash CHAR(32)); -- hash of password value to detect
 -- duplicate passwords
-- called whenever a non-NULL password is set
-- to verify the password conforms to password rules
CREATE FUNCTION DBA.f_verify_pwd(uid VARCHAR(128),
 new_pwd VARCHAR(255))
RETURNS VARCHAR(255)
BEGIN
 -- a table with one row per character in new_pwd
 DECLARE local temporary table pwd_chars(
 pos INT PRIMARY KEY, -- index of c in new_pwd
 c CHAR(1 CHAR)); -- character
 -- new_pwd with non-alpha characters removed
 DECLARE pwd_alpha_only CHAR(255);
 DECLARE num_lower_chars INT;
 -- enforce minimum length (can also be done with
 -- min_password_length option)
 IF length(new_pwd) < 6 THEN
 RETURN 'password must be at least 6 characters long';
 END IF;
 -- break new_pwd into one row per character
 INSERT INTO pwd_chars SELECT row_num, substr(new_pwd, row_num, 1)
 FROM dbo.RowGenerator
 WHERE row_num <= length(new_pwd);
 -- copy of new_pwd containing alpha-only characters
 SELECT list(c, '' ORDER BY pos) INTO pwd_alpha_only
 FROM pwd_chars WHERE c BETWEEN 'a' AND 'z' OR c BETWEEN 'A' AND 'Z';
 -- number of lower case characters IN new_pwd
 SELECT count(*) INTO num_lower_chars
 FROM pwd_chars WHERE CAST(c AS BINARY) BETWEEN 'a' AND 'z';

Keeping your data secure

1070 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 -- enforce rules based on characters contained in new_pwd
 IF (SELECT count(*) FROM pwd_chars WHERE c BETWEEN '0' AND '9')
 < 1 THEN
 RETURN 'password must contain at least one numeric digit';
 ELSEIF length(pwd_alpha_only) < 2 THEN
 RETURN 'password must contain at least two letters';
 ELSEIF num_lower_chars = 0
 OR length(pwd_alpha_only) - num_lower_chars = 0 THEN
 RETURN 'password must contain both upper- and lowercase characters';
 END IF;
 -- not the same as any user name
 -- (this could be modified to check against a disallowed words table)
 IF EXISTS(SELECT * FROM SYS.SYSUSER
 WHERE lower(user_name) IN (lower(pwd_alpha_only),
 lower(new_pwd))) THEN
 RETURN 'password or only alphabetic characters in password ' ||
 'must not match any user name';
 END IF;
 -- not the same as any previous password for this user
 IF EXISTS(SELECT * FROM t_pwd_history
 WHERE user_name = uid
 AND pwd_hash = hash(uid || new_pwd, 'md5')) THEN
 RETURN 'previous passwords cannot be reused';
 END IF;
 -- save the new password
 INSERT INTO t_pwd_history(user_name, pwd_hash)
 VALUES(uid, hash(uid || new_pwd, 'md5'));
 RETURN(NULL);
END;
ALTER FUNCTION DBA.f_verify_pwd SET HIDDEN;
GRANT EXECUTE ON DBA.f_verify_pwd TO PUBLIC;
SET OPTION PUBLIC.verify_password_function = 'DBA.f_verify_pwd';

-- All passwords expire in 180 days. Expired passwords can be changed
-- by the user using the NewPassword connection parameter.
ALTER LOGIN POLICY root password_life_time = 180;
-- If an application calls the procedure specified by the
-- post_login_procedure option, then the procedure can be used to warn
-- the user that their password is about to expire. In particular,
-- Interactive SQL and Sybase Central call the
-- post_login_procedure system procedure.
ALTER LOGIN POLICY root password_grace_time = 30;
-- Five consecutive failed login attempts will result in a non-DBA
-- user ID being locked.
ALTER LOGIN POLICY root max_failed_login_attempts = 5;

Controlling the tasks users can perform
You can control the tasks users can perform on database objects (such as creating, modifying, executing,
updating, and so on) by granting permissions. You can control the administrative tasks (such as backing up,
profiling, and so on) that a user can perform by granting authorities.

Controlling database access

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1071

You grant permissions and authorities using the GRANT statement. For permissions, you can also delegate
permission granting privileges on an object to other users.

The REVOKE statement is the opposite of the GRANT statement—any permission that GRANT has
explicitly given, REVOKE can take away. Revoking CONNECT from a user removes the user from the
database, including all objects owned by that user.

See also
● “Managing user IDs, authorities, and permissions” on page 439
● “GRANT statement” [SQL Anywhere Server - SQL Reference]
● “REVOKE statement” [SQL Anywhere Server - SQL Reference]

Designing database objects for security
Views and stored procedures provide alternate ways of tuning the data that users can access and the tasks
they can perform.

See:

● “Benefits of procedures and triggers” [SQL Anywhere Server - SQL Usage]
● “Using views and procedures for extra security” on page 477

Specifying secured features
To control the database features available to users, you can include the secured features option (-sf) when
starting the database server. The secured features option controls the availability of such features as:

● server-side backups
● external stored procedures
● remote data access
● web services

For a complete list of features, see “-sf server option” on page 218.

You also have the option of including the -sk option when you start the database server. This option specifies
a key that can be used to re-enable secured features for a specific connection. You re-enable secured features
for a connection by setting the value of the secure_feature_key temporary option to the value specified by
-sk when the database server was started.

To modify the features or feature sets that are secured for the connection, specify a key with -sk and set the
secure_feature_key temporary option to the key value to use the sa_server_option system procedure. Any
changes you make to enable or disable features take effect immediately.

To secure database features

1. Start the database server using the -sf, and optionally -sk, options.

Keeping your data secure

1072 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

For example, the following command starts the database server and disables the use of remote data access.
However, it includes a key that can be used to re-enable the disabled features for a connection.

dbsrv11 -n secure_server -sf remote_data_access -sk ls64uwq15 c:\mydata.db
2. Connect to the database server.

For example:

dbisql -c "UID=DBA;PWD=sql;ENG=secure_server;DBN=demo"
3. Set the value of the temporary secure_feature_key option to the value specified by -sk when the database

server was started.

For example:

SET TEMPORARY OPTION secure_feature_key = 'ls64uwq15';
4. Change the secured features for the database server with the sa_server_option system procedure.

For example:

CALL sa_server_option('SecureFeatures', '-remote_data_access');

See also
● “-sf server option” on page 218
● “-sk server option” on page 223
● “secure_feature_key [database]” on page 574
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]

Controlling database access

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1073

Auditing database activity
Each database has an associated transaction log file. The transaction log is used for database recovery. It is
a record of transactions executed against a database. See “The transaction log” on page 14.

The transaction log stores all executed data definition statements, and the user ID that executed them. It also
stores all updates, deletes, and inserts and which user executed those statements. However, this is insufficient
for some auditing purposes. By default, the transaction log does not contain the time of the event, just the
order in which events occurred. It also contains neither failed events, nor select statements.

Auditing is a way of keeping track of the activity performed on a database. When you use auditing, additional
data is saved in the transaction log, including:

● All login attempts (successful and failed), including the terminal ID.

● Accurate timestamps of all events (to a resolution of milliseconds).

● All permissions checks (successful and failed), including the object on which the permission was checked
(if applicable).

● All actions that require DBA authority.

You cannot stop using a transaction log while auditing is enabled for a database. If you want to turn off the
transaction log, you must first turn off auditing.

Controlling auditing
The database administrator can turn on auditing to add security-related information to the transaction log.
This can be done using Sybase Central or Interactive SQL.

Auditing is off by default. You must have DBA authority to enable and disable auditing.

To control auditing (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Right-click the database and choose Properties.

3. Click the Auditing tab and choose one of the following:

● Do Not Collect Audit Information For This Database No audit information is collected. This
option disables auditing by setting the auditing database option to Off. See “auditing option
[database]” on page 511.

● Collect All Audit Information For This Database All types of auditing information are
collected for the database. This option enables auditing by setting the auditing database option to
On. See “auditing option [database]” on page 511.

The transaction log can grow significantly when this option is selected.

● Collect The Following Type(s) Of Audit Information For This Database Allows you to
specify which auditing information to collect. For example, you can choose to collect only DDL

Keeping your data secure

1074 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

changes. See “sa_enable_auditing_type system procedure” [SQL Anywhere Server - SQL
Reference]. Selecting this option changes the setting of the auditing_options database option. See
“auditing_options option [database]” on page 512.

4. Click OK.

To control auditing (Interactive SQL)

1. Connect to your database as a user with DBA authority.

2. Execute the following statement to turn on auditing:

SET OPTION PUBLIC.auditing = 'On';

To specify which types of auditing information you want to enable, use the following system procedure:

CALL sa_enable_auditing_type('all');

You can control the type of auditing information that is collected by replacing all with the types of
auditing you want to enable. See “sa_enable_auditing_type system procedure” [SQL Anywhere Server
- SQL Reference].

3. Execute the following statement to turn off auditing:

SET OPTION PUBLIC.auditing = 'Off';

To specify which types of auditing information you want to disable, use the following system procedure:

CALL sa_disable_auditing_type('all');

You can stop collecting specific types of auditing information by replacing all with the types of auditing
you want to disable. See “sa_disable_auditing_type system procedure” [SQL Anywhere Server - SQL
Reference].

Auditing individual connections

Once you have enabled auditing for a database, you can set the temporary conn_auditing database option in
the database login procedure to enable connection-specific auditing. You can enable auditing based on
information such as the IP address of the client computer or the type of connection.

If you do not set the conn_auditing option in the login procedure, the option is on by default.

The following example shows an excerpt from a login procedure that enables auditing for all connections
to the database, except those made by the DBA user:

DECLARE usr VARCHAR(128)
SELECT CONNECTION_PROPERTY('Userid') INTO usr;
IF usr != 'DBA' THEN
 SET TEMPORARY OPTION conn_auditing='On'
ELSE
 SET TEMPORARY OPTION conn_auditing='Off'
END IF;

For more information, see “login_procedure option [database]” on page 541 and “conn_auditing option
[database]” on page 518.

Auditing database activity

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1075

See also
● “auditing option [database]” on page 511

Retrieving auditing information
You can use Sybase Central or the Log Translation utility (dbtran) to retrieve audit information from the
transaction log. Before attempting to retrieve audit information, ensure that you are connected to your
database as a user with DBA, Remote, or Backup authority.

To retrieve auditing information (Sybase Central)

1. Select the database.

2. Click the Auditing tab.

3. Click Retrieve Audit Messages.

A window appears displaying the dbtran messages. Ignore the warning about chronological ordered
output.

4. Click Close.

The auditing information appears on the Auditing tab in the right pane.

5. Use the filter options to control which audit information you want to display.

You can choose to display all audit information, or to show only errors, or only audit messages containing
the text you specify.

6. Select an entry in the audit entries table to display details about the entry.

7. To retrieve up-to-date auditing information, press F5, and repeat this procedure.

For more information, see “Auditing example” on page 1077.

Retrieving auditing information using the dbtran utility

You can access the dbtran utility from Sybase Central or from a command prompt. The dbtran utility uses
the specified transaction log to produce a SQL script that contains all the transactions, and some information
about what user executed each command. By using the -g option, dbtran includes more comments containing
the auditing information. The -g option is equivalent to specifying the following options:

● -d Display output in chronological order.

● -t Include trigger-generated operations in the output.

● -a Include rolled back transactions in the output.

For more information about these options, see “Log Translation utility (dbtran)” on page 799.

You can run the dbtran utility against a running database server or against a database log file.

Keeping your data secure

1076 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To retrieve auditing information from a running database server

● With the database server running, run the following command:

dbtran -g -c connection-string -n SQL-file

For example:

dbtran -g -c "UID=DBA;PWD=sql" -n demo.sql

A readable version of the transaction log is saved to your current directory. In the example, the auditing
information is saved to the demo.sql file, and the file contains information about the sample database.

For more information about connection strings, see “Connection parameters” on page 262.

To retrieve auditing information from a transaction log file

1. Shut down the database server to ensure the transaction log file is available.

2. Run the following command:

dbtran -g transaction-log SQL-file

For example:

dbtran -g demo.log demo.sql

In the example, the auditing information from the transaction log file demo.log is placed into the file
demo.sql.

For more information, see “Log Translation utility (dbtran)” on page 799.

Adding audit comments
You can add comments to the audit trail using the sa_audit_string system stored procedure. It takes a single
argument, which is a string of up to 200 bytes. You must have DBA authority to call this procedure.

For example:

CALL sa_audit_string('Started audit testing here.');

This comment is stored in the transaction log as an audit statement.

Auditing example
This example shows how the auditing feature records attempts to access unauthorized information using
either Sybase Central or Interactive SQL.

Auditing example (Sybase Central)

1. Start Sybase Central and connect to the sample database using the SQL Anywhere 11 Demo data source.

Auditing database activity

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1077

This connects you as a DBA user.

2. Turn on auditing:

a. Right-click the database and choose Properties.

b. Click the Auditing tab.

c. Click Collect All Audit Information For This Database

d. Click Apply.

e. Click OK.

3. Add a user named Test1 to the sample database, with the password welcome:

a. Right-click Users & Groups, and choose New » User.

b. When prompted, name the user Test1, and type welcome as their password.

c. Give the user Profile Authority.

d. Click Finish.

e. Disconnect from the sample database.

4. Using Sybase Central, connect to the sample database as Test1 and attempt to access confidential
information in the Employees table:

a. Select Tables, and then select the Employees table.

b. Click the Data tab.
An error message appears: Permission denied: you do not have permission to
select from "Employees".

c. Click OK.

d. Disconnect from the sample database.

5. View the auditing information for this activity:

a. Using Sybase Central, connect to the sample database as a user with DBA authority.

b. Select the database, and then click the Auditing tab in the right pane.

c. Click Retrieve Audit Messages.

d. Click Close.
Auditing information appears.

e. Use the filtering options to locate the error in the auditing information table. You can find the error
for BadUser by selecting the Only Errors option. Use the date and time information to pinpoint the
error. For example, if BadUser tried accessing the Employees table on November 6, 2007 at 10:07:14,
the corresponding audit entry resembles the following entry:

2007-11-06 10:07:14 | Permission
6. Restore the sample database to its original state:

a. Right-click the database, and then choose Properties.

b. On the Auditing tab, select Do Not Collect Audit Information For This Database.

Keeping your data secure

1078 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

c. Click OK.

d. Select Users & Groups.
Right-click Test1, and choose Delete.

Auditing example (Interactive SQL)

1. Start Interactive SQL and connect to the sample database using the SQL Anywhere 11 Demo data source.

This connects you as a DBA user.

2. Turn on auditing using the SET OPTION statement, as follows:

SET OPTION PUBLIC.auditing = 'On';
3. Add a user, Test1, to the sample database using the CREATE USER statement, as follows:

CREATE USER Test1
IDENTIFIED BY welcome;

4. Open a new Interactive SQL window, connect to the sample database as BadUser, and attempt to access
confidential information in the Employees table using the following SELECT statement:

SELECT Surname, Salary
 FROM GROUPO.Employees;

You receive an error message: Permission denied: you do not have permission to
select from "Employees".

5. Run the following command to view the auditing information for this activity:

dbtran -g -c "DSN=SQL Anywhere 11 Demo" -n demo.sql
6. Restore the sample database to its original state:

● Use the DROP USER statement to remove the Test1 user from the database:

DROP USER Test1;
● Turn off auditing using the following SET OPTION statement:

SET OPTION PUBLIC.auditing = 'Off';

Auditing actions outside the database server
Some database utilities act on the database file directly. In a secure environment, only trusted users should
have access to the database files.

To provide auditing of actions, under Windows or Unix, any use of dbtran or dblog generates a text file in
the same directory as the database file, with the extension .alg. For example, for demo.db, the file is called
demo.alg. Records containing the tool name, Windows or Unix user name, and date/time are appended to
this file. Records are only added to the .alg file if the auditing option is set to On.

Auditing database activity

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1079

See also
● “auditing option [database]” on page 511
● “Log Translation utility (dbtran)” on page 799
● “Transaction Log utility (dblog)” on page 842

Keeping your data secure

1080 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Running the database server in a secure fashion
There are several security features you can set either when starting the database server or during server
operation, including:

● Starting and stopping databases When using a personal database server, by default any user can
start an extra database on a running server. By default, network database servers require DBA authority
to start another database on a running database server. The -gd option allows you to limit access to this
option to users with a certain level of permission in the database to which they are already connected.
The allowed values are DBA, all, or none. See “-gd server option” on page 189.

● Creating and deleting databases When running a personal database server, by default any user
can use the CREATE DATABASE statement to create a database file. By default, network database
servers required DBA authority to create databases. The -gu option allows you to limit access to this
option to users with a certain level of permission in the database to which they are connected. The
permissible values are DBA, all, none, or utility_db. See “-gu server option” on page 198.

● Stopping the server The dbstop utility stops a database server. It is useful in batch files, or in other
cases where stopping the server interactively (by clicking Shut Down on the database server messages
window) is impractical. By default on personal database servers, any user can run dbstop to shut down
a server. On network database servers, the default setting requires DBA authority to stop a database
server. The -gk option allows you to limit access to this option to users with a certain level of permission
in the database. The permissible values are DBA, all, or none. See “-gk server option” on page 191.

● Loading and unloading data The LOAD TABLE, UNLOAD TABLE, and UNLOAD statements
all access the file system on the database server computer. The default setting is all for personal database
servers on non-Unix operating systems, and DBA for the network database server and the Unix personal
server. If you are running the personal database server, you already have access to the file system and
this is not a security issue. If you are running the network database server, unwarranted file system access
may be a security issue. The -gl option allows you to control the database permissions required to perform
loading and unloading of data. The permissible values are DBA, all, or none. See “-gl server
option” on page 192.

● Using transport-layer security to encrypt client/server communications For greater security
of network packets, you can use transport-layer security to authenticate communications between client
applications and the database server. Transport-layer security uses elliptic-curve or RSA encryption
technology. See “Transport-layer security” on page 1095.

● Disabling database features The -sf server option specifies a list of features that are disabled for
databases running on the database server so they are not available to client applications or stored
procedures, triggers, or events defined within the databases. This can be useful when you are starting a
database that is not your own that may contain unwanted actions, such as a virus or trojan. See “-sf server
option” on page 218.

Running the database server in a secure fashion

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1081

Encrypting and decrypting a database
As a database administrator, you can use database encryption to make it more difficult for someone to
decipher the data in your database. You can choose to secure your database either with simple or with strong
encryption.

Note
If your database is encrypted, compressing it with a tool such as WinZip does not result in a file that is
significantly smaller than the original database file.

Simple encryption
Simple encryption is equivalent to obfuscation and makes it more difficult for someone using a disk utility
to look at the file to decipher the data in your database. Simple encryption does not require a key to encrypt
the database. Simple encryption technology is supported in previous versions of SQL Anywhere.

To use simple encryption

● Create a database using the dbinit -ea simple option.

The following example creates the database test.db using simple encryption:

dbinit -ea simple test.db

See also
● “Initialization utility (dbinit)” on page 774
● “CREATE DATABASE statement” [SQL Anywhere Server - SQL Reference]

Strong encryption
Strong database encryption technology makes a database inoperable and inaccessible without a key
(password). An algorithm encodes the information contained in your database and transaction log files so
they cannot be deciphered.

Caution
For strongly encrypted databases, be sure to store a copy of the key in a safe location. If you lose the
encryption key there is no way to access the data, even with the assistance of technical support. The database
must be discarded and you must create a new database.

Supported strong encryption algorithms
The algorithm used to implement SQL Anywhere strong encryption is AES: a block encryption algorithm
chosen as the new Advanced Encryption Standard (AES) for block ciphers by the National Institute of
Standards and Technology (NIST). It has many properties that lend itself well to encryption of SQL
Anywhere databases in terms of performance and size.

Keeping your data secure

1082 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

You can also specify a separate FIPS-approved AES algorithm for strong encryption using the AES_FIPS
(128-bit) or AES256_FIPS (256-bit) type. When the database server is started with the -fips option, you can
run databases encrypted with AES, AES256, AES_FIPS, or AES256_FIPS strong encryption, but not
databases encrypted with simple encryption. Unencrypted databases can also be started on the server when
-fips is specified. See “-fips server option” on page 186.

The SQL Anywhere security option must be installed on any computer used to run a database encrypted
with AES_FIPS or AES256_FIPS.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

Note
FIPS is not available on all platforms. For a list of supported platforms, see http://www.sybase.com/detail?
id=1061806.

Controlling strong encryption settings for your database
In SQL Anywhere, the database administrator has control over four aspects of strong encryption, including:
strong encryption status, the encryption key, protection of the encryption key, and the encryption algorithm.

Although you cannot simply turn strong encryption on or off in an existing database, you can choose from
three options when it comes to implementing strong encryption. You can either create a database from scratch
with strong encryption, you can rebuild an existing database and change the encryption status at that time,
or you can use the CREATE ENCRYPTED DATABASE statement on an existing database.

You can rebuild the database to unload all the data and schema of an existing database. This creates a new
database (at which point you can change a variety of settings including strong encryption status), and reloads
the data into the new database. You need to know the key to unload a strongly encrypted database.

See also
● “Reload a database” [SQL Anywhere Server - SQL Usage]
● “Initialization utility (dbinit)” on page 774
● “CREATE DATABASE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE ENCRYPTED DATABASE statement” [SQL Anywhere Server - SQL Reference]

Creating an encrypted database
To create an encrypted database, you can use the following:

● The Database Initialization utility (dbinit) in combination with various options to enable strong
encryption.

The dbinit utility -ep and -ek options create a database with strong encryption, allowing you to specify
the encryption key in a prompt box or on the command line. The dbinit -ea option sets the encryption

Encrypting and decrypting a database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1083

http://www.sybase.com/detail?id=1061806
http://www.sybase.com/detail?id=1061806

algorithm to AES or AES256 (or to AES_FIPS or AES256_FIPS for the FIPS-approved algorithm). See
“Initialization utility (dbinit)” on page 774.

● The Sybase Central Create Database Wizard to create a strongly encrypted database. See “Create a
database (Sybase Central)” on page 21.

● The Unload Database utility (dbunload) with options to create a new database with strong encryption.
The -an option creates a new database. To specify strong encryption and the encryption key in a prompt
box or on the command line use the -ep or -ek option. The -ea option sets the encryption algorithm to
AES or AES256 (or to AES_FIPS or AES256_FIPS for the FIPS-approved algorithm). See “Unload
utility (dbunload)” on page 845.

● You can also use the Sybase Central Unload Database Wizard to create a strongly encrypted database.
See “Export data with the Unload Database Wizard” [SQL Anywhere Server - SQL Usage].

● The following SQL statements:

○ “CREATE DATABASE statement” [SQL Anywhere Server - SQL Reference]
○ “CREATE ENCRYPTED DATABASE statement” [SQL Anywhere Server - SQL Reference]
○ “CREATE DECRYPTED FILE statement” [SQL Anywhere Server - SQL Reference]

To create an encrypted database (SQL)

1. Connect to an existing database from Interactive SQL.

2. Execute a CREATE DATABASE statement that includes the ENCRYPTION clause and the KEY and
ALGORITHM options.

For example, the following statement creates a database file named myencrypteddb.db in the c:\ directory
using FIPS-approved 128-bit AES encryption.

CREATE DATABASE 'c:\\myencrypteddb.db'
TRANSACTION LOG ON
ENCRYPTED ON
 KEY '0kZ2o52AK#'
 ALGORITHM 'AES_FIPS';

To create an encrypted database (command prompt)

1. Use the dbinit utility to create a database. You must include -ek or -ep to specify the encryption key at
the command prompt or a window, respectively.

The following command creates a strongly encrypted database and specifies the encryption key and
algorithm.

dbinit -ek "0kZ2o56AK#" -ea AES_FIPS "myencrypteddb.db"
2. Run the following command to start the database:

dbeng11 myencrypteddb.db -ek "0kZ2o56AK#"

Keeping your data secure

1084 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To create an encrypted database using an existing database (SQL)

1. Connect to an existing database (other than the one you are copying) from Interactive SQL.

2. Encrypt the database using the CREATE ENCRYPTED DATABASE statement.

The following statement takes the database file demo.db, and creates an AES-encrypted copy of it named
encryptedDemo.db.

CREATE ENCRYPTED DATABASE 'encryptedDemo.db'
FROM 'demo.db'
KEY 'abc'
ALGORITHM 'AES';

When you execute a CREATE ENCRYPTED DATABASE statement, you are not actually encrypting
(overwriting) the file; you are creating a copy of the file in encrypted form. If there are transaction logs,
transaction log mirrors, or dbspaces associated with the database, encrypted copies of those files are
made as well. See “CREATE ENCRYPTED DATABASE statement” [SQL Anywhere Server - SQL
Reference].

Encrypting a database for technical support

If you have a database that requires recovery and you want to encrypt it to send it to support, you must use
the CREATE ENCRYPTED FILE statement. Any database-related files such as the transaction log and
transaction log mirrors, and dbspace files, must also be encrypted using this statement. See “CREATE
ENCRYPTED FILE statement” [SQL Anywhere Server - SQL Reference].

Comparison of CREATE ENCRYPTED DATABASE and CREATE ENCRYPTED FILE statements

You should use the CREATE ENCRYPTED DATABASE statement when you have an existing database
that you want to encrypt. Use CREATE ENCRYPTED FILE statement only in the case where you have a
database you want to encrypt that requires recovery.

Both statements require you to have DBA authority, and you cannot be connected to the database you are
encrypting when you execute the statement.

The CREATE ENCRYPTED FILE and CREATE ENCRYPTED DATABASE statements differ from each
other as follows:

● The CREATE ENCRYPTED FILE statement must be executed against each of the database-related files
independently (transaction log, transaction log mirror, dbspaces, if any), whereas the CREATE
ENCRYPTED DATABASE statement automatically encrypts all the database-related files.

● The CREATE ENCRYPTED DATABASE statement cannot be used on a database requiring recovery;
the CREATE ENCRYPTED FILE statement can.

● The CREATE ENCRYPTED DATABASE statement cannot be used inside procedures, triggers, or
batches. The CREATE ENCRYPTED FILE statement can.

● The CREATE ENCRYPTED DATABASE statement supports the SIMPLE encryption algorithm, but
the CREATE ENCRYPTED FILE statement does not.

Encrypting and decrypting a database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1085

See also
For more information about encryption keys, see “DatabaseKey connection parameter
[DBKEY]” on page 274.

On Windows Mobile, the AES_FIPS and AES256_FIPS algorithms are only supported with ARM
processors.

Note
FIPS is not available on all platforms. For a list of supported platforms, see http://www.sybase.com/detail?
id=1061806.

Decrypting a database
You can decrypt a database using the CREATE DECRYPTED DATABASE statement. As with the
CREATE ENCRYPTED DATABASE statement, you are creating a copy of the file (in this case, in decrypted
form), and not actually overwriting the original database file.

To decrypt a database (SQL)

1. Connect to an existing database from Interactive SQL.

2. Decrypt the database using the CREATE DECRYPTED DATABASE statement.

The first statement creates an AES256-encrypted copy of the demo.db database called
demoEncrypted.db,. The second statement creates a decrypted copy of demoEncrypted.db called
demoDecrypted.db.

CREATE ENCRYPTED DATABASE 'demoEncrypted.db'
 FROM 'demo.db'
 KEY 'Sd8f6654*Mnn'
 ALGORITHM 'AES256';
CREATE DECRYPTED DATABASE 'demoDecrypted.db'
 FROM 'demoEncrypted.db'
 KEY 'Sd8f6654*Mnn';

If there are transaction logs, transaction log mirrors, or dbspaces associated with the database, decrypted
copies of those files are made as well. See “CREATE DECRYPTED DATABASE statement” [SQL
Anywhere Server - SQL Reference].

Decrypting a database for technical support

If you have a database that requires recovery and you want to decrypt it to send it to support, you must use
the CREATE DECRYPTED FILE statement. Any database-related files such as transaction logs and
transaction log mirrors, and dbspace files, must also be decrypted using this statement. See “CREATE
DECRYPTED FILE statement” [SQL Anywhere Server - SQL Reference].

Keeping your data secure

1086 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1061806
http://www.sybase.com/detail?id=1061806

Working with encryption keys
It is best to choose an encryption key value that cannot be easily guessed. The key can be of arbitrary length,
but generally the longer the key, the better because a shorter key is easier to guess than a longer one. As
well, including a combination of numbers, letters, and special characters decreases the chances of someone
guessing the key.

Encryption keys are always case sensitive, and they cannot contain leading or trailing spaces or semicolons.

You must supply this key each time you want to start the database. Lost or forgotten keys result in completely
inaccessible databases.

You can choose whether the encryption key is entered at the command prompt (the default) or into a prompt
box. Choosing to enter the key in a prompt box provides an extra measure of security because the key is
never visible in plain sight. Clients are required to specify the key each time they start the database. In cases
where the database administrator starts the database, clients never need to have access to the key. See “-ep
server option” on page 183.

Caution
For strongly encrypted databases, be sure to store a copy of the key in a safe location. If you lose the
encryption key there is no way to access the data, even with the assistance of technical support. The database
must be discarded and you must create a new database.

You can change the encryption key for an encrypted database, or for a database for which table encryption
has been enabled, using the CREATE ENCRYPTED DATABASE statement. As with encrypting the
database, you are not overwriting the existing file, you are creating a copy of the file, encrypted with the
new key.

To change the encryption key for a database

● Change the encryption key for an encrypted database using the CREATE ENCRYPTED DATABASE
statement.

The following example takes the database file myOldDatabase.db, encrypted with key abc, and creates
a copy of it called myNewDatabase.db, encrypting it with the key abc123. Any other database-related
files (transaction log, transaction log mirrors, dbspace files) are also created using the new encryption
key. See “CREATE ENCRYPTED DATABASE statement” [SQL Anywhere Server - SQL Reference].

CREATE ENCRYPTED DATABASE myNewDatabase.db
FROM myOldDatabase.db
KEY 'abc123'
OLD KEY 'abc'
ALGORITHM 'AES';

Performance issues
Performance of SQL Anywhere is slower when the database is encrypted. The performance impact depends
on how often pages are read from or written to disk, and can be minimized by ensuring that the server is
using an adequate cache size.

Encrypting and decrypting a database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1087

You can increase the starting size of the cache with the -c option when you start the server. For operating
systems that support dynamic resizing of the cache, the cache size that is used may be restricted by the
amount of memory that is available; to increase the cache size, increase the available memory.

See also
● “Using the cache to improve performance” [SQL Anywhere Server - SQL Usage]
● “-c server option” on page 167

Encrypting portions of a database
If you only want to encrypt portions of your database, you can choose to encrypt columns or tables.

Column encryption can be performed on any column in any table at any time. Table encryption requires that
the database have table encryption enabled. Table encryption is enabled at database creation (initialization)
time.

Column encryption
If you want to encrypt columns in your database, you can do so with the ENCRYPT function. The ENCRYPT
function uses the same AES strong encryption algorithm that is used for database encryption to encrypt
values that are passed to it.

The key for the ENCRYPT function is case sensitive, even in case-insensitive databases. As with most
passwords, it is best to choose a key value that cannot be easily guessed. It is recommended that you choose
a value for your key that is at least 16 characters long, contains a mix of upper and lowercase, and includes
numbers, letters and special characters. You must specify this key each time you want to decrypt the data.

Caution
For strongly encrypted databases, be sure to store a copy of the key in a safe location. If you lose the
encryption key there is no way to access the data, even with the assistance of technical support. The database
must be discarded and you must create a new database.

Encrypted values can be decrypted with the DECRYPT function. You must use the same key that was
specified in the ENCRYPT function. Both of these functions return LONG BINARY values. If you require
a different data type, you can use the CAST function to convert the value to the required data type. The
example below shows how to use the CAST function to convert a decrypted value to the required data type.
See “CAST function [Data type conversion]” [SQL Anywhere Server - SQL Reference].

If database users need to access the data in decrypted form, but you do not want them to have access to the
encryption key, you can create a view that uses the DECRYPT function. This allows users to access the
decrypted data without knowing the encryption key. If you create a view or stored procedure that uses the
table, you can use the SET HIDDEN parameter of the ALTER VIEW and ALTER PROCEDURE statements
to ensure that users cannot access the encryption key by looking at the view or procedure definition. See
“ALTER PROCEDURE statement” [SQL Anywhere Server - SQL Reference] and “ALTER VIEW
statement” [SQL Anywhere Server - SQL Reference].

Keeping your data secure

1088 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Column encryption example
The following example uses triggers to encrypt a column that stores passwords in a table called user_info.
The user_info table is defined as follows:

CREATE TABLE user_info (
 employee_ID INTEGER NOT NULL PRIMARY KEY,
 user_name CHAR(80),
 user_pwd CHAR(80));

Two triggers are added to the database to encrypt the value in the user_pwd column, either when a new user
is added or an existing user's password is updated.

● The encrypt_new_user_pwd trigger fires each time a new row is added to the user_info_table:

CREATE TRIGGER encrypt_new_user_pwd
BEFORE INSERT
ON user_info
REFERENCING NEW AS new_pwd
FOR EACH ROW
BEGIN
 SET new_pwd.user_pwd=ENCRYPT(new_pwd.user_pwd, '8U3dkA');
END;

● The encrypt_updated_pwd trigger fires each time the user_pwd column is updated in the user_info table:

CREATE TRIGGER encrypt_updated_pwd
BEFORE UPDATE OF user_pwd
ON user_info
REFERENCING NEW AS new_pwd
FOR EACH ROW
BEGIN
 SET new_pwd.user_pwd=ENCRYPT(new_pwd.user_pwd, '8U3dkA');
END;

Add a new user to the database:

INSERT INTO user_info
VALUES ('1', 'd_williamson', 'abc123');

If you issue a SELECT statement to view the information in the user_info table, the value in the user_pwd
column is binary data (the encrypted form of the password) and not the value abc123 that was specified in
the INSERT statement.

If this user's password is changed:

UPDATE user_info
SET user_pwd='xyz'
WHERE employee_ID='1';

the encrypt_updated_pwd trigger fires and the encrypted form of the new password appears in the user_pwd
column.

The original password can be retrieved by issuing the following SQL statement. This statement uses the
DECRYPT function and the encryption key to decrypt the data, and the CAST function to convert the value
from a LONG BINARY to a CHAR value:

SELECT CAST (
 DECRYPT(user_pwd, '8U3dkA')
 AS CHAR(100))

Encrypting and decrypting a database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1089

 FROM user_info
 WHERE employee_ID = '1';

See also
● “ENCRYPT function [String]” [SQL Anywhere Server - SQL Reference]
● “DECRYPT function [String]” [SQL Anywhere Server - SQL Reference]

Table encryption
Table encryption allows you to encrypt tables or materialized views with sensitive data without the
performance impact that encrypting the entire database might cause. When table encryption is enabled, table
pages for the encrypted table, associated index pages, and temporary file pages are encrypted. The transaction
log pages that contain transactions on encrypted tables are also encrypted.

For information about encrypting materialized views, see “Encrypt and decrypt materialized views” [SQL
Anywhere Server - SQL Usage].

To encrypt tables in your database, you must have table encryption enabled. Enabling table encryption must
be done at database initialization. To see whether table encryption is enabled, query the EncryptionScope
database property using the DB_PROPERTY function, as follows:

SELECT DB_PROPERTY('EncryptionScope');

If the return value is TABLE, table encryption is enabled.

To see the encryption algorithm in effect for table encryption, query the Encryption database property using
the DB_PROPERTY function, as follows:

SELECT DB_PROPERTY('Encryption');

For a list of supported encryption algorithms, see “Encrypting and decrypting a database” on page 1082.

Performance impact of table encryption

For encrypted tables, each table page is encrypted when written to the disk, and is decrypted when read in
from the disk. This process is invisible to applications. However, there may be a slight negative impact on
performance when reading from, or writing to, encrypted tables. Encrypting or decrypting existing tables
can take a long time, depending on the size of the table.

Index pages for indexes on columns in an encrypted table are also encrypted, as are transaction log pages
containing transactions on the encrypted table, and all pages in the temporary file for the database. All other
database and transaction log pages are unencrypted.

Encrypted tables can contain compressed columns. In this case, the data is compressed before it is encrypted.

Encrypting tables does not impact storage requirements.

Starting a database that has table encryption enabled
Starting a database that has table encryption enabled is the same as starting an encrypted database. For
example, if the database is started with the -ek option, a key must be specified. If the database is started with
the -ep option, you are prompted for the key. See “Initialization utility (dbinit)” on page 774.

Keeping your data secure

1090 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Enabling table encryption in the database

Table encryption must be enabled and configured at database creation time. You must re-create the database
with table encryption enabled if your database does not have table encryption enabled, or if you have database
encryption in effect.

To create a database with table encryption (SQL)

● Create a database with the CREATE DATABASE statement, and specify a key and an encryption
algorithm.

The following command creates the database new.db with strong encryption enabled for tables using the
key abc, and the AES256_FIPS encryption algorithm:

CREATE DATABASE 'new.db'
 ENCRYPTED TABLE
 KEY 'abc'
 ALGORITHM 'AES256_FIPS';

Later, when you encrypt a table in this database, the AES256_FIPS algorithm and abc key are used.

To create a database with table encryption (command prompt)

● Create a database with the dbinit -et and -ek options, and specify a key and an encryption algorithm.

The following command creates the database new.db with strong encryption enabled for tables using the
key abc and the AES256_FIPS encryption algorithm:

dbinit new.db -et -ek abc -ea AES256_FIPS

Later, when you encrypt a table in this database, the AES256_FIPS algorithm and abc key are used.

To create a database with table encryption using an existing database (SQL)

● Create an encrypted copy of the database with the CREATE ENCRYPTED TABLE DATABASE
statement, and specify a key.

The following example creates a database called contacts2 from an existing database called contacts1.
The new database supports encrypted tables.

CREATE ENCRYPTED TABLE DATABASE 'contacts2.db'
 FROM 'contacts1.db'
 KEY 'Sd8f6654'
 OLD KEY 'Sc8e5543';

Later, when you encrypt a table in this database, the AES algorithm and Sd8f6654 key are used.

Encrypting a table

To encrypt tables in your database, table encryption must already be enabled in the database. See “Enabling
table encryption in the database” on page 1091.

When you encrypt a table, the encryption algorithm and key that were specified at database creation time
are used.

Encrypting and decrypting a database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1091

To encrypt a table at table creation (SQL)

● Create a table using the ENCRYPTED clause of the CREATE TABLE statement.

The following command creates an encrypted table named MyEmployees:

CREATE TABLE MyEmployees (
 MemberID CHAR(40),
 CardNumber INTEGER)
ENCRYPTED;

To encrypt a table after it has been created (SQL)

● Encrypt a table with the ENCRYPTED clause of the ALTER TABLE statement.

The following statements create a table called MyEmployees2 and then encrypt it.

CREATE TABLE MyEmployees2 (
 MemberID CHAR(40),
 CardNumber INTEGER);
ALTER TABLE MyEmployees2
 ENCRYPTED;

See also
● “Encrypting and decrypting a database” on page 1082
● “Initialization utility (dbinit)” on page 774
● “Creating an encrypted database” on page 1083
● “Create a database (Sybase Central)” on page 21
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE DATABASE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE ENCRYPTED DATABASE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE DECRYPTED DATABASE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]

Keeping your data secure

1092 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Keeping your Windows Mobile database secure
This section describes SQL Anywhere features that help make your Windows Mobile database secure. In
particular, this section describes auditing, database encryption, and presents overviews of other security
features, providing links to where you can find more information.

Many of the SQL Anywhere security features for Windows desktop platforms are supported on Windows
Mobile, such as database file encryption and simple communication encryption, or have modified support,
such as the Log Translation utility.

Databases running on Windows Mobile use the same user identification and authorization features as
databases running on Windows desktop platforms. These features control who can access the database and
what actions those users can perform. See “Controlling database access” on page 1068.

Windows Mobile device security

If you are storing sensitive data on your Windows Mobile device, you may want to use the security features
provided for your Windows Mobile device.

For more information about available security features, see the User's Manual provided with your Windows
Mobile device.

Database server options

Server options allow you to control who can perform certain operations on the server.

These options are set in the Options field of the Server Startup Options window when you start the database
on your Windows Mobile device.

For more information, see “Controlling permissions from the command line” on page 49.

For information about setting options on Windows Mobile, see “Specifying server options on Windows
Mobile” on page 348.

Auditing

This feature uses the transaction log to maintain a detailed record of actions on the database.

The Log Translation utility (dbtran) is used to translate the information stored in the transaction log, including
auditing information. The dbtran utility is not supported on Windows Mobile, so you cannot translate a log
stored on a Windows Mobile device. Copy the transaction log file to your PC to use this utility.

For more information, see “Auditing database activity” on page 1074.

Database encryption on Windows Mobile

Database encryption features allow you to choose the level of database encryption. You can choose to secure
your database either with simple encryption, or with strong encryption. SQL Anywhere supports both simple
and strong encryption on Windows Mobile.

Keeping your Windows Mobile database secure

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1093

Simple encryption This level of encryption is equivalent to obfuscation and makes it more difficult for
someone using a disk utility to look at the file to decipher the data in your database. Simple encryption does
not require a key to encrypt the database.

Simple encryption technology is supported in previous versions of SQL Anywhere.

Strong encryption This level of encryption obfuscates the information contained in your database and
transaction log files so they cannot be deciphered simply by looking at the files using a disk utility. Strong
encryption renders the database completely inaccessible without the key. On Windows Mobile, the
AES_FIPS and AES256_FIPS algorithms are only supported with ARM processors.

For more information, see “Encrypting and decrypting a database” on page 1082.

Communication encryption and Windows Mobile

You can encrypt client/server communications for greater security as they pass over the network. SQL
Anywhere provides two types of communication encryption: simple and strong.

Simple communication encryption accepts communication packets that are encrypted with simple
encryption. This level of communication encryption is supported on all platforms, including Windows
Mobile and on previous versions of SQL Anywhere.

Strong communication encryption is not available on Windows Mobile.

For more information about encrypting communications, see “Encryption connection parameter
[ENC]” on page 280.

Keeping your data secure

1094 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Transport-layer security

Contents
Introduction to transport-layer security .. 1096
Setting up transport-layer security ... 1099
Creating digital certificates .. 1101
Encrypting SQL Anywhere client/server communications 1107
Encrypting SQL Anywhere web services ... 1112
Encrypting MobiLink client/server communications ... 1113
Certificate utilities .. 1120

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1095

Introduction to transport-layer security
Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

Transport-layer security, an IETF standard protocol, secures client/server communications using digital
certificates and public-key cryptography. Transport-layer security enables encryption, tamper detection, and
certificate-based authentication.

You can use transport-layer security to:

● Secure communications between the SQL Anywhere database server and client applications.

● Secure communications between the MobiLink server and MobiLink clients.

● Set up a secure SQL Anywhere web server.

Secure communication begins with an exchange of messages (a handshake) including:

● Server authentication Transport-layer security uses server certificates to establish and maintain a
secure connection. You create unique certificate files for each server. You can use server authentication
for SQL Anywhere client/server communication or for MobiLink synchronization:

○ For SQL Anywhere client/server communication, a database client verifies the identity of a SQL
Anywhere database server.

○ For MobiLink synchronization, a MobiLink client (SQL Anywhere or UltraLite) verifies the identity
of a MobiLink server.

Efficiency

The transport-layer security protocol uses a combination of public-key and symmetric key encryption.
Public-key encryption provides better authentication techniques, but is computationally intensive. Once a
secure connection is established, the client and server use a highly efficient symmetric cipher with 128-bit
key size for the rest of their communication.

Certificates
SQL Anywhere includes a tool called createcert that allows you to create X.509 certificate files for transport-
layer security. However, if you need to verify the existence of third-party certificates, or if you need more
secure certificates, you can purchase the certificates from certificate authorities.

Database file encryption
For information about database file encryption, see:

● SQL Anywhere databases: “Encrypting and decrypting a database” on page 1082
● UltraLite databases: “Securing UltraLite databases” [UltraLite - Database Management and

Reference]

Transport-layer security

1096 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

TLS support

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

This topic details the support for RSA, ECC, and FIPS encryption.

RSA encryption
RSA encryption is provided free with SQL Anywhere and can be used for client/server communication,
synchronization, and web services. The free version is not FIPS-certified. To implement FIPS-certified RSA
encryption, you need a separate license.

For a list of supported platforms for RSA, see http://www.sybase.com/detail?id=1061806.

ECC encryption
To implement ECC encryption, you need a separate license.

For a list of supported platforms for ECC, see http://www.sybase.com/detail?id=1061806.

FIPS-approved encryption
FIPS is only available for RSA encryption. (ECC is not yet covered by the FIPS program.)

FIPS technology requires a separate license. See “Separately licensed components” [SQL Anywhere 11 -
Introduction].

For a list of supported platforms for FIPS, see http://www.sybase.com/detail?id=1061806.

FIPS-approved encryption technology
You can use FIPS-certified security algorithms to encrypt your database files, or to encrypt communications
for database client/server communication, web services, and MobiLink client/server communication.

Federal Information Processing Standard (FIPS) 140-2 specifies requirements for security algorithms. FIPS
140-2 is granted by the American and Canadian governments through the National Institute of Standards
and Testing (NIST) and the Canadian Communications Security Establishment (CSE).

SQL Anywhere uses two FIPS-certified modules for encryption, both from Certicom. On Palm OS, SQL
Anywhere uses Certicom Security Builder GSE v1.0.1. This is number 316 on the page http://csrc.nist.gov/
cryptval/140-1/140val-all.htm. On Windows (desktop and Windows Mobile) and Unix platforms, SQL
Anywhere uses Certicom Security Builder GSE (FIPS Module v2.0). This is number 542 on the same page.

Enforcing FIPS
Optionally, you can enforce the use of FIPS with a FIPS option. When you set the FIPS option to on, all
secure communications must be over FIPS-approved channels. If someone tries to use non-FIPS RSA, it is
automatically upgraded to FIPS RSA. If ECC is selected, an error is reported (ECC does not support FIPS).

Introduction to transport-layer security

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1097

http://www.sybase.com/detail?id=1061806
http://www.sybase.com/detail?id=1061806
http://www.sybase.com/detail?id=1061806
http://csrc.nist.gov/cryptval/140-1/140val-all.htm
http://csrc.nist.gov/cryptval/140-1/140val-all.htm

You must set the FIPS option for each computer on which you want FIPS to be enforced. SQL Anywhere
and MobiLink servers have a -fips command line option, and clients have a fips option that can be set with
the encryption parameter.

For information about encrypting SQL Anywhere database files with FIPS technology, see “Strong
encryption” on page 1082.

Transport-layer security

1098 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Setting up transport-layer security
The following steps provide an overview of the tasks required to set up transport-layer security.

Overview of setting up transport-layer security

1. Obtain digital certificates.

You need identity files and certificate files. The server identity file contains the server's private key and
should be stored securely with the database or MobiLink server. You distribute the server certificate file
to your clients.

You can buy certificates from a certificate authority. SQL Anywhere also provides functionality to create
certificates, which is especially useful for development and testing. See “Creating digital
certificates” on page 1101.

2. If you are setting up transport-layer security for SQL Anywhere client/server applications:

● Start the SQL Anywhere database server with transport-layer security Use the -ec
database server option to specify the type of security, the server identity file name, and the password
to protect the server's private key.

If you also want to allow unencrypted connections over shared memory, specify the -es option.

See “Starting the database server with transport-layer security” on page 1107.

● Configure client applications to use transport-layer security Specify the path and file name
of trusted certificates using the Encryption connection parameter [ENC].

See “Configuring client applications to use transport-layer security” on page 1108.

3. If you are setting up transport-layer security for SQL Anywhere web services:

● Start the SQL Anywhere database server with transport-layer security Use the -xs
database server option to specify the type of security, the server identity file name, and the password
to protect the server's private key.

● Configure browsers or other web clients to trust certificates See “Encrypting SQL
Anywhere web services” on page 1112.

4. If you are setting up transport-layer security for MobiLink synchronization:

● Start the MobiLink server with transport-layer security Use the mlsrv11 -x option to specify
the security stream, the server identity file name, and the password to protect the server's private key.

See “Starting the MobiLink server with transport-layer security” on page 1114.

● Configure MobiLink clients to use transport-layer security Supply the appropriate security
or network protocol options with the MobiLink synchronization client utility (dbmlsync) or UltraLite
application. Specify the security stream and trusted server certificate file names.

See “Configuring MobiLink clients to use transport-layer security” on page 1115.

Setting up transport-layer security

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1099

Other resources for getting started
You can post questions on the newsgroups:

● sybase.public.sqlanywhere.mobilink
● sybase.public.sqlanywhere.ultralite
● ianywhere.public.sqlanywhere.qanywhere

Transport-layer security

1100 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere

Creating digital certificates
You need digital certificates to set up transport-layer security. You can obtain certificates from a certificate
authority, or you can create them using SQL Anywhere functionality.

SQL Anywhere Certificate Creation utility
You can use the SQL Anywhere Certificate Creation utility, createcert, to generate X.509 certificate files
using RSA or ECC. See “Certificate Creation utility (createcert)” on page 747.

SQL Anywhere Certificate Viewer utility
You can use the SQL Anywhere Certificate Viewer utility, viewcert, to read X.509 certificates using RSA
or ECC. See “Certificate Viewer utility (viewcert)” on page 750.

Certificates for server authentication
You can follow the same process to create certificate files for server authentication. In each case, you create
an identity file and a certificate file.

For server authentication, you create a server identity file and a certificate file to distribute to clients.

Certificate configurations
The certificate can be self-signed or signed by a commercial or enterprise Certificate Authority.

● Self-signed certificates Self-signed server certificates can be used for simple setups. See “Self-
signed root certificates” on page 1101.

● Enterprise root certificates An enterprise root certificate can be used to sign server certificates to
improve data integrity and extensibility for multi-server deployments.

○ You can store the private key used to sign server certificates in a secure central location.
○ For server authentication, you can add MobiLink or database servers without reconfiguring clients.

See “Certificate chains” on page 1102.

● Commercial Certificate Authorities You can use a third-party Certificate Authority instead of an
enterprise root certificate. Commercial Certificate Authorities have dedicated facilities to store private
keys and create high-quality server certificates.

See “Certificate chains” on page 1102, and “Globally-signed certificates” on page 1104.

Self-signed root certificates
Self-signed root certificates can be used for simple setups involving a single MobiLink or database server.

Creating digital certificates

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1101

Tip
Use enterprise level certificate chains or commercial certificate authorities if you require multiple server
identity files. Certificate authorities provide extensibility and a higher level of certificate integrity with
dedicated facilities to store root private keys.

For more information about setting up certificate chains, see “Certificate chains” on page 1102.

● Certificate For server authentication certificates, the self-signed certificate is distributed to clients.
It is an electronic document including identity information, the public key of the server, and a self-signed
digital signature.

● Identity file For server authentication certificates, the identity file is stored securely with a MobiLink
or database server. It is a combination of the self-signed certificate (that is distributed to clients) and the
corresponding private key. The private key gives the MobiLink or database server the ability to decrypt
messages sent by the client in the initial handshake.

See also
● “Server authentication” on page 1115
● “Starting the database server with transport-layer security” on page 1107
● “Certificate Creation utility (createcert)” on page 747

Certificate chains
If you require multiple identity files, you can improve security and extensibility by using certificate chains
instead of self-signed certificates. Certificate chains require a Certificate Authority or an enterprise root
certificate to sign identities.

See “Self-signed root certificates” on page 1101.

Benefits of using certificate chains
Certificate chains provide the following advantages:

● Extensibility For server authentication, you can configure clients to trust any certificate signed by an
enterprise root certificate or Certificate Authority. If you add a new MobiLink or database server, clients
do not require a copy of the new certificate.

● Security The enterprise root certificate's private key is not in the identity file. Storing the root
certificate's private key in a high-security location, or using a Certificate Authority with dedicated
facilities, protects the integrity of server authentication.

The following diagram provides the basic enterprise root certificate architecture.

Transport-layer security

1102 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To create certificates used in a multi-server environment:

● Generate a public enterprise root certificate and enterprise private key.

Store the enterprise private key in a secure location, preferably a dedicated facility.

For server authentication, you distribute the public enterprise root certificate to clients.

● Use the enterprise root certificate to sign identities.

Use the public enterprise root certificate and enterprise private key to sign each identity. For server
authentication, the identity file is used for the server.

You can also use a third-party Certificate Authority to sign your server certificates. Commercial Certificate
Authorities have dedicated facilities to store private keys and create high-quality server certificates.

See also
● “Certificate Creation utility (createcert)” on page 747
● “Globally-signed certificates” on page 1104

Creating digital certificates

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1103

Enterprise root certificates
Enterprise root certificates improve data integrity and extensibility for multi-server deployments.

● You can store the private key used to create trusted certificates in a dedicated facility.
● For server authentication, you can add servers without reconfiguring clients.

To set up enterprise root certificates, you create the enterprise root certificate and the enterprise private key
that you use to sign identities.

For information about creating server certificates, see “Signed identity files” on page 1104.

For information about generating enterprise root certificates, see “Globally-signed
certificates” on page 1104.

Signed identity files
You can use an enterprise root certificate to sign server identity files.

For server authentication, you generate identity files for each server. Since these certificates are signed by
an enterprise root certificate, you use the createcert -s option.

For information about generating signed identity files, see “Certificate Creation utility
(createcert)” on page 747.

Globally-signed certificates
A commercial Certificate Authority is an organization that is in the business of creating high-quality
certificates and using these certificates to sign your certificate requests.

Globally-signed certificates have the following advantages:

● In the case of inter-company communication, common trust in an outside, recognized authority may
increase confidence in the security of the system. A Certificate Authority must guarantee the accuracy
of the identification information in any certificate that it signs.

● Certificate Authorities provide controlled environments and advanced methods to generate certificates.

● The private key for the root certificate must remain private. Your organization may not have a suitable
place to store this crucial information, whereas a Certificate Authority can afford to design and maintain
dedicated facilities.

Setting up globally-signed certificates
To set up globally signed identity files, you:

● Create a certificate request using the createcert utility with the -r option. See “Certificate Creation utility
(createcert)” on page 747.

Transport-layer security

1104 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Use a Certificate Authority to sign each request. You can combine the signed request with the
corresponding private key to create the server identity file.

Globally-signing enterprise root certificates
You might be able to globally-sign an enterprise root certificate. This is only applicable if your Certificate
Authority generates certificates that can be used to sign other certificates.

Using globally signed identity files
You can use globally-signed certificates directly as server identity files. The following diagram shows the
configuration for multiple identity files:

You reference the server identity file and the password for the private key on the dbsrv11 or mlsrv11
command line.

See also
● SQL Anywhere: “Starting the database server with transport-layer security” on page 1107
● MobiLink: “Starting the MobiLink server with transport-layer security” on page 1114

Creating digital certificates

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1105

Setting up clients to trust the certificate authority's certificate
For server authentication, you must ensure that clients contacting your server trust the root certificate in the
chain. In the case of globally-signed certificates, the root certificate is the Certificate Authority's certificate.

Certificate field verification
When using a globally-signed certificate, each client must verify field values to avoid trusting certificates
that the same Certificate Authority has signed for other clients.

See “Verifying certificate fields” on page 1116.

For more information about configuring MobiLink clients to trust server certificates, see “Configuring
MobiLink clients to use transport-layer security” on page 1115.

For more information about configuring the database server to use transport-layer security, see “Starting the
database server with transport-layer security” on page 1107.

For more information about using globally-signed certificates to establish trust, see “Globally-signed
certificates” on page 1104.

Transport-layer security

1106 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Encrypting SQL Anywhere client/server
communications

You can encrypt SQL Anywhere client/server communication using transport-layer security.

See also
● “Encrypting SQL Anywhere web services” on page 1112

Starting the database server with transport-layer security
To start the database server with transport-layer security, supply the server identity file name and the
password protecting the server's private key.

For an overview of the steps required to set up transport-layer security, see “Setting up transport-layer
security” on page 1099.

Use the -ec database server option to specify the identity and identity_password parameters. If you want to
allow unencrypted connections over shared memory, you must also specify the -es option.

Following is the syntax of a partial dbsrv11 command line:

-ec tls(
 tls_type=cipher;
 identity=server-identity-filename;
 identity_password=password)
-x tcpip

● cipher The cipher to use. The cipher can be rsa or ecc for RSA and ECC encryption, respectively.
For FIPS-approved RSA encryption, specify tls_type=rsa;fips=y. RSA FIPS uses a separate approved
library, but is compatible with SQL Anywhere 9.0.2 or later clients using RSA.

For a list of supported platforms for FIPS, see http://www.sybase.com/detail?id=1061806.

The cipher must match the encryption (ECC or RSA) used to create your certificates.

For information about enforcing the FIPS-approved algorithm, see “-fips server option” on page 186.

● server-identity-filename The path and file name of the server identity file. If you are using FIPS-
approved RSA encryption, you must generate your certificates using the RSA cipher.

An identity file contains the public certificate and its private key. For certificates that are not self signed,
the identity file also contains all the signing certificates.

For more information about creating the server certificate, which can be self-signed, or signed by a
Certificate Authority or enterprise root certificate, see “Creating digital certificates” on page 1101.

● password The password for the server private key. You specify this password when you create the
server certificate.

Encrypting SQL Anywhere client/server communications

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1107

http://www.sybase.com/detail?id=1061806

You can also start the database server with simple encryption. Simple encryption makes it more difficult for
someone using a packet sniffer to read the network packets sent between the client and the server, but does
not assure data integrity or provide server authentication.

See “-ec server option” on page 180, and “-es server option” on page 184.

You specify the TCP/IP protocol using the -x database server option. See “-x server option” on page 234.

Example
The following example (entered all on one line) uses the -ec database server option to specify ECC security,
the server identity file, and the password protecting the server's private key:

dbsrv11 -ec tls(tls_type=ecc;identity=c:\test
\serv1_ecc.id;identity_password=mypwd)
 -x tcpip c:\test\secure.db

You can hide the command line options, including passwords, using a configuration file and the File Hiding
utility (dbfhide). See “File Hiding utility (dbfhide)” on page 768, and “@data server option” on page 165.

Configuring client applications to use transport-layer
security

You can configure SQL Anywhere client applications to use transport-layer security. Using a set of
encryption connection parameters, you specify trusted certificates, the type of encryption, and the network
protocol.

For an overview of the steps required to set up transport-layer security, see “Setting up transport-layer
security” on page 1099.

Server authentication
Server authentication allows a remote client to verify the identity of a database server. Digital signatures
and certificate field verification work together to achieve server authentication.

Digital signatures

A database server certificate contains one or more digital signatures used to maintain data integrity and
protect against tampering. Following are the steps used to create a digital signature:

● An algorithm performed on a certificate generates a unique value or hash.

● The hash is encrypted using a signing certificate's or Certificate Authority's private key.

● The encrypted hash, called a digital signature, is embedded in the certificate.

A digital signature can be self-signed or signed by an enterprise root certificate or Certificate Authority.

Transport-layer security

1108 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

When a client application contacts a database server, and each is configured to use transport-layer security,
the server sends the client a copy of its certificate. The client decrypts the certificate's digital signature using
the server's public key included in the certificate, calculates a new hash of the certificate, and compares the
two values. If the values match, this confirms the integrity of the server's certificate.

If you are using FIPS-approved RSA encryption, you must generate your certificates using RSA.

For more information about self-signed certificates, see “Self-signed root certificates” on page 1101.

For more information about enterprise root certificates and Certificate Authorities, see “Certificate
chains” on page 1102.

Verifying certificate fields

When using a globally signed certificate, each client must verify certificate field values to avoid trusting
certificates that the same Certificate Authority has signed for other clients. This is resolved by requiring your
clients to test the value of fields in the identity portion of the certificate. A Certificate Authority must
guarantee the accuracy of the identification information in any certificate that it signs.

For more information about globally signed certificates, see “Globally-signed certificates” on page 1104.

When creating a certificate using the createcert utility, you enter values for the organization, organizational
unit, and common name fields. You verify these fields using corresponding client connection parameters. It
is strongly recommended that you verify certificate fields if you are using a third-party Certificate Authority
to globally sign certificates.

● Organization The organization field corresponds to the certificate_company encryption protocol
option. See “certificate_company protocol option” on page 304.

● Organizational unit The organizational unit field corresponds to the certificate_unit encryption
protocol option. See “certificate_unit protocol option” on page 306.

● Common name The common name field corresponds to the certificate_name encryption protocol
option. See “certificate_name protocol option” on page 305.

For more information about client-side encryption connection parameters, see “Encryption connection
parameter [ENC]” on page 280.

Using the trusted_certificates protocol option
This is the only required protocol option if TLS is specified in the Encryption connection parameter. Clients
use the trusted_certificates encryption protocol option to specify trusted database server certificates. The
trusted certificate can be a server's self-signed certificate, a public enterprise root certificate, or a certificate
belonging to a commercial Certificate Authority.

See also
● “trusted_certificates protocol option” on page 325
● “Creating digital certificates” on page 1101

Encrypting SQL Anywhere client/server communications

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1109

Establishing a client connection using transport-layer security
To set up client applications to use transport-layer security, use the Encryption [ENC] connection parameter
in your connection string. The connection string takes the following form (which must be written all on one
line):

Encryption=tls(
 tls_type=cipher;
 [fips={ y | n };]
 trusted_certificates=public-certificate
 [certificate_company=organization;]
 [certificate_name=common-name;]
 [certificate_unit=organization-unit])

● cipher can be rsa or ecc for RSA and ECC encryption, respectively. The default is rsa. For FIPS-
approved RSA encryption, specify tls_type=rsa;fips=y. RSA FIPS uses a separate approved library, but
is compatible with SQL Anywhere 9.0.2 or later database servers using RSA. You cannot specify
fips=y with tls_type=ecc.

The connection fails if the cipher does not match the encryption (RSA or ECC) used to create your
certificates.

● public-certificate is the path and file name of a file that contains one or more trusted certificates. If
you are using FIPS-approved RSA encryption, you must generate your certificates using RSA. See
“trusted_certificates protocol option” on page 325.

● organization forces the client to accept server certificates only when the Organization field on the
certificate matches this value. See “certificate_company protocol option” on page 304.

● common-name forces the client to accept server certificates only when the Common Name field on
the certificate matches this value. See “certificate_name protocol option” on page 305.

● organization-unit forces the client to accept server certificates only when the Organization Unit field
on the certificate matches this value. See “certificate_unit protocol option” on page 306.

For more information about trusted_certificates and other client security parameters, see “Verifying
certificate fields” on page 1109 and “Using the trusted_certificates protocol option” on page 1109.

For more information about creating or obtaining the certificate, see “Creating digital
certificates” on page 1101.

For more information about the encryption connection parameter, see “Encryption connection parameter
[ENC]” on page 280.

Example
The following example uses the trusted_certificates encryption connection parameter to specify the
certificate, public_cert.crt.

"UID=DBA;PWD=sql;ENG=myeng;LINKS=tcpip;
ENC=tls(tls_type=ecc;trusted_certificates=public_cert.crt)"

The following example uses the trusted_certificates encryption connection parameter to specify the
certificate, public_cert.crt, and verifies certificate fields using the certificate_unit and certificate_name
encryption connection parameters.

Transport-layer security

1110 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

"UID=DBA;PWD=sql;ENG=myeng;LINKS=tcpip;
ENC=tls(tls_type=ecc;trusted_certificates=public_cert.crt;
certificate_unit=test_unit;certificate_name=my_certificate)"

Encrypting SQL Anywhere client/server communications

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1111

Encrypting SQL Anywhere web services
The SQL Anywhere web server supports HTTPS connections using SSL version 3.0 and TLS version 1.0.

To set up transport-layer security for SQL Anywhere web services, perform the following steps:

● Obtain digital certificates You need database server certificate files and identity files. Certificates
(which can be Certificate Authority certificates) are distributed to browsers or web clients. server identity
files are stored securely with your SQL Anywhere web server.

For general information about creating digital certificates, including information about using Certificate
Authorities, see “Creating digital certificates” on page 1101.

● Start the web server with transport-layer security Use the -xs database server option to specify
HTTPS, the server identity file, and the password to protect the private key.

Following is the syntax of a partial dbsrv11 command line.

-xs protocol(
 [fips={ y | n };]
 identity=server-identity-filename;
 identity_password=password;...) ...

○ protocol can be https, or https with fips=y for FIPS-approved RSA encryption. FIPS-approved
HTTPS uses a separate approved library, but is compatible with HTTPS.

Note
The Mozilla Firefox browser can connect when FIPS-approved HTTPS is used. However, the cipher
suite used by FIPS-approved HTTPS is not supported by most versions of the Internet Explorer,
Opera, or Safari browsers—if you are using FIPS-approved HTTPS, these browsers may not be able
to connect.

For information about enforcing the FIPS-approved algorithm, see “-fips server
option” on page 186.

○ server-identity-filename The path and file name of the server identity. For HTTPS, you must
use an RSA certificate.

○ password The password for the server private key. You specify this password when you create
the server certificate.

For more information about the -xs server option, see “-xs server option” on page 237.

For more information about the identity and identity_password parameters, see:

○ “Identity protocol option” on page 311
○ “Identity_Password protocol option” on page 312

● Configure web clients Configure browsers or other web clients to trust certificates. The trusted
certificate can be self-signed, an enterprise root, or a Certificate Authority certificate.

For general information about creating digital certificates, including information about using Certificate
Authorities, see “Creating digital certificates” on page 1101.

Transport-layer security

1112 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Encrypting MobiLink client/server communications
You can encrypt MobiLink client/server communication using transport-layer security.

End-to-end encryption
End-to-end encryption occurs when data is encrypted at the point of origin and decrypted at the final
destination. There is no point during transmission that the data is unencrypted.

MobiLink TLS is sometimes only used to encrypt data up to an intermediary (for example, encryption/
decryption hardware) between the client and server. At the intermediary, the data would be decrypted and
then encrypted again by the intermediary for the rest of the journey. Notably, this happens when
synchronizing via HTTPS through a Web server. The brief interval when the data is unencrypted in the
intermediary is sometimes called the Wireless Application Protocol gap or WAP Gap.

Within a corporation, a WAP gap is often acceptable when the intermediary is within corporate control.
However, in a third-party hosted environment where data from different corporations is going through the
same WAP gap, sensitive data may be exposed. End-to-end encryption prevents any intermediary from
accessing the data because the synchronization stream is encrypted from start to finish, and may optionally
be encrypted once more with TLS.

Encrypting MobiLink client/server communications

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1113

Starting the MobiLink server with transport-layer security
To start the MobiLink server with transport-layer security, supply the identity file and the identity password
protecting the server's private key.

For an overview of the steps required to set up transport-layer security, see “Setting up transport-layer
security” on page 1099.

Securing the MobiLink server over TCP/IP and HTTPS
Use the mlsrv11 -x server option to specify an identity and an identity password. Following is a partial
mlsrv11 command line (which must be written on one line):

-x protocol(
 tls_type=cipher;
 fips={ y | n };
 identity=identity-file;
 identity_password=password;...)

● protocol The protocol to use. It can be https or tls. The tls protocol is TCP/IP with TLS.

● cipher The cipher to use. It can be rsa or ecc for RSA and ECC encryption, respectively. The cipher
must match the encryption used to create your identity.

● fips Indicates whether to use FIPS. FIPS can only be used with RSA encryption. RSA FIPS uses
separate FIPS 140-2 certified software from Certicom. Servers using FIPS are compatible with clients
not using FIPS and vice versa. RSA FIPS can be used for SQL Anywhere clients on any supported 32-
bit Windows platform or Solaris, or for UltraLite clients on Unix or any supported 32-bit Windows
platform including Windows Mobile.

● identity-file The path and file name of the identity file, which contains the server's private key, the
server's certificate, and, optionally, the certificates signed by the Certificate Authority.

For information about creating the server certificate, which can be self-signed, or signed by a Certificate
Authority or enterprise root certificate, see “Creating digital certificates” on page 1101.

● password The password for the server private key. You specify this password when you create the
server identity.

See “-x option” [MobiLink - Server Administration].

Examples
The following example specifies the type of security (RSA), the server identity file, and the identity password
protecting the server's private key on the mlsrv11 command line:

mlsrv11 -c "dsn=my_cons"
 -x tls(tls_type=rsa;identity=c:\test\serv_rsa1.crt;identity_password=pwd)

The following example specifies an ECC identity on the mlsrv11 command line:

mlsrv11 -c "dsn=my_cons"
 -x tls(tls_type=ecc;identity=c:\test\serv_ecc1.crt;identity_password=pwd)

The following example is similar to the previous, except that there is a space in the identity file name:

Transport-layer security

1114 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

mlsrv11 -c "dsn=my_cons"
 -x "tls(tls_type=rsa;identity=c:\Program Files\test
\serv_rsa1.crt;identity_password=pwd)"

For more information about the mlsrv11 -x option, see “-x option” [MobiLink - Server Administration].

For more information about creating the server identity file, in this case serv_ecc1.crt, see “Creating digital
certificates” on page 1101.

You can hide the command line options using a configuration file and the File Hiding utility (dbfhide). See
“@data option” [MobiLink - Server Administration].

Configuring MobiLink clients to use transport-layer security
You can configure SQL Anywhere or UltraLite clients to use MobiLink transport-layer security. For each
client, you specify trusted certificates, the type of encryption, and the network protocol.

For an overview of the steps required to set up transport-layer security, see “Setting up transport-layer
security” on page 1099.

Server authentication
Server authentication allows a remote client to verify the identity of a server. Digital signatures and certificate
field verification work together to achieve server authentication.

Digital signatures

A server certificate contains one or more digital signatures used to maintain data integrity and protect against
tampering. Following are the steps used to create a digital signature:

● An algorithm performed on a certificate generates a unique value or hash.

● The hash is encrypted using a signing certificate's or Certificate Authority's private key.

● The encrypted hash, called a digital signature, is embedded in the certificate.

A digital signature can be self-signed or signed by an enterprise root certificate or Certificate Authority.

When a MobiLink client contacts a MobiLink server, and each is configured to use transport-layer security,
the server sends the client a copy of its certificate. The client decrypts the certificate's digital signature using
the server's public key included in the certificate, calculates a new hash of the certificate, and compares the
two values. If the values match, this confirms the integrity of the server's certificate.

For more information about self-signed certificates, see “Self-signed root certificates” on page 1101.

For more information about enterprise root certificates and Certificate Authorities, see “Certificate
chains” on page 1102.

Encrypting MobiLink client/server communications

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1115

Verifying certificate fields

When using a globally signed certificate, each client must verify certificate field values to avoid trusting
certificates that the same Certificate Authority has signed for other clients. This is resolved by requiring your
clients to test the value of fields in the identity portion of the certificate. A Certificate Authority must
guarantee the accuracy of the identification information in any certificate that it signs.

For more information about globally signed certificates, see “Globally-signed certificates” on page 1104.

When creating a certificate using the createcert utility, you enter values for the organization, organizational
unit, and common name fields. You verify these fields using corresponding MobiLink client connection
parameters.

● Organization The organization field corresponds to the certificate_company MobiLink client
connection parameter. See “certificate_company” [MobiLink - Client Administration].

● Organizational unit The organizational unit field corresponds to the certificate_unit MobiLink client
connection parameter. See “certificate_unit” [MobiLink - Client Administration].

● Common name The common name field corresponds to the certificate_name MobiLink client
connection parameter. See “certificate_name” [MobiLink - Client Administration].

For more information about setting up MobiLink clients, see:

● “Configuring UltraLite clients to use transport-layer security” on page 1118
● “Client security options” on page 1116

For more information about creating digital certificates, see “Creating digital certificates” on page 1101.

Client security options
MobiLink clients (SQL Anywhere and UltraLite) use a common set of connection parameters to configure
transport-layer security.

trusted_certificates protocol option

MobiLink clients use the trusted_certificates protocol option to specify trusted MobiLink server certificates.
The trusted certificate can be a server's self-signed certificate, a public enterprise root certificate, or the
certificate belonging to a commercial Certificate Authority.

See:

● “trusted_certificates” [MobiLink - Client Administration]
● “Creating digital certificates” on page 1101

Verifying certificate fields
The certificate_company, certificate_unit, and certificate_name protocol options are used to verify certificate
fields, an important step for server authentication. It is strongly recommended that you verify certificate
fields if you are using a third-party Certificate Authority to globally-sign certificates.

Transport-layer security

1116 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See:

● “Verifying certificate fields” on page 1116
● “Globally-signed certificates” on page 1104
● “Server authentication” on page 1115

Configuring SQL Anywhere clients to use transport-layer security
This section shows you how to configure SQL Anywhere clients to use transport-layer security over HTTPS
or TCP/IP.

Using transport-layer security over TCP/IP and HTTPS

MobiLink transport-layer security is an inherent feature of the MobiLink HTTPS and TCP/IP protocols. To
use transport-layer security over HTTPS, specify the trusted_certificates connection parameter using the
ADR extended option. Following is the syntax for a partial dbmlsync command line.

-e "ctp=protocol;
 adr=[fips={ y | n };]
 trusted_certificates=public-certificate;
 ..."

● protocol The protocol to use. It can be https or tls. The tls protocol is TCP/IP using transport-layer
security.

● fips Indicates whether to use FIPS. FIPS can only be used with RSA encryption. FIPS-approved
HTTPS uses separate FIPS 140-2 certified software from Certicom, but is compatible with version 9.0.2
or later MobiLink servers using HTTPS.

● public-certificate The path and file name of a trusted certificate.

For HTTPS or FIPS-approved HTTPS, you must use certificates created using RSA encryption.

See also
● “Client security options” on page 1116
● “Creating digital certificates” on page 1101
● “CommunicationAddress (adr) extended option” [MobiLink - Client Administration]
● “MobiLink client network protocol option summary” [MobiLink - Client Administration]
● “CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server -

SQL Reference]
● “ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server -

SQL Reference]

Examples
The following example specifies RSA security over HTTPS. It must all be written on one line:

dbmlsync -c "eng=rem1;uid=dba;pwd=mypwd"
 -e "ctp=https;
 adr='trusted_certificates=c:\temp\public_cert.crt;
 certificate_company=Sybase, Inc.;

Encrypting MobiLink client/server communications

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1117

 certificate_unit=IAS;
 certificate_name=MobiLink'"

Alternatively, you can specify the CommunicationAddress extended option using the CREATE
SYNCHRONIZATION SUBSCRIPTION or ALTER SYNCHRONIZATION SUBSCRIPTION statement.
This method provides the same information, but stores it in the database.

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO pub1
 FOR user1
 ADDRESS 'trusted_certificates=c:\temp\public_cert.crt;
 certificate_company=Sybase, Inc.;
 certificate_unit=IAS;
 certificate_name=MobiLink';

The following example specifies RSA security and TCP/IP. It must all be written on one line:

dbmlsync -c "eng=rem1;uid=myuid;pwd=mypwd"
 -e "ctp=tls;
 adr='port=3333;
 tls_type=rsa;
 trusted_certificates=c:\test\public_cert.crt;
 certificate_company=Sybase, Inc.;
 certificate_unit=IAS;
 certificate_name=MobiLink'"

Alternatively, you can specify the CommunicationAddress extended option using the CREATE
SYNCHRONIZATION SUBSCRIPTION or ALTER SYNCHRONIZATION SUBSCRIPTION statement:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO pub1
 FOR user1
 ADDRESS 'port=3333;
 tls_type=rsa;trusted_certificates=public_cert.crt;
 certificate_company=Sybase, Inc.;
 certificate_unit=IAS;
 certificate_name=MobiLink';

Configuring UltraLite clients to use transport-layer security
MobiLink transport-layer security is an inherent feature of the MobiLink HTTPS protocol. If you use HTTPS
and UltraLite clients, you can specify trusted certificates and certificate fields directly as network protocol
options.

For more information about specifying the HTTPS protocol for your UltraLite interface, see “Network
protocol options for UltraLite synchronization streams” [UltraLite - Database Management and
Reference].

For more information about the tls_type synchronization parameter, see “tls_type” [MobiLink - Client
Administration].

To configure your UltraLite client to use transport-layer security over TCP/IP or HTTPS

1. There are two ways to specify trusted root certificates:

Transport-layer security

1118 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● When creating the UltraLite database See “UltraLite Create Database utility (ulcreate)”
[UltraLite - Database Management and Reference], or “UltraLite Initialize Database utility (ulinit)”
[UltraLite - Database Management and Reference].

● Using the trusted_certificates protocol option For details, see Step 3 of this procedure. This
option is not available on Palm OS.

2. Specify the TCP/IP or HTTPS protocol for synchronization. The keyword for secure TCP/IP is tls.

The following example is in C/C++ UltraLite. To specify tls, change https to tls.

auto ul_synch_info synch_info;
conn.InitSynchInfo(&synch_info);
synch_info.user_name = UL_TEXT("50");
synch_info.version = UL_TEXT("ul_default");
...
synch_info.stream = "https";
...

3. Specify TCP/IP or HTTPS protocol options.

The following example is in C/C++ UltraLite. To specify tls, change https to tls.

auto ul_synch_info synch_info;
...
synch_info.stream = "https";
synch_info.stream_parms = TEXT(
 "port=9999;
 certificate_company=Sybase, Inc.;
 certificate_unit=IAS;
 certificate_name=MobiLink");

The certificate_company, certificate_unit, and certificate_name protocol options are used to verify
certificate fields.

See “Verifying certificate fields” on page 1116.

You can also specify the trusted_certificates HTTPS protocol option, which overrides any trusted
certificate information embedded in the UltraLite database (Step 1 of this procedure). The
trusted_certificates protocol option is not available on Palm OS.

auto ul_synch_info synch_info;
...
synch_info.stream = "https";
synch_info.stream_parms = TEXT(
 "port=9999;
 trusted_certificates=\rsaroot.crt;
 certificate_company=Sybase, Inc.;
 certificate_unit=IAS;
 certificate_name=MobiLink");

For more information about HTTPS options, see “Network protocol options for UltraLite
synchronization streams” [UltraLite - Database Management and Reference].

Encrypting MobiLink client/server communications

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1119

Certificate utilities
Users may typically go to a third party to purchase certificates. These certificate authorities provide their
own tools for creating certificates. The following tools may be especially useful to create certificates for
development and testing purposes, and can also be used for production certificates.

See:

● “Certificate Creation utility (createcert)” on page 747
● “Certificate Viewer utility (viewcert)” on page 750

Transport-layer security

1120 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Replication

This section describes how to use SQL Anywhere as an Open Server and how to replicate data with the Replication
Server.

Using SQL Anywhere as an Open Server ... 1123
Replicating data with Replication Server ... 1135

Using SQL Anywhere as an Open Server

Contents
Open Clients, Open Servers, and TDS ... 1124
Setting up SQL Anywhere as an Open Server .. 1126
Configuring Open Servers ... 1128
Characteristics of Open Client and jConnect connections 1133

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1123

Open Clients, Open Servers, and TDS
SQL Anywhere can appear as an Open Server to client applications. This feature enables Sybase Open Client
applications to connect natively to SQL Anywhere databases.

If you simply want to use a Sybase application with SQL Anywhere, you do not need to know any details
of Open Client, Open Server, or TDS. However, an understanding of how these components fit together may
be helpful for configuring your database and setting up applications. This section explains how the
components fit together, but avoids any discussion of the internal features of the components.

Open Clients and Open Servers
SQL Anywhere and other members of the Adaptive Server family act as Open Servers. This means you
can develop client applications using the Open Client libraries available from Sybase. Open Client includes
both the Client Library (CT-Library) and the older DB-Library interfaces.

For information about developing Open Client applications for use with SQL Anywhere, see “Sybase Open
Client API” [SQL Anywhere Server - Programming].

Tabular Data Stream

Open Clients and Open Servers exchange information using an application protocol called the tabular data
stream (TDS). All applications built using the Sybase Open Client libraries are also TDS applications
because the Open Client libraries handle the TDS interface. However, some applications (such as jConnect)
are TDS applications even though they do not use the Sybase Open Client libraries—they communicate
directly using the TDS protocol.

While many Open Servers use the Sybase Open Server libraries to handle the interface to TDS, some
applications have a direct interface to TDS of their own. Sybase Adaptive Server Enterprise and SQL
Anywhere both have internal TDS interfaces. They appear to client applications as an Open Server, but do
not use the Sybase Open Server libraries.

Programming interfaces and application protocols
SQL Anywhere supports two application protocols. Open Client applications and other Sybase applications
such as Replication Server and OmniConnect use TDS. ODBC and embedded SQL applications use a
separate application protocol specific to SQL Anywhere.

TDS uses TCP/IP
Application protocols such as TDS sit on top of lower-level communications protocols that handle network
traffic. SQL Anywhere supports TDS only over the TCP/IP network protocol. In contrast, the SQL
Anywhere-specific application protocol supports several network protocols, and a shared memory protocol
designed for same-computer communication.

Sybase applications and SQL Anywhere
The ability of SQL Anywhere to act as an Open Server enables Sybase applications such as Replication
Server and OmniConnect to work with SQL Anywhere.

Using SQL Anywhere as an Open Server

1124 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Replication Server support
The Open Server interface enables support for Sybase Replication Server: Replication Server connects
through the Open Server interface, enabling SQL Anywhere databases to act as replicate sites in Replication
Server installations.

For your database to act as a primary site in a Replication Server installation, you must also use the
Replication Agent for Sybase SQL Anywhere, also called a Log Transfer Manager.

For information about the Replication Agent, see “Replicating data with Replication
Server” on page 1135.

OmniConnect support
Sybase OmniConnect provides a unified view of disparate data within an organization, allowing users to
access multiple data sources without having to know what the data looks like or where to find it. In addition,
OmniConnect performs heterogeneous joins of data across the enterprise, enabling cross-platform table joins
of targets such as DB2, Sybase Adaptive Server Enterprise, Oracle, and VSAM.

Using the Open Server interface, SQL Anywhere can act as a data source for OmniConnect.

Open Clients, Open Servers, and TDS

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1125

Setting up SQL Anywhere as an Open Server
This section describes how to set up a SQL Anywhere server to receive connections from Open Client
applications.

System requirements
There are separate requirements at the client and server for using SQL Anywhere as an Open Server.

Server-side requirements
You must have the following elements at the server side to use SQL Anywhere as an Open Server:

● SQL Anywhere server components You must use the network server (dbsrv11.exe) if you want
to access an Open Server over a network. You can use the personal server (dbeng11.exe) as an Open
Server only for connections from the same computer.

● TCP/IP You must have a TCP/IP protocol stack to use SQL Anywhere as an Open Server, even if you
are not connecting over a network.

Client-side requirements
You need the following elements to use Sybase client applications to connect to an Open Server (including
SQL Anywhere):

● Open Client components The Open Client libraries provide the network libraries your application
needs to communicate via TDS if your application uses Open Client.

● jConnect If your application uses JDBC, you need jConnect and a Java runtime environment. SQL
Anywhere supports jConnect 5.5 and 6.0.5, both of which are available at: http://www.sybase.com/
products/informationmanagement/softwaredeveloperkit/jconnect.

● DSEdit You need DSEdit, the directory services editor, to make server names available to your Open
Client application. On Unix platforms, this utility is called sybinit.

DSEdit is not included with SQL Anywhere, but is included with Open Server software.

Starting the database server as an Open Server
If you want to use SQL Anywhere as an Open Server, you must ensure that you start it using the TCP/IP
protocol. By default, the server starts all available communications protocols, but you can limit the protocols
started by listing them explicitly in the command. For example, the following commands are both valid:

dbsrv11 -x tcpip -n myserver c:\mydata.db

You can use the personal database server as an Open Server for communications on the same computer
because it supports the TCP/IP protocol.

The server can serve other applications through the TCP/IP protocol or other protocols using the SQL
Anywhere-specific application protocol at the same time as serving Open Client applications over TDS.

Using SQL Anywhere as an Open Server

1126 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/products/informationmanagement/softwaredeveloperkit/jconnect
http://www.sybase.com/products/informationmanagement/softwaredeveloperkit/jconnect

Port numbers
Every application using TCP/IP on a computer uses a distinct TCP/IP port so that network packets end up
at the right application. The default port for SQL Anywhere is port 2638. It is recommended that you use
the default port number as SQL Anywhere has been granted that port number by the Internet Assigned
Numbers Authority (IANA). If you want to use a different port number, you can specify which one using
the ServerPort (PORT) protocol option:

dbsrv11 -x tcpip(ServerPort=2629) -n myserver c:\mydata.db

You may also need to supply a ServerName if more than one local database server is running, or if you want
to connect to a network server.

Open Client settings
To connect to this server, the interfaces file at the client computer must contain an entry specifying the
computer name on which the database server is running, and the TCP/IP port it uses.

For information about setting up the client computer, see “Configuring Open Servers” on page 1128.

Setting up SQL Anywhere as an Open Server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1127

Configuring Open Servers
SQL Anywhere can communicate with other Adaptive Servers, Open Server applications, and client software
on the network. Clients can talk to one or more servers, and servers can communicate with other servers via
remote procedure calls. For products to interact with one another, each needs to know where the others reside
on the network. This network service information is stored in the interfaces file.

The interfaces file
The interfaces file is usually named SQL.ini on Windows operating systems and interfaces, or interfac on
Unix operating systems.

Like an address book, the interfaces file lists the name and address of every database server known to Open
Client applications on your computer. When you use an Open Client program to connect to a database server,
the program looks up the server name in the interfaces file and then connects to the server using the address.

The name, location, and contents of the interfaces file differ between operating systems. Also, the format of
the addresses in the interfaces file differs between network protocols.

When you install SQL Anywhere, the installer creates a simple interfaces file that you can use for local
connections to SQL Anywhere over TCP/IP. It is the System Administrator's responsibility to modify the
interfaces file and distribute it to users so that they can connect to SQL Anywhere over the network.

Using the DSEdit utility
The DSEdit utility is a Windows utility that allows you to configure the interfaces file (SQL.ini). The
following sections explain how to use the DSEdit utility to configure the interfaces file.

These sections describe how to use DSEdit for those tasks required for SQL Anywhere. It is not complete
documentation for the DSEdit utility.

For more information about DSEdit, see the Configuration Guide for your platform, included with other
Sybase products.

Starting DSEdit
The DSEdit executable is located in the SYBASE\bin directory, which is added to your path on installation.

When you start DSEdit, the Select Directory Service window appears.

Using SQL Anywhere as an Open Server

1128 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Opening a directory services session
The Select Directory Service window allows you to open a session with a directory service. You can open
a session to edit the interfaces file (SQL.ini), or any directory service that has a driver listed in the
libtcl.cfg file.

To open a session

● In the DS Name list, click the local name of the directory service you want to connect to and click
OK.

For SQL Anywhere, select InterfacesDriver.

SYBASE environment variable must be set
The DSEdit utility uses the SYBASE environment variable to locate the libtcl.cfg file. If the SYBASE
environment variable is incorrect, DSEdit cannot locate the libtcl.cfg file.

Configuring Open Servers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1129

You can add, modify, or delete entries for servers, including SQL Anywhere servers, in the
InterfacesDriver window.

Adding a server entry

To add a server entry

1. From the Server Object menu, choose Add.

2. In the Server Name box, type a server name and click OK.

The server name entry must match the database name you plan to connect to. The server address is used
to identify and locate the server. The Server Name field is an identifier for Open Client. For SQL
Anywhere, if the database server has more than one database loaded, the DSEdit server name entry
identifies which database to use.

The server entry appears in the Server box. To specify the attributes of the server, you must modify the
entry.

Adding or changing the server address
Once you have entered a Server Name, you need to modify the Server Address to complete the interfaces
file entry.

To enter a server address

1. In the Server box, select a server entry.

2. In the Attributes box, right-click the server address and choose Modify Attribute.

3. Click Add.

Using SQL Anywhere as an Open Server

1130 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

4. In the Protocol list, select NLWNSCK (this is the TCP/IP protocol).

5. In the Network Address field, type a valid network address. For TCP/IP addresses, use one of the
following two forms:

● computer name, port number

● IP-address, portnumber

The address or computer name is separated from the port number by a comma.

Computer name A name (or an IP address) identifies the computer on which the server is running.
On Windows operating systems, you can find the computer name in Network Settings, in the Control
Panel.

If your client and server are on the same computer, you must still enter the computer name. In this case,
you can use localhost to identify the current computer.

Port number The port number you enter must match the port number you used to start the SQL
Anywhere database server. See “Starting the database server as an Open Server” on page 1126.

The default port number for SQL Anywhere servers is 2638. This number has been assigned to SQL
Anywhere by the Internet Adapter Number Authority (IANA), and use of this port is recommended
unless you have good reasons for explicitly using another port.

The following are valid server address entries:

elora,2638
123.85.234.029,2638

6. Click OK.

Verifying the server address
You can verify your network connection using the Ping command from the Server Object menu.

Configuring Open Servers

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1131

Database connections not verified
Verifying a network connection confirms that a server is receiving requests on the computer name and port
number specified. It does not verify anything about database connections.

To ping a server

1. Ensure that the database server is running.

2. In the Server box of the DSEdit session window, click the server entry.

3. Choose Server Object » Ping Server.

4. Select the address you want to ping and click Ping.

A window appears, notifying you whether the connection is successful. A window for a successful
connection states that both open connection and close connection succeeded.

Renaming a server entry
You can rename server entries from the DSEdit session window.

To rename a server entry

1. In the Server box, select a server entry.

2. From the Server Object menu, choose Rename.

3. In the Server Name box, type a new name for the server entry.

4. Click OK.

Deleting server entries
You can delete server entries from the DSEdit session window.

To delete a server entry

1. In the Server box, select a server entry.

2. From the Server Object menu, choose Delete.

Configuring servers for JDBC
The JDBC connection address (URL) contains all the information required to locate the server. See
“Supplying a URL to the driver” [SQL Anywhere Server - Programming].

Using SQL Anywhere as an Open Server

1132 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Characteristics of Open Client and jConnect
connections

When SQL Anywhere is serving applications over TDS, it automatically sets relevant database options to
values compatible with Adaptive Server Enterprise default behavior. These options are set temporarily, for
the duration of the connection only. The client application can override them at any time.

Default settings
The database options set on connection using TDS include:

Option Set to

allow_nulls_by_default Off

ansi_blanks On

ansinull Off

chained Off

close_on_endtrans Off

date_format YYYY-MM-DD

date_order MDY

escape_character Off

isolation_level 1

on_tsql_error Continue

quoted_identifier Off

time_format HH:NN:SS.SSS

timestamp_format YYYY-MM-DD HH:NN:SS.SSS

tsql_variables On

How the startup options are set
The default database options are set for TDS connections using a system procedure named
sp_tsql_environment. This procedure sets the following options:

SET TEMPORARY OPTION allow_nulls_by_default='Off';
SET TEMPORARY OPTION ansi_blanks='On';
SET TEMPORARY OPTION ansinull='Off';
SET TEMPORARY OPTION chained='Off';

Characteristics of Open Client and jConnect connections

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1133

SET TEMPORARY OPTION close_on_endtrans='Off';
SET TEMPORARY OPTION date_format='YYYY-MM-DD';
SET TEMPORARY OPTION date_order='MDY';
SET TEMPORARY OPTION escape_character='Off';
SET TEMPORARY OPTION isolation_level='1';
SET TEMPORARY OPTION on_tsql_error='Continue';
SET TEMPORARY OPTION quoted_identifier='Off';
SET TEMPORARY OPTION time_format='HH:NN:SS.SSS';
SET TEMPORARY OPTION timestamp_format='YYYY-MM-DD HH:NN:SS.SSS';
SET TEMPORARY OPTION tsql_variables='On';

Do not edit the sp_tsql_environment procedure
Do not alter the sp_tsql_environment procedure yourself. It is for system use only.

The procedure sets options only for connections that use the TDS communications protocol. This includes
Open Client and JDBC connections using jConnect. Other connections (ODBC and embedded SQL) have
the default settings for the database.

You can change the options for TDS connections.

To change the option settings for TDS connections

1. Create a procedure that sets the database options you want. For example, you could use a procedure such
as the following:

CREATE PROCEDURE my_startup_procedure()
BEGIN
 IF CONNECTION_PROPERTY('CommProtocol')='TDS' THEN
 SET TEMPORARY OPTION quoted_identifier='Off';
 END IF
END;

This particular procedure example changes only the quoted_identifier option from the default setting.

2. Set the login_procedure option to the name of a new procedure:

SET OPTION login_procedure= 'DBA.my_startup_procedure';

Future connections will use the procedure. You can configure the procedure differently for different user
IDs.

For more information about database options, see “Database options” on page 493.

Using SQL Anywhere as an Open Server

1134 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Replicating data with Replication Server

Contents
Introduction to using SQL Anywhere with Replication Server 1136
Tutorial: Replicate data using Replication Server .. 1139
Configuring databases for Replication Server ... 1148
Using the LTM ... 1151

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1135

Introduction to using SQL Anywhere with Replication
Server

Replication Server is a connection-based technology intended for the two-way replication of transactions.
It is well suited to replication between a few enterprise databases connected by a high-speed network,
generally with an administrator at each site. In such a setup, it is possible to achieve lag times as low as a
few seconds.

You can also replicate SQL Anywhere data using SQL Remote and you can synchronize data using
MobiLink.

See:

● “Choosing a synchronization technology” [SQL Anywhere 11 - Introduction]
● “Understanding MobiLink synchronization” [MobiLink - Getting Started]
● SQL Remote

Before you begin
Replication Server administrators who are setting up SQL Anywhere to take part in their Replication Server
installation will find this chapter especially useful. You should have knowledge of Replication Server
documentation, and familiarity with the Replication Server product. This chapter does not describe
Replication Server itself.

For information about Replication Server, including design, commands, and administration, see your
Replication Server documentation.

Note
SQL Anywhere includes components that allow you to use SQL Anywhere databases in a Replication Server
system. Replication Server is not included as part of your SQL Anywhere installation.

Separately licensed option required
The Log Transfer Manager (LTM), which is the SQL Anywhere Replication Agent for Sybase Replication
Server, is required for any SQL Anywhere database that participates in a Sybase Replication Server
installation as a primary site. The license that is required for the LTM must be ordered separately. If SQL
Anywhere is used as the replicate site, the LTM is not needed.

For more information, see “Separately licensed components” [SQL Anywhere 11 - Introduction].

Replication Server characteristics
Replication Server is designed for replication systems with the following requirements:

● Small numbers of databases Replication Server is designed to support replication among servers,
with systems typically involving fewer than one hundred servers.

Replicating data with Replication Server

1136 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Continuously connected Connections between primary sites and replicate sites may be over a wide
area network, but Replication Server is designed for situations where there is a near-continuous
connection path for data exchange among the servers in the system.

● Low latency Low latency means a short lag time between data being entered at one database and
being replicated to each database in the system. With Replication Server, replication messages are sent
typically within seconds of being entered at a primary site.

● High volume With near-continuous connections and high performance, Replication Server is
designed for a high volume of replication messages.

● Heterogeneous databases Replication Server supports several leading DBMSs, and allows
mapping of object names during replication, so that support for heterogeneous databases is provided.

Replicate sites and primary sites
In a Replication Server installation, the data to be shared among databases is arranged in replication
subscriptions.

For each replication definition, there is a primary site, where changes to the data in the replication occur.
The sites that receive the data in the replication are called replicate sites.

Replicate site components
You can use SQL Anywhere as a replicate site. If you use SQL Anywhere as a replicate site, you do not
need the LTM.

The following diagram illustrates the components required for SQL Anywhere to participate in a Replication
Server installation as a replicate site.

● Replication Server receives data changes from primary site servers.

● Replication Server connects to SQL Anywhere to apply the changes.

● SQL Anywhere makes the changes to the database.

Introduction to using SQL Anywhere with Replication Server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1137

Asynchronous procedure calls
The Replication Server can use asynchronous procedure calls (APC) at replicate sites to alter data at a
primary site database. If you are using APCs, the above diagram does not apply. Instead, the requirements
are the same as for a primary site.

Primary site components
To use a SQL Anywhere database as a primary site, you need to use the Log Transfer Manager (LTM), the
replication agent for SQL Anywhere. The LTM supports Replication Server version 10.0 and later. See
http://www.sybase.com/detail?id=1002288.

The following diagram illustrates the components required for SQL Anywhere to participate in a Replication
Server installation as a primary site. The arrows in the diagram represent data flow.

● The SQL Anywhere database server manages the database.

● The SQL Anywhere Log Transfer Manager connects to the database. It scans the transaction log to pick
up changes to the data, and sends them to Replication Server.

● Replication Server sends the changes to replicate site databases.

Replicating data with Replication Server

1138 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1002288

Tutorial: Replicate data using Replication Server
This section provides a step-by-step tutorial describing how to replicate data from a primary database to a
replicate database. Both databases in the tutorial are SQL Anywhere databases.

Replication Server assumed
This tutorial assumes you have a running Replication Server on Windows, and that it, the Replication Agent,
and SQL Anywhere are all running on the same computer.

For more information about how to install or configure Replication Server, see the Replication Server
documentation.

What is in the tutorial
This tutorial describes how to replicate only tables.

For information about replicating procedures, see “Preparing procedures and functions for
replication” on page 1152.

The tutorial uses a simple example of a (very) primitive office news system: a single table with an ID column
holding an integer, a column holding the user ID of the author of the news item, and a column holding the
text of the news item. The id column and the author column make up the primary key.

Before you work through the tutorial, create a directory (for example, c:\tutorial) to hold the files you create
in the tutorial. The SQL Anywhere log scanning tools assume that all transaction logs located in a directory
belong to the same database, so in this tutorial, you create a directory for each database (c:\tutorial
\primedb and c:\tutorial\repdb) because the LTM scans offline transaction logs.

Lesson 1: Create the SQL Anywhere databases
This section describes how to create and set up the SQL Anywhere databases for replication.

You can create a database using Sybase Central or the dbinit utility. For this tutorial, you use the dbinit
utility.

Create the primary site database

● Run the following command from the tutorial directory you created to hold the primary database (for
example, c:\tutorial\primedb):

dbinit primedb

This creates a database file named primedb.db in the current directory.

Create the replicate site database

● Run the following command from the tutorial directory you created to hold the replicate database (for
example c:\tutorial\repdb):

dbinit repdb

Tutorial: Replicate data using Replication Server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1139

This creates a database file named repdb.db in the current directory.

What's next?
Next, you have to start database servers to run the databases.

Lesson 2: Start the database servers
You need to run the primary site database server, with the primary database loaded.

Start the primary site database server

1. Change to the tutorial directory.

2. Run the following command to start a network database server running the primedb database. You should
be using the TCP/IP network communication protocol on the default communications port (2638):

dbsrv11 -x tcpip(port=2638) c:\tutorial\primedb\primedb.db

Start the replicate site database server

1. Change to the tutorial directory.

2. Run the following command to start a network database server running the repdb database, but on a
different port:

dbsrv11 -x tcpip(PORT=2639) c:\tutorial\repdb\repdb.db

What's next?
Next, you have to make entries for each of the SQL Anywhere servers in an interfaces file, so Replication
Server can communicate with these database servers.

Lesson 3: Set up the Open Servers in your system
You need to add a set of Open Servers to the list of Open Servers in your system.

Adding Open Servers
Open Servers are defined in your interfaces file (SQL.ini) using the DSEdit utility. For Unix users, the
interfaces file is named interfaces, and the utility is named sybinit.

For full instructions on how to add definitions to your interfaces file, see “Configuring Open
Servers” on page 1128.

Required Open Servers
For each Open Server definition, you must provide a name and an address. Do not alter the other attributes
of the definition. You need to add an Open Server entry for each of the following:

● The primary database Create an entry named PRIMEDB with address as follows:

Replicating data with Replication Server

1140 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

○ Protocol NLWNSCK

○ Network address localhost,2638

● The replicate database Create an entry named REPDB with address as follows:

○ Protocol NLWNSCK

○ Network address localhost,2639

● The LTM at the primary database This is necessary so you can shut down the LTM properly. Create
an entry named PRIMELTM with address as follows:

○ Protocol NLWNSCK

○ Network address localhost,2640

● Your Replication Server This tutorial assumes you already have the Replication Server Open Server
defined.

What's next?
Next, confirm that the Open Servers are configured properly.

Lesson 4: Confirm that the Open Servers are configured
properly

You can confirm that each Open Server is available by choosing ServerObject » Ping Server from the
DSEdit utility.

Alternatively, you can confirm that each Open Server is configured properly by connecting to the database
using an Open Client application, such as the isql utility.

To start isql running on the primary site database, type:

isql -U DBA -P sql -S PRIMEDB

Note
The Open Client isql utility is not the same as the SQL Anywhere Interactive SQL utility.

Lesson 5: Add Replication Server information to the primary
database

You need to add Replication Server tables and procedures to the primary site database for the database to
participate in a Replication Server installation. You also need to create two user IDs for use by Replication
Server. The SQL command file rssetup.sql is included with SQL Anywhere and performs these tasks.

The rssetup.sql command file must be run on the SQL Anywhere server from the Interactive SQL utility.

Tutorial: Replicate data using Replication Server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1141

Run the rssetup script

1. From Interactive SQL, connect to the SQL Anywhere database as a user with DBA authority.

2. Run the rssetup script using the following command:

read "install-dir\scripts\rssetup.sql"

In this script, install-dir is your SQL Anywhere installation directory.

Alternatively, you can choose File » Run Script, and browse to the file.

Actions performed by rssetup.sql
The rssetup.sql command file performs the following functions:

● Creates a user named dbmaint, with password dbmaint, who has DBA authority. This is the maintenance
user name and password required by Replication Server to connect to the primary site database.

● Creates a user named sa, with password sysadmin, who has DBA authority. This is the user ID used by
Replication Server when materializing data.

● Adds sa and dbmaint to a group named rs_systabgroup.

Passwords and user IDs
While the hard-wired user IDs (dbmaint and sa) and passwords are useful for test and tutorial purposes, you
should change the password and perhaps also the user IDs when running databases that require security.
Users with DBA authority have full authority in a SQL Anywhere database.

The user ID sa and its password must match that of the system administrator account on the Replication
Server. SQL Anywhere does not currently accept a NULL password.

Permissions
The rssetup.sql script performs several operations, including some permissions management. The
permissions changes made by rssetup.sql are outlined here. You do not have to make these changes yourself.

For replication, ensure that the dbmaint and sa users can access the tables you want to replicate without
explicitly specifying the owner. To do this, the table owner user ID must have group membership
permissions, and the dbmaint and sa users must be members of the table owner group. To grant group
permissions, you must have DBA authority.

For example, if the user DBA owns the table, you should grant group permissions to DBA:

GRANT GROUP
TO DBA;

You should then grant the dbmaint and sa users membership in the DBA group. To grant group membership,
you must either have DBA authority or be the group ID.

GRANT MEMBERSHIP
IN GROUP "DBA"
TO dbmaint ;
GRANT MEMBERSHIP
IN GROUP "DBA"
TO sa;

Replicating data with Replication Server

1142 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Lesson 6: Create the table for the primary database
In this section, you create a single table in the primary site database, using isql. First, make sure you are
connected to the primary site database:

isql -U DBA -P sql -S PRIMEDB

Next, create a table in the database:

CREATE TABLE news (
 ID INT,
 AUTHOR CHAR(128) DEFAULT CURRENT USER,
 TEXT CHAR(255),
 PRIMARY KEY (ID, AUTHOR)
)
go

Identifier case sensitivity
In SQL Anywhere, all identifiers are case insensitive. In Adaptive Server Enterprise, identifiers are case
sensitive by default. Even in SQL Anywhere, ensure the case of your identifiers matches in all parts of the
SQL statement to ensure compatibility with Adaptive Server Enterprise.

In SQL Anywhere, passwords are always case sensitive. User IDs, being identifiers, are case insensitive in
all SQL Anywhere databases.

For more information, see “CREATE DATABASE statement” [SQL Anywhere Server - SQL Reference].

For news to act as part of a replication primary site, you must set REPLICATE to ON for the table using an
ALTER TABLE statement:

ALTER TABLE news
REPLICATE ON
go

This is equivalent to running the sp_setreplicate or sp_setreptable procedure on the table in Adaptive Server
Enterprise. You cannot set REPLICATE ON in a CREATE TABLE statement.

Lesson 7: Add Replication Server information to the
replicate database

You should run the rssetup.sql command file on the replicate database in exactly the same manner as it ran
on the primary database.

These tasks are the same as those performed on the primary database.

For a complete explanation, see “Lesson 5: Add Replication Server information to the primary
database” on page 1141.

Tutorial: Replicate data using Replication Server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1143

Lesson 8: Create the tables for the replicate database
The replicate site database needs to have tables to hold the data it receives. Now is a good time to create
these tables. As long as the database elements are in place, no extra statements are necessary for them to act
as a replicate site in a Replication Server installation. In particular, you do not need to set REPLICATE to
ON, which is necessary only at the primary site.

Replication Server allows replication between tables and columns with different names. As a simple example,
however, create a table in the replicate database identical in definition to that in the primary database (except
for REPLICATE, which is not set to ON in the replicate database). The table creation statement for this is:

CREATE TABLE news (
 ID INT,
 AUTHOR CHAR(40) DEFAULT CURRENT USER,
 TEXT CHAR(255),
 PRIMARY KEY (ID, AUTHOR)
)
go

For the tutorial, the CREATE TABLE statement must be exactly the same as that at the primary site.

You must ensure that the users dbmaint and sa can access this table without specifying the owner name.
Also, these user IDs must have SELECT and UPDATE permissions on the table.

Lesson 9: Set up Replication Server
You need to perform the following tasks on the Replication Server:

● Create a connection for the primary site data server.
● Create a connection for the replicate site data server.
● Create a replication definition.
● Create a subscription to the replication.
● Start the SQL Anywhere LTM.

Create a connection for the primary site
Using isql, connect to Replication Server and create a connection to the primary site SQL Anywhere database.

The following command creates a connection to the primedb database on the PRIMEDB Open Server.

CREATE CONNECTION TO PRIMEDB.primedb
SET ERROR CLASS rs_sqlserver_error_class
SET FUNCTION STRING class rs_sqlserver_function_class
SET USERNAME dbmaint
SET PASSWORD dbmaint
WITH LOG TRANSFER ON
go

If you have changed the dbmaint user ID and password in the rssetup.sql command file, make sure you
replace the dbmaint username and password in this command.

Replicating data with Replication Server

1144 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Replication Server does not actually use the primedb database name; instead, the database name is read from
the command line of the PRIMEDB Open Server. You must, however, include a database name in the
CREATE CONNECTION statement to conform to the syntax.

For a full description of the create connection statement, see the chapter "Replication Server Commands"
in Replication Server Reference Manual.

Create a connection for the replicate site
Using isql, connect to Replication Server and create a connection to the replicate site SQL Anywhere
database.

The following command creates a connection to the repdb database on the REPDB Open Server.

CREATE CONNECTION TO REPDB.repdb
SET ERROR CLASS rs_sqlserver_error_class
SET FUNCTION STRING CLASS rs_sqlserver_function_class
SET USERNAME dbmaint
SET PASSWORD dbmaint
go

This statement differs from the primary site server statement in that there is no WITH LOG TRANSFER
ON clause in this statement.

If you have changed the dbmaint user ID and password in the rssetup.sql command file, make sure you
replace the dbmaint username and password in this command.

Create a replication definition
Using isql, connect to Replication Server and create a replication definition. The following statement creates
a replication definition for the news table on the primedb database:

CREATE REPLICATION DEFINITION news
WITH PRIMARY AT PRIMEDB.primedb
(id INT, author CHAR(128), text CHAR(255))
PRIMARY KEY (id, author)
go

For a full description of the CREATE REPLICATION DEFINITION statement, see Replication Server
Reference Manual.

If you set the qualify_table_owners option to On in the LTM configuration file, you must specify the table
owner in the statement, for all replicating tables.

Configure and start the SQL Anywhere LTM
For replication to take place, the SQL Anywhere LTM must be running against the primary site server.
Before you start the SQL Anywhere LTM, make sure it is properly configured by editing an LTM
configuration file.

Tutorial: Replicate data using Replication Server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1145

Below is a sample configuration file for the primedb database. If you are following the examples, you should
make a copy of this file as primeltm.cfg:

#
Configuration file for 'PRIMELTM'
#
SQL_server=PRIMEDB
SQL_database=primedb
SQL_user=sa
SQL_pw=sysadmin
RS_source_ds=PRIMEDB
RS_source_db=primedb
RS=your-rep-server-name-here
RS_user=sa
RS_pw=sysadmin
LTM_admin_user=DBA
LTM_admin_pw=sql
LTM_charset=cp850
scan_retry=2
APC_user=sa
APC_pw=sysadmin
SQL_log_files=C:\TUTORIAL\PRIMEDB

If you have changed the user ID and password in the rssetup.sql command file for sa and sysadmin, you
should use the new user ID and password in this configuration.

To start the SQL Anywhere LTM running on the primary site server, enter the following command:

dbltm -S PRIMELTM -C primeltm.cfg

The connection information is in primeltm.cfg. In this command, PRIMELTM is the server name of the
LTM.

You can find usage information about the SQL Anywhere LTM by typing the following statement:

dbltm -?

You can run the SQL Anywhere LTM as a Windows service.

For information about running programs as services, see “Running the server outside the current
session” on page 62.

Create a subscription for your replication
Using isql, connect to Replication Server and create a subscription for the replication.

The following statement creates a subscription for the news replication with the replicate site as the repdb
database.

For information about the news replication, see “Create a replication definition” on page 1145.

CREATE SUBSCRIPTION NEWS_SUBSCRIPTION
FOR news
WITH REPLICATE AT REPDB.repdb
go

You have now completed your installation. Try replicating data to confirm that the setup is working properly.

Replicating data with Replication Server

1146 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Lesson 10: Enter data at the primary site for replication
You can now replicate data from the primary database to the replicate database. As an example, connect to
the primary database using the isql utility, and enter a row in the news table.

INSERT news (id, text)
VALUES (1, 'Test news item.')
COMMIT
go

The SQL Anywhere LTM sends only committed changes to the Replication Server. The data change is
replicated next time the LTM polls the transaction log.

Check that the data has been sent to repdb by connecting to the replicate database using the isql utility and
executing the following SQL statement:

SELECT * FROM news
go

Tutorial complete
You have now completed the tutorial.

Tutorial: Replicate data using Replication Server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1147

Configuring databases for Replication Server
Each SQL Anywhere database that participates in a Replication Server installation needs to be configured
before it can do so. Configuring the database involves the following tasks:

● Selecting a secure user ID for the maintenance user and the name used by Replication Server when
materializing data.

● Setting up the database for Replication Server.

● Configuring the language and character set, where necessary.

Configuring the LTM
Each primary site SQL Anywhere database requires an LTM to send data to Replication Server. Each primary
or replicate site SQL Anywhere database requires an Open Server definition so that Replication Server can
connect to the database.

For information about configuring the LTM, see “Configuring the LTM” on page 1154.

Setting up the database for Replication Server
Once you have created your SQL Anywhere database and created the necessary tables and so on within the
database, you can make the database ready for use with Replication Server. You do this using a setup script
supplied with the SQL Anywhere Replication Agent product. The script is named rssetup.sql.

When you need to run the setup script
You need to run the setup script at any SQL Anywhere database that is taking part in a Replication Server
installation, whether as a primary or a replicate site.

What the setup script does
The setup script creates user IDs required by Replication Server when connecting to the database. It also
creates a set of stored procedures and tables used by Replication Server. The tables begin with the characters
rs_, and the procedures begin with the characters sp_. Procedures include some that are important for
character set and language configuration.

Prepare to run the setup script
Replication Server uses a special data server maintenance user login name for each local database
containing replicated tables. This allows Replication Server to maintain and update the replicated tables in
the database.

The maintenance user
The setup script creates a maintenance user with name dbmaint and password dbmaint. The maintenance
user has DBA authority in the SQL Anywhere database, which allows it full control over the database. For
security reasons, you should change the maintenance user ID and password.

Replicating data with Replication Server

1148 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To change the maintenance user ID and password

1. Open the rssetup.sql setup script in a text editor. The script is held in the scripts subdirectory of your
SQL Anywhere installation directory.

2. Change all occurrences of the dbmaint user ID to the new maintenance user ID of your choice.

3. Change the dbmaint password to the new maintenance user password of your choice. The password
occurs in the following place at the top of the setup script file:

GRANT CONNECT TO dbmaint
IDENTIFIED BY dbmaint;

The materialization user ID
When Replication Server connects to a database to materialize the initial copy of the data in the replication,
it does so using the Replication Server system administrator account.

The SQL Anywhere database must have a user ID and password that match the Replication Server system
administrator user ID and password. SQL Anywhere does not accept a NULL password.

The setup script assumes a user ID of sa and a password of sysadmin for the Replication Server administrator.
You should change this to match the actual name and password.

To change the system administrator user ID and password

1. Open the rssetup.sql setup script in a text editor.

2. Change all occurrences of the sa user ID to match the Replication Server system administrator user ID.

3. Change the sa user's password to match the Replication Server system administrator password.

The password has the initial setting of sysadmin.

Run the setup script
Once you have modified the setup script to match the user IDs and passwords appropriately, you can run
the setup script to create the maintenance and system administrator users in the SQL Anywhere database.

To run the setup script

1. Start the SQL Anywhere database on a SQL Anywhere database server.

2. Start the Interactive SQL utility, and connect to the database as a user with DBA authority.

When you create a SQL Anywhere database, it contains the user ID DBA with password sql. This user
has DBA authority.

3. Run the script by entering the following command in the SQL Statements pane:

read install-dir\scripts\rssetup.sql

In this command, install-dir is your SQL Anywhere installation directory.

Configuring databases for Replication Server

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1149

Replication Server character set and language issues
Upon creation, each SQL Anywhere database is assigned a specific collation (character set and sort order).
Replication Server uses a different set of identifiers for character sets and sort orders.

Set the character set and language parameters in the LTM configuration file. If you are unsure of the character
set label to specify, you can do the following to determine the character set of the server:

To determine the character set

● Execute the following command:

exec sp_serverinfo csname

For a list of language labels, see “Language label values” on page 414.

Identifiers in Replication Server

If you are using the SQL Anywhere Replication Agent with Replication Server 15.0 and Open Client/Open
Server 15.0, the Replication Agent supports table, column, procedure, function, and parameter names up to
128 bytes in length.

The maximum length for identifiers when using the Replication Agent with older versions of Replication
Server and Open Client/Open Server is 30 bytes.

Replicating data with Replication Server

1150 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using the LTM
Since the SQL Anywhere LTM relies on information in the SQL Anywhere transaction log, take care not to
delete or damage the log without storing backups (for example, using a transaction log mirror).

For more information about transaction log management, see “Transaction log and backup
management” on page 1157.

You cannot substitute a SQL Anywhere LTM for an Adaptive Server Enterprise LTM since the transaction
logs have different formats.

The SQL Anywhere LTM supports replication of inserts, updates, and deletes, and replication of Transact-
SQL dialect stored procedure calls.

The Adaptive Server Enterprise LTM sends data changes to the Replication Server before they are
committed. The Replication Server holds the changes until a COMMIT statement arrives. By contrast, the
SQL Anywhere LTM sends only committed changes to Replication Server. For long transactions, this may
lead to some added delay in replication, since all changes have to go through the Replication Server before
distribution.

Configuring tables for replication
You can use sp_setreplicate or sp_setrepproc system procedure or the ALTER TABLE statement to configure
tables for replication. A table is identified as a primary data source using the ALTER TABLE statement with
a single clause:

ALTER TABLE table-name
SET REPLICATE ON;

The effects of setting REPLICATE ON for a table
Setting REPLICATE ON places extra information into the transaction log. Whenever an UPDATE, INSERT,
or DELETE action occurs on the table. The SQL Anywhere Replication Agent uses this extra information
to submit the full pre-image of the row, where required, to Replication Server for replication.

Even if only some of the data in the table needs to be replicated, all changes to the table are submitted to
Replication Server. It is Replication Server's responsibility to distinguish the data to be replicated from that
which is not.

When you update, insert, or delete a row, the pre-image of the row is the contents of the row before the
action, and the post-image is the contents of the row after the action. For INSERTS, only the post-image is
submitted (the pre-image is empty). For DELETES, the post-image is empty and only the pre-image is
submitted. For UPDATES, both the pre-image and the updated values are submitted.

The following data types are supported for replication:

Data type Description (Open Client/Open Server type)

Exact integer data types int, smallint, tinyint

Using the LTM

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1151

Data type Description (Open Client/Open Server type)

Exact decimal data types decimal, numeric

Approximate numeric data types float (8-byte), real

Money data types money, smallmoney

Character data types char(n), varchar(n), text

Date and time data types datetime, smalldatetime

Binary data types binary(n), varbinary(n), image

Bit data types bit

Notes
SQL Anywhere supports data of zero length that is not NULL. However, non-null long varchar and long
binary data of zero length is replicated to a replicate site as NULL.

If a primary table has columns with unsupported data types, you can replicate the data if you create a
replication definition using a compatible supported data type. For example, to replicate a DOUBLE column,
you could define the column as FLOAT in the replication definition.

Side effects of setting REPLICATE ON for a table
There can be a replication performance hit for heavily updated tables. You could consider using replicated
procedures if you experience performance problems that may be related to replication traffic, since replicated
procedures send only the call to the procedure instead of each individual action.

Since setting REPLICATE ON sends extra information to the transaction log, this log grows faster than for
a non-replicating database.

Minimal column replication definitions
The SQL Anywhere LTM supports the Replication Server replicate minimal columns feature. This feature
is enabled at Replication Server.

For more information about replicate minimal columns, see your Replication Server documentation.

Preparing procedures and functions for replication
You can use stored procedures to modify the data in tables. Updates, inserts, and deletes execute from within
the procedure.

Replication Server can replicate procedures as long as they satisfy certain conditions. The first statement in
a procedure must perform an update for the procedure to be replicated.

For a full description of how Replication Server replicates procedures, see your Replication Server
documentation.

Replicating data with Replication Server

1152 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere supports two dialects for stored procedures: the Watcom-SQL dialect, based on the draft
ISO/ANSI standard, and the Transact-SQL dialect. You must use Transact-SQL to write stored procedures
for replication.

Function APC format
The SQL Anywhere LTM supports the Replication Server function APC format. To make use of these
functions, set the configuration parameter rep_func to on (the default is off).

The LTM interprets all replicated APCs as either table APCs or function APCs. A single SQL Anywhere
database cannot combine function APCs with other table APCs.

For more information about replicate functions, see your Replication Server documentation.

SQL statements for controlling procedure replication
A procedure can be configured to act as a replication source using the ALTER PROCEDURE statement.

The following statement makes the procedure MyProc act as a replication source.

ALTER PROCEDURE MyProc
REPLICATE ON;

The following statement prevents the procedure MyProc from acting as a replication source.

ALTER PROCEDURE MyProc
REPLICATE OFF;

You can also use the sp_setreplicate or sp_setrepproc system procedures to set up procedures for replication.

The effects of setting REPLICATE ON for a procedure
When a procedure is used as a replication data source, calling the procedure sends extra information to the
transaction log.

Asynchronous procedures
A procedure called at a replicate site database to update data at a primary site database is an asynchronous
procedure. The procedure performs no action at the replicate site, but rather, the call to the procedure is
replicated to the primary site, where a procedure of the same name executes. This is called an asynchronous
procedure call (APC). The changes made by the APC are then replicated from the primary to the replicate
database in the usual manner.

For information about APCs, see your Replication Server documentation.

The APC_user and APC support
Support for APCs in SQL Anywhere is different from that in Adaptive Server Enterprise. In Adaptive Server
Enterprise, each APC executes using the user ID and password of the user who called the procedure at the
replicate site. In SQL Anywhere, however, the transaction log does not store the password, and so it is not
available at the primary site. To work around this difference, the LTM configuration file holds a single user
ID with associated password, and this user ID (the APC_user) executes the procedure at the primary site.

Using the LTM

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1153

The APC_user must, therefore, have appropriate permissions at the primary site for each APC that may be
called.

Configuring the LTM
You control LTM behavior by modifying the LTM configuration file, which is a plain text file created and
edited using a text editor. The LTM configuration file contains information the LTM needs, such as the SQL
Anywhere server it transfers a log from, the Replication Server it transfers the log to. You need a valid
configuration file to run the LTM.

Creating a configuration file
You must create a configuration file, using a text editor, before you can run the LTM. The -C LTM command
specifies the name of the configuration file to use, and has a default of dbltm.cfg.

Configuration file format
The LTM configuration file shares the same format as the Replication Server configuration file described
in your Replication Server Administration Guide. In summary:

● The configuration file contains one entry per line.

● An entry consists of a parameter, followed by the = character, followed by the value:

Entry=value
● Lines beginning with a # character are comments ignored by the LTM.

● The configuration file cannot contain leading blanks.

● Entries are case sensitive.

For the full list of available configuration file parameters, see “The LTM configuration file” on page 796.

Example configuration file
● The following is a sample SQL Anywhere LTM configuration file.

This is a comment line
Names are case sensitive.
SQL_user=sa
SQL_pw=sysadmin
SQL_server=PRIMESV
SQL_database=primedb
RS_source_ds=PRIMESV
RS_source_db=primedb
RS=MY_REPSERVER
RS_user=sa
RS_pw=sysadmin
LTM_admin_user=DBA
LTM_admin_pw=sql
LTM_charset=cp850
scan_retry=2
SQL_log_files=e:\logs\old_logs
APC_user=sa
APC_pw=sysadmin

Replicating data with Replication Server

1154 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Replicating transactions in batches

Effects of buffering transactions
The LTM allows buffering of replication commands to Replication Server. Buffering the replication
commands and sending them in batches results in fewer messages being sent, and can significantly increase
overall throughput, especially on high volume installations.

How batch mode works
By default, the LTM buffers transactions. The buffer flushes the transactions sent to Replication Server when
the buffer:

● Reaches maximum number of commands The batch_ltl_sz parameter sets the maximum number
of LTL (log transfer language) commands stored in the buffer before it flushes. The default setting is
200.

● Reaches maximum memory used The batch_ltl_mem parameter sets the maximum memory that
the buffer can occupy before flushes. The default setting is 256 KB.

● Completes transaction log processing If there are no more entries in the transaction log to process
(that is, the LTM is up to date with all committed transactions), then the buffer flushes.

Turning off buffering
You can turn off buffering of transactions by setting the batch_ltl_cmds parameter to off:

batch_ltl_cmds=off

Language and character set issues
Language and character set issues are an important consideration in many replication sites. Each database
and server in the system uses a specific collation (character set and sorting order) for storing and ordering
strings. SQL Anywhere character set support is performed in a different manner to character set support in
Adaptive Server Enterprise and other Open Client/Open Server based applications.

This section describes how to configure the SQL Anywhere LTM such that data in a SQL Anywhere database
can be shared with Replication Server and with other databases.

The LTM automatically uses the default Open Client/Open Server language, sort order, and character set.
You can override these defaults by adding entries to the LTM configuration file.

Open Client/Open Server collations
Adaptive Server Enterprise, Replication Server, and other Open Client/Open Server applications share a
common means of managing character sets.

For information about Open Client/Open Server character set support, see the chapter "Configuring Character
Sets, Sort Orders, and Languages" in the Adaptive Server Enterprise System Administration Guide.

Using the LTM

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1155

For more information about character set issues in Replication Server, see the chapter "International
Replication Design Considerations" in the Replication Server Design Guide.

This section provides a brief overview of Open Client/Open Server character set support.

Internationalization files
Files that support data processing in a particular language are called internationalization files. Several types
of internationalization files come with Adaptive Server Enterprise and other Open Client/Open Server
applications.

There is a directory named charsets under your Sybase directory. Charsets has a set of subdirectories,
including one for each character set available to you. Each character set contains a set of files, as described
in the following table

File Description

Charset.loc Character set definition files that define the lexical properties of each character such as
alphanumeric, punctuation, operand, upper- or lowercase.

*.srt Defines the sort order for alphanumeric and special characters.

*.xlt Terminal-specific character translation files for use with utilities.

Character set settings in the LTM configuration file
Three settings in the LTM configuration file refer to character set issues:

● LTM_charset The character set for the LTM to use. You can specify any Sybase-supported character
set.

● LTM_language The language used by the LTM to print its messages to the error log and to its clients.
You can choose any language to which the LTM has been localized, as long as it is compatible with the
LTM character set.

The SQL Anywhere LTM has been localized to several languages.

● LTM_sortorder The Open Client/Open Server sort order for the LTM to use to compare user names.
You can specify any Adaptive Server Enterprise-supported sort order that is compatible with the LTM's
character set. All sort orders in your replication system should be the same. The default sort order is a
binary sort.

Notes
Character set In an Open Client/Open Server environment, an LTM should use the same character set
as the data server and Replication Server attached to it.

SQL Anywhere character sets are specified differently than Open Client/Open Server character sets, so the
requirement is that the SQL Anywhere character set must be compatible with the LTM character set.

Replicating data with Replication Server

1156 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Language The locales.dat file in the locales subdirectory of the Sybase release directory contains valid
map settings. However, the LTM output messages in the user interface are currently available in those
languages to which the LTM has been localized.

Sort order All sort orders in your replication system should be the same. You can find the default entry
for your platform in the locales.dat file in the locales subdirectory of the Sybase release directory.

Example
● The following settings are valid for a Japanese installation:

LTM_charset=SJIS
LTM_language=Japanese

Transaction log and backup management
One of the differences between the Adaptive Server Enterprise LTM and the SQL Anywhere LTM is that
while the Adaptive Server Enterprise LTM depends on a temporary recovery database for access to old
transactions, the SQL Anywhere LTM depends on access to old transaction logs. No temporary recovery
database exists for the SQL Anywhere LTM.

Replication depends on access to operations in the transaction log, and for SQL Anywhere primary site
databases, sometimes access to old transaction logs. This section describes how to set up backup procedures
at a SQL Anywhere primary site to ensure proper access to old transaction logs.

Consequences of lost transaction logs
Good backup practices at SQL Anywhere primary database sites are crucial. A lost transaction log could
mean rematerializing replicate site databases. At primary database sites, a transaction log mirror is
recommended.

For information about transaction log mirrors and other backup procedure information, see “Transaction log
mirrors” on page 15, and “Backup and data recovery” on page 869.

The LTM configuration file contains a directory entry, which points to the directory where backed up
transaction logs are kept. This section describes how to set up a backup procedure to ensure that such a
directory stays in proper shape.

Backup utility options
With the Backup utility, you have the option of renaming the transaction log on backup and restart. For the
dbbackup utility, this is the -r option. It is recommended that you use this option when backing up the primary
database and replication database transaction logs.

For example, consider a database named primedb.db, in directory c:\prime, with a transaction log in directory
d:\primelog\primedb.log. Backing up this transaction log to a directory e:\primebak using the rename and
restart option performs the following tasks:

1. Backs up the transaction log, creating a backup file e:\primebak\primedb.log.

2. Renames the existing transaction log to d:\primelog\YYMMDDxx.log, where xx are sequential characters
ranging from AA to ZZ.

Using the LTM

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1157

3. Starts a new transaction log, as d:\primelog\primedb.log.

After several backups, the directory d:\primelog contains a set of sequential transaction logs. The log
directory should not contain any transaction logs other than the sequence of logs generated by this backup
procedure.

4. Modify the LTM configuration file and set SQL_log_files to d:\primelog instead of e:\primebak. The
e:\primebak directory is only used for recovery, not log scanning.

Using the delete_old_logs option
The SQL Anywhere database delete_old_logs option is set to Off by default. If you set the default to on, the
LTM automatically deletes the old transaction logs when Replication Server no longer needs access to the
transactions. This option can help to manage disk space in replication setups.

For example, set the delete_old_logs option for the PUBLIC group:

SET OPTION PUBLIC.delete_old_logs = 'ON';

or

SET OPTION PUBLIC.delete_old_logs = '10 days';

For more information, see “delete_old_logs option [MobiLink client] [SQL Remote] [Replication
Agent]” on page 529.

The Unload utility and replication
If a database participates in replication, care must be taken when unloading and reloading to avoid needing
to re-materialize the database. Replication is based on the transaction log, and unloading and reloading a
database can delete the old transaction log. For information about rebuilding databases involved in
replication, see “Rebuild databases involved in synchronization or replication” [SQL Anywhere Server - SQL
Usage].

Replicating an entire database
SQL Anywhere provides a shortcut for replicating an entire database, so you don't have to set each table in
the database as a replicated table.

You can set a PUBLIC database option called replicate_all using the SET OPTION statement. You can
designate a whole database for replication using the following command:

SET OPTION PUBLIC.replicate_all='On';

You require DBA authority to change this and other PUBLIC option settings. You must restart the database
for the new setting to take effect. The replicate_all option has no effect on procedures. See “replicate_all
option [Replication Agent]” on page 569.

Replicating data with Replication Server

1158 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Stopping the LTM
You can shut down the LTM from the user interface in Windows, or in other circumstances by issuing a
command.

To stop the LTM on Windows when the LTM is not running as a service

● Click Shutdown on the user interface.

To stop the LTM by issuing a command

1. Connect to the LTM from isql using the LTM_admin_user login name and password in the LTM
configuration file. The user ID and password are case sensitive.

2. Stop the LTM using the SHUTDOWN statement.

Example
The following statements connect isql to the LTM PRIMELTM, and shut it down:

isql -SPRIMELTM -UDBA -Psql
1> shutdown
2> go

Using the LTM

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1159

1160

Glossary

Glossary .. 1163

Glossary

Adaptive Server Anywhere (ASA)
The relational database server component of SQL Anywhere Studio, intended for use in mobile and
embedded environments or as a server for small and medium-sized businesses. In version 10.0.0, Adaptive
Server Anywhere was renamed SQL Anywhere Server, and SQL Anywhere Studio was renamed SQL
Anywhere.

See also: “SQL Anywhere” on page 1187.

agent ID

See also: “client message store ID” on page 1165.

article

In MobiLink or SQL Remote, an article is a database object that represents a whole table, or a subset of the
columns and rows in a table. Articles are grouped together in a publication.

See also:

● “replication” on page 1185
● “publication” on page 1182

atomic transaction

A transaction that is guaranteed to complete successfully or not at all. If an error prevents part of an atomic
transaction from completing, the transaction is rolled back to prevent the database from being left in an
inconsistent state.

base table

Permanent tables for data. Tables are sometimes called base tables to distinguish them from temporary
tables and views.

See also:

● “temporary table” on page 1189
● “view” on page 1191

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1163

bit array

A bit array is a type of array data structure that is used for efficient storage of a sequence of bits. A bit array
is similar to a character string, except that the individual pieces are 0s (zeros) and 1s (ones) instead of
characters. Bit arrays are typically used to hold a string of Boolean values.

business rule

A guideline based on real-world requirements. Business rules are typically implemented through check
constraints, user-defined data types, and the appropriate use of transactions.

See also:

● “constraint” on page 1167
● “user-defined data type” on page 1191

carrier

A MobiLink object, stored in MobiLink system tables or a Notifier properties file, that contains information
about a public carrier for use by server-initiated synchronization.

See also: “server-initiated synchronization” on page 1186.

character set

A character set is a set of symbols, including letters, digits, spaces, and other symbols. An example of a
character set is ISO-8859-1, also known as Latin1.

See also:

● “code page” on page 1165
● “encoding” on page 1171
● “collation” on page 1165

check constraint

A restriction that enforces specified conditions on a column or set of columns.

See also:

● “constraint” on page 1167
● “foreign key constraint” on page 1172
● “primary key constraint” on page 1182
● “unique constraint” on page 1190

checkpoint

The point at which all changes to the database are saved to the database file. At other times, committed
changes are saved only to the transaction log.

Glossary

1164 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

checksum

The calculated number of bits of a database page that is recorded with the database page itself. The checksum
allows the database management system to validate the integrity of the page by ensuring that the numbers
match as the page is being written to disk. If the counts match, it's assumed that page was successfully written.

client message store

In QAnywhere, a SQL Anywhere database on the remote device that stores messages.

client message store ID

In QAnywhere, a MobiLink remote ID that uniquely identifies a client message store.

client/server

A software architecture where one application (the client) obtains information from and sends information
to another application (the server). The two applications often reside on different computers connected by
a network.

code page

A code page is an encoding that maps characters of a character set to numeric representations, typically an
integer between 0 and 255. An example of a code page is Windows code page 1252. For the purposes of this
documentation, code page and encoding are interchangeable terms.

See also:

● “character set” on page 1164
● “encoding” on page 1171
● “collation” on page 1165

collation

A combination of a character set and a sort order that defines the properties of text in the database. For SQL
Anywhere databases, the default collation is determined by the operating system and language on which the
server is running; for example, the default collation on English Windows systems is 1252LATIN1. A
collation, also called a collating sequence, is used for comparing and sorting strings.

See also:

● “character set” on page 1164
● “code page” on page 1165
● “encoding” on page 1171

command file

A text file containing SQL statements. Command files can be built manually, or they can be built
automatically by database utilities. The dbunload utility, for example, creates a command file consisting of
the SQL statements necessary to recreate a given database.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1165

communication stream

In MobiLink, the network protocol used for communication between the MobiLink client and the MobiLink
server.

concurrency

The simultaneous execution of two or more independent, and possibly competing, processes. SQL Anywhere
automatically uses locking to isolate transactions and ensure that each concurrent application sees a
consistent set of data.

See also:

● “transaction” on page 1189
● “isolation level” on page 1175

conflict resolution

In MobiLink, conflict resolution is logic that specifies what to do when two users modify the same row on
different remote databases.

connection ID

A unique number that identifies a given connection between a client application and the database. You can
determine the current connection ID using the following SQL statement:

SELECT CONNECTION_PROPERTY('Number');

connection-initiated synchronization

A form of MobiLink server-initiated synchronization in which synchronization is initiated when there are
changes to connectivity.

See also: “server-initiated synchronization” on page 1186.

connection profile

A set of parameters that are required to connect to a database, such as user name, password, and server name,
that is stored and used as a convenience.

consolidated database

In distributed database environments, a database that stores the master copy of the data. In case of conflict
or discrepancy, the consolidated database is considered to have the primary copy of the data.

See also:

● “synchronization” on page 1189
● “replication” on page 1185

Glossary

1166 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

constraint

A restriction on the values contained in a particular database object, such as a table or column. For example,
a column may have a uniqueness constraint, which requires that all values in the column be different. A table
may have a foreign key constraint, which specifies how the information in the table relates to data in some
other table.

See also:

● “check constraint” on page 1164
● “foreign key constraint” on page 1172
● “primary key constraint” on page 1182
● “unique constraint” on page 1190

contention

The act of competing for resources. For example, in database terms, two or more users trying to edit the
same row of a database contend for the rights to edit that row.

correlation name

The name of a table or view that is used in the FROM clause of a query—either its original name, or an
alternate name, that is defined in the FROM clause.

creator ID

In UltraLite Palm OS applications, an ID that is assigned when the application is created.

cursor

A named linkage to a result set, used to access and update rows from a programming interface. In SQL
Anywhere, cursors support forward and backward movement through the query results. Cursors consist of
two parts: the cursor result set, typically defined by a SELECT statement; and the cursor position.

See also:

● “cursor result set” on page 1167
● “cursor position” on page 1167

cursor position

A pointer to one row within the cursor result set.

See also:

● “cursor” on page 1167
● “cursor result set” on page 1167

cursor result set

The set of rows resulting from a query that is associated with a cursor.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1167

See also:

● “cursor” on page 1167
● “cursor position” on page 1167

data cube

A multi-dimensional result set with each dimension reflecting a different way to group and sort the same
results. Data cubes provide complex information about data that would otherwise require self-join queries
and correlated subqueries. Data cubes are a part of OLAP functionality.

data definition language (DDL)

The subset of SQL statements for defining the structure of data in the database. DDL statements create,
modify, and remove database objects, such as tables and users.

data manipulation language (DML)

The subset of SQL statements for manipulating data in the database. DML statements retrieve, insert, update,
and delete data in the database.

data type

The format of data, such as CHAR or NUMERIC. In the ANSI SQL standard, data types can also include a
restriction on size, character set, and collation.

See also: “domain” on page 1170.

database

A collection of tables that are related by primary and foreign keys. The tables hold the information in the
database. The tables and keys together define the structure of the database. A database management system
accesses this information.

See also:

● “foreign key” on page 1172
● “primary key” on page 1182
● “database management system (DBMS)” on page 1169
● “relational database management system (RDBMS)” on page 1184

database administrator (DBA)

The user with the permissions required to maintain the database. The DBA is generally responsible for all
changes to a database schema, and for managing users and groups. The role of database administrator is
automatically built into databases as user ID DBA with password sql.

Glossary

1168 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

database connection

A communication channel between a client application and the database. A valid user ID and password are
required to establish a connection. The privileges granted to the user ID determine the actions that can be
carried out during the connection.

database file

A database is held in one or more database files. There is an initial file, and subsequent files are called
dbspaces. Each table, including its indexes, must be contained within a single database file.

See also: “dbspace” on page 1170.

database management system (DBMS)

A collection of programs that allow you to create and use databases.

See also: “relational database management system (RDBMS)” on page 1184.

database name

The name given to a database when it is loaded by a server. The default database name is the root of the
initial database file.

See also: “database file” on page 1169.

database object

A component of a database that contains or receives information. Tables, indexes, views, procedures, and
triggers are database objects.

database owner (dbo)

A special user that owns the system objects not owned by SYS.

See also:

● “database administrator (DBA)” on page 1168
● “SYS” on page 1189

database server

A computer program that regulates all access to information in a database. SQL Anywhere provides two
types of servers: network servers and personal servers.

DBA authority

The level of permission that enables a user to do administrative activity in the database. The DBA user has
DBA authority by default.

See also: “database administrator (DBA)” on page 1168.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1169

dbspace

An additional database file that creates more space for data. A database can be held in up to 13 separate files
(an initial file and 12 dbspaces). Each table, together with its indexes, must be contained in a single database
file. The SQL command CREATE DBSPACE adds a new file to the database.

See also: “database file” on page 1169.

deadlock

A state where a set of transactions arrives at a place where none can proceed.

device tracking

In MobiLink server-initiated synchronization, functionality that allows you to address messages using the
MobiLink user name that identifies a device.

See also: “server-initiated synchronization” on page 1186.

direct row handling

In MobiLink, a way to synchronize table data to sources other than the MobiLink-supported consolidated
databases. You can implement both uploads and downloads with direct row handling.

See also:

● “consolidated database” on page 1166
● “SQL-based synchronization” on page 1187

domain

Aliases for built-in data types, including precision and scale values where applicable, and optionally
including DEFAULT values and CHECK conditions. Some domains, such as the monetary data types, are
pre-defined in SQL Anywhere. Also called user-defined data type.

See also: “data type” on page 1168.

download

The stage in synchronization where data is transferred from the consolidated database to a remote database.

dynamic SQL

SQL that is generated programmatically by your program before it is executed. UltraLite dynamic SQL is
a variant designed for small-footprint devices.

EBF

Express Bug Fix. An express bug fix is a subset of the software with one or more bug fixes. The bug fixes
are listed in the release notes for the update. Bug fix updates may only be applied to installed software with
the same version number. Some testing has been performed on the software, but the software has not

Glossary

1170 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

undergone full testing. You should not distribute these files with your application unless you have verified
the suitability of the software yourself.

embedded SQL

A programming interface for C programs. SQL Anywhere embedded SQL is an implementation of the ANSI
and IBM standard.

encoding

Also known as character encoding, an encoding is a method by which each character in a character set is
mapped onto one or more bytes of information, typically represented as a hexadecimal number. An example
of an encoding is UTF-8.

See also:

● “character set” on page 1164
● “code page” on page 1165
● “collation” on page 1165

event model

In MobiLink, the sequence of events that make up a synchronization, such as begin_synchronization and
download_cursor. Events are invoked if a script is created for them.

external login

An alternate login name and password used when communicating with a remote server. By default, SQL
Anywhere uses the names and passwords of its clients whenever it connects to a remote server on behalf of
those clients. However, this default can be overridden by creating external logins. External logins are
alternate login names and passwords used when communicating with a remote server.

extraction

In SQL Remote replication, the act of unloading the appropriate structure and data from the consolidated
database. This information is used to initialize the remote database.

See also: “replication” on page 1185.

failover

Switching to a redundant or standby server, system, or network on failure or unplanned termination of the
active server, system, or network. Failover happens automatically.

FILE

In SQL Remote replication, a message system that uses shared files for exchanging replication messages.
This is useful for testing and for installations without an explicit message-transport system.

See also:“replication” on page 1185.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1171

file-based download

In MobiLink, a way to synchronize data in which downloads are distributed as files, allowing offline
distribution of synchronization changes.

file-definition database

In MobiLink, a SQL Anywhere database that is used for creating download files.

See also: “file-based download” on page 1172.

foreign key

One or more columns in a table that duplicate the primary key values in another table. Foreign keys establish
relationships between tables.

See also:

● “primary key” on page 1182
● “foreign table” on page 1172

foreign key constraint

A restriction on a column or set of columns that specifies how the data in the table relates to the data in some
other table. Imposing a foreign key constraint on a set of columns makes those columns the foreign key.

See also:

● “constraint” on page 1167
● “check constraint” on page 1164
● “primary key constraint” on page 1182
● “unique constraint” on page 1190

foreign table

The table containing the foreign key.

See also: “foreign key” on page 1172.

full backup

A backup of the entire database, and optionally, the transaction log. A full backup contains all the information
in the database and provides protection in the event of a system or media failure.

See also: “incremental backup” on page 1174.

gateway

A MobiLink object, stored in MobiLink system tables or a Notifier properties file, that contains information
about how to send messages for server-initiated synchronization.

See also: “server-initiated synchronization” on page 1186.

Glossary

1172 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

generated join condition

A restriction on join results that is automatically generated. There are two types: key and natural. Key joins
are generated when you specify KEY JOIN or when you specify the keyword JOIN but do not use the
keywords CROSS, NATURAL, or ON. For a key join, the generated join condition is based on foreign key
relationships between tables. Natural joins are generated when you specify NATURAL JOIN; the generated
join condition is based on common column names in the two tables.

See also:

● “join” on page 1176
● “join condition” on page 1176

generation number

In MobiLink, a mechanism for forcing remote databases to upload data before applying any more download
files.

See also: “file-based download” on page 1172.

global temporary table

A type of temporary table for which data definitions are visible to all users until explicitly dropped. Global
temporary tables let each user open their own identical instance of a table. By default, rows are deleted on
commit, and rows are always deleted when the connection is ended.

See also:

● “temporary table” on page 1189
● “local temporary table” on page 1176

grant option

The level of permission that allows a user to grant permissions to other users.

hash

A hash is an index optimization that transforms index entries into keys. An index hash aims to avoid the
expensive operation of finding, loading, and then unpacking the rows to determine the indexed value, by
including enough of the actual row data with its row ID.

histogram

The most important component of column statistics, histograms are a representation of data distribution.
SQL Anywhere maintains histograms to provide the optimizer with statistical information about the
distribution of values in columns.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1173

iAnywhere JDBC driver

The iAnywhere JDBC driver provides a JDBC driver that has some performance benefits and feature benefits
compared to the pure Java jConnect JDBC driver, but which is not a pure-Java solution. The iAnywhere
JDBC driver is recommended in most cases.

See also:

● “JDBC” on page 1175
● “jConnect” on page 1175

identifier

A string of characters used to reference a database object, such as a table or column. An identifier may
contain any character from A through Z, a through z, 0 through 9, underscore (_), at sign (@), number sign
(#), or dollar sign ($).

incremental backup

A backup of the transaction log only, typically used between full backups.

See also: “transaction log” on page 1189.

index

A sorted set of keys and pointers associated with one or more columns in a base table. An index on one or
more columns of a table can improve performance.

InfoMaker

A reporting and data maintenance tool that lets you create sophisticated forms, reports, graphs, cross-tabs,
and tables, and applications that use these reports as building blocks.

inner join

A join in which rows appear in the result set only if both tables satisfy the join condition. Inner joins are the
default.

See also:

● “join” on page 1176
● “outer join” on page 1180

integrated login

A login feature that allows the same single user ID and password to be used for operating system logins,
network logins, and database connections.

Glossary

1174 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

integrity

Adherence to rules that ensure that data is correct and accurate, and that the relational structure of the database
is intact.

See also: “referential integrity” on page 1184.

Interactive SQL

A SQL Anywhere application that allows you to query and alter data in your database, and modify the
structure of your database. Interactive SQL provides a pane for you to enter SQL statements, and panes that
return information about how the query was processed and the result set.

isolation level

The degree to which operations in one transaction are visible to operations in other concurrent transactions.
There are four isolation levels, numbered 0 through 3. Level 3 provides the highest level of isolation. Level
0 is the default setting. SQL Anywhere also supports three snapshot isolation levels: snapshot, statement-
snapshot, and readonly-statement-snapshot.

See also: “snapshot isolation” on page 1187.

JAR file

Java archive file. A compressed file format consisting of a collection of one or more packages used for Java
applications. It includes all the resources necessary to install and run a Java program in a single compressed
file.

Java class

The main structural unit of code in Java. It is a collection of procedures and variables grouped together
because they all relate to a specific, identifiable category.

jConnect

A Java implementation of the JavaSoft JDBC standard. It provides Java developers with native database
access in multi-tier and heterogeneous environments. However, the iAnywhere JDBC driver is the preferred
JDBC driver for most cases.

See also:

● “JDBC” on page 1175
● “iAnywhere JDBC driver” on page 1174

JDBC

Java Database Connectivity. A SQL-language programming interface that allows Java applications to access
relational data. The preferred JDBC driver is the iAnywhere JDBC driver.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1175

See also:

● “jConnect” on page 1175
● “iAnywhere JDBC driver” on page 1174

join

A basic operation in a relational system that links the rows in two or more tables by comparing the values
in specified columns.

join condition

A restriction that affects join results. You specify a join condition by inserting an ON clause or WHERE
clause immediately after the join. In the case of natural and key joins, SQL Anywhere generates a join
condition.

See also:

● “join” on page 1176
● “generated join condition” on page 1173

join type

SQL Anywhere provides four types of joins: cross join, key join, natural join, and joins using an ON clause.

See also: “join” on page 1176.

light weight poller
In MobiLink server-initiated synchronization, a device application that polls for push notifications from a
MobiLink server.

See also: “server-initiated synchronization” on page 1186.

Listener

A program, dblsn, that is used for MobiLink server-initiated synchronization. Listeners are installed on
remote devices and configured to initiate actions on the device when they receive push notifications.

See also: “server-initiated synchronization” on page 1186.

local temporary table

A type of temporary table that exists only for the duration of a compound statement or until the end of the
connection. Local temporary tables are useful when you need to load a set of data only once. By default,
rows are deleted on commit.

See also:

● “temporary table” on page 1189
● “global temporary table” on page 1173

Glossary

1176 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

lock

A concurrency control mechanism that protects the integrity of data during the simultaneous execution of
multiple transactions. SQL Anywhere automatically applies locks to prevent two connections from changing
the same data at the same time, and to prevent other connections from reading data that is in the process of
being changed.

You control locking by setting the isolation level.

See also:

● “isolation level” on page 1175
● “concurrency” on page 1166
● “integrity” on page 1175

log file

A log of transactions maintained by SQL Anywhere. The log file is used to ensure that the database is
recoverable in the event of a system or media failure, to improve database performance, and to allow data
replication using SQL Remote.

See also:

● “transaction log” on page 1189
● “transaction log mirror” on page 1190
● “full backup” on page 1172

logical index

A reference (pointer) to a physical index. There is no indexing structure stored on disk for a logical index.

LTM

Log Transfer Manager (LTM) also called Replication Agent. Used with Replication Server, the LTM is the
program that reads a database transaction log and sends committed changes to Sybase Replication Server.

See: “Replication Server” on page 1185.

maintenance release

A maintenance release is a complete set of software that upgrades installed software from an older version
with the same major version number (version number format is major.minor.patch.build). Bug fixes and
other changes are listed in the release notes for the upgrade.

materialized view

A materialized view is a view that has been computed and stored on disk. Materialized views have
characteristics of both views (they are defined using a query specification), and of tables (they allow most
table operations to be performed on them).

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1177

See also:

● “base table” on page 1163
● “view” on page 1191

message log

A log where messages from an application such as a database server or MobiLink server can be stored. This
information can also appear in a messages window or be logged to a file. The message log includes
informational messages, errors, warnings, and messages from the MESSAGE statement.

message store

In QAnywhere, databases on the client and server device that store messages.

See also:

● “client message store” on page 1165
● “server message store” on page 1187

message system

In SQL Remote replication, a protocol for exchanging messages between the consolidated database and a
remote database. SQL Anywhere includes support for the following message systems: FILE, FTP, and
SMTP.

See also:

● “replication” on page 1185
● “FILE” on page 1171

message type

In SQL Remote replication, a database object that specifies how remote users communicate with the publisher
of a consolidated database. A consolidated database may have several message types defined for it; this
allows different remote users to communicate with it using different message systems.

See also:

● “replication” on page 1185
● “consolidated database” on page 1166

metadata

Data about data. Metadata describes the nature and content of other data.

See also: “schema” on page 1186.

mirror log

See also: “transaction log mirror” on page 1190.

Glossary

1178 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink

A session-based synchronization technology designed to synchronize UltraLite and SQL Anywhere remote
databases with a consolidated database.

See also:

● “consolidated database” on page 1166
● “synchronization” on page 1189
● “UltraLite” on page 1190

MobiLink client

There are two kinds of MobiLink clients. For SQL Anywhere remote databases, the MobiLink client is the
dbmlsync command line utility. For UltraLite remote databases, the MobiLink client is built in to the
UltraLite runtime library.

MobiLink Monitor

A graphical tool for monitoring MobiLink synchronizations.

MobiLink server

The computer program that runs MobiLink synchronization, mlsrv11.

MobiLink system table

System tables that are required by MobiLink synchronization. They are installed by MobiLink setup scripts
into the MobiLink consolidated database.

MobiLink user

A MobiLink user is used to connect to the MobiLink server. You create the MobiLink user on the remote
database and register it in the consolidated database. MobiLink user names are entirely independent of
database user names.

network protocol

The type of communication, such as TCP/IP or HTTP.

network server

A database server that accepts connections from computers sharing a common network.

See also: “personal server” on page 1181.

normalization

The refinement of a database schema to eliminate redundancy and improve organization according to rules
based on relational database theory.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1179

Notifier

A program that is used by MobiLink server-initiated synchronization. Notifiers are integrated into the
MobiLink server. They check the consolidated database for push requests, and send push notifications.

See also:

● “server-initiated synchronization” on page 1186
● “Listener” on page 1176

object tree

In Sybase Central, the hierarchy of database objects. The top level of the object tree shows all products that
your version of Sybase Central supports. Each product expands to reveal its own sub-tree of objects.

See also: “Sybase Central” on page 1188.

ODBC

Open Database Connectivity. A standard Windows interface to database management systems. ODBC is
one of several interfaces supported by SQL Anywhere.

ODBC Administrator

A Microsoft program included with Windows operating systems for setting up ODBC data sources.

ODBC data source

A specification of the data a user wants to access via ODBC, and the information needed to get to that data.

outer join

A join that preserves all the rows in a table. SQL Anywhere supports left, right, and full outer joins. A left
outer join preserves the rows in the table to the left of the join operator, and returns a null when a row in the
right table does not satisfy the join condition. A full outer join preserves all the rows from both tables.

See also:

● “join” on page 1176
● “inner join” on page 1174

package

In Java, a collection of related classes.

parse tree

An algebraic representation of a query.

PDB

A Palm database file.

Glossary

1180 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

performance statistic

A value reflecting the performance of the database system. The CURRREAD statistic, for example,
represents the number of file reads issued by the database server that have not yet completed.

personal server

A database server that runs on the same computer as the client application. A personal database server is
typically used by a single user on a single computer, but it can support several concurrent connections from
that user.

physical index

The actual indexing structure of an index, as it is stored on disk.

plug-in module

In Sybase Central, a way to access and administer a product. Plug-ins are usually installed and registered
automatically with Sybase Central when you install the respective product. Typically, a plug-in appears as
a top-level container, in the Sybase Central main window, using the name of the product itself; for example,
SQL Anywhere.

See also: “Sybase Central” on page 1188.

policy

In QAnywhere, the way you specify when message transmission should occur.

polling

In MobiLink server-initiated synchronization, the way a light weight poller, such as the MobiLink Listener,
requests push notifications from a Notifier.

See also: “server-initiated synchronization” on page 1186.

PowerDesigner

A database modeling application. PowerDesigner provides a structured approach to designing a database or
data warehouse. SQL Anywhere includes the Physical Data Model component of PowerDesigner.

PowerJ

A Sybase product for developing Java applications.

predicate

A conditional expression that is optionally combined with the logical operators AND and OR to make up
the set of conditions in a WHERE or HAVING clause. In SQL, a predicate that evaluates to UNKNOWN
is interpreted as FALSE.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1181

primary key

A column or list of columns whose values uniquely identify every row in the table.

See also: “foreign key” on page 1172.

primary key constraint

A uniqueness constraint on the primary key columns. A table can have only one primary key constraint.

See also:

● “constraint” on page 1167
● “check constraint” on page 1164
● “foreign key constraint” on page 1172
● “unique constraint” on page 1190
● “integrity” on page 1175

primary table

The table containing the primary key in a foreign key relationship.

proxy table

A local table containing metadata used to access a table on a remote database server as if it were a local
table.

See also: “metadata” on page 1178.

publication

In MobiLink or SQL Remote, a database object that identifies data that is to be synchronized. In MobiLink,
publications exist only on the clients. A publication consists of articles. SQL Remote users can receive a
publication by subscribing to it. MobiLink users can synchronize a publication by creating a synchronization
subscription to it.

See also:

● “replication” on page 1185
● “article” on page 1163
● “publication update” on page 1182

publication update

In SQL Remote replication, a list of changes made to one or more publications in one database. A publication
update is sent periodically as part of a replication message to the remote database(s).

See also:

● “replication” on page 1185
● “publication” on page 1182

Glossary

1182 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

publisher

In SQL Remote replication, the single user in a database who can exchange replication messages with other
replicating databases.

See also: “replication” on page 1185.

push notification

In QAnywhere, a special message delivered from the server to a QAnywhere client that prompts the client
to initiate a message transmission. In MobiLink server-initiated synchronization, a special message delivered
from a Notifer to a device that contains push request data and internal information.

See also:

● “QAnywhere” on page 1183
● “server-initiated synchronization” on page 1186

push request

In MobiLink server-initiated synchronization, a row of values in a result set that a Notifier checks to
determine if push notifications need to be sent to a device.

See also: “server-initiated synchronization” on page 1186.

QAnywhere

Application-to-application messaging, including mobile device to mobile device and mobile device to and
from the enterprise, that permits communication between custom programs running on mobile or wireless
devices and a centrally located server application.

QAnywhere agent

In QAnywhere, a process running on the client device that monitors the client message store and determines
when message transmission should occur.

query

A SQL statement or group of SQL statements that access and/or manipulate data in a database.

See also: “SQL” on page 1187.

Redirector

A web server plug-in that routes requests and responses between a client and the MobiLink server. This
plug-in also implements load-balancing and failover mechanisms.

reference database

In MobiLink, a SQL Anywhere database used in the development of UltraLite clients. You can use a single
SQL Anywhere database as both reference and consolidated database during development. Databases made
with other products cannot be used as reference databases.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1183

referencing object

An object, such as a view, whose definition directly references another object in the database, such as a table.

See also: “foreign key” on page 1172.

referenced object

An object, such as a table, that is directly referenced in the definition of another object, such as a view.

See also: “primary key” on page 1182.

referential integrity

Adherence to rules governing data consistency, specifically the relationships between the primary and
foreign key values in different tables. To have referential integrity, the values in each foreign key must
correspond to the primary key values of a row in the referenced table.

See also:

● “primary key” on page 1182
● “foreign key” on page 1172

regular expression

A regular expression is a sequence of characters, wildcards, and operators that defines a pattern to search
for within a string.

relational database management system (RDBMS)

A type of database management system that stores data in the form of related tables.

See also: “database management system (DBMS)” on page 1169.

remote database

In MobiLink or SQL Remote, a database that exchanges data with a consolidated database. Remote databases
may share all or some of the data in the consolidated database.

See also:

● “synchronization” on page 1189
● “consolidated database” on page 1166

REMOTE DBA authority

In SQL Remote, a level of permission required by the Message Agent (dbremote). In MobiLink, a level of
permission required by the SQL Anywhere synchronization client (dbmlsync). When the Message Agent
(dbremote) or synchronization client connects as a user who has this authority, it has full DBA access. The
user ID has no additional permissions when not connected through the Message Agent (dbremote) or
synchronization client (dbmlsync).

See also: “DBA authority” on page 1169.

Glossary

1184 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

remote ID

A unique identifier in SQL Anywhere and UltraLite databases that is used by MobiLink. The remote ID is
initially set to NULL and is set to a GUID during a database's first synchronization.

replication

The sharing of data among physically distinct databases. Sybase has three replication technologies:
MobiLink, SQL Remote, and Replication Server.

Replication Agent

See: “LTM” on page 1177.

replication frequency

In SQL Remote replication, a setting for each remote user that determines how often the publisher's message
agent should send replication messages to that remote user.

See also: “replication” on page 1185.

replication message

In SQL Remote or Replication Server, a communication sent between a publishing database and a subscribing
database. Messages contain data, passthrough statements, and information required by the replication system.

See also:

● “replication” on page 1185
● “publication update” on page 1182

Replication Server

A Sybase connection-based replication technology that works with SQL Anywhere and Adaptive Server
Enterprise. It is intended for near-real time replication between a few databases.

See also: “LTM” on page 1177.

role

In conceptual database modeling, a verb or phrase that describes a relationship from one point of view. You
can describe each relationship with two roles. Examples of roles are "contains" and "is a member of."

role name

The name of a foreign key. This is called a role name because it names the relationship between the foreign
table and primary table. By default, the role name is the table name, unless another foreign key is already
using that name, in which case the default role name is the table name followed by a three-digit unique
number. You can also create the role name yourself.

See also: “foreign key” on page 1172.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1185

rollback log

A record of the changes made during each uncommitted transaction. In the event of a ROLLBACK request
or a system failure, uncommitted transactions are reversed out of the database, returning the database to its
former state. Each transaction has a separate rollback log, which is deleted when the transaction is complete.

See also: “transaction” on page 1189.

row-level trigger

A trigger that executes once for each row that is changed.

See also:

● “trigger” on page 1190
● “statement-level trigger” on page 1188

schema

The structure of a database, including tables, columns, and indexes, and the relationships between them.

script

In MobiLink, code written to handle MobiLink events. Scripts programmatically control data exchange to
meet business needs.

See also: “event model” on page 1171.

script-based upload

In MobiLink, a way to customize the upload process as an alternative to using the log file.

script version

In MobiLink, a set of synchronization scripts that are applied together to create a synchronization.

secured feature

A feature specified by the -sf option when a database server is started, so it is not available for any database
running on that database server.

server-initiated synchronization

A way to initiate MobiLink synchronization from the MobiLink server.

server management request

A QAnywhere message that is formatted as XML and sent to the QAnywhere system queue as a way to
administer the server message store or monitor QAnywhere applications.

Glossary

1186 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

server message store

In QAnywhere, a relational database on the server that temporarily stores messages until they are transmitted
to a client message store or JMS system. Messages are exchanged between clients via the server message
store.

service

In Windows operating systems, a way of running applications when the user ID running the application is
not logged on.

session-based synchronization

A type of synchronization where synchronization results in consistent data representation across both the
consolidated and remote databases. MobiLink is session-based.

snapshot isolation

A type of isolation level that returns a committed version of the data for transactions that issue read requests.
SQL Anywhere provides three snapshot isolation levels: snapshot, statement-snapshot, and readonly-
statement-snapshot. When using snapshot isolation, read operations do not block write operations.

See also: “isolation level” on page 1175.

SQL

The language used to communicate with relational databases. ANSI has defined standards for SQL, the latest
of which is SQL-2003. SQL stands, unofficially, for Structured Query Language.

SQL Anywhere

The relational database server component of SQL Anywhere that is intended for use in mobile and embedded
environments or as a server for small and medium-sized businesses. SQL Anywhere is also the name of the
package that contains the SQL Anywhere RDBMS, the UltraLite RDBMS, MobiLink synchronization
software, and other components.

SQL-based synchronization

In MobiLink, a way to synchronize table data to MobiLink-supported consolidated databases using
MobiLink events. For SQL-based synchronization, you can use SQL directly or you can return SQL using
the MobiLink server APIs for Java and .NET.

SQL Remote

A message-based data replication technology for two-way replication between consolidated and remote
databases. The consolidated and remote databases must be SQL Anywhere.

SQL statement

A string containing SQL keywords designed for passing instructions to a DBMS.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1187

See also:

● “schema” on page 1186
● “SQL” on page 1187
● “database management system (DBMS)” on page 1169

statement-level trigger

A trigger that executes after the entire triggering statement is completed.

See also:

● “trigger” on page 1190
● “row-level trigger” on page 1186

stored procedure

A stored procedure is a group of SQL instructions stored in the database and used to execute a set of operations
or queries on a database server

string literal

A string literal is a sequence of characters enclosed in single quotes.

subquery

A SELECT statement that is nested inside another SELECT, INSERT, UPDATE, or DELETE statement,
or another subquery.

There are two types of subquery: correlated and nested.

subscription

In MobiLink synchronization, a link in a client database between a publication and a MobiLink user, allowing
the data described by the publication to be synchronized.

In SQL Remote replication, a link between a publication and a remote user, allowing the user to exchange
updates on that publication with the consolidated database.

See also:

● “publication” on page 1182
● “MobiLink user” on page 1179

Sybase Central

A database management tool that provides SQL Anywhere database settings, properties, and utilities in a
graphical user interface. Sybase Central can also be used for managing other Sybase products, including
MobiLink.

Glossary

1188 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

synchronization

The process of replicating data between databases using MobiLink technology.

In SQL Remote, synchronization is used exclusively to denote the process of initializing a remote database
with an initial set of data.

See also:

● “MobiLink” on page 1179
● “SQL Remote” on page 1187

SYS

A special user that owns most of the system objects. You cannot log in as SYS.

system object

Database objects owned by SYS or dbo.

system table

A table, owned by SYS or dbo, that holds metadata. System tables, also known as data dictionary tables, are
created and maintained by the database server.

system view

A type of view, included in every database, that presents the information held in the system tables in an
easily understood format.

temporary table

A table that is created for the temporary storage of data. There are two types: global and local.

See also:

● “local temporary table” on page 1176
● “global temporary table” on page 1173

transaction

A sequence of SQL statements that comprise a logical unit of work. A transaction is processed in its entirety
or not at all. SQL Anywhere supports transaction processing, with locking features built in to allow
concurrent transactions to access the database without corrupting the data. Transactions end either with a
COMMIT statement, which makes the changes to the data permanent, or a ROLLBACK statement, which
undoes all the changes made during the transaction.

transaction log

A file storing all changes made to a database, in the order in which they are made. It improves performance
and allows data recovery in the event the database file is damaged.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1189

transaction log mirror

An optional identical copy of the transaction log file, maintained simultaneously. Every time a database
change is written to the transaction log file, it is also written to the transaction log mirror file.

A mirror file should be kept on a separate device from the transaction log, so that if either device fails, the
other copy of the log keeps the data safe for recovery.

See also: “transaction log” on page 1189.

transactional integrity

In MobiLink, the guaranteed maintenance of transactions across the synchronization system. Either a
complete transaction is synchronized, or no part of the transaction is synchronized.

transmission rule

In QAnywhere, logic that determines when message transmission is to occur, which messages to transmit,
and when messages should be deleted.

trigger

A special form of stored procedure that is executed automatically when a user runs a query that modifies the
data.

See also:

● “row-level trigger” on page 1186
● “statement-level trigger” on page 1188
● “integrity” on page 1175

UltraLite

A database optimized for small, mobile, and embedded devices. Intended platforms include cell phones,
pagers, and personal organizers.

UltraLite runtime

An in-process relational database management system that includes a built-in MobiLink synchronization
client. The UltraLite runtime is included in the libraries used by each of the UltraLite programming interfaces,
and in the UltraLite engine.

unique constraint

A restriction on a column or set of columns requiring that all non-null values are different. A table can have
multiple unique constraints.

See also:

● “foreign key constraint” on page 1172
● “primary key constraint” on page 1182
● “constraint” on page 1167

Glossary

1190 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

unload

Unloading a database exports the structure and/or data of the database to text files (SQL command files for
the structure, and ASCII comma-separated files for the data). You unload a database with the Unload utility.

In addition, you can unload selected portions of your data using the UNLOAD statement.

upload

The stage in synchronization where data is transferred from a remote database to a consolidated database.

user-defined data type

See “domain” on page 1170.

validate

To test for particular types of file corruption of a database, table, or index.

view

A SELECT statement that is stored in the database as an object. It allows users to see a subset of rows or
columns from one or more tables. Each time a user uses a view of a particular table, or combination of tables,
it is recomputed from the information stored in those tables. Views are useful for security purposes, and to
tailor the appearance of database information to make data access straightforward.

window

The group of rows over which an analytic function is performed. A window may contain one, many, or all
rows of data that has been partitioned according to the grouping specifications provided in the window
definition. The window moves to include the number or range of rows needed to perform the calculations
for the current row in the input. The main benefit of the window construct is that it allows additional
opportunities for grouping and analysis of results, without having to perform additional queries.

Windows

The Microsoft Windows family of operating systems, such as Windows Vista, Windows XP, and Windows
200x.

Windows CE
See “Windows Mobile” on page 1191.

Windows Mobile

A family of operating systems produced by Microsoft for mobile devices.

work table

An internal storage area for interim results during query optimization.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1191

1192

Index
Symbols
#

using in configuration files, 737
&

Unix command line, 62
using in configuration files, 737

-? server option
database server, 166
unsupported on Windows Mobile, 358

-a option
database server, 248
initialization [dbinit] utility, 774
Linux service [dbsvc] utility, 817
log transfer manger [dbltm] utility, 794
log translation [dbtran] utility, 799
Windows service [dbsvc] utility, 821

-ac option
unload [dbunload] utility, 845

-ad option
database server, 248

-af option
initialization [dbinit] utility, 774

-an option
unload [dbunload] utility, 845

-ap option
broadcast repeater [dbns11] utility, 745
unload [dbunload] utility, 845

-ar option
database server, 249
unload [dbunload] utility, 845

-as option
database server, 250
Linux service [dbsvc] utility, 817
Windows service [dbsvc] utility, 821

-b option
backup [dbbackup] utility, 740
data source [dbdsn] utility, 753
database server, 166
initialization [dbinit] utility, 774

-c option
backup [dbbackup] utility, 740
connection strings, 87
data source [dbdsn] utility, 755
database server, 167

dbisqlc utility, 764
histogram [dbhist] utility, 770
information [dbinfo] utility, 772
initialization [dbinit] utility, 774
Interactive SQL [dbisql] utility, 786
log transfer manger [dbltm] utility, 794
log translation [dbtran] utility, 799
ping [dbping] utility, 804
SQL Anywhere console [dbconsole] utility, 827
SQL Anywhere script execution [dbrunsql] utility,
808
stop [dbstop] utility, 831
unload [dbunload] utility, 845
upgrade [dbupgrad] utility, 860
validation [dbvalid] utility, 862

-ca option
database server, 169

-cc option
database server, 169
support [dbsupport] syntax, 835

-cd option
support [dbsupport] syntax, 835

-ce option
support [dbsupport] syntax, 835

-cet option
support [dbsupport] syntax, 835

-ch option
database server, 170
support [dbsupport] syntax, 835

-cid option
support [dbsupport] syntax, 835

-cl option
data source [dbdsn] utility, 752
database server, 171

-cm option
data source [dbdsn] utility, 753
database server, 172
Linux service [dbsvc] utility, 818
unload [dbunload] utility, 845
unsupported on Windows Mobile, 358
Windows service [dbsvc] utility, 824

-cp option
database server, 173
support [dbsupport] syntax, 835
unload [dbunload] utility, 845

-cr option
database server, 174
support [dbsupport] syntax, 835

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1193

-cs option
database server, 175

-cv option
database server, 175

-cw option
data source [dbdsn] utility, 755
database server, 176
unsupported on Windows Mobile, 358

-d option
backup [dbbackup] utility, 740
data source [dbdsn] utility, 752
dbisqlc utility, 764
Interactive SQL [dbisql] utility, 786
Linux service [dbsvc] utility, 816
log translation [dbtran] utility, 799
MobiLink [viewcert], 750
ping [dbping] utility, 804
server enumeration [dblocate] utility, 810
SQL Anywhere script execution [dbrunsql] utility,
808
stop [dbstop] utility, 831
unload [dbunload] utility, 845
validation [dbvalid] utility, 862
Windows service [dbsvc] utility, 820

-d1 option
Interactive SQL [dbisql] utility, 786

-datasource option
Interactive SQL [dbisql] utility, 786
SQL Anywhere console [dbconsole] utility, 827

-dba option
initialization [dbinit] utility, 774

-dbs option
initialization [dbinit] utility, 774

-dc option
unload [dbunload] utility, 845

-dh option
database server, 251

-dl option
Log Transfer Manger [dbltm] utility, 794

-dn option
server enumeration [dblocate] utility, 810

-dr option
data source [dbdsn] utility, 753

-ds option
database server, 251

-dt option
database server, 179

-dv option

server enumeration [dblocate] utility, 810
-e option

SQL Anywhere script execution [dbrunsql] utility,
808
support [dbsupport] syntax, 833
unload [dbunload] utility, 845

-ea option
initialization [dbinit] utility, 774
unload [dbunload] utility, 845

-ec option
database server, 180
securing client/server communications, 1107

-ek option
database server, 252
erase [dberase] utility, 766
initialization [dbinit] utility, 774
log transfer manger [dbltm] utility, 794
log translation [dbtran] utility, 799
transaction log [dblog] utility, 842
unload [dbunload] utility, 845

-en option
ping [dbping] utility, 804

-ep option
database server, 183
erase [dberase] utility, 766
initialization [dbinit] utility, 774
log transfer manger [dbltm] utility, 794
log translation [dbtran] utility, 799
transaction log [dblog] utility, 842
unload [dbunload] utility, 845

-er option
unload [dbunload] utility, 845

-es option
database server, 184

-et option
initialization [dbinit] utility, 774
unload [dbunload] utility, 845

-f option
data source [dbdsn] utility, 753
database server, 184
Interactive SQL [dbisql] utility, 786
log translation [dbtran] utility, 799
spawn [dbspawn] utility, 829
SQL Anywhere script execution [dbrunsql] utility,
808

-fc option
database server, 185

-fips server option

Index

1194 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

AES256_FIPS encryption algorithm, 186
AES_FIPS encryption algorithm, 186

-fx option
validation [dbvalid] utility, 862

-g option
data source [dbdsn] utility, 752
Linux service [dbsvc] utility, 816
log translation [dbtran] utility, 799
SQL Anywhere script execution [dbrunsql] utility,
808
transaction log [dblog] utility, 842
unload [dbunload] utility, 845
Windows service [dbsvc] utility, 820

-ga option
database server, 188

-gb option
database server, 188
unsupported on Windows Mobile, 358

-gc option
database server, 189

-gd option
database server, 189

-ge option
database server, 190
unsupported on Windows Mobile, 358

-gf option
database server, 191

-gk option
database server, 191

-gl option
database server, 192

-gm option
database server, 192

-gn option
database server, 193
database server multiprogramming level, 53
database server usage, 52
effect on intra-query parallelism, 193

-gp option
database server, 194

-gr option
database server, 194

-gss option
database server, 195
database server usage, 52

-gt option
database server, 196
database server usage, 52

-gtc option
database server, 197
database server usage, 52

-gu option
controlling statement execution permissions for the
utility database, 33
database server, 198

-host option
Interactive SQL [dbisql] utility, 786
SQL Anywhere console [dbconsole] utility, 827

-i option
initialization [dbinit] utility, 774
log transfer manger [dbltm] utility, 794
upgrade [dbupgrad] utility, 860
validation [dbvalid] utility, 862
Windows service [dbsvc] utility, 821

-ii option
unload [dbunload] utility, 845

-il option
transaction log [dblog] utility, 842

-im option
database server, 199
in-memory mode, 49

-ip option
MobiLink [viewcert], 750

-ir option
log translation [dbtran] utility, 799
transaction log [dblog] utility, 842

-is option
log translation [dbtran] utility, 799
support [dbsupport] syntax, 833
transaction log [dblog] utility, 842

-it option
log translation [dbtran] utility, 799

-iu option
support [dbsupport] syntax, 833

-ix option
unload [dbunload] utility, 845

-j option
log translation [dbtran] utility, 799

-k option
backup [dbbackup] utility, 740
database server, 201
initialization [dbinit] utility, 774
log translation [dbtran] utility, 799
unload [dbunload] utility, 845

-kl option
database server, 201

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1195

-kr option
database server, 202

-krb option
database server, 203

-ks option
database server, 204

-ksc option
database server, 204

-ksd option
database server, 205

-l option
backup [dbbackup] utility, 740
data source [dbdsn] utility, 752
initialization [dbinit] utility, 774
Linux service [dbsvc] utility, 816
ping [dbping] utility, 804
server licensing [dblic] utility, 813
unload [dbunload] utility, 845
Windows service [dbsvc] utility, 820

-lc option
support [dbsupport] syntax, 833

-le option
initialization [dbinit] utility, 774

-ls option
support [dbsupport] syntax, 833

-m option
broadcast repeater [dbns11] utility, 745
database server, 205, 253
initialization [dbinit] utility, 774
language [dblang] utility, 791
log transfer manger [dbltm] utility, 794
log translation [dbtran] utility, 799
ping [dbping] utility, 804
transaction log [dblog] utility, 842
unload [dbunload] utility, 845

-n option
backup [dbbackup] utility, 740
database option, 253
histogram [dbhist] utility, 770
initialization [dbinit] utility, 774
log translation [dbtran] utility, 799
server enumeration [dblocate] utility, 810
server option, 206
setting database name, 253
transaction log [dblog] utility, 842
unload [dbunload] utility, 845

-nl option
unload [dbunload] utility, 845

-no option
unload [dbunload] utility, 845

-nogui option
Interactive SQL [dbisql] utility, 786

-nr option
support [dbsupport] syntax, 839

-ns option
data source [dbdsn] utility, 753

-o option
backup [dbbackup] utility, 740
broadcast repeater [dbns11] utility, 745
data source [dbdsn] utility, 753
database server, 208
erase [dberase] utility, 766
information [dbinfo] utility, 772
initialization [dbinit] utility, 774
log transfer manger [dbltm] utility, 794
log translation [dbtran] utility, 799
MobiLink [viewcert], 750
operating quietly, 49
ping [dbping] utility, 804
server enumeration [dblocate] utility, 810
server licensing [dblic] utility, 813
SQL Anywhere script execution [dbrunsql] utility,
808
stop [dbstop] utility, 831
support [dbsupport] syntax, 833
transaction log [dblog] utility, 842
unload [dbunload] utility, 845
upgrade [dbupgrad] utility, 860
validation [dbvalid] utility, 862
Windows service [dbsvc] utility, 824

-od option
Linux service [dbsvc] utility, 817

-oe option
logging startup errors, 208
operating quietly, 49

-on option
database server, 209

-onerror option
Interactive SQL [dbisql] utility, 786

-op option
MobiLink [viewcert], 750

-or option
data source [dbdsn] utility, 753

-os option
database server, 210
log transfer manger [dbltm] utility, 794

Index

1196 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-ot option
database server, 210
log transfer manger [dbltm] utility, 794

-p option
broadcast repeater [dbns11] utility, 745
database server, 211
initialization [dbinit] utility, 774
MobiLink [viewcert], 750
server enumeration [dblocate] utility, 810
spawn [dbspawn] utility, 829
unload [dbunload] utility, 845
Windows service [dbsvc] utility, 821

-pc option
database server, 212
ping [dbping] utility, 804
support [dbsupport] syntax, 833

-pd option
ping [dbping] utility, 804
support [dbsupport] syntax, 833

-pe option
data source [dbdsn] utility, 753

-port option
Interactive SQL [dbisql] utility, 786
SQL Anywhere console [dbconsole] utility, 827

-pr option
Linux service [dbsvc] utility, 817

-ps option
ping [dbping] utility, 804
support [dbsupport] syntax, 833

-pt option
database server, 212

-q option
backup [dbbackup] utility, 740
broadcast repeater [dbns11] utility, 745
data source [dbdsn] utility, 753
dbisqlc utility, 764
erase [dberase] utility, 766
information [dbinfo] utility, 772
initialization [dbinit] utility, 774
Interactive SQL [dbisql] utility, 786
language [dblang] utility, 791
Linux service [dbsvc] utility, 818
log transfer manger [dbltm] utility, 794
log translation [dbtran] utility, 799
ping [dbping] utility, 804
server enumeration [dblocate] utility, 810
server licensing [dblic] utility, 813
spawn [dbspawn] utility, 829

SQL Anywhere script execution [dbrunsql] utility,
808
stop [dbstop] utility, 831
support [dbsupport] syntax, 833
transaction log [dblog] utility, 842
unload [dbunload] utility, 845
upgrade [dbupgrad] utility, 860
validation [dbvalid] utility, 862
Windows service [dbsvc] utility, 824

-qc option
SQL Anywhere script execution [dbrunsql] utility,
808
unload [dbunload] utility, 845

-qi option
database server, 213
operating quietly, 49
unsupported on Windows Mobile, 358

-qn option
database server, 213

-qp option
database server, 214

-qs option
database server, 215
operating quietly, 49

-qw option
database server, 215
operating quietly, 49

-r option
backup [dbbackup] utility, 740
database, 255
database server, 216
log translation [dbtran] utility, 799
MobiLink [createcert], 747
support [dbsupport] syntax, 839
transaction log [dblog] utility, 842
unload [dbunload] utility, 845

-rd option
support [dbsupport] syntax, 839

-rg option
Windows service [dbsvc] utility, 821

-rl option
Linux service [dbsvc] utility, 817

-rr option
support [dbsupport] syntax, 839

-rs option
Linux service [dbsvc] utility, 817
Windows service [dbsvc] utility, 821

-rsu option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1197

log translation [dbtran] utility, 799
-s option

backup [dbbackup] utility, 740
broadcast repeater [dbns11] utility, 745
database server, 217
initialization [dbinit] utility, 774
Linux service [dbsvc] utility, 817
log transfer manger [dbltm] utility, 794
log translation [dbtran] utility, 799
MobiLink [createcert], 747
ping [dbping] utility, 804
server enumeration [dblocate] utility, 810
SQL Anywhere script execution [dbrunsql] utility,
808
unsupported on Windows Mobile, 358
validation [dbvalid] utility, 862
Windows service [dbsvc] utility, 821

-sa option
support [dbsupport] syntax, 833

-sb option
database server, 218

-sc option
support [dbsupport] syntax, 833

-sd option
support [dbsupport] syntax, 833
Windows service [dbsvc] utility, 821

-sf option
database server, 218

-sk option
database server, 223

-sm option
database, 255
using to access mirror database, 956

-sn option
database, 257
Windows service [dbsvc] utility, 821

-sr option
log translation [dbtran] utility, 799

-ss option
server enumeration [dblocate] utility, 810

-st option
ping [dbping] utility, 804

-status option
Linux service [dbsvc] utility, 817

-su option
connecting to the utility database, 31
database server, 224

-t option

backup [dbbackup] utility, 740
histogram [dbhist] utility, 770
initialization [dbinit] utility, 774
Linux service [dbsvc] utility, 817
log translation [dbtran] utility, 799
transaction log [dblog] utility, 842
unload [dbunload] utility, 845
validation [dbvalid] utility, 862
Windows service [dbsvc] utility, 820, 821

-ti option
database server, 225

-tl option
database server, 225

-tmf option
database server, 226
unsupported on Windows Mobile, 358

-tmt option
database server, 227
unsupported on Windows Mobile, 358

-tq time option
database server, 227

-u option
database server, 228
histogram [dbhist] utility, 770
information [dbinfo] utility, 772
language [dblang] utility, 791
Linux service [dbsvc] utility, 816
log translation [dbtran] utility, 799
server licensing [dblic] utility, 813
unload [dbunload] utility, 845
unsupported on Windows Mobile, 358
Windows service [dbsvc] utility, 820

-ua option
database server, 228
unsupported on Windows Mobile, 358

-uc option
database server, 228
unsupported on Windows Mobile, 358

-ud option
database server, 229
log transfer manger [dbltm] utility, 794
unsupported on Windows Mobile, 358

-uf option
database server, 230
unsupported on Windows Mobile, 358

-ui option
database server, 230
unsupported on Windows Mobile, 358

Index

1198 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-ul option
Interactive SQL [dbisql] utility, 786

-um option
database server, 231

-ut option
database server, 231
unsupported on Windows Mobile, 358

-ux option
database server, 232
log transfer manger [dbltm] utility, 794
unsupported on Windows Mobile, 358

-v option
data source [dbdsn] utility, 753
database server, 233
log transfer manger [dbltm] utility, 794
server enumeration [dblocate] utility, 810
SQL Anywhere script execution [dbrunsql] utility,
808
unload [dbunload] utility, 845

-version
Interactive SQL [dbisql] utility, 786

-vss option
database server, 233

-w option
data source [dbdsn] utility, 752
Linux service [dbsvc] utility, 816
Windows service [dbsvc] utility, 820

-x option
backup [dbbackup] utility, 740
broadcast repeater [dbns11] utility, 745
database server, 234
dbisqlc utility, 764
Interactive SQL [dbisql] utility, 786
Linux service [dbsvc] utility, 816
log translation [dbtran] utility, 799
stop [dbstop] utility, 831
transaction log [dblog] utility, 842
Windows service [dbsvc] utility, 820

-xa option
database server, 235

-xd option
database server, 236

-xf option
database server, 237

-xi option
unload [dbunload] utility, 845

-xo option
backup [dbbackup] utility, 740

-xp option
database, 258
unsupported on Windows Mobile, 358

-xs option
database server, 237
securing communications, 1112

-xx option
unload [dbunload] utility, 845

-y option
backup [dbbackup] utility, 740
data source [dbdsn] utility, 753
erase [dberase] utility, 766
Linux service [dbsvc] utility, 818
log translation [dbtran] utility, 799
stop [dbstop] utility, 831
unload [dbunload] utility, 845
Windows service [dbsvc] utility, 824

-z option
broadcast repeater [dbns11] utility, 745
database server, 239
debugging network communications problems, 74
initialization [dbinit] utility, 774
log translation [dbtran] utility, 799
ping [dbping] utility, 804
transaction log [dblog] utility, 842

-ze option
database server, 240
initialization [dbinit] utility, 774
unsupported on Windows Mobile, 358

-zl option
database server, 240

-zn option
database server, 241
initialization [dbinit] utility, 774

-zo option
database server, 242

-zoc option
database server, 243

-zp option
database server, 243

-zr option
database server, 244

-zs option
database server, 245

-zt option
database server, 246

.NET Compact Framework

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1199

using with SQL Anywhere for Windows Mobile,
329

.odbc.ini
creating data sources, 753
creating data sources on Mac OS X, 100
specifying in DSN connection parameter, 277
storing encrypted passwords, 280

.saplan file
plan viewer file extension, 693

1254TRK collation
differences from 1254TRKALT, 437

1254TRKALT collation
using, 437

@data option
about, 737
backup [dbbackup] utility, 740
broadcast repeater [dbns11] utility, 745
data source [dbdsn] utility, 752
database server, 165
erase [dberase] utility, 766
histogram [dbhist] utility, 770
information [dbinfo] utility, 772
initialization [dbinit] utility, 774
Interactive SQL [dbisql] utility, 786
log transfer manager utility [dbltm] syntax, 794
log translation [dbtran] utility, 799
ping [dbping] utility, 804
server enumeration [dblocate] utility, 810
server licensing [dblic] utility, 813
spawn [dbspawn] utility, 829
SQL Anywhere console [dbconsole] utility, 827
stop [dbstop] utility, 831
support [dbsupport] syntax, 833
transaction log [dblog] utility, 842
unload [dbunload] utility, 845
unsupported on Windows Mobile, 358
upgrade [dbupgrad] utility, 860
validation [dbvalid] utility, 862
Windows service [dbsvc] utility, 820

@environment-variable option (see @data option)
@filename option (see @data option)

A
accent sensitivity

databases, 774
using French rules, 774

AccentSensitive property

database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

access plans
controlling optimizer's use of, 558

accessing databases
security features, 1064

ActiveReq property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

ActiveSync
required version for SQL Anywhere for Windows
Mobile, 328
Vista, 41

ActiveSync provider installation utility (mlasinst)
privilege elevation may be required on Vista, 41

adding
ECC and RSA certificates, 747
Monitor users, 1002
new rows in Interactive SQL, 696

Address Windowing Extensions
limiting cache size, 176

admin user
Monitor about, 1002

administration tools
features not supported on Windows Mobile, 356
Interactive SQL, 676
Mac OS X hardware requirements, 661
Sybase Central, 660

administration utilities
(see also database administration utilities)
using on Windows Mobile, 349

administrators
Monitor users, 1002

ADO
connecting, 104

ADO.NET sample
using, 332

AES encryption algorithm
about, 1082
initialization [dbinit] utility, 774
unload [dbunload] utility, 845

AES256 encryption algorithm
initialization [dbinit] utility, 774
unload [dbunload] utility, 845

AES256_FIPS encryption algorithm
-fips server option, 186

Index

1200 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

initialization [dbinit] utility, 774
unload [dbunload] utility, 845

AES_FIPS encryption algorithm
-fips server option, 186
initialization [dbinit] utility, 774
unload [dbunload] utility, 845

agent for Replication Server (see LTM)
agent IDs

glossary definition, 1163
Agent table

SQL Anywhere MIB, 1029
agents

about, 1017
AIX

IPv6 support, 143
LIBPATH environment variable, 370
using an LDAP server, 146

alerts
Monitor, 1006
Monitor email notification, 1007
Monitor suppressing, 1009

Alias property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

ALL permission
about, 452
granting, 459

allow_nulls_by_default option
ASE compatibility, 499
connection property description, 598
description, 504
Open Client, 1133
SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

allow_read_client_file option
connection property description, 598
description, 504
SQL Anywhere SNMP Extension Agent OID,
1047

allow_snapshot_isolation option
connection property description, 598
description, 505
SQL Anywhere SNMP Extension Agent OID,
1047

allow_write_client_file option
connection property description, 598

description, 506
SQL Anywhere SNMP Extension Agent OID,
1047

ALTER DATABASE statement
forcing failover in a mirroring system, 958
limitations on Windows Mobile, 357
shutting down the primary server, 957

ALTER LOGIN POLICY statement
altering a login policy, 443

ALTER permission
about, 452
granting, 459

ALTER PROCEDURE statement
effects of setting REPLICATE ON, 1153

ALTER TABLE statement
REPLICATE ON, 1143

ALTER USER statement
assigning a login policy to an existing user, 442
passwords, 457

altering login policies
about, 443

alternate server names
-sn option, 257

AlternateMirrorServerName property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

AlternateServerName property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

ampersand sign
using in configuration files, 737

ANSI
about code pages, 409
conformance, 575
cooperative_commits option, 521
cursors, 507
database options for compatibility, 499
delayed_commits option, 528
delete permissions, 507
update permissions, 507
variable behavior, 506

ansi_blanks option
ASE compatibility, 499
connection property description, 598
description, 506
Open Client, 1133

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1201

SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

ansi_close_cursors_on_rollback option
connection property description, 598
description, 507
SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

ansi_permissions option
connection property description, 598
description, 507
SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

ansi_substring option
ASE compatibility, 499
connection property description, 598
description, 508
SQL Anywhere SNMP Extension Agent OID,
1047

ansi_update_constraints option
connection property description, 598
description, 509
SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

ansinull option
ASE compatibility, 499
connection property description, 598
description, 510
Open Client, 1133
SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

anti SQL log (see rollback logs)
APC_pw parameter

LTM configuration file, 796
starting the LTM, 1145

APC_user parameter
about, 1153
LTM configuration file, 796
starting the LTM, 1145

APCs
about, 1153
function APCs, 1153
Replication Server, 1138

APIs

connecting from SQL Anywhere, 89
APP connection parameter

description, 263
AppInfo connection parameter

description, 263
AppInfo property

connection property description, 598
application profiling

limitations on Windows Mobile, 356
application profiling mode

about, 671
applications

SQL Anywhere OEM Editions, 76
SQL Anywhere Web Edition applications, 82

ApproximateCPUTime property
connection property description, 598

arbiter servers
database mirroring overview, 938
role in database mirroring systems, 941
stopping, 958
supplying connection strings, 235
supplying database names, 235

ArbiterState property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

archive backups
about, 877
defined, 877
restoring, 891

archives
(see also backups)
backing up directly to tape, 883

articles
glossary definition, 1163

ASCII
character set, 408

ASE
(see also Adaptive Server Enterprise)
alternate character set encoding labels, 429

assigning
login policies when creating new users, 442

assigning login policies
about, 442

assistant
connect assistant, 92

ASTART connection parameter
description, 264

Index

1202 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ASTOP connection parameter
description, 265

asyncfullpage mode
database mirroring, 942

asynchronous I/O
disabling use on Linux, 228

asynchronous mode
database mirroring, 942

asynchronous procedures
about, 1153
Replication Server, 1138
user ID, 796

atomic transactions
glossary definition, 1163

auditing
about, 1074
comments, 1077
conn_auditing option, 518
connection property description, 598
connections, 1075
controlling, 511
databases on Windows Mobile, 1093
disabling, 1074
enabling, 1074
example, 1077
log translation [dbtran] utility, 799
log translation [dbtran] utility operations, 1079
recovering uncommitted operations, 890
retrieving audit information, 1076
security features, 1064
Sybase Central, 1074
transaction log [dblog] utility operations, 1079

auditing actions outside the database server
about, 1079

auditing option
connection property description, 598
description, 511
SQL Anywhere SNMP Extension Agent OID,
1047

auditing_options option
connection property description, 598
description, 512
SQL Anywhere SNMP Extension Agent OID,
1047

AuditingTypes property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

authdn parameter
LDAP, 147

authenticated applications
about, 76
authentication signatures, 76
configuring, 78
connection_authentication option, 518
database authentication, 77
database_authentication option, 522
developing, 76
programming interface examples, 79

authenticated connections
connection_authentication option, 518

authenticated databases
database_authentication option, 522
upgrading, 80

Authenticated property
connection property description, 598
database property description, 639

authenticating applications
about, 78

authenticating databases
about, 77

authentication
connections, 518
databases, 522

authentication signatures
about, 76

authorities
about, 448
BACKUP, 448
DBA, 449
inheritance, 446
managing, 439
PROFILE, 450
READCLIENTFILE, 450
READFILE, 451
REMOTE DBA, 451
RESOURCE, 451
revoking, 465
VALIDATE, 451
WRITECLIENTFILE, 452

AuthType property
connection property description, 598

auto_commit option
description, 710
Interactive SQL settings, 708

auto_refetch option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1203

description, 710
Interactive SQL settings, 708

automatic recovery
about, 869

automatic_timestamp option
Transact-SQL compatibility, 499

automating backups
about, 901

automating tasks using schedules and events
about, 921

automation
administration tasks, 922

AutoStart connection parameter
description, 264

autostarting databases
connecting, 126
Windows Vista, 279

AutoStop connection parameter
description, 265

availability
database servers, 62
high, 875

AvailIO property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

AWE cache
-cm server option, 172
-cw server option, 176
running SQL Anywhere on Vista, 41

B
background

running database servers, 62
background_priority option

connection property description [deprecated], 598
description [deprecated], 512
SQL Anywhere SNMP Extension Agent OID,
1047

backup and data recovery
overview, 869
strategies for Windows Mobile, 346

BACKUP authority
about, 448
granting, 459
not inheritable, 448
required for online backups, 869

backup database wizard
unsupported on Windows Mobile, 360
using, 883

backup directory
backup [dbbackup] utility, 740

backup formats
types, 877

backup plans
about, 900
documenting a database, 675

BACKUP statement
limitations on Windows Mobile, 357
making an archive backup, 881
making an image backup, 881

backup utility [dbbackup]
client-side backups, 886
exit codes, 744
receiving errors, 740
syntax, 740

backup.syb file
determining location, 378

BackupEnd system event
description, 926

backups, 886
about, 869
archive, 877
automating, 901
backup [dbbackup] utility, 740
choosing a format, 877
comparing types, 872
components, 909
database mirroring, 961
database only, 740
databases not involved in replication, 911
dbltm, 904
dbmlsync, 904
dbremote, 904
deleting transaction log , 907
full, 873
generating database documentation, 675
internals, 909
introduction, 869
live, 875
LTM management, 1157
MobiLink consolidated databases, 911
MobiLink SQL Anywhere remote databases, 904
offline, 869
online, 869

Index

1204 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

options, 740
parallel, 912
performing on Windows Mobile, 346
permissions for executing, 448
planning, 901
quick start, 871
remote databases, 904
rename and start new transaction log, 740
renaming backup transaction log, 906
renaming transaction log, 905
Replication Agent, 904
Replication Server using delete_old_logs, 1158
restoring from an image, 891
restrictions during, 879
running database, 869
scheduling, 901
SQL Remote, 904
Sybase Central, 882
to tape drives, 881
transaction log - renaming , 907
transaction log - using original, 880
unfinished, 17
using the BACKUP statement, 880
validating, 888, 916
Windows Mobile database, 346

base tables
glossary definition, 1163

basedn parameter
LDAP, 147

batch files
starting database servers with dbspawn, 163
starting servers, 829

batch mode
for LTM, 1155

batch_ltl_cmds parameter
LTM configuration file, 796

batch_ltl_mem parameter
LTM configuration file, 796

batch_ltl_sz parameter
LTM configuration file, 796

BCAST protocol option
description, 302
using IPv6 addresses, 143

bell option
description, 711
Interactive SQL settings, 708

benefits of database mirroring
about, 941

BINARY data types
maximum size, 654

bit arrays
glossary definition, 1164

blackouts
about, 1000

blank padding
about, 774
initialization [dbinit] utility, 774

BlankPadding property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

blanks
ANSI behavior, 506

BLISTENER protocol option
description, 303

blob_threshold option
description, 512
SQL Remote replication option, 502

BlockedOn property
connection property description, 598

blocking option
connection property description, 598
description, 513
SQL Anywhere SNMP Extension Agent OID,
1047

blocking_timeout option
connection property description, 598
description, 513
SQL Anywhere SNMP Extension Agent OID,
1047

boolean values
connection parameters, 262
protocol options, 301

Broadcast protocol option
description, 302
using IPv6 addresses, 143

broadcast repeater utility [dbns11]
syntax, 745
using, 136

BroadcastListener protocol option
description, 303

buffering
Replication Server replication commands, 1155

bugs
providing feedback, xvii

build number

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1205

SQL Anywhere, 233
BuildChange property

server property description, 624
BuildClient property

server property description, 624
BuildProduction property

server property description, 624
BuildReproducible property

server property description, 624
bulk loading

option, 49
bulk operations

-b server option, 166
business rules

glossary definition, 1164
BytesReceived property

connection property description, 598
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

BytesReceivedUncomp property
connection property description, 598
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

BytesSent property
connection property description, 598
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

BytesSentUncomp property
connection property description, 598
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

C
cache

AWE on Vista, 41
database server options, 48
max_plans_cached option, 546
maximum size, 654
size option, 48

cache buffers
performance, 167

cache size
default, 168

displaying in database server messages window,
175
encrypted database issues, 1087
limit, 654
limiting for AWE, 172
setting, 167
setting maximum, 170
setting minimum, 171
static, 169

cache warming
database page collection, 169
reloading the cache with pages, 174
server messages, 175

CacheAllocated property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

CacheFile property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

CacheFileDirty property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

CacheFree property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

CacheHits property
connection property description, 598
database property description, 639
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032, 1041

CachePanics property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

CachePinned property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

CacheRead property
connection property description, 598
database property description, 639
server property description, 624

Index

1206 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere SNMP Extension Agent OID,
1032, 1041

CacheReadIndInt property
connection property description, 598
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

CacheReadIndLeaf property
connection property description, 598
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

CacheReadTable property
connection property description, 598
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

CacheReadWorkTable property
connection property description, 598
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

CacheReplacements property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

CacheScavenges property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

CacheScavengeVisited property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

CacheSizingStatistics property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

caching
server names, 137

callback functions
database server, 185

cannot find database server
locating a server, 134

Capabilities property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

carriers
glossary definition, 1164

CarverHeapPages property
connection property description, 598
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

case sensitivity
command line, 42
connection parameters, 262
database name, 47
database options, 489
dbinit utility, 774
initialization [dbinit] utility, 774
international aspects, 412
server name, 47
Turkish case-insensitive databases, 437
Turkish case-sensitive databases, 436

CaseSensitive property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

CatalogCollation property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

CBSIZE connection parameter
description, 267
TCP/IP, 144

CD-ROM
deployment, 216

Certicom
encrypting client/server communications, 180

certificate authorities
transport-layer security, 1106

certificate chains
transport-layer security, 1102

certificate creation utility [createcert]
syntax, 747

certificate requests
viewing, 750

certificate revocation lists
viewing, 750

certificate utilities
transport-layer security, 1120

certificate viewer utility [viewcert]
syntax, 750

certificate_company protocol option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1207

description, 304
certificate_name protocol option

description, 305
certificate_unit protocol option

description, 306
certificates

certificate_company protocol option, 304
certificate_name protocol option, 305
certificate_unit protocol option, 306
creating ECC, 747
creating RSA, 747
digital certificates in transport-layer security, 1101
trusted_certificates protocol option, 325
viewing, 750

chained option
ASE compatibility, 499
connection property description, 598
description, 514
Open Client, 1133
SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

chained transaction mode
chained option, 514

change log file settings wizard
starting a transaction log mirror for an existing
database, 16
unsupported on Windows Mobile, 360
using, 16

changing collations
about, 427

CHAR collation
about, 419

CHAR data type
and host variables, 506
collation sequence for new databases, 774
encoding for new databases, 774

char_charset alias
about, 429

character encoding
definition, 407

character set considerations
LTM, 1155

character set conversion
about, 410
client/server, 410
ICU, 410
SQL statements, 410

character sets
about, 400
alternate encodings, 429
application, 415
ASE labels, 429
connection parameter, 266
conversion, 410
definition, 407
determining if a character set is supported, 429
determining the CHAR character set, 424
determining the NCHAR character set, 424
encoding, 400
fixed width, 409
glossary definition, 1164
IANA labels, 429
IANA labels list, 433
ICU labels, 429
in SQL Anywhere, 409
initialization [dbinit] utility, 774
Java labels, 429
labels, 433
list of supplied CHAR encodings, 429
LTM, 1156
MIME labels, 429
multibyte, 409
multibyte collations, 416
Open Client/Open Server collations, 1155
recommended on Unix platforms, 434
recommended on Windows platforms, 433
Replication Server, 1150
server, 415
single-byte, 408
specifying, 374
Turkish databases, 436
Unicode, 416
Unix default, 415
unloading data, 267
variable width, 409
Windows, 409
Windows default, 415

character substitution
on_charset_conversion_failure option, 556

characters
sorting using collations, 416

characters V and W
identifying in the Swedish UCA collation, 423

CharSet connection parameter
description, 266

Index

1208 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

CharSet property
connection property description, 598
database property description, 639
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035, 1044

CHECK constraints
glossary definition, 1164
unloading databases, 856

check for updates
about, 732

checking for software updates
about, 732

checking in
files from Interactive SQL, 703

checking out
files from Interactive SQL, 702

checkpoint logs
about, 18

checkpoint only mode
database server, 199

checkpoint_time option
connection property description, 598
description, 514
SQL Anywhere SNMP Extension Agent OID,
1047
using, 910

CheckpointLogBitmapPagesWritten property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

CheckpointLogBitmapSize property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

CheckpointLogCommitToDisk property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

CheckpointLogPageInUse property
SQL Anywhere SNMP Extension Agent OID,
1041

CheckpointLogPagesInUse property
database property description, 639

CheckpointLogPagesRelocated property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

CheckpointLogPagesWritten property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

CheckpointLogSavePreimage property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

CheckpointLogSize property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

CheckpointLogWrites property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

checkpoints
about, 19
backups, 909
checkpoint_time option, 514
deleting transaction log after, 205
glossary definition, 1164
interval between, 189
not allowed during backups, 879
urgency, 910

CheckpointUrgency property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

Checksum property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

checksums
about, 917
automatically enabled for Windows Mobile
databases, 917
enabled for Windows Mobile databases, 341
glossary definition, 1165
initialization [dbinit] utility, 774
validation [dbvalid] utility, 862

Chkpt property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

ChkptFlush property
database property description, 639

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1209

SQL Anywhere SNMP Extension Agent OID,
1041

ChkptPage property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

choosing collations
about, 419
considerations, 420

choosing database mirroring mode
about, 942

ciphers
transport-layer security, 1095

cis_option option
description, 515
obtaining property value, 598
SQL Anywhere SNMP Extension Agent OID,
1047

cis_rowset_size option
connection property description, 598
description, 515
SQL Anywhere SNMP Extension Agent OID,
1047

CleanablePagesAdded property
database property description, 639

CleanablePagesCleaned property
database property description, 639

CleanableRowsAdded property
database property description, 639

CleanableRowsCleaned property
database property description, 639

clearing
SQL statements pane, 680

client files
allow_read_client_file option, 504
allow_write_client_file option, 506
isql_allow_read_client_file option [Interactive
SQL], 715
isql_allow_write_client_file option [Interactive
SQL], 715
read_client_file secured feature, 218
READCLIENTFILE authority, 450
write_client_file secured feature, 218
WRITECLIENTFILE authority, 452

client message store IDs
glossary definition, 1165

client message stores
glossary definition, 1165

client security trusted_certificates protocol option
MobiLink transport-layer security, 1116

client side
backup quick start, 871
backups, 886
DatabaseKey [DBKEY] connection parameter, 274
Encryption [ENC] connection parameter, 280

client statement caching
about, 545

client/server
character set conversion, 410
glossary definition, 1165
SQL statements, 410

client/server communications
language issues, 407

ClientLibrary property
connection property description, 598

ClientNodeAddress property
connection property description, 598

ClientPort property
connection property description, 598

ClientPort protocol option
description, 307

clients
configuring to trust a certificate, 1106
connecting to mirrored databases, 954
identifying, 263
Kerberos, 115
starting SQL Anywhere with transport-layer
security, 1108

ClientStmtCacheHits property
connection property description, 598
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

ClientStmtCacheMisses property
connection property description, 598
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

close_on_endtrans option
connection property description, 598
description, 516
Open Client, 1133
SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

clustered hash group by

Index

1210 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

optimization_workload option, 560
clusters

about, 965
Code Editor

about, 666
customizing appearance, 666
fonts, 666
keyboard shortcuts, 666
opening, 666

code pages
ANSI, 409
default_isql_encoding option, 713
definition, 407
glossary definition, 1165
Interactive SQL [dbisql] utility, 786
OEM, 409
overview, 408
recommended on Unix platforms, 434
recommended on Windows platforms, 433
Windows, 409

Collation property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

collation sequences
initialization [dbinit] utility, 774

collation tailoring
about, 420
dbinit utility, 774
limited support on Windows Mobile, 339
options, 420
Swedish, 423

collations
about, 416
Adaptive Server Enterprise collations, 431
alternate, 429
changing, 427
choosing, 419
creating databases, 426
default, 30
default for German databases, 416
definition, 407
determining the CHAR collation, 424
determining the default, 424
determining the NCHAR collation, 424
differences between supported Turkish collations,
437
glossary definition, 1165

list of supported collations, 429
LTM character set issues, 1155
LTM configuration file settings, 1156
LTM internationalization files, 1155
multibyte, 416
recommended on Unix platforms, 434
recommended on Windows platforms, 433
Replication Server, 1150
sorting characters with, 416
SQL Anywhere databases, 419
tailoring during initialization, 774
Turkish databases, 436

collect_statistics_on_dml_updates option
connection property description, 598
description, 516
SQL Anywhere SNMP Extension Agent OID,
1047

CollectStatistics property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

column names
international aspects, 412

column permissions
setting, 459

columns
encrypting, 1088
limitations, 654
looking up in Interactive SQL, 688
permissions, 459

combining
multiple statements in Interactive SQL, 683

comma delimited files
input_format option, 714
output_format option, 722

command delimiter
dbisqlc utility, 764
Interactive SQL [dbisql] utility, 786

command echo
echo option, 714

command files
glossary definition, 1165
making Interactive SQL the default editor, 683

command history window
recalling commands in Interactive SQL, 685
using in Interactive SQL, 685

command line
case sensitivity, 42

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1211

commonly-used options, 46
database server, 156
in configuration file, 165
starting the server, 42
using configuration files, 737

command line utilities
backup [dbbackup] syntax, 740
broadcast repeater [dbns11] syntax, 745
createcert syntax, 747
createkey syntax, 790
data source [dbdsn] syntax, 752
dbisqlc syntax, 764
erase [dberase] syntax, 766
file hiding [dbfhide] syntax, 768
histogram [dbhist] syntax, 770
information [dbinfo] syntax, 772
initialization [dbinit] syntax, 774
Interactive SQL [dbisql] syntax, 786
language selection [dblang] syntax, 791
Linux service [dbsvc] syntax, 816
log transfer manager [dbltm] syntax, 794
log translation [dbtran] syntax, 799
MobiLink certificate creation [createcert] syntax,
747
ping [dbping] syntax, 804
rebuild syntax, 807
server enumeration [dblocate] syntax, 810
server licensing [dblic] syntax, 813
SQL Anywhere console [dbconsole] utility, 827
SQL Anywhere script execution [dbrunsql] syntax,
808
start server in background [dbspawn] syntax, 829
stop server [dbstop] syntax, 831
support [dbsupport] syntax, 833
transaction log [dblog] syntax, 842
unload [dbunload] syntax, 845
upgrade [dbupgrad] syntax, 860
validation [dbvalid] syntax, 862
viewcert syntax, 750
Windows service [dbsvc] syntax, 820

command parameter files
about, 737

command prompts
conventions, xv
curly braces, xv
environment variables, xv
parentheses, xv
quotes, xv

command shells
conventions, xv
curly braces, xv
environment variables, xv
parentheses, xv
quotes, xv

command_delimiter option
description, 711
Interactive SQL settings, 708

CommandLine property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

commands
canceling in Interactive SQL, 687
editing in Interactive SQL, 685
executing in Interactive SQL, 681
interrupting in Interactive SQL, 687
logging in Interactive SQL, 687
recalling in Interactive SQL, 685
stopping in Interactive SQL, 687

CommBufferSize connection parameter
description, 267
TCP/IP, 144

comments
auditing, 1077

commercial certificate authorities
transport-layer security, 1101

Commit property
connection property description, 598

COMMIT statement
auto_commit option, 710
LTM, 1147

commit_on_exit option
description, 712
Interactive SQL settings, 708

CommitFile property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

commits
cooperative_commit_timeout option, 520
cooperative_commits option, 521
delayed_commit_timeout option, 528
delayed_commits option, 528

CommLink property
connection property description, 598

CommLinks connection parameter

Index

1212 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

description, 268
options, 55
parentheses, 410

CommNetworkLink property
connection property description, 598

common name
certificate_name protocol option, 305
verifying in MobiLink transport-layer security,
1116

common table expressions
max_recursive_iterations option, 548

CommProtocol property
connection property description, 598

communication compression
Compress [COMP] connection parameter, 270
CompressionThreshold [COMPTH] connection
parameter, 271

communication parameters (see connection
parameters)
communication streams

glossary definition, 1166
communications

-ec server option, 180
about, 141
database server, 234
DatabaseKey [DBKEY] connection parameter, 274
debugging, 239
Encryption [ENC] connection parameter, 280
protocol options, 301
supported, 142
troubleshooting, 151

COMP connection parameter
description, 270

CompactPlatformVer property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

company names
server licensing [dblic] utility, 813

CompanyName property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

comparing
backup types, 872
TIMESTAMP, 528

compatibility
ANSI, 499

SQL, 499
Transact-SQL, 499

compatibility options
allow_nulls_by_default, 504
alphabetical list of database compatibility options,
499
ansi_blanks, 506
ansi_close_cursors_on_rollback, 507
ansi_permissions, 507
ansi_substring, 508
ansi_update_constraints, 509
ansinull, 510
ASE compatibility options, 499
chained, 514
classification, 493
close_on_endtrans, 516
continue_after_raiserror, 519
conversion_error, 520
escape_character, 530
fire_triggers, 531
initial settings, 492
isolation_level, 535
non_keywords, 552
on_tsql_error, 557
quoted_identifier, 567
sql_flagger_error_level, 575
sql_flagger_warning_level, 576
string_rtruncation, 580
time_format, 584
timestamp_format, 585
Transact-SQL compatibility options, 499
tsql_outer_joins, 588
tsql_variables, 588

Compress connection parameter
description, 270

compressing
packets, 212

compression
encrypted database files, 1082
performance, 149

compression option
description, 517
SQL Remote replication option, 502

Compression property
connection property description, 598

CompressionThreshold connection parameter
description, 271

COMPTH connection parameter

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1213

description, 271
computed columns

adding to new rows in Interactive SQL, 696
recalculating in Interactive SQL, 697
recalculating when unloading databases, 845
unloading databases, 856
updating in Interactive SQL, 697

CON connection parameter
description, 272

concurrency
glossary definition, 1166

concurrent connections
setting maximum, 192

conditional parsing
configuration files, 738

configuration files
(see also @data option)
about, 737
adding simple encryption with dbfhide, 768
conditional parsing, 738
creating LTM, 1154
for the LTM, 796
format for LTM, 1154
hiding, 768
log transfer manger [dbltm] utility, 794
LTM, 1154
LTM command line, 794
option, 165

configuring
databases for Windows Mobile, 339
interfaces file, 1128
LTM, 1154
ODBC data sources, 98
SQL Anywhere Console [dbconsole] utility, 730
SQL Anywhere database users for Replication
Server, 1149
SQL Anywhere databases for Replication Server,
1148
sql.ini, 1128
text completion, 726
using dbconsole, 827

configuring data sources
using the ODBC Administrator, 98

configuring databases
Windows Mobile, 339

configuring MobiLink clients to use transport-layer
security

about, 1115

configuring SQL Anywhere clients to use transport-
layer security

about, 1117
configuring UltraLite clients to use transport-layer
security

about, 1118
conflict resolution

glossary definition, 1166
conn_auditing option

connection property description, 598
description, 518
SQL Anywhere SNMP Extension Agent OID,
1047
using, 1075

ConnCount property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

connect assistant
about, 92

Connect system event
description, 926

connect window
accessing, 93
connect assistant, 92
overview, 92

connected users
managing, 467

ConnectFailed system event
description, 926
example, 928
login_procedure option example, 542

connecting
ADO, 104
autostarting a server, 134
BroadcastListener [BLISTENER] protocol option,
303
character sets, 410
ClientPort [CPORT] protocol option, 307
connect assistant, 92
connect window overview, 92
database connection scenarios, 124
dblocate and LDAP, 812
firewalls, 144
from Interactive SQL, 92
from SQL Anywhere Console utility, 92
from Sybase Central, 92
HOST [IP] protocol option, 310

Index

1214 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

integrated logins, 1068
LDAP protocol option, 313
locating a server, 134
OLE DB, 104
permission, 455
RAS, 145
ServerPort [PORT] protocol option, 321
starting a database without connecting, 59
starting a local server, 125
Sybase Central connection profiles, 95
to a local database, 125
to databases, 85
using a data source, 127
using LDAP, 146
utility database, 31
Windows Mobile, 336
Windows Mobile and ODBC data sources, 102
Windows Mobile databases and desktop
applications, 91

connecting databases
about, 85

connecting to a database
about, 85
Windows Mobile, 336

connecting to the utility database
about, 31

connecting Windows Mobile devices
about, 336

connection assistant (see connect assistant)
connection IDs

about, 85
glossary definition, 1166

connection parameters
(see also protocol options)
about, 261
alphabetical list, 261
and connection strings, 87
backup [dbbackup] utility, 740
boolean values, 262
case sensitivity, 262
conflicts, 87
data source [dbdsn] utility, 752
data sources, 97
dbisqlc utility, 764
Delphi, 756
DescribeCursor, 756
Description, 756
Driver, 756

embedded databases, 87
empty values, 87
establishing connections, 89
GetTypeInfoChar, 756
information [dbinfo] utility, 772
InitString, 756
Interactive SQL [dbisql] utility, 786
introduction, 86
IsolationLevel, 756
KeysInSQLStatistics, 756
LazyAutocommit, 756
location, 133
log translation [dbtran] utility, 799
ODBC data sources, 756
overview, 262
ping [dbping] utility, 804
precedence, 87
PrefetchOnOpen, 756
PreventNotCapable, 756
priority, 87
setting, 87
SQL Anywhere, 262
SQL Anywhere console [dbconsole] utility, 827
SQL Anywhere script execution [dbrunsql] utility,
808
stop [dbstop] utility, 831
SuppressWarnings, 756
tips, 87
TranslationDLL, 756
TranslationName, 756
TranslationOption, 756
unload [dbunload] utility, 845
upgrade [dbupgrad] utility, 860
using default parameters, 130
validation [dbvalid] utility, 862

connection profiles
about, 94
connecting automatically, 95
creating, 95
editing, 95
exporting, 96
glossary definition, 1166
importing, 95

connection properties
alphabetical list, 598
case sensitivity, 598
reporting, 804

connection scenarios

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1215

overview, 124
connection strings

about, 87
alphabetical list of connection parameters, 261
character sets, 410
empty connection parameters, 87
introduction, 86
priority for duplicate parameters, 87
representing, 86
spaces in, 86

connection-initiated synchronization
glossary definition, 1166

connection_authentication option
connection property description, 598
description, 518
SQL Anywhere SNMP Extension Agent OID,
1047
using, 78

CONNECTION_PROPERTY function
alphabetical list of connection properties, 598
obtaining option values, 490

ConnectionName connection parameter
description, 272

connections
about, 85
alphabetical list of properties, 598
auditing, 1075
authenticating for the SQL Anywhere OEM Edition,
79
authentication, 518
autostarting databases, 126
connecting to a database on Windows Mobile, 336
creating for primary sites, 1144
creating for replicate sites, 1145
database mirroring, 954
dedicated_task option, 526
default parameters, 130
definition, 85
details, 132
dropping with -ti server option, 225
embedded database, 126
enabling database features, 574
from utilities, 131
Interactive SQL, 138
limiting, 192
limiting temporary file space, 583
limiting temporary space, 550
liveness, 225

local database, 124
locating a server, 134
login policies, 440
maximum temporary file space, 583
network, 128
overview, 85
performance, 137
problems, 132
programming interfaces, 89
properties, 598
securing features, 1066
setting a maximum number using login_procedure
option, 541
simple, 124
testing embedded SQL performance, 139
troubleshooting, 132
troubleshooting with dblocate, 810
troubleshooting with dbping, 804

ConnsDisabled property
database property description, 639
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035, 1044

console (see database server messages window) (see
SQL Anywhere Console utility) (see SQL Anywhere
Monitor console)
console utility [dbconsole]

configuring, 730
syntax, 827
using, 729

ConsoleLogFile property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

ConsoleLogMaxSize property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

consolidated databases
glossary definition, 1166

constraints
glossary definition, 1167

contention
glossary definition, 1167

continue_after_raiserror option
ASE compatibility, 499
connection property description, 598
description, 519

Index

1216 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

controlling the tasks users can perform
about, 1071

controlling threading behavior
about, 52

conventions
command prompts, xv
command shells, xv
documentation, xiv
file names in documentation, xiv

conversion_error option
connection property description, 598
description, 520
SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

converting
PKI object encoding, 750

cooperative_commit_timeout option
connection property description, 598
description, 520
SQL Anywhere SNMP Extension Agent OID,
1047

cooperative_commits option
connection property description, 598
description, 521
SQL Anywhere SNMP Extension Agent OID,
1047

copy cell
in Interactive SQL, 697

copy column
in Interactive SQL, 697

copy selected rows
in Interactive SQL, 697

copying
database objects in the SQL Anywhere plug-in,
671
rows in Interactive SQL, 697

copying databases
security concerns, 123
to your Windows Mobile device, 344

cores
specifying number used by database server, 197

correlation names
glossary definition, 1167

corrupt databases

about, 888, 916
CPORT protocol option

description, 307
CPU

-gt server option, 196
number used, 48

crashes
reporting, 83

create backup images wizard
using, 883

create connection statement
about, 1145
Replication Server, 1144

CREATE DATABASE statement
creating databases for Windows Mobile, 343
file administration statement permissions, 33
limitations on Windows Mobile, 357
permissions, 49
using, 22
utility database, 30

create database wizard
list of collation sequences, 774
unsupported on Windows Mobile, 360
using, 21
Windows Mobile, 341

CREATE DBSPACE statement
using, 27

create dbspace wizard
using, 27

CREATE DECRYPTED DATABASE statement
using, 1086

CREATE ENCRYPTED DATABASE statement
compared to CREATE ENCRYPTED FILE
statement, 1085
using, 1085

CREATE ENCRYPTED FILE statement
compared to CREATE ENCRYPTED DATABASE
statement, 1085
decrypting databases for technical support, 1086
encrypting databases for technical support, 1085

CREATE EVENT statement
limitations on Windows Mobile, 357

create event wizard
using, 934

CREATE EXISTING TABLE statement
unsupported on Windows Mobile, 357

CREATE EXTERNLOGIN statement
unsupported on Windows Mobile, 357

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1217

CREATE FUNCTION statement
limitations on Windows Mobile, 357

create group wizard
using, 469

create integrated login wizard
using, 107

CREATE LOGIN POLICY statement
creating a new login policy, 441
increasing password security, 1069

create login policy wizard
using, 441

create maintenance plan wizard
limited support on Windows Mobile, 360
using, 902

CREATE ON permission
about, 452

CREATE permissions
dbspaces, 26

create replication definition statement
qualifying table owner for Replication Server, 1145

create schedule wizard
using, 925

CREATE SERVER statement
unsupported on Windows Mobile, 357

create service wizard
unsupported on Windows Mobile, 360
using, 65

CREATE SUBSCRIPTION statement
Replication Server, 1146

CREATE TABLE statement
limitations on Windows Mobile, 357

CREATE USER statement
creating a user and assigning a login policy, 442
new users, 455
using, 456
without password, 472

create user wizard
using, 456

createcert utility
syntax, 747
usage, 1101

createkey utility
syntax, 790

creating
connection profiles, 95
database with encrypted tables using existing
database, 1091
databases for Windows Mobile, 340

databases from SQL, 22
databases from the command line, 23
databases with dbinit, 774
dbspaces, 26
groups, 469
Kerberos logins, 118
login policies, 441
new certificates, 747
ODBC data sources using the Connect window, 98
ODBC data sources using the ODBC Administrator,
98
ODBC data sources with dbdsn, 752
replication definitions for Replication Server, 1145
Replication Server primary site connections, 1144
Replication Server replicate site connections, 1145
strongly-encrypted database, 1083
strongly-encrypted database using existing database,
1083
subscriptions for Replication Server, 1146
users, 455

creating databases
about, 21
create database wizard, 21
options, 774
security, 1081
Windows Mobile, 340

creating databases for Windows Mobile
CREATE DATABASE statement, 343
dbinit utility, 343
Interactive SQL, 343
Sybase Central, 341

creating digital certificates
transport-layer security, 1101

creating enterprise root certificates
transport-layer security, 1104

creating Kerberos login mappings
about, 118

creating login policies
about, 441

creating signed certificates
transport-layer security, 1104

creating users
about, 442

creator ID
glossary definition, 1167

cryptography
public key, 1095

CS connection parameter

Index

1218 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

description, 266
CSFC5KTNAME environment variable

Kerberos, 115
CURRENT USER

environment settings, 396
CurrentCacheSize property

server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

CurrentLineNumber property
connection property description, 598

CurrentProcedure property
connection property description, 598

CurrentRedoPos property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

CurrIO property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

CurrRead property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

CurrWrite property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

cursor positions
glossary definition, 1167

Cursor property
connection property description, 598

cursor result sets
glossary definition, 1167

CursorOpen property
connection property description, 598

cursors
and transactions, 516
ansi_close_cursors_on_rollback option, 507
close_on_endtrans option, 516
connection limit, 483
database options, 489
glossary definition, 1167
max_cursor_count option, 545

CyberSafe Kerberos client
Unix support, 115
Windows support, 115

D
DAC

rules for nested views and tables, 480
daemon

-ud database server option, 229
log transfer manger [dbltm] utility, 794
LTM, 794
Replication Agent, 794
running database server as, 62

data cube
glossary definition, 1168

data manipulation language
glossary definition, 1168

data recovery
about, 869

data source utility [dbdsn]
exit codes, 756
privilege elevation may be required on Vista, 41
syntax, 752
system information file, 756

data sources
about, 97
connection parameters, 86
creating for Windows Mobile, 337
creating ODBC with dbdsn, 752
data source [dbdsn] utility, 752
embedded SQL, 97
example, 127
file, 101
generating using the Connect window, 98
generating using the ODBC Administrator, 98
Interactive SQL [dbisql] utility, 786
Mac OS X, 100
ODBC, 97
ODBC connection parameters, 756
SQL Anywhere console [dbconsole] utility, 827
Unix, 102
using on Windows Mobile, 102

data type conversion
errors, 520

data types
glossary definition, 1168
limitations, 654
supported, 1151

database access
controlling, 1068
controlling the tasks users can perform, 1071

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1219

database administration utilities
about, 736

database administrator
glossary definition, 1168

database collations
about, 419

database connections
glossary definition, 1169
ping [dbping] utility, 804

database documentation wizard
about, 675

database documenting
about, 675

database encryption
about, 1082
Windows Mobile, 340

database file encryption
initialization [dbinit] utility, 774

database files
about, 12
backups, 909
encrypting, 1082
encrypting using dbinit, 774
erasing with dberase, 766
glossary definition, 1169
limit, 26
location, 42
maximum size, 654
media failure, 889
minimum size, 774
NDS, 163
paths, 163
security, 1066
UNC filenames, 163

database information
getting with dbinfo, 772

database mirroring
-sm option, 255
-sn option, 257
-xa option, 235
-xf option, 237
-xp option, 258
about, 938
arbiter server role, 941
asyncfullpage mode, 942
asynchronous mode, 942
backups, 961
benefits, 941

client connections, 954
configuring, 954
determining the primary server, 955
forcing failover, 958
LOAD TABLE statement restrictions, 940
log files, 959
network database server required, 940
only TCP/IP connections supported, 940
performance, 961
preferred servers, 956
quorums, 939
read-only access to mirror server, 956
recovering from primary server failure, 959
restrictions, 940
role switching, 938
scenarios, 961
setting synchronize_mirror_on_commit option, 582
shutting down the primary server, 957
SQL Anywhere SNMP Extension Agent trap, 1026
state information files, 944
stopping a database server, 958
synchronization modes, 942
synchronization states, 943
synchronous mode, 942
system events, 960
transaction log cannot be truncated, 940
tutorial, 945, 949
unsupported on Windows Mobile, 356

database monitoring
about, 973

database names
case sensitivity, 47
glossary definition, 1169
maximum length, 654
option, 46
setting, 253

database object permissions
about, 452

database objects
copying in the SQL Anywhere plug-in, 672
determining dbspace, 25
glossary definition, 1169

database options
about, 488
alphabetical list of database compatibility options,
499
alphabetical list of database options, 493
alphabetical list of replication agent options, 503

Index

1220 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

alphabetical list of SQL Remote options, 502
alphabetical list of synchronization options, 502
alphabetical list of Transact-SQL compatibility
options, 499
ASE compatibility options, 499
case sensitivity, 489
classification, 493
deleting settings, 492
finding values, 490
initial settings, 492
Interactive SQL options, 708
isolation_level database option, 535
monitoring settings, 491
OIDs for SQL Anywhere SNMP Extension Agent,
1047
Open Client, 1133
overview, 487
read_past_deleted, 567
Replication Agent, 503
retrieving with the SQL Anywhere SNMP Extension
Agent, 1024
scope and duration, 489
setting, 488
setting for SQL Anywhere MobiLink clients, 502
setting in Interactive SQL, 708
setting with the SQL Anywhere SNMP Extension
Agent, 1025
SQL Remote replication options, 502
startup settings, 1133
Transact-SQL compatibility options, 499
truncate_timestamp_values, 587

database owner
glossary definition, 1169

database pages
collecting for cache warming, 169
displaying size, 772
warming the database cache, 174

database permissions and authorities
about, 446

database properties
alphabetical list, 639
case sensitivity, 639
OIDs for SQL Anywhere SNMP Extension Agent,
1044
reporting, 804
retrieving with the SQL Anywhere SNMP Extension
Agent, 1024

setting with the SQL Anywhere SNMP Extension
Agent, 1025

database server message log
about, 43
limiting size, 210
obtaining name, 208
renaming and restarting, 209
specifying file, 208
truncating, 210

database server messages window
about, 43
displaying, 213
leaving maximized, 213
suppressing, 215
suppressing performance messages, 214
using on Linux, 232

database server monitoring
about, 973

database server properties (see server properties)
case sensitivity, 624

database servers
alphabetical list of properties, 624
autostarting, 134
autostarting on Windows Vista, 279
command line, 156
commonly-used options, 46
connecting to, 3
default, 206
differences between personal and network servers,
38
disabling database features, 1072
glossary definition, 1169
high availability with database mirroring, 938
interface, 5
locating, 134
locating with dbping, 138
logging actions, 43
maximum name length, 654
monitoring, 973
multiprogramming level, 53
name, 206
name caching, 137
name option, 46
name restrictions, 207
name truncation length, 207
number of cores used, 197
options, 156
preventing from becoming default, 236

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1221

preventing from starting, 264
properties, 624
quiet mode, 49
running, 3
running as a daemon, 62
running in the background, 62
running on Vista, 40
SATMP environment variable, 379
security, 1081
services, 62
shutting down, 227
silent, 49
specifying alternate name for a mirror server, 255
specifying alternate names, 257
starting, 42
starting on Unix, 40
starting on Windows Mobile, 336
starting on Windows operating systems, 39
starting with transport-layer security, 1107
stopping, 58
stopping on Windows Mobile, 352
stopping with UNC connection parameter, 298
temporary file location, 12
using FIPS-approved strong encryption algorithms,
186
using with LDAP, 146
window, 5
Windows Mobile, 348

database sizes
limit, 654

database statistics
OIDs for SQL Anywhere SNMP Extension Agent,
1040
retrieving with the SQL Anywhere SNMP Extension
Agent, 1024
SQL Anywhere MIB, 1040

database utilities
(see also utilities)
backup [dbbackup], 740
data source [dbdsn], 752
database connections, 131
file hiding [dbfhide], 768
histogram [dbhist], 770
information [dbinfo], 772
initialization [dbinit], 774
Interactive SQL [dbisql], 786
language selection [dblang], 791
log transfer manager [dbltm] utility, 794

log translation [dbtran], 799
ping [dbping], 804
rebuild [rebuild], 807
script execution [dbrunsql], 808
server enumeration [dblocate], 810
server licensing [dblic], 813
service [dbsvc], 820
SQL Anywhere console [dbconsole] utility, 827
start server in background [dbspawn], 829
stop server [dbstop], 831
transaction log [dblog], 842
unload [dbunload], 845
upgrade [dbupgrad], 860
validation [dbvalid], 862
version diagnostic [dbversion], 865

database validation
about, 888, 916
using the validation utility, 862

database_authentication option
connection property description, 598
description, 522
SQL Anywhere SNMP Extension Agent OID,
1047
using, 77

DatabaseCleaner property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

DatabaseFile connection parameter
description, 272
embedded databases, 126

DatabaseKey connection parameter
description, 274

DatabaseName connection parameter
description, 275

DatabaseName protocol option
description, 308

databases
accessing the connect window, 93
adding to existing services, 70
allocating space, 28
alphabetical list of properties, 639
altering dbspaces, 28
auditing on Windows Mobile, 1093
authentication, 522
automatic stopping, 188
backing up from Sybase Central, 883
backup, 869

Index

1222 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

changing collations, 427
character set, 410
compressing encrypted files, 1082
configuring for Windows Mobile, 339
connecting, 85
connecting from Interactive SQL, 92
connecting from SQL Anywhere Console utility,
92
connecting from Sybase Central, 92
connecting to a local database, 125
connection scenarios, 124
copying to your Windows Mobile device, 344
creating, 21
creating dbspaces, 26
creating for non-English languages, 426
creating for Windows Mobile, 340
creating from SQL, 22
creating from Sybase Central, 21
creating from the command line, 23
creating with dbinit, 774
decrypting, 1086
deleting, 34
deleting dbspaces, 29
disabling features, 1072
disconnecting from databases, 140
encrypting, 1082, 1083
erasing, 34
erasing from a Windows Mobile device, 347
erasing from the command line, 35
erasing with dberase, 766
file compatibility, 21
file size decreases after rebuilding, 855
glossary definition, 1168
health and statistics, 674
information, 772
initializing, 21
initializing from SQL, 22
initializing from Sybase Central, 21
large databases, 25
managing on Windows Mobile using Interactive
SQL, 353
managing on Windows Mobile using Sybase
Central, 349
maximum name length, 654
maximum size, 654
minimum size, 774
multiple file, 25
name restrictions, 254

page usage, 772
permissions, 439
permissions to load, 192
permissions to start, 189
permissions to stop, 191
permissions to unload, 192
read-only, 49, 216, 255
rebuilding, 807
rebuilding on Windows Mobile, 345
recovery, 869
Replication Server replicating , 1158
security on Windows Mobile, 1093
setting options, 488
starting, 59
starting without connecting, 59
stopping, 59, 60, 831
transaction log, 21
troubleshooting connections, 132
unloading using dbunload, 845
upgrading authenticated, 80
upgrading using dbupgrad, 860
user identification on Windows Mobile, 1064
using with authenticated applications, 76
utilities, 736
utility, 30
validating, 862, 873
validating checksums, 862
validating from Sybase Central, 918

DatabaseStart system event
description, 926

DatabaseSwitches connection parameter
description, 276

DataSourceName connection parameter
description, 277
Windows Mobile, 102

date_format option
connection property description, 598
description, 523
Open Client, 1133
SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

date_order option
connection property description, 598
description, 525
Open Client, 1133
SQL Anywhere SNMP Extension Agent OID,
1047

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1223

Transact-SQL compatibility, 499
dates

date_order option, 525
nearest_century option, 552

daylight savings time
scheduled events, 933

db_charset
about, 409

DB_PROPERTY function
alphabetical list of database properties, 639

DBA authority
about, 449
glossary definition, 1169
granting, 459
not inheritable, 449
security tips, 1066
specifying DBA user for new databases, 774

dbbackup utility
client-side backups, 886
exit codes, 744
full backup, 873
live backup, 875
receiving errors, 740
syntax, 740

dbcc function
using, 842

dbconsole utility
Mac OS X hardware requirements, 730
software updates, 732
starting, 729
syntax, 827
using, 729

dbctrs11.dll
privilege elevation required on Vista, 41

DBDiskSpace system event
description, 926
example, 928

dbdsn utility
exit codes, 756
privilege elevation may be required on Vista, 41
syntax, 752
system information file, 756
using, 99

dbelevate11.exe
must include in deployments to Vista, 41
privilege elevation may be required on Vista, 41

dbeng11
command line, 156

licensing, 813
personal database server, 38
syntax, 156

dberase utility
exit codes, 767
syntax, 766
using, 35

DBF connection parameter
description, 272
embedded databases, 126

dbfhide utility
syntax, 768

DBFileFragments property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

dbhist utility
exit codes, 771
syntax, 770

dbicu11.dll
avoiding ICU on Windows Mobile, 342
creating databases for Windows Mobile, 341
unloading a database on Windows Mobile, 346

dbicudt11.dll
avoiding ICU on Windows Mobile, 342
creating databases for Windows Mobile, 341
unloading a database on Windows Mobile, 346

dbinfo
using to determine the size of a table on disk, 772

dbinfo utility
exit codes, 773
syntax, 772

dbinit utility
creating databases for Windows Mobile, 343
exit codes, 784
syntax, 774
using, 23

dbisql utility
(see also Interactive SQL)
(see also Interactive SQL utility [dbisql])
about, 676
exit codes, 788
supported platforms, 788
syntax, 786

dbisql.com
about, 788

dbisql.exe
about, 788

Index

1224 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

fast launcher option, 728
dbisqlc utility

supported platforms, 765
syntax, 764

DBKEY connection parameter
description, 274

dblang utility
about, 791
exit codes, 792
syntax, 791
using when fast launchers are enabled, 792

DBLauncher
starting database servers on Mac OS X, 125

dblgen11.res
locating, 392

dblic utility
exit codes, 814
privilege elevation may be required on Vista, 41
syntax, 813

dblocate utility
exit codes, 812
syntax, 810

dblog utility
auditing, 1079
command line, 844
exit codes, 844
syntax, 842
transaction log mirrors, 16

dbltm utility
exit codes, 796
syntax, 794

dbmlsync utility
TLS, 1117

DBMS
glossary definition, 1169

DBN connection parameter
description, 275

DBN protocol option
description, 308

DBNS
defined, 136

dbns11 utility
syntax, 745
using, 136

DBNumber property
connection property description, 598

dbo user
about, 473

system objects and the Unload utility, 856
dbodbc11.dll

privilege elevation may be required on Vista, 41
dboledb11.dll

privilege elevation may be required on Vista, 41
dboledba11.dll

privilege elevation may be required on Vista, 41
dbping utility

exit codes, 806
syntax, 804
using, 138

dbping_r utility
using on Unix, 804

dbrunsql utility
syntax, 808

DBS connection parameter
description, 276

dbsnmp11.dll
about, 1016

dbspaces
about, 25
altering, 28
CREATE ON permission, 452
creating, 26
default_dbspace option, 526
deleting, 29
file name change when unloading, 845
glossary definition, 1170
limit, 654
permissions, 26
pre-defined, 13
specifying location using -ds server option, 251
using for large databases, 25

dbspawn utility
exit codes, 829
syntax, 829

dbsrv11
command line, 156
licensing, 813
network database server, 38
syntax, 156
transport-layer security, 1107
Windows Mobile, 348

dbsrv11.nlm
about, 38

dbstop utility
exit codes, 832
permissions, 191

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1225

syntax, 831
using, 58
using with SQLCONNECT, 832

dbsupport utility
SADIAGDIR environment variable, 375
syntax, 833
using, 83

dbsupport.ini file
about, 835

dbsvc utility
exit codes, 825
Linux options, 816
Linux syntax, 816
privilege elevation may be required on Vista, 41
Windows options, 820
Windows syntax, 820

dbtran utility
auditing, 1079
command line, 802
exit codes, 803
retrieving auditing information, 1076
syntax, 799
transaction logs, 890
uncommitted changes, 890
using, 893

dbunload utility
dbspace file names, 845
exit codes, 856
syntax, 845

dbupgrad utility
exit codes, 861
syntax, 860

dbvalid utility
exit codes, 864
syntax, 862
using, 873

dbversion utility
syntax, 865

dbvss11.exe
SQL Anywhere VSS writer, 233, 884

dbxtract utility
unsupported on Windows Mobile, 361

DCX
about, xii

DDL
glossary definition, 1168

deadlock reporting
log_deadlocks option, 539

Deadlock system event
description, 926

deadlocks
Deadlock system event, 926
glossary definition, 1170
log_deadlocks option, 539

debug mode
about, 671

debug_messages option
connection property description, 598
description, 525
SQL Anywhere SNMP Extension Agent OID,
1047

debugging
debug_messages option, 525
event handlers, 930
SQL scripts, 786
SQL statements in Interactive SQL, 681
web service clients, 243

DebuggingInformation property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

decimal precision
database option, 563

DECRYPT function
using to decrypt columns, 1088

decrypting
databases, 1086
databases for technical support, 1086
tables, 1090

dedicated_task option
connection property description, 598
description, 526
SQL Anywhere SNMP Extension Agent OID,
1047

default character set
about, 415
Unix, 415
Windows, 415

default database server
about, 206

default_dbspace option
connection property description, 598
description, 526
specifying location of database objects, 25
SQL Anywhere SNMP Extension Agent OID,
1047

Index

1226 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

default_isql_encoding option
description, 713
Interactive SQL settings, 708

default_timestamp_increment option
connection property description, 598
description, 527
SQL Anywhere SNMP Extension Agent OID,
1047
using in MobiLink synchronization, 528

DefaultCollation property
about, 30
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

DefaultNcharCollation property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

defaults
connection parameters, 130

delayed_commit_timeout option
connection property description, 598
description, 528
SQL Anywhere SNMP Extension Agent OID,
1047

delayed_commits option
connection property description, 598
description, 528
SQL Anywhere SNMP Extension Agent OID,
1047

DELETE permission
about, 452
granting, 459

DELETE statement
generating in Interactive SQL, 689
LTM, 1151

delete_old_logs option
description, 529
Replication Agent options, 503
resetting truncation offset, 842
SQL Remote replication and synchronization option,
502
transaction log options, 842
using, 1158

deletes
ANSI behavior, 507
Transact-SQL permissions, 507

deleting

database files, 34
dbspaces, 29
erase [dberase] utility, 766
groups, 473
integrated logins, 108
Kerberos logins, 119
Linux services, 816
rows from tables, 697
rows using Interactive SQL, 697
services, 820
users, 466

deleting databases
(see also erasing databases)
security, 1081

deleting transaction logs
about, 907

Delphi
binary columns, 553

Delphi connection parameter
ODBC connection parameter description, 756

demo.db file
running the personal server sample, 5

dependencies
managing service dependencies, 73
services, 72
setting, 821
setting for Linux services, 817

deploying
Vista considerations, 41

deployment software
supported languages, 401

DER-encoded PKI objects
viewing, 750

DescribeCursor connection parameter
ODBC connection parameter description, 756

Description connection parameter
ODBC connection parameter description, 756

design mode
about, 671

developer community
newsgroups, xvii

developing applications
about, 76

device tracking
glossary definition, 1170

diagnostic directory
SADIAGDIR environment variable, 375

dial-up networking

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1227

connections, 145
differences between live backups and transaction log
mirrors

about, 875
digital certificates

transport-layer security, 1101
digital signatures

MobiLink transport-layer security, 1115
SQL Anywhere transport-layer security, 1108

digits
maximum number, 563

direct row handling
glossary definition, 1170

directory access servers
unsupported on Windows Mobile, 356

directory structure
SQL Anywhere, 390

dirty pages
about, 18

disable table editing
about, 695

DisableMultiRowFetch connection parameter
description, 278

disabling
table editing in Interactive SQL, 696

disabling database features
-sf server option, 218
about, 1072
specifying secure feature key, 223
using secure feature key, 574

DISCONNECT statement
using, 140

Disconnect system event
description, 926

disconnecting
from databases, 140
other users from a database, 140
stopping a database, 60
users via the SQL Anywhere Console utility , 827

disconnecting databases
about, 140

discretionary access control
rules for nested views and tables, 480

disk cache
operating system, 228

disk controllers
transaction log management, 15

disk crashes

about, 903
disk full

callback function, 185
error writing to transaction log, 15

disk mirroring
transaction logs, 15

disk space
event example, 928
file system full callback function, 185
using dbinfo to determine the size of a table on disk,
772

DiskRead property
connection property description, 598
database property description, 639
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032, 1041

DiskReadHint property
connection property description, 598
database property description, 639

DiskReadHintPages property
connection property description, 598
database property description, 639

DiskReadHintScatterLimit property
server property description, 624

DiskReadIndInt property
connection property description, 598
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

DiskReadIndLeaf property
connection property description, 598
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

DiskReadTable property
connection property description, 598
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

DiskReadWorkTable
database property description, 639

DiskReadWorkTable property
connection property description, 598
SQL Anywhere SNMP Extension Agent OID,
1041

DiskRetryRead property
server property description, 624

Index

1228 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

DiskRetryReadScatter property
database property description, 639
server property description, 624

DiskRetryWrite property
server property description, 624

disks
fragmentation and performance, 28
recovery from failure, 889

DiskSyncRead property
connection property description, 598
database property description, 639

DiskSyncWrite property
connection property description, 598
database property description, 639

DiskWaitRead property
connection property description, 598
database property description, 639

DiskWaitWrite property
connection property description, 598
database property description, 639

DiskWrite property
connection property description, 598
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

DiskWriteHint property
connection property description, 598
database property description, 639

DiskWriteHintPages property
connection property description, 598
database property description, 639

distributed transaction coordinator
recovering without, 226

distributed transactions
enlistment timeout, 227
recovery, 226

DLLs
location, 392

DML
glossary definition, 1168

DMRF connection parameter
description, 278

DOBROAD protocol option
description, 309

DoBroadcast protocol option
description, 309

DocCommentXchange (DCX)
about, xii

documentation
conventions, xiv
documenting a database, 675
SQL Anywhere, xii

documenting a database
about, 675

domains
glossary definition, 1170

downloads
glossary definition, 1170

Driver connection parameter
ODBC connection parameter description, 756

drivers
SQL Anywhere ODBC driver, 97

DriveType property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

DROP CONNECTION statement
using, 140

DROP DATABASE statement
unsupported on Windows Mobile, 357
using, 34

DROP LOGIN POLICY statement
dropping a login policy, 444

DROP SERVER statement
unsupported on Windows Mobile, 357

dropped connections
SQL Anywhere SNMP Extension Agent trap, 1026

dropping
databases, 34
groups, 473
users, 466

dropping a user from a login policy
about, 442

dropping connections
from databases, 140

dropping login policies
about, 444

DSEdit utility
about, 1126
entries, 1130
not included with SQL Anywhere, 1126
setting up Open Servers, 1140
starting, 1128
using, 1128

DSN connection parameter
about, 97

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1229

description, 277
Windows Mobile, 102

DUMMY
system table permissions, 484

DYLD_LIBRARY_PATH environment variable
description, 368

dynamic cache sizing
disabling for database servers, 169

dynamic SQL
glossary definition, 1170

dynamic traps
about, 1027

E
EBFs

glossary definition, 1170
ECC

support, 1097
ECC certificates

creating, 747
viewing, 750

ECC option
dbeng11 -ec, 181
dbsrv11 -ec, 181

echo option
description, 714
Interactive SQL settings, 708

editing
connection profiles, 95
result sets in Interactive SQL, 695
table values in Interactive SQL, 695

editions
SQL Anywhere OEM Edition, 76
SQL Anywhere Web Edition, 82

Elevate connection parameter
description, 279

elevated operations agent
Vista, 40

elliptic-curve certificates
creating, 747
viewing, 750

emailing
Monitor alert notification, 1007
Monitor users , 1003

embedded databases
connecting, 126
connection parameters, 87

specifying the database server name, 127
starting, 126

embedded SQL
connection performance, 139
connections, 89
glossary definition, 1171
interface library, 132
testing connection performance, 139

enabling
table encryption, 1091

ENC connection parameter
description, 280
securing client/server communications, 1108

encoding
character sets, 407
definition, 407
glossary definition, 1171
PKI objects, 750

ENCRYPT function
using to encrypt columns, 1088

EncryptedPassword connection parameter
description, 279

encrypting
(see also encryption)
columns, 1088
databases, 1083
databases for technical support, 1085
tables, 1090, 1091
tables after creation, 1091
tables at creation, 1091

encrypting MobiLink client/server communications
about , 1113

encryption
-ec server option, 180
-ek server option, 252
-ep server option, 183
-es server option, 184
about, 1082
AES algorithm, 1082
certificate_company protocol option, 304
certificate_name protocol option, 305
certificate_unit protocol option, 306
client/server communications on Windows Mobile,
1094
columns, 1088
communications, 1095
comparing CREATE ENCRYPTED FILE and
CREATE ENCRYPTED DATABASE, 1085

Index

1230 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

creating databases with dbinit, 774
database files, 1082
database files, after creation, 1085
decrypting a database, 1086
enabling, 1091
Encryption [ENC] connection parameter, 280
Encryption property, 639
end-to-end, 1113
file hiding [dbfhide] utility, 768
FIPS, 1097
INI files, 768
MobiLink, 1113
passwords, 279, 1068
performance of encrypted databases, 1087
simple, 1082
SQL Anywhere databases on Windows Mobile,
1093
strong, 180, 183, 184, 252, 274, 280, 1082
tables, 1090
TDS protocol option, 323
trusted_certificates protocol option, 325
Windows Mobile, 340

encryption algorithms
AES, 1082
Rijndael, 1082

Encryption connection parameter
description, 280
securing client/server communications, 1108

encryption keys
changing using the CREATE ENCRYPTED
DATABASE statement, 1087
choosing, 1087
DBKEY connection parameter, 274
erase [dberase] utility, 766
initialization [dbinit] utility, 774
log transfer manger [dbltm] utility, 794
log translation [dbtran] utility, 799
protecting, 1087
transaction log [dblog] utility, 842
unload [dbunload] utility, 845

Encryption property
connection property description, 598
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

EncryptionScope property
database property description, 639

SQL Anywhere SNMP Extension Agent OID,
1044

end to end (see end-to-end encryption)
end-to-end encryption

createkey utility, 790
MobiLink about, 1113

ENG connection parameter
(see also ServerName connection parameter)
connecting to mirrored databases, 955
description, 296
embedded databases, 127

EngineName connection parameter
(see also ServerName connection parameter)
connecting to mirrored databases, 955
description, 296

engines
(see also database servers)
(see also servers)

enlistment
distributed transactions, 227

ENP connection parameter
description, 279

entering
Interactive SQL commands, 681
multiple statements in Interactive SQL, 683

enterprise root certificates
creating, 749
transport-layer security, 1101, 1102, 1104

entity-relationship diagrams
viewing in the SQL Anywhere plug-in, 673

entity-relationship tab
using, 673

environment variable option (see @data option)
environment variables

about, 366
command prompts, xv
command shells, xv
connecting to database utilities, 131
DYLD_LIBRARY_PATH, 368
ERRORLEVEL, 786
LD_LIBRARY_PATH, 369
LIBPATH, 370
ODBC_INI, 372
ODBCHOME, 371
ODBCINI, 372
PATH, 373
SACHARSET, 374
SADIAGDIR, 375

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1231

SALANG, 377
SALOGDIR, 378
SATMP, 379
setting, 366
setting on Mac OS X, 366
setting on Windows, 366
setting TEMP directory on Windows Mobile, 398
SHLIB_PATH, 381
sourcing on Unix, 366
SQLANY11, 382
SQLANYSAMP11, 383
SQLCONNECT, 384
SQLPATH, 385
SQLREMOTE, 386
SYBASE, 387
TEMP, 388
TEMPDIR, 388
TMP, 388
Unix, 366

ER diagram tab
about, 673

erase database wizard
unsupported on Windows Mobile, 360
using, 34

erase utility [dberase]
exit codes, 767
syntax, 766
using, 35

erasing
databases, 34

erasing databases
about, 766
from a Windows Mobile device, 347
Sybase Central, 34

error handling
Interactive SQL, 721
Transact-SQL procedures, 557

error reporting
about, 83

ERRORLEVEL environment variable
Interactive SQL return code, 786

errors
event handler behavior, 933
in Interactive SQL, 721
Interactive SQL, 688
submitting reports to iAnywhere, 83
Transact-SQL procedures, 557

escape characters

creating databases, 22
unload [dbunload] utility, 845

escape_character option
ASE compatibility, 499
connection property description, 598
description, 530
Open Client, 1133
SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

ESQL sample
using, 334

estimates
recovery time, 568
row count, 572
user_estimates option, 590

ethernet
about, 153

event handler
hiding, 936

event handlers
debugging, 930
defined, 922
impact on licensed connections, 933
internals, 933
transaction behavior, 933

event handling
about, 922

event log
suppressing messages, 44

event model
glossary definition, 1171

event schedule
defining, 924

event types
about, 932

EventName property
connection property description, 598

events
about, 923
conditional, 924
create schedule wizard, 925
database mirroring, 940
defined, 922
defining schedule, 924
generating database documentation, 675
handling, 922
hiding event handlers, 936

Index

1232 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

internals, 932
limitations, 654
manual, 924
schedule, 924
scheduling, 922
system, 924
triggering manually, 934, 935

EventTypeDesc
server property description, 624

EventTypeDesc property
SQL Anywhere SNMP Extension Agent OID,
1035

EventTypeName
server property description, 624

EventTypeName property
SQL Anywhere SNMP Extension Agent OID,
1035

examples
location in install, 390

ExchangeTasks property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

ExchangeTasksCompleted property
server property description, 624

exclude_operators option
connection property description, 598
description, 530
SQL Anywhere SNMP Extension Agent OID,
1047

executable name
server licensing [dblic] utility, 813

executables
location, 390
signed for Vista, 41

execute SQL statements
Interactive SQL, 682

executing
command files, 683
commands in Interactive SQL, 681
event handlers, 933
multiple statements in Interactive SQL, 683

executing SQL statements
Interactive SQL, 681

executing statements
authentication statement, 79

execution plans
printing, 694

execution threads
number, 193

exit codes
backup [dbbackup] utility, 744
data source [dbdsn] utility, 756
erase [dberase] utility, 767
histogram [dbhist] utility, 771
information [dbinfo] utility, 773
initialization [dbinit] utility, 784
Interactive SQL [dbisql] utility, 788
language [dblang] utility, 792
log transfer manager [dbltm] utility, 796
log translation [dbtran] utility, 803
ping [dbping] utility, 806
rebuild [rebuild] utility, 807
server enumeration [dblocate] utility, 812
server licensing [dblic] utility, 814
start server in background [dbspawn] utility, 829
stop server [dbstop] utility, 832
transaction log [dblog] utility, 844
unload [dbunload] utility, 856
upgrade [dbupgrad] utility, 861
validation utility (dbvalid), 864
Windows service [dbsvc] utility, 825

explicit selectivity estimates
user_estimates option, 590

exporting
connection profiles, 96

exporting data
output format, 722

ExprCacheAbandons property
connection property description, 598
database property description, 639

ExprCacheDropsToReadOnly property
connection property description, 598
database property description, 639

ExprCacheEvicts property
connection property description, 598
database property description, 639

ExprCacheHits property
connection property description, 598
database property description, 639

ExprCacheInserts property
connection property description, 598
database property description, 639

ExprCacheLookups property
connection property description, 598
database property description, 639

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1233

ExprCacheResumesOfReadWrite property
connection property description, 598
database property description, 639

ExprCacheStarts property
connection property description, 598
database property description, 639

ExtendDB property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

extended characters
about, 408

extended_join_syntax option
connection property description, 598
description, 530
SQL Anywhere SNMP Extension Agent OID,
1047

ExtendTempWrite property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

external functions
stack size, 190

external logins
glossary definition, 1171

external stored procedures
unsupported on Windows Mobile, 356

external unloads
using, 857

external_remote_options option
SQL Remote option, 531

extraction
glossary definition, 1171

extraction utility
unsupported on Windows Mobile, 361

F
failed to initialize UI (type 4)

displaying the SQL Anywhere UI on Linux, 232
failover

clusters, 965
database mirroring, 938
database mirroring scenarios, 961
glossary definition, 1171
Veritas Cluster Server and SQL Anywhere, 965

failures
recovery from, 869

fast launchers
about, 728
changing language settings, 792

fatal errors
-uf server option, 230
reporting, 83

favorites list
about, 684

Federal Information Processing Standard
about, 1097

feedback
documentation, xvii
providing, xvii
reporting an error, xvii
requesting an update, xvii

FILE
glossary definition, 1171

file data sources
creating, 101

file hiding utility [dbfhide]
syntax, 768

file locations
Windows Mobile, 390

FILE message type
glossary definition, 1171

File property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

file size
decreases after rebuilding, 855

file-based downloads
glossary definition, 1172

file-definition database
glossary definition, 1172

FileDataSourceName connection parameter
description, 282
referencing file data sources, 97
Windows Mobile, 102

FILEDSN connection parameter
description, 282
referencing file data sources, 97
Windows Mobile, 102

files
checking in from Interactive SQL, 703
checking out from Interactive SQL, 702
configuring Interactive SQL source control, 700
location, 392

Index

1234 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

updating from Interactive SQL, 703
using source control from Interactive SQL, 699

FileSize property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

Finder
setting environment variables, 366

finding out more and requesting technical assistance
technical support, xvii

FIPS
about, 1097
dbeng11 -ec, 180
dbeng11 -fips, 186
dbinit -ea, 774
dbsrv11 -ec, 180
dbsrv11 -fips, 186
encrypting database files, 845
SQL_FLAGGER_ERROR option, 575
support, 1097
web services, 237

FIPS 140-2 certification
about, 1097

FIPS option
AES256_FIPS encryption algorithm, 186
AES_FIPS encryption algorithm, 186
database server, 186

FIPS protocol option
dbeng11 -ec, 180
dbsrv11 -ec, 180

FipsMode property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

fire_triggers option
connection property description, 598
description, 531
SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

firewalls
BroadcastListener [BLISTENER] protocol option,
303
ClientPort [CPORT] protocol option, 307
connecting across, 144, 146, 812
HOST [IP] protocol option, 310
LDAP protocol option, 313
ServerPort [PORT] protocol option, 321

first row optimization option
optimization_goal, 557

first_day_of_week option
connection property description, 598
description, 532
SQL Anywhere SNMP Extension Agent OID,
1047

FirstOption property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

FIXED file format
input_format option, 714
Interactive SQL output, 722

fixed width character sets
about, 409

flagger (see SQL Flagger)
folders list

displaying Sybase Central, 662
follow bytes

about, 409
connection strings, 410

fonts
setting for the Code Editor, 666

for_xml_null_treatment option
connection property description, 598
description, 533
SQL Anywhere SNMP Extension Agent OID,
1047

FORCE connection parameter
description, 283

force_view_creation option
connection property description, 598
description, 533
SQL Anywhere SNMP Extension Agent OID,
1047

ForceStart connection parameter
description, 283

foreign key constraints
glossary definition, 1172

foreign keys
glossary definition, 1172

foreign tables
glossary definition, 1172

format
input file, 714

forward log
about, 14

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1235

fragmentation
performance, 28

frame type
about, 153

FreeBuffers property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

FreePages property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

full backups
glossary definition, 1172
performing, 873

FullCompare property
connection property description, 598
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

function keys
Interactive SQL, 704

FunctionMaxParms property
server property description, 624

FunctionMinParms property
server property description, 624

FunctionName property
server property description, 624

functions
executing using SQL Anywhere SNMP Extension
Agent, 1025
generating database documentation, 675
Replication Server replicating, 1152
support for APC format, 1153

G
gateways

glossary definition, 1172
generate

sql statements in Interactive SQL, 689
generate documentation (see generating database
documentation)
generated database documentation (see generating
database documentation)
generated join conditions

glossary definition, 1173
generating

ECC certificates, 747
RSA certificates, 747
sql statements in Interactive SQL, 689

generating database documentation
about, 675

generating documentation (see generating database
documentation)
generation numbers

glossary definition, 1173
GetData property

connection property description, 598
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

getting help
technical support, xvii

GetTypeInfoChar connection parameter
ODBC connection parameter description, 756

global certificates
using as a server certificate for transport-layer
security, 1105

global temporary tables
glossary definition, 1173

global_database_id option
connection property description, 598
description, 533
SQL Anywhere SNMP Extension Agent OID,
1047

GlobalAutoIncrement system event
description, 927

GlobalDBID property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

globally-signed certificates
transport-layer security, 1104

glossary
list of SQL Anywhere terminology, 1163

go
Interactive SQL delimiter, 711
usage, 683

GRANT MEMBERSHIP IN GROUP statement
using, 470

grant options
glossary definition, 1173

GRANT statement
creating groups, 469
DBA authority, 459

Index

1236 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

group membership, 469
permissions, 459
procedures, 463
RESOURCE authority, 459
table permissions, 459
WITH GRANT OPTION, 462
without password, 472

granting
REMOTE permissions, 464

graphical plans
saving, 693
viewing, 693

group dependencies
setting, 821

groups
about, 446
adding, 469
adding users, 469
authorities, 471
creating, 469
deleting, 473
deleting integrated logins, 108
granting integrated logins, 106
leaving, 470
limiting temporary space, 550
login policies cannot be inherited, 440
managing, 468
membership, 469
permissions, 453, 471
permissions conflicts, 482
PUBLIC, 473
REMOTE permissions, 464
revoking membership, 470
services, 72
setting dependencies, 821
setting options, 458
SYS, 473
without passwords, 472

GrowDB system event
description, 926

GrowLog system event
description, 926
example, 927

GrowTemp system event
description, 926

GSS-API library files
Kerberos, 115

Guest user

creating, 112

H
handling events

about, 922
hardware mirroring

transaction logs, 15
HasCollationTailoring property

database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

HasEndianSwapFix property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

hash
glossary definition, 1173

HashForcedPartitions property
connection property description, 598
database property description, 639

HashRowsFiltered property
connection property description, 598
database property description, 639

HashRowsPartitioned property
connection property description, 598
database property description, 639

HashWorkTables property
connection property description, 598
database property description, 639

HasNCHARLegacyCollationFix
database property description, 639

HasNCHARLegacyCollationFix property
SQL Anywhere SNMP Extension Agent OID,
1044

health and statistics
Monitor, 973
viewing, 674

HeapsCarver property
connection property description, 598
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

HeapsLocked property
connection property description, 598
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1237

HeapsQuery property
connection property description, 598
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

HeapsRelocatable property
connection property description, 598
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

Heimdal Kerberos client
Unix support, 115

help
technical support, xvii

hibernate mode
Windows Mobile, 328

high availability
about, 937
database mirroring, 938
live backups, 875
SQL Anywhere Veritas Cluster Server agents, 965

histogram utility [dbhist]
exit codes, 771
syntax, 770

histograms
glossary definition, 1173
viewing with dbhist, 770

host protocol option
description, 310
using IPv6 addresses, 143

HP-UX
IPv6 support, 143
SHLIB_PATH environment variable, 381

HTML file format
Interactive SQL output, 722

HTTP
protocol options, 301
server configuration, 237

http_session_timeout option
connection property description, 598
description, 534
SQL Anywhere SNMP Extension Agent OID,
1047

HttpAddresses property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

HttpNumActiveReq property

server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

HttpNumConnections property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

HttpNumSessions property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

HttpPorts property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

HTTPS
MobiLink TLS for UltraLite clients, 1118
MobiLink transport-layer security, 1117
protocol options, 301
server configuration, 237

HttpsAddresses property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

HttpServiceName property
connection property description, 598

HttpsNumActiveReq property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

HttpsNumConnections property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

HttpsPorts property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

I
IANA

alternate character set encoding labels, 429
port number, 321

IANA labels
character sets, 433

iAnywhere developer community
newsgroups, xvii

Index

1238 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

iAnywhere JDBC driver
glossary definition, 1174
unsupported on , 356

iAnywhere Solutions Oracle driver
creating data sources, 753

iAnywhere.mib file
about, 1016, 1017
location, 1029

icons
for running services, 69
used in this Help, xvi

ICU
about, 403
alternate character set encoding labels, 429
determining when ICU is needed, 403
International Components for Unicode, 403
syntax tailoring, 417
Unicode Collation Algorithm (UCA), 417
used in character set conversion, 410
using on Windows Mobile, 328

ICU library
avoiding on Windows Mobile, 342
creating databases for Windows Mobile, 341
unloading a database on Windows Mobile, 346

identification
client applications, 263

identifiers
case insensitivity, 412
glossary definition, 1174
international aspects, 412
maximum length in SQL Anywhere, 654
Replication Agent, 1150

identity files
about, 1107

identity protocol option
dbeng11 -ec, 180
dbsrv11 -ec, 180
description, 311

identity_password protocol option
dbeng11 -ec, 180
dbsrv11 -ec, 180
description, 312

IdentitySignature property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

Idle connection parameter
description, 283

idle server
event example, 928

IdleCheck property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

IdleChkpt property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

IdleChkTime property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

IdleTime event
polling, 932

IdleTimeout property
connection property description, 598
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

IdleWrite property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

image backups
about, 877
creating using backup utility [dbbackup], 740
defined, 877
parallel, 912
receiving error messages from dbbackup, 740
renaming the original transaction log, 907
restoring, 891
running using the Backup [dbbackup] utility, 740

importing
connection profiles, 95

IN keyword
CREATE TABLE statement, 25

in memory mode
configuring, 199

incremental backups
about, 874
backup [dbbackup] utility, 882
glossary definition, 1174

IndAdd property
connection property description, 598
database property description, 639

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1239

SQL Anywhere SNMP Extension Agent OID,
1041

indent
Interactive SQL shortcut, 704

indexes
glossary definition, 1174
limitations, 654

IndLookup property
connection property description, 598
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

InfoMaker
glossary definition, 1174

information utility [dbinfo]
exit codes, 773
syntax, 772

inheriting
authorities, 446
login policy options, 440
permissions, 446

INI files
about, 396
adding simple encryption with dbfhide, 768

initialization files (see INI files)
initialization utility [dbinit]

creating databases for Windows Mobile, 343
exit codes, 784
syntax, 774
using, 23

initializing
databases, 21

initializing databases
Sybase Central, 21

initializing databases with dbinit
about, 774

InitString connection parameter
ODBC connection parameter description, 756

inner joins
glossary definition, 1174

INPUT statement
inserting new rows in Interactive SQL, 697

input_format option
description, 714
Interactive SQL settings, 708

INSERT permission
about, 452
granting, 459

INSERT statement
generating in Interactive SQL, 689
LTM supported operations, 1151
truncation of strings, 580

inserting
rows into tables in Interactive SQL, 696

INSTALL JAVA statement
unsupported on Windows Mobile, 357

install-dir
documentation usage, xiv

installation
location, 390
registry settings, 397
Windows Mobile, 390

installation considerations
Windows Mobile, 328, 329

installation directory
about, 390

installation requirements
SQL Anywhere for Windows Mobile, 328

installed objects
Monitor reinstalling, 1000

installing
Monitor on a separate computer, 1011
SQL Anywhere on Windows Mobile, 328

installulnet.exe
privilege elevation may be required on Vista, 41

INT connection parameter
description, 284

Integrated connection parameter
description, 284

integrated logins
about, 106
creating, 107
default user, 112
disallowing connections, 111
enabling, 107
glossary definition, 1174
integrated_server_name option, 535
login_mode option, 540
network aspects, 112
operating systems, 106
revoking permission, 108
security concerns, 112
security features, 123, 1068
using, 106, 109
Windows user groups, 109

integrated_server_name option

Index

1240 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

connection property description, 598
description, 535
specifying Domain Controller server for integrated
logins, 109
SQL Anywhere SNMP Extension Agent OID,
1047

integrity
glossary definition, 1175

Interactive SQL
(see also dbisql utility)
(see also Interactive SQL utility [dbisql])
about, 676
alphabetical list of Interactive SQL options , 708
alphabetical list of SQL statements, 703
canceling commands, 687
checking in files, 703
checking out files, 702
command history window, 685
command line, 788
configuring source control, 700
configuring the fast launchers, 728
connecting to databases, 677
copying rows, 697
creating databases for Windows Mobile, 343
dbisql syntax, 786
default editor for .sql files, 683
deleting rows, 697
disabling table editing, 696
displaying data, 681
displaying the Query Editor, 704
editing table values, 695
executing command files, 683
executing commands, 681
executing multiple statements, 683
executing only selected text in SQL statements pane,
683
favorites , 684
function keys, 704
glossary definition, 1175
graphical plans, 693
inserting rows, 696
interrupting commands, 687
keyboard shortcuts, 704
line numbers, 679
logging commands, 687
looking up tables, columns, and procedures , 688
Mac OS X hardware requirements, 676
managing databases on Windows Mobile, 353

opening multiple windows, 698
opening source control projects, 701
options, 680, 708
printing , 694
recalling commands, 685
reported errors, 688
setting options, 708
software updates, 732
sorting result sets, 698
source control integration, 699
specifying code page for reading and writing files,
713
SQL statements, 703
starting, 677
step through SQL statements, 681
stopping commands, 687
syntax, 786
text completion, 725
unexpected symbols when viewing data, 411
updating computed columns, 697
using with authenticated applications, 76
utility, 786

Interactive SQL options
alphabetical list of Interactive SQL options, 708
auto_commit, 710
auto_refetch, 710
bell, 711
classification, 493
command_delimiter, 711
commit_on_exit, 712
default_isql_encoding, 713
echo, 714
initial settings, 492
input_format, 714
isql_allow_read_client_file, 715
isql_allow_write_client_file, 715
isql_command_timing, 716
isql_escape_character, 717
isql_field_separator, 717
isql_maximum_displayed_rows, 718
isql_print_result_set, 719
isql_quote, 719
isql_show_multiple_result_sets, 720
nulls, 721
on_error, 721
output_format, 722
output_length, 723
output_nulls, 723

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1241

setting, 708
truncation_length, 723

Interactive SQL utility [dbisql]
(see also dbisql utility)
(see also Interactive SQL)
exit codes, 788
supported platforms, 788
syntax, 786

interface
database server, 5

interface identifiers
IPv6 addresses, 143
required on Linux, 143

interface libraries
connections, 85
locating, 132

interface names
IPv6 addresses, 143

interfaces file
configuring, 1128
log transfer manger [dbltm] utility, 794
Open Servers, 1140

internal unloads
using, 857

internals
backups, 909
event handlers, 933
event handling, 932
events, 932
schedules, 932

international language support
about, 400

international languages and character sets
overview, 399

Internet SCSI
storing database files, 14

intra-query parallelism
affected by -gn option, 193
max_query_tasks option, 547

IOParallelism property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

IOToRecover property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

IP address

configuring Open Servers, 1130
determining on Windows Mobile devices, 336
ping, 152

IP protocol option
description, 310
using IPv6 addresses, 143

IPv4
about, 143
troubleshooting connections, 152

IPv6
about, 143
interface identifiers, 143
interface names, 143
supported platforms, 143
troubleshooting connections, 152
using with BCAST protocol option, 143
using with Broadcast protocol option, 143
using with host protocol option, 143
using with IP protocol option, 143
using with ME protocol option, 143
using with MyIP protocol option, 143

IQStore property
SQL Anywhere SNMP Extension Agent OID,
1044

iSCSI
storing database files, 14

IsDebugger property
connection property description, 598

IsEccAvailable property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

IsFipsAvailable property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

IsIQ property
SQL Anywhere SNMP Extension Agent OID,
1035

IsNetworkServer property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

isolation levels
default, 535
glossary definition, 1175
querying mirror databases, 957
setting, 535

Index

1242 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

isolation_level option
connection property description, 598
description, 535
Open Client, 1133
SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

IsolationLevel connection parameter
ODBC connection parameter description, 756

isql_allow_read_client_file option
description, 715
Interactive SQL settings, 708

isql_allow_write_client_file option
description, 715
Interactive SQL settings, 708

isql_command_timing option
description, 716
Interactive SQL settings, 708

isql_escape_character option
copying data, 697
description, 717
Interactive SQL settings, 708

isql_field_separator option
copying data, 697
description, 717
Interactive SQL settings, 708

isql_maximum_displayed_rows option
description, 718
Interactive SQL settings, 708

isql_print_result_set option
description, 719
Interactive SQL settings, 708

isql_quote option
copying data, 697
description, 719
Interactive SQL settings, 708

isql_show_multiple_result_sets option
description, 720
Interactive SQL settings, 708

IsRsaAvailable property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

IsRuntimeServer property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

IsService property

server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

J
JAR files

glossary definition, 1175
Java

-cp server option, 173
alternate character set encoding labels, 429
connection parameters, 87
java_location option, 537
java_main_userid, 538
java_vm_options, 538

Java classes
glossary definition, 1175

java directory
about, 390

Java in the database
-cp server option, 173

java_location option
connection property description, 598
description, 537
SQL Anywhere SNMP Extension Agent OID,
1047

java_main_userid option
connection property description, 598
description, 538
SQL Anywhere SNMP Extension Agent OID,
1047

java_vm_options option
connection property description, 598
description, 538
SQL Anywhere SNMP Extension Agent OID,
1047

JavaVM property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

jConnect
glossary definition, 1175
initialization [dbinit] utility, 774
Kerberos authentication, 118
limited functionality on Windows Mobile, 356
TDS, 1124
upgrade [dbupgrad] utility, 860
Windows Mobile, 340

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1243

jConnect metadata support
Windows Mobile, 340

JDBC
ASE compatibility options, 499
glossary definition, 1175

join conditions
glossary definition, 1176

join types
glossary definition, 1176

joins
glossary definition, 1176

K
keep-alive request-header field

setting KeepaliveTimeout value, 312
KeepaliveTimeout protocol option

description, 312
keeping your data secure

overview, 1063
Kerberos

-kl option, 201
-kr option, 202
-krb option, 203
about, 114
clients, 115
CSFC5KTNAME environment variable, 115
granting permission, 118
GSS-API library files, 115
jConnect connections, 118
Kerberos connection parameter [KRB], 285
Kerberos principal, 115
Key Distribution Center, 115
keytab files, 115
KRB5_KTNAME environment variable, 115
login_mode option, 540
Open Client connections, 118
revoking permission, 119
security concerns, 112
temporary options, 123
ticket-granting tickets, 117
troubleshooting connections, 120
unsupported on Windows Mobile, 356
using SSPI on Windows, 119

Kerberos connection parameter
description, 285

Kerberos Key Distribution Center
about, 115

Kerberos logins
(see also Kerberos)

Kerberos principal
about, 115

Key Distribution Center
using in Kerberos authentication, 115

key joins
glossary definition, 1173

key pair generator utility [createkey]
syntax, 790

keyboard mapping
about, 407

keyboard shortcuts
Code Editor, 666
Interactive SQL, 704
Sybase Central, 665
text completion, 726

KeysInSQLStatistics connection parameter
ODBC connection parameter description, 756

keytab files
default locations, 115

keywords
non_keywords option, 552
turning off, 552

KRB connection parameter
description, 285

KRB5_KTNAME environment variable
Kerberos, 115

KTO protocol option
description, 312

L
labels

character sets, 433
language label values, 414

LANalyzer
troubleshooting network communications, 153

LANG connection parameter
description, 286

language codes
language [dblang] utility, 791

Language connection parameter
description, 286

language DLL
locating, 392
registry settings, 791

language labels

Index

1244 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

list of values, 414
Language property

connection property description, 598
database property description, 639
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035, 1044

language resource library
messages file, 407
registry settings, 791

language selection utility [dblang]
exit codes, 792
syntax, 791

language support
about, 400
multibyte character sets, 416
overview, 400

language utility (see language selection utility)
languages

case sensitivity, 412
creating databases, 426
determining the language used by the database
server, 424
determining the languages supported by the CHAR
collation, 424
issues in client/server computing, 407
language selection [dblang] utility, 791
locale, 413
localized versions of SQL Anywhere, 400
non-English databases, 400
registry settings, 397
software and documentation, 400
specifying, 377
Turkish, 436

LastConnectionProperty property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

LastDatabaseProperty property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

LastIdle property
connection property description, 598

LastOption property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

LastPlanText property
connection property description, 598

LastReqTime property
connection property description, 598

LastServerProperty property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

LastStatement property
connection property description, 598

LazyAutocommit connection parameter
ODBC connection parameter description, 756

LazyClose connection parameter
description, 287

LCLOSE connection parameter
description, 287

LD_LIBRARY_PATH environment variable
description, 369

LDAP authentication
AIX, 146
connecting with, 146
LDAP protocol option, 313
server enumeration [dblocate] utility, 812
unsupported on Windows Mobile, 356

LDAP protocol option
description, 313

leading spaces
using in connection strings, 87

leaving
groups, 470

LegalCopyright property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

LegalTrademarks property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

LF protocol option
description, 315

libctl.cfg file
DSEdit, 1129

LIBPATH environment variable
description, 370

libraries
DYLD_LIBRARY_PATH environment variable
[Mac OS X], 368
Kerberos authentication, 114

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1245

Kerberos GSS-API library files, 115
LD_LIBRARY_PATH environment variable
[Linux and Solaris], 369
LIBPATH environment variable [AIX], 370
loading for dbping utility, 804
locating the interface library, 132
required for ICU on Windows Mobile, 328
SHLIB_PATH environment variable [HP-UX],
381

license files
about, 814

license type
server licensing [dblic] utility, 813

license utility (see server licensing utility [dblic])
LicenseCount property

server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

LicensedCompany property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

LicensedUser property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

licenses
adding with server licensing [dblic] utility, 813

LicenseType property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

licensing
connection limit and event handlers, 933
differences between personal and network servers,
38
effect on -gm server option, 192
effect on -gt server option, 196
effect on -gtc server option, 197
effects threading, 52
executables, 814
perseat licenses, 813
processor licenses, 813
server licensing [dblic] syntax, 813

limitations
cache size, 654
columns, 654
database names, 654

database server names, 654
databases, 654
events, 654
identifiers, 654
indexes, 654
Monitor, 974
passwords, 654
running SQL Anywhere on Windows Mobile, 356
SQL Anywhere, 654
SQL Anywhere on Windows Mobile 5 for
smartphone, 329
statements, 654
tables, 654
temporary file, 583, 654
temporary tables, 654

limits
SQL Anywhere, 654

line numbers
SQL statements pane, 679

LINKS connection parameter
description, 268
options, 55
parentheses, 410

Linux
disabling use of asynchronous I/O, 228
interface identifier required for IPv6 addresses, 143
IPv6 support, 143
LD_LIBRARY_PATH environment variable, 369
SELinux policies, 1064
starting dbconsole, 729
starting Interactive SQL, 677
threading behavior, 51
using server startup options window, 232
viewing database server messages window, 232
viewing server messages in shell mode, 228, 230

Linux services
database servers, 62

Listeners
glossary definition, 1176

lists
monitoring database options, 491

live backups
about, 875, 886
backup [dbbackup] utility, 740
differences from transaction log mirror, 875
overview, 875

liveness
connections, 225

Index

1246 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

LivenessTimeout connection parameter
description, 288

LivenessTimeout property
connection property description, 598
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

LOAD TABLE statement
restricted use for database mirroring, 940
security, 1081

loading
READCLIENTFILE authority, 450

loading data
security, 1081

local machine
environment settings, 396

LOCAL protocol option
description, 314

local servers (see personal server)
local temporary tables

glossary definition, 1176
locale definition

about, 413
locales

about, 413
character sets, 410, 415
determining, 424
language, 413
setting, 425

localhost computer name
configuring Open Servers, 1130

localized versions of SQL Anywhere
about, 400

LocalOnly protocol option
description, 314

LocalSystem account
about, 64
options, 69

Location registry entry
file searching on Windows, 392

lock_rejected_rows option
connection property description, 598
SQL Anywhere SNMP Extension Agent OID,
1047

LockCount property
connection property description, 598
database property description, 639

SQL Anywhere SNMP Extension Agent OID,
1041

LockedCursorPages property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

LockedHeapPages property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

LockIndexID property
connection property description, 598

locking
mirror databases, 957

locking conflicts
blocking option, 513
blocking_timeout option, 513

LockName property
connection property description, 598

LockRowID property
connection property description, 598

locks
glossary definition, 1177

LockTableOID property
connection property description, 598

LockTablePages property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

LOG connection parameter
description, 289

log files
auditing, 1079
checkpoint log, 18
database mirroring, 959
database server message log, 43
echo option, 714
glossary definition, 1177
rollback, 912
transaction, 14
transaction log [dblog] utility, 844
transaction log mirror, 15

LOG protocol option
description, 314

log transfer manager utility [dbltm]
about, 1124
components, 1138
exit codes, 796

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1247

identifiers, 1150
syntax, 794
using, 1151

log translation utility [dbtran]
auditing, 1079
exit codes, 803
recovering uncommitted operations, 890
retrieving auditing information, 1076
syntax, 799
using, 893

Log Viewer
about, 670
open, 671

log_deadlocks option
connection property description, 598
description, 539
SQL Anywhere SNMP Extension Agent OID,
1047

LogDiskSpace system event
description, 926

LogFile connection parameter
description, 289

LogFile protocol option
description, 314

LogFileFragments property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

LogFormat protocol option
description, 315

LogFreeCommit property
connection property description, 598
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

logging
commands in Interactive SQL, 687
database server actions, 43
database server messages, 208
HTTP client information, 243
transaction log, 14

logging off
keeping server running, 229

logging SQL statements
about, 44

logical indexes
glossary definition, 1177

login as a service privilege

Linux service [dbsvc] utility, 817
Windows service [dbsvc] utility, 821

login mappings
integrated logins, 106
Kerberos, 114

login policies
about, 440
altering, 443
assigning to existing users, 442
assigning when creating new users, 442
creating, 441
dropping, 442, 444
inheriting from the root policy, 440
overriding policy options in the root policy, 440
read-only databases, 444
root login policy, 440

login policies assigned to individual users
unload [dbunload] utility, 855

login_mode option
connection property description, 598
description, 540
integrated logins, 107
SQL Anywhere SNMP Extension Agent OID,
1047

login_procedure option
connection property description, 598
description, 541
disallowing connections with RAISERROR, 541
implementing password expiration, 1069
SQL Anywhere SNMP Extension Agent OID,
1047

logins
integrated, 106
Kerberos, 114

LoginTime property
connection property description, 598

LogMaxSize protocol option
description, 316

LogMirrorName property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

LogName property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

LogOptions protocol option
description, 317

Index

1248 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

LogWrite property
connection property description, 598
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

long server names
viewing with dblocate, 810

looking up
tables, columns, and procedures in Interactive SQL,
688

LOPT protocol option
description, 317

lower code page
about, 408

LSIZE protocol option
description, 316

LTM
(see also LTM utility)
character set configuration, 1156
character sets, 1155
collations, 1155, 1156
configuration, 1140, 1154
configuration file, 796, 1145
glossary definition, 1177
interfaces file, 794
Open Client/Open Server character sets, 1155
Open Client/Open Server collations, 1155
starting, 1145
supported operations, 1151
transaction log management, 1158
transaction log options, 844

LTM configuration files
about, 1154
character sets, 1156
creating, 1154
format, 1154

LTM utility
(see also LTM)
components, 1138
identifiers, 1150
syntax, 794

LTM_admin_pw parameter
LTM configuration file, 796
starting the LTM, 1145

LTM_admin_user parameter
LTM configuration file, 796
starting the LTM, 1145

LTM_charset parameter

LTM configuration file, 796, 1156
starting the LTM, 1145

LTM_language parameter
LTM configuration file, 1156

LTM_sortorder parameter
LTM configuration file, 1156

LTMGeneration property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

LTMTrunc property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

LTO connection parameter
description, 288

M
Mac OS X

connecting to the sample database, 125
creating ODBC data sources, 100
dbconsole utility hardware requirements, 730
DYLD_LIBRARY_PATH environment variable,
368
Interactive SQL hardware requirements, 676
IPv6 support, 143
setting environment variables, 366
sourcing files, 367
starting dbconsole, 730
starting Interactive SQL, 678
starting Sybase Central, 661
Sybase Central hardware requirements, 661
viewing server messages, 231

MachineName property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

MAGIC
user_estimates option, 590

MainHeapBytes property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

MainHeapPages property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1249

maintenance plan reports
about, 902

maintenance plans
about, 902
reports, 902

maintenance releases
glossary definition, 1177

maintenance user
primary sites, 1141
replicate sites, 1143
user ID, 1148

making a live backup
about, 875

management information bases
about, 1017

managers
about, 1017

managing connected users
about, 467

managing login policies
about, 440
read-only databases, 444

manual events
creating, 934

MapPhysicalMemoryEng property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

materialized views
glossary definition, 1177
materialized_view_optimization option, 543, 544

materialized_view_optimization option
connection property description, 598
description, 543
SQL Anywhere SNMP Extension Agent OID,
1047

max_client_statements_cached option
connection property description, 598
description, 544
SQL Anywhere SNMP Extension Agent OID,
1047

max_cursor_count option
connection property description, 598
description, 545
SQL Anywhere SNMP Extension Agent OID,
1047

max_hash_size option
connection property description, 598

SQL Anywhere SNMP Extension Agent OID,
1047

max_plans_cached option
connection property description, 598
description, 546
SQL Anywhere SNMP Extension Agent OID,
1047

max_priority option
connection property description, 598
description, 547
SQL Anywhere SNMP Extension Agent OID,
1047

max_query_tasks option
connection property description, 598
description, 547
SQL Anywhere SNMP Extension Agent OID,
1047

max_recursive_iterations option
connection property description, 598
description, 548
SQL Anywhere SNMP Extension Agent OID,
1047

max_statement_count option
connection property description, 598
description, 549
SQL Anywhere SNMP Extension Agent OID,
1047

max_temp_space option
connection property description, 598
description, 550
SQL Anywhere SNMP Extension Agent OID,
1047

MaxCacheSize property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

MAXCONN protocol option
description, 318

MaxConnections property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

MaxConnections protocol option
description, 318

MaxEventType
server property description, 624

MaxEventType property

Index

1250 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere SNMP Extension Agent OID,
1035

maximum
database file size, 654
database size, 654

MaxIO property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

MaxMessage property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

MaxRead property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

MaxRemoteCapability property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

MaxRequestSize protocol option
description, 318

MAXSIZE protocol option
description, 318

MaxWrite property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

ME protocol option
description, 319
using IPv6 addresses, 143

media failure
recovery, 896
transaction log, 898

media failures
about, 903
protection, 903
recovery, 889

membership
revoking group membership, 470

memory
connection limit, 483
limiting AWE cache size, 172
setting initial cache size, 167
setting maximum cache size, 170
setting minimum cache size, 171
setting static cache size, 169

memory cards
Windows Mobile, 328

Message Agent
transaction log management, 904

message link parameters
SQL Remote external_remote_options, 531

message log
about, 43
glossary definition, 1178

Message property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

MESSAGE statement
setting debug_messages option, 525

message stores
glossary definition, 1178

message systems
glossary definition, 1178

message types
glossary definition, 1178

MessageCategoryLimit property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

MessageReceived property
connection property description, 598

messages
language resource library, 407

MessageText property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

MessageTime property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

MessageWindowSize property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

metadata
glossary definition, 1178

metadata tables
SQL Anywhere MIB, 1029

metrics
editing collection intervals, 996
Monitor, 988

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1251

MIBs
(see also management information bases)
defined, 1017
supported by SQL Anywhere SNMP Extension
Agent, 1017

Microsoft Access
TIMESTAMP comparison, 528

migrate database wizard
unsupported on Windows Mobile, 360

MIME
alternate character set encoding labels, 429

min_password_length option
connection property description, 598
description, 551
increasing password security, 1069
SQL Anywhere SNMP Extension Agent OID,
1047

MinCacheSize property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

minimal column definitions
Replication Server, 1152

mirror
creating a database with a transaction log mirror,
23
transaction log, 14, 15, 16

mirror databases
querying, 957
read only access, 956

mirror logs
glossary definition, 1178

mirror servers
database mirroring overview, 938
read-only database access, 956
stopping, 958

mirror transaction log (see transaction log mirror)
MirrorFailover system event

description, 927
using, 960

mirroring
(see also database mirroring)
-sm option, 255
-sn option, 257
-xa option, 235
-xf option, 237
-xp option, 258
about, 938

arbiter server role, 941
asyncfullpage mode, 942
asynchronous mode, 942
backups, 961
benefits, 941
client connections, 954
configuring, 954
determining the primary server, 955
performance, 961
recovering from primary server failure, 959
restrictions, 940
scenarios, 961
setting synchronize_mirror_on_commit option, 582
SQL Anywhere SNMP Extension Agent trap, 1026
state information files, 944
stopping a database server, 958
synchronization modes, 942
synchronization states, 943
synchronous mode, 942
system events, 960
tutorial, 945, 949

mirroring systems
about, 938

MirrorMode property
database property description, 639
determining database mirroring synchronization
mode, 942
SQL Anywhere SNMP Extension Agent OID,
1044

MirrorServerDisconnect system event
description, 927
using, 960

MirrorServerName parameter
using, 960

MirrorState property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

MIT Kerberos client
Unix support, 115
Windows support, 115

mlasinst utility
privilege elevation may be required on Vista, 41

mlsrv11
licensing, 813
starting with transport-layer security, 1114
temporary file location, 379

MobiLink

Index

1252 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

database options, 502
glossary definition, 1179

MobiLink certificate creation utility [createcert]
syntax, 747

MobiLink certificate viewer utility [viewcert]
syntax, 750

MobiLink clients
database options, 502
glossary definition, 1179

MobiLink Monitor
glossary definition, 1179

MobiLink server
glossary definition, 1179

MobiLink synchronization
backups, 904
setting default_timestamp_increment, 528
setting truncate_timestamp_values, 587

MobiLink system tables
glossary definition, 1179

MobiLink transport-layer security
about, 1095

MobiLink users
glossary definition, 1179

MobiLink utilities
MobiLink certificate creation [createcert], 747
MobiLink certificate viewer [viewcert] utility, 750

modes
SQL Anywhere plug-in, 671
synchronization in database mirroring, 942

modifying root login policies
about, 441

Monitor
(see also MobiLink Monitor)
(see also Monitor metrics)
(see also Performance Monitor)
about, 973
adding resources, 995
admin user, 1002
alerts, 1006
alerts error reports, 1009
associating users with resources, 1003
blackouts, 1000
collection intervals, 996
connecting, 985
creating users, 1002
deleting alerts, 1007
deleting installed objects, 1010
deleting metrics, 994

deleting users, 1004
disconnecting, 986
email notification, 1007
enabling email notification, 1008
error reports, 1009
exiting, 984
installed objects, 1010
installing on a separate computer, 1011
limitations, 974
logins required, 1004
metric tabs, 989
metrics, 988
monitoring resources, 995
network configuration, 975
quick start, 977
removing resources, 1001
repairing resources, 1000
requirements, 974
resolving alerts, 1006
resources, 987, 995
running in a production environment, 974
security, 1004
start monitoring resources, 995
starting locally, 983
starting on a separate computer, 983
state, 987
status, 987
stop monitoring manually, 999
stop monitoring resources, 998
stop monitoring using blackouts, 1000
stopping the Monitor, 984
tabs, 989
troubleshooting, 1012
tutorial, 978
user types, 1002

Monitor metrics
alerts, 997
alerts tab, 990
collection intervals, 996
connections tab, 992
CPU tab, 991
deleting, 994
disk tab, 992
failed connections tab, 993
HTTP tab, 992
memory tab, 991
metric tabs, 989
mirror tab, 993

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1253

queries tab, 993
server tab, 990
specifying metrics to collect , 996
suppress alerts for the same condition that occur
within a specified time, 997
unscheduled requests tab, 991

monitoring
database option settings, 491
databases, 973
Monitor, 973
performance with histograms, 770
who is logged on, 827

monitoring database health and statistics
about, 674

MSDASQL OLE DB provider
about, 104

multi-processing
controlling threading, 50

multi-processor support
controlling threading, 50
server options, 48

multi-tasking
controlling threading, 50

multibyte character sets
about, 409
using, 416

MultiByteCharSet property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

multicast addresses
IPv6 support, 143

MultiPacketsReceived property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

MultiPacketsSent property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

MultiPageAllocs property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

multiple databases
DSEdit entries, 1130

multiprogramming level
choosing, 55

database server, 53
decreasing, 55
increasing, 54

MultiProgrammingLevel property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

MyIP protocol option
description, 319
using IPv6 addresses, 143

N
name

database, 253
Name property

connection property description, 598
database property description, 639
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035, 1044

named collations
creating databases, 426

NAS
storing database files, 14

national language support
about, 400
multibyte character sets, 416

NativeProcessorArchitecture property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

natural joins
glossary definition, 1173

navigating plan viewer
about, 692

NCHAR collation
about, 419

NCHAR data type
collation sequences, 774

nchar_charset
about, 409

nchar_charset alias
about, 429

NcharCharSet property
connection property description, 598
database property description, 639

Index

1254 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere SNMP Extension Agent OID,
1044

NcharCollation property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

NDS
filenames, 44

nearest_century option
connection property description, 598
description, 552
SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

negative permissions
not supported, 448

net.cfg
troubleshooting client/server communications, 153

network adapters
drivers, 151

network attached storage
storing database files, 14

network communications
command line options, 301
debugging startup problems, 74
sasrv.ini file, 75
troubleshooting, 74, 151

network connections
option, 55

network database server (see network server)
network drives

database files, 42
network parameters

(see also connection parameters)
network protocol options

database server, 261
network protocols

about, 141
alphabetical list, 301
client options , 301
dbeng11 -x option, 234
dbsrv11 -x option, 234
glossary definition, 1179
network connections, 128
supported, 142
troubleshooting, 151

network server
about, 38

connecting, 128
glossary definition, 1179
software requirements, 38
transport-layer security, 1107

Network Server Monitor
(see also SQL Anywhere Console utility)
syntax, 827
using, 729

never write mode
database server, 199

new membership window
using, 469

NewPassword connection parameter
description, 290
implementing password expiration, 1069

NEWPWD connection parameter
description, 290
implementing password expiration, 1069

newsgroups
technical support, xvii

NextScheduleTime property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

NIST
FIPS certification, 1097

NodeAddress property
connection property description, 598

non-English databases
creating, 426

non_keywords option
connection property description, 598
description, 552
SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

normalization
glossary definition, 1179

Notifiers
glossary definition, 1180

NULL
ANSI behavior, 510
defining for export, 723
nulls option, 721
Transact-SQL behavior, 510

nulls option
description, 721
Interactive SQL settings, 708

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1255

Number property
connection property description, 598

number sign
using in configuration files, 737

numeric precision
database option, 563

NumLogicalProcessors property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

NumLogicalProcessorsUsed property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

NumPhysicalProcessors property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

NumPhysicalProcessorsUsed property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

O
object identifiers (see OIDs)
object trees

glossary definition, 1180
objects

qualified names, 475
obtaining authentication signatures

about, 76
ODBC

Administrator, 98
connection parameters, 262
connections, 89
creating using the Connect window, 98
creating using the dbdsn utility, 99
creating using the ODBC Administrator, 98
data source connection parameters, 756
data sources, 97
Delphi, 553
driver location, 132
glossary definition, 1180
initialization file for Unix, 102
limited functionality on Windows Mobile, 356
odbc_describe_binary_as_varbinary option, 553
odbc_distinguish_char_and_varchar option, 553

troubleshooting, 804
Unix support, 102
using data sources on Windows Mobile, 102

ODBC Administrator
glossary definition, 1180
using, 98

ODBC connection parameters
Delphi, 756
DescribeCursor, 756
Description, 756
Driver, 756
GetTypeInfoChar, 756
InitString, 756
IsolationLevel, 756
KeysInSQLStatistics, 756
LazyAutocommit, 756
PrefetchOnOpen, 756
PreventNotCapable, 756
SuppressWarnings, 756
TranslationDLL, 756
TranslationName, 756
TranslationOption, 756

ODBC data sources
about, 97
configuring, 98
creating for Windows Mobile, 337
creating on Mac OS X, 100
creating using save as ODBC data source, 98
creating using the ODBC Administrator, 98
creating with dbdsn, 752
generating, 98
glossary definition, 1180
Unix, 102

ODBC driver
setting up, 100
threaded and non-threaded versions, 100

ODBC INI file
about, 102

ODBC sample
using, 334

odbc.ini file
about, 102

odbc_describe_binary_as_varbinary option
connection property description, 598
description, 553
SQL Anywhere SNMP Extension Agent OID,
1047

odbc_distinguish_char_and_varchar option

Index

1256 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

connection property description, 598
description, 553
SQL Anywhere SNMP Extension Agent OID,
1047

ODBC_INI environment variable
description, 372
locating the system information file, 102

ODBCHOME environment variable
description, 371

ODBCINI environment variable
description, 372
locating the system information file, 102

OEM code pages
about, 409

OEM Edition
about, 76

oem_string option
connection property description, 598
description, 554
SQL Anywhere SNMP Extension Agent OID,
1047

offline backups
about, 869, 873

offline transaction logs
backups, 912

OIDs
(see also object identifiers)
about, 1017
database options, 1047
database properties, 1044
database statistics, 1040
defined, 1017
RDBMS MIB, 1055
server properties, 1035
server statistics, 1032
SQL Anywhere MIB, 1029

OLAP
optimization_workload option, 560

OLE DB
connecting, 104
providers, 104
SAOLEDB provider, 104

OmniConnect support
about, 1124

OmniIdentifier property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

ON EXCEPTION RESUME clause
on_tsql_error option, 557

on_charset_conversion_failure option
connection property description, 598
description, 556
SQL Anywhere SNMP Extension Agent OID,
1047

on_error option
description, 721
Interactive SQL settings, 708

on_tsql_error option
ASE compatibility, 499
connection property description, 598
description, 557
Open Client, 1133
SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

online backups
about, 869, 873

online books
PDF, xii

Open Client
ASE compatibility options, 499
configuring, 1128
interface, 1124
Kerberos authentication, 118
maximum length of identifiers, 1150
options, 1133
unsupported on Windows Mobile, 356

Open Server
adding, 1128
address, 1130
architecture, 1124
configuring servers for JDBC, 1132
connecting, 1141
deleting server entries, 1132
renaming server entries, 1132
starting, 1126
system requirements, 1126

OPENSTRING clause
permission required for querying files, 451

operational servers
about, 938

operators
Monitor users, 1002

optimistic_wait_for_commit option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1257

SQL Anywhere SNMP Extension Agent OID,
1047

optimization_goal option
connection property description, 598
description, 557
SQL Anywhere SNMP Extension Agent OID,
1047

optimization_level option
connection property description, 598
description, 558
SQL Anywhere SNMP Extension Agent OID,
1047

optimization_workload option
connection property description, 598
description, 560
SQL Anywhere SNMP Extension Agent OID,
1047

optimizer
bypass, 559
capturing most recent plan, 243
controlling effort used to located access plans, 558

options
(see also database options)
(see also options [Ultralite])
about, 488
alphabetical list of database options, 493
ASE compatibility options, 499
backup [dbbackup] utility, 740
broadcast repeater [dbns11] utility, 745
case sensitivity, 489
classification, 493
collation tailoring, 420
createcert, 747
data source [dbdsn] utility, 752
database options in SQL Anywhere MIB, 1047
database server, 156
dbisqlc utility, 764
deleting settings, 492
erase [dberase] utility, 766
finding values, 490
histogram [dbhist] utility, 770
information [dbinfo] utility, 772
initial settings, 492
initialization [dbinit] utility, 774
Interactive SQL [dbisql] utility, 786
Interactive SQL options, 708
isql_allow_read_client_file, 715
isql_print_result_set, 719

language selection [dblang] utility, 791
Linux service [dbsvc] utility, 816
log transfer manager utility [dbltm] utility, 794
log translation [dbtran] utility, 799
MobiLink certificate creation [createcert], 747
MobiLink certificate viewer [viewcert] utility, 750
monitoring settings, 491
Open Client, 1133
ping [dbping] utility, 804
PUBLIC options, 489
scope and duration of database options, 489
server enumeration [dblocate] utility, 810
server licensing [dblic] utility, 813
setting database options, 488
setting for SQL Anywhere MobiLink clients, 502
setting in Interactive SQL, 708
setting temporary, 490
setting user and group options, 458
SQL Anywhere console [dbconsole] utility, 827
SQL Anywhere script execution [dbrunsql] utility,
808
SQL Remote replication options, 502
sr_date_format, 577
start server in background [dbspawn] utility, 829
startup settings, 1133
stop server [dbstop] utility, 831
support [dbsupport] syntax, 833
Transact-SQL compatibility options, 499
transaction log [dblog] utility, 842
unload [dbunload] utility, 845
upgrade [dbupgrad] utility, 860
validation [dbvalid] utility, 862
viewcert utility, 750
Windows service [dbsvc] utility, 820

options watch list
about, 491

OptionWatchAction property
about, 491
database property description, 639
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1044

OptionWatchList property
about, 491
database property description, 639
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1044

Index

1258 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Oracle driver
creating data sources, 753

organization
certificate_company protocol option, 304

organization unit
verifying in MobiLink transport-layer security,
1116

organizational unit
certificate_unit protocol option, 306

os_charset alias
about, 429

OSUser property
connection property description, 598

outer joins
glossary definition, 1180

output_format option
description, 722
Interactive SQL settings, 708

output_length option
description, 723
Interactive SQL settings, 708

output_nulls option
description, 723
Interactive SQL settings, 708

Override-Magic
user_estimates option, 590

overview tab
SQL Anywhere, 674

owners
about, 453

P
packages

glossary definition, 1180
packet size

limiting, 211, 212
PacketSize property

connection property description, 598
PacketsReceived property

connection property description, 598
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

PacketsReceivedUncomp property
connection property description, 598
server property description, 624

SQL Anywhere SNMP Extension Agent OID,
1032

PacketsSent property
connection property description, 598
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

PacketsSentUncomp property
connection property description, 598
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

page mode
database mirroring, 942

page sizes
choosing, 774
databases, 774
maximum allowed, 194
option, 49

page usage
information [dbinfo] utility, 772

PageRelocations property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

pages
displaying usage in database files, 772
transaction log, 14

PageSize property
database property description, 639
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035, 1044

Palm HotSync Conduit installer utility
privilege elevation may be required on Vista, 41

parallel backups
about, 912
dbbackup utility, 740
unsupported on Windows Mobile, 356

parallel execution
processors, 196

parallelism
max_query_tasks option, 547

parse trees
glossary definition, 1180

PartnerState property
database property description, 639

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1259

SQL Anywhere SNMP Extension Agent OID,
1044

Password connection parameter
description, 291

password expiry
NewPassword connection parameter, 290

password parameter
LDAP, 147

password rules
login_procedure, 541
verify_password_function option, 591

password verification
about, 1069

passwords
about, 457
authenticating, 1069
changing, 457
default, 449
encrypting, 279
expiry, 290
installed objects, 1010
Interactive SQL command history, 685
length, 1066
login policies, 440
LTM configuration file, 796
maximum length, 654
minimum length, 551
Monitor users, 1002
NEWPWD connection parameter, 290
post_login_procedure option, 561
PWD connection parameter, 291
security features, 1068
security tips, 1066
setting for utility database, 224
SQL Remote saving of, 573
utility database, 31
verify_password_function option, 591
verifying, 1069

PATH environment variable
description, 373

PBUF connection parameter
description, 292

PDB
glossary definition, 1180

PDF
documentation, xii

PeakCacheSize property
server property description, 624

SQL Anywhere SNMP Extension Agent OID,
1032

PEM-encoded PKI objects
viewing, 750

performance
cache size, 167, 169, 170, 171
compression, 149
database mirroring, 961
disk fragmentation, 28
encrypted databases, 1087
impacts of table encryption, 1090
improving, 920
LTM, 1155
OLAP queries, 560
PowerBuilder DataWindow, 557
prefetch, 563
primary keys, 17
result sets, 557
server options, 40, 48
setting priorities, 565
TCP/IP, 144
testing embedded SQL connections, 139
transaction log benefits, 14
transaction log mirror, 15
transaction log size, 17

performance statistics
disabling collection, 201
glossary definition, 1181

permissions
about, 452
BACKUP authority, 448
conflicts, 482
connect, 455
DBA authority, 449
file administration statements, 33
granting on views, 461
granting passwords, 455
granting REMOTE, 464
group membership, 469
groups, 453, 468
individual, 455
inheritance, 446
inheriting, 462, 468
integrated login permissions, 106
listing, 484
loading data, 192
managing, 439
negative permissions not supported, 448

Index

1260 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

options, 49
passwords, 457
procedures, 463
PROFILE authority, 450
READCLIENTFILE authority, 450
READFILE authority, 451
REMOTE DBA authority, 451
RESOURCE authority, 451
revoking, 465
revoking REMOTE, 464
scheme, 1068
security features, 1068
setting for procedures, 463
setting table permissions, 459
tables, 452, 459
temporary files, 379
the right to grant, 462
triggers, 451, 464
unloading data, 192
using views for extra security, 477
VALIDATE authority, 451
views, 452
WITH GRANT OPTION, 462
WRITECLIENTFILE authority, 452

perseat licensing
about, 813

personal database server (see personal server)
personal server

about, 38
glossary definition, 1181
unsupported on Windows Mobile, 356

personal server sample
running, 5

physical indexes
glossary definition, 1181

physical layer
troubleshooting, 152

physical limitations
SQL Anywhere, 654

ping utility [dbping]
exit codes, 806
syntax, 804
TCP/IP, 152
testing networks, 74
testing Open Client, 1131
using, 138

pinging
servers, 804

pinned_cursor_percent_of_cache option
connection property description, 598
description, 560
SQL Anywhere SNMP Extension Agent OID,
1047

PKI objects
viewing, 750

plan viewer
about, 692
navigating, 692

planning
backup and recovery, 900
backups, 901

plans
capturing most recent, 243
controlling optimizer's use of, 558
max_plans_cached option, 546

Platform property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

PlatformVer property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

plug-in modules
glossary definition, 1181

plug-ins
registry settings, 397
SQL Anywhere, 671

policies
glossary definition, 1181
SELinux support, 1064
SQL Anywhere login, 440

polling
glossary definition, 1181
setting frequency, 71

port number
database server, 321
ServerPort [PORT] protocol option, 321
TCP/IP, 235
TCP/IP for SQL Anywhere as an Open Server,
1127

port parameter
LDAP, 147

PORT protocol option
description, 321
using SQL Anywhere as an Open Server, 1127

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1261

post_login_procedure option
connection property description, 598
description, 561
implementing password expiration, 1069
SQL Anywhere SNMP Extension Agent OID,
1047

PowerBuilder DataWindow
query performance, 557

PowerDesigner
glossary definition, 1181

PowerJ
glossary definition, 1181

pre-defined dbspaces
about, 13

precision option
connection property description, 598
description, 563
SQL Anywhere SNMP Extension Agent OID,
1047

predicates
glossary definition, 1181

preferences
SQL Anywhere Console [dbconsole] utility, 730

preferred servers
specifying for database mirroring, 956

prefetch option
connection property description, 598
description, 563
DisableMultiRowFetch connection parameter, 278
SQL Anywhere SNMP Extension Agent OID,
1047

PrefetchBuffer connection parameter
description, 292

PrefetchOnOpen connection parameter
description, 293
ODBC connection parameter description, 756

PrefetchRows connection parameter
description, 294

prepared statements
connection limits, 483
max_statement_count option, 549
maximum supported on server, 654

Prepares property
connection property description, 598
database property description, 639

PrepStmt property
connection property description, 598

preserve_source_format option

connection property description, 598
description, 564
SQL Anywhere SNMP Extension Agent OID,
1047

prevent_article_pkey_update option
connection property description, 598
description, 565
SQL Anywhere SNMP Extension Agent OID,
1047

PreventNotCapable connection parameter
ODBC connection parameter description, 756

primary key constraints
glossary definition, 1182

primary keys
glossary definition, 1182
transaction log, 17

primary servers
database mirroring overview, 938
determining, 955
forcing failover, 958
recovering from failure, 959
stopping, 958

primary sites
adding Replication Server information, 1141
creating, 1139
Replication Server, 1137, 1138
using the LTM, 1138

primary tables
glossary definition, 1182

printing
Interactive SQL, 694

priority
process, 188

priority option
connection property description, 598
description, 565
SQL Anywhere SNMP Extension Agent OID,
1047

private keys
viewing, 750

ProcedurePages property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

ProcedureProfiling property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

Index

1262 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

procedures
generating database documentation, 675
looking up in Interactive SQL, 688
max_plans_cached option, 546
permissions, 463
permissions for creating, 451
Replication Server replicating, 1152, 1153
security, 477
SQL Anywhere LTM, 1151

ProcessCPU property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

ProcessCPUSystem property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

ProcessCPUUser property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

processor licensing
about, 813

ProcessorArchitecture property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

processors
concurrency, 197, 198
multiple, 48
number used, 196

ProductName property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

ProductVersion property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

PROFILE authority
about, 450
granting, 459
inheritable, 450

ProfileFilterConn property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

ProfileFilterUser property

server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

profiling
permissions for executing, 450

programming interfaces
connections, 89

properties
accessing connection properties, 598
accessing database properties, 639
accessing database server properties, 624
alphabetical list of connection properties, 598
alphabetical list of database properties, 639
alphabetical list of server properties, 624
database properties in SQL Anywhere MIB, 1044
server property OIDs in SQL Anywhere MIB,
1035

PROPERTY function
alphabetical list of database server properties, 624

protocol options
(see also connection parameters)
alphabetical list, 301
boolean values, 301
database server, 261
database server using HTTP, 301
database server using HTTPS, 301
list, 301

protocols
about, 141
database server using TCP/IP, 301
option, 55
selecting, 55
supported, 142
troubleshooting, 151

providers
MSDASQL, 104
OLE DB, 104
SAOLEDB, 104

PROWS connection parameter
description, 294

proxy tables
glossary definition, 1182

PUBLIC group
about, 473

public key cryptography
about, 1095

public key infrastructure objects
viewing, 750

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1263

PUBLIC options
about, 489
DBA authority required, 489

publication updates
glossary definition, 1182

publications
glossary definition, 1182

publisher
glossary definition, 1183

push notifications
glossary definition, 1183

push requests
glossary definition, 1183

PWD connection parameter
description, 291

Q
QAnywhere

glossary definition, 1183
QAnywhere Agent

glossary definition, 1183
qualified names

database objects, 475
tables, 472

qualify_owners option
description, 566
SQL Remote replication option, 502

qualify_table_owners parameter
LTM configuration file, 796

quaternary punctuation sensitivity
case and accent insensitive databases, 784

queries
glossary definition, 1183
Interactive SQL, 681
optimizer bypass, 559
printing from Interactive SQL, 694

Query Editor
about, 690
limitations, 691
starting, 691
Transact-SQL not supported, 691
unions not supported, 691
using, 691

query optimization
capturing most recent plan, 243
optimizer bypass, 559

query_mem_timeout option

connection property description, 598
description, 566
SQL Anywhere SNMP Extension Agent OID,
1047

query_plan_on_open option
Transact-SQL compatibility, 499

QueryBypassed property
connection property description, 598
database property description, 639

QueryBypassedCosted property
connection property description, 598
database property description, 639

QueryBypassedHeuristic property
connection property description, 598
database property description, 639

QueryBypassedOptimized property
connection property description, 598
database property description, 639

QueryCachedPlans property
connection property description, 598
database property description, 639

QueryCachePages property
connection property description, 598
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

QueryDescribedBypass property
connection property description, 598
database property description, 639

QueryDescribedOptimizer property
connection property description, 598
database property description, 639

QueryHeapPages property
connection property description, 598
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

QueryJHToJNLOptUsed property
connection property description, 598
database property description, 639

QueryLowMemoryStrategy property
connection property description, 598
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

QueryMemActiveCurr property
connection property description, 598

Index

1264 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere SNMP Extension Agent OID,
1032

QueryMemActiveEst property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

QueryMemActiveMax property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

QueryMemExtraAvail property
connection property description, 598
SQL Anywhere SNMP Extension Agent OID,
1032

QueryMemGrantBase property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

QueryMemGrantBaseMI property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

QueryMemGrantExtra property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

QueryMemGrantFailed property
connection property description, 598
SQL Anywhere SNMP Extension Agent OID,
1032

QueryMemGrantGranted property
connection property description, 598
SQL Anywhere SNMP Extension Agent OID,
1032

QueryMemGrantRequested property
connection property description, 598
SQL Anywhere SNMP Extension Agent OID,
1032

QueryMemGrantWaited property
connection property description, 598
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

QueryMemGrantWaiting property
connection property description, 598
SQL Anywhere SNMP Extension Agent OID,
1032

QueryMemPages property

server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

QueryMemPercentOfCache property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

QueryMemWaited property
connection property description, 598

QueryOpened property
connection property description, 598
database property description, 639

QueryOptimized property
connection property description, 598
database property description, 639

QueryReused property
connection property description, 598
database property description, 639

QueryRowsBufferFetch property
connection property description, 598
database property description, 639

QueryRowsMaterialized property
connection property description, 598
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

questions
character sets, 405

quick start
backups, 871
transport-layer security, 1099

quiet mode
backup [dbbackup] utility, 740
data source [dbdsn] utility, 753
database server, 49
dbisqlc utility, 764
erase [dberase] utility, 766
information [dbinfo] utility, 772
initialization [dbinit] utility, 774
Interactive SQL [dbisql] utility, 786
language [dblang] utility, 791
log transfer manger [dbltm] utility, 794
log translation [dbtran] utility, 799
ping [dbping] utility, 804
server enumeration [dblocate] utility, 810
server licensing [dblic] utility, 813
spawn [dbspawn] utility, 829

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1265

SQL Anywhere script execution [dbrunsql] utility,
808
stop [dbstop] utility, 831
transaction log [dblog] utility, 842
unload [dbunload] utility, 845
upgrade [dbupgrad] utility, 860
validation [dbvalid] utility, 862

QuittingTime property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

quorums
database mirroring, 939

quotation marks
using in connection strings, 87

quote_all_identifiers option
description, 566
SQL Remote replication option, 502

quoted_identifier option
connection property description, 598
description, 567
Open Client, 1133
SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

R
RAISERROR statement

continue_after_raiserror option, 519
on_tsql_error option, 557

RAISERROR system event
description, 927

range
(see also limitations)

RAS
dial-up networking, 145

RCVBUFSZ protocol option
description, 320

RDBMS
glossary definition, 1184

RDBMS MIB
about, 1020
list of tables, 1055

RDBMS-MIB.mib file
about, 1016, 1020
location, 1055

rdbmsDbInfoTable

description, 1055
rdbmsDbLimitedResourceTable

description, 1057
rdbmsDbParamTable

description, 1056
rdbmsDbTable

description, 1055
rdbmsSrvInfoTable

description, 1058
rdbmsSrvLimitedResourceTable

description, 1060
rdbmsSrvParamTable

description, 1059
rdbmsSrvTable

description, 1058
read only

-sm option, 255
access to mirror databases, 956
databases, 49, 216, 255

read-only users
Monitor, 1002
Monitor login required, 1004

read_authdn parameter
LDAP, 147

read_password parameter
LDAP, 147

read_past_deleted option
connection property description, 598
description, 567
SQL Anywhere SNMP Extension Agent OID,
1047

READCLIENTFILE authority
about, 450
granting, 459
inheritable, 450

READFILE authority
about, 451
granting, 459
inheritable, 451

reading
TLS certificates, 750

ReadOnly property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

rebuild utility [rebuild]
about, 807
exit codes, 807

Index

1266 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

syntax, 807
rebuilding

databases on Windows Mobile, 345
rebuilding databases

about, 807
changing collations, 427
Windows Mobile, 345

rebuilding databases on Windows Mobile
about, 345

recalling
commands in Interactive SQL, 685

ReceiveBufferSize protocol option
description, 320

ReceivingTracingFrom property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

recovering from primary server failure
about, 959

recovery
about, 869
automatic, 869
distributed transactions, 226
internals, 909
maximum time, 194
media failure, 889, 896
option, 49
rapid, 875
restrictions during, 879
server options, 184
strategies for Windows Mobile, 346
system failure, 903
transaction log, 14, 898
transaction log mirror, 15
uncommitted changes, 890
urgency, 910

recovery mode
log transfer manger [dbltm] utility, 794

recovery_time option
connection property description, 598
description, 568
SQL Anywhere SNMP Extension Agent OID,
1047
using, 910

RecoveryUrgency property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

recursive queries
max_recursive_iterations option, 548

RecursiveIterations property
connection property description, 598
database property description, 639

RecursiveIterationsHash property
connection property description, 598
database property description, 639

RecursiveIterationsNested property
connection property description, 598
database property description, 639

RecursiveJNLMisses property
connection property description, 598
database property description, 639

RecursiveJNLProbes property
connection property description, 598
database property description, 639

Redirector
glossary definition, 1183

redo log
about, 14

reference databases
glossary definition, 1183

referenced object
glossary definition, 1184

REFERENCES permission
about, 452
granting, 459

referencing object
glossary definition, 1184

referential integrity
glossary definition, 1184

registry
about, 396
environment variables, 366
language selection [dblang] utility, 791
language settings, 397
location setting, 397
modifying, 366
setting SQLREMOTE environment variable, 386
Sybase Central, 397
tools location setting, 397
Windows Mobile, 398
Windows services, 396

regular expressions
glossary definition, 1184

RelocatableHeapPages property
database property description, 639

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1267

SQL Anywhere SNMP Extension Agent OID,
1041

RememberLastPlan property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

RememberLastStatement property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

remote data access
cis_option option, 515
cis_rowset_size option, 515
unsupported on Windows Mobile, 356

remote databases
glossary definition, 1184

REMOTE DBA authority
about, 451
glossary definition, 1184
requirement for online backups, 869

remote IDs
glossary definition, 1185

REMOTE permissions
granting and revoking, 464

remote_idle_timeout option
connection property description, 598
description, 568
SQL Anywhere SNMP Extension Agent OID,
1047

RemoteCapability property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

RemoteputWait property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

RemoteTrunc property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

REMOVE JAVA statement
unsupported on Windows Mobile, 357

removing
users from groups, 470

renaming
transaction log, 907

REORGANIZE TABLE statement

unsupported on Windows Mobile, 357
rep_func parameter

LTM configuration file, 796
repairing

Monitor resources, 1000
replicate minimal columns

support for, 1152
REPLICATE ON clause

using with ALTER TABLE statement, 1143
replicate sites

adding Replication Server information, 1143
creating, 1139
Replication Server, 1137
using the LTM, 1138

replicate_all option
connection property description, 598
description, 569
Replication Agent options, 503
SQL Anywhere SNMP Extension Agent OID,
1047

replication
about Replication Server, 1136
backup procedures, 904, 1157
creating a replication definition for Replication
Server, 1145
dbcc, 844
defining, 1151
enabling for primary site, 1143
glossary definition, 1185
log transfer manager, 794
rebuilding encrypted databases, 858
Replication Server, 844
Replication Server backup procedures, 1158
Replication Server buffering, 1155
Replication Server entire databases, 1158
Replication Server procedures, 1152, 1153
Replication Server stored procedures, 1153
Replication Server transaction log management,
1157, 1158
SQL Remote options, 502
transaction log management, 904
trigger actions, 530, 531

Replication Agent
backups, 904
database options, 503
glossary definition, 1185
identifiers, 1150
log transfer manager utility [dbltm] syntax, 794

Index

1268 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

replication frequency
glossary definition, 1185

replication messages
glossary definition, 1185

replication options
classification, 493
initial settings, 492
replicate_all, 569
Replication Agent delete_old_logs, 529
SQL Remote blob_threshold, 512
SQL Remote compression, 517
SQL Remote delete_old_logs, 529
SQL Remote external_remote_options, 531
SQL Remote list, 502
SQL Remote qualify_owners, 566
SQL Remote quote_all_identifiers, 566
SQL Remote replication_error, 569
SQl Remote replication_error_piece, 570
SQL Remote save_remote_passwords, 573
SQL Remote sr_date_format, 577
SQL Remote sr_time_format, 578
SQL Remote sr_timestamp_format, 579
SQL Remote subscribe_by_remote, 580
SQL Remote verify_all_columns, 591
SQL Remote verify_threshold, 594

Replication Server
about, 1135, 1136
backup procedures, 1157
characteristics, 1136
creating a connection, 1144, 1145
creating a replication definition, 1145
creating a subscription, 1146
glossary definition, 1185
log transfer manager, 794
preparing SQL Anywhere databases, 1143
primary sites, 1138, 1144
replicate sites, 1137, 1145
replicating an entire database, 1158
replicating procedures, 1152, 1153
rssetup.sql script, 1141
setting up SQL Anywhere databases, 1148
SQL Anywhere character sets, 1150
SQL Anywhere collations, 1150
SQL Anywhere configuration, 1148
starting a SQL Anywhere server, 1140
support, 1124
supported versions, 1138
transaction log management, 1157

replication_error option
description, 569
SQL Remote replication option, 502

replication_error_piece option
description, 570
SQL Remote replication option, 502

reporting errors
about, 83

reports
maintenance plans, 902

Req property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

ReqCountActive property
connection property description, 598

ReqCountBlockContention property
connection property description, 598

ReqCountBlockIO property
connection property description, 598

ReqCountBlockLock property
connection property description, 598

ReqCountUnscheduled property
connection property description, 598

ReqStatus property
connection property description, 598

ReqTimeActive property
connection property description, 598

ReqTimeBlockContention property
connection property description, 598

ReqTimeBlockIO property
connection property description, 598

ReqTimeBlockLock property
connection property description, 598

ReqTimeUnscheduled property
connection property description, 598

ReqType property
connection property description, 598

request log
limiting size, 245
number of copies, 241
using, 242

request logging
database server option, 244
limiting log file size, 245
number of request log copies, 241
saving logging information to a file, 242

request-level logging (see request logging)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1269

request_timeout option
connection property description, 598
description, 570
SQL Anywhere SNMP Extension Agent OID,
1047

RequestFilterConn property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

RequestFilterDB property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

RequestLogFile property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

RequestLogging property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

RequestLogMaxSize property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

RequestLogNumFiles property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

requests
threading in SQL Anywhere, 50

RequestsReceived property
connection property description, 598
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

RequestTiming property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

requirements
Veritas Cluster Server agents, 965

RESOURCE authority
about, 451
granting, 459
not inheritable, 451

resource governor
cursors, 545

defined, 483
statements, 549

resources
Monitor, 987

restore database wizard
unsupported on Windows Mobile, 360
using, 891

restrictions
during backups, 879
during recovery, 879
encryption keys, 1087
passwords, 457

result sets
copying rows, 697
deleting rows, 697
disabling table editing values in Interactive SQL,
696
editing table values in Interactive SQL, 695
inserting rows, 696
printing, 694
sorting, 698

results
unexpected symbols when viewing data, 411

retrieving
commands in Interactive SQL, 685

RetryConnectionTimeout connection parameter
connecting to mirrored databases, 955
description, 295

RetryConnTO connection parameter
connecting to mirrored databases, 955
description, 295

return codes
backup [dbbackup] utility, 744
data source [dbdsn] utility, 756
erase [dberase] utility, 767
histogram [dbhist] utility, 771
information [dbinfo] utility, 773
initialization [dbinit] utility, 784
Interactive SQL [dbisql] utility, 788
language [dblang] utility, 792
log transfer manager [dbltm] utility, 796
log translation [dbtran] utility, 803
ping [dbping] utility, 806
rebuild [rebuild] utility, 807
server enumeration [dblocate] utility, 812
server licensing [dblic] utility, 814
start server in background [dbspawn] utility, 829
stop server [dbstop] utility, 832

Index

1270 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

transaction log [dblog] utility, 844
unload [dbunload] utility, 856
upgrade [dbupgrad] utility, 861
validation utility (dbvalid), 864
Windows service [dbsvc] utility, 825

return_date_time_as_string option
connection property description, 598
description, 571

revoking
authorities, 465
group membership, 470
permissions, 465
REMOTE permissions, 464

revoking integrated login permission
about, 108

revoking Kerberos login permission
about, 119

Rlbk property
connection property description, 598

role names
glossary definition, 1185

role switching
database mirroring, 938

roles
database mirroring, 938
glossary definition, 1185

rollback logs
about, 912
glossary definition, 1186

ROLLBACK statement
cursors, 507
log, 912

rollback_on_deadlock option
connection property description, 598
description, 572
SQL Anywhere SNMP Extension Agent OID,
1047

RollbackLogPages property
connection property description, 598
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

root certificates
transport-layer security, 1101
transport-layer security client verification, 1106

root login policy
about, 440
modifying, 441

rounding
scale option, 573

routers
broadcasting over, 309

row counts
enabling, 572

row-level triggers
glossary definition, 1186

row_counts option
connection property description, 598
description, 572
SQL Anywhere SNMP Extension Agent OID,
1047

rows
adding using Interactive SQL, 696
copying in Interactive SQL, 697
deleting using Interactive SQL, 697
editing values in Interactive SQL, 695
inserting in Interactive SQL, 696

RS parameter
LTM configuration file, 796
starting the LTM, 1145

RS_pw parameter
LTM configuration file, 796
starting the LTM, 1145

RS_source_db parameter
LTM configuration file, 796
starting the LTM, 1145

RS_source_ds parameter
LTM configuration file, 796
starting the LTM, 1145

RS_user parameter
LTM configuration file, 796
starting the LTM, 1145

RSA
support, 1097

RSA certificates
creating, 747
viewing, 750

RSA option
dbeng11 -ec, 181
dbsrv11 -ec, 181

rssetup.sql script
about, 1148
preparing to run, 1148
running, 1149

running
Interactive SQL commands, 681

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1271

running database servers
overview, 37

S
sa_config.csh file

sourcing, 367
sa_config.sh file

sourcing, 367
sa_conn_properties system procedure

alphabetical list of connection properties, 598
using, 490

sa_db_properties system procedure
alphabetical list of database properties, 639

sa_eng_properties system procedure
alphabetical list of database server properties, 624

sa_monitor_connection_failed_event event
Monitor, 1010

sa_monitor_connection_failure table
Monitor, 1010

sa_monitor_count_unsubmitted_crash_reports
function

Monitor, 1010
sa_monitor_user

about, 1010
sa_server_option system procedure

monitoring database option settings, 491
SACA

about, 416
multibyte character sets, 416
single-byte character sets, 416
UTF-8 character sets, 417

SACHARSET environment variable
specifying character sets, 374

SADatabase agents
configuring, 967
testing, 969

saDbOptMetaDataTable
SQL Anywhere MIB, 1032

saDbPropMetaDataTable
SQL Anywhere MIB, 1031

saDbStatMetaDataTable
SQL Anywhere MIB, 1031

SADIAGDIR environment variable
specifying location of diagnostic information, 375

SALANG environment variable
specifying languages, 377

SALOGDIR environment variable

description, 378
sample application

Windows Mobile, 331
sample applications

ADO.NET sample, 332
ESQL sample, 334
ODBC sample, 334
SQL Anywhere server example, 331

sample database
starting demo.db, 5
tutorial, 3
two versions on Windows Mobile, 331

samples
accessing from Windows Start menu, 390
environment variable, 382
location, 390

samples directory
about, 390

samples-dir
about, 390
documentation usage, xiv

SANs
storing database files, 14

SAOLEDB
connecting to SQL Anywhere, 104

SAServer agent
configuring, 966

SAServer agents
testing, 967

sasnmp.ini file
about, 1016
required for SQL Anywhere SNMP Extension
Agent, 1021

sasrv.ini file
server information, 137
troubleshooting server startup, 75

saSrvPropMetaDataTable
SQL Anywhere MIB, 1030

saSrvStatMetaDataTable
SQL Anywhere MIB, 1030

SATMP environment variable
description, 379
Unix, 388

save as ODBC data source
about, 98

save_remote_passwords option
SQL Remote option, 573

scale option

Index

1272 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

connection property description, 598
description, 573
SQL Anywhere SNMP Extension Agent OID,
1047

scan_retry parameter
LTM configuration file, 796
starting the LTM, 1145

scenarios
failover in a database mirroring system, 961

scheduled events
about, 924
create schedule wizard, 925
database mirroring, 940
daylight savings time, 933

schedules
about, 924
create schedule wizard, 925
defined, 922
defining for events, 924
internals, 932

scheduling
about, 924
backups, 900, 901
events, 922
introduction, 922
server shutdown, 227

schemas
glossary definition, 1186
unloading definition, 845

scjview
about, 661

scjview.exe
about, 661
fast launcher option, 728

script execution [dbrunsql] utility
syntax, 808

script versions
glossary definition, 1186

script-based uploads
glossary definition, 1186

scripts
glossary definition, 1186

scripts directory
about, 390

search conditions
user_estimates option, 590

search_timeout parameter
LDAP, 147

searching
databases, 664
Sybase Central, 664

secure socket layers
about, 1095

secure_feature_key option
connection property description, 598
description, 574
SQL Anywhere SNMP Extension Agent OID,
1047

secured features
about, 1072
glossary definition, 1186
secure_feature_key option, 574
specifying secure feature key with -sk, 223
specifying with -sf, 218

SecureFeatures property
-sf server option, 218

security
-ec server option, 180
-ek server option, 252
-ep server option, 183
-es server option, 184
about , 1063
about transport-layer security, 1095
adding simple encryption to configuration files,
768
AES encryption, 1082
auditing, 1074
auditing option, 511
auditing retrieval, 1076
copying database files, 123
creating databases, 1081
database server, 1066, 1081
DatabaseKey [DBKEY] connection parameter, 274
deleting databases, 1081
disabling database features, 574, 1072
encrypting database files, 1082
Encryption [ENC] connection parameter, 280
event example, 928
file access, 192
file hiding [dbfhide] utility, 768
FIPS, 1097
integrated logins, 123, 1068
loading data, 1081
minimum password length, 551
Monitor users, 1004
overview, 1064

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1273

passwords, 1068
procedures, 463, 477
running SQL Anywhere on Vista, 40
server command line, 1064
services, 69
system functions, 1066
temporary file, 379
tips, 1066
unloading data, 1081
utility database, 33
views, 477
Windows Mobile, 1093

SELECT permission
about, 452
granting, 459

selectivity estimates
user_estimates option, 590

self-signed certificates
making for transport-layer security, 1101
transport-layer security, 1101

SELinux policies
using SQL Anywhere policy, 1064

semicolons
using in connection strings, 87

SendBufferSize protocol option
description, 320

SendFail property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

sending
Monitor alert emails, 1007

SendingTracingTo property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

sensitivity
accent, 420
case, 420
punctuation, 420

server address
DSEdit, 1130

server authentication
MobiLink transport-layer security, 1115
SQL Anywhere transport-layer security, 1108

server certificates
using global certificates in transport-layer security,
1105

server enumeration utility [dblocate]
exit codes, 812
syntax, 810

server information
sasrv.ini, 137

server licensing utility [dblic]
exit codes, 814
privilege elevation may be required on Vista, 41
syntax, 813

server location utility (see server enumeration utility
[dblocate])
server management requests

glossary definition, 1186
server message log

configuring for database servers, 43
server message stores

glossary definition, 1187
server messages

cache warming, 175
displaying, 215
displaying on Linux, 228, 230
displaying on Mac OS X, 231
displaying on Solaris, 228
limiting size of log file, 210
logging startup errors, 208
output to file, 208, 210
renaming and restarting log file, 209
viewing on Linux, 228, 230, 232
viewing on Mac OS X, 231
viewing on Solaris, 228

server messages and executed SQL pane
about, 44

server monitoring
about, 973

server name
-n option, 206
case sensitivity, 47
server enumeration [dblocate] utility, 810
stop [dbstop] syntax, 831

server options
commonly-used options, 46
database, 248
recovery, 184
specifying for Windows Mobile databases, 1093
unsupported option on Windows Mobile, 358

server parameter
LDAP, 147

server properties

Index

1274 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

alphabetical list, 624
case sensitivity, 624
OIDs for SQL Anywhere SNMP Extension Agent,
1035
reporting, 804
retrieving with the SQL Anywhere SNMP Extension
Agent, 1024
setting with the SQL Anywhere SNMP Extension
Agent, 1025

server side
-ec server option, 180
-ek server option, 252
-ep server option, 183
-es server option, 184
backup quick start, 871
backups, 880
parallel backups, 912

server startup options window
using on Linux, 232
using on Windows Mobile, 348

server statistics
OIDs for SQL Anywhere SNMP Extension Agent,
1032
retrieving with the SQL Anywhere SNMP Extension
Agent, 1024

server-initiated synchronization
glossary definition, 1186

ServerEdition property
server property description, 624

ServerIdle system event
description, 927
example, 928

ServerName connection parameter
character sets, 87
description, 296
embedded databases, 127

ServerName property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

ServerNodeAddress property
connection property description, 598

ServerPort property
connection property description, 598

ServerPort protocol option
description, 321
using SQL Anywhere as an Open Server, 1127

servers

(see also database servers)
autostarting, 134
disabling database features, 1072
high availability with database mirroring, 938
limiting connections, 192
locating, 134, 810
managing, 820
name restrictions, 207
name truncation length, 207
properties, 624
read-only access, database mirroring, 255
specifying alternate names, 257
starting a database without connecting, 59
starting from batch files, 829
starting with transport-layer security, 1107
stopping a database, 60

service creation utility (see service utility [dbsvc])
service groups

about, 72
service monitor (see SQL Anywhere Monitor)
service utility [dbsvc]

exit codes, 825
Linux options, 816
Linux syntax, 816
privilege elevation may be required on Vista, 41
Windows options, 820
Windows syntax, 820

services
about, 62
account, 69
adding for Windows, 65
adding new databases, 70
configuring, 67
creating from Sybase Central, 65
database servers, 62
deleting, 66
dependencies, 72, 73
eligible programs, 65
event log, 44
executable file, 70
failure to start, 68
glossary definition, 1187
groups, 72
icon on the desktop, 69
Linux listing, 816
Linux setting dependencies, 817
Linux starting, 816
listing, 820

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1275

managing, 65
multiple, 72
options, 68
parameters, 67
polling, 71
registry settings, 396
running on Vista, 41
security, 69
service [dbsvc] utility, 820
setting dependencies, 821
setting group dependencies, 821
setting type on Linux, 817
setting type on Windows, 821
starting, 71, 820
starting order, 73
startup options, 67
stopping, 71
using Windows Service Manager, 71
Windows, 64, 820

session-based synchronization
glossary definition, 1187

SessionCreateTime property
connection property description, 598

SessionID property
connection property description, 598

SessionLastTime property
connection property description, 598

SessionTimeout property
connection property description, 598

SET OPTION statement
Interactive SQL options, 708
using, 488

SET TEMPORARY OPTION statement
using, 488

setting
database options, 488
polling frequency, 71
temporary options, 490

setting database options
about, 488

setting the execute statements toolbar button
about, 682

setting up clients to trust the certificate
transport-layer security, 1106

setting up self-signed certificates
transport-layer security, 1101

setting up transport-layer security
about, 1099

setup scripts
about, 1148
preparing to run, 1148
running, 1149

SetupVSPackage.exe
privilege elevation may be required on Vista, 41

seven-bit characters
about, 408

shared memory
about, 55
and CommLinks connection parameter, 268
securing connections on Unix, 1066
server configuration, 234
terminal services, 56
Unix temporary file configuration, 379

shell mode
viewing database server messages, 228

SHLIB_PATH environment variable
description, 381

shortcuts
Interactive SQL, 704
Sybase Central, 665

shutting down
specifying time, 227

signatures
obtaining for authenticated applications, 76

signed certificates
creating in transport-layer security, 1104

signing
ECC and RSA certificates, 747
executables for Vista, 41

silent
database server, 49

simple encryption
about, 1082
SQL Anywhere databases on Windows Mobile,
1094

simple network management protocol (see SNMP)
single step

about, 682
single-byte character sets

about, 408
smartphone

limitations on SQL Anywhere Server, 329
SMP

number of processors, 48, 196
snapshot isolation

glossary definition, 1187

Index

1276 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

isolation_level database option, 535
updatable_statement_isolation option, 588

SnapshotCount property
connection property description, 598
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

SnapshotIsolationState property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

snapshots
point-in-time , 884

SNDBUFSZ protocol option
description, 320

SNMP
about, 1017
agents, 1017
dynamic traps, 1027
installing, 1021
managers, 1017
traps, 1017
using the SQL Anywhere SNMP Extension Agent,
1015
using traps, 1026

SNMP service
restarting, 1021

SNMPv2-SMI.mib file
about, 1016

SNMPv2-TC.mib file
about, 1016

software
licensing database servers, 813
updating, 732
version, 233

software licenses
licensing servers, 813

software updates
obtaining, 732

software version
database server, 233
determining, 865

Solaris
IPv6 support, 143
LD_LIBRARY_PATH environment variable, 369
viewing server messages in shell mode, 228

sort order
collations, 400

definition, 407
sort_collation option

connection property description, 598
description, 575
SQL Anywhere SNMP Extension Agent OID,
1047

sorting
result sets, 698

SortMergePasses property
connection property description, 598
database property description, 639

SortRowsMaterialized property
connection property description, 598
database property description, 639

SortRunsWritten property
connection property description, 598
database property description, 639

SortSortedRuns property
connection property description, 598
database property description, 639

SortWorkTables property
connection property description, 598
database property description, 639

source control
actions available from Interactive SQL, 703
checking in files from Interactive SQL, 703
checking out files from Interactive SQL, 702
configuring in Interactive SQL, 700
integration with Interactive SQL, 699
opening source control projects from Interactive
SQL, 701

Source Control Actions list
using, 700

source control projects
opening from Interactive SQL, 701

sourcing files
Unix, 367

sp_setreplicate procedure
about, 1153

sp_setrepproc procedure
about, 1153

spaces
connection strings, 86

spawn utility (see start server in background utility
[dbspawn])
SQL

glossary definition, 1187
statements not supported on Windows Mobile, 357

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1277

SQL Anywhere
authenticated applications, 76
configuring client applications to use transport-layer
security, 1108
configuring database servers to use transport-layer
security, 1107
configuring databases for Windows Mobile, 339
configuring web servers to use transport-layer
security, 1112
connecting using a data source, 127
documentation, xii
features not supported on Windows Mobile, 356
glossary definition, 1187
installing SQL Anywhere, 328
international features, 402
localized versions, 400
required ActiveSync version, 328
running on Vista, 40
setting up as an Open Server, 1126
software updates, 732
using on Windows Mobile, 327
using SQL Anywhere, 327

SQL Anywhere Collation Algorithm (SACA)
about, 416

SQL Anywhere Console utility [dbconsole]
configuring, 730
Mac OS X hardware requirements, 730
software updates, 732
starting, 729
syntax, 827
using, 729

SQL Anywhere environment variables
about, 366
setting, 366
setting on Mac OS X, 366
setting on Windows, 366
sourcing on Unix, 366
Unix, 366

SQL Anywhere for Windows
using the SQL Anywhere server example, 331

SQL Anywhere MIB
about, 1017
Agent table, 1029
database options, 1047
database properties, 1044
database statistics, 1040
list of tables, 1029
saDbOptMetaDataTable, 1032

saDbPropMetaDataTable, 1031
saDbStatMetaDataTable, 1031
saMetaData tables, 1029
saSrvPropMetaDataTable, 1030
saSrvStatMetaDataTable, 1030
server properties, 1035
server statistics, 1032

SQL Anywhere MIB reference
overview, 1029

SQL Anywhere Monitor (see Monitor)
SQL Anywhere ODBC driver

about, 97
SQL Anywhere OEM Edition

about, 76
application authentication, 78
authenticating connections, 79
authentication signatures, 76
connection_authentication option, 518
database authentication, 77
database_authentication option, 522
developing applications, 76
upgrading databases, 80

SQL Anywhere plug-in
application profiling mode, 671
debug mode, 671
design mode, 671
entity-relationship diagrams, 673
overview tab, 674
using, 671

SQL Anywhere server example
using, 331

SQL Anywhere SNMP Extension Agent
about, 1015
configuring, 1021
dynamic traps, 1027
executing functions, 1025
executing stored procedures, 1025
restarting, 1023
sasnmp.ini file, 1021
supported MIBs, 1017
supported platforms, 1016

SQL Anywhere support utility [dbsupport]
SADIAGDIR environment variable, 375

SQL Anywhere transport-layer security
about, 1095

SQL Anywhere Volume Shadow Copy Service (VSS)
Types of backup, 884

SQL Anywhere VSS writer

Index

1278 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

dbvss11.exe, 233, 884
SQL Anywhere Web Edition

about, 82
SQL compatibility

database options, 499
SQL file format

Interactive SQL output, 722
SQL Flagger

sql_flagger_error_level option, 575
sql_flagger_warning_level option, 576

SQL Remote
features not supported on Windows Mobile, 361
glossary definition, 1187
renaming transaction log automatically, 905
SQL Remote replication options, 502

SQL standards
Transact-SQL compatibility options, 499
UPDATE statement, 799

SQL statements
capturing recently-prepared, 240
client/server, 410
glossary definition, 1187
logging in Interactive SQL, 687
logging in Sybase Central, 44
unsupported statements on Windows Mobile, 357
utility database, 30

SQL statements pane
description, 679

SQL-based synchronization
glossary definition, 1187

sql.ini file
about, 1140
configuring, 1128

SQL/2003 compliance
SQL_FLAGGER_ERROR option, 575
updates, 509

SQL_database parameter
LTM configuration file, 796
starting the LTM, 1145

sql_flagger_error_level option
connection property description, 598
description, 575
SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

sql_flagger_warning_level option
connection property description, 598
description, 576

SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

SQL_pw parameter
LTM configuration file, 796
starting the LTM, 1145

SQL_server parameter
LTM configuration file, 796
starting the LTM, 1145

SQL_user parameter
LTM configuration file, 796
starting the LTM, 1145

SQLANY11 environment variable
description, 382

SQLANYSAMP11 environment variable
description, 383

SQLCONNECT environment variable
connections, 131
description, 384
precedence, 87
using with dbstop utility, 832

SQLDA
ansi_blanks option, 506

SQLPATH environment variable
description, 385

SQLREMOTE environment variable
description, 386

sr_date_format option
SQL Remote option, 577

sr_time_format option
SQL Remote options, 578

sr_timestamp_format option
SQL Remote option, 579

SSL (see transport-layer security)
SSPI

Kerberos logins on Windows, 119
stack overflow

errors, 195
stack size

external functions, 190
maximum, 195

START connection parameter
commonly-used options, 46
description, 297
embedded databases, 127

START JAVA statement
unsupported on Windows Mobile, 357

start server in background utility [dbspawn]

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1279

exit codes, 829
syntax, 829

StartDBPermission property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

starting databases
about, 59
without connecting, 59

starting MobiLink server
transport-layer security, 1114

StartLine connection parameter
commonly-used options, 46
description, 297
embedded databases, 127

StartTime property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

state
Monitor, 987

state files (see state information files)
state information files

database mirroring, 944
role in determining the primary server, 955

statement-level triggers
glossary definition, 1188

StatementDescribes property
connection property description, 598
database property description, 639

StatementPostAnnotates property
connection property description, 598
database property description, 639

StatementPostAnnotatesSimple property
connection property description, 598
database property description, 639

StatementPostAnnotatesSkipped property
connection property description, 598
database property description, 639

statements
caching for clients, 545
limitations, 654
logging, 44
logging in Interactive SQL, 687
unsupported statements on Windows Mobile, 357
utility database, 30

statistics
database statistics in SQL Anywhere MIB, 1040

overview tab, 674
server statistics OIDs for SQL Anywhere SNMP
Extension Agent, 1032

status
Monitor, 987

step through
Interactive SQL, 681

STOP JAVA statement
unsupported on Windows Mobile, 357

stop server utility [dbstop]
exit codes, 832
permissions, 191
syntax, 831
using, 58
using with SQLCONNECT, 832

stopping
databases, 831
databases (ASTOP), 265
the server on Windows Mobile, 352

stopping database servers
mirroring system, 958

stopping databases
about, 60

storage area networks
storing database files, 14

storage cards
Windows Mobile, 328

stored procedures
executing using SQL Anywhere SNMP Extension
Agent, 1025
generating database documentation, 675
glossary definition, 1188
security features, 1064
setting permissions, 463

StreamsUsed property
server property description, 624

string literal
glossary definition, 1188

string_rtruncation option
connection property description, 598
description, 580
SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

strings
and host variables, 506
maximum size, 654

strong encryption

Index

1280 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-ec server option, 180
-ek database option, 252
-ep server option, 183
about, 1095
AES algorithm, 1082
creating strongly-encrypted database, 1083
database files, 1082
DatabaseKey [DBKEY] connection parameter, 274
Encryption [ENC] connection parameter, 280
initialization [dbinit] utility, 774
Rijndael, 1082
SQL Anywhere databases on Windows Mobile,
1094
unload [dbunload] utility, 845

strong table encryption
initialization [dbinit] utility, 774

subdirectories
Windows Mobile, 390

submitting
error reports to iAnywhere, 83

subqueries
glossary definition, 1188

subscribe_by_remote option
description, 580
SQL Remote replication option, 502

subscriptions
creating for Replication Server, 1146
glossary definition, 1188

substitution characters
on_charset_conversion_failure option, 556

subsume_row_locks option
connection property description, 598
description, 581
SQL Anywhere SNMP Extension Agent OID,
1047

support
newsgroups, xvii

support utility [dbsupport]
syntax, 833
using, 83

supported platforms
Kerberos, 115
SQL Anywhere SNMP Extension Agent, 1016

suppress unsubmitted error reports
Monitor, 1009

suppress_tds_debugging option
connection property description, 598
description, 581

SQL Anywhere SNMP Extension Agent OID,
1047

SuppressWarnings connection parameter
ODBC connection parameter description, 756

Swedish
UCA collation, 423

switches
backup [dbbackup] utility, 740
broadcast repeater [dbns11] utility, 745
data source [dbdsn] utility, 752
dbisqlc utility, 764
erase [dberase] utility, 766
histogram [dbhist] utility, 770
information [dbinfo] utility, 772
initialization [dbinit] utility, 774
Interactive SQL [dbisql] utility, 786
language selection [dblang] utility, 791
Linux service [dbsvc] utility, 816
log transfer manager utility [dbltm] utility, 794
log translation [dbtran] utility, 799
MobiLink certificate creation [createcert], 747
MobiLink certificate viewer [viewcert] utility, 750
ping [dbping] utility, 804
server enumeration [dblocate] utility, 810
server licensing [dblic] utility, 813
SQL Anywhere console [dbconsole] utility, 827
SQL Anywhere script execution [dbrunsql] utility,
808
start server in background [dbspawn] utility, 829
stop server [dbstop] utility, 831
support [dbsupport] syntax, 833
transaction log [dblog] utility, 842
unload [dbunload] utility, 845
upgrade [dbupgrad] utility, 860
validation [dbvalid] utility, 862
viewcert utility, 750
Windows service [dbsvc] utility, 820

Sybase Central
about, 660
adding users to groups, 469
auditing, 1074
backing up databases, 882, 883
changing log file names, 16
Code Editor, 666
configuring the fast launchers, 728
connection profiles, 94
copying database objects, 671
creating databases, 21

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1281

creating databases for Windows Mobile, 341
creating groups, 469
creating services, 65
creating users, 456
customizing columns in right pane, 664
deleting databases, 34
erasing databases, 34
glossary definition, 1188
keyboard shortcuts, 665
log viewer, 670
logging SQL statements, 44
Mac OS X hardware requirements, 661
managing Windows services, 65
navigating, 662
registry settings, 397
retrieving audit information, 1076
running databases on Windows Mobile, 349
setting database options, 488
software updates, 732
SQL Anywhere plug-in, 671
starting, 661
starting a database without connecting, 59
status bar, 664
stopping a database, 60
text completion, 725
using with authenticated applications, 76
validating databases, 918
validating tables, 919
wizards not supported on Windows Mobile, 359

SYBASE environment variable
description, 387
DSEdit, 1129

SYBASE-MIB.mib file
about, 1016

sybinit utility
about, 1126

sybping
using, 1141

symbols
troubleshooting unexpected symbols when viewing
results, 411

synchronization
backups, 904
database mirroring, 942
database options, 502
delete_old_logs option, 529
glossary definition, 1189
rebuilding encrypted databases, 858

setting default_timestamp_increment, 528
setting truncate_timestamp_values, 587
transport-layer security, 1095

synchronization modes
database mirroring, 942

synchronization states
database mirroring, 943

synchronize_mirror_on_commit option
connection property description, 598
description, 582
SQL Anywhere SNMP Extension Agent OID,
1047

synchronous mode
database mirroring, 942

SyncTrunc property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

syntax
accessing connection properties, 598
accessing database properties, 639
accessing database server properties, 624
certificate creation [createcert], 747
certificate viewer [viewcert] utility, 750
dbbackup utility, 740
dbconsole utility, 827
dbdsn utility, 752
dberase utility, 766
dbfhide utility, 768
dbhist utility, 770
dbinfo utility, 772
dbinit utility, 774
dbisql utility, 786
dbisqlc utility, 764
dblang utility, 791
dblic utility, 813
dblocate utility, 810
dblog utility, 842
dbltm utility, 794
dbns11 utility, 745
dbping utility, 804
dbrunsql utility, 808
dbspawn utility, 829
dbstop utility, 831
dbsupport utility, 833
dbsvc utility (Linux), 816
dbsvc utility (Windows), 820
dbtran utility, 799

Index

1282 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

dbunload utility, 845
dbupgrad utility, 860
dbvalid utility, 862
key pair generator [createkey] utility, 790
MobiLink certificate creation [createcert], 747
MobiLink certificate viewer [viewcert], 750
rebuild utility, 807

syntax errors
joins, 530

SYS
glossary definition, 1189

SYS group
about, 473

SYSCOLAUTH
consolidated view permissions, 484

SYSCOLPERM
system view permissions, 484

SYSGROUP
system view permissions, 484

SYSGROUPS
consolidated view permissions, 484

Syslog
user ID for, 217

SYSPROCAUTH
consolidated view permissions, 484

SYSPROCPERM
system view permissions, 484

SYSTABAUTH
consolidated view permissions, 484

SYSTABLEPERM
system view permissions, 484

system dbspace
about, 13

system events
about, 926
BackupEnd, 926
Connect, 926
ConnectFailed, 926
database mirroring, 960
DatabaseStart, 926
DBDiskSpace, 926
Deadlock, 926
defined, 922
Disconnect, 926
GlobalAutoIncrement, 927
GrowDB, 926
GrowLog, 926
GrowTemp, 926

internals, 932
LogDiskSpace, 926
MirrorFailover, 927
MirrorServerDisconnect, 927
RAISERROR, 927
ServerIdle, 927
TempDiskSpace, 926

system failures
about, 903
recovery, 903

system information file
about, 102
creating data sources on Mac OS X, 100
specifying in DSN connection parameter, 277
storing encrypted passwords, 280
using with data source utility [dbdsn], 756

system objects
glossary definition, 1189
unloading, 856

system requirements
Veritas Cluster Server agents, 965

system tables
glossary definition, 1189
preserve_source_format, 564
prevent_article_pkey_update, 565
source column, 564, 565

system views
glossary definition, 1189
permissions, 484
users and groups, 484

SYSUSER
consolidated view permissions, 484

SYSUSERAUTH
consolidated view permissions, 484

SYSUSERAUTHORITY
system view permissions, 484

SYSUSERLIST
consolidated view permissions, 484

SYSUSERPERM
compatibility view permissions, 484

SYSUSERPERMS
compatibility view permissions, 484

T
table encryption

about, 1090
initialization [dbinit] utility, 774

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1283

table names
international aspects, 412
qualifying when owned by a group, 472

table permissions
setting, 459

table size
limit, 654
number of rows, 654

table values
editing in Interactive SQL, 695

tables
decrypting, 1090
determining how much disk space a table consumes,
772
enabling table encryption, 1091
encrypting, 1090, 1091
group owners, 472
limitations, 654
looking up in Interactive SQL, 688
owner, 453
permissions, 452
qualified names, 475
replicating, 1143, 1151
RESOURCE authority, 451
validating from Sybase Central, 919

tabular data stream communication protocol
Open Server, 1124

tailoring collations
ICU, 417
limited support on Windows Mobile, 339

tape drives
backing up databases, 881

task list
displaying, 662

tasks
events, 934
schedules, 934
threading in SQL Anywhere, 50

tasks on Unix
about, 51

tasks on Windows and Linux
about, 51

TCP/IP
-x server option, 234
about, 143
addresses, 1130
BroadcastListener [BLISTENER] protocol option,
303

ClientPort [CPORT] protocol option, 307
connecting across firewalls, 144
encrypting client/server communications, 146
firewalls and LDAP servers, 146
HOST [IP] protocol option, 310
IPv6 support, 143
LDAP protocol option, 313
locating servers across firewalls, 812
MobiLink TLS for SQL Anywhere clients, 1117
MobiLink TLS for UltraLite clients, 1118
Open Server, 1126
performance, 144
port number, 1127
ports identifying, 321
protocol options, 301
required for database mirroring, 940
server configuration, 301
ServerPort [PORT] protocol option, 321
starting, 55
supported protocols, 142
troubleshooting, 151
Windows, 144

TcpIpAddresses property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

TDS communication protocol
about, 1124

TDS protocol option
description, 323

tds_empty_string_is_null option
connection property description, 598
description, 582
SQL Anywhere SNMP Extension Agent OID,
1047

technical support
decrypting databases for, 1086
encrypting databases for technical support, 1085
newsgroups, xvii

Telnet
testing networks, 74

temp dbspace
about, 13

TEMP environment variable
description, 388
disk space, 74
Windows Mobile, 398

temp_space_limit_check option

Index

1284 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

connection property description, 598
description, 583
SQL Anywhere SNMP Extension Agent OID,
1047

TempDir property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

TempDiskSpace system event
description, 926

TempFileName property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1044

temporary dbspace
about, 13
permissions, 26

temporary files
limit, 654
location on Windows Mobile, 398
maximum space used by connections, 583
security, 379
specifying location using -dt server option, 179
specifying location with SATMP environment
variable, 379
specifying location with TEMP environment
variable, 388
specifying location with TEMPDIR environment
variable, 388
specifying location with TMP environment variable,
388
temp_space_limit_check option, 583
Unix shared memory connections, 379

temporary options
integrated login security, 123
Kerberos login security, 123
scope and duration, 490
setting, 488

temporary space
limiting, 550

temporary tables
glossary definition, 1189
limitations, 654

TempTablePages property
connection property description, 598
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

terminal services
shared memory connections, 56

text completion
configuring, 726
keyboard shortcuts, 726
using, 725

text file format
Interactive SQL input, 714
Interactive SQL output, 722

text plans
UltraLite using the Plan Viewer, 692

threaded applications
dbping_r for Unix, 804

threading
about, 50
controlling behavior, 52
Unix behavior, 51

threading in SQL Anywhere
about, 50

threads
controlling behavior, 52
execution, 193
multiple processors, 196
threading in SQL Anywhere, 50
Windows, 51

ticket-granting tickets
Kerberos, 117

time_format option
ASE compatibility, 499
connection property description, 598
description, 584
Open Client, 1133
SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

time_zone_adjustment option
connection property description, 598
description, 584
SQL Anywhere SNMP Extension Agent OID,
1047

Timeout protocol option
description, 324

timeouts
troubleshooting, 153

TIMESTAMP data type
comparing, 528
default_timestamp_increment option, 527

timestamp_format option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1285

ASE compatibility, 499
connection property description, 598
description, 585
Open Client, 1133
SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

TimeZoneAdjustment property
connection property description, 598
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

tips
connection parameters, 87

TLS
about, 1095
MobiLink clients (SQL Anywhere), 1117
MobiLink clients (UltraLite), 1118
MobiLink with end-to-end encryption, 1113
support, 1097
unsupported on Windows Mobile, 358

TLS support
about, 1097

TLS synchronization
about, 1095

tls_type protocol option
dbeng11 -ec, 180
dbsrv11 -ec, 180

TMP environment variable
description, 388
Windows Mobile, 398

TMPDIR environment variable
description, 388
Windows Mobile, 398

TO protocol option
description, 324

toolbars
Interactive SQL execute statements button, 682

topics
graphic icons, xvi

TotalBuffers property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

trailing spaces
using in connection strings, 87

Transact-SQL
allow_nulls_by_default option, 504

column NULLs compatibility, 567
compatibility database options, 499
compatibility options, 499
delete permissions, 507
not supported in Query Editor, 691
NULL behavior, 510
quoted_identifier option, 567
update permissions, 507

transaction log
-a database option, 248
-ad database option, 248
-ar database option, 249
-as database option, 250
-f recovery option, 184
-m database option, 253
-m server option, 205
about, 14
allocating space, 28
applying during recovery, 248
backup [dbbackup] utility, 740
backup with original transaction log, 880
backup with renamed transaction log, 907
changing location, 16
creating a transaction log mirror, 23
database mirroring, 959
database mirroring restrictions, 940
delete after checkpoint, 205
delete_old_logs option, 529
deleting during backup, 907
deleting old, 842
determining location from database when
recovering, 249
erasing with dberase, 766
finding outstanding transactions, 17
glossary definition, 1189
initialization [dbinit] utility, 774
limiting size, 927
live backup, 875
location, 42
Log Transfer Manager, 1138
log translation [dbtran] utility, 799
managing, 529
managing for backups, 911
managing for Replication Server, 1151
media failure, 899
mirror and Replication Server, 1157
option, 49
placing, 903

Index

1286 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

primary keys, 17
recommended location, 14
recovering from media failure, 898
recovering from multiple, 893
renaming backup copy, 906
renaming for backups, 905
running without (-m option), 774
setting transaction log mirror file name, 842
size, 17
specifying location when recovering, 248
SQL Remote renaming automatically, 905
starting a transaction log mirror for an existing
database, 16
starting without, 184
transaction log [dblog] utility, 844
translation utilities, 802
truncating after a checkpoint, 253
uncommitted changes, 890
validating, 908
warning about running without (-m option), 774
Windows Mobile, 339

transaction log file
changing name from Sybase Central, 16

transaction log mirror
about, 15
creating, 23
differences from live backups, 875
glossary definition, 1190
initialization [dbinit] utility, 774
purpose, 15
recommended location, 15
starting, 16

transaction log utility [dblog]
auditing, 1079
exit codes, 844
syntax, 842

transaction modes
chained/unchained, 514

transaction safety
database mirroring, 942
ensuring in database mirroring, 942

transactional integrity
glossary definition, 1190

transactions
closing cursors, 516
database mirroring, 942
distributed, 226, 227
event handler behavior, 933

glossary definition, 1189
recovering when transactions span multiple log files,
893

TransactionStartTime property
connection property description, 598

translate log file wizard
unsupported on Windows Mobile, 360
using, 890

TranslationDLL connection parameter
ODBC connection parameter description, 756

TranslationName connection parameter
ODBC connection parameter description, 756

TranslationOption connection parameter
ODBC connection parameter description, 756

translog dbspace
about, 13

translogmirror dbspace
about, 13

transmission rules
glossary definition, 1190

transport layer security
SSL supported version, 1112

transport-layer security
about, 1095
efficiency, 1096
introduction, 1096
setting up, 1099
supported platforms, 1097

transport-layer security over HTTPS
MobiLink, 1117

transport-layer security over TCP/IP
MobiLink, 1117

traps
about, 1017
dynamic traps, 1027
using with SQL Anywhere SNMP Extension Agent,
1026

trigger conditions
defined, 926

TriggerPages property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

triggers
and replication, 531
disabling, 191
generating database documentation, 675
glossary definition, 1190

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1287

permissions, 464
permissions for creating, 451
replication, 530

troubleshooting
backups, 17
connections, 132, 153, 804, 810
database connections, 132
database server, 242
database server request logging, 244, 245
encrypted database performance, 1087
HTTP clients, 243
identifying client applications, 263
Kerberos connections, 120
Monitor, 1012
network communications, 151
newsgroups, xvii
ODBC, 804
protocols, 151
results, 411
server address, 1131
server startup, 74, 75
timeouts, 153
wiring problems, 152

troubleshooting unexpected symbols when viewing
results

about, 411
truncate_timestamp_values option

connection property description, 598
description, 587
SQL Anywhere SNMP Extension Agent OID,
1047
using in MobiLink synchronization, 587

truncating
character strings, 580

truncation_length option
description, 723
Interactive SQL settings, 708

trusted_certificates protocol option
description, 325
MobiLink transport-layer security, 1116

tsql_outer_joins option
ASE compatibility, 499
connection property description, 598
description, 588
SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

tsql_variables option

ASE compatibility, 499
connection property description, 598
description, 588
Open Client, 1133
SQL Anywhere SNMP Extension Agent OID,
1047
Transact-SQL compatibility, 499

Turkish databases
case sensitivity, 436
case-insensitive databases, 437
creating, 426

tutorials
connecting to a sample database, 3
database mirroring, 945
database mirroring multiple databases, 949
managing Windows Mobile databases with
Interactive SQL, 353
Monitor, 978
Replication Server, 1139
running the database server on Windows Mobile,
349
running Windows Mobile databases from Sybase
Central, 349

typing completion (see text completion)

U
UAC

running SQL Anywhere on Vista, 40
UCA

about, 417
for use with single-byte character sets, 417

UCA collation
Swedish Academy standards, 423
Swedish locale, 423

UID connection parameter
description, 299

ulcond11 utility
privilege elevation may be required on Vista, 41

UltraLite
glossary definition, 1190
MobiLink transport-layer security, 1118

UltraLite clients
TLS, 1118

UltraLite runtime
glossary definition, 1190

unable to initialize any communication links error
diagnosing cause, 153

Index

1288 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

unable to start--server not found error
diagnosing cause, 153

UNC connection parameter
description, 298

unchained mode
chained option, 514

UncommitOp property
connection property description, 598

Unconditional connection parameter
description, 298

undo log
about, 912

Unicode character sets
about, 416

Unicode Collation Algorithm (UCA)
about, 417

unions
not supported in Query Editor, 691

unique constraints
glossary definition, 1190

UniqueClientAddresses property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

Unix
cache size, 167
choosing a collation, 434
default character set, 415
IPv6 support, 143
LD_LIBRARY_PATH environment variable, 369
licensing executables, 814
locating files, 394
ODBC support, 102
ODBC_INI environment variable, 372
ODBCHOME environment variable, 371
ODBCINI environment variable, 372
SATMP environment variable, 388
securing shared memory connections, 1066
setting environment variables, 366
sourcing files, 367
starting database servers, 40
starting dbconsole, 730
starting Interactive SQL, 677, 678
system information file, 102
temporary file permissions, 379
temporary files, 379
threading behavior, 51

using Ping utility with a threaded connection library,
804

unload
glossary definition, 1191

unload database wizard
unsupported on Windows Mobile, 360

UNLOAD statement
security, 1081

UNLOAD TABLE statement
security, 1081
WRITECLIENTFILE authority, 452

unload utility [dbunload]
dbspace file names, 845
exit codes, 856
syntax, 845

unloading
security, 1081

unloading data
recalculating computed columns, 845
security, 1081
specifying character set, 267

unloading databases
recalculating computed columns, 845
unload utility [dbunload], 845

unscheduled requests (see ReqStatus property) (see
UnschReq property)
UnschReq property

server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1032

unsubmitted error reports
Monitor , 990
Monitor alerts, 1009
viewing, 83

unsupported features
SQL Anywhere limitations on Windows Mobile,
356

updatable_statement_isolation option
connection property description, 598
description, 588
SQL Anywhere SNMP Extension Agent OID,
1047

update checker
about, 732

UPDATE permission
about, 452
granting, 459

UPDATE statement

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1289

generating in Interactive SQL, 689
LTM supported operations, 1151
truncation of strings, 580

update_statistics option
connection property description, 598
description, 589
SQL Anywhere SNMP Extension Agent OID,
1047

update_timeout parameter
LDAP, 147

updates
ansi_permissions option, 507
ansi_update_constraints option, 509
checking for SQL Anywhere updates, 732
SQL/2003 behavior, 509
Transact-SQL permissions, 507

updating
values in Interactive SQL, 695

upgrade database wizard
unsupported on Windows Mobile, 360

upgrade utility [dbupgrad]
exit codes, 861
syntax, 860

upgrade_database_capability option
connection property description, 598
SQL Anywhere SNMP Extension Agent OID,
1047

upgrading
authenticated databases, 80
databases, 860

uploads
glossary definition, 1191

upper code page
about, 408

usage information
displaying, 166

User Account Control
running SQL Anywhere on Vista, 40

user account control
Vista, 40

user authorization
SQL Anywhere databases on Windows Mobile,
1064

user estimates
overriding, 590

user identification
SQL Anywhere databases on Windows Mobile,
1064

user IDs
about, 446
DBA authority, 449
Guest, 112
listing, 484
login policies, 440
managing, 439
maximum length, 654
PUBLIC options, 489
security features, 1064
security tip, 1066
setting up individual user IDs, 455

user names
server licensing [dblic] utility, 813

user-defined data types
glossary definition, 1191

user-supplied selectivity estimates
user_estimates option, 590

user_estimates option
connection property description, 598
description, 590
SQL Anywhere SNMP Extension Agent OID,
1047

UserAppInfo property
connection property description, 598

Userid connection parameter
description, 299

UserID property
connection property description, 598

users
adding, 455
adding to groups, 469
assigning login policies, 442
connected users, 467
creating, 455
creating Kerberos logins, 118
deleting, 466
deleting integrated logins, 108
deleting Kerberos logins, 119
dropping, 466
dropping from login policies, 442
granting integrated logins, 106
limiting temporary space, 550
login policies, 440
managing, 455
Monitor admin user, 1002
Monitor administrators, 1002
Monitor creating, 1002

Index

1290 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Monitor default user, 1002
Monitor deleting, 1004
Monitor editing, 1003
Monitor emailing, 1003
Monitor operators, 1002
Monitor read-only users, 1002
Monitor security, 1004
Monitor types, 1002
permissions, 455
permissions conflicts, 482
REMOTE permissions, 464
removing from groups, 470
setting options, 458

UTF-8
using for databases, 774

util_db.ini
about, 32

UtilCmdsPermitted property
connection property description, 598

utilities
(see also database utilities)
backup [dbbackup] syntax, 740
broadcast repeater [dbns11] syntax, 745
certificate creation [createcert] syntax, 747
certificate viewer [viewcert] syntax, 750
data source [dbdsn] syntax, 752
dbisqlc syntax, 764
DSEdit, 1128
erase [dberase] syntax, 766
file hiding [dbfhide] syntax, 768
histogram [dbhist] syntax, 770
information [dbinfo] syntax, 772
initialization [dbinit] syntax, 774
Interactive SQL [dbisql] syntax, 786
introduction, 737
key pair generator [createkey], 790
key pair generator [createkey] syntax, 790
language selection [dblang] syntax, 791
Linux service [dbsvc] syntax, 816
log transfer manager [dbltm] syntax, 794
log translation [dbtran] auditing, 1079
log translation [dbtran] syntax, 799
MobiLink certificate creation [createcert] syntax,
747
MobiLink certificate viewer [viewcert], 750
ping [dbping] syntax, 804
rebuild [rebuild], 807
rebuild [rebuild] syntax, 807

server enumeration [dblocate] syntax, 810
server licensing [dblic] syntax, 813
sourcing on Unix, 367
SQL Anywhere console [dbconsole] utility, 827
SQL Anywhere script execution [dbrunsql], 808
start server in background [dbspawn] syntax, 829
stop [dbstop] permissions, 191
stop server [dbstop] syntax, 831
support [dbsupport] syntax, 833
transaction log [dblog] auditing, 1079
transaction log [dblog] syntax, 842
unload [dbunload] syntax, 845
upgrade [dbupgrad] syntax, 860
using conditional parsing in configuration files,
738
using configuration files, 737
using with authenticated applications, 76
validation [dbvalid] syntax, 862
version diagnostic [dbversion], 865
Windows service [dbsvc] syntax, 820

utility commands
permissions, 198

utility database
about, 30
allowed SQL statements, 30
connecting, 31
controlling statement execution permissions, 33
security, 33
setting password, 224
util_db.ini file, 32

utility_db
connecting, 31
controlling statement execution permissions, 33
name reserved for utility database, 30

V
validate

glossary definition, 1191
VALIDATE authority

about, 451
granting, 459
not inheritable, 451

validate database wizard
using, 918
validating tables, 919

validating
backups, 888, 916

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1291

databases, 862, 888, 916
transaction log, 908

validating checksums
about, 917

validating databases
from Sybase Central, 918
improving performance, 920

validating tables
from Sybase Central, 919

validating transaction log
about, 908

validation
databases, 916
permissions for executing, 451

validation utility [dbvalid]
exit codes, 864
syntax, 862

values
editing in Interactive SQL, 695

variable width character sets
about, 409

VCS agents
SADatabase, 967
SAServer, 966

verbose mode
log transfer manger [dbltm] utility, 794
unload [dbunload] utility, 845

VERIFY protocol option
description, 326

verify_all_columns option
description, 591
SQL Remote replication option, 502

verify_password_function option
authenticating passwords, 1069
connection property description, 598
description, 591
SQL Anywhere SNMP Extension Agent OID,
1047

verify_threshold option
description, 594
SQL Remote replication option, 502

verifying certificate fields
MobiLink transport-layer security, 1116
SQL Anywhere transport-layer security, 1109

verifying MobiLink servers
MobiLink transport-layer security, 1115

verifying servers
SQL Anywhere transport-layer security, 1108

VerifyServerName protocol option
description, 326

Veritas Cluster Server
using with SQL Anywhere, 965

Veritas Cluster Server agents
about, 965

version
database server, 233
determining, 865

version diagnostic [dbversion]]
syntax, 865

version mismatch
file locations, 392

VersionStorePages property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

viewcert utility
syntax, 750
usage, 1101

viewing
TLS certificates, 750

ViewPages property
database property description, 639
SQL Anywhere SNMP Extension Agent OID,
1041

views
generating database documentation, 675
glossary definition, 1191
granting permissions, 461
owner, 453
permissions, 452
RESOURCE authority, 451
security, 477
security features, 1064

Vista
ActiveSync, 41
dbelevate11.exe, 41
deployment considerations, 41
DisableMultiRowFetch connection parameter, 279
elevated operations agent, 40
running SQL Anywhere on Vista, 40
services do not interact with the desktop, 41
signed executables, 41
SQL Anywhere elevated operations agent, 40
user account control, 40
using AWE cache, 41

Index

1292 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

using dbconsole utility to monitor database servers,
41
Windows Mobile Device Center, 41

VSS
database server, 233
SQL Anywhere Volume Shadow Copy Service,
884

VSS writer
dbvss11.exe, 884

W
wait_for_commit option

connection property description, 598
description, 595
SQL Anywhere SNMP Extension Agent OID,
1047

WaitStartTime
connection property description, 598

WaitType
connection property description, 598

watch list
database options, 491

web development
web edition, 82

Web Edition
about, 82

web servers
starting with transport-layer security, 1112
unsupported in mirroring systems, 940

web service client log file
setting name, 243

web service clients
certificate_company protocol option, 304
certificate_name protocol option, 305
certificate_unit protocol option, 306
logging, 243
trusted_certificates protocol option, 325

web services
database server configuration, 237
starting with transport-layer security, 1112
webservice_namespace_host option, 595

WebClientLogFile property
server property description, 624
SQL Anywhere SNMP Extension Agent OID,
1035

WebClientLogging property
server property description, 624

SQL Anywhere SNMP Extension Agent OID,
1035

webservice_namespace_host option
connection property description, 598
description, 595
SQL Anywhere SNMP Extension Agent OID,
1047

window (OLAP)
glossary definition, 1191

Windows
(see also Windows 2000)
(see also Windows 2003)
(see also Windows Mobile)
(see also Windows XP)
cache size, 167
character sets, 409
choosing a collation, 433
code pages, 409
default character set, 415
event log, 44
glossary definition, 1191
installation registry settings, 397
installing SNMP, 1021
integrated logins, 106
IPv6 support, 143
limiting AWE cache size, 176
locating files, 392
services, 64
starting database servers, 39
TCP/IP, 144
threading behavior, 51

Windows 2000
installing SNMP, 1021
integrated logins, 106
IPv6 support, 143

Windows 2003
installing SNMP, 1021

Windows CE (see Windows Mobile)
Windows MIT Kerberos client

keytab files, 115
Windows Mobile

-? server option not supported, 358
-cm server option not supported, 358
-cw option not supported, 358
-gb option not supported, 358
-ge option not supported, 358
-qi option not supported, 358
-s option not supported, 358

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1293

-tmf option not supported, 358
-tmt option not supported, 358
-u option not supported, 358
-ua option not supported, 358
-uc option not supported, 358
-ud option not supported, 358
-uf option not supported, 358
-ui option not supported, 358
-ut option not supported, 358
-ux option not supported, 358
-xp option not supported, 358
@data option not supported, 358
ALTER DATABASE statement limitations, 357
application profiling limitations, 356
auditing, 1093
backup database wizard not supported, 360
BACKUP statement limitations, 357
change log file settings wizard not supported, 360
checksums enabled by default, 917
communication encryption, 1094
configuring databases, 339
configuring SQL Anywhere, 328
connecting from a computer, 336
connecting from the desktop, 91
copying databases to your device, 344
CREATE DATABASE statement, 357
create database wizard not supported, 360
CREATE EVENT statement limitations, 357
CREATE EXISTING TABLE statement not
supported, 357
CREATE EXTERNLOGIN statement not
supported, 357
CREATE FUNCTION statement limitations, 357
create maintenance plan wizard limited support on
Windows Mobile, 360
CREATE SERVER statement not supported, 357
create service wizard not supported, 360
CREATE TABLE statement limitations, 357
creating databases, 340
creating ODBC data sources, 337
database encryption, 1093
database mirroring unsupported, 356
database server options, 1093
database servers, 348
dbxtract not supported, 361
device security, 1093
directory access servers unsupported, 356
DROP DATABASE statement not supported, 357

DROP SERVER statement not supported, 357
encryption, 340
erase database wizard not supported, 360
erasing databases, 347
ESQL sample, 334
external stored procedures not supported, 356
extraction utility not supported, 361
file locations, 390
glossary definition, 1191
iAnywhere JDBC driver not supported, 356
ICU, 328
INSTALL JAVA statement not supported, 357
installation, 390
jConnect, 340
Kerberos unsupported, 356
LDAP authentication unsupported, 356
limitations on Windows Mobile 5.0 for smartphone,
329
limited collation tailoring support, 339
limited jConnect functionality, 356
limited ODBC functionality, 356
locating files, 393
managing databases from Interactive SQL, 353
migrate database wizard not supported, 360
ODBC sample, 334
Open Client not supported, 356
parallel backups not supported, 356
personal server not supported, 356
rebuilding databases, 345
remote data access not supported, 356
REMOVE JAVA statement not supported, 357
REORGANIZE TABLE statement not supported,
357
restore database wizard not supported, 360
running databases from Sybase Central, 349
sample applications, 331
sample database, 331
security, 1093
server startup options window, 348
setting TEMP file, 398
SQL Anywhere installation requirements, 328
START JAVA statement not supported, 357
starting multiple databases, 351
starting the server, 350
STOP JAVA statement not supported, 357
stopping the server, 352
storage cards, 328
subdirectories, 390

Index

1294 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

transaction log, 339
translate log file wizard not supported, 360
unload database wizard not supported, 360
unsupported administration tools, 356
unsupported database server options, 358
unsupported SQL Anywhere features, 356
unsupported SQL Remote features, 361
unsupported SQL statements, 357
unsupported Sybase Central wizards, 359
upgrade database wizard not supported, 360
user authorization, 1064
user identification, 1064
using ODBC data sources, 102
using SQL Anywhere, 327
using the .NET Compact Framework, 329
using the administration utilities, 349
using the ADO.NET sample, 332

Windows Mobile 5.0
smartphone limitations, 329

Windows Performance Monitor
controlling number of connections monitored, 204
controlling number of databases monitored, 205
disabling shared memory creation, 204

Windows Service Manager
about, 71

Windows services
account options, 69
adding new databases, 70
configuring, 67
creating, 65
database servers, 62
deleting, 66
dependencies, 72, 73
eligible programs, 65
executable file, 70
groups, 72
icon on the desktop, 69
managing, 65
multiple, 72
options, 68
parameters, 67
polling, 71
registry settings, 396
starting, 71
starting order, 73
startup options, 67
stopping, 71
understanding, 64

Windows Service Manager, 71
Windows user groups

integrated logins, 109
Windows Vista

DisableMultiRowFetch connection parameter, 279
installing SNMP, 1021

Windows XP
installing SNMP, 1021
integrated logins, 106

Winsock
using TCP/IP with Windows, 144

wiring
troubleshooting, 152

WITH GRANT OPTION clause
using, 462

wizards
unsupported Sybase Central wizards on Windows
Mobile, 359

work tables
glossary definition, 1191

WRITECLIENTFILE authority
about, 452
granting, 459
inheritable, 452

X
X window server

displaying the SQL Anywhere UI on Linux, 232
X.509 certificates

creating, 747
viewing, 750

XML file format
Interactive SQL output, 722

xp_cmdshell system procedure
security features, 1066

xp_sendmail system procedure
security features, 1066

xp_srvmon_count_unsubmitted_crash_reports
procedure

Monitor, 1010
xp_startmail system procedure

security features, 1066
xp_startsmtp system procedure

security features, 1066
xp_stopmail system procedure

security features, 1066
xp_stopsmtp system procedure

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 1295

security features, 1066
XPathCompiles property

database property description, 639

Z
zero-padding

controlling with date_format option, 524
controlling with timestamp_format option, 586

Index

1296 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

	SQL Anywhere® Server - Database Administration
	Contents
	About this book
	About the SQL Anywhere documentation
	About the books in the documentation set
	Documentation conventions
	Graphic icons
	Contacting the documentation team
	Finding out more and requesting technical support

	Starting and Connecting to Your Database
	Tutorial: Using the sample database
	Lesson 1: Make a copy of the sample database
	Lesson 2: Start the SQL Anywhere database server
	Lesson 3: Display the database server messages window
	Lesson 4: Stop the database server
	Summary

	Working with database files
	Overview of database files
	Pre-defined dbspaces
	The transaction log
	Transaction log mirrors
	Changing the location of a transaction log
	Starting a transaction log mirror for an existing database
	Controlling transaction log size
	Determine which connection has an outstanding transaction
	Understanding the checkpoint log

	Creating a database
	Create a database (Sybase Central)
	Create a database (SQL)
	Create a database (command line)
	Create a database with a transaction log mirror

	Using additional dbspaces
	Creating dbspaces
	Create a dbspace

	Pre-allocating space for database files
	Delete a dbspace

	Using the utility database
	Connecting to the utility database
	Specifying the permissions required to execute file administration statements

	Erasing a database

	Running the database server
	Introduction to running SQL Anywhere database servers
	First steps
	Start the database server

	What else is there to it?
	Running SQL Anywhere on Windows Vista

	Starting the database server
	Logging database server actions
	Logging database server messages to a file
	Logging SQL statements in Sybase Central

	Suppressing Windows event log messages

	Some common options
	Using configuration files to store server startup options
	Naming the server and the databases
	Controlling performance and memory from the command line
	Controlling permissions from the command line
	Setting a maximum page size
	Running in special modes
	Threading in SQL Anywhere
	Tasks on Unix
	Tasks on Windows and Linux
	Controlling threading behavior
	Setting the database server's multiprogramming level

	Selecting communications protocols

	Stopping the database server
	Who can stop the server?
	Shutting down operating system sessions

	Starting and stopping databases
	Starting a database
	Stopping a database

	Running the server outside the current session
	Running the Unix database server as a daemon
	Understanding Windows services
	Programs that can be run as Windows services
	Managing Windows services
	Creating Windows services
	Deleting Windows services
	Configuring Windows services
	Setting startup options
	Specifying options
	Setting the account options
	Changing the executable file
	Adding new databases to a service

	Setting the service polling frequency
	Starting and stopping services
	The Windows Service Manager
	Service dependencies
	Service groups overview
	Managing service dependencies

	Troubleshooting server startup
	Ensure that your transaction log file is valid
	Ensure that you have enough disk space for your temporary file
	Ensure that network communication software is running
	Debugging network communications startup problems
	Make sure you are using the right sasrv.ini file
	Create a debug log file

	Running authenticated SQL Anywhere applications
	Developing an authenticated application
	Obtaining authentication signatures
	Authenticating your database
	Authenticating your application
	Executing the authentication statement
	Upgrading authenticated databases

	Running SQL Anywhere Web Edition applications
	Error reporting in SQL Anywhere

	SQL Anywhere database connections
	Connection parameters
	Connection parameter syntax rules
	Connection parameters passed as connection strings
	Resolving connection parameter conflicts

	Connecting with SQL Anywhere APIs
	Connecting from desktop applications to a Windows Mobile database
	Connecting from Sybase Central, Interactive SQL, or the SQL Anywhere Console utility
	Working with the Connect window
	Open the Connect window
	Sybase Central connection profiles
	Create a connection profile
	Edit a connection profile
	Import a connection profile
	Export a connection profile

	Creating ODBC data sources
	Storing SQL Anywhere connection parameters
	Create ODBC data sources using the Connect window
	Create ODBC data sources using the ODBC Administrator
	Create an ODBC data source with the dbdsn utility
	Create an ODBC data source on Mac OS X
	Using file data sources on Windows
	Using ODBC data sources on Windows Mobile
	Using ODBC data sources on Unix

	Connecting to a database using OLE DB
	OLE DB providers
	Connecting from ADO

	Using integrated logins
	Enable the integrated login feature
	Create an integrated login
	Revoke an integrated login permission
	Connect to a database from a client application
	Creating integrated logins for Windows user groups
	Prevent Windows user groups members from connecting to a database
	Network aspects of integrated logins
	Creating a default integrated login user
	Security concerns: Unrestricted database access

	Kerberos authentication
	Kerberos clients
	Set up Kerberos authentication
	Configure SQL Anywhere to use Kerberos
	Connect from an Open Client or jConnect application
	Create Kerberos login mappings
	Revoke Kerberos login permission
	Use SSPI for Kerberos logins on Windows
	Troubleshooting Kerberos connections
	Security concerns: Setting temporary public options for added security
	Security concerns: Copied database files

	Sample SQL Anywhere database connections
	Connect to the sample database from Sybase Central or Interactive SQL
	Connect to the sample database on Mac OS X
	Connect to a local database
	Connecting to an embedded database
	Connect using a data source
	Connect to a server on a network
	Using default connection parameters
	Connecting from SQL Anywhere utilities

	Troubleshooting connections
	Locating the interface library
	Assembling a list of connection parameters
	Locating a database server
	Locating a database server using the Broadcast Repeater utility
	Locating the database
	Server name caching for faster connections
	Interactive SQL connections
	Testing that a server can be found
	Testing embedded SQL connection performance

	Disconnecting from a database

	Client/server communications
	Supported network protocols
	Using the TCP/IP protocol
	Using TCP/IP with Windows
	Tuning TCP/IP performance
	Connecting across a firewall
	Connecting on a dial-up network connection
	Encrypting client/server communications over TCP/IP
	Connecting using an LDAP server

	Adjusting communication compression settings to improve performance
	Troubleshooting network communications
	Use logging
	Ensure that you are using compatible protocols
	Ensure that you have current drivers
	Testing the TCP/IP protocol
	Diagnosing wiring problems
	A checklist of common problems
	Adjusting timeout values

	The database server
	The SQL Anywhere database server
	Database server options
	@data server option
	-? server option
	-b server option
	-c server option
	-ca server option
	-cc server option
	-ch server option
	-cl server option
	-cm server option
	-cp server option
	-cr server option
	-cs server option
	-cv server option
	-cw server option
	-dt server option
	-ec server option
	-ep server option
	-es server option
	-f recovery option
	-fc server option
	-fips server option
	-ga server option
	-gb server option
	-gc server option
	-gd server option
	-ge server option
	-gf server option
	-gk server option
	-gl server option
	-gm server option
	-gn server option
	-gp server option
	-gr server option
	-gss server option
	-gt server option
	-gtc server option
	-gu server option
	-im server option
	-k server option
	-kl server option
	-kr server option
	-krb server option
	-ks server option
	-ksc server option
	-ksd server option
	-m server option
	-n server option
	-o server option
	-oe server option
	-on server option
	-os server option
	-ot server option
	-p server option
	-pc server option
	-pt server option
	-qi server option
	-qn server option
	-qp server option
	-qs server option
	-qw server option
	-r server option
	-s server option
	-sb server option
	-sf server option
	-sk server option
	-su server option
	-ti server option
	-tl server option
	-tmf server option
	-tmt server option
	-tq server option
	-u server option
	-ua server option
	-uc server option
	-ud server option
	-uf server option
	-ui server option
	-um server option
	-ut server option
	-ux server option
	-v server option
	-vss server option
	-x server option
	-xa server option
	-xd server option
	-xf server option
	-xs server option
	-z server option
	-ze server option
	-zl server option
	-zn server option
	-zo server option
	-zoc server option
	-zp server option
	-zr server option
	-zs server option
	-zt server option

	Database options
	-a database option
	-ad database option
	-ar database option
	-as database option
	-ds database option
	-dh database option
	-ek database option
	-m database option
	-n database option
	-r database option
	-sm database option
	-sn database option
	-xp database option

	Connection parameters and network protocol options
	Connection parameters
	AppInfo connection parameter [APP]
	AutoStart connection parameter [ASTART]
	AutoStop connection parameter [ASTOP]
	CharSet connection parameter [CS]
	CommBufferSize connection parameter [CBSIZE]
	CommLinks connection parameter [LINKS]
	Compress connection parameter [COMP]
	CompressionThreshold connection parameter [COMPTH]
	ConnectionName connection parameter [CON]
	DatabaseFile connection parameter [DBF]
	DatabaseKey connection parameter [DBKEY]
	DatabaseName connection parameter [DBN]
	DatabaseSwitches connection parameter [DBS]
	DataSourceName connection parameter [DSN]
	DisableMultiRowFetch connection parameter [DMRF]
	Elevate connection parameter
	EncryptedPassword connection parameter [ENP]
	Encryption connection parameter [ENC]
	EngineName connection parameter [ENG]
	FileDataSourceName connection parameter [FILEDSN]
	ForceStart connection parameter [FORCE]
	Idle connection parameter
	Integrated connection parameter [INT]
	Kerberos connection parameter [KRB]
	Language connection parameter [LANG]
	LazyClose connection parameter [LCLOSE]
	LivenessTimeout connection parameter [LTO]
	LogFile connection parameter [LOG]
	NewPassword connection parameter [NEWPWD]
	Password connection parameter [PWD]
	PrefetchBuffer connection parameter [PBUF]
	PrefetchOnOpen connection parameter
	PrefetchRows connection parameter [PROWS]
	RetryConnectionTimeout connection parameter [RetryConnTO]
	ServerName connection parameter [ENG]
	StartLine connection parameter [START]
	Unconditional connection parameter [UNC]
	Userid connection parameter [UID]

	Network protocol options
	Broadcast protocol option [BCAST]
	BroadcastListener protocol option [BLISTENER]
	certificate_company protocol option
	certificate_name protocol option
	certificate_unit protocol option
	ClientPort protocol option [CPORT]
	DatabaseName protocol option [DBN]
	DoBroadcast protocol option [DOBROAD]
	Host protocol option [IP]
	Identity protocol option
	Identity_Password protocol option
	KeepaliveTimeout protocol option [KTO]
	LDAP protocol option [LDAP]
	LocalOnly protocol option [LOCAL]
	LogFile protocol option [LOG]
	LogFormat protocol option [LF]
	LogMaxSize protocol option [LSIZE]
	LogOptions protocol option [LOPT]
	MaxConnections protocol option [MAXCONN]
	MaxRequestSize protocol option [MAXSIZE]
	MyIP protocol option [ME]
	ReceiveBufferSize protocol option [RCVBUFSZ]
	SendBufferSize protocol option [SNDBUFSZ]
	ServerPort protocol option [PORT]
	TDS protocol option
	Timeout protocol option [TO]
	trusted_certificates protocol option
	VerifyServerName protocol option [VERIFY]

	SQL Anywhere for Windows Mobile
	Installing SQL Anywhere on a Windows Mobile device
	Installation considerations: Using ICU on Windows Mobile
	Installation considerations: Using the .NET Compact Framework on Windows Mobile
	Installation considerations: Limitations on Windows Mobile 5.0 for smartphone
	Install SQL Anywhere for Windows Mobile

	Using the Windows Mobile sample applications
	The SQL Anywhere Server Example
	The ADO.NET Sample
	The ESQL Sample
	The ODBC Sample

	Connecting to a database running on a Windows Mobile device
	Start a database server on your Windows Mobile device
	Determine the IP address of your Windows Mobile device
	Create an ODBC data source to connect to your Windows Mobile device

	Configuring Windows Mobile databases
	Using a transaction log on Windows Mobile
	Using jConnect on Windows Mobile
	Using encryption on Windows Mobile
	Creating a Windows Mobile database
	Create a Windows Mobile database using Sybase Central
	Create a Windows Mobile database using dbinit
	Create a Windows Mobile database using the CREATE DATABASE statement
	Copy a database to your Windows Mobile device

	Rebuilding databases on Windows Mobile
	Backing up a Windows Mobile database
	Erase a Windows Mobile database

	Running the database server on Windows Mobile
	Specifying server options on Windows Mobile

	Using the administration utilities on Windows Mobile
	Tutorial: Running Windows Mobile databases from Sybase Central
	Lesson 1: Start the database server
	Lesson 2: Start multiple databases on the Windows Mobile database server
	Lesson 3: Shut down the database server on Windows Mobile

	Tutorial: Managing Windows Mobile databases with Interactive SQL
	Lesson 1: Start the sample database
	Lesson 2: Start Interactive SQL and connect
	Lesson 3: Execute queries against a Windows Mobile database

	SQL Anywhere feature support on Windows Mobile

	Configuring Your Database
	SQL Anywhere environment variables
	Introduction to SQL Anywhere environment variables
	DYLD_LIBRARY_PATH environment variable [Mac OS X]
	LD_LIBRARY_PATH environment variable [Linux and Solaris]
	LIBPATH environment variable [AIX]
	ODBCHOME environment variable [Unix]
	ODBCINI and ODBC_INI environment variables [Unix]
	PATH environment variable
	SACHARSET environment variable
	SADIAGDIR environment variable
	SALANG environment variable
	SALOGDIR environment variable
	SATMP environment variable
	SHLIB_PATH environment variable [HP-UX]
	SQLANY11 environment variable
	SQLANYSAMP11 environment variable
	SQLCONNECT environment variable
	SQLPATH environment variable
	SQLREMOTE environment variable
	SYBASE environment variable
	TMP, TEMPDIR, and TEMP environment variables

	File locations and installation settings
	Installation directory structure
	How SQL Anywhere locates files
	Registry and INI files
	Current user and local machine settings
	Registry structure
	Registry settings on installation
	Registry settings on Windows Mobile

	International languages and character sets
	Localized versions of SQL Anywhere
	Full software and documentation localization
	Deployment software localization on Windows
	SQL Anywhere international features
	What is ICU, and when is it needed?

	Character set questions and answers

	Understanding character sets
	Overview of character sets, encodings, and collations
	Language issues in client/server computing
	Single-byte character sets
	Multibyte character sets
	ANSI and OEM code pages in Windows
	Character sets in a SQL Anywhere database
	Character set conversion
	Connection strings and character sets
	SQL statements and character sets
	Troubleshooting unexpected symbols when viewing data

	International aspects of case sensitivity

	Understanding locales
	Introduction to locales
	Understanding the locale language
	Understanding the locale character set

	Understanding collations
	SQL Anywhere Collation Algorithm (SACA)
	Unicode Collation Algorithm (UCA)
	Collations in a SQL Anywhere database
	Choosing collations
	Considerations when choosing a collation
	Collation tailoring options

	How SQL Anywhere chooses the default collation for a new database

	International language and character set tasks
	Determining the default collation
	Determining locale information
	Setting locales
	Creating a database with a named collation
	Changing a database from one collation to another

	Character set and collation reference information
	Supported character sets
	Supported and alternate collations
	Recommended character sets and collations
	Turkish character sets and collations
	Data in case-insensitive Turkish databases
	Alternative Turkish collation 1254TRKALT

	Managing user IDs, authorities, and permissions
	Managing login policies overview
	Modify the root login policy
	Creating a new login policy
	Creating a user and assigning a login policy
	Assigning a login policy to an existing user
	Altering a login policy
	Dropping a login policy
	Managing login policies on read only databases

	Database permissions and authorities overview
	Authorities overview
	BACKUP authority
	DBA authority
	PROFILE authority
	READCLIENTFILE authority
	READFILE authority
	REMOTE DBA authority
	RESOURCE authority
	VALIDATE authority
	WRITECLIENTFILE authority

	Permissions overview
	Permissions explicitly set for the user or group
	Permissions acquired through ownership of an object
	Permissions inherited through group membership

	Managing user permissions and authorities overview
	Creating new users
	Setting a password
	Changing a password
	Setting user and group options
	Granting authorities
	Granting permissions on tables
	Granting permissions on views
	Granting users the right to grant permissions
	Granting permissions on procedures
	Execution permissions of triggers
	Granting and revoking remote permissions
	Revoking user permissions and authorities
	Deleting users from the database

	Managing connected users
	Managing groups
	Creating groups
	Granting group membership to existing users or groups
	Revoking group membership
	Permissions and authorities of groups
	Referring to tables owned by groups
	Groups without passwords
	Special groups
	Deleting groups from the database

	Database object names and prefixes
	Using views and procedures for extra security
	Using views for tailored security
	Using procedures for tailored security

	Changing ownership on nested objects
	Example 1: User1 creates table1, and user2 creates view2 on table1
	Example 2: User2 creates procedure2 that accesses table1
	Example 3: User1 creates table1, user2 creates table2, and user3 creates view3 joining table1 and table2

	How user permissions are assessed
	Managing the resources connections use
	Users and permissions in the catalog

	Database options
	Introduction to database options
	Setting database options
	Scope and duration of database options

	Finding option settings
	Initial option settings
	Deleting option settings
	Option classification
	Database options
	Compatibility options
	Synchronization options
	SQL Remote options
	Replication Agent options

	Alphabetical list of options
	allow_nulls_by_default option [compatibility]
	allow_read_client_file option [database]
	allow_snapshot_isolation option [database]
	allow_write_client_file option [database]
	ansi_blanks option [compatibility]
	ansi_close_cursors_on_rollback option [compatibility]
	ansi_permissions option [compatibility]
	ansi_substring option [compatibility]
	ansi_update_constraints option [compatibility]
	ansinull option [compatibility]
	auditing option [database]
	auditing_options option [database]
	background_priority option [database] [deprecated]
	blob_threshold option [SQL Remote]
	blocking option [database]
	blocking_timeout option [database]
	chained option [compatibility]
	checkpoint_time option [database]
	cis_option option [database]
	cis_rowset_size option [database]
	close_on_endtrans option [compatibility]
	collect_statistics_on_dml_updates option [database]
	compression option [SQL Remote]
	conn_auditing option [database]
	connection_authentication option [database]
	continue_after_raiserror option [compatibility]
	conversion_error option [compatibility]
	cooperative_commit_timeout option [database]
	cooperative_commits option [database]
	database_authentication [database]
	date_format option [database]
	date_order option [database]
	debug_messages option [database]
	dedicated_task option [database]
	default_dbspace option [database]
	default_timestamp_increment option [database] [MobiLink client]
	delayed_commit_timeout option [database]
	delayed_commits option [database]
	delete_old_logs option [MobiLink client] [SQL Remote] [Replication Agent]
	escape_character option [compatibility]
	exclude_operators option [database]
	extended_join_syntax option [database]
	external_remote_options [SQL Remote]
	fire_triggers option [compatibility]
	first_day_of_week option [database]
	for_xml_null_treatment option [database]
	force_view_creation option [database]
	global_database_id option [database]
	http_session_timeout option [database]
	integrated_server_name option [database]
	isolation_level option [database] [compatibility]
	java_location option [database]
	java_main_userid option [database]
	java_vm_options option [database]
	log_deadlocks option [database]
	login_mode option [database]
	login_procedure option [database]
	materialized_view_optimization option [database]
	max_client_statements_cached option [database]
	max_cursor_count option [database]
	max_plans_cached option [database]
	max_priority option [database]
	max_query_tasks option [database]
	max_recursive_iterations option [database]
	max_statement_count option [database]
	max_temp_space option [database]
	min_password_length option [database]
	nearest_century option [compatibility]
	non_keywords option [compatibility]
	odbc_describe_binary_as_varbinary [database]
	odbc_distinguish_char_and_varchar option [database]
	oem_string option [database]
	on_charset_conversion_failure option [database]
	on_tsql_error option [compatibility]
	optimization_goal option [database]
	optimization_level option [database]
	optimization_workload option [database]
	pinned_cursor_percent_of_cache option [database]
	post_login_procedure option [database]
	precision option [database]
	prefetch option [database]
	preserve_source_format option [database]
	prevent_article_pkey_update option [database] [MobiLink client]
	priority option [database]
	qualify_owners option [SQL Remote]
	query_mem_timeout option [database]
	quote_all_identifiers option [SQL Remote]
	quoted_identifier option [compatibility]
	read_past_deleted option [database]
	recovery_time option [database]
	remote_idle_timeout option [database]
	replicate_all option [Replication Agent]
	replication_error option [SQL Remote]
	replication_error_piece option [SQL Remote]
	request_timeout option [database]
	return_date_time_as_string option [database]
	rollback_on_deadlock [database]
	row_counts option [database]
	save_remote_passwords option [SQL Remote]
	scale option [database]
	secure_feature_key [database]
	sort_collation option [database]
	sql_flagger_error_level option [compatibility]
	sql_flagger_warning_level option [compatibility]
	sr_date_format option [SQL Remote]
	sr_time_format option [SQL Remote]
	sr_timestamp_format [SQL Remote]
	string_rtruncation option [compatibility]
	subscribe_by_remote option [SQL Remote]
	subsume_row_locks option [database]
	suppress_tds_debugging option [database]
	synchronize_mirror_on_commit option [database]
	tds_empty_string_is_null option [database]
	temp_space_limit_check option [database]
	time_format option [compatibility]
	time_zone_adjustment option [database]
	timestamp_format option [compatibility]
	truncate_timestamp_values option [database] [MobiLink client]
	tsql_outer_joins option [compatibility]
	tsql_variables option [compatibility]
	updatable_statement_isolation option [database]
	update_statistics option [database]
	user_estimates option [database]
	verify_all_columns option [SQL Remote]
	verify_password_function option [database]
	verify_threshold option [SQL Remote]
	wait_for_commit option [database]
	webservice_namespace_host option [database]

	Connection, database, and database server properties
	Connection properties
	Database server properties
	Database properties

	Physical limitations
	SQL Anywhere size and number limitations

	Administering Your Database
	SQL Anywhere graphical administration tools
	Using Sybase Central
	Starting Sybase Central
	Navigating Sybase Central
	Searching databases in Sybase Central
	Sybase Central keyboard shortcuts

	Using the Code Editor
	Code Editor keyboard shortcuts

	Using the Log Viewer
	Using the SQL Anywhere plug-in
	Copying database objects in the SQL Anywhere plug-in
	Viewing entity-relationship diagrams from the SQL Anywhere plug-in
	Monitoring database health and statistics
	Documenting a database

	Using Interactive SQL
	Starting Interactive SQL
	Navigating Interactive SQL
	Interactive SQL windows

	Executing SQL statements from Interactive SQL
	Executing multiple SQL statements
	Executing command files
	Using favorites
	Recalling commands
	Logging commands
	Canceling commands in Interactive SQL

	Inserting comments
	Indenting SQL statements
	Looking up tables, columns, and procedures
	Generating SQL statements from result sets
	Using the Query Editor
	Viewing plans using the Interactive SQL Plan Viewer
	Viewing graphical plans in Interactive SQL
	Configuring the graphical plan

	Printing SQL statements, execution plans, and result sets
	Editing result sets in Interactive SQL
	Editing table values from the Interactive SQL result set
	Inserting rows into the database from the Interactive SQL result set
	Deleting rows from the database using Interactive SQL
	Copying rows from an Interactive SQL result set
	Sorting columns in an Interactive SQL result set

	Opening multiple windows
	Using source control integration
	Configuring Interactive SQL to use source control
	Opening source control projects from Interactive SQL
	Checking files out from Interactive SQL
	Checking in files from Interactive SQL
	Additional source control actions

	Interactive SQL SQL statements
	Interactive SQL keyboard shortcuts
	Interactive SQL options
	auto_commit option [Interactive SQL]
	auto_refetch option [Interactive SQL]
	bell option [Interactive SQL]
	command_delimiter option [Interactive SQL]
	commit_on_exit option [Interactive SQL]
	default_isql_encoding option [Interactive SQL]
	echo option [Interactive SQL]
	input_format option [Interactive SQL]
	isql_allow_read_client_file option [Interactive SQL]
	isql_allow_write_client_file option [Interactive SQL]
	isql_command_timing option [Interactive SQL]
	isql_escape_character option [Interactive SQL]
	isql_field_separator option [Interactive SQL]
	isql_maximum_displayed_rows option [Interactive SQL]
	isql_print_result_set option [Interactive SQL]
	isql_quote option [Interactive SQL]
	isql_show_multiple_result_sets [Interactive SQL]
	nulls option [Interactive SQL]
	on_error option [Interactive SQL]
	output_format option [Interactive SQL]
	output_length option [Interactive SQL]
	output_nulls option [Interactive SQL]
	truncation_length option [Interactive SQL]

	Using text completion
	Text completion keyboard shortcuts

	Using the fast launcher option
	Using the SQL Anywhere Console utility
	Starting the SQL Anywhere Console utility
	Navigating the SQL Anywhere Console utility main window

	Checking for software updates

	Database administration utilities
	Administration utilities overview
	Using configuration files
	Using conditional parsing in configuration files

	Backup utility (dbbackup)
	Broadcast Repeater utility (dbns11)
	Certificate Creation utility (createcert)
	Certificate Viewer utility (viewcert)
	Data Source utility (dbdsn)
	dbisqlc utility (deprecated)
	Erase utility (dberase)
	File Hiding utility (dbfhide)
	Histogram utility (dbhist)
	Information utility (dbinfo)
	Initialization utility (dbinit)
	Interactive SQL utility (dbisql)
	Key Pair Generator utility (createkey)
	Language Selection utility (dblang)
	Log Transfer Manager utility (dbltm)
	The LTM configuration file

	Log Translation utility (dbtran)
	Ping utility (dbping)
	Rebuild utility (rebuild)
	Script Execution utility (dbrunsql)
	Server Enumeration utility (dblocate)
	Server Licensing utility (dblic)
	Service utility (dbsvc) for Linux
	Service utility (dbsvc) for Windows
	SQL Anywhere Console utility (dbconsole)
	Start Server in Background utility (dbspawn)
	Stop Server utility (dbstop)
	Support utility (dbsupport)
	Transaction Log utility (dblog)
	Unload utility (dbunload)
	Upgrade utility (dbupgrad)
	Validation utility (dbvalid)
	Version Diagnostic utility (dbversion)

	Maintaining Your Database
	Backup and data recovery
	Backup quick start
	Types of backup
	Online and offline backups
	Full backups
	Incremental backups
	Live backups
	Differences between live backups and transaction log mirrors

	Choosing a backup format
	Archive backups
	Image backups

	Backup and recovery restrictions
	Making a server-side backup
	Use the BACKUP DATABASE statement to make a server-side backup
	Use the Backup utility (dbbackup) to make a server-side backup
	Using Sybase Central to make a server-side backup
	Use the Backup Database Wizard
	Use the Create Backup Images Wizard

	Using the SQL Anywhere Volume Shadow Copy Service (VSS)

	Making a client-side backup
	Make a live backup

	Validating backups
	Recovering your database
	The automatic recovery process
	Recover uncommitted operations
	Restore from an image backup
	Restore from an archive backup
	Restart from a live backup
	Recovering a database with multiple transaction logs
	Recover a database with multiple transaction logs using the -ad server option
	Recover a database with multiple transaction logs using the -a server option
	Recover a database with multiple transaction logs using the dbtran utility

	Recovering from media failure
	Recover from media failure on the data
	Recover from media failure on a transaction log mirror
	Recover from media failure on an unmirrored transaction log

	Designing a backup and recovery plan
	Implement a backup and recovery plan
	Scheduling considerations
	Creating a maintenance plan
	Create a maintenance plan report
	View the maintenance plan report

	Protecting against media failure

	Backing up databases involved in synchronization and replication
	Managing the transaction log
	Make a backup and rename the original transaction log
	Rename the backup copy of the transaction log during backup
	Make a backup and delete the original transaction log
	Validating the transaction log

	The internal backup process
	Understanding backups
	How the database server decides when to checkpoint
	Managing the transaction log
	Offline transaction logs
	The rollback log

	Understanding parallel database backups

	Validating databases
	Introduction to validation
	Using checksums to detect corruption
	Validate a database
	Validate a table

	Improving performance when validating databases

	Automating tasks using schedules and events
	Introduction to using schedules and events
	Understanding events
	Understanding schedules
	Defining schedules

	Understanding system events
	Defining trigger conditions for events

	Understanding event handlers
	Developing event handlers

	Schedule and event internals
	How the database server checks for system events
	How the database server checks for scheduled events
	How event handlers are executed

	Event handling tasks
	Adding an event to a database
	Adding a manually-triggered event to a database
	Triggering an event handler
	Debugging an event handler
	Hiding an event handler

	SQL Anywhere high availability
	Introduction to database mirroring
	Benefits of database mirroring
	Understanding the role of the arbiter server
	Choosing a database mirroring mode
	Synchronization states
	State information files

	Tutorial: Using database mirroring
	Tutorial: Using database mirroring with multiple databases sharing an arbiter server
	Setting up database mirroring
	Determining the initial primary server
	Specifying a preferred database server
	Configuring read-only access to a database running on the mirror server
	Running queries against the mirror database

	Forcing a database server to become the primary server
	Initiating failover on the primary server
	Stopping a database server in a mirroring system
	Recovering from primary server failure
	Database mirroring and transaction log files
	Database mirroring system events
	Database mirroring and performance
	Database mirroring and backups
	Database mirroring scenarios

	Using the SQL Anywhere Veritas Cluster Server agents
	Configuring the SAServer agent
	Testing the SAServer agent

	Configuring the SADatabase agent
	Testing the SADatabase agent

	Monitoring Your Database
	SQL Anywhere Monitor
	Introducing the SQL Anywhere Monitor
	Monitor architecture

	Monitor quick start
	Tutorial: Using the Monitor
	Lesson 1: Start the Monitor
	Lesson 2: Set up the Monitor to monitor a database
	Lesson 3: Test an alert
	Lesson 4: Set up the Monitor to send emails when alerts occur
	Lesson 5: Cleanup

	Start the Monitor
	Exit the Monitor
	Connect to the Monitor
	Disconnect from the Monitor
	Monitoring resources
	Interpreting resource states and status
	Monitor metrics
	Metric tab descriptions
	Monitoring tab: Alerts tab
	Monitoring tab: Server tab
	Monitoring tab: CPU tab
	Monitoring tab: Unscheduled Requests tab
	Monitoring tab: Memory tab
	Monitoring tab: Disk tab
	Monitoring tab: HTTP tab
	Monitoring tab: Connections tab
	Monitoring tab: Failed Connections tab
	Monitoring tab: Queries tab
	Monitoring tab: Mirror tab

	Delete old Monitor metrics

	Administering resources
	Add resources
	Collection intervals
	Specify metrics to collect
	Types of metrics and alerts

	Stop monitoring resources
	Manually stop monitoring resources
	Automatically stop monitoring resources using blackouts

	Repair database resources
	Remove resources

	Working with Monitor users
	Create Monitor users
	Associate Monitor users with resources
	Edit Monitor users
	Delete Monitor users
	Require Monitor users to login

	Alerts
	View alerts
	Resolve alerts
	Delete alerts
	Send alert emails
	Enable the Monitor to send alert emails

	Suppress alerts for unsubmitted error reports from resources

	Installed objects
	Installing the SQL Anywhere Monitor on a separate computer
	Troubleshooting the Monitor

	The SQL Anywhere SNMP Extension Agent
	Introduction to the SQL Anywhere SNMP Extension Agent
	Understanding SNMP
	The SQL Anywhere MIB
	The RDBMS MIB

	Using the SQL Anywhere SNMP Extension Agent
	Installing SNMP
	Configuring the SQL Anywhere SNMP Extension Agent
	Obtaining values using the SQL Anywhere SNMP Extension Agent
	Setting values using the SQL Anywhere SNMP Extension Agent
	Executing stored procedures using the SQL Anywhere SNMP Extension Agent
	Using traps
	Creating dynamic traps

	SQL Anywhere MIB reference
	Agent
	saMetaData tables
	saSrvMetaData.saSrvStatMetaDataTable
	saSrvMetaData.saSrvPropMetaDataTable
	saDbMetaData.saDbStatMetaDataTable
	saDbMetaData.saDbPropMetaDataTable
	saDbMetaData.saDbOptMetaDataTable

	SQL Anywhere MIB server statistics
	SQL Anywhere MIB server properties
	SQL Anywhere MIB database statistics
	SQL Anywhere MIB database properties
	SQL Anywhere MIB database options

	RDBMS MIB reference
	rdbmsDbTable
	rdbmsDbInfoTable
	rdbmsDbParamTable
	rdbmsDbLimitedResourceTable
	rdbmsSrvTable
	rdbmsSrvInfoTable
	rdbmsSrvParamTable
	rdbmsSrvLimitedResourceTable

	Security
	Keeping your data secure
	Introduction to security features
	Security tips
	Controlling database access
	Increasing password security
	Controlling the tasks users can perform
	Designing database objects for security
	Specifying secured features

	Auditing database activity
	Controlling auditing
	Retrieving auditing information
	Adding audit comments
	Auditing example
	Auditing actions outside the database server

	Running the database server in a secure fashion
	Encrypting and decrypting a database
	Simple encryption
	Strong encryption
	Creating an encrypted database
	Decrypting a database
	Working with encryption keys
	Performance issues
	Encrypting portions of a database
	Column encryption
	Table encryption

	Keeping your Windows Mobile database secure

	Transport-layer security
	Introduction to transport-layer security
	TLS support
	FIPS-approved encryption technology

	Setting up transport-layer security
	Creating digital certificates
	Self-signed root certificates
	Certificate chains
	Enterprise root certificates
	Signed identity files

	Globally-signed certificates
	Using globally signed identity files
	Setting up clients to trust the certificate authority's certificate

	Encrypting SQL Anywhere client/server communications
	Starting the database server with transport-layer security
	Configuring client applications to use transport-layer security
	Server authentication
	Digital signatures
	Verifying certificate fields
	Using the trusted_certificates protocol option

	Establishing a client connection using transport-layer security

	Encrypting SQL Anywhere web services
	Encrypting MobiLink client/server communications
	End-to-end encryption
	Starting the MobiLink server with transport-layer security
	Configuring MobiLink clients to use transport-layer security
	Server authentication
	Digital signatures
	Verifying certificate fields

	Client security options
	Configuring SQL Anywhere clients to use transport-layer security
	Configuring UltraLite clients to use transport-layer security

	Certificate utilities

	Replication
	Using SQL Anywhere as an Open Server
	Open Clients, Open Servers, and TDS
	Sybase applications and SQL Anywhere

	Setting up SQL Anywhere as an Open Server
	System requirements
	Starting the database server as an Open Server

	Configuring Open Servers
	The interfaces file
	Using the DSEdit utility
	Starting DSEdit
	Opening a directory services session
	Adding a server entry
	Adding or changing the server address
	Verifying the server address
	Renaming a server entry
	Deleting server entries
	Configuring servers for JDBC

	Characteristics of Open Client and jConnect connections

	Replicating data with Replication Server
	Introduction to using SQL Anywhere with Replication Server
	Replication Server characteristics
	Replicate sites and primary sites
	Replicate site components
	Primary site components

	Tutorial: Replicate data using Replication Server
	Lesson 1: Create the SQL Anywhere databases
	Lesson 2: Start the database servers
	Lesson 3: Set up the Open Servers in your system
	Lesson 4: Confirm that the Open Servers are configured properly
	Lesson 5: Add Replication Server information to the primary database
	Lesson 6: Create the table for the primary database
	Lesson 7: Add Replication Server information to the replicate database
	Lesson 8: Create the tables for the replicate database
	Lesson 9: Set up Replication Server
	Create a connection for the primary site
	Create a connection for the replicate site
	Create a replication definition
	Configure and start the SQL Anywhere LTM
	Create a subscription for your replication

	Lesson 10: Enter data at the primary site for replication

	Configuring databases for Replication Server
	Setting up the database for Replication Server
	Prepare to run the setup script
	Run the setup script

	Replication Server character set and language issues

	Using the LTM
	Configuring tables for replication
	Preparing procedures and functions for replication
	SQL statements for controlling procedure replication
	Asynchronous procedures
	Configuring the LTM
	Replicating transactions in batches

	Language and character set issues
	Open Client/Open Server collations
	Character set settings in the LTM configuration file

	Transaction log and backup management
	Using the delete_old_logs option
	The Unload utility and replication

	Replicating an entire database
	Stopping the LTM

	Glossary
	Glossary

	Index

