SQL Anywhere® Server
Database Administration

February 2009

Version 11.0.1

Copyright and trademarks
Copyright © 2009 iAnywhere Solutions, Inc. Portions copyright © 2009 Sybase, Inc. All rights reserved.

This documentation is provided AS IS, without warranty or liability of any kind (unless provided by a separate written agreement between
you and iAnywhere).

You may use, print, reproduce, and distribute this documentation (in whole or in part) subject to the following conditions: 1) you must retain
this and all other proprietary notices, on all copies of the documentation or portions thereof, 2) you may not modify the documentation, 3) you
may not do anything to indicate that you or anyone other than iAnywhere is the author or source of the documentation.

iAnywhere®, Sybase®, and the marks listed at http://www.sybase.com/detail?id=1011207 are trademarks of Sybase, Inc. or its subsidiaries.
® indicates registration in the United States of America.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.sybase.com/detail?id=1011207

Contents

AbOUL thiS DOOK ... Xi
About the SQL Anywhere documentationccccoooviriiiiiiiiiiii e Xii
Starting and Connecting to Your Databasecccccooevviiiiiiiiiiiie e, 1
Tutorial: Using the sample database ..o e 3
Lesson 1: Make a copy of the sample databaseccccceiiiii . 4
Lesson 2: Start the SQL Anywhere database Serverccccoovveeeviieeiiiiiii e eeeeeeenns 5
Lesson 3: Display the database server messages wWindowccceeeeeeeeeeeenn. 6
Lesson 4: Stop the database SEIVEr ... e 8
SUMIMBIY e 9
Working with database fil€Sccuiiiiiiii e 11
Overview of database filE€Sciii i 12
Pre-defined dDSPACEScoviiiiiiiiiiiiiieeeeeeeeee ettt 13

The transaction [0gcoooieiiiei i 14
Creating a databasecccooeiiiiiiiiiiic 21
Using additional dDSPACESeeeueeiiiiiiiiiiiiiiiie ettt e e 25
Using the utility databaseeeviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 30
Erasing @ databaseoooviiiiiiiiiiiiiiiiiieieeeeeeeeeee e 34
RUNNING the database SEIVEN ... e 37
Introduction to running SQL Anywhere database serversccccccceeeeieennn. 38
Starting the database SEIVET ... eeeeeneennee 42
SOME COMMON OPLIONS ...uuuiieieiee i aneanneanneannennsennnennnes 46
Stopping the database SEIVET ... eeeeeenee 58
Starting and stopping databasesccccccciiiiiiiiiiiii 59
Running the server outside the current SESSIONccoovvvviiiiiiiiieee 62
Troubleshooting SEerver Startupcoooeeeeei i, 74
Running authenticated SQL Anywhere applicationscccccceveveiiiiiiiee e 76
Running SQL Anywhere Web Edition applicationsccccccciiiii. 82
Error reporting in SQL ANYWNEIEouiiiiiiiiiiie e 83

SQL Anywhere database CONNECHIONScc.uuiiiiiiiiii e 85
(Of0]g] o [Tt U [o] I oF=T =T 1= (= £ 86
Connecting with SQL AnNYWhere APIS ..o 89

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 iii

SQL Anywhere® Server - Database Administration

Connecting from desktop applications to a Windows Mobile database 91
Connecting from Sybase Central, Interactive SQL, or the SQL Anywhere
(70T 15101 [T 1111 Y2 92
Creating ODBC data SOUICESeuiiiiiiiiiiiiiiiiieee e e st e e e e e a e e e e ssabeeees 97
Connecting to a database using OLE DBcccouuiiiiiiiiiirrcceccne e, 104
Using integrated [0gINSoouuiiiiiiiieeii e 106
Kerberos authentiCation ... 114
Sample SQL Anywhere database CONNECLIONScccccccvuvemnriinrinniinniinnninniennns 124
Troubleshooting CONNECHIONScouiiiiiii e e 132
Disconnecting from a databasecc.eeeviiiiiiiiiiiiiii e 140
Client/server COMMUNICALIONSuuuiiiiiii et e e e e e e e e e aaa e e eeeanns 141
Supported NEtWOrk ProtOCOISooiiiiiiiiiiiiiiiie e 142
Using the TCP/IP ProtOCOIuuvviiiiiiiiiiiiiiiiiiiisiiieissssseesseessesseesseessessesesereeeeeeee. 143
Adjusting communication compression settings to improve performance 149
Troubleshooting network communicationsccccceeeeeeee e, 151
THe dat@hASE SEIVET ... ettt e eaans 155
The SQL Anywhere database SEIVEr ..o 156
Database Server OPtioNScovvviiiiiiiiii 165
Database OPLIONSooiiiiiiiiiie e 248
Connection parameters and network protocol OptioNScovviiiiiiiiiiiiinieii e 261
CONNECLION PAFAMELEIS ... e 262
Network protoCOl OPLIONSuviiiiiiiiiiiiiiie et 301
SQL Anywhere for Windows MoDbIleccouiiiiiiiiiii e 327
Installing SQL Anywhere on a Windows Mobile devicecccccccoiiiiiiiiinnneenn. 328
Using the Windows Mobile sample applicationscevvvvveeevieieeeiieeeeeeeeeenee, 331
Connecting to a database running on a Windows Mobile device 336
Configuring Windows Mobile databasesccccccciiiiiiiiiees 339
Running the database server on Windows Mobileccccccooiiiiiiiiinn, 348
Using the administration utilities on Windows Maobilecccccvvvvvviiiviieeeennnnn. 349
SQL Anywhere feature support on Windows Mobileccccccoviiiieiiiiiniiinnn. 356
Configuring YOUr Databaseceuvuiiiiiiiiiiiiiiiieaa e 363
SQL Anywhere environment variables ..o 365
Introduction to SQL Anywhere environment variables 366
DYLD_LIBRARY_PATH environment variable [Mac OS X]ccccocoviirinnnnnenn. 368
LD_LIBRARY_PATH environment variable [Linux and Solaris] 369

iv Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere® Server - Database Administration

LIBPATH environment variable [AIX]ooviie e 370
ODBCHOME environment variable [UNiX]ccccccviiiiiniiiiierceciee e, 371
ODBCINI and ODBC_INI environment variables [UNiX]cccovvvieeeininiiinne. 372
PATH environment variable ... 373
SACHARSET environment variablecccooooiiiiiiiiiiiiieiees 374
SADIAGDIR environment variable ... 375
SALANG environment Variableccccooiiiioiiiiiiii e 377
SALOGDIR environment variable ... 378
SATMP environment variableccooooiiiiiiiiii 379
SHLIB_PATH environment variable [HP-UX]cccoooiiiiiiiiii e, 381
SQLANY11 environment Variablecccccooooiiiiiiiiiii e 382
SQLANYSAMP11 environment variableccccccvviiiiii e, 383
SQLCONNECT environment variablecccoooiiiiiiiiiiiieeiees 384
SQLPATH environment variablecccccoooiiiiiiiiii e, 385
SQLREMOTE environment variableccccooooiiiiiiiiiiin e 386
SYBASE environment variable ... 387
TMP, TEMPDIR, and TEMP environment variablescccccociiiiiiiinnnn. 388
File locations and installation SETHNGSivvveiiiii e e eaae e 389
Installation dir€CtOry SIrUCTUIEooiiiiiiiiiee e 390
How SQL Anywhere locates fileS ... 392
Registry and INITIES ... 396
International languages and CharacCter SEtSocoiiiiiiiiiiiii e 399
Localized versions of SQL ANYWhErecccccoiiiiiiii 400
Understanding Character SISooouiiiiiiiiiiiee e 407
Understanding [0CaAIESuuuuviiiiiiiiiiiiiiiiiieiiriirireereereererereeerrerreer———————————————————. 413
Understanding COIALIONSuuiiiiiiiiiiie e 416
International language and character settasksccccccco 424
Character set and collation reference informationcccccccceeiiiiinniinninnninnnn. 429
Managing user IDs, authorities, and PErmiSSIONScoceuiviiiiieiiii e e 439
Managing 10gin POlICIES OVEIVIEWccoieeiiiiiiiiii e e s e e e e e e eearn e e e e e eeaeens 440
Database permissions and authoritieS OVEIVIEWccooocvviiieiineeiiiiiiiiieeeeenn 446
Managing user permissions and authorities OVerviewcccccccciiieiiinieeeenennns 455
Managing CONNECLEA USEISccuieiiiiiiiiiiiieeeeeeaaeiiiteeeee e e e s st e e e e e e s s aennneeeeeeas 467
=T F= Ve LT e 01U o SRR 468
Database object names and PrefiXes ... 475
Using views and procedures for extra SECUNLYveeeeiiiieeiieeeiiiiinineeeeeeeeenns 477

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 v

SQL Anywhere® Server - Database Administration

Changing ownership on nested ODJECESccoviiiiiiiiiiiiiiee e 480
HOWw user permissions are assSeSSEAcccuvvuiiiiiieeriiieiiiiine e e e e e et e e e e eeaenns 482
Managing the resources CONNECLIONS USEcccooviuiiiieiiiiiiieniiiiiee e 483
Users and permissions in the catalogccceevvveiiiiieiiiiiiin e e eeeeens 484
Database OPLIONS ...ttt et et eaaas 487
Introduction to database Optionscccccvvviiii 488
Connection, database, and database server Propertiesccoovoveiieiiieiiieiiieieeieeee e 597
CONNECHION PrOPEITIES ...eeiiieeeiiiiitiie it e ettt e e e e e e e e e e e e s aanbeees 598
Database Server PropertieSooovvviiiiiiiiiiiieee 624
Database Propertiesccc.eveiiiiiiiiii s 639

[AT o= 1 1101 =1 (o] L PPN 653
SQL Anywhere size and number limitationsccccoooooiiiiiiiiiiiies 654
Administering Your Databasecoooviiiiiiiiiiiiiiieeiiii e 657
SQL Anywhere graphical administration t00IScooouiiiiiiii 659
USINg Sybase Centralooociiiiiiiiiiii e 660
Using INteractive SQLcoooiiiiiiii e 676
USINg teXt COMPIETIONooiiiiiiiiiiiie e 725
Using the fast launcher OptioN ... e 728
Using the SQL Anywhere Console ULIlItYcoooiiiiiiiieniiniiiiieecee e 729
Checking for software updatescccceiiiiiiiiiiiciic e 732
Database administration ULIHHESooouiiiii e e 735
Administration UtIlItIES OVEIVIEWuuviiiiiiiiiiiiiieecee e 737
Backup utility (dbDACKUP)vveiiieeeiii e 740
Broadcast Repeater utility (dbNS11) ... 745
Certificate Creation utility (CreateCert)ccoveeiiiiiiiiiiieeee e 747
Certificate Viewer Utility (VIEWCEI)ooiieiiiici e 750
Data Source utility (dDASN)oooiiiiiii e 752
dbisqglc utility (deprecated)cccooooieeiiiiiieee e 764
Erase utility (ADErase)c.uveiiiiiiiiiii e 766

File Hiding utility (dDfhide) ..o 768
Histogram utility (dBRISt)ooeiiiiiii e 770
Information utility (dbinfo)oooviiiiii 772
Initialization utility (dDINIE)oeeeee e 774
Interactive SQL utility (dbisql)ooovvvivviiiii 786

Vi

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere® Server - Database Administration

Key Pair Generator utility (createkey)ccccvveiiiiiiiii 790
Language Selection utility (dblang)c.ooouiiiiiiii e 791
Log Transfer Manager utility (dbItm)coovviriiiri e, 794
Log Translation utility (dbtran)ccooooiiiiiiiiin e e 799
Ping utility (dDPING) cevveeeeeeiiieiieeeee e 804
Rebuild utility (rebuild)oooorii e 807
Script Execution utility (dbrunsgl)coooooeeeoeeeiici e 808
Server Enumeration utility (dblocate)c.ccooovviiiiiiiii e, 810
Server Licensing utility (dBlIC)cooooeooeeiie e 813
Service utility (dBSVC) TOr LINUXccovviiiiiiiii it e e 816
Service utility (dbsvc) for WINAOWSooooeieiii e 820
SQL Anywhere Console utility (dbconsole)cviieiiiiiiiiici e, 827
Start Server in Background utility (dbSpawn)ccccccoiiiiiiiiiiiiieeens 829
Stop Server utility (ADSIOP) .uvveeiii e 831
Support utility (dDSUPPOITL) ... 833
Transaction Log utility (dblog)cevvuiiiiii e 842
(@] a1 o F=To MUY i1 1Y (o] 0TV 1] (oY= Te) IR P 845
Upgrade utility (dbupgrad)coooiiiiiiiicei e 860
Validation utility (dbvalid)ccoovvviiiiiiii 862
Version Diagnostic utility (dbversion) ... 865
Maintaining Your Databasecccoviiiiiiiii s 867
BacCKUp @nd dAt@ FECOVETYuiie ittt et et e et e e e et e e e e eanaaees 869
BaCKUP QUICK STAIT ...eeieeiiiiiieieee et 871
TYPES OF DACKUP .. et e e e e e 872
Choosing @ backup fOrMALuueiiiiiiiii e 877
Backup and reCovery reStriCtioNScooevuuiiiiiiiie e e e e e e e e e eenenns 879
Making a server-side DaCKUPoooiiiiiiiiiiiii e 880
Making a client-side backupcccooov i 886
Validating DaCKUPScoovi 888
Recovering your databasecccooiiiiiiiiieiiiiiin e e 889
Designing a backup and reCoVvery Plan ... 900
Backing up databases involved in synchronization and replication 904
The internal Dackup PrOoCESScoiiiiiiiiie e 909
Validating databasesco.uiiiiiiii e 915

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 Vil

SQL Anywhere® Server - Database Administration

Introduction to validationcccccvviiiiiiiii 916
Using checksums to detect COrtUPLIONceeiiiieiiieiiiii e eeeeeeens 917
Improving performance when validating databasesccccceceiiiiiiieininnnn. 920
Automating tasks using schedules and eVENLSc.coiviiiiiiiiii i 921
Introduction to using schedules and EVENLScccveeeeiiiiiiiiiieieeeee e 922
UNerstanding ©VENLSuuuuuiiiiiiiiiiiiriiirtierrrrsrreerereerrerereeee—e——————————————————————. 923
Understanding SChedUIESoooiiiiiiiiii e 924
Understanding SYStEM @VENLSuuuiuuriiieiiiiiiiiiierrerereeereeereeereereerereeerrer—————. 926
Understanding event NANAIErS ... 930
Schedule and event INTErNAIScoooiiiiiiiiiiii e 932
Event handling tasKScccuiiiiiiii e 934
SQL Anywhere high availability ... 937
Introduction to database mirroringccccccvii 938
Tutorial: Using database mirroringooooeevieiiiieiiiiiiecceee e 945
Tutorial: Using database mirroring with multiple databases sharing an arbiter
1] T USRI 949
Setting up database MIrTOriNGcooeiiiiiiiiiiiiee e 954
Using the SQL Anywhere Veritas Cluster Server agentscccccccevvvveveeeeeennenn.. 965
Monitoring Your Database ... 971
Y@] I AN VAT 1= (=17 (o 1 o] 973
Introducing the SQL ANywhere MONITOTcooviiiiiiiiieeeeeeiii e 974
MORNITOr QUICK STAIT ...ooeeiiiiiiiiiiieiee e 977
Tutorial: USINg the MONITOTcooiiiiiiiiiee e 978
Start the MONITOT ... e e e e e e e e e e e nnnneees 983
(18 1 g T= 1Y/ T 1 o SRR 984
CoNNECt t0 the MONITOT ...oiiiiiiiiiiieee e 985
Disconnect from the MONITOroooviviiiiiiii e 986
MORNILONING FESOUICES ..coiiiiiieiiiiiiieeeeeee e 987
AdMINISIEIING TESOUITESeviiiiiieeeiiiiiiei et e e e e e e e e s e eeaeas 995
Working With MONITOr USEIScoviiiiiiiiiiiiiieeeeee ettt 1002
=T £ P 1006
Ta1Sy 7= Lo I o] o= ox £ PP 1010
Installing the SQL Anywhere Monitor on a separate computer 1011
Troubleshooting the MONItor ..., 1012

viii

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere® Server - Database Administration

The SQL Anywhere SNMP EXtENSION AQENTiivniiiii e e 1015
Introduction to the SQL Anywhere SNMP Extension Agentcccccceeeeeeenen. 1016
Understanding SNMP ..o 1017
Using the SQL Anywhere SNMP EXtension Agentccccooeevvviviiiiiiinneeeeeeennnnns 1021
SQL Anywhere MIB referencecccccccoiiiiiiiiiieineereeeennenneennnes 1029
RDBMS MIB FefereNCecooviiiiiiiiiiiiiiiiieeeeeeeeeeeeee ettt 1055

YT oA U 1 1 TSP 1061

Keeping YOUF AALA SECUIEc.uuiiie ittt e e et e e et e et e e et e e e e e an e e ebn e eeannas 1063
INtroduction tO SeCUrity FEATUIEScuuviiiiiiie e 1064
YTt U] 2 1] 0L 1066
Controlling database ACCESSeuiiiiiiiiiiiiiiiii e 1068
Auditing database actiVILyciiiiiiiiiiiec e 1074
Running the database server in a secure fashioncccccccc . 1081
Encrypting and decrypting a databasecccoooeeiiiiiiiiiiiii e 1082
Keeping your Windows Mobile database SECUrecccocvvvvieieeeeiiiiiiiiinennn. 1093

I L) 010 Y= =TT U 1095
Introduction to transport-layer SECUNLYcoooiiiiiiiiiiieeiiiieee e 1096
Setting up transport-layer SECUNLYcccceiuuuuruuiiieiiiieiiiriererre e 1099
Creating digital CertifiCatesuuueiiiiiiiiiiie e 1101
Encrypting SQL Anywhere client/server communicationsc.c.c.oo....... 1107
Encrypting SQL Anywhere Web SEIVICESooviuiiiiiiiiieiiiieee e 1112
Encrypting MobiLink client/server communicationscccccceeeeieeee. 1113
Certificate ULIITIES ...oooiee e 1120

REPICALION 1121

Using SQL Anywhere as an OPEN SEIVETcc.uuieiiiiieeiiii ettt 1123
Open Clients, Open Servers, and TDScccccciiuiueniiiiiiiiiirie, 1124
Setting up SQL Anywhere as an OPen SEIVETccccvivveveeeiiiiiiiiiieeeee e 1126
Configuring OPEN SEIVEISuuuiie b anaeaaseenrennnennnes 1128
Characteristics of Open Client and jConnect CONNECtioNSccccveeeeerinnee 1133

Replicating data with RepliCation SEIVETccouuiiiiiiii e 1135
Introduction to using SQL Anywhere with Replication Server 1136
Tutorial: Replicate data using Replication Serverccccccceeeiiiiiiiiiieeeeeennns 1139
Configuring databases for Replication SErverccccccvvvvvvvviverireeieereeeeeeeen.. 1148

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 iX

SQL Anywhere® Server - Database Administration

USING The LTIV ettt e e e e e e e 1151

(€1 01357 Y/ PP 1161
L1101 T= 1 1163
IO X e e as 1193

X Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

About this book

Subject

This book describes how to run, manage, and configure SQL Anywhere databases. It describes database
connections, the database server, database files, backup procedures, security, high availability, replication
with the Replication Server, and administration utilities and options.

Audience

This book is for all users of SQL Anywhere. It is to be used in conjunction with other books in the
documentation set.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 Xi

About this book

About the SQL Anywhere documentation

The complete SQL Anywhere documentation is available in four formats that contain identical information.

HTML Help The online Help contains the complete SQL Anywhere documentation, including the
books and the context-sensitive help for SQL Anywhere tools.

If you are using a Microsoft Windows operating system, the online Help is provided in HTML Help
(CHM) format. To access the documentation, choose Start » Programs » SQL Anywhere 11 »
Documentation » Online Books.

The administration tools use the same online documentation for their Help features.

Eclipse On Unix platforms, the complete online Help is provided in Eclipse format. To access the
documentation, run sadoc from the bin32 or bin64 directory of your SQL Anywhere 11 installation.

DocCommentXchange DocCommentXchange is a community for accessing and discussing SQL
Anywhere documentation.

Use DocCommentXchange to:

o View documentation

o Check for clarifications users have made to sections of documentation

o Provide suggestions and corrections to improve documentation for all users in future releases
Visit http://dcx.sybase.com.

PDF The complete set of SQL Anywhere books is provided as a set of Portable Document Format
(PDF) files. You must have a PDF reader to view information. To download Adobe Reader, visit http://
get.adobe.com/reader/.

To access the PDF documentation on Microsoft Windows operating systems, choose Start »
Programs » SQL Anywhere 11 » Documentation » Online Books - PDF Format.

To access the PDF documentation on Unix operating systems, use a web browser to open install-dir/
documentation/en/pdf/index.html.

About the books in the documentation set

The SQL Anywhere documentation consists of the following books:

SQL Anywhere 11 - Introduction This book introduces SQL Anywhere 11, a comprehensive
package that provides data management and data exchange, enabling the rapid development of database-
powered applications for server, desktop, mobile, and remote office environments.

SQL Anywhere 11 - Changes and Upgrading This book describes new features in SQL Anywhere
11 and in previous versions of the software.

SQL Anywhere Server - Database Administration This book describes how to run, manage, and
configure SQL Anywhere databases. It describes database connections, the database server, database

Xii

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://dcx.sybase.com/
http://get.adobe.com/reader/
http://get.adobe.com/reader/

About the SQL Anywhere documentation

files, backup procedures, security, high availability, replication with the Replication Server, and
administration utilities and options.

SQL Anywhere Server - Programming This book describes how to build and deploy database
applications using the C, C++, Java, PHP, Perl, Python, and .NET programming languages such as Visual
Basic and Visual C#. A variety of programming interfaces such as ADO.NET and ODBC are described.

SQL Anywhere Server - SQL Reference This book provides reference information for system
procedures, and the catalog (system tables and views). It also provides an explanation of the SQL
Anywhere implementation of the SQL language (search conditions, syntax, data types, and functions).

SQL Anywhere Server - SQL Usage This book describes how to design and create databases; how
to import, export, and modify data; how to retrieve data; and how to build stored procedures and triggers.

MobilLink - Getting Started This book introduces MobiL.ink, a session-based relational-database
synchronization system. MobiLink technology allows two-way replication and is well suited to mobile
computing environments.

MobiLink - Client Administration This book describes how to set up, configure, and synchronize
MobiLink clients. MobiLink clients can be SQL Anywhere or UltraLite databases. This book also
describes the Dbmlsync API, which allows you to integrate synchronization seamlessly into your C++
or .NET client applications.

MobiLink - Server Administration This book describes how to set up and administer MobiLink
applications.

MobilLink - Server-Initiated Synchronization This book describes MobiLink server-initiated
synchronization, a feature that allows the MobiLink server to initiate synchronization or perform actions
on remote devices.

QAnywhere This book describes QAnywhere, which is a messaging platform for mobile, wireless,
desktop, and laptop clients.

SQL Remote This book describes the SQL Remote data replication system for mobile computing,
which enables sharing of data between a SQL Anywhere consolidated database and many SQL Anywhere
remote databases using an indirect link such as email or file transfer.

UltraLite - Database Management and Reference This book introduces the UltraL ite database
system for small devices.

UltraLite - C and C++ Programming This book describes UltraLite C and C++ programming
interfaces. With UltraLite, you can develop and deploy database applications to handheld, mobile, or
embedded devices.

UltraLite - M-Business Anywhere Programming This book describes UltraL ite for M-Business
Anywhere. With UltraLite for M-Business Anywhere you can develop and deploy web-based database
applications to handheld, mobile, or embedded devices, running Palm OS, Windows Mobile, or
Windows.

UltraLite - .NET Programming This book describes UltraLite.NET. With UltraLite.NET you can
develop and deploy database applications to computers, or handheld, mobile, or embedded devices.

UltraLiteJ This book describes UltraLiteJ. With UltraL iteJ, you can develop and deploy database
applications in environments that support Java. UltraLiteJ supports BlackBerry smartphones and Java
SE environments. UltraLiteJ is based on the iAnywhere UltraLite database product.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 Xiii

About this book

e Error Messages This book provides a complete listing of SQL Anywhere error messages together
with diagnostic information.

Documentation conventions

This section lists the conventions used in this documentation.

Operating systems

SQL Anywhere runs on a variety of platforms. In most cases, the software behaves the same on all platforms,
but there are variations or limitations. These are commonly based on the underlying operating system
(Windows, Unix), and seldom on the particular variant (AlX, Windows Mobile) or version.

To simplify references to operating systems, the documentation groups the supported operating systems as
follows:

e Windows The Microsoft Windows family includes Windows Vista and Windows XP, used primarily
on server, desktop, and laptop computers, and Windows Mobile used on mobile devices.

Unless otherwise specified, when the documentation refers to Windows, it refers to all Windows-based
platforms, including Windows Mobile.

e Unix Unless otherwise specified, when the documentation refers to Unix, it refers to all Unix-based
platforms, including Linux and Mac OS X.

Directory and file names

In most cases, references to directory and file names are similar on all supported platforms, with simple
transformations between the various forms. In these cases, Windows conventions are used. Where the details
are more complex, the documentation shows all relevant forms.

These are the conventions used to simplify the documentation of directory and file names:

e Uppercase and lowercase directory names On Windows and Unix, directory and file names
may contain uppercase and lowercase letters. When directories and files are created, the file system
preserves letter case.

On Windows, references to directories and files are not case sensitive. Mixed case directory and file
names are common, but it is common to refer to them using all lowercase letters. The SQL Anywhere
installation contains directories such as Bin32 and Documentation.

On Unix, references to directories and files are case sensitive. Mixed case directory and file names are
not common. Most use all lowercase letters. The SQL Anywhere installation contains directories such
as bin32 and documentation.

The documentation uses the Windows forms of directory names. In most cases, you can convert a mixed
case directory name to lowercase for the equivalent directory name on Unix.

e Slashes separating directory and filenames The documentation uses backslashes as the directory
separator. For example, the PDF form of the documentation is found in install-dir\Documentation\en
\PDF (Windows form).

Xiv

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

About the SQL Anywhere documentation

On Unix, replace the backslash with the forward slash. The PDF documentation is found in install-dir/
documentation/en/pdf.

Executable files The documentation shows executable file names using Windows conventions, with
a suffix such as .exe or .bat. On Unix, executable file names have no suffix.

For example, on Windows, the network database server is dbsrv11.exe. On Unix, it is dbsrv11.

install-dir ~ During the installation process, you choose where to install SQL Anywhere. The
environment variable SQLANY 11 is created and refers to this location. The documentation refers to this
location as install-dir.

For example, the documentation may refer to the file install-dir\readme.txt. On Windows, this is
equivalent to %SQLANY11%\readme.txt. On Unix, this is equivalent to $SQLANY11/readme.txt or $
{SQLANY11}/readme.txt.

For more information about the default location of install-dir, see “SQLANY11 environment
variable” on page 382.

samples-dir During the installation process, you choose where to install the samples included with
SQL Anywhere. The environment variable SQLANYSAMP11 is created and refers to this location. The
documentation refers to this location as samples-dir.

To open a Windows Explorer window in samples-dir, from the Start menu, choose Programs » SQL
Anywhere 11 » Sample Applications And Projects.

For more information about the default location of samples-dir, see “SQLANYSAMP11 environment
variable” on page 383.

Command prompts and command shell syntax

Most operating systems provide one or more methods of entering commands and parameters using a
command shell or command prompt. Windows command prompts include Command Prompt (DOS prompt)
and 4NT. Unix command shells include Korn shell and bash. Each shell has features that extend its
capabilities beyond simple commands. These features are driven by special characters. The special characters
and features vary from one shell to another. Incorrect use of these special characters often results in syntax
errors or unexpected behavior.

The documentation provides command line examples in a generic form. If these examples contain characters
that the shell considers special, the command may require modification for the specific shell. The
modifications are beyond the scope of this documentation, but generally, use quotes around the parameters
containing those characters or use an escape character before the special characters.

These are some examples of command line syntax that may vary between platforms:

Parentheses and curly braces Some command line options require a parameter that accepts
detailed value specifications in a list. The list is usually enclosed with parentheses or curly braces. The
documentation uses parentheses. For example:

-Xx tcpip(host=127.0.0.1)
Where parentheses cause syntax problems, substitute curly braces:

-x tcpip{host=127.0.0.1}

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 XV

About this book

If both forms result in syntax problems, the entire parameter should be enclosed in quotes as required
by the shell:

-x "tcpip(host=127.0.0.1)"

Quotes If you must specify quotes in a parameter value, the quotes may conflict with the traditional
use of quotes to enclose the parameter. For example, to specify an encryption key whose value contains
double-quotes, you might have to enclose the key in quotes and then escape the embedded quote:

-ek "my \'"secret\" key"

In many shells, the value of the key would be my "'secret" key.

Environment variables The documentation refers to setting environment variables. In Windows
shells, environment variables are specified using the syntax %ENVVAR%. In Unix shells, environment
variables are specified using the syntax SENVVAR or ${ENVVAR}.

Graphic icons

The following icons are used in this documentation.

e Aclient application.

>

A database server, such as Sybase SQL Anywhere.

A database. In some high-level diagrams, the icon may be used to represent both the database and the
database server that manages it.

Replication or synchronization middleware. These assist in sharing data among databases. Examples are
the MobiLink server and the SQL Remote Message Agent.

XVi

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

About the SQL Anywhere documentation

e A programming interface.

Contacting the documentation team

We would like to receive your opinions, suggestions, and feedback on this Help.

To submit your comments and suggestions, send an email to the SQL Anywhere documentation team at
iasdoc@sybase.com. Although we do not reply to emails, your feedback helps us to improve our
documentation, so your input is welcome.

DocCommentXchange

You can also leave comments directly on help topics using DocCommentXchange. DocCommentXchange
(DCX) is a community for accessing and discussing SQL Anywhere documentation. Use
DocCommentXchange to:

e View documentation
e Check for clarifications users have made to sections of documentation

e Provide suggestions and corrections to improve documentation for all users in future releases

Visit http://dcx.sybase.com.

Finding out more and requesting technical support

Additional information and resources are available at the Sybase iAnywhere Developer Community at http://
www.sybase.com/developer/library/sql-anywhere-techcorner.

If you have questions or need help, you can post messages to the Sybase iAnywhere newsgroups listed below.

When you write to one of these newsgroups, always provide details about your problem, including the build
number of your version of SQL Anywhere. You can find this information by running the following command:
dbeng11 -v.

The newsgroups are located on the forums.sybase.com news server.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 XVil

mailto:iasdoc@sybase.com
http://dcx.sybase.com/
http://www.sybase.com/developer/library/sql-anywhere-techcorner
http://www.sybase.com/developer/library/sql-anywhere-techcorner

About this book

The newsgroups include the following:

sybase.public.sqlanywhere.general
sybase.public.sglanywhere.linux
sybase.public.sglanywhere.mobilink
sybase.public.sglanywhere.product_futures_discussion
sybase.public.sglanywhere.replication
sybase.public.sglanywhere.ultralite
ianywhere.public.sqlanywhere.ganywhere

For web development issues, see http://groups.google.com/group/sql-anywhere-web-development.

Newsgroup disclaimer

iAnywhere Solutions has no obligation to provide solutions, information, or ideas on its newsgroups, nor is
iAnywhere Solutions obliged to provide anything other than a systems operator to monitor the service and
ensure its operation and availability.

iAnywhere Technical Advisors, and other staff, assist on the newsgroup service when they have time. They
offer their help on a volunteer basis and may not be available regularly to provide solutions and information.
Their ability to help is based on their workload.

XViii

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
http://groups.google.com/group/sql-anywhere-web-development

Starting and Connecting to Your
Database

This section describes how to start the SQL Anywhere database server, and how to connect to your database from
a client application.

Tutorial: Using the sample database ... e 3
Working With database fil@S i e 11
RUNNING the datBhase SEIVEL ... oo et 37
SQL Anywhere database CONNECHIONSc..uiiitiiiii e e e e e e e e e e et eeanaeees 85
Client/server COMMUNICALIONSoiiuuriiiie ettt e e et e e e et e et bt eeeeeeenenees 141
THE dAADASE SEIVET ittt e e e e 155
Connection parameters and network protocol OPtIONSocoeuiiiiiiiiiiiie e 261

SQL Anywhere for Windows MODIIEcoouuiiiii e 327

Tutorial: Using the sample database

Contents

Lesson 1: Make a copy of the sample databaseccccocoiiiiiiiiiiiiiiieees
Lesson 2: Start the SQL Anywhere database Serverccccccovceeiiiiieeeveeviiiiin e eeeeeeeenns
Lesson 3: Display the database server messages WindOWcccccccveeveeernnnennnennnennne.
Lesson 4: Stop the database SEIVENcii i e
SUIMIMABIY ettt ettt ettt ettt ettt ettt ettt e et e e et e e et e e et e e et e e e eaaaaaaaaaaaaaaaaans

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Tutorial: Using the sample database

Lesson 1: Make a copy of the sample database

This tutorial focuses on the sample database. The sample database represents a small company that makes
a limited range of sports clothing. It contains internal information about the company (employees,
departments, and financial data), product information (products) and sales information (sales orders,
customers, and contacts). All information in the sample database is fictional. See “About the sample
database” [SQL Anywhere 11 - Introduction].

Before you begin, make a copy of the sample database so that you can restore it after you have made changes.

To copy the sample database

1. Create a directory to hold the copy of the sample database you will use in this tutorial, for example c:
\demodb.

2. Copy the sample database from samples-dir\demo.db to c:\demodb.

For information about samples-dir, see “Samples directory” on page 390.

4 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Lesson 2: Start the SQL Anywhere database server

Lesson 2: Start the SQL Anywhere database server

To start a personal database server running the sample database (Command prompt)

e Run the following command to start the personal database server, name the server mydemol1 using the
-n server option, and connect to the copy of the sample database:

dbengll -n mydemoll c:\demodb\demo.db

On Windows, the database server appears as an icon in the system tray.

For more information about starting the network database server, see “Connect to a server on a
network™ on page 128.

See also

e “Running the database server” on page 37
e “The database server” on page 155

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 5

Tutorial: Using the sample database

Lesson 3: Display the database server messages

window

You have successfully started a personal database server running the sample database. However, you cannot
see or manipulate the data in the database yet.

The SQL Anywhere personal server icon is the only visible indication that anything has happened. You can
display the database server messages window in Windows by double-clicking the SQL Anywhere personal

server icon in the system tray.

¥ demoll - sQL Anywhere O]

5
£
;
<

X

SOL Arywhere Perzonal Server Yersion 11.0.1.1933

Copyright & 2007-2008, bnywhere Solutions, [ne.

Partions copynght € 1388-2008, Sybasze, Inc. All nghts rezerved.

IJze of thiz zoftware iz governed by the Sybaze Licenze Agreement. Fefer to
http: A vana, sybase, comdsoftwarelicenses

1 phuzical proceszor(z] detected.
Thiz zerver iz lcensed to:
Sybaze Inc.
Sybaze N
Running ‘Windows P Build 2600 Service Pack 3 on =86
Server built for %86 processar architecture
2960F, of memony uzed for caching
Minimum cache size: 2048K., marimum cache zize: 1411180K
IJzing a maximum page size of 4096 bytez
D atabaze server started at Fridan 09 2009 10:29
Tring ta ztart Sharedkdemon link, ..
Sharedtdemary link started successtully
Trving to start TOS [TCPIP] link, ...
Starting on port 26238
TODS [TEPIP] link started succeszsfully
Maw accepting requests
Starting databaze 'dema’’ [C:A\Documentz and Settingzshall L zershDocumentshSEL
Arpwhere 11485 amplestdemo.db) at FriJan 09 2009 10:29
Perfarmance warning, Database file "'C:hDocuments and Settingzhall
JzershDocumentzSOL Anwwhers 1145 ampleshdemo. db" conzists of 43 dizk fragments
Tranzachon log: demo.log
Starting checkpoint of "'dermo’’ [demo.db] at Fridan 03 2003 10:23
Finished checkpoint of "'demo’' [demo.db) at FriJan 09 2009 10:29
D atabaze "dema” [demao.db] started at Fridan 09 20093 10:29

Shut dowrn

[

The database server messages window displays useful information, including:

e The server name

The name in the title bar (in this case mydemo11) is the server name. In this

tutorial, you assigned the server name using the -n server option. If you don't provide a server name, the

6 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Lesson 3: Display the database server messages window

database server is given the name of the first database started. This name can be used by applications
when they connect to a database. See “Naming the server and the databases” on page 46.

The version and build numbers The numbers following the server name (for example,
11.0.0.1083) are the version and build numbers. The version number represents the specific release of
SQL Anywhere, and the build number relates to the specific instance of the software that was compiled.

Startup information When a database server starts, it sets aside some memory that it uses when
processing database requests. This reserved memory is called the cache. The amount of cache memory
appears in the window. The cache is organized in fixed-size pages, and the page size also appears in the
window.

Database information The names of the database file and its transaction log file appear in the
window.

In this case, the startup cache size and page size are the default values. For many purposes, including
those of this tutorial, the default startup options are fine.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 7

Tutorial: Using the sample database

Lesson 4: Stop the database server
You can now stop the database server you just started.
In Windows, you can stop a database server by clicking Shut Down on the database server messages window.
To stop the database server running the sample database (Windows)
1. Double-click the SQL Anywhere icon in the system tray.
2. Click Shut Down.

To stop the database server running the sample database (Command prompt)

e Run the following command to stop the personal database server running the sample database:

dbstop mydemoll

The Stop Server utility (dbstop) can only be run at a command prompt. See “Stop Server utility
(dbstop)” on page 831.

Tutorial cleanup
Once you have shut down the database server, you can delete the c:\demodb directory and its contents.

8 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Summary

Summary

In this tutorial, you learned how to make a copy of the sample database, how to start a database server running
the sample database, and how to view the contents of the database server messages window. You also learned
how to stop the database server.

See also

e “Starting Interactive SQL” on page 677

e “Connecting from Sybase Central, Interactive SQL, or the SQL Anywhere Console
utility” on page 92

e “Running the database server” on page 37

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 9

10

Working with database files

Contents

Overview of database file@Scovviiiiiiiiiiiiiie e 12
Pre-defined dDSPACEScovvviiiiii e 13
THE tranNSACHON 10Q ...eeeiiiiiiiiiie e e e e e e e e e e 14
Creating @ dat@DASEcciiie i e e 21
Using additional dDSPACEScooiiiiiiiiiiiie e 25
Using the utility databaseooooiiiii s 30
Erasing @ databaseooooiiiiiiiii s 34

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 11

Working with database files

Overview of database files

Each database has the following files associated with it:

e The database file This file holds the database information. It typically has the extension .db.

e The transaction log This file holds a record of the changes made to the database, and is necessary
for recovery and synchronization. It typically has the extension .log. See “The transaction
log” on page 14.

e Thetemporary file The database server uses the temporary file to hold information needed during a
database session. The database server discards this file once the database shuts down—even if the server
remains running. The file has a server-generated name with the extension .tmp.

The location of the temporary file can be specified when starting the database server using the -dt server
option. If you do not specify the location of the temporary file when starting the database server, the
following environment variables are checked, in order:

SATMP environment variable
TMP environment variable
TMPDIR environment variable
TEMP environment variable

O O O O

If none of these environment variables are defined, SQL Anywhere places its temporary file in the current
directory on Windows operating systems, or in the /tmp directory on Unix.

The database server creates, maintains, and removes the temporary file. You only need to ensure that
there is enough free space available for the temporary file. You can obtain information about the space
available for the temporary file using the sa_disk _free_space procedure. See “sa_disk free_space system
procedure” [SQL Anywhere Server - SQL Reference].

e Pre-defined dbspacefiles These files store your data and other files used by the database. See “Pre-
defined dbspaces” on page 13.

Additional files
Other files can also be part of a database system, including:

e Dbspace files You can spread your data over several separate files, in addition to the database file.
See “CREATE DBSPACE statement” [SQL Anywhere Server - SQL Reference].

For information about dbspaces, see “Using additional dbspaces” on page 25.

e Transaction log mirror files For additional security, you can create a mirror copy of the transaction
log. This file typically has the extension .mlg. See “Transaction log mirrors” on page 15.

12 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Pre-defined dbspaces

Pre-defined dbspaces

SQL Anywhere uses the following pre-defined dbspaces for its databases:

Dbspace Name
Main database file system
Temporary file temporary or temp

Transaction log file translog

Transaction log mirror | translogmirror

You cannot create user-defined dbspaces with these names and you cannot drop the pre-defined dbspaces.

If you upgrade a version 10.0.0 or earlier database with user-defined dbspaces that use the pre-defined
dbspace names, then all references to these dbspaces in SQL statements are assumed to be referring to the
user-defined dbspaces, and not the pre-defined dbspaces. The only way that you can refer to the pre-defined
dbspaces is by dropping the user-defined dbspaces, or renaming them to not use the same names as the pre-
defined dbspaces.

The ALTER DBSPACE statement supports the pre-defined dbspace names so you can add more space to
them. See “ALTER DBSPACE statement” [SQL Anywhere Server - SQL Reference].

The DB_EXTENDED_PROPERTY function also accepts the pre-defined dbspace names. See
“DB_EXTENDED_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference].

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 13

Working with database files

The transaction log

The transaction log is a separate file from the database file. It stores all changes to the database. Inserts,
updates, deletes, commits, rollbacks, and database schema changes are all logged. The transaction log is also
called the forward log or the redo log.

The transaction log is a key component of backup and recovery, and is also essential for data synchronization
using MobiL.ink, for data replication using SQL Remote or the Replication Agent, or for database mirroring.

By default, all databases use transaction logs. Using a transaction log is optional, but you should always use
atransaction log unless you have a specific reason not to. Running a database with a transaction log provides
greater protection against failure, better performance, and the ability to replicate data.

It is recommended that you store the database files and the transaction log on separate disks on the computer.
If the dbspace(s) and the transaction log are on the same disk, and a disk failure occurs, everything is lost.
However, if the database and transaction log are stored on different disks, then most, if not all, the data can
be recovered in the event of a disk failure because you have the full database or the transaction log (from
which the database can be recovered).

See “Protecting against media failure” on page 903.

Caution

The database file and the transaction log file must be located on the same physical computer as the database
server or accessed via a SAN or iSCSI configuration. Database files and transaction log files located on a
remote network directory can lead to poor performance, data corruption, and server instability.

For more information, see http://www.sybase.com/detail?id=1034790.

When changes are forced to disk

Like the database file, the transaction log is organized into pages: fixed size areas of memory. When a change
is recorded in the transaction log, it is made to a page in memory. The change is forced to disk when the
earlier of the following operations happens:

e The page is full.
o A COMMIT is executed.

Completed transactions are guaranteed to be stored on disk, while performance is improved by avoiding a
write to the disk on every operation.

Configuration options are available to allow advanced users to tune the precise behavior of the transaction
log. See “cooperative_commits option [database]” on page 521 and “delayed_commits option
[database]” on page 528.

See also

“Controlling transaction log size” on page 17

“-m server option” on page 205

“-m database option” on page 253

“sa_disk_free_space system procedure” [SQL Anywhere Server - SQL Reference]
“delete_old_logs option [MobiLink client] [SQL Remote] [Replication Agent]” on page 529

14

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1034790

The transaction log

Transaction log mirrors

A transaction log mirror is an identical copy of the transaction log, maintained at the same time as the
transaction log. If a database has a transaction log mirror, every database change is written to both the
transaction log and the transaction log mirror. By default, databases do not have transaction log mirrors.

A transaction log mirror provides extra protection for critical data. It enables complete data recovery in the
case of media failure on the transaction log. A transaction log mirror also enables a database server to perform
automatic validation of the transaction log on database startup.

It is recommended that you use a transaction log mirror when running high-volume or critical applications.
For example, at a consolidated database in a SQL Remote setup, replication relies on the transaction log,
and if the transaction log is damaged or becomes corrupt, data replication can fail.

If you are using a transaction log mirror, and an error occurs while trying to write to one of the logs (for
example, if the disk is full), the database server stops. The purpose of a transaction log mirror is to ensure
complete recoverability in the case of media failure on either log device; this purpose would be lost if the
server continued with a single transaction log.

You can specify the -fc option when starting the database server to implement a callback function when the
database server encounters a file system full condition. See “-fc server option” on page 185.

Where to store the transaction log mirror

There is a performance penalty for using a transaction log mirror because each database log write operation
must be performed twice. The performance penalty depends on the nature and volume of database traffic
and on the physical configuration of the database and logs.

A transaction log mirror should be kept on a separate device from the transaction log. This improves
performance, and if either device fails, the other copy of the log keeps the data safe for recovery.

Alternatives to a transaction log mirror
Alternatives to a transaction log mirror are to use the following configurations:
e database mirroring. See “Introduction to database mirroring” on page 938.

e adisk controller that provides hardware mirroring. Generally, hardware mirroring is more expensive
than operating-system level software mirroring, but it provides better performance.

e operating-system level software mirroring, as provided by Microsoft Windows.

Live backups provide additional protection with some similarities to using a transaction log mirror. See
“Differences between live backups and transaction log mirrors” on page 875.

For information about creating a database with a transaction log mirror, see “Initialization utility
(dbinit)” on page 774.

For information about changing an existing database to use a transaction log mirror, see “Transaction Log
utility (dblog)” on page 842.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 15

Working with database files

Changing the location of a transaction log

The database cannot be running when you change the location of the transaction log.

For more information about how to choose the location of a transaction log, see “The transaction
log” on page 14.

To change the location of a transaction log (Sybase Central)

1. From the Tools menu, choose SQL Anywhere 11 » Change Log File Settings.

2. Follow the instructions in the Change Log File Settings Wizard.

To change the location of a transaction log mirror for an existing database (command line)

1. Ensure that the database is not running.
2. Run the following command:

dblog -t new-transaction-log-file database-file

See also
e “Transaction Log utility (dblog)” on page 842

Starting a transaction log mirror for an existing database

Using the Transaction Log utility, you can maintain the transaction log mirror for an existing database any
time the database is not running.

To start a transaction log mirror for an existing database (Sybase Central)
1. From the Tools menu, choose SQL Anywhere 11 » Change Log File Settings.

2. Follow the instructions in the Change Log File Settings Wizard.

To start a transaction log mirror for an existing database (command line)

1. Ensure that the database is not running.
2. Run the following command:

dblog -m mirror-file database-file

You can also use the dblog utility and Sybase Central to stop a database from using a transaction log mirror.

See also
e “Transaction Log utility (dblog)” on page 842

16 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The transaction log

Controlling transaction log size

The size of the transaction log can also affect recovery times. You can control transaction log file growth
by ensuring that all your tables have compact primary keys. If you perform updates or deletes on tables that
do not have a primary key or a unique index not allowing NULL, the entire contents of the affected rows
are entered in the transaction log. If a primary key is defined, the database server needs to store only the
primary key column values to uniquely identify a row. If the table contains many columns or wide columns,
the transaction log pages fill up much faster if no primary key is defined. In addition to taking up disk space,
this extra writing of data affects performance.

If a primary key does not exist, the server looks fora UNIQUE NOT NULL index on the table (or a UNIQUE
constraint). A UNIQUE index that allows NULL is not enough.

See also

e “-m server option” on page 205

e “-m database option” on page 253

e “sa_disk_free_space system procedure” [SQL Anywhere Server - SQL Reference]

e “delete_old_logs option [MobiLink client] [SQL Remote] [Replication Agent]” on page 529

Determine which connection has an outstanding
transaction

If you are performing a backup that renames or deletes the transaction log, incomplete transactions are carried
forward to the new transaction log.

You can use a system procedure to determine which user has outstanding transactions. If there are not too
many connections, you can also use the SQL Anywhere Console utility to determine which connection has
outstanding transactions. If necessary, you can disconnect the user witha DROP CONNECTION statement.

To determine which connection has an outstanding transaction (SQL)

1. Connect to the database from Interactive SQL.
2. Execute the sa_conn_info system procedure:
CALL sa conn_info;

3. Inspect the UncommitOps column to see which connection has uncommitted operations.

See “sa_conn_info system procedure” [SQL Anywhere Server - SQL Reference].
To determine which connection has an outstanding transaction (SQL Anywhere Console
utility)
1. Connect to the database from the SQL Anywhere Console utility.

For example, the following command connects to the default database using user ID DBA and password
sql:
dbconsole -c "UID=DBA;PWD=sqgl"

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 17

Working with database files

See “SQL Anywhere Console utility (dbconsole)” on page 827.

2. Double-click each connection, and inspect the Uncommitted Ops entry to see which users have
uncommitted operations. If necessary, you can disconnect the user to enable the backup to finish.

Understanding the checkpoint log

The database file is composed of pages: fixed size portions of hard disk. The checkpoint log is located at
the end of the database file and is stored in the system dbspace. Pages are added to the checkpoint log as
necessary during a session, and the entire checkpoint log is deleted at the end of the session.

Before any page is updated (made dirty), the database server performs the following operations:

e |t reads the page into memory, where it is held in the database cache.

e It makes a copy of the original page. These copied pages are the checkpoint log.

Zache A
Database A A
file
Fage about to Checkpoint log
be changed copy of page

Transaction
o

Changes made to the page are applied to the copy in the cache. For performance reasons they are not written
immediately to the database file on disk.

18

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The transaction log

_ache B
i~hanged
page
Database " "
file

Transaction .
g

When the cache is full, the changed page may get written out to disk. The copy in the checkpoint log remains

unchanged.

iZache B

Database B A
file

Transaction
log

A=

Understanding checkpoints

A checkpointisapointat which all dirty pages are written to disk and therefore represents a known consistent
state of the database on disk. Following a checkpoint, the contents of the checkpoint log are deleted. The
empty checkpoint log pages remain in the checkpoint log within a given session and can be reused for new
checkpoint log data. As the checkpoint log increases in size, so does the database file.

At a checkpoint, all the data in the database is held on disk in the database file. The information in the
database file matches that in the transaction log. During recovery, the database is first recovered to the most
recent checkpoint, and then changes since that checkpoint are applied.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 19

Working with database files

The entire checkpoint log, including all empty checkpoint log pages, is deleted at the end of each session.
Deleting the checkpoint log causes the database to shrink in size.

The database server can initiate a checkpoint and perform other operations while it takes place. However,
if a checkpoint is already in progress, then any operation like an ALTER TABLE or CREATE INDEX that
initiates a new checkpoint must wait for the current checkpoint to finish.

See also

e “Backup and recovery restrictions” on page 879
e “Understanding backups” on page 909
e “How the database server decides when to checkpoint” on page 910

20

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Creating a database

Creating a database

You can use Sybase Central, Interactive SQL, or the command line to create or initialize a SQL Anywhere
database. After creating the database, you can connect to it and build tables and other objects.

Other application design systems, such as Sybase PowerDesigner Physical Data Model, contain tools for
creating database objects. These tools construct SQL statements that are submitted to the database server,
typically through its ODBC interface. If you are using one of these tools, you do not need to construct SQL
statements to create tables, assign permissions, and so on. See “About PowerDesigner Physical Data Model”
[SQL Anywhere 11 - Introduction].

For more information about database design, see “Creating databases in SQL Anywhere” [SQL Anywhere
Server - SQL Usage].

Transaction log

When you create a database, you must decide where to place the transaction log. This log stores all changes
made to a database, in the order in which they are made. In the event of a media failure on a database file,
the transaction log is essential for database recovery. It also makes your work more efficient. By default, it
is placed in the same directory as the database file, but this is not recommended for production use.

For more information about placing the transaction log, see “The transaction log” on page 14.

Database file compatibility

A SQL Anywhere database is an operating system file. It can be copied to other locations just as any other
file is copied.

Database files are compatible among all operating systems, except where file system file size limitations or
SQL Anywhere support for large files apply. See “SQL Anywhere size and number
limitations” on page 654.

A database created from any operating system can be used from another operating system by copying the
database file(s). Similarly, a database created with a personal database server can be used with a network
database server. SQL Anywhere database servers can manage databases created with earlier versions of the
software, but old servers cannot manage newer databases.

Create a database (Sybase Central)

You can create a database in Sybase Central using the Create Database Wizard. See “Create a database
(SQL)” on page 22, and “Create a database (command line)” on page 23.

To create a new database (Sybase Central)

1. Start Sybase Central.
2. Choose Tools » SQL Anywhere 11 » Create Database.

3. Follow the instructions in the Create Database Wizard.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 21

Working with database files

Tip
You can also access the Create Database Wizard from within Sybase Central using the following methods:

e Selecting a server, and choosing File » Create Database.
e Right-clicking a server, and choosing Create Database.

Creating databases for Windows Mobile

For information about creating databases for Windows Mobile, see “Creating a Windows Mobile
database” on page 340.

Create a database (SQL)

In Interactive SQL, use the CREATE DATABASE statement to create databases. You need to connect to
an existing database before you can use this statement.

To create a new database (SQL)

1. Start a database server named sample.
dbengll -n sample
2. Start Interactive SQL.

3. Connect to an existing database. If you don't have a database, you can connect to the utility database
utility_db. See “Connecting to the utility database” on page 31.

4. Execute a CREATE DATABASE statement.

See “CREATE DATABASE statement” [SQL Anywhere Server - SQL Reference].

Example

Create a database file in the c:\temp directory with the file name temp.db.

CREATE DATABASE “c:\\temp\\temp.db*®;

The directory path is relative to the database server. You set the permissions required to execute this statement
on the server command line, using the -gu option. The default setting requires DBA authority.

The backslash is an escape character in SQL, and must be doubled in some cases. The \x and \n sequences
can be used to specifying hexadecimal and newline characters. Letters other than n and x do not have any
special meaning if they are preceded by a backslash. Here are some examples where this is important.

CREATE DATABASE "c:\\temp\\\x41\x42\x43xyz.db";

The initial \\ sequence represents a backslash. The \x sequences represent the characters A, B, and C,
respectively. The file name here is ABCxyz.db.

CREATE DATABASE “c:\temp\\nest.db";

To avoid having the \n sequence interpreted as a newline character, the backslash is doubled.

22

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Creating a database

See “Escape sequences” [SQL Anywhere Server - SQL Reference].

Create a database (command line)

You can create a database from a command line with the Initialization utility (dbinit). With this utility, you
can include command line options to specify different settings for the database.

To create a new database (command line)

e Run a dbinit command.
For example, to create a database called company.db with a 4 KB page size, run the following command:
dbinit -p 4k company.db

See also
e “Initialization utility (dbinit)” on page 774

Create a database with a transaction log mirror

You can choose to maintain a transaction log mirror when you create a database. This option is available
from the CREATE DATABASE statement, from Sybase Central, or from the dbinit utility.

For more information about why you may want to use a transaction log mirror, see “Transaction log
mirrors” on page 15.

To create a database that uses a transaction log mirror (Sybase Central)

1. From the Tools menu, choose SQL Anywhere 11 » Create Database.

2. Follow the instructions in the Create Database Wizard.

To create a database that uses a transaction log mirror (SQL)

e Use the CREATE DATABASE statement, with the TRANSACTION LOG and MIRROR clauses. For
example:

CREATE DATABASE “c:\\mydb*"

TRANSACTION LOG ON mydb. log
MIRROR *d:\\mydb.mlg"~;

See “CREATE DATABASE statement” [SQL Anywhere Server - SQL Reference].

To create a database that uses a transaction log mirror (command line)

e Use the dbinit utility with the -m option. For example, the following command (which should be entered
on one line) initializes a database named company.db, with a transaction log kept on a different device
and a mirror on a third device.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 23

Working with database files

dbinit -t d:\log-dir\company.log -m
e:\mirr-dir\company.mlg c:\db-dir\company.db

See “Initialization utility (dbinit)” on page 774.

24 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using additional dbspaces

Using additional dbspaces

Typically needed for large databases

For most databases, a single database file is enough. However, for users of large databases, additional
database files are sometimes necessary. Additional database files are also convenient tools for clustering
related information in separate files.

When you initialize a database, it contains one database file. This first database file is called the main file
or the system dbspace. By default, all database objects and all data are placed in the main file.

A dbspace is an additional database file that creates more space for data. A database can be held in up to 13
separate files (the main file and 12 dbspaces). Each table, together with its indexes, must be contained in a
single database file. The SQL command CREATE DBSPACE adds a new file to the database.

Temporary tables are only created in the temporary dbspace.

There are several ways to specify the dbspace where a base table or other database object is created. In the
following lists, the location specified by methods occurring earlier in the list take precedence over those
occurring later in the list.

1. IN DBSPACE clause (if specified)
2. default_dbspace option (if set)

3. system dbspace

If a dbspace name contains a period and is not quoted, the database server generates an error for the name.

Each database file has a maximum allowable size of 228 (approximately 268 million) database pages. For
example, a database file created with a database page size of 4 KB can grow to a maximum size of one
terabyte (228*4 KB). However, in practice, the maximum file size allowed by the physical file system in
which the file is created affects the maximum allowable size significantly.

While some older file systems restrict file size to a maximum of 2 GB, many file systems, such as Windows
using the NTFS file system, allow you to exploit the full database file size. In scenarios where the amount
of data placed in the database exceeds the maximum file size, it is necessary to divide the data into more
than one database file. As well, you may want to create multiple dbspaces for reasons other than size
limitations, for example, to cluster related objects.

For information about the maximum file size allowed on the supported operating systems, see “SQL
Anywhere size and number limitations” on page 654.

You can use the sa_disk_free system procedure to obtain information about space available for a dbspace.
See “sa_disk_free_space system procedure” [SQL Anywhere Server - SQL Reference].

The SYSDBSPACE system view contains information about all the dbspaces for a database. See
“SYSDBSPACE system view” [SQL Anywhere Server - SQL Reference].

Splitting existing databases

If you want to split existing database objects among multiple dbspaces, you must unload your database and
modify the generated command file (named reload.sqgl by default) for rebuilding the database. In the

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 25

Working with database files

reload.sql file, add IN clauses to the CREATE TABLE statements to specify the dbspace for each table you
do not want to place in the main file.

Permissions on dbspaces

SQL Anywhere supports permissions on dbspaces. Only the CREATE permission is supported. The
CREATE permission allows a user to create database objects in the specified dbspace. You can grant
CREATE permission for a dbspace by executing a GRANT CREATE statement. See “GRANT statement”
[SQL Anywhere Server - SQL Reference].

Dbspace permissions behave as follows:

A user trying to create a new object with underlying data must have CREATE permission on the dbspace
where the data is being placed.

Even if a GRANT CREATE ON statement was issued, the user (grantee) must have RESOURCE
authority to create new database objects.

The current list of objects that can be placed in specific dbspaces, and that require the CREATE
permission, includes tables, indexes, text indexes, and materialized views. Note that objects such as
normal views and procedures do not have any underlying data and do not require the CREATE
permission.

A user can be granted the CREATE permission directly, or they can inherit the permission through
membership in a group that has been granted the permission.

It is possible to grant PUBLIC the CREATE permission on a specific dbspace, in which case any user
who also has RESOURCE authority can create objects on the dbspace.

A newly-created dbspace automatically grants CREATE permission on itself to PUBLIC.

It is possible to revoke permissions, for example when trying to secure a dbspace. Permissions on the
internal dbspaces system and temporary can also be managed to control access.

Creating local temporary tables does not require any permissions; dbspace permissions do not affect the
creation of local temporary tables. However, the creation of global temporary tables requires
RESOURCE authority and CREATE permission on the temporary dbspace.

See also

“CREATE DBSPACE statement” [SQL Anywhere Server - SQL Reference]
“DB_EXTENDED_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference]
“CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]

“UNLOAD statement” [SQL Anywhere Server - SQL Reference]

Creating dbspaces

You create a new database file, or dbspace, either from Sybase Central, or using the CREATE DBSPACE
statement. The database file for a new dbspace can be located on the same disk drive as the main file or on
another disk drive. You must have DBA authority to create dbspaces.

26

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using additional dbspaces

For each database, you can create up to twelve dbspaces in addition to the main dbspace. A newly-created
dbspace is empty. When you create a new table or index you can place it in a specific dbspace with an IN
clause in the CREATE statement or set the default_dbspace option before creating the table. If you don't
specify an IN clause, and don't change the setting of the default_dbspace option, the table is created in the
system dbspace.

Each table is contained entirely in the dbspace it is created in. By default, indexes appear in the same dbspace
as their table, but you can place them in a separate dbspace by supplying an IN clause as part of the CREATE
statement.

See also

e “default_dbspace option [database]” on page 526

e “CREATE DBSPACE statement” [SQL Anywhere Server - SQL Reference]

e “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]“CREATE TABLE statement”
[SQL Anywhere Server - SQL Reference]

e “CREATE INDEX statement” [SQL Anywhere Server - SQL Reference]

Create a dbspace

To create a dbspace (Sybase Central)

1. Open the Dbspaces folder for the database.
2. Choose File » New » Dbspace.
3. Follow the instructions in the Create Dbspace Wizard.

The new dbspace appears in the Dbspaces folder.

To create a dbspace (SQL)

e Execute a CREATE DBSPACE statement.

Examples

The following command creates a new dbspace called MyL.ibrary in the file library.db in the same directory
as the main file:

CREATE DBSPACE MyLibrary
AS “library.db”;

The following command creates a table LibraryBooks and places it in the MyLibrary dbspace.

CREATE TABLE LibraryBooks (
title CHAR(100),

author CHAR(50),

isbn CHAR(30)

) IN MyLibrary;

The following commands create a new dbspace named MyL.ibrary, set the default dbspace to the MyL.ibrary
dbspace, and then create the LibraryBooks table in the MyL.ibrary dbspace.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 27

Working with database files

CREATE DBSPACE MyLibrary

AS "e:\\dbfiles\\library.db";

SET OPTION default_dbspace = “MyLibrary®;
CREATE TABLE LibraryBooks (

title CHAR(100),

author CHAR(50),

isbn CHAR(30),

):

See also

e “CREATE DBSPACE statement” [SQL Anywhere Server - SQL Reference]
“default_dbspace option [database]” on page 526

“Working with tables” [SQL Anywhere Server - SQL Usage]

“CREATE INDEX statement” [SQL Anywhere Server - SQL Reference]

Pre-allocating space for database files

When you create a new database file, you can pre-allocate database space using the DATABASE SIZE
clause of the CREATE DATABASE statement or by specifying the dbinit -dbs option. See “CREATE
DATABASE statement” [SQL Anywhere Server - SQL Reference], and “Initialization utility

(dbinit)” on page 774.

As you use the database, SQL Anywhere automatically grows database files as needed. Rapidly-changing
database files can lead to excessive file fragmentation on the disk, resulting in potential performance
problems. As well, many small allocations are slower than one large allocation. If you are working with a
database with a high rate of change, you can pre-allocate disk space for dbspaces or for transaction logs
using either Sybase Central or the ALTER DBSPACE statement.

You must have DBA authority to alter the properties of a database file.

Performance tip

Running a disk defragmentation utility after pre-allocating disk space helps ensure that the database file is
not fragmented over many disjointed areas of the disk drive. Performance can suffer if there is excessive
fragmentation of database files.

To pre-allocate space (Sybase Central)

1. Open the Dbspaces folder.
2. Right-click the dbspace and choose Pre-allocate Space.

3. Enter the amount of space to add to the dbspace. You can add space in units of pages, bytes, kilobytes
(KB), megabytes (MB), gigabytes (GB), or terabytes (TB).

4. Click OK.
To pre-allocate space (SQL)

1. Connect to a database.
2. Execute an ALTER DBSPACE statement.

28

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using additional dbspaces

Examples
Increase the size of the system dbspace by 200 pages.

ALTER DBSPACE system
ADD 200;

Increase the size of the system dbspace by 400 megabytes.

ALTER DBSPACE system
ADD 400 MB;

See also

e “Creating dbspaces” on page 26
e “ALTER DBSPACE statement” [SQL Anywhere Server - SQL Reference]

Delete a dbspace

You can delete a dbspace using either Sybase Central or the DROP DBSPACE statement. Before you can
delete a dbspace, you must delete all tables and indexes that use the dbspace. You must have DBA authority
to delete a dbspace.

To delete a dbspace (Sybase Central)

1. Open the Dbspaces folder.
2. Right-click the dbspace and choose Delete.

To delete a dbspace (SQL)

1. Connect to a database.
2. Execute a DROP DBSPACE statement.

See also

e “Drop tables” [SQL Anywhere Server - SQL Usage]
e “DROP DBSPACE statement” [SQL Anywhere Server - SQL Reference]

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 29

Working with database files

Using the utility database

The utility database is a phantom database with no physical representation. This feature allows you to
execute database file administration statements such as CREATE DATABASE without first connecting to
an existing physical database. The utility database has no database file, and therefore it cannot contain data.

The utility database is named utility_db. If you attempt to create or start a database with this name, the
operation fails.

Executing the following statement after connecting to the utility database creates a database named
new.db in the directory c:\temp.

CREATE DATABASE "c:\\temp\\new.db";
See “CREATE DATABASE statement” [SQL Anywhere Server - SQL Reference].

You can also retrieve values of connection properties and server properties using the utility database.

For example, executing the following statement against the utility database returns the default collation
sequence, which will be used when creating a database:

SELECT PROPERTY("DefaultCollation®);
For information about connection and database server properties, see:

e “Connection properties” on page 598
e “Database server properties” on page 624

Allowed statements for the utility database

The following are the only statements that you can execute when connected to the utility database:

e ALTER DATABASE dbfile ALTER TRANSACTION LOG (see “ALTER DATABASE statement”

[SQL Anywhere Server - SQL Reference])

“CREATE DATABASE statement” [SQL Anywhere Server - SQL Reference]

“CREATE DECRYPTED DATABASE statement” [SQL Anywhere Server - SQL Reference]

“CREATE DECRYPTED FILE statement” [SQL Anywhere Server - SQL Reference]

“CREATE ENCRYPTED DATABASE statement” [SQL Anywhere Server - SQL Reference]

“CREATE ENCRYPTED FILE statement” [SQL Anywhere Server - SQL Reference]

“DROP DATABASE statement” [SQL Anywhere Server - SQL Reference]

CREATE USER DBA IDENTIFIED BY new-password (see “CREATE USER statement” [SQL

Anywhere Server - SQL Reference])

“RESTORE DATABASE statement” [SQL Anywhere Server - SQL Reference]

e REVOKE CONNECT FROM DBA (see “REVOKE statement” [SQL Anywhere Server - SQL
Reference])

e SELECT statement without a FROM or WHERE clause (see “SELECT statement” [SQL Anywhere
Server - SQL Reference])

e “START DATABASE statement” [SQL Anywhere Server - SQL Reference]

e “STOP DATABASE statement” [SQL Anywhere Server - SQL Reference]

e “STOP ENGINE statement” [SQL Anywhere Server - SQL Reference]

30

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using the utility database

Connecting to the utility database

You can start the utility database on a database server by specifying utility_db as the database name when
connecting to the server. You can use the -su server option to set the utility database password for the DBA
user, or to disable connections to the utility database. If the -su option is not specified when starting the
utility database, then the user ID and password requirements are different for the personal server and the
network server.

For the personal database server, if -su is not specified, then there are no security restrictions for connecting
to the utility database. For the personal server, you must specify the user ID DBA. You must also specify a
password, but it can be any password. It is assumed that anybody who can connect to the personal database
server can access the file system directly so no attempt is made to screen users based on passwords.

To avoid typing the utility database password in plain text, when using the -su option, you can create a file
that contains the password and then obfuscate it using the dbfhide utility. For example, suppose the file
named util_db_pwd.cfg contains the utility database password. You could obfuscate this file using dbfhide
and rename it to util_db_pwd_hide.cfg:

dbfthide util_db_pwd.cfg util_db_pwd_hide.cfg

The util_db_pwd_hide.cfg file can then be used to specify the utility database password:
dbsrvll -su @util_db_pwd hide.cfg -n my_server c:\mydb.db

See “File Hiding utility (dbfhide)” on page 768.

For the network server, if -su is not specified, then you must specify the user ID DBA, and the password
that is held in the util_db.ini file, stored in the same directory as the database server executable file. As this
directory is on the server, you can control access to the file, and thereby control who has access to the
password. The password is case sensitive.

Note
The util_db.ini file is deprecated. You should use the -su server option to specify the password for the utility
database's DBA user. See “-su server option” on page 224.

To connect to the utility database on the personal server (Interactive SQL)

1. Start a database server with the following command:

dbengll -n TestEng

For additional security, the -su option can be used to specify the utility database password.
2. Start Interactive SQL.

3. Inthe Connect window, type DBA for the User ID, and type any non-blank password. The password
itself is not checked, but the field must not be empty.

4. On the Database tab, enter utility_db as the Database Name and TestEng as the Server Name.
5. Click OK to connect.

Interactive SQL connects to the utility database on the personal server named TestEng.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 31

Working with database files

To connect to the utility database on the network server (Interactive SQL)

1. Start a database server with the following command:
dbsrvll -n TestEng -su 9Bx231K
Start Interactive SQL.
In the Connect window, type DBA for the User ID, and type the password specified by the -su option.

On the Database tab, enter utility_db as the Database Name and TestEng as the Server Name.

o &~ WD

Click OK to connect.

Interactive SQL connects to the utility database on the network server named TestEng.

See “SQL Anywhere database connections” on page 85 and “-su server option” on page 224.

Note

When you are connected to the utility database, executing REVOKE CONNECT FROM DBA disables
future connections to the utility database. This means that no future connections can be made to the utility
database unless you use a connection that existed before the REVOKE CONNECT was done, or restart the
database server. See “REVOKE statement” [SQL Anywhere Server - SQL Reference].

Using util_db.ini with network database servers (deprecated)

Note
Because the use of the util_db.ini file is deprecated, it is recommended that you use the -su server option to
specify the DBA user's password for the utility database.

Using util_db.ini relies on the physical security of the computer hosting the database server since the
util_db.ini file can be easily read using a text editor.

For the network server, by default you cannot connect to the utility database without specifying -su or using
util_db.ini. If you use util_db.ini, the file holds the password and is located in the same directory as the
database server executable and contains the text:

[UTILITY_DB]
PWD=password

To protect the contents of the util_db.ini file from casual direct access, you can add simple encryption to the
file using the File Hiding utility (dbfhide). You can also use operating system features to limit access to the
server file system.

For more information about obfuscating .ini files, see “Hiding the contents of .ini files” on page 768.

32 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using the utility database

Specifying the permissions required to execute file
administration statements

The -gu database server option controls who can execute file administration statements. You can use this
option to specify which users are able to execute certain administration tasks. See “-gu server
option” on page 198.

There are four levels of permission for the use of file administration statements:

-gu option Effect Applies to

all Anyone can execute file adminis- | Any database including utility
tration statements database

none No one can execute file adminis- | Any database including utility
tration statements database

DBA Only users with DBA authority can | Any database including utility
execute file administration state- database
ments

utility_db Only the users who can connect to | Only the utility database
the utility database can execute file
administration statements

Examples

To prevent the use of the file administration statements, start the database server using the none permission
level of the -gu option. The following command starts a database server and names it TestSrv. It loads the
mytestdb.db database, but prevents anyone from using that server to create or delete a database, or execute
any other file administration statement regardless of their resource creation rights, or whether they can load
and connect to the utility database.

dbsrvll -n TestSrv -gu none c:\mytestdb.db

To permit only the users knowing the utility database password to execute file administration statements,
start the server by running the following command.

dbsrvll -n TestSrv -su secret -gu utility_db

The following command starts Interactive SQL as a client application, connects to the server named TestSrv,
loads the utility database, and connects the user.

dbisql -c "UID=DBA;PWD=secret;DBN=utility_db;ENG=TestSrv"

Having executed the above command successfully, the user connects to the utility database, and can execute
file administration statements.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 33

Working with database files

Erasing a database

Erasing a database deletes all tables and data from disk, including the transaction log that records alterations
to the database. All database files are read-only to prevent accidental modification or deletion of database
files. By default, you need DBA authority to erase a database. You can change the required permissions by
using the database server -gu option. See “-gu server option” on page 198.

In Sybase Central, you can erase a database using the Erase Database Wizard.
In Interactive SQL, you can erase a database using the DROP DATABASE statement.

You can also erase a database from a command line with the dberase utility. However, the dberase utility
does not erase dbspaces. If you want to erase a dbspace, you can do so with the DROP DATABASE statement
or using the Erase Database Wizard in Sybase Central.

The database to be erased must not be running when the dberase utility, the Erase Database Wizard, or
DROP DATABASE statement is used. You must be connected to a database to drop another database.

For information about connecting to the utility database, see “Connecting to the utility
database” on page 31.

Windows Mobile databases must be erased manually. See “Erase a Windows Mobile
database” on page 347.

To erase a database (Sybase Central)

1. Choose Tools » SQL Anywhere 11 » Erase Database.

2. Follow the instructions in the wizard.

Tip
You can also access the Erase Database Wizard from within Sybase Central by using any of the following
methods:

e Selecting a database server, and choosing File » Erase Database.

e Right-clicking a server, and choosing Erase Database.

To erase a database (SQL)

1. Connect to a database other than the one you want to erase. For example, connect to the utility database.
2. Execute a DROP DATABASE statement.
For example, the following DROP DATABASE statement erases a database named temp.
DROP DATABASE "c:\\temp\\temp.db";

See “DROP DATABASE statement” [SQL Anywhere Server - SQL Reference].

34

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Erasing a database

To erase a database (command line)

e Run the dberase utility.
For example, the following command removes the temp database.

dberase c:\temp\temp.db

See “Erase utility (dberase)” on page 766.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 35

36

Running the database server

Contents

Introduction to running SQL Anywhere database SErversccooocoveieeeiieeiiieenseeneennns 38
Starting the database SEIVEN ... 42
SOME COMMON OPTIONS ...iiiiiiiee e e e ettt e e e st e e e e e e s e e e e e e e e e anb b e e e eeeeeeaannes 46
Stopping the databasSe SEIVELciii i e e 58
Starting and Stopping databaSESuvviiiiiiiiiiiii e 59
Running the server outside the CUrrent SESSIONcccvvvviiiiiiiin e 62
TroublesShooting SEIVET STAMUPcooiiiiiiiiiiii e e e 74
Running authenticated SQL Anywhere applicationscccccceeeiiiiiiiiiiiciii e 76
Running SQL Anywhere Web Edition appliCationsccccouiiiiiiiiiiieiiiiiiiiieeeeeene 82
Error reporting in SQL ANYWRNEIEcoviiiiii it e e e e e e eeens 83

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 37

Running the database server

Introduction to running SQL Anywhere database
servers

SQL Anywhere provides two versions of the database server:

e The personal database server This executable does not support client/server communications

across a network. Although the personal database server is provided for single-user, same-computer use
—for example, as an embedded database server—it is also useful for development work.

On Windows operating systems, except Windows Mobile, the name of the personal server executable is
dbengl1l.exe. On Unix operating systems its name is dbeng11. Only the network server is supported on
Windows Mobile.

The network database server This executable supports client/server communications across a
network, and is intended for multi-user use.

On Windows operating systems, including Windows Mobile, the name of the network server executable
is dbsrvll.exe. On Linux and Unix operating systems, the name is dbsrv11.

Server differences

The request-processing engine is identical in both the personal and network servers. Each one supports
exactly the same SQL, and exactly the same database features. A database created with a personal database
server can be used with a network database server and vice versa. The main differences include:

e Network protocol support Only the network server supports communications across a network.

e Number of connections The personal server has a limit of ten simultaneous connections. The limit

for the network server depends on your license. See “Server Licensing utility (dblic)” on page 813.

Number of CPUs With per-seat licensing, the network database server uses all CPUs available on
the computer (the default). With CPU-based licensing, the network database server uses only the number
of processors you are licensed for. The number of CPUs that the network database server can use may
also be affected by your SQL Anywhere edition or the -gt server option. The personal database server
is limited to a single processor. See:

o “Editions and licensing” [SQL Anywhere 11 - Introduction]
o *“-gtserver option” on page 196

Startup defaults To reflect their use as a personal server and a network server for many users, the
startup defaults are slightly different for each.

Network software requirements

If you are running a SQL Anywhere network server, you must have appropriate networking software installed
and running.

The SQL Anywhere network server is available for Windows, Linux, and Unix operating systems.

SQL Anywhere supports the TCP/IP network protocol.

38

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Introduction to running SQL Anywhere database servers

First steps

You can start a personal server running a single database in several ways:

e On Windows, from the Start menu, choose Programs » SQL Anywhere 11 » SQL Anywhere »
Personal Server Sample.

e Execute the following command in the directory where demo.db is located to start both a personal server
and a database called demo.db:

dbengll demo
e Use a database file name in a connection string.

See “Connecting to an embedded database” on page 126.

Where to specify commands
You can specify commands in several ways, depending on your operating system:
e Run the command at a command prompt.
e Place the command in a shortcut or desktop icon.
e Run the command in a batch file.

e Include the command as a StartLine (START) connection parameter in a connection string. See
“StartLine connection parameter [START]” on page 297.

There are slight variations in how you specify the basic command from platform to platform.

Start the database server

The way you start the database server varies slightly depending on the operating system you use. This section
describes how to specify commands for the simple case of running a single database with default settings
on each supported operating system.

Notes

e Except where otherwise noted, these commands start the personal server (dbeng11). To start a network
server, replace dbeng11 with dbsrv11.

e If the database file is in the starting directory for the command, you do not need to specify path.

e If you do not specify a file extension in database-file, the extension .db is assumed.
To start the personal database server using default options (Windows except Windows
Mobile)

e Run the following command:

dbengll path\database-file

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 39

Running the database server

If you omit the database file, the Server Startup Options window appears where you can locate a
database file by clicking Browse.

For more information about starting a database server on Windows Mobile, see “Connecting to a database
running on a Windows Mobile device” on page 336.

To start the personal database server using default options (Unix)

e Run the following command:

dbengll path/database-fTile

What else is there to it?

Although you can start a personal server in the simple way described in the previous section, there are many
other aspects to running a database server in a production environment. For example,

e You can choose from many options to specify such features as how much memory to use as cache, how
many CPUs to use (on multi-processor computers running a network database server), and which network
protocols to use (network server only). Options are one of the major ways of tuning SQL Anywhere
behavior and performance. See “The SQL Anywhere database server” on page 156.

e You can run the server as a Windows service. When you run the server as a service, the server continues
running even when you log off the computer. See “Running the server outside the current
session” on page 62.

e You can start the personal server from an application and shut it down when the application has finished
with it. This configuration is typical when using the database server as an embedded database. See
“Connecting to an embedded database” on page 126.

Running SQL Anywhere on Windows Vista

SQL Anywhere supports the Windows Vista operating system. Following are some considerations relating
to running SQL Anywhere software on Vista:

e Vista security Vista incorporates a new security model called User Account Control (UAC). UAC
is enabled by default and may affect the behavior of programs that expect to be able to write files,
especially when the computer supports more than one user. Depending on where and how files and
directories are created, a file created by one user may have permissions that do not allow another user
to read or write to that file. If you install SQL Anywhere into the default directories, then files and
directories that require read/write access for multiple users are set up appropriately.

e SQL Anywhere elevated operations agent In Vista, certain actions require privilege elevation to
execute when run under UAC. The following programs may require elevation in SQL Anywhere:

40

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Introduction to running SQL Anywhere database servers

dbdsn.exe
dbelevatell.exe
dblic.exe

dbsvc.exe
installULNet.exe
mlasinst.exe
SetupVSPackage.exe
ulcond11.exe

O 0O O O O O O O

The following DLLs require elevation when they are registered or unregistered:

dbctrs11.dll
dbodbc11.dll
dboledb11.dll
dboledball.dll

O O O O

On a Vista system with UAC activated, you may receive an elevation prompt for the SQL Anywhere
elevated operations agent. The prompt is issued by the Vista User Account Control system to confirm
that you want to continue running the identified program (if logged on as an administrator) or to provide
administrator credentials (if logged on as a non-administrator).

Deployment considerations The program dbelevatell.exe is used internally by SQL Anywhere
components to perform operations that require elevated privileges. This executable must be included in
deployments of SQL Anywhere.

ActiveSync support The Microsoft ActiveSync utility is not supported in Vista. It is replaced by
the Windows Mobile Device Center. You can use the SQL Anywhere ActiveSync Provider Installation
utility with Windows Mobile Device Center.

SQL Anywhere executables signed SQL Anywhere executables on Vistaare signed by iAnywhere
Solutions, Inc.

Windows services Vista-compliant services are not allowed to interact with the desktop. On
Windows Vista, no SQL Anywhere services interact with the desktop (even if Allow Service To Interact
With Desktop is enabled in the service definition). SQL Anywhere database servers can be monitored
from Sybase Central or the dbconsole utility. See “SQL Anywhere Console utility

(dbconsole)” on page 827.

Sybase Central disables the option to allow services to interact with desktop when running on Windows
Vista.

Using an AWE cache To use an AWE cache on Vista, you must run the database server as
administrator. Starting a non-elevated database server with an AWE cache results in a warning that the
database server must be run as an administrator to use AWE. See “-cw server option” on page 176.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 41

Running the database server

Starting the database server

The general form for the server command is as follows:

executable [server-options] [database-file [database-options |, ...]

If you supply no options and no database file, then on Windows operating systems a window appears,
allowing you to browse to your database file.

The elements of the database server command include the following:

Executable The personal server (dbengl11) or the network server (dbsrv11).

For more information about the executable names on different operating systems, see “Introduction to
running SQL Anywhere database servers” on page 38.

Server options These options control the behavior of the database server for all running databases.

Database file You can specify zero, one, or more database file names. Each of these databases starts
and remains available for applications.

Caution

The database file and the transaction log file must be located on the same physical computer as the
database server or accessed via a SAN or iSCSI configuration. Database files and transaction log files
located on a remote network directory can lead to poor performance, data corruption, and server
instability.

For more information, see http://www.sybase.com/detail?id=1034790.

For best results, the transaction log should be kept on a different disk from the database files. See “The
transaction log” on page 14.

Database options For each database file you start, you can provide database options that control
certain aspects of its behavior. See “The SQL Anywhere database server” on page 156.

Case sensitivity
Database and server options are generally case sensitive. You should enter all options in lowercase.

Listing available options
To list the database server options

Run the following command:

dbengll -?

42

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1034790

Starting the database server

Logging database server actions

The database server message log contains informational messages, errors, warnings, and messages from
the MESSAGE statement. Logging the actions that the server takes during the development process and
when troubleshooting is useful.

These messages can appear in the following locations:

the database server messages window (a system tray icon on Windows)

the Sybase Central Server Messages And Executed SQL pane

the SQL Anywhere Console utility

the database server message log file

a command prompt window or shell when running the database server as a command line application
the Unix Syslog

See also

e “-0server option” on page 208

“-0e server option” on page 208
“-on server option” on page 209
“-0s server option” on page 210
“-ot server option” on page 210

Logging database server messages to a file

By default, database server messages are sent to the database server messages window. In addition, you can
send the output to a log file using the -0 option. The following command sends output to a log file named
mydbserver_messages.txt:

dbsrvll -o mydbserver_messages.txt -c ...

You can control the size of the database server message log file, and specify what you want done when a
file reaches its maximum size:

e Use the -0 option to specify that a database server message log file should be used and to provide a name.

e Use the -ot option to specify that a database server message log file should be used and provide a hname
when you want the previous contents of the file to be deleted before messages are sent to it.

e Inaddition to -o or -ot, use the -on option to specify the size at which the database server message log
file is renamed with the extension .old and a new file is started with the original name.

e Inaddition to -o or -ot, use the -0s option to specify the size at which a new database server message log
file is started with a new name based on the date and a sequential number.

You can specify a separate file where startup errors, fatal errors, and assertions are logged using the -oe
option.

It is recommended that you do not end the database server message log file name with .log because this can
create problems for utilities that perform operations using the transaction log.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 43

Running the database server

See also

e “-0server option” on page 208

“-0e server option” on page 208
“-on server option” on page 209
“-0s server option” on page 210
“-ot server option” on page 210

Logging SQL statements in Sybase Central

As you work with a database in Sybase Central, the application automatically generates SQL statements
depending onyour actions. You can keep track of these statements in a separate pane, called Server Messages
And Executed SQL, or save the information to a file. The Server Messages And Executed SQL pane has
a tab for each database and database server. The tab for database servers contains the same information as
the database server messages window.

When you work with Interactive SQL, you can also log statements that you execute. See “Logging
commands” on page 687.

To log SQL statements generated by Sybase Central

. Choose View » Server Messages And Executed SQL.
In the Server Messages And Executed SQL pane, click the tab with the database icon.

Right-click and choose Options.

. Click Save.

1
2
3
4. Edit the logging options.
5
6. Choose a location to save the file and click OK.
7

. Click OK.

Suppressing Windows event log messages

You can suppress Windows event log entries by setting a registry entry. The registry entry is Software\Sybase
\SQL Anywhere\11.0. This entry can be placed in either the HKEY_CURRENT_USER or
HKEY_LOCAL_MACHINE hive.

To control event log entries, set the EventLogMask key, which is of type REG_DWORD. The value is a bit
mask containing the internal bit values for the different types of event messages:

errors EVENTLOG_ERROR_TYPE 0x0001
warnings EVENTLOG_WARNING_TYPE 0x0002
information EVENTLOG_INFORMATION_TYPE 0x0004

For example, if the EventLogMask key is set to 0, no messages appear. When you set this key to 1,
informational and warning messages do not appear, but errors do. The default setting (no entry present) is
for all message types to appear.

44

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Starting the database server

When changing the setting of the EventLogMask key, you must restart the database server for the change
to take effect.

See also
e “Network protocol options” on page 301

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 45

Running the database server

Some common options

Some of the most commonly used options control the following settings:

Using configuration files

Naming the server and the databases
Performance

Permissions

Maximum page size

Special modes

Threading

Network communications (network server only)

Using configuration files to store server startup options

If you use an extensive set of options, you can store them in a configuration file and invoke that file in a
server command. The configuration file can contain options on several lines. For example, the following
configuration file starts the personal database server and the sample database. It sets a cache of 10 MB, and
names this instance of the personal server Elora. Lines with # as the first character in the line are treated as
comments.

Configuration file for server Elora

-n Elora

-c 10M
samples-dir\demo.db

In the example, samples-dir is the name of your SQL Anywhere samples directory. On Unix, you would use
a forward slash instead of the backslash in the file path.

For information about samples-dir, see “Samples directory” on page 390.
If you name the file sample.cfg, you could use these options as follows:

dbengll @sample.cfg

See also

e “(@data server option” on page 165
e “Using configuration files” on page 737
e “Using conditional parsing in configuration files” on page 738

Naming the server and the databases

You can use -n as a server option (to name the server) or as a database option (to name the database).

The server and database names are among the connection parameters that client applications may use when
connecting to a database. The server name appears on the desktop icon and in the title bar of the database
server messages window.

46

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Some common options

Naming the server

Providing a database server name helps avoid conflicts with other server names on your network. It also
provides a meaningful name for users of client applications. The server keeps its name for its lifetime (until
it is shut down). If you don't provide a server name, the server is given the name of the first database started.

You can name the server by supplying a -n option before the first database file. For example, the following
command starts a server on the sample database and gives the server the name Cambridge:

dbengll -n Cambridge samples-dir\demo.db

If you supply a server name, you can start a database server without starting a database. The following
command starts a server named Galt with no database started:

dbengll -n Galt

The maximum length of the server name is 250 bytes.

For more information about starting databases on a running server, see “Starting and stopping
databases” on page 59.

Note
On Windows and Unix, version 9.0.2 and earlier clients cannot connect to version 10.0.0 and later database
servers with names longer than the following lengths:

e 40 bytes for Windows shared memory
e 31 bytes for Unix shared memory
e 40 bytes for TCP/IP

Naming databases
You may want to provide a meaningful database name for users of client applications. The database is
identified by that name until it is stopped. The maximum length for database names is 250 bytes.

If you don't provide a database name, the default name is the root of the database file name (the file name
without the .db extension). For example, in the following command the first database is named mydata, and
the second is named mysales.

dbengll c:\mydata.db c:\sales\mysales.db

You can name databases by supplying a -n option following the database file. For example, the following
command starts the sample database and names it MyDB:

dbengll samples-dir\demo.db -n MyDB

Case sensitivity

Server names and database names are case insensitive as long as the character set is single-byte. See
“Connection strings and character sets” on page 410.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 47

Running the database server

Controlling performance and memory from the command

line

Several options can have a major impact on database server performance, including:

e Cachesize The amount of cache memory available to the database server can be a key factor in

affecting performance. The database server takes an initial amount of cache memory that is either
specified by the -c option or is a default value.

The -c option controls the amount of memory that SQL Anywhere uses as a cache.

Generally speaking, the more memory made available to the database server, the faster it performs. The
cache holds information that may be required more than once. Accessing information in cache is many
times faster than accessing it from disk. The default initial cache size is computed based on the amount
of physical memory, the operating system, and the size of the database files. On Windows and Unix
operating systems, the database server automatically grows the cache when the available cache is
exhausted.

The database server messages window displays the size of the cache at startup, and you can use the
following statement to obtain the current size of the cache:

SELECT PROPERTY("CacheSize");

For more information about performance tuning, see “Improving database performance” [SQL Anywhere
Server - SQL Usage].

For more information about controlling cache size, see “-c server option” on page 167.

On Windows and Unix, the database server automatically takes more memory for use in the cache as
needed, as determined by a heuristic algorithm. See “Using the cache to improve performance” [SQL
Anywhere Server - SQL Usage].

You can use database options to configure the upper cache limit. See “-ch server option” on page 170.
As well, you can force the cache to remain at its initial amount. See “-ca server option” on page 169.

Multiprogramming level The database server's multiprogramming level is the maximum number of
server tasks that can execute concurrently. In general, a higher multiprogramming level increases the
overall throughput of the server by permitting more requests to execute simultaneously. However, if the
requests compete for the same resources, increasing the multiprogramming level can lead to additional
contention and actually increase transaction response time.

In some cases, increasing the multiprogramming level can even lower the system's throughput. You can
set the server's multiprogramming level with the -gn option. See “-gn server option” on page 193 and
“Setting the database server's multiprogramming level” on page 53.

Number of processors If you are running on a multi-processor computer using a network database
server, you can set the number of processors with the -gt option. See “-gt server option” on page 196
and “Threading in SQL Anywhere” on page 50.

The number of CPUs that the database server can use may also be affected by your license or SQL
Anywhere edition. See “Editions and licensing” [SQL Anywhere 11 - Introduction].

48

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Some common options

e Other performance-related options There are several options available for tuning network
performance, including -gb (database process priority), and -u (buffered disk 1/0). See “The SQL
Anywhere database server” on page 156.

Controlling permissions from the command line

Some options control the permissions required to perform certain global operations, including permissions
to start and stop databases, load and unload data, and create and delete database files. See “Running the
database server in a secure fashion” on page 1081.

Setting a maximum page size

The database server cache is arranged in pages—fixed-size areas of memory. Since the server uses a single
cache for its lifetime (until it is shut down), all pages must have the same size.

A database file is also arranged in pages, with a size that is specified on the command line. Every database
page must fit into a cache page. By default, the server page size is the same as the largest page size of the
databases on the command line. Once the server starts, you cannot start a database with a larger page size
than the server.

To allow databases with larger page sizes to be started after startup, you can force the server to start with a
specified page size using the -gp option. If you use larger page sizes, remember to increase your cache size.
A cache of the same size accommaodates only a fraction of the number of the larger pages, leaving less
flexibility in arranging the space.

The following command starts a server that reserves a 64 MB cache and can accommodate databases of page
sizes up to 8192 bytes.

dbsrvll -gp 8192 -c 64M -n myserver

Running in special modes
You can run SQL Anywhere in special modes for particular purposes.

e Read-only You can run databases in read-only mode by supplying the -r option. Databases that have
auditing turned on cannot be started in read-only mode. See “-r server option” on page 216, and “-r
database option” on page 255.

e In-memory mode You can run databases entirely in memory by specifying the -im option. When
you run in checkpoint mode only (-im c), the database server does not use a transaction log, but the
database can be recovered to the most recent checkpoint. When you run the database in never write mode
(-im nw), committed transactions are not written to the database file on disk, and all changes are lost
when you shut down the database. Using either in-memory mode, your application can still make changes
to the database or access it while the database is active. See “-im server option” on page 199.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 49

Running the database server

Separately licensed component required
In-memory mode requires a separate license. See “Separately licensed components” [SQL Anywhere 11
- Introduction].

e Bulkload This is useful when loading large quantities of data into a database using the Interactive

SQL INPUT command. Do not use the -b option if you are using LOAD TABLE to bulk load data. See
“-b server option” on page 166, and “Importing and exporting data” [SQL Anywhere Server - SQL
Usage].

Starting without a transaction log Use the -f database option for recovery—either to force the
database server to start after the transaction log has been lost, or to force the database server to start using
a transaction log it would otherwise not find. Note that -f is a database option, not a server option.

Once the recovery is complete, you should stop your server and restart without the -f option. See “-f
recovery option” on page 184.

Operating quietly The database server supports quiet mode. You determine how quiet you want the
server to operate, ranging from suppressing messages or the icon in the system tray, to complete silence.
To operate a completely silent database server on Windows, specify the -qi, -gs, and -qw options. With
these options set, there is no visual indication that the server is running as all icons and all possible startup
error messages are suppressed. If you run the database server in quiet mode, you can use either (or both)
the -0 or -oe options to diagnose errors.

Note that the -qi and -gs options do not suppress windows caused by the -v (version) and -ep (prompt
for database encryption password) server options.

Threading in SQL Anywhere

To understand the SQL Anywhere threading model, you must also understand the basic terminology and
concepts of threading and request processing:

e Request A request is a unit of work, such as a query or SQL statement, sent to the database server

over a connection. The lifetime of a request spans the time from when the request is first received by the
database server to the time that the last of the results are returned, cursors are closed, or the request is
canceled.

Task A task is a unit of activity that is performed within the database server, and is the smallest unit
of work that is scheduled by the server. Within the database server, each user request becomes at least
one task, and possibly more if intra-query parallelism is involved. In addition to user requests, the
database server can also schedule its own tasks to perform internal housekeeping chores, such as running
the cleaner or processing timers. The maximum number of active tasks that can execute concurrently is
set by the -gn option. If more tasks arrive at the database server than can be concurrently processed, they
are queued for execution. If an active task, or a task for which processing has already begun, needs to
block for some reason during its processing, such as while waiting for a lock, or for 1/O to complete, it
is still considered to be active. It therefore counts against the upper bound place by the value of the -gn
option.

Thread A thread is an operating system construct that represents an executing thread-of-control
within an application. Every operating system process, including the database server, is executed by at

50

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Some common options

least one, and possibly many threads. A thread is scheduled outside the application by the operating
system, and ultimately, all of an application’s execution is performed by its threads. Tasks, withina SQL
Anywhere database server, execute on an operating system thread. At startup, SQL Anywhere creates a
fixed number of threads, controlled by the -gtc option (on Windows and Linux), or the -gn option (on
Unix).

See also

e “Controlling threading behavior” on page 52

“Parallelism during query execution” [SQL Anywhere Server - SQL Usage]

“-gn server option” on page 193

“-gtc server option” on page 197

“sa_clean_database system procedure” [SQL Anywhere Server - SQL Reference]
“Transaction blocking and deadlock” [SQL Anywhere Server - SQL Usage]

Tasks on Unix

On Unix, a task is executed directly on an operating system thread. On these platforms, the value of the -gn
option sets the number of operating system threads created when the database server starts; all tasks are
serviced from this set of threads. When a thread becomes available, it picks up the next available task that
requires processing. Once processing a task, a thread remains with that task until it has been completed. If
the task needs to block for some reason, perhaps because it is pending an 1/0 operation, or while waiting for
alock, the thread voluntarily relinquishes control of the CPU back to the operating system scheduler allowing
other threads to run on that CPU.

In addition to voluntarily relinquishing the CPU, a thread may be preempted by the operating system
scheduler. Each application thread within a process is given a series of time slices in which to run, the length
of which is determined by its priority and other system factors. When a thread reaches the end of its current
time slice it is preempted by the operating system and scheduled to run again at a later time. The operating
system scheduler then chooses another thread to execute for a time slice. This preemptive scheduling does
not affect the processing of tasks in any visible way; when a thread is scheduled to run again, the task is
picked up at the point where it left off.

Once processing of the active task is completed, the thread checks to see if any other tasks have come
available for processing. If so, it picks up the next available task and continues. Otherwise, it relinquishes
the CPU and waits for a new task to arrive at the database server.

See also
e “-gn server option” on page 193

Tasks on Windows and Linux

On Windows and Linux, tasks are executed on lightweight threads known as fibers. Fibers allow tasks
running on threads to schedule amongst themselves co-operatively, rather than relying on the operating
system thread scheduler. The result is that a context switch between fibers is much less expensive than a
thread context switch as there is no interaction with the operating system kernel or scheduler. In multi-

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 51

Running the database server

threaded applications that otherwise do frequent thread context switching, the use of fibers can dramatically
improve performance and scalability.

Because fibers do not rely on the operating system scheduler, a fiber must explicitly yield control to another
fiber when it is waiting for some other activity to complete. For example, if a task that is executing on a fiber
needs to block while waiting for an 1/0 operation to complete, it will relinquish control to another fiber. The
thread hosting the original fiber is free to pick up another fiber immediately and begin its execution without
a kernel context switch. If a fiber blocks and does not yield control, it blocks the thread that is hosting it and
prevents other fibers from running on that thread. If more than one thread is hosting fibers, only the thread
that is hosting the waiting fiber is blocked: other threads are still free to run fibers.

On platforms that support fibers, there are at least as many fibers created as required by the maximum
concurrency setting of the server, as specified by the -gn option. The server may create more than this value
so there is always a fiber available to service internal server tasks. See “-gn server option” on page 193.

Controlling threading behavior

There are five main factors that control threading behavior, each of which are governed by a server option.
Not all of these options are supported on every platform.

e Multiprogramming level (-gn server option) The -gn option controls the server's
multiprogramming level. This value determines the maximum number of tasks that may be active at one
time. Each database request uses at least one task, and possibly more if intra-query parallelism is involved.
Additionally, the server will occasionally schedule tasks to perform internal housekeeping activities.
When the number of tasks in the server exceeds the multiprogramming level, the outstanding tasks must
wait until a currently-running, or active task completes. By default, a maximum of 20 tasks can execute
concurrently for the network database server and the personal database server. See “-gn server
option” on page 193, and “Setting the database server's multiprogramming level” on page 53.

e Stack size per internal execution thread (-gss server option) You can set the stack size per
internal execution thread in the server using the -gss option. The -gss option allows lowering the memory
usage of the database server, which may be useful in environments with limited memory. The only
Windows operating system that supports this option is Windows Mobile. See “-gss server
option” on page 195.

e Number of processors (-gt server option) If you have more than one processor, you can control
how many processors the threads exploit by specifying the -gt option. See “-gt server
option” on page 196.

e Processor concurrency (-gtc server option) You can specify the maximum number of threads
that can run concurrently on a CPU. By default, the database server runs on all hyperthreads and cores
of each licensed physical processors. See “-gtc server option” on page 197.

Threading tips

e Increasing -gn can reduce the chance of thread deadlock occurring. See “-gn server
option” on page 193.

e Setting -gt to 1 can help work around concurrency problems. See “-gt server option” on page 196.

52

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Some common options

e Investigating the Performance Monitor readings for Requests: Active and Requests: Unscheduled can
help you determine an appropriate value for -gn on Windows. If the number of active requests is always
less than -gn, you can lower -gn. If the number of total requests (active + unscheduled) is often larger
than -gn, then you might want to increase the value for -gn. See “Performance Monitor statistics” [SQL
Anywhere Server - SQL Usage], and “-gn server option” on page 193.

Processor use and threading example

The following example explains how the database server selects CPUs based on the settings of -gt and -gtc.
For the purpose of the following examples, assume you have a system with 4 processors, with 2 cores on
each processor. The physical processors are identified with letters, and the cores with numbers, so this system
has processing units A0, Al, B0, B1, C0, C1, DO, and D1.

Scenario Network database server settings
A single CPU license or -gt 1 specified e tl

e -gtc2

e -gn20

Threads can execute on A0 and Al.

No licensing restrictions on the CPU with -gtc 5 o -gt4
specified e -gic5
e -gn20

Threads can execute on A0, Al, B0, CO, and DO.

A database server with a 3 CPU license and -gtc 5 e t3
specified e -gich
e -gn20

Threads can execute on A0, Al, BO, B1, and CO.

No licensing restrictions on the CPU with -gtc 1 o -gt4
specified o gtcl
e -gn20

Threads can execute only on AO0.

Setting the database server's multiprogramming level

The database server's multiprogramming level is the maximum number of tasks that can be active at a time,
and is controlled by the -gn server option. An active task is one that is currently being executed by a thread
(or fiber) in the database server. An active task may be executing an access plan operator, or performing
some other useful work, but may also be blocked, waiting for a resource (such as an 1/O operation, or a lock
on arow). An unscheduled task is one that is ready to execute, but is waiting for an available thread or fiber.
The number of active tasks that can execute simultaneously depends on the number of database server threads
and the number of logical processors in use on the computer.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 53

Running the database server

The multiprogramming level remains constant during server execution, and applies to all databases on that
server. The default is 20 active tasks for the network database server and for the personal database server,
except on Windows Mobile where the default is 3.

Raising the multiprogramming level

It can be difficult to determine when to raise or lower the multiprogramming level. For example, if a database
application makes use of Java stored procedures, or if intra-query parallelism is enabled, then the additional
server tasks created to process these requests may exceed the multiprogramming limit, and execution of
these tasks will wait until another request completes. In this case, raising the multiprogramming level may
be appropriate. Often, increases to the multiprogramming level will correspondingly increase the database
server's overall throughput, as doing so permits additional tasks (requests) to execute concurrently. However,
there are tradeoffs in raising the multiprogramming level that should be considered. They include the
following:

Increased contention By increasing the number of concurrent tasks, you may increase the
probability of contention between active requests. The contention can involve resources such as schema
or row locks, or on data structures and/or synchronization primitives internal to the database server. Such
a situation may actually decrease server throughput.

Additional server overhead Each active task requires the allocation and maintenance of a thread
(in the case of Windows and Linux, a lightweight thread called a fiber) and additional bookkeeping
structures to control its scheduling. In addition, each active task requires the preallocation of address
space for its execution stack. The size of the stack varies by platform, but is roughly 1 MB on 32-bit
platforms, and larger on 64-bit platforms. On Windows systems, the allocation of stack space affects the
address space of the server process, but the stack memory is allocated on demand. On Unix platforms,
including Linux, the backing memory for the stack is allocated immediately. So, setting a higher
multiprogramming level increases the server's memory footprint, and reduces the amount of memory
available for the cache because the amount of available address space is reduced.

Thrashing The database server can reach a state when it uses significant resources simply to manage
its execution overhead, rather than doing useful work for a specific request. This state is commonly called
thrashing. Thrashing can occur, for example, when too many active requests are competing for space in
the database cache, but the cache is not large enough to accommaodate the working set of database pages
used by the set of active requests. This situation can result in page stealing, in a manner similar to that
which can occur with operating systems.

Impact on query processing The database server selects a maximum number of memory-intensive
requests that can be processed concurrently. Even if you increase the database server's multiprogramming
level, requests may need to wait for memory to become available. See “The memory governor” [SQL
Anywhere Server - SQL Usage].

Memory for data structures The database server uses resources to parse and optimize statements.
For very complex statements or small cache sizes, the memory consumed for server data structures can
exceed the amount that is available. A memory governor limits the amount of memory used for each
task's server data structures. Each task has the following limit:

(374 maximum cache size) / (number of currently active tasks)

If this limit is exceeded, the statement fails with an error.

54

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Some common options

Lowering the multiprogramming level

Reducing the database server's multiprogramming level by lowering the number of concurrently-executing
tasks usually lowers the server's throughput. However, lowering the multiprogramming level may improve
the response time of individual requests because there are fewer requests to compete for resources, and there
is a lower probability of lock contention.

In SQL Anywhere, threads (fibers) execute tasks in a cooperative fashion. Once a task has completed, the
thread (fiber) is free to pick up the next task awaiting execution. However, if a task is blocked, for example
when waiting for row lock, the thread (fiber) is also blocked.

When the multiprogramming level is set too low, thread deadlock can occur. Suppose that the database
server has n threads (fibers). Thread deadlock occurs when n-1 threads are blocked, and the last thread is
about to block. The database server's kernel cannot permit this last thread to block, since doing so would
result in all threads being blocked, and the server would hang. Rather, the database server ends the task that
is about to block the last thread with SQLSTATE 40WO06.

If the multiprogramming level is at a reasonable level for the workload, the occurrence of thread deadlock
is symptomatic of an application design problem that results in substantial contention, and as a result, impairs
scalability. One example is a table that every application must modify when inserting new data to the
database. This technique is often used as part of a scheme to generate primary keys. However, the result is
that it effectively serializes all the application's insert transactions. When the rate of insert transactions
becomes higher than what the server can service because of the serialization on the shared table, thread
deadlock usually occurs.

Choosing the multiprogramming level

Itis recommended that you experiment with your application's workload to analyze the effects of the server's
multiprogramming level on server throughput and request response time. Various performance counters are
available as either property functions, or through the Windows Performance Monitor on Windows, to help
you analyze database server behavior when testing your application. The performance counters related to
active and unscheduled requests are important to this analysis.

If the number of active requests is always less than the value of the -gn database server option, you can
consider lowering the multiprogramming level, but you must take into account the effects of intra-query
parallelism, which adds additional tasks to the server's execution queues. If the effect of intra-query
parallelism is marginal, lowering the multiprogramming level can be done safely without reducing overall
system throughput. However, if the number of total requests (active + unscheduled) is often larger than -gn,
then an increase in the multiprogramming level may be warranted, subject to the tradeoffs outlined above.
Note that the Performance Monitor is not available for Unix or Linux.

Selecting communications protocols

Any communication between a client application and a database server requires a communications protocol.
SQL Anywhere supports a set of communications protocols for communications across networks and for
same-computer communications.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 55

Running the database server

By default, the database server starts all available protocols. You can limit the protocols available to a
database server using the -x option. On the client side, many of the same options can be controlled using the
CommLinks (LINKS) connection parameter.

For more information about running the server using these options, see “Supported network
protocols” on page 142.

Available protocols for the personal server

The personal database server (dbengl1l.exe) supports the following protocols:

e Shared memory This protocol is for same-computer communications, and always remains available.
It is available on most platforms, see http://www.sybase.com/detail?id=1061806.
For same-computer communications, Shared Memory tends to provide better performance than TCP/IP.

e TCP/IP This protocol is for same-computer communications from TDS clients, Open Client, or the
jConnect JDBC driver. You must not disable TCP/IP if you want to connect from Open Client or
jConnect.

For more information about TDS clients, see “Using SQL Anywhere as an Open Server” on page 1123.

Available protocols for the network server

The network database server (dbsrvl11.exe) supports the following protocols:
e Shared memory This protocol is for same-computer communications, and always remains available.
It is available on all platforms.

e TCP/IP This protocol is supported on most platforms, see http://www.sybase.com/detail?
id=1061806.

Shared memory and terminal services

When using terminal services, shared memory clients can only find database servers running in the same
terminal. If you use terminal services with a database server that is running as a service, only clients running
on the console can connect. Clients running on non-console terminals cannot connect over shared memory.
In these situations, you can use TCP/IP instead of shared memory to allow clients to connect.

For information about securing shared memory connections on Unix, see “Security tips” on page 1066.

Specifying protocols

By using the -x option, you can instruct a database server to use only some of the available network protocols.
The following command starts the sample database using the TCP/IP protocol:

dbsrvll -x "tcpip" samples-dir\demo.db

Although not strictly required in this example, the quotes are necessary if there are spaces in any of the
arguments to -x.

You can add additional parameters to tune the behavior of the server for each protocol. For example, the
following command (typed all on one line) instructs the server to use two network cards, one with a specified
port number.

56

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1061806
http://www.sybase.com/detail?id=1061806
http://www.sybase.com/detail?id=1061806

Some common options

dbsrvll -x "tcpip(MylP=192.75.209.12:2367,192.75.209.32)" samples-dir\demo.db

For more information about available network protocol options that can be used with the -x option, see
“Network protocol options” on page 301.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 57

Running the database server

Stopping the database server

You can stop the database server by:

e Clicking Shut Down on the database server messages window.
e Using the dbstop utility.

The dbstop utility is useful in batch files, or for stopping a server on another computer. It requires a
connection string in its command. See “Stop Server utility (dbstop)” on page 831.

e Letting it shut down automatically by default when the application disconnects.

e Pressing Q when the database server messages window has the focus on Unix.

Example
To stop a server using the dbstop utility

1. Start a server. For example, the following command executed from the SQL Anywhere installation
directory starts a server named Ottawa using the sample database:

dbsrvll -n Ottawa samples-dir\demo.db
2. Stop the server using dbstop:

dbstop -c "ENG=Ottawa;UID=DBA;PWD=sql""

Who can stop the server?

When you start a server, you can use the -gk option to set the level of permissions required for users to stop
the server with dbstop. For personal database servers, the default is all. The default level of permissions
required is DBA for network database servers, but you can also set the value to all or none. (However, anyone
at the computer can click Shut Down on the database server messages window.)

Shutting down operating system sessions

If you close an operating system session where a database server is running, or if you use an operating system
command to stop the database server, the server shuts down, but not cleanly. The next time the database
loads, recovery is required, and happens automatically.

For more information about recovery, see “Backup and data recovery” on page 869.
It is better to stop the database server explicitly before closing the operating system session.

Examples of commands that do not stop a server cleanly include:

e Stopping the process in the Windows Task Manager
e Using a Unix slay or kill command

58 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Starting and stopping databases

Starting and stopping databases

A database server can have more than one database loaded at a time. You can start databases and start the
server at the same time, as follows:

dbengll demo sample

Caution
The database file must be on the same computer as the database server. Managing a database file that is
located on a network drive can lead to file corruption.

Starting a database on a running server
You can also start databases after starting a server in one of the following ways:

e Connect to a database using a DatabaseFile (DBF) connection parameter while connected to a server.

The DatabaseFile (DBF) connection parameter specifies a database file for a new connection. The
database file is started on the current server.

See “Connecting to an embedded database” on page 126, or “DatabaseFile connection parameter
[DBF]” on page 272.

Use the START DATABASE statement, or choose Start Database from the File menu in Sybase Central
when you have a server selected.

See “START DATABASE statement” [SQL Anywhere Server - SQL Reference].

Limitations

The server holds database information in memory using pages of a fixed size. Once a server has been
started, you cannot start a database that has a larger page size than the server.

See “Setting a maximum page size” on page 49.

The -gd server option decides the permissions required to start databases.

Starting a database

With both Sybase Central and Interactive SQL, you can start a database without connecting to it.

To start a database on a server without connecting (Sybase Central)

1.
2.

Select the server and then choose File » Start Database.
In the Start Database window, enter the required values.

The database appears under the database server as a disconnected database.

To start a database on a server without connecting (SQL)

Execute a START DATABASE statement.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 59

Running the database server

See “START DATABASE statement” [SQL Anywhere Server - SQL Reference].
Start the database file c:\temp\temp.db on the database server named sample.
START DATABASE “c:\\temp\\temp.db*

AS tempdb ON “sample*
AUTOSTOP OFF;

You must be connected to a database to start another database.

The AUTOSTOP OFF prevents the database from being stopped automatically when all connections have
been disconnected. It is used here to illustrate a point later on in the discussion.

For more details about starting a database, see “Running the database server” on page 37.

Stopping a database

You can stop a database by:

e Disconnecting from a database started by a connection string. Unless you explicitly set the AutoStop
(ASTOP) connection parameter to NO, this happens automatically.
See “AutoStop connection parameter [ASTOP]” on page 265.

e Using the STOP DATABASE statement from Interactive SQL or embedded SQL.
See “STOP DATABASE statement” [SQL Anywhere Server - SQL Reference].

With both Sybase Central and Interactive SQL, you can stop a database running on a database server. You

cannot stop a database you are currently connected to. You must first disconnect from the database, and then
stop it. You must be connected to another database on the same database server to stop a database.

For more details about stopping a database, see “Running the database server” on page 37.

To stop a database on a server after disconnecting (Sybase Central)

1. Make sure you are connected to at least one other database on the same database server. If there is no
other database running on the server, you can connect to the utility database.

2. Select the database you want to stop and choose File » Stop Database.

When disconnecting from the database, the database may disappear from the left pane. This occurs if your
connection was the only remaining connection, and if AUTOSTOP was specified when the database was
started. AUTOSTOP causes the database to be stopped automatically when the last connection disconnects.

To stop a database on a server after disconnecting (SQL)

1. If you aren't connected to any database on the server, then connect to a database such as the utility
database.

2. Execute a STOP DATABASE statement.

60

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Starting and stopping databases

Example
The following statements connect to the utility database and stops the tempdb database.

CONNECT to "TestEng®™ DATABASE utility_db
AS conn2

USER "DBA*

IDENTIFIED BY “"sql*;

STOP DATABASE tempdb;

You must be connected to a database to stop another database.

See also
e “Connecting to the utility database” on page 31

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 61

Running the database server

Running the server outside the current session

When you log on to a computer using a user ID and a password, you establish a session. When you start a
database server, or any other application, it runs within that session. When you log off the computer, all
applications associated with the session shut down.

Itiscommon to require database servers to be available all the time. You can run SQL Anywhere for Windows
and for Unix so that when you log off the computer, the database server remains running.

Windows service You can run the Windows database server as a service. This configuration can be
convenient for running high availability servers. See “Understanding Windows services” on page 64.

Unix daemon You can run the Unix database server as a daemon using the -ud option, enabling the
database server to run in the background, and to continue running after you log off. See “Running the
Unix database server as a daemon” on page 62.

Linux service You can run the Linux database server as a service. This configuration has many
convenient properties for running high availability servers. See “Service utility (dbsvc) for
Linux” on page 816.

In addition to creating services for SQL Anywhere database servers, you can also create Windows services
for the following executables:

SQL Anywhere Log Transfer Manager (LTM)
SQL Remote Message Agent (dbremote)
MobiLink server (mlsrv11)

MobiLink synchronization client (dbmlsync)
rshost utility (rshost)

RSOE

SQL Anywhere Broadcast Repeater (dbns11)
Listener utility (dblsn)

See also

“Service utility (dbsvc) for Windows” on page 820

Running the Unix database server as a daemon

To run the Unix database server in the background, and to enable it to run independently of the current
session, you run it as a daemon.

62

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Running the server outside the current session

Do not use '&' to run the database server in the background

If you use the Unix & (ampersand) command to run the database server in the background, it will not work
—the server will either immediately shut down or stop responding. You must instead run the database server
as a daemon.

As well, attempting to start a server in the background from within a program using the typical fork()-
exec() sequence will not work. If you need to do this, add the -ud option to the list of database server
options.

You can run the Unix database server as a daemon in one of the following ways:

1. Use the -ud option when starting the database server. For example:

dbsrvll -ud demo

2. Use the dbspawn tool to start the database server. For example:

dbspawn dbsrv11l demo

One advantage of using dbspawn is that the dbspawn process does not shut down until it has confirmed
that the daemon has started and is ready to accept requests. If for any reason the daemon fails to start,
the exit code for dbspawn will be non-zero.

When you start the daemon directly using the -ud option, the dbeng11 and dbsrv11 commands create
the daemon process and return immediately (exiting and allowing the next command to be executed)
before the daemon initializes itself or attempts to open any of the databases specified in the command.

If you want to ensure that a daemon is running one or more applications that will use the database server,
you can use dbspawn to ensure that the daemon is running before starting the applications. The following
is an example of how to test this using a csh script.

#1/bin/csh
start the server as a daemon and ensure that it is
running before you start any applications
dbspawn dbsrv11l demo
if ($status !'= 0) then
echo Failed to start demo server
exit
endif
ok, now you can start the applications

This example uses an sh script to test whether the daemon is running before starting the applications.

#1/bin/sh
start the server as a daemon and ensure that it is
running before you start any applications
dbspawn dbsrv11l demo
if [$? 1= 0]; then
echo Failed to start demo server
exit
fi
ok, now you can start the applications

3. Spawn a daemon from within a C program, for example:

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 63

Running the database server

if(forkQ ==0) {
/* child process = start server daemon */
execl ("/opt/sqlanywherell/bin/dbsrvil",
“dbsrv11', "-ud", "demo');
exit(l);

/* parent process */

Note that the -ud option is used.

See also

e “-ud server option” on page 229
e “Start Server in Background utility (dbspawn)” on page 829

Understanding Windows services

You can run the database server like a Microsoft Windows program rather than a service. However, there
are limitations running it as a standard program and in multi-user environments.

Limitations of running as a standard executable

When you start a program, it runs under your Windows login session, which means that if you log off the
computer, the program shuts down. This configuration restricts the use of the computer if you want to keep
a program running most of the time, as is commonly the case with database servers. You must stay logged
on to the computer running the database server for the database server to keep running. This configuration
can also present a security risk as the Windows computer must be left in a logged on state.

Advantages of services
Installing an application as a Windows service enables it to run even when you log off.

When you start a service, it logs on using a special system account called LocalSystem (or another account
that you specify). Since the service is not tied to the user ID of the person starting it, the service remains
open even when the person who started it logs off. You can also configure a service to start automatically
when the Windows computer starts, before a user logs on.

Managing services

Sybase Central provides a more convenient and comprehensive way of managing SQL Anywhere services
than the Windows services manager. You can also use the dbsvc utility to create and modify services. See
“Service utility (dbsvc) for Windows” on page 820.

64 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Running the server outside the current session

Programs that can be run as Windows services

You can run the following programs as services:

Network database server (dbsrv11l.exe)

Personal database server (dbengll.exe)

SQL Remote Message Agent (dbremote.exe)

Log Transfer Manager utility (dbltm.exe)

MobiLink server (mlsrv1l.exe)

MobiLink synchronization client (dbmlsync.exe)
MobiLink Relay Server (rshost.exe)

MobiLink Relay Server Outbound Enabler (rsoe.exe)
MobiLink Listener utility (dblsn.exe)

SQL Anywhere Broadcast Repeater utility (dbns11.exe)
SQL Anywhere VVolume Shadow Copy Service (dbvss11.exe)

Not all of these applications are supplied in all editions of SQL Anywhere.

See also
e “Creating Windows services” on page 65

Managing Windows services

You can perform the following Windows service management tasks from the command line, or on the
Services tab in Sybase Central:

Create, edit, and delete services

Start and stop services

Modify the parameters governing a service

Add databases to a service so that you can run several databases at one time

The service icons in Sybase Central display the current state of each service using an icon that indicates
whether the service is running or stopped.

Creating Windows services

This section describes how to set up services using Sybase Central and the Service utility.

To create a new service (Sybase Central)

1. Inthe left pane, select SQL Anywhere 11.
2. Inthe right pane, click the Services tab.

3. Choose File » New » Service.
4

Follow the instructions in the Create Service Wizard.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 65

Running the database server

Tip
You can also create services for the MobiLink plug-in. See “Running the MobiLink server outside the current
session” [MobiLink - Server Administration].

To create a new service (Command line)

e Run a dbsvc command that includes the -w option.

For example, to create a personal server service called myserv where the database server runs as the
LocalSystem user, enter the following command:

dbsvc -as -w myserv "c:\Program Files\SQL Anywhere 11\bin32\dbengll.exe"
-n william -c 8m "c:\temp\sample.db"

See “Service utility (dbsvc) for Windows” on page 820.

Notes
e Service names must be unique within the first eight characters.

e If you choose to start a service automatically, it starts whenever the computer starts Windows. If you
choose to start the service manually, you need to start the service from Sybase Central each time. You
may want to select Disabled if you are setting up a service for future use.

e When creating a service in Sybase Central, type options for the executable, without the executable name
itself, in the window. For example, if you want a network server to run using the sample database with
a cache size of 20 MB and the name myserver, you would type the following in the Parameters text
box of the Create Service Wizard in Sybase Central:

-c 20M
-n myserver samples-dir\demo.db

Line breaks are optional.

e Choose the account under which the service will run: the special LocalSystem account or another user
ID.

For more information about this choice, see “Setting the account options” on page 69.

e If you want the service to be accessible from the Windows desktop, select Allow Service To Interact
With Desktop. If this option is cleared, no icon appears in the system tray and neither do any windows
appear on the desktop.

See “Configuring Windows services” on page 67.

Deleting Windows services

Deleting a service removes the service name from the list of services. Deleting a service does not remove
any software from your hard disk.

If you want to re-install a service you previously deleting, you need to re-type the options.

66 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Running the server outside the current session

To delete a Windows service (Sybase Central)

1. Inthe left pane, select SQL Anywhere 11.
In the right pane, click the Services tab.

2. In the right pane, select the service you want to remove and from the File menu, choose Delete.

To delete a Windows service (Command line)

e Run the dbsvc utility with the -d option.

For example, to delete the service called myserv, without prompting for confirmation, type the following
command:

dbsvc -y -d myserv

See also
e “Service utility (dbsvc) for Windows” on page 820

Configuring Windows services

A service runs a database server or other application with a set of options.
In addition to the options, services accept other parameters that specify the account under which the service
runs and the conditions under which it starts.

To change the parameters for a service

In the left pane, select SQL Anywhere 11.

In the right pane, select the service you want to change.

From the File menu, choose Properties.

Alter the parameters as needed on the tabs of the Service Properties window.
Click OK when finished.

a M w0 NP

Changes to a service configuration take effect the next time someone starts the service. The Startup option
is applied the next time Windows is started.

Setting startup options

The following options govern startup behavior for SQL Anywhere services. You can set them on the
General tab of the Service Properties window.

e Automatic If you choose the Automatic setting, the service starts whenever the Windows operating
system starts. This setting is appropriate for database servers and other applications running all the time.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 67

Running the database server

e Manual If you choose the Manual setting, the service starts only when a user with Administrator
permissions starts it. For information about Administrator permissions, see your Windows
documentation.

e Disabled If you choose the Disabled setting, the service does not start.

Specifying options

The options for a service are the same as those for the executable.

Caution
The Configuration tab of the Service Properties window provides a Parameters text box for specifying
options for a service. Do not type the name of the program executable in this box.

Examples
To start a network server service with a cache size of 20 MB, named my_server running two databases, you
would type the following in the Parameters field:
-c 20M
-Nn my_server
c:\db_1.db
c:\db_2.db
To start a SQL Remote Message Agent service connecting to the sample database as user ID DBA, you
would type the following:

-c "UID=DBA;PWD=sql ; DBN=demo"

The following figure illustrates a sample Service Properties window.

68 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Running the server outside the current session

|_ StartMyDbServer Service Properties 5'

Generall C'I'l'lﬁ';'-lratiﬂnl Fl.u:u:u:uuntl Dependenciesl F‘-:ullingl

This service will run the Following executable:

File name: IC:'I,F'ru:ugram Files\S0L Anywhere 114Bin32\dbsrv 11 exe

Browse, ., |

Parameters:

Ik I Zancel Gpply Help

Setting the account options

You can choose under which account the service runs. Most services run under the special LocalSystem
account, which is the default option for services. You can set the service to log on under another account by
opening the Account tab on the Service Properties window, and typing the account information.

If you choose to run the service under an account other than LocalSystem, that account must have the Log
On As A Service privilege. This privilege can be granted from the Windows User Manager application
under Advanced Privileges. The Service utility (dbsvc) also grants this privilege if it is required.

When an icon appears in the system tray

e If a service runs under LocalSystem, and Allow Service To Interact With Desktop is selected on the
Service Properties window, an icon appears on the desktop of every user logged in to Windows on the

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 69

Running the database server

computer running the service. Any user can open the application window and stop the program running
as a service.

e [f aservice runs under LocalSystem, and Allow Service To Interact With Desktop is cleared on the
Service Properties window, no icon appears on the desktop for any user. Only users with permissions
to change the state of services can stop the service.

e [f a service runs under another account, no icon appears on the desktop. Only users with permissions to
change the state of services can stop the service.

Changing the executable file

To change the program executable file associated with a service, click the Configuration tab on the Service
Properties window and type the new path and file name in the File Name text box.

If you move an executable file to a new directory, you must modify this entry.

Adding new databases to a service

Each network server or personal server can run more than one database. If you want to run more than one
database at a time, it is recommended that you do so by attaching new databases to your existing service,
rather than by creating new services.

To add a new database to an existing service

From the Context dropdown list, choose SQL Anywhere 11.

In the right pane, click the Services tab.

Select the service and then from the File menu, choose Properties.
Click the Configuration tab.

Add the path and file name of the new database to the end of the list of options in the Parameters box.

© 0o &~ w DN P

Click OK to save the changes.

The new database starts the next time the service starts.

Databases can be started on running servers by client applications, such as Interactive SQL.

For more information about starting a database from Interactive SQL, see “START DATABASE statement”
[SQL Anywhere Server - SQL Reference].

For more information about how to implement this function in an embedded SQL application, see
“db_start_database function” [SQL Anywhere Server - Programming].

Starting a database from an application does not attach it to the service. If the service is stopped and restarted,
the additional database will not be started automatically.

70

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Running the server outside the current session

Setting the service polling frequency

Sybase Central can poll at specified intervals to check the state (started or stopped) of each service, and
update the icons to display the current state. By default, polling is off. If you leave it off, you must click
Refresh Folder to see changes to the state.

To set the Sybase Central polling frequency

1. From the Context dropdown list, choose SQL Anywhere 11.

2. Inthe right pane, click the Services tab.

3. Select the service and then from the File menu, choose Properties.
4. Click the Polling tab.

5. Select Enable Polling.

6. Set the polling frequency.

The frequency applies to all services, not just the one selected. The value you set in this window remains
in effect for subsequent sessions until you change it.

7. Click OK.

Starting and stopping services

To start or stop a service

1. From the Context dropdown list, choose SQL Anywhere 11.
2. Inthe right pane, click the Services tab.

3. Select the service and then from the File menu, choose Start or Stop.

If you start a service, it keeps running until you stop it. Closing Sybase Central or logging off does not stop
the service.

Stopping a database server service closes all connections to the database and stops the database server. For
other applications, the program shuts down.

The Windows Service Manager

You can use Sybase Central to perform all the service management for SQL Anywhere. Although you can
use the Windows Service Manager in the Control Panel for some tasks, you cannot install or configure a
SQL Anywhere service from the Windows Service Manager.

If you open the Windows Service Manager (from the Windows Control Panel), a list of services appears.
The names of the SQL Anywhere services are formed from the service name you provided when installing
the service, prefixed by SQL Anywhere. All the installed services appear together in the list.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 71

Running the database server

Service dependencies

In some circumstances you may want to run more than one executable as a service, and these executables
may depend on each other. For example, you may want to run a server and a SQL Remote Message Agent
or Log Transfer Manager to assist in replication.

In cases such as these, the services must start in the proper order. If a SQL Remote Message Agent service
starts before the server has started, it fails because it cannot find the server.

You can prevent these problems by using service groups, which you manage from Sybase Central.

Service groups overview

You can assign each service on your system to be a member of a service group. By default, each service
belongs to a group, as listed in the following table.

Service Default group
Network server SQLANY Server
Personal server SQLANYEnNgine
MobiLink synchronization client SQLANYMLSync
Replication Agent SQLANYLTM
SQL Remote Message Agent SQLANYRemote
MobiLink server SQLANY MobiLink
Broadcast Repeater utility SQLANYNS
MobiLink Listener SQLANYLSN

SQL Anywhere Volume Shadow Copy Service SQLANYVSS

Before you can configure your services to ensure that they start in the correct order, you must check that
your service is a member of an appropriate group. You can check which group a service belongs to, and
change this group, from Sybase Central.

To check and change which group a service belongs to

From the Context dropdown list, choose SQL Anywhere 11.
In the right pane, click the Services tab.

Select the service and then from the File menu, choose Properties.

> w0

Click the Dependencies tab. The top text box displays the name of the group the service belongs to.

72

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Running the server outside the current session

5. Click Change to display a list of available groups on your system.
6. Select one of the groups, or type a name for a new group.

7. Click OK to assign the service to that group.

Managing service dependencies
With Sybase Central you can specify dependencies for a service. For example:

e You can ensure that at least one member of each of a list of service groups has started before the current
service.

e You can ensure that any number of services start before the current service. For example, you may want
to ensure that a particular network server has started before a SQL Remote Message Agent that is to run
against that server starts.

To add a service or group to a list of dependencies

From the Context list, choose SQL Anywhere 11.
In the right pane, click the Services tab.

. Select the service, and then choose File » Properties.

. Click Add Services or Add Service Groups to add a service or group to the list of dependencies.

1
2
3
4. Click the Dependencies tab.
5
6. Select one of the services or groups from the list.
7

. Click OK to add the service or group to the list of dependencies.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 73

Running the database server

Troubleshooting server startup

This section describes some common problems that may occur when starting the database server.

Ensure that your transaction log file is valid

The server won't start if the existing transaction log is invalid. For example, during development you may
replace a database file with a new version, without deleting the transaction log at the same time. However,
doing so causes the transaction log file to be different than the database, and results in an invalid transaction
log file.

Ensure that you have enough disk space for your temporary
file
SQL Anywhere uses a temporary file to store information while running. This file is usually stored in the
directory pointed to by the SATMP environment variable, typically c:\temp.

If you do not have enough disk space available to the temporary directory, you will have problems starting
the server.

See “SATMP environment variable” on page 379.

Ensure that network communication software is running

Appropriate network communication software must be installed and running before you run the database
server. If you are running reliable network software with just one network installed, this process should be
straightforward.

For more information about network communication issues, see “Client/server
communications” on page 141.

You should confirm that other software requiring network communications is working properly before
running the database server.

If you are running under the TCP/IP protocol, you may want to confirm that ping and Telnet are working
properly. The ping and Telnet applications are provided with many TCP/IP protocol stacks.

Debugging network communications startup problems

If you are having problems establishing a connection across a network, you can use debugging options at
both the client and the server to diagnose problems. On the server, you use the -z option. The startup
information appears on the database server messages window: you can use the -0 option to log the results
to an output file.

74 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Troubleshooting server startup

See “-z server option” on page 239 and “-o server option” on page 208.

Make sure you are using the right sasrv.ini file

If you are having problems establishing a connection to the correct server across a network, try deleting the
sasrv.inifile. This file contains server information, including server name, protocol, and address. It is possible
that the server information in this file is overriding information you specified in the connection string.
Deleting this file causes SQL Anywhere to create a new sasrv.ini file containing the information you specify
in the connection string. The default location of sasrv.ini is %ALLUSERSPROFILE%\Application Data\SQL
Anywhere 11 on Windows and ~/.sglanywherell on Unix.

If you continue to experience problems establishing a connection, you should also delete any copy of
sasrv.ini located in any of the following places:

e The bin32 or bin64 subdirectory of your SQL Anywhere installation directory (listed in the
HKEY_LOCAL_MACHINE\SOFTWARE\Sybase\SQL Anywhere\11.0\Location registry key)

e Windows directory
e Windows system directory

e Anywhere else in your path

For more information about the sasrv.ini file, see “Server name caching for faster
connections” on page 137.

Create a debug log file

You can use the LogFile connection parameter to create a debug log file. Log files can provide more details
about where a connection failure occurred, thereby helping you troubleshoot and correct the problem. See
“LogFile connection parameter [LOG]” on page 289.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 75

Running the database server

Running authenticated SQL Anywhere applications

The OEM Edition of SQL Anywhere is provided for Sybase OEM Partners. With the OEM Edition of SQL
Anywhere, an authenticated application can carry out any operation on the database, subject to the
permissions granted to the user ID.

Unauthenticated connections have read-only access, and can perform inserts, updates, and deletes on
temporary tables. Using unauthenticated connections allows complex reports to be created using stored
procedures, and accessed using reporting tools, such as Crystal Reports.

The authentication mechanism is independent of any application programming language or tool, and is
carried out on every connection, so you can use both authenticated connections and more restricted
unauthenticated connections in your application.

Authentication is not a security mechanism. Anyone running an unauthenticated database server against the
database can carry out any operation, subject to the usual SQL permissions scheme.

Developing an authenticated application

Developing an authenticated application is a simple process: a special authentication signature is
incorporated into the database, and a second signature is incorporated into your application. When the
application connects to the database, the signatures are compared to authenticate the application. The
following steps are required to develop an authenticated SQL Anywhere application:

1. “Obtaining authentication signatures” on page 76
2. “Authenticating your database” on page 77
3. “Authenticating your application” on page 78

All the database tools included with SQL Anywhere, including Sybase Central, Interactive SQL, and the
utilities, such as dbbackup, are self-authenticating. They are unrestricted in their operations against any
authenticated database. If the database itself is not authenticated, the tools act in a restricted, read-only
fashion.

You must use the OEM Edition of the SQL Anywhere database server for an authenticated application. This
edition differs from the usual database server only in that it processes authentication instructions. The
authentication instructions are ignored by other editions of the database server. If you do not use the
authenticated database server, no restrictions are placed on unauthenticated applications.

Obtaining authentication signatures

Note
To get an authentication signature, you must have an OEM contract with Sybase iAnywhere.

76 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Running authenticated SQL Anywhere applications

To obtain your authentication signature

1. Go to http://lwww.sybase.com/sql_anywhere_authentication_registration.

2. Complete the form to obtain your authentication signatures. The following information is incorporated
into your authentication mechanism:

e Company The name of your company.

e Application Name The name of your application.
For information about how the company name and application name are incorporated into the authentication
mechanism, see “Authenticating your database” on page 77.

Once you complete the form, you will be emailed a database signature and an application signature within
48 hours. These signatures are long (81 character) strings of characters and digits. The email message
containing your authentication information includes some examples of how to use the information. Some
email systems force line breaks in these instructions. Make sure you rejoin lines broken in the email message
for the instructions to work.

Authenticating your database

The OEM Edition of SQL Anywhere does not permit any operations to be carried out on an unauthenticated
database.

You can use the Authenticated database property to determine if the database has been authenticated:

SELECT DB_PROPERTY (“"Authenticated”);

For more information about database properties, see “Database properties” on page 639.

To authenticate a database

1. Set the database_authentication option for the database, using the following SQL authentication
statement:

SET OPTION PUBLIC.database authentication =
"company = company-name;
application = application-name;
signature = database-signature”®;
2. The company-name and application-name arguments are the values you supplied to Sybase when
obtaining your signature, and database-signature is the database signature that you received from Sybase.

3. Restart the database for the option to take effect.

When the database server loads an authenticated database, it displays a message in the database server
messages window describing the authenticated company and application. You can check that this message
is present to verify that the database_authentication option has taken effect. The message has the following
form:

This database is licensed for use with:
Application: application-name
Company: company-name

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 77

http://www.sybase.com/sql_anywhere_authentication_registration

Running the database server

Tip
You can store the authentication statement in a SQL script file to avoid having to type in the long signature.
You can run the SQL script from Interactive SQL by choosing Run Script from the File menu.

If you create a file named authenticate.sgl in the scripts subdirectory of your SQL Anywhere installation
directory and store the authentication statement in this file, it is applied whenever you create, rebuild, or
upgrade a database. See “Upgrading authenticated databases” on page 80.

Authenticating your application

An authenticated application must set the connection_authentication database option immediately after
connecting. The option must be set on every connection immediately after the connection is established.
ODBC or JDBC applications query the database about its capabilities, and the developer may not have control
over these actions. For this reason, every connection has a thirty second grace period before the restrictions
apply. The grace period allows an application to authenticate regardless of which development tool is being
used.

You can use the Authenticated connection property to determine if the database has been authenticated:

SELECT CONNECTION_PROPERTY (“"Authenticated®);

For more information about connection properties, see “Connection properties” on page 598.
The following SQL statement authenticates the connection:

SET TEMPORARY OPTION connection_authentication =
"company = company-name;
application = application-name;
signature = application-signature®;

The option must be set for the duration of the connection only by using the TEMPORARY keyword. The
company-name and application-name must match those in the database authentication statement. The
application-signature is the signature that you obtained from Sybase.

The database server verifies the application signature against the database signature. If the signature is
verified, the connection is authenticated and has no restrictions on its activities beyond those imposed by
the SQL permissions. If the signature is not verified, the connection is limited to those actions permitted by
unauthenticated applications.

78 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Running authenticated SQL Anywhere applications

Executing the authentication statement

The way you execute the SET TEMPORARY OPTION statement that sets the authentication option depends
on the programming interface you are using. The signatures listed here are not valid signatures. Examples

are provided for setting the authentication option using the following interfaces:

OoDBC
PowerBuilder
JDBC
ADO.NET
Embedded SQL

Using special characters in the authentication option

example:

SET TEMPORARY OPTION connection_authentication=
“Company = Joe""s Garage;
Application = Joe""s Program;
Signature = 0fa55157edb8el4d818e...";

If your company name has quotation marks, apostrophes, or other special characters (for example, Joe's
Garage) you need to be careful about how you construct the authentication statement. The entire set of
authentication options (Company=...;Application=...;Signature=...) is a SQL string. The rules for strings in
SQL dictate that if you include a quotation mark inside the string, it must be doubled to be accepted. For

ODBC
Use the following statement:

SQLExecDirect(
hstmt,
"SET TEMPORARY OPTION connection_authentication=
"Company=MyCo;
Application=MyApp;
Signature=0fa55159999e14d818e...";"
SQL_NTS

The string must be entered on a single line, or you must build it up by concatenation.

PowerBuilder
Use the following PowerScript statement:

EXECUTE IMMEDIATE
"SET TEMPORARY OPTION connection_authentication=
"Company=MyCo;
Application=MyApp;
Signature=0fa551599998e14d818e..." ;"
USING SQLCA

JDBC
Use the following statement:

Statement Stmtl = con.createStatement();
Stmtl.executeUpdate(

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

79

Running the database server

"SET TEMPORARY OPTION connection_authentication=
"Company=MyCo;
Application=MyApp;
Signature=0fa55159999e14d818e...";"

)

The string must be entered on a single line, or you must build it up by concatenation.

ADO.NET
Use the following statement:

SACommand cmd=new SACommand(
"“"SET TEMPORARY OPTION connection_authentication=
"Company=MyCo;
Application=MyApp;
Signhature=0fa551599998e14d818e..." ;"
con

cmd . ExecuteNonQuery() ;

The string must be entered on a single line, or you must build it up by concatenation.

Embedded SQL
Use the following statement:
EXEC SQL SET TEMPORARY OPTION connection_authentication=
"Company=MyCo;
Application=MyApp;
Signature=0fa551599998e14d818e...";

The string must be entered on a single line, or you must build it up by concatenation.

When connecting to an authenticated database, the connection and authentication steps are performed
separately. However, some objects, such as the Visual Basic Grid object can attempt a separate, implicit
connection, which does not automatically include authentication. In such cases, the connection is not
authenticated and the database operation can fail. You can avoid this problem by including the InitString
connection parameter in the connection string. The following example illustrates how you can modify a
Visual Basic application to include the InitString connection parameter so that every connection is
immediately followed by authentication:

mConnectionString =
"Provider=SAPROV.11;
UID=DBA;
PWD=sql ;
ENG=testll;
InitString=SET TEMPORARY OPTION connection_authentication=
"Company=MyCo;
Application=MyApp;
Signature=0fa55157edb8e14d818e...""
mdbName .ConnectionString = mConnectionString
mdbName .Open
mIsSQL = True

Upgrading authenticated databases

The only way to preserve authentication information when upgrading or rebuilding a database is to store the
authentication statement in the file authenticate.sqgl.

80 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Running authenticated SQL Anywhere applications

Upgrade utility unsupported for upgrading to version 11 or later

The Upgrade utility (dbupgrad) cannot be used to upgrade version 9.0.2 and earlier databases to version 10
or later. To upgrade older databases to version 11 or later, you must rebuild the database by performing an
unload and reload. See “Upgrading SQL Anywhere” [SQL Anywhere 11 - Changes and Upgrading].

Create a file named authenticate.sql in the install-dir\scripts directory, with the following contents:

SET OPTION PUBLIC.database_authentication = "authentication-statement”
go

The go must appear in the file; otherwise, the statement is ignored.

For information about the content of the authentication-statement string, see “database_authentication
[database]” on page 522.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 81

Running the database server

Running SQL Anywhere Web Edition applications

SQL Anywhere Web Edition is a free version of SQL Anywhere available for the development and
deployment of web applications. SQL Anywhere Web Edition may only be used for web browser
applications, and can be run on Windows and Linux. There are no restrictions on database size, cache size,
CPUs, optimization techniques, execution strategies, or SQL language support.

Some features are not available for applications using SQL Anywhere Web Edition and require you to either
purchase them as separately licensable components, or upgrade to a paid SQL Anywhere license.

For more information about SQL Anywhere Web Edition including licensing information, feature
availability, and platform support details, see the SQL Anywhere Web Edition FAQ at http://
www.sybase.com/detail ?id=1057560.

82

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1057560
http://www.sybase.com/detail?id=1057560

Error reporting in SQL Anywhere

Error reporting in SQL Anywhere

When a fatal error or crash occurs and is detected by any of the following applications, an error report is
created about what was happening at the time of the problem:

Interactive SQL (dbisql)

MobiLink Listener (dblsn)

MobiLink server (mlsrv11)

network server (dbsrv11)

personal server (dbengl1)

QAnywhere agent (gaagent)

Replication Agent (dbltm)

SQL Anywhere client for MobiLink (dbmlsync)
SQL Anywhere Console utility (dbconsole)
SQL Remote (dbremote)

Sybase Central

The error report includes information such as the execution state of the threads at the time of the crash, so

that iAnywhere is better able to diagnose the cause of the problem. By default, the error report is created in
the diagnostic directory (specified by the SADIAGDIR environment variable), or if this location does not

exist, it is created in the same directory as the database file.

Error report file names are composed as follows:

e aprefix that identifies the application:

Application identifier | Application

LSN Listener utility

LTM Replication Agent

MLC MobiLink client

MLS MobiLink server

QAA QAnywhere agent

SA Personal or network database server
SR SQL Remote

e avalue indicating the software version
e two fields linked with underscores that provide the timestamp for when the error report was created
e the application identifier

e the extension .mini_core

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 83

Running the database server

For example, SA11 20051220 133828 32116.mini_core is an error report from a SQL Anywhere version
11 database server from 2006/06/20, at 1:38:28 pm, from process 32116.

During normal database server operation, diagnostic information is also recorded about the database server,
such as how many CPUs are on the computer, whether hyperthreading is enabled, and what options were
specified when the server was started. This information can also be submitted using dbsupport.

How SQL Anywhere software submits error reports and diagnhostic information

After the database server successfully writes out error report information, it launches Support utility
(dbsupport) and passes it the name of the error report file to be submitted. By default, dbsupport attempts to
prompt you to submit an error report when it is generated, but if dbsupport is unable to prompt you, then the
report is not sent. iAnywhere encourages you to submit error reports when they occur. The report does not
contain any information that identifies the sender.

Error reports and diagnostic information are uploaded to the iAnywhere Error Reporting web site via HTTP.
This process saves you time by making it as convenient as possible to send relevant files to iAnywhere so
that it is possible to diagnose and provide solutions to problems you encounter.

You can change the default behavior of dbsupport with the -cc option:

e The following command configures dbsupport to submit error reports automatically without prompting
the user:

dbsupport -cc autosubmit
e The following command turns off automatic error report submission:

dbsupport -cc no

If you choose not to submit an error report, it remains in the diagnostic directory on your hard disk. The
location of the diagnostic directory is specified by the SADIAGDIR environment variable. See
“SADIAGDIR environment variable” on page 375.

You can view the list of error reports with the -lc option:

e The following command generate a list of all crash reports that have not been submitted to iAnywhere
Solutions:

dbsupport -Ic

Submitting error reports to iAnywhere assists with diagnosing the cause of a fatal error or assertion. Once
an error report is submitted, it is deleted from the computer where it was generated. See “Support utility
(dbsupport)” on page 833.

You can manually submit the error reports with the -sc option:

e The following command submits all crash report and diagnostic information stored in the diagnostic
directory to iAnywhere Solutions:

dbsupport -sa

84 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Anywhere database connections

Contents

CONNECHION PATAMETEIS ...t e ettt e et e e e e e s r e e e e e e e e asb e e e e e e e aannes 86
Connecting with SQL ANYWNEIE APISooeiiiiii e 89
Connecting from desktop applications to a Windows Mobile database 91
Connecting from Sybase Central, Interactive SQL, or the SQL Anywhere Console
01 92
Creating ODBC data SOUICEScccceiiiiiiiiiiiiieeeee ettt e e e e s s et e e e e e e e s snsbbeereeeeeeeaanne 97
Connecting to a database USiNg OLE DBccoooviiiiiiiiiiiiin et 104
UsSiNg integrated [0QINSeveiiiiiiiiiiii et e e 106
Kerberos authentiCationcooooiiiiiiioi e 114
Sample SQL Anywhere database CONNECHIONScoovviiiiiiiiiiiiiiee e 124
Troubleshooting CONNECHIONSciii i e e e 132
Disconnecting from a dat@basecooiiiuiiiiiiiiiiiiiiie e 140

A database connection forms a channel through which all activity from the client application takes place.
Client applications cannot interact with the database server until a connection is made. When the database
server connection is made, a user’s ID determines what actions they are authorized to perform on the database
server.

When a user connects to a database, the database server assigns the user’s connection a unique connection
ID. For each new connection to the database server, the server increments the connection 1D value by 1.
These connection 1Ds are logged in the -z server output. The connection ID can be used to filter request
logging information, identify which connection has a lock on the database, or track the total number of
connections to a server since it started and the order in which those connections were made. See “Request
logging” [SQL Anywhere Server - SQL Usage] and “How locking works” [SQL Anywhere Server - SQL
Usage].

You can use the CONNECTION_PROPERTY function to obtain a user's connection-id. See
“CONNECTION_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference].

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 85

SQL Anywhere database connections

Connection param eters
When connecting to a database, the application uses a set of connection parameters to define the connection.
Connection parameters can include the server name, the database name, and the user ID.

Connection parameters provide more than one method for completing a task. For example, you can use the
DatabaseName (DBN) connection parameter (recommended) or the DatabaseSwitches (DBS) parameter to
start an embedded database.

Each connection parameter specifies a keyword-value pair of the form parameter=value. The following
example specifies the password connection parameter for the default password:

Password=sql

Connection parameters are assembled into connection strings. In a connection string, a semicolon separates
each connection parameter:

ServerName=demoll ;DatabaseName=demo

Representing connection strings
Connection string examples can be represented in the following form:

parameterl=valuel
parameter2=value2

This is equivalent to the following connection string:

parameterl=valuel;parameter2=value2

You must enter a connection string on a single line with the parameter settings separated by semicolons.

Connection parameter syntax rules

e Connection strings containing spaces You must enclose the entire connection string in double
quotes if any of the connection parameter values contain spaces.

e Boolean values Boolean (true or false) arguments are either YES, ON, 1, TRUE, Y, or T if true, or
NO, OFF, 0, FALSE, N, or F if false.

e Case sensitivity Connection parameters are case insensitive, although their values may not be (for
example, file names on Unix).

In order of precedence, you can be get the connection parameters used by the interface library from the
following places:

o Connection string You can pass parameters explicitly in the connection string.

o SQLCONNECT environment variable The SQLCONNECT environment variable can store
connection parameters.

o Datasources ODBC data sources can store parameters.

86 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connection parameters

e Character set restrictions It is recommended that the server name must be composed of the ASCII
character set in the range 1 to 127. There is no such limitation on other parameters.

e Priority The following rules govern the priority of parameters:

o The entries in a connect string are read left to right. If the same parameter is specified more than
once, the last one in the string applies. ODBC, OLE DB, Sybase Central, Interactive SQL, and the
SQL Anywhere Console utility are exceptions to this: if the same parameter is specified more than
once, the first string applies.

o If astring contains a data source or file data source entry, the profile is read from the configuration
file, and the entries from the file are used if they are not already set. For example, if a connection
string contains a data source name and sets some of the parameters contained in the data source
explicitly, then in case of conflict the explicit parameters are used.

e Connection string parsing If there is a problem parsing the connection string, an error is generated
that indicates which connection parameter caused the problem.

e Empty connection parameters Connection parameters that are specified with empty values are
treated as a zero length string.

See also

e “Connection parameters and network protocol options” on page 261
e “Connection strings and character sets” on page 410

Connection parameters passed as connection strings

Connection parameters are passed to the interface library as a connection string. This string consists of a
set of parameters, separated by semicolons:

parameterl=valuel;parameter2=value2;. ..

Generally, the connection string built by an application and passed to the interface library does not correspond
directly to the way users enter information. Instead, a user may complete a window, or the application may
read connection information from an initialization file.

Many of the SQL Anywhere utilities accept a connection string as the -c option and pass the connection
string unchanged to the interface library. The following example is a typical Backup utility (dbbackup)
command line:

dbbackup -c "ENG=sample_server;DBN=demo;UID=DBA;PWD=sql" SQLAnybackup

See also
e “Resolving connection parameter conflicts” on page 87

Resolving connection parameter conflicts

To resolve connection parameter conflicts:

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 87

SQL Anywhere database connections

Specify database files using DBF Specify a database file in the StartLine (START) parameter or
using the DatabaseFile (DBF) connection parameter (recommended).

Specify database names using DBN Specify a database name in the StartLine (START) parameter,
the DatabaseSwitches (DBS) connection parameter, or using the DatabaseName (DBN) connection
parameter (recommended).

Specify database server names using ENG Specify the name of the database server in the
ServerName (ENG) parameter when you autostart a database file that is not already running. This ensures
that the database connects to the intended database server.

Use the Start parameter to specify cache size Use the StartLine (START) connection parameter
to adjust the way the DatabaseFile (DBF) connection parameter starts a database file.

For example, the following embedded database connection parameters start a database server with extra
cache:

DBF=samples-dir\demo.db
DBN=Sample

ENG=Sample Server
UID=DBA

PWD=sql

START=dbengll -c 8M

88

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connecting with SQL Anywhere APIs

Connecting with SQL Anywhere APIs

To connect to a database, the client application must call one of the following SQL Anywhere API functions:

Interface Details

obDBC “SQL Anywhere ODBC API” [SQL Anywhere Server - Programming]
“Creating ODBC data sources” on page 97

OLE DB “Connecting to a database using OLE DB” on page 104

ADO.NET “Connecting to a database” [SQL Anywhere Server - Programming]

Embedded “SQL Anywhere embedded SQL” [SQL Anywhere Server - Programming]

SQL

Sybase Open | “Using SQL Anywhere as an Open Server” on page 1123

Client “Sybase Open Client API” [SQL Anywhere Server - Programming]

iAnywhere “Connecting from a JDBC client application” [SQL Anywhere Server - Programming]
JDBC driver “SQL Anywhere JDBC driver” [SQL Anywhere Server - Programming]

jConnect “Connecting from a JDBC client application” [SQL Anywhere Server - Programming]
JDBC driver

“SQL Anywhere JDBC driver” [SQL Anywhere Server - Programming]

The SQL Anywhere API uses connection information included in the call from the client application to
locate and connect to the database server. Information sent by the client application can include information
held in a data source, the SQLCONNECT environment variable, or the server address cache. The following
figure is a simplified representation of the process.

Client Database
application server

e
e]

‘\-.._._‘_______,_,..r"
Database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 89

SQL Anywhere database connections

Additional information

If you want ...

Consider reading ...

An overview of connecting from Sybase Central or
Interactive SQL (including adescription of the drivers
involved)

“Connecting from Sybase Central, Interactive
SQL, or the SQL Anywhere Console utili-
ty” on page 92

Some examples to get started quickly, including Syb-
ase Central and Interactive SQL scenarios

“Sample SQL Anywhere database connec-
tions” on page 124

To learn about data sources

“Creating ODBC data sources” on page 97

To learn what connection parameters are available

“Connection parameters” on page 262

To see an in-depth description of how connections are
established

“Troubleshooting connections” on page 132

To learn about network-specific connection issues

“Client/server communications” on page 141

To learn about character set issues affecting connec-
tions

“Connection strings and character
sets” on page 410

To learn about connecting through a firewall

“Connecting across a firewall” on page 144

90

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connecting from desktop applications to a Windows Mobile database

Connecting from desktop applications to a Windows
Mobile database

You can connect from applications running on a desktop PC, such as Sybase Central or Interactive SQL, to
a database server running on a Windows Mobile device. The connection uses TCP/IP over the ActiveSync
link between the desktop computer and the Windows Mobile device.

See also

e “Start a database server on your Windows Mobile device” on page 336
e “Create an ODBC data source to connect to your Windows Mobile device” on page 337
e “Determine the IP address of your Windows Mobile device” on page 336

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 91

SQL Anywhere database connections

Connecting from Sybase Central, Interactive SQL, or
the SQL Anywhere Console utility

This section provides procedures for using the Connect window. In Sybase Central, Interactive SQL, and
the SQL Anywhere Console utility, you use the Connect window to define the database server connection
parameters.

See also
e “Sample SQL Anywhere database connections” on page 124

Working with the Connect window

When connecting to a server or database from Sybase Central, Interactive SQL, or the SQL Anywhere
Console utility, you use the Connect window to define the connection parameters. Information you enter in
the Connect window is not preserved between sessions.

The connection parameters you specify in the Connect window are dependent on the number of databases
running on the database server. To connect to a single database, you complete the User ID and Password
fields. If there are multiple databases running on the database server, you must specify additional connection
parameters such as the server or database name.

The Connect window includes:

e An ldentification tab. Use this tab to specify your user name, password, and the data source.
e A Database tab. Use this tab to identify the server or database to connect to.

e An Advanced tab. Use this tab to specify additional connection parameters and a driver for the
connection.

The Connect window has a Connect Assistant to help you connect to a database. To display or hide the
Connect Assistant, click the arrow in the top right corner of the window.

92 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connecting from Sybase Central, Interactive SQL, or the SQL Anywhere Console utility

x

Connect Assistant ®

Identification I Databasel Networkl P.dvancedl

Welcome!

[
% The Following walues are used to identify yourself to the database
5 This assistant helps you connect to a database by specifying a database file or

database server name,
* Supply user ID and password

User ID: I If you want ta connect using an ODBC data source, close the Connect Assistant
and use the ODBC Data Source Figlds.

Password: |

Click the Next button ko begin.
{~ Use inkegrated login MRS N 2 AL D (e

‘fou can use default connection values stored in a profile

= Mone

{+ ODBC Data Source name

ISQL Anywhere 11 Demo ;I Browse. ., |

= QDBC Data Source file

I ;l Brose: . _| Back | Mext |

Tools = (0] 4 Cancel | Help |

Click Tools to access the following tools:

e The Test Connection tool tests your connection before exiting the Connect window.

e The Copy Connection String To Clipboard tool creates a connection string from the options you
specified in the Connect window and copies the string into your clipboard.

e The Save As ODBC Data Source tool lets you quickly create an ODBC data source from the specified
options.

After successfully connecting to the database, the database name appears in the Folders pane of Sybase
Central, below the name of the database server it is running on. The user ID for the connection appears after
the database name.

In Interactive SQL, the database name, user ID, and the database server name appear in the title bar.

Open the Connect window

When you start Sybase Central, you need to open the Connect window manually.

When you start Interactive SQL, the Connect window automatically appears. To open it manually, choose
SQL » Connect.

To open the Connect window (Sybase Central)

e In Sybase Central, choose Connections » Connect With SQL Anywhere 11. Or, press F11 to open the
Connections menu.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 93

SQL Anywhere database connections

Tip
You can make subsequent connections to a given database easier and faster using a connection profile.

To open the Connect window (Interactive SQL)

1. In Interactive SQL, choose SQL » Connect.
Alternatively, you can press F11 to open the Connect window.
2. Specify the connection parameters for the database. For example, to connect to the sample database:
e Click the Identification tab.
e Click ODBC Data Source Name, and choose SQL Anywhere 11 Demo.
e Click OK.

To open the Connect window (SQL Anywhere Console utility)

e Run the following command:

dbconsole

Sybase Central connection profiles

When you first connect to a database server or database, you enter a user 1D, password, and other connection
parameters. This information must be entered again when you make subsequent connections. To save time
and simplify the connection process, you can create a connection profile to save the connection parameters
for each database.

To use and manage connection profiles, choose Connections » Connection Profiles. This command opens
the Connection Profiles window, where you can:

e connect using a connection profile

e edit an existing connection profile

e create a new connection profile

e set a description for a profile

e delete or remove profiles

e import or export a connection profile

e set a profile to connect automatically when Sybase Central is started

Note

Connection profiles are specific to Sybase Central. If you are building an ODBC application, you can use
ODBC data sources to achieve functionality similar to connection profiles. See “Creating ODBC data
sources” on page 97.

94

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connecting from Sybase Central, Interactive SQL, or the SQL Anywhere Console utility

Create a connection profile

To create a new connection profile

1. In Sybase Central, choose Connections » Connection Profiles.
2. Click New.

3. Inthe Name field, type a name for the new profile.

4

. Select New Connection Profile and choose the appropriate plug-in from the list. The plug-in is the
product, such as SQL Anywhere 11 or MobiLink 11.

To base your new connection profile on an existing profile, select Copy Connection Profile and choose

the profile from the Existing Connection Profiles list.

5. To allow other users to access the profile, select Share This Connection Profile With Other Users.

This setting is useful on multi-user platforms such as Unix.
6. Click OK.

7. In the Edit Connection Profile window, enter the required values, and then click OK to close the
window.

To connect automatically when Sybase Central starts

1. In Sybase Central, choose Connections » Connection Profiles.
2. Inthe Connection Profiles list, select a connection profile.

3. Click Set Startup to change the Use On Startup column from No to Yes.

Edit a connection profile

To edit the parameters of an existing connection profile

In Sybase Central, choose Connections » Connection Profiles.
In the Connection Profiles list, select a connection profile.
Click Edit.

In the Edit Connection Profile window, edit the values.

> WP

Import a connection profile

To import a connection profile

1. In Sybase Central, choose Connections » Connection Profiles.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

95

SQL Anywhere database connections

2.
3.
4.

Click Import.
In the File Name field, type the name of the connection profile file you want to import.
Click OK.

Export a connection profile

To export a connection profile

1
2
3.
4
5

In Sybase Central, choose Connections » Connection Profiles.
In the Connection Profiles list, select a connection profile.
Click Export.

In the File Name field, type a file name for the connection profile.

. Click Save.

96

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Creating ODBC data sources

Creating ODBC data sources

Microsoft Open Database Connectivity (ODBC) is a standard application programming interface for
connecting client applications to Windows-based database management systems.

Many client applications, including application development systems, use the ODBC interface to access
SQL Anywhere. When connecting to the database, ODBC applications typically use ODBC data sources.
An ODBC data source is a set of connection parameters, stored in the registry or in a file.

Caution
Storing user 1Ds, encrypted or unencrypted passwords, and database keys in a data source is not
recommended.

The SQL Anywhere ODBC driver is named dbodbc11.dll, and it is located in install-dir\bin32.

For more information about using SQL Anywhere with ODBC, see “ODBC conformance” [SQL Anywhere
Server - Programming].

You can use ODBC data sources to connect to SQL Anywhere databases from the following applications:

e Sybase Central, Interactive SQL, and the SQL Anywhere Console utility.
e All SQL Anywhere utilities.
e PowerDesigner Physical Data Model and InfoMaker.

e Any application development environment that supports ODBC, such as Microsoft Visual Basic, Sybase
PowerBuilder, and Borland Delphi.

e SQL Anywhere client applications on Unix. On Unix, the data source is stored as a file.

Storing SQL Anywhere connection parameters

You use an ODBC data source to connect to an ODBC database. The client computer requires an ODBC
data source for each database connection.

The ODBC data source contains a set of connection parameters. You can store sets of SQL Anywhere
connection parameters as an ODBC data source, in either the Windows registry or as files.

For SQL Anywhere, the use of ODBC data sources goes beyond Windows applications using the ODBC
interface:

e SQL Anywhere client applications on Unix and Windows operating systems can use ODBC data sources.

e ODBC data sources can be used by all SQL Anywhere client interfaces except jConnect and Open Client.
The data source is stored in a file on Unix and Windows Mobile operating systems.

If you have a data source, your connection string can name the data source to use:

e Datasource Usethe DataSourceName (DSN) connection parameter to reference a data source in the
Windows registry:

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 97

SQL Anywhere database connections

DSN=my-data-source

e Filedatasource Usethe FileDataSourceName (FILEDSN) connection parameter to reference a data
source held in a file:

FileDSN=mysource.dsn

Note

When creating a connection string, it can contain the name of an ODBC data source that contains connection
parameters, and connection parameters that are specified explicitly. If a connection parameter is specified
in the connection string and in the ODBC data source, the value that is specified explicitly takes precedence.

Create ODBC data sources using the Connect window

Use the Connect window to create ODBC data sources in Sybase Central, Interactive SQL, and the SQL
Anywhere Console utility.

To create an ODBC data source using the Connect window

Open the Connect window. See “Open the Connect window” on page 93.
Specify a User ID, Password, and File Name.
Choose Tools » Save As ODBC Data Source.

In the Enter the name for this new data source field, type a name for the data source.

o M w DN

In the Select The Data Source Type list, specify whether the data source is available for the current
user or all users.

Click Save.
7. Click OK.

o

Create ODBC data sources using the ODBC Administrator

Use the Microsoft ODBC Administrator to create and edit data sources on Windows-based applications. Use
the utility to work with User Data Sources, File Data Sources, and System Data Sources.

Caution
Storing user IDs, encrypted or unencrypted passwords, and database keys in a data source is not
recommended.

To create an ODBC data source (ODBC Administrator)

1. Choose Start » Programs » SQL Anywhere 11 » ODBC Administrator.

2. To create an ODBC data source for the current user, click the User DSN tab.

98

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Creating ODBC data sources

To create a system-wide ODBC data source, click the System DSN tab.
Click Add.

In the Name list, choose SQL Anywhere 11. Click Finish.

Specify the connection parameters for the ODBC data source.

Click OK.

Click OK.

N o o &~ ow

Creating a System ODBC data source on 64-bit Windows

64-bit versions of Windows maintain two sets of the System Data Source collection; one for 64-bit
applications and one for 32-bit applications. To create a System Data Source that is accessible to both 64-
bitand 32-bit applications, you must run a copy of the 32-bit ODBC Administrator (located in the WINDOWS
\SysWOW®64 folder). To avoid connection problems, set up your 32-bit System Data Source exactly like your
64-bit System Data Source.

To edit an ODBC data source using the ODBC Administrator

1. Choose Start » Programs » SQL Anywhere 11 » ODBC Administrator.
2. Click the User DSN tab.

3. Inthe Name list, click a data source.

4. Click Configure.

5. Edit the connection parameters for the ODBC data source.

6. Click OK.

7. Click OK.

Create an ODBC data source with the dbdsn utility

File Data Sources can not be created with the dbdsn utility. Use the ODBC Administrator to create File Data
Sources. System Data Sources are limited to Windows-based operating systems.

Caution
Storing user IDs, encrypted or unencrypted passwords, and database keys in a data source is not
recommended.

To create an ODBC data source (Command line)

e Run a dbdsn command, specifying the connection parameters you want to use.

For example, the following command creates a data source for the sample database. The command must
be entered on one line:

dbdsn -w "My DSN" -c ""UID=DBA;PWD=sql ;DBF=samples-dir\demo.db"

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 99

SQL Anywhere database connections

For information about samples-dir, see “Samples directory” on page 390.

For more information about the dbdsn utility, see “Data Source utility (dbdsn)” on page 752.

Creating a System ODBC data source on 64-bit Windows

64-bit versions of Windows maintain two sets of the System Data Source collection; one for 64-bit
applications and one for 32-bit applications. To create a System Data Source that is accessible to both 64-
bit and 32-bit applications, you must run the 32-bit version of dbdsn (located in the SQL Anywhere bin32
folder). To avoid connection problems, set up your 32-bit System Data Source exactly like your 64-bit System
Data Source.

Create an ODBC data source on Mac OS X

The SQL Anywhere ODBC driver must be added before you create the ODBC data source.

Caution
Storing user IDs, encrypted or unencrypted passwords, and database keys in a data source is not
recommended.

To add the SQL Anywhere ODBC driver

1. Launch the ODBC Administrator from /Applications/Utilities.

2. Select the Drivers tab.

3. Click Add.

4. In the Description field, type SQL Anywhere 11.

5. Click Choose and select the SQL Anywhere ODBC driver in both the Driver File Name and Setup File
Name fields. By default, it is located in /Applications/SQLAnywhere11/System/lib/dbodbc1l r.bundle.
The _rinthe bundle name indicates that it is the threaded version of the driver. There is also an unthreaded
version (dbodbc11.bundle) for use with unthreaded applications.

6. Click OK.

To create an ODBC data source

You can add the information with a text editor. The ODBC configuration files are located in /Library/
ODBC within your home directory. There is an odbcinst.ini file for driver information and an odbc.ini file
for data source information.

You can also use the Data Source utility (dbdsn) to create ODBC data sources on Mac OS X. See “Data
Source utility (dbdsn)” on page 752.

1. Launch the ODBC Administrator from /Applications/Utilities.
2. Inthe ODBC Administrator, click the User DSN tab, and then click Add.
3. Inthe Name list, click SQL Anywhere 11.

100

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Creating ODBC data sources

4. Click Finish.
5. In the Data Source Name field, type Demoll.

6. Add the following connection parameters. The connection parameters and values are case insensitive.

Keyword Value

User ID DBA

Password sql

Start Line dbengl11

Database File /Applications/SQLAnywherel11/System/demo.db
ThreadManager ON

Driver SQL Anywhere 11

For more information about connection parameters, see “Connection parameters and network protocol
options” on page 261.

7. Click OK.
8. Click Apply.
9. Press Command+Q to exit the ODBC Administrator.

Using file data sources on Windows

Generally, on Windows-based operating systems, ODBC data sources are stored in the system registry. File
data sources are an alternative, which are stored as files. In Windows, file data sources typically have the
extension .dsn. They consist of sections, each section starting with a name enclosed in square brackets.

To connect using a File Data Source, use the FileDataSourceName (FILEDSN) connection parameter. You
can not use both DataSourceName (DSN) and FileDataSourceName (FILEDSN) in the same connection.

File data sources can be distributed

Use File Data Sources to distribute the file to users and simplify the management of multiple user
connections. If the file is placed in the default location for file data sources, it is picked up automatically by
ODBC.

To create an ODBC file data source (ODBC Administrator)

1. Choose Start » Programs » SQL Anywhere 11 » ODBC Administrator.
2. Click the File DSN tab.
3. Click Add.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 101

SQL Anywhere database connections

4. Inthe Name list, click SQL Anywhere 11.
5. Click Next.

6. Follow the instructions in the Create New Data Source Wizard.

Using ODBC data sources on Windows Mobile

Windows Mobile does not provide an ODBC driver manager or an ODBC Administrator. On Windows
Mobile, SQL Anywhere uses ODBC data sources stored in files. To use these data source definitions, use
either the DSN or the FILEDSN keyword; on Windows Mobile DSN and FILEDSN are synonyms.

Caution
Storing user IDs, encrypted or unencrypted passwords, and database keys in a data source is not
recommended.

Data source location
Windows Mobile searches for the data source files in the root directory of the device: \filename.dsn.

Each data source is held in a file. The file has the same name as the data source, with an extension of .dsn.

See also
e “Using file data sources on Windows” on page 101

A sample Windows Mobile data source
The following is a sample of an ODBC data source for Windows Mobile.

[ODBC]

DRIVER=\windows\dbodbc11.dll

UID=DBA

PWD=sql

Integrated=No

AutoStop=Yes

ServerName=SalesDB_remote
LINKS=tcpip(host=192.168.0.55;port=2638;dobroadcast=none)
LOG=\sa_connection.txt

START=dbsrv1il -c 8M

See also
e “Create an ODBC data source to connect to your Windows Mobile device” on page 337

Using ODBC data sources on Unix

On Unix operating systems, ODBC data sources are held in a system information file. This file may or may
not be named .odbc.ini. The following locations are searched, in order, for the system information file:

e The ODBCINI environment variable.

102 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Creating ODBC data sources

e The ODBC_INI environment variable.

e The ODBCHOME environment variable.
e The HOME environment variable.

e The user's home directory (~).

e The PATH environment variable.

Note

The ODBCINI and ODBC_INI environment variables point to the system information file (which may or
may not be named .odbc.ini), while the ODBCHOME and HOME environment variables point to a path
where the .odbc.ini file is located.

Both ODBCINI and ODBC_INI specify a full path, including the file name. If the system information file
is located in a directory specified by ODBCINI or ODBC_INI, it does not have to be named .odbc.ini.

The following is a sample system information file:

[My Data Source]

ENG=myserver
CommLinks=tcpip(Host=hostname)
UID=DBA

PWD=sql

You can enter any connection parameter in the system information file. See “Connection
parameters” on page 262.

Network protocol options are added as part of the CommLinks (LINKS) parameter. See “Network protocol
options” on page 301.

Caution
Storing user I1Ds, encrypted or unencrypted passwords, and database keys in a data source is not
recommended.

On Unix, use the dbdsn utility to create and manage ODBC data sources.

Caution

On Unix, do not add simple encryption to the system information file (named .odbc.ini by default) with the
File Hiding utility (dbfhide) unless you are using only SQL Anywhere data sources. If you plan to use other
data sources (for example, for MobiLink synchronization), then obfuscating the contents of the system
information file may prevent other drivers from functioning properly.

See also

e “Creating ODBC data sources” on page 97

e “Data Source utility (dbdsn)” on page 752

e “ODBCHOME environment variable [Unix]” on page 371

e “ODBCINI and ODBC_INI environment variables [Unix]” on page 372

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 103

SQL Anywhere database connections

Connecting to a database using OLE DB

This section describes how to connect to a SQL Anywhere database using OLE DB in the following
environments:

e Microsoft ActiveX Data Objects (ADO) provides a programming interface for OLE DB data sources.
You can access SQL Anywhere from programming tools such as Microsoft Visual Basic.

e Sybase PowerBuilder can access OLE DB data sources, and you can use SQL Anywhere as a
PowerBuilder OLE DB database profile.

OLE DB uses the Component Object Model (COM) to make data from a variety of sources available to
applications. Relational databases are among the classes of data sources that you can access through OLE
DB.

See also
e “Introduction to OLE DB” [SQL Anywhere Server - Programming]

OLE DB providers

An OLE DB provider is required for each type of data source you want to access. Each OLE DB
provider is a dynamic-link library. To access SQL Anywhere, choose one of the following OLE DB
providers:

e Sybase SQL Anywhere OLE DB provider The SQL Anywhere OLE DB provider provides access
to SQL Anywhere as an OLE DB data source without the need for ODBC components. The short name
for this provider is SAOLEDB.

The SAOLEDB provider is self registering. This registration process includes making registry entries in
the COM section of the registry so that ADO can locate the DLL when the SAOLEDB provider is called.
If you change the location of your DLL, you must re-register it.

e Microsoft OLE DB provider for ODBC Microsoft provides an OLE DB provider with a short name
of MSDASQL.

The MSDASQL provider makes ODBC data sources appear as OLE DB data sources. It requires the
SQL Anywhere ODBC driver.

See also
e “Introduction to OLE DB” [SQL Anywhere Server - Programming]

Connecting from ADO

ADO is an object-oriented programming interface. In ADO, the Connection object represents a unique
session with a data source.

You can use the following Connection object features to initiate a connection:

104 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connecting to a database using OLE DB

e The Provider property that holds the name of the provider. If you do not supply a Provider name, ADO
uses the MSDASQL provider.

e The ConnectionString property that holds a connection string. This property holds a SQL Anywhere
connection string, which is used in the same way as the ODBC driver. You can supply ODBC data source
names, or explicit UserID, Password, DatabaseName, and other parameters, just as in other connection
strings.

e The Open method initiates a connection.

Example
The following Visual Basic code initiates an OLE DB connection to SQL Anywhere:

" Declare the connection object

Dim myConn as New ADODB.Connection

myConn.Provider = ""SAOLEDB"

myConn.ConnectionString = "DSN=SQL Anywhere 11 Demo"
myConn.Open

See also
e “ADO programming with SQL Anywhere” [SQL Anywhere Server - Programming]

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 105

SQL Anywhere database connections

Using integrated logins

The integrated login feature allows you to maintain a single user ID and password for operating system and
network logins, and database connections. To create an integrated login:

e Enable the integrated login feature.
e Create a database user to map the integrated login to (if one does not already exist).

e Create an integrated login mapping between a Windows user or group profile and an existing database
user. The Login Mappings folder in Sybase Central lists all users with integrated login permissions.

e Connect from a client application and test the integrated login facility.

Supported operating systems

Integrated login capabilities are available for Windows-based database servers. Windows clients can use
integrated logins to connect to a network server running on Windows.

Integrated login benefits

An integrated login is a mapping from one or more Windows users or Windows user group profiles to an
existing database user. A user who has successfully navigated the security for that user profile or group and
logged in to a computer can connect to a database without providing an additional user ID or password.

To do this, the database must be configured to use integrated logins and a mapping must have been granted
between the user or group profile used to log in to the computer or network, and a database user.

Using an integrated login is more convenient for the user and permits a single security system for database
and network security. The advantages of an integrated login include:

e Users do not need to type a user ID or password.

e Users are authenticated by the operating system. A single system is used for database security and
computer or network security.

e Multiple user or group profiles can be mapped to a single database user ID.

e The name and password used to login to the Windows computer do not have to match the database user
ID and password.

Caution

Integrated logins offer the convenience of a single security system, but there are important security
implications that database administrators should be familiar with. See “Security concerns: Unrestricted
database access” on page 112 and “Security concerns: Copied database files” on page 123.

106 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using integrated logins

Enable the integrated login feature

The login_mode database option determines whether the integrated login feature is enabled. As database
options apply only to the database in which they are found, different databases can have a different integrated
login setting even if they are loaded and running on the same server.

The login_mode database option accepts the following values:

e Standard Standard logins are permitted. This is the default setting. Standard connection logins must
supply both a user ID and password, and do not use the Integrated or Kerberos connection parameters.
An error occurs if an Integrated or Kerberos login connection is attempted.

e Integrated Integrated logins are permitted.

e Kerberos Kerberos logins are permitted. See “Kerberos authentication” on page 114.

Caution

Setting the login_mode database option to not allow Standard logins restricts connections to only those users
or groups who have been granted an integrated or Kerberos login mapping. Attempting to connect with a
user ID and password generates an error unless you are a user with DBA authority.

To allow more than one type of login, specify multiple values for the login_mode option. For example, the
following SQL statement sets the value of the login_mode database option to allow both standard and
integrated logins:

SET OPTION PUBLIC.login_mode = “Standard, Integrated”;

If a database file can be copied, the temporary public login_mode option should be used (both for integrated
and Kerberos logins). This way, integrated and Kerberos logins are not supported by default if the file is
copied.

Create an integrated login

User profiles can only be mapped to an existing database user ID. When that database user ID is removed
from the database, all integrated login mappings based on that database user ID are automatically removed.

A user or group profile does not have to exist for it to be mapped to a database user ID. More than one user
profile can be mapped to the same database user ID.

You can use either the Create Login Mapping Wizard or a SQL statement to create an integrated login
mapping.
To map an integrated login (Sybase Central)

You must have DBA authority to create or delete an integrated login mapping.

1. Open Sybase Central.
2. Connect to the database as a user with DBA authority.

3. Inthe left pane, right-click Login Mappings » New » Login Mapping.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 107

SQL Anywhere database connections

o

7.

Click Next.

In the Which Windows User Will Be Connecting To The Database field, type the name of the user
or group profile for whom the integrated login is to be created.

In the Which Database User Do You Want To Associate With The Windows User list, select the
database user ID this user maps to

Follow the remaining instructions in the Create Login Mapping Wizard.

To map an integrated login (SQL)

1.
2.

Connect to the database as a user with DBA authority.
Execute a GRANT INTEGRATED LOGIN TO statement.

Example

The following SQL statement allows Windows users fran_whitney and matthew_cobb to log in to the
database as the user DBA, without having to know or provide the DBA user ID or password.

GRANT INTEGRATED LOGIN
TO fran_whitney, matthew_cobb
AS USER DBA;

See “GRANT statement” [SQL Anywhere Server - SQL Reference].

The following SQL statement allows Windows users who are members of the Windows NT group
mywindowsusers to log in to the database as the user DBA, without having to know or provide the DBA
user ID or password.

GRANT INTEGRATED LOGIN
TO mywindowsusers
AS USER DBA;

See “Creating integrated logins for Windows user groups” on page 109.

Revoke an integrated login permission

To revoke an integrated login permission (Sybase Central)

1
2
3.
4
5

. Open Sybase Central.

. Connect to the database as a user with DBA authority.

In the left pane, clickLogin Mappings.

In the right pane, right-click the login mapping you want to remove and click Delete.

. Click Yes.

To revoke an integrated login permission (SQL)

1.

Connect to the database as a user with DBA authority.

108

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using integrated logins

2. Execute a REVOKE INTEGRATED LOGIN FROM statement.

Example
The following SQL statement removes integrated login permission from the Windows user pchin.

REVOKE INTEGRATED LOGIN
FROM pchin;

See “REVOKE statement” [SQL Anywhere Server - SQL Reference].

Connect to a database from a client application

To connect a client application to a database using an integrated login:

e Set the Integrated (INT) parameter in the list of connection parameters to YES.

e Do not specify a user ID or password in the connection string or Connect window.

If the Integrated (INT) parameter is set to YES in the connection string, an integrated login is attempted.
The server attempts a standard login when the connection attempt fails and the login_mode database option
is set to Standard, Integrated. See “login_mode option [database]” on page 540.

If an attempt to connect to a database is made without providing a user ID or password, an integrated login
is attempted. The success of the login attempt is dependent on whether the current user profile name matches
an integrated login mapping in the database.

Interactive SQL examples

In the following example, the connection attempt succeeds when the user logs in with a user profile that
matches the integrated login mapping in the default database server:

CONNECT USING " INTEGRATED=yes";
The Interactive SQL statement CONNECT can connect to a database when:

e Aserver is currently running.
e The default database has the login_mode database option set to accept integrated login connections.

e An integrated login mapping has been created that matches the current user's user profile name or for a
Windows user group to which the user belongs.

e A user clicks OK without providing more information when the more connection information prompt
appears.

Creating integrated logins for Windows user groups

When a Windows user logs in, if they do not have an explicit integrated login mapping, but belong to a
Windows user group for which there is an integrated login mapping, the user connects to the database as the
database user or group specified in the Windows user group's integrated login mapping.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 109

SQL Anywhere database connections

Caution
Creating an integrated login for a Windows user group allows any user that is a member of the group to
connect to the database without knowing a user ID or password.

See “Prevent Windows user groups members from connecting to a database” on page 111.

Members of multiple groups

If the Windows user belongs to more than one Windows user group, and more than one Windows user group
on the computer has an integrated login mapping in the database, then the integrated login only succeeds if
all the Windows user groups on the computer have integrated login mappings to the same database user 1D.
If multiple Windows user groups have integrated login mappings to different database user IDs, an error is
returned and the integrated login fails.

For example, consider a database with two user 1Ds, dbuserA and dbuserB, and the Windows user
windowsuser who belongs to the Windows user groups xpgroupA and xpgroupB.

This SQL statement... Allows...

%gANTnéNTEGRAT,ED LOGIN windowsuser to connect to the database

AS ﬁéERogﬁﬂzgrA; us_in_g the integrated login mapping set ex-
plicitly for windowsuser.

%ANT INTEgRATED LOGIN windowsuser to connect to the database

AS ﬁgggoggusem; using the integrated login mapping gran-
ted to xpgroupA.

%ANT 'NTEﬁRATED LOGIN windowsuser to connect to the database

AS ﬁgggoggusem; be_cause both Windows user groups that

GRANT INTEGRATED LOGIN xpgroupb windowsuser belongs to have an integra-

AS USER dbuserB; ted login mapping to the same database
user.

%ANT 1 NTEiRATED LOGIN No connection to the database. When win-

AS ﬁ@%éoﬁﬁusem; dowsuser_attempts to cc_)nnef:t to the data-

GRANT INTEGRATED LOGIN base, the integrated login fails because

TO Xxpgroupb each Windows user group has an integra-

AS USER dbuserB; ted login mapping to a different database

user and windowsuser is a member of both
Windows user groups.

Domain Controller locations

By default, the computer on which the SQL Anywhere database server is running is used to verify Windows
user group membership. If the Domain Controller server is on a different computer than the database server,
you can specify the name of the Domain Controller server using the integrated_server_name option. For
example:

SET OPTION PUBLIC. integrated_server_name = "\\myserver-1-";

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using integrated logins

See “integrated_server_name option [database]” on page 535.

Prevent Windows user groups members from connecting to
a database

There are two methods you can use to prevent a user who is a member of a Windows user group with an
integrated login from connecting to a database using the group integrated login:

e Create an integrated login for the user to a database user 1D that does not have a password.

e Created a stored procedure that is called by the login_procedure option to check whether a user is allowed
to log in, and raise an exception when a disallowed user tries to connect.

Creating an integrated login to a user ID with no password

When a user is a member of a Windows user group that has an integrated login, but also has an explicit
integrated login for their user ID, the user's integrated login is used to connect to the database. To prevent a
user from connecting to a database using their Windows user group integrated login, you can create an
integrated login for the Windows user to a database user ID without a password. Database user IDs that do
not have a password can not connect to a database.

To create an integrated login to a user ID with no password

1. Add a user to the database without a password. For example:
CREATE USER db_user_no_password;

2. Create an integrated login for the Windows user that maps to the database user without a password. For
example:

GRANT INTEGRATED LOGIN TO WindowsUser
AS USER db_user_no_password;

Creating a procedure to prevent Windows users from connecting

The login_procedure option specifies the stored procedure to call each time a connection to the database is
attempted. By default, the dbo.sp_login_environment procedure is called. You can set the login_procedure
option to call a procedure you have written that prevents specific users from connecting to the database.

The following example creates a procedure named login_check that is called by the login_procedure option.
The login_check procedure checks the supplied user name against a list of users that are not allowed to
connect to the database. If the supplied user name is found in the list, the connection fails. In this example,
users named Joe, Harry, or Martha are not allowed to connect. If the user is not found in the list, the database
connection proceeds as usual and calls the sp_login_environment procedure.

CREATE PROCEDURE DBA.user_login_check()
BEGIN

DECLARE INVALID_LOGON EXCEPTION FOR SQLSTATE "28000";

// Disallow certain users

IF(CURRENT USER IN ("Joe","Harry","Martha")) THEN
SIGNAL INVALID LOGON;

ELSE
CALL sp_login_environment;

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 111

SQL Anywhere database connections

END IF;
END

go
GRANT EXECUTE ON DBA.user_login_check TO PUBLIC

go
SET OPTION PUBLIC.login_procedure="DBA.user_login_check"®
go

Network aspects of integrated logins

If the database is located on a network server, then one of two conditions must be met for integrated logins
to be used:

e The user profile used for the integrated login connection attempt must be identical on both the local
computer and the server. The passwords for both user profiles must also be identical.

For example, when the user jsmith attempts to connect using an integrated login to a database loaded on
a network server, identical user profile names and passwords must exist on both the local computer and
the computer running the database server. The user jsmith must be permitted to log in to both computers.

e If network access is controlled by a Microsoft Domain, the user attempting an integrated login must have
domain permissions with the Domain Controller server and be logged in to the network. A user profile
on the network server matching the user profile on the local computer is not required.

Creating a default integrated login user

A default integrated login user 1D can be created so that connecting via an integrated login will be successful
even if no integrated login mapping exists for the user profile currently in use.

For example, if no integrated login mapping exists for the user profile name JSMITH, an integrated login
connection attempt will normally fail when JSMITH is the user profile in use.

However, if you create a user ID named Guest in a database, an integrated login will successfully map to
the Guest user ID if no integrated login mapping explicitly identifies the user profile JSMITH.

Caution

The default integrated login user permits anyone attempting an integrated login to connect to a database
successfully if the database contains a user ID named Guest. The authorities granted to the Guest user 1D
determine the permissions and authorities granted to the newly-connected user.

Security concerns: Unrestricted database access

The integrated login feature works using the login control system of Windows in place of the SQL Anywhere
security system to connect to a database without providing a user ID or password. Essentially, the user passes
through the database security if they can log in to the computer hosting the database.

112 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using integrated logins

If the user successfully logs in to the Windows server as dsmith, they can connect to the database without
further proof of identification provided there is either an integrated login mapping or a default integrated
login user ID.

When using integrated logins, database administrators should give special consideration to the way Windows
enforces login security to prevent unwanted access to the database.

Caution
Leaving the user profile Guest enabled can permit unrestricted access to a database that is hosted by that
server.

If the Guest user profile is enabled and has a blank password, any attempt to log in to the server will be
successful. It is not required that a user profile exist on the server, or that the login ID provided has domain
login permissions. Literally any user can log in to the server using any login ID and any password: they are
logged in by default to the Guest user profile.

This has important implications for connecting to a database with the integrated login feature enabled.

Consider the following scenario, which assumes the Windows server hosting a database has a Guest user
profile that is enabled with a blank password.

e An integrated login mapping exists between the user fran_whitney and the database user ID DBA. When
the user fran_whitney connects to the server with her correct login ID and password, she connects to the
database as DBA, a user with full administrative rights.

But anyone else attempting to connect to the server as fran_whitney will successfully log in to the server
regardless of the password they provide because Windows will default that connection attempt to the
Guest user profile. Having successfully logged in to the server using the fran_whitney login ID, the
unauthorized user successfully connects to the database as DBA using the integrated login mapping.

Disable the Guest user profile for security
The safest integrated login policy is to disable the Guest user profile on any Windows computer hosting a
SQL Anywhere database. This can be done using the Windows User Manager utility.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 113

SQL Anywhere database connections

Kerberos authentication

The Kerberos login feature allows you to maintain a single user ID and password for database connections,
operating system, and network logins. The Kerberos login is more convenient for users and permits a single
security system for database and network security. Its advantages include:

e The user does not need to provide a user ID or password to connect to the database.
e Multiple users can be mapped to a single database user ID.

e The name and password used to log in to Kerberos do not have to match the database user ID and
password.

Kerberos is a network authentication protocol that provides strong authentication and encryption using
secret-key cryptography. Users already logged in to Kerberos can connect to a database without providing
a user 1D or password.

Kerberos can be used for authentication. To delegate authentication to Kerberos you must:

e configure the server and database to use Kerberos logins

e create mapping between the user ID that logs in to the computer or network, and the database user

Caution
There are important security implications to consider when using Kerberos logins as a single security
solution. See “Security concerns: Copied database files” on page 123.

SQL Anywhere does not include the Kerberos software; it must be obtained separately. The following
components are included with the Kerberos software:

e Kerberos libraries These are referred to as the Kerberos Client or GSS (Generic Security Services)-
API runtime library. These Kerberos libraries implement the well-defined GSS-API. The libraries are
required on each client and server computer that intends to use Kerberos. The built-in Windows SSPI
interface can be used instead of a third-party Kerberos client library if you are using Active Directory
as your KDC.

e A Kerberos Key Distribution Center (KDC) server The KDC functions as a storehouse for users
and servers. It also verifies the identification of users and servers. The KDC is typically installed on a
server computer not intended for applications or user logins.

SQL Anywhere supports Kerberos authentication from DBLib, ODBC, OLE DB, and ADO.NET clients,
and Sybase Open Client and jConnect clients. Kerberos authentication can be used with SQL Anywhere
transport layer security encryption, but SQL Anywhere does not support Kerberos encryption for network
communications.

Windows uses Kerberos for Windows domains and domain accounts. Active Directory Windows Domain
Controllers implement a Kerberos KDC. A third-party Kerberos client or runtime is still required on the
database server computer for authentication in this environment, but the Windows client computers can use
the built-in Windows SSPI interface instead of a third-party Kerberos client or runtime. See “Use SSPI for
Kerberos logins on Windows” on page 119.

114

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Kerberos authentication

Kerberos clients

Kerberos authentication is available on 32-bit Windows and Linux. For a list of tested Kerberos clients, see
http://www.sybase.com/detail?id=1061807.

The following table lists the default names and locations of the keytab and GSS-API files used by the
supported Kerberos clients.

Kerberos client

Kerberos client Default keytab file GSS-APl library | Notes
file name

Windows MIT C:\WINDOWS\krb5kt gssapi32.dll The KRB5_KTNAME envi-

Kerberos client ronment variable can be set
before starting the database
server to specify a different
keytab file.

Windows Cyber- | C:\Program Files\CyberSafe | gssapi32.dil The CSFC5KTNAME envi-

Safe Kerberos cli- | \v5srvtab ronment variable can be set

ent before starting the database
server to specify a different
keytab file.

Unix MIT Ker- [etc/krb5.keytab libgssa- The KRB5_KTNAME envi-

beros client pi_krb5.s0? ronment variable can be set
before starting the database
server to specify a different
keytab file.

Unix CyberSafe /krb5/v5srvtab libgss.so! The CSFC5KTNAME envi-

Kerberos client ronment variable can be set
before starting the database
server to specify a different
keytab file.

Unix Heimdal /etc/krb5.keytab libgssapi.so.11

1 These file names may vary depending on your operating system and Kerberos client version.

Set up Kerberos authentication

To set up Kerberos authentication on a SQL Anywhere database

1. Install and configure the Kerberos client software, including the GSS-API runtime library, on both the

client and server.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

115

http://www.sybase.com/detail?id=1061807

SQL Anywhere database connections

On Windows client computers using an Active Directory KDC, SSPI can be used and you do not need
to install the Kerberos client. See “Use SSPI for Kerberos logins on Windows” on page 119.

If necessary, create a Kerberos principal in the Kerberos Key Distribution Center (KDC) for each user.

A Kerberos principal is a Kerberos user ID in the format user/instance@REALM, where /instance is
optional. If you are already using Kerberos, the principal should already exist, so you will not need to
create a Kerberos principal for each user.

Principals are case sensitive and must be specified in the correct case. Mappings for multiple principals
that differ only in case are not supported (for example, you cannot have mappings for both
jjordan@MYREALM.COM and JJordan@MYREALM.COM).

. Create a Kerberos principal in the KDC for the SQL Anywhere database server.

The Kerberos principal for the database server has the format server-name@REALM, where server-
name is the SQL Anywhere database server name. Principals are case significant, and the server-name
cannot contain multibyte characters, or the characters/, \, or @. The rest of the steps assume the Kerberos
principal is my_server_princ@ MYREALM.COM.

You must create a server service principal within the KDC because servers use a keytab file for KDC
authentication. The keytab file is protected and encrypted.

. Securely extract and copy the keytab for the principal server-name@REALM from the KDC to the

computer running the SQL Anywhere database server. The default location of the keytab file depends
on the Kerberos client and the platform. The keytab file's permissions should be set so that the SQL
Anywhere server can read it, but unauthorized users do not have read permission.

5. Configure SQL Anywhere to use Kerberos

Configure SQL Anywhere to use Kerberos

1. Set up Kerberos authentication on the SQL Anywhere database. See “Set up Kerberos

authentication” on page 115.

. Start the SQL Anywhere server with the -krb or -kr option to enable Kerberos authentication, or use the

-kI option to specify the location of the GSS-API library and enable Kerberos.

. Change the public or temporary public option login_mode to a value that includes Kerberos. You must

have DBA authority to change the setting of this option. The login_mode database option determines
whether Kerberos logins are allowed. As database options apply only to the database in which they are
found, different databases can have a different Kerberos login setting, even if they are loaded and running
on the same server. For example:

SET OPTION PUBLIC.login_mode = “Kerberos,Standard”;

The login_mode database option accepts one or more of the following values:

e Standard Standard logins are permitted. This value is the default. Standard connection logins
must supply both a user 1D and password, and do not use the Integrated or Kerberos connection
parameters.

e Integrated Integrated logins are permitted.

116

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Kerberos authentication

e Kerberos Kerberos logins are permitted.

Caution

Setting the login_mode database option to Kerberos restricts connections to only those users who have
been granted a Kerberos login mapping. Attempting to connect using a user 1D and password generates
an error unless you are a user with DBA authority.

4. Create a database user 1D for the client. You can use an existing database user ID for the Kerberos login,
as long as that user has the correct permissions. For example:

CREATE USER "'kerberos-user"
IDENTIFIED BY abcl23;

5. Execute a GRANT KERBEROS LOGIN TO statement to create a mapping from the client's Kerberos
principal to an existing database user ID. This statement requires DBA authority. For example:

GRANT KERBEROS LOGIN TO "‘pchin@MYREALM.COM™
AS USER "kerberos-user';

If you want to connect when a Kerberos principal is used that does not have a mapping, ensure the Guest
database user ID exists and has a password. See “Creating a default integrated login user” on page 112.

6. Ensure the client user has already logged on (has a valid Kerberos ticket-granting ticket) using their
Kerberos principal and that the client's Kerberos ticket has not expired. A Windows user logged in to a
domain account already has a ticket-granting ticket, which allows them to authenticate to servers,
providing their principal has enough permissions.

A ticket-granting ticket is a Kerberos ticket encrypted with the user's password that is used by the Ticket
Granting Service to verify the user's identity.

7. Connect from the client, specifying the KERBERQOS connection parameter (Often KERBEROS=YES,
but KERBEROS=SSPI or KERBEROS=GSS-API-library-file can also be used). If the user ID or
password connection parameters are specified, they are ignored. For example:

dbisgl -c "KERBEROS=YES;ENG=my_ server_princ"

Interactive SQL example

For example, a connection attempt using the following Interactive SQL statement is successful if the user
logs in with a user profile name that matches a Kerberos login mapping in a default database of a server:

CONNECT USING "KERBEROS=YES";

The Interactive SQL statement CONNECT can connect to a database if all the following are true:

A server is currently running.
e The default database on the current server is enabled to accept Kerberos authenticated connections.
e A Kerberos login mapping has been created for the user's current Kerberos principal.

e |f the user is prompted with a window by the server for more connection information (such as occurs
when using Interactive SQL), the user clicks OK without providing more information.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 117

SQL Anywhere database connections

See also

“-kl server option” on page 201

“-kr server option” on page 202

“-krb server option” on page 203

“login_mode option [database]” on page 540

“GRANT statement” [SQL Anywhere Server - SQL Reference]
“Create Kerberos login mappings” on page 118

Connect from an Open Client or jConnect application

To connect from an Open Client or jConnect application:

Set up Kerberos authentication. See “Set up Kerberos authentication” on page 115.

Configure SQL Anywhere to use Kerberos. See “Configure SQL Anywhere to use
Kerberos” on page 116.

Set up Open Client or jConnect as you would for Kerberos authentication with Adaptive Server
Enterprise. The server name must be the SQL Anywhere server's name and is case significant. You cannot
connect using an alternate server name from Open Client or jConnect.

For information about setting up the Kerberos principals and extracting the keytab, see http://
www.sybase.com/detail?id=1029260.

See also

“-krb server option” on page 203

“-kr server option” on page 202

“-kl server option” on page 201

“login_mode option [database]” on page 540

“GRANT statement” [SQL Anywhere Server - SQL Reference]
“CREATE USER statement” [SQL Anywhere Server - SQL Reference]
“Kerberos connection parameter [KRB]” on page 285
“Troubleshooting Kerberos connections” on page 120

Create Kerberos login mappings

To create a Kerberos login mapping (Sybase Central)

A W

Open Sybase Central.
Connect to the database as a user with DBA authority.
In the left pane, right-click Login Mappings » New » Login Mapping.

Follow the instructions in the Create Login Mapping Wizard.

118

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1029260
http://www.sybase.com/detail?id=1029260

Kerberos authentication

To create a Kerberos login mapping (SQL)

1. Connect to the database as a user with DBA authority.
2. Execute a GRANT KERBEROS LOGIN TO statement.
See “GRANT statement” [SQL Anywhere Server - SQL Reference].

Example
The following SQL statement grants KERBEROS login permission to the Windows user pchin.

GRANT KERBEROS LOGIN TO "pchin@VMYREALM.COM™
AS USER "'kerberos-user™;

Revoke Kerberos login permission

To revoke a Kerberos login mapping (Sybase Central)

. Open Sybase Central.

. Connect to the database as a user with DBA authority.

1

2

3. Inthe left pane, click Login Mappings.

4. In the right pane, right-click the login mapping and choose Delete.
5

. Click Yes.

To revoke a Kerberos login mapping (SQL)

1. Connect to the database as a user with DBA authority.
2. Execute a REVOKE KERBEROS LOGIN FROM statement.
See “REVOKE statement” [SQL Anywhere Server - SQL Reference].

Example
The following SQL statement removes KERBEROS login permission from the Windows user pchin.

REVOKE KERBEROS LOGIN
FROM *"pchin@MYREALM.COM™;

Use SSPI for Kerberos logins on Windows

In a Windows domain, SSPI can be used on Windows-based computers without a Kerberos client installed
on the client computer. Windows domain accounts already have associated Kerberos principals.

To connect using SSPI

1. Set up Kerberos authentication. See “Set up Kerberos authentication” on page 115.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 119

SQL Anywhere database connections

2. Start the SQL Anywhere server with the -krb option to enable Kerberos authentication. For example:
dbengll -krb -n my_server_princ C:\kerberos.db

3. Change the public or temporary public option login_mode to a value that includes Kerberos. You must
have DBA authority to set this option. For example:

SET OPTION PUBLIC.login_mode = "Kerberos”;

4. Create a database user 1D for the client. You can use an existing database user ID for the Kerberos login,
as long as that user has the correct permissions. For example:

CREATE USER kerberos_user
IDENTIFIED BY abcl23;

5. Create a mapping from the client's Kerberos principal to an existing database user ID by executing a
GRANT KERBEROS LOGIN TO statement. This statement requires DBA authority. For example:

GRANT KERBEROS LOGIN TO ""pchin@MYREALM.COM"
AS USER "kerberos-user';

6. Connect to the database from the client computer. For example:

dbisql -c "KERBEROS=SSPI;ENG=my_server_princ"

When Kerberos=SSPI is specified in the connection string, a Kerberos login is attempted.

A connection attempt using the following Interactive SQL statement will also succeed, providing the
user has logged on with a user profile name that matches a Kerberos login mapping in a default database
of a server:

CONNECT USING "KERBEROS=SSPI";

Troubleshooting Kerberos connections

If you get unexpected errors when attempting to enable or use Kerberos authentication, it is recommended
that you enable additional diagnostic messages on the database server and client.

Specifying the -z option when you start the database server, or using CALL

sa_server_option("Debugginglnformation®, “ON") if the server is already running
includes additional diagnostic messages in the database server message log. The LogFile connection
parameter writes client diagnostic messages to the specified file. As an alternative to using the LogFile
connection parameter, you can execute the command dbping -z. The -z parameter displays diagnostic
messages that should help identify the cause of the connection problem.

120 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Kerberos authentication

Difficulties starting the database server

Symptom

Common solutions

"Unable to load

e Ensure a Kerberos client is installed on the database server computer, including

Kerberos GSS- the GSS-API library
API library" . . - .
message e The database server -z output lists the name of the library that it is attempting to
g load. Verify the library name is correct. If necessary, use the -kl option to specify
the correct library name.
e Ensure the directory and any supporting libraries is listed in the library path
(%PATH%% on Windows).
e If the database server -z output states the GSS-API library was missing entry
points, then the library is not a supported Kerberos Version 5 GSS-API library.
"Unable to ac- e Ensure there is a principal for server-name@REALM in the KDC. Principals are

quire Kerberos
credentials for
server

name "server-
name"" message

case sensitive, so ensure the database server name is in the same case as the user
portion of the principal name.

e Ensure the name of the SQL Anywhere server is the primary/user portion of the
principal.

e Ensure that the server's principal has been extracted to a keytab file and the keytab
file is in the correct location for the Kerberos client. See “Kerberos cli-
ents” on page 115.

o If the default realm for the Kerberos client on the database server computer is
different from the realm in the server principal, use the -kr option to specify the
realm in the server principal.

"Kerberos login
failed" client er-
ror

e Check the database server diagnostic messages. Some problems with the keytab
file used by the server are not detected until a client attempts to authenticate.

Troubleshooting Kerberos client connections

If the client got an error attempting to connect using Kerberos authentication:

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 121

SQL Anywhere database connections

Symptom

Common solutions

"Kerberos logins are not supported" error
and the LogFile includes the message "Failed
to load the Kerberos GSS-API library"

e Ensure a Kerberos client is installed on the client com-
puter, including the GSS-API library.

e The file specified by LogFile lists the name of the li-
brary that it is attempting to load. Verify that the li-
brary name is correct, and use the Kerberos connection
parameter to specify the correct library name, if nec-
essary.

e Ensure that the directory including any supporting li-
braries is listed in the library path (%PATH% on Win-
dows).

e If the LogFile output states the GSS-API library was
missing entry points, then the library is not a supported
Kerberos Version 5 GSS-API library.

"Kerberos logins are not supported" error

e Ensure the database server has enabled Kerberos log-
ins by specifying one or more of the -krb, -kl, or -kr
server options.

e Ensure Kerberos logins are supported by SQL Any-
where on both the client and server platforms.

"Kerberos login failed" error

e Ensure the user is logged into Kerberos and has a valid
ticket-granting ticket that has not expired.

e Ensure the client computer and server computer both
have their time synchronized to within less than 5 mi-
nutes.

"Login mode 'Kerberos' not permitted by
login_mode setting" error

e The public or temporary public database option setting
for the login_mode option must include the value Ker-
beros to allow Kerberos logins.

"The login ID ‘client-Kerberos-princi-
pal' has not been mapped to any database
user ID"

e The Kerberos principal must be mapped to a database
user 1D using the GRANT KERBEROS LOGIN state-
ment. Note the full client principal including the realm
must be provided to the GRANT KERBEROS LOGIN
statement, and principals which differ only in the in-
stance or realm are treated as different.

e Alternatively, if you want any valid Kerberos principal
which has not be explicitly mapped to be able to con-
nect, create the guest database user 1D with a password
using GRANT CONNECT.

122

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Kerberos authentication

Security concerns: Setting temporary public options for
added security

Setting the value of the login_mode option for a given database to allow a combination of standard, integrated,
and Kerberos logins using the SET OPTION statement permanently enables the specified types of logins
for that database. For example, the following statement permanently enables standard and integrated logins:

SET OPTION PUBLIC.login_mode = “Standard, Integrated”;

If the database is shut down and restarted, the option value remains the same and integrated logins remain
enabled.

Setting the login_mode option using SET TEMPORARY OPTION still allows user access via integrated
logins, but only until the database is shut down. The following statement changes the option value
temporarily:

SET TEMPORARY OPTION PUBLIC.login_mode = "Standard, Integrated”;

If the permanent option value is Standard, the database will revert to that value when it is shut down.

Setting temporary public options can provide additional security for your database. When you add integrated
or Kerberos logins to your database, the database relies on the security of the operating system on which it
is running. If the database is copied to another computer, access to the database reverts to the SQL Anywhere
security model.

See also

e “Security concerns: Copied database files” on page 123
e “SET OPTION statement” [SQL Anywhere Server - SQL Reference]

Security concerns: Copied database files

If the database file can be copied, use the temporary public login_mode option for integrated and Kerberos
logins. If the file is copied, the integrated and Kerberos logins are not supported by default.

If a database contains sensitive information, the computer where the database files are stored should be
protected from unauthorized access. Otherwise, the database files could be copied and unauthorized access
to the data could be obtained on another computer. To increase database security:

e Make user passwords, especially those with DBA authority, complex and difficult to guess.

e Setthe PUBLIC.login_mode database option to Standard. To enable integrated or Kerberos logins, only
the temporary public option should be changed each time the server is started. This ensures that only
Standard logins are allowed if the database is copied. See “Security concerns: Setting temporary public
options for added security” on page 123.

e Strongly encrypt the database file using the AES encryption algorithm. The encryption key should be
complex and difficult to guess.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 123

SQL Anywhere database connections

Sample SQL Anywhere database connections

The following examples show you how to connect to a SQL Anywhere database from the tools included
with SQL Anywhere.

Connect to the sample database from Sybase Central or
Interactive SQL

To connect to the sample database (Sybase Central)

> Wb

Choose Start » Programs » SQL Anywhere 11 » Sybase Central.
Click Connections » Connect With SQL Anywhere 11.

Click ODBC Data Source Name, and then click Browse.

Select SQL Anywhere 11 Demo, and then click OK.

To connect to the sample database (Interactive SQL)

1.
2.
3.

Choose Start » Programs » SQL Anywhere 11 » Interactive SQL.
Click ODBC Data Source Name, and then click Browse.
Select SQL. Anywhere 11 Demo, and then click OK.

Note
You do not need to enter a user ID and a password for this connection because the data source already
contains this information.

To connect to the sample database (specifying the database file location)

N o g ~ w Db RE

In Sybase Central or Interactive SQL, open the Connect window.
Click the Identification tab.

In the User ID field, type DBA.

In the Password field, type sql.

Click the Database tab.

In the Database Name field, type demo.db.

In the Database File field, browse to samples-dir. On Microsoft Windows XP operating systems the
default location is C:\Documents and Settings\All Users\Shared Documents\SQL Anywhere 11\Samples
\demo.db.

For information about samples-dir, see “Samples directory” on page 390.
Click OK.

124

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Sample SQL Anywhere database connections

Connect to the sample database on Mac OS X

Shortcuts are included on Mac OS X.

To connect to the sample database from Interactive SQL (Mac OS X)

1.

© o N o O

In the Finder, locate the SQL Anywhere sample database. By default, it is located in /Applications/
SQLAnywherel1/System/demo.db.

Copy this file to a location where you have read and write access, such as the Desktop.

In the Finder, double-click DBLauncher.

By default, DBLauncher is located at the following path: /Applications/SQLAnywherell.
Select Local Server.

The Local Server option does not allow client/server communications over a network.
Click Start to start a personal database server named demo.

In the Finder, double-click Interactive SQL in /Applications/SQLAnywherell.

In the User ID field, type DBA.

In the Password field, type sql.

Click OK.

Connect to a local database

Use one of the following procedures to connect to a database residing on your computer. If the database is
already loaded (started) on the server, only the database name is required to connect to the database. You
do not need to specify a database file.

To simplify database access, use a connection profile. See “Sybase Central connection
profiles” on page 94.

To connect to a database already-running on a local server

1.

a M w0

Start Sybase Central or Interactive SQL.

If the Connect window does not appear:

e In Sybase Central, choose Connections » Connect With SQL Anywhere 11.
e In Interactive SQL, choose SQL » Connect.

Click the Identification tab.

In the User ID field, type a user name.

In the Password field, type a password for the database.

If the server is running a single database, click OK.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 125

SQL Anywhere database connections

If the server is running multiple databases:

e Click the Database tab.

e In the Database Name field, type the name of the database.
e Click OK.

To start and connect to a database

1. Start Sybase Central or Interactive SQL.

If the Connect window does not appear:

e In Sybase Central, choose Connections » Connect With SQL Anywhere 11.
e In Interactive SQL, choose SQL » Connect.

Click the Identification tab.

In the User ID field, type a user name.

In the Password field, type a password for the database.

Click the Database tab.

o o &~ w Db

In the Database File field, specify the file path, file name, and file extension, or click Browse to browse
for a database file.

7. To create a database name that is different from the file name for subsequent connections, type a name
in the Database Name field. Do not specify a file path or extension.

8. Click OK.

Connecting to an embedded database

An embedded database, designed for use by a single application, runs on the same computer as the
application and is generally hidden from the user.

When an application uses an embedded database, the personal server is generally not running when the
application connects. The database is started using the connection string, and by specifying the database file
in the DatabaseFile (DBF) parameter of the connection string.

To improve query performance for autostarted databases, start the database as soon as possible, even if users
are not connecting right away. This allows the cache to warm before queries are executed against the database.
See “Using cache warming” [SQL Anywhere Server - SQL Usage].

Using the DBF connection parameter

The DBF connection parameter specifies the database file to use. The database file automatically loads onto
the default server, or starts a server if none are running.

The database unloads when there are no more connections to the database (generally when the application
that started the connection disconnects). If the connection started the server, the database server stops once
the database unloads.

126

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Sample SQL Anywhere database connections

In the following example, the sample database is loaded as an embedded database:

DBF=samples-dir\demo.db
UID=DBA
PWD=sql

For information about samples-dir, see “Samples directory” on page 390.

Using the ENG connection parameter

When using an embedded database it is recommended that you use the ServerName (ENG) connection
parameter. This ensures that the database connects to the correct database server if there are other applications
running SQL Anywhere database servers on the same computer.

Using the StartLine [START] connection parameter

The following connection parameters show you how to customize the startup of the sample database as an
embedded database. This is useful if you want to use options, such as the cache size:

START=dbengll -c 8M
DBF=samples-dir\demo.db
UID=DBA

PWD=sql

There are many connection parameters that affect how a server is started. It is recommended that you use
the following connection parameters instead of providing the corresponding server options within the
StartLine (START) connection parameter:

ServerName (ENG)
DatabaseFile (DBF)
DatabaseSwitches (DBS)
DatabaseName (DBN)

Using the ELEVATE connection parameter

If you are autostarting a database server on Windows Vista, you must specify ELEVATE=YES in your
connection string so that autostarted database server executables are elevated. On Windows Vista, only
elevated database servers can use AWE memory or call procedures as an administrator user.

See also

“DatabaseFile connection parameter [DBF]” on page 272
“ServerName connection parameter [ENG]” on page 296
“StartLine connection parameter [START]” on page 297
“Elevate connection parameter” on page 279

“Open the Connect window” on page 93

“Sample SQL Anywhere database connections” on page 124

Connect using a data source

You can save sets of connection parameters in a data source. All SQL Anywhere interfaces, except Open
Client and jConnect, can use data sources.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 127

SQL Anywhere database connections

To connect using a data source (Sybase Central or Interactive SQL)

1. Start Sybase Central or Interactive SQL.

If the Connect window does not appear:

e In Sybase Central, choose Connections » Connect With SQL Anywhere 11.
e In Interactive SQL, choose SQL » Connect.

Click the Identification tab.

In the User ID field, type a user name.

In the Password field, type a password for the database.

a > b

Do one of the following:

e Click ODBC Data Source Name and enter the DataSourceName (DSN) connection parameter that
references a data source in the Windows registry. Click Browse to view a list of data sources.

e Click ODBC Data Source File and enter the FileDataSourceName (FILEDSN) connection
parameter that references a data source held in a file. Click Browse to view a list of files.

See also

e “Open the Connect window” on page 93
e “Sample SQL Anywhere database connections” on page 124
e “Using ODBC data sources on Unix” on page 102

Connect to a server on a network

When connecting to a database running on a network server on a local or wide area network, the client
software must locate and connect to the database server. SQL Anywhere provides a network library to handle
this task.

Network connections occur over a network protocol. TCP/IP is available on all platforms.

—T—

Metwork

128

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Sample SQL Anywhere database connections

Specifying the server

SQL Anywhere server names must be unique on a local domain for a given network protocol. The following
example connects to a server running on a network:

ENG=svr-name

DBN=db-name

UlD=user-id

PWD=password

CommLinks=all

When CommLinks=all is specified, the client library searches for a personal server with the given name,
and then searches the network for a server with the given name. See “CommLinks connection parameter
[LINKS]” on page 268.

Specifying the protocol

To improve performance, you can instruct the network library which protocols to use. The following
parameters use the TCP/IP protocol:

ENG=svr-name

DBN=db-name

UlD=user-id

PWD=password

CommLinks=tcpip

The network library searches for a server by broadcasting over the network, which can be a time-consuming
process. Once the network library locates a server, the client library stores its name and network address in
a file (sasrv.ini), and reuses this entry for subsequent connection attempts to that server using the specified
protocol. Subsequent connections are normally faster than a connection achieved by broadcast.

By default, all network connections in Sybase Central and Interactive SQL use the TCP/IP network protocol.

To connect to a database on a network server (Sybase Central or Interactive SQL)

1. Start Sybase Central or Interactive SQL.

If the Connect window does not appear:

e In Sybase Central, choose Connections » Connect With SQL Anywhere 11.
e In Interactive SQL, choose SQL » Connect.

Click the Identification tab.

In the User ID field, type a user name.

In the Password field, type a password for the database.

Click the Database tab.

In the Server Name field, type the name of the server or click Find.
In the Database Name field, type the name of the database.

Click OK.

o N o g &~ w DN

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 129

SQL Anywhere database connections

See also

e “Client/server communications” on page 141

“Network protocol options” on page 301

“Connecting across a firewall” on page 144

“Open the Connect window” on page 93

“Sample SQL Anywhere database connections” on page 124

Using default connection parameters

You can use default behavior to make a connection and leave the connection parameters unspecified.
However, using the default behavior in a production environment can cause problems if the application is
installed with other SQL Anywhere applications. For more information about default behavior, see
“Troubleshooting connections” on page 132.

Default database server and database
Use the default parameters to connect to a single personal server with a single database:

UlD=user-id
PWD=password
Default database server
If more than one database is on a single personal server, use the default server settings, and specify the
database you want to connect to:

DBN=db-name
UlD=user-id
PWD=password

Default database

If more than one server is running, specify which server you want to connect to. You do not need to specify
the database name if only a single database is on that server. The following connection string connects to a
named server, using the default database:

ENG=server-name
UlD=user-id
PWD=password
No defaults for a local server
The following connection string connects to a named local server, using a named database:

ENG=server-name
DBN=db-name
UlD=user-id
PWD=password

No defaults for a network server
To connect to a network server running on a different computer:

ENG=server-name
DBN=dbn

130 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Sample SQL Anywhere database connections

UlD=user-id
PWD=password
CommLinks=tcpip
If CommLinks is not specified, only local shared memory connections are attempted.

If you are connecting from Sybase Central, Interactive SQL, or the SQL Anywhere Console utility
(dbconsole), you can select the Search Network For Database Servers option on the Connect window to

attempt a network connection.

Connecting from SQL Anywhere utilities

All SQL Anywhere database utilities use embedded SQL to communicate with the server.

How database utilities obtain connection parameter values
Many of the administration utilities obtain the connection parameter values by:

1. Using values specified on the command line. For example, the following command starts a backup of
the default database on the default server using the user ID DBA and the password sql:

dbbackup -c ""UID=DBA;PWD=sqgl" c:\backup
For more information about the options for each database utility, see “Database administration
utilities” on page 735.

2. Usingthe SQLCONNECT environment variable settings if any values are missing. SQL Anywhere does
not set this variable automatically.

See “SQLCONNECT environment variable” on page 384.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 131

SQL Anywhere database connections

Troubleshooting connections

An understanding of how SQL Anywhere establishes connections can help you resolve connectivity
problems. For information about network-specific issues, including connections across firewalls, see “Client/
server communications” on page 141.

To establish a connection, SQL Anywhere:

e Locates the interface library

e Assembles a list of connection parameters
e Locates a server

e Locates the database

e Starts a personal server when the database server is not located
The SQL Anywhere connection procedure is the same for:

e Any ODBC application using the SQLDriverConnect function, which is the common connection
method for ODBC applications. Many application development systems, such as Sybase PowerBuilder,
belong to this class of application. The SQLConnect function is also available to ODBC applications.

e Any client application using embedded SQL and using the recommended function for connecting to a
database (db_string_connect). In addition, the SQL CONNECT statement is available for embedded
SQL applications and in Interactive SQL. It has two forms: CONNECT AS ... and CONNECT USING.
All the database administration tools, including Interactive SQL, use db_string_connect.

e Any ADO application using the ADODB Connection object. The Provider property is used to locate
the OLE DB driver. The Connection String property may use DataSource as an alternative to
DataSourceName and User ID as an alternative to UserID.

e Any application using the iAnywhere JDBC driver to pass the URL jdbc:ianywhere: followed by a
standard connection string as a parameter to the Driver Manager.GetConnection method. The connection
string must include DataSource= and name a SQL Anywhere data source or include Driver=SQL
Anywhere 11 (this parameter is specified as Driver=libdbodbc11.s0 on Linux and Unix).

See also

e “Troubleshooting server startup” on page 74
e “Troubleshooting network communications” on page 151

Locating the interface library
Generally, the location of this DLL or shared library is transparent to the user.

ODBC driver location

For ODBC, the interface library is also called an ODBC driver. An ODBC client application calls the ODBC
driver manager, and the driver manager locates the SQL Anywhere driver.

132 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Troubleshooting connections

The ODBC driver manager searches the supplied data source to locate the driver. When you create a data
source using the ODBC Administrator or dbdsn utility, SQL Anywhere fills in the current location for your
ODBC driver. The data source information is stored in the Windows registry, or in the Unix system
information file (named .odbc.ini by default).

Embedded SQL interface library location

Embedded SQL applications call the interface library by name. The name of the SQL Anywhere embedded
SQL interface library is:

e Windows dblib11.dll

e Unix libdblib11 with an operating-system-specific extension

OLE DB driver location

The provider name (SAOLEDB) is used to locate the SQL Anywhere OLE DB provider DLL
(dboledb11.dll) based on entries in the registry. The entries are created when the SAOLEDB provider is
installed or if it is re-registered.

ADO.NET

ADO.NET programs add a reference to the SQL Anywhere ADO.NET provider, which is named
iAnywhere.Data.SQLAnywhere.dll. The .NET Data Provider DLL is added to the .NET Global Assembly
Cache (GAC) when it is installed.

iAnywhere JDBC driver location

When you run your application, the Java package jodbc.jar must be in the classpath. The system must be
able to locate the native DLLs or shared objects.

e PCoperating systems On PC operating systems such as Windows, the current directory, the system
path, and in the Windows and Windows\system32 directories are searched.

e Unix operating systems On Unix, the system path and the user library path are searched.

When the library is located

A connection string is sent to the interface library when it is located by the client application. The string is
used by the interface library to assemble a list of connection parameters, and establish a server connection.

Assembling a list of connection parameters

The following diagram illustrates how the interface library assembles the list of connection parameters and
establishes a connection.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 133

SQL Anywhere database connections

v

Read Read parameters
parameters from | not already Data source in the
the connection | specified from parameter list?
string SQLCONNECT
Yas 0

Does the data
source exist?

Mo

¥

Yes Read parameters Connection
Failure
specified from the
complete
data source

e Precedence Parameters held in more than one place are subject to the following order of precedence:
1. Connection string
2. SQLCONNECT
3. Data source

If a parameter is supplied both in a data source and in a connection string, the connection string value
overrides the data source value.

e Failure Failure at this stage occurs only if you specify in the connection string or in SQLCONNECT
a data source that does not exist.

e Common parameters Depending on other connections already in use, some connection parameters
may be ignored, including:

o AutoStop Ignored if the database is already loaded.

o DatabaseFile Ignored if DatabaseName is specified and a database with this name is already
running.

The interface library uses the completed list of connection parameters to attempt to connect.

Locating a database server

SQL Anywhere searches for the server name specified in the ServerName (ENG) connection parameter.
SQL Anywhere searches for a default server if the ServerName (ENG) connection parameter is not used,
and the CommL.inks (LINKS) connection parameter is not specified or if the CommLinks (LINKS)
connection parameter is specified and includes Shared Memory.

134

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Troubleshooting connections

Locate
database on
server

HMEM specified, o
no LINKS specified?

Default local
server?

EMNG specified?

Locate
database on
server

Local server

named ENG? ASTART=no? Yes—

¥

Try to find server
named ENG

using LINKS other

Other LINKS START, DBN, or

than SHMEM in specified? DBF specified?
the order r
specified
Yes
Locate Attempt to
Ye database on UCOES5— autostart Failur
server sarver
M

Failure

If SQL Anywhere locates a server, it tries to locate or load the required database on that server. See “Locating
the database” on page 136.

If SQL Anywhere can not locate a server, it may attempt to start a personal server, depending on the
connection parameters.

Notes

e For local connections, locating a server is simple. For connections over a network, you can use the
CommLinks (LINKS) connection parameter to tune the search in many ways by supplying network
protocol options.

e You can specify a set of network protocol options for each network protocol in the argument to the
CommLinks (LINKS) connection parameter.

e Each attempt to locate a server involves two steps. First, SQL Anywhere looks in the server name cache
to see if a server of that name is available (this step is skipped if the value of DoBroadcast is none).
Second, it uses the available connection parameters to attempt a connection.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 135

SQL Anywhere database connections

If the server is autostarted, information from the START, DBF, DBKEY, DBS, DBN, ENG, and
AUTOSTOP connection parameters are used to construct the options for the autostarted server.

If the server has an alternate server name, you can only use the alternate server name to connect to the
database that specified the alternate server name. You cannot use the alternate server name to connect
to any other databases running on that database server. See *“-sn database option” on page 257.

Locating a database server using the Broadcast Repeater
utility

The Broadcast Repeater utility allows SQL Anywhere clients to find SQL Anywhere database servers
running on other subnets and through firewalls where UDP broadcasts normally do not reach, without using
the HOST connection parameter or LDAP.

To use the Broadcast Repeater utility

1.
2.

Start a DBNS (database name service) process on any computer in a subnet.

Start a DBNS process on any computer in a different subnet and pass the computer name or IP address
of the first computer as a parameter (using the address parameter).

The two DBNS processes make a TCP/IP connection to each other.

The DBNS processes now listen for broadcasts on each of their own subnets. Each DBNS process
forwards requests over the TCP/IP connection to the other DBNS process, which re-broadcasts the
requests on its subnets and also forwards responses back to the originating DBNS process, which sends
them to the original client.

Regular SQL Anywhere broadcasts on either of the subnets reach database servers on the remote subnet,
and clients are able to connect to database servers on the remote subnet without specifying the HOST
parameter.

Any number of DBNS processes can communicate with each other. Each DBNS process connects to every
other DBNS that it knows about, and the different DBNS processes share their lists of DBNS processes. For
example, suppose you start two DBNS processes, A and B. If you start a third DBNS process, C, in a third
subnet, passing the address of B to C, then B tells C about A, and C then connects to A.

Running more than one DBNS process in a single subnet is not necessary, and is not recommended.

See also

“Broadcast Repeater utility (dbns11)” on page 745

Locating the database

If SQL Anywhere successfully locates a server, it then tries to locate the database. For example:

136

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Troubleshooting connections

DBF

Yes specified?

Default
database
running?

Attempt to
connect

Yes

Failure
Database

running whose
name is the root
of DBF?

Yes

Attempt to
connect

Yes

Attempt to
connect

DEF file

locatable?
Mex

e

Failure
Load and attempt to

connect

Server name caching for faster connections

When the DoBroadcast (DOBROAD) protocol option is set to DIRECT or ALL, the network library looks
for a database server on a network by broadcasting over the network using the CommLinks (LINKS)
connection parameter.

Tuning the broadcast

The CommLinks (LINKS) parameter takes as an argument a string listing the protocols to use and, optionally
for each protocol, a variety of network protocol options that tune the broadcast. See “Network protocol
options” on page 301.

Caching server information

Broadcasting over large networks searching for a server of a specific name can be time-consuming. Caching
server addresses speeds up network connections by saving the protocol the first connection to a server was
found on, and its address, to a file and using that information for subsequent connections.

The server information is saved in a cached file named sasrv.ini. The file contains a set of sections, each of
the following form:

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 137

SQL Anywhere database connections

[Server name]
LINKS=protocol_name
Address=address_string

The default location of sasrv.ini is %ALLUSERSPROFILE%\Application Data\SQL Anywhere 11 on
Windows and ~/.sglanywherell on Unix.

Note
It is very important that each server has a unique name. Giving different servers the same name can lead to
identification problems.

How the cache is used

If the server name and protocol in the cache match the connection string, SQL Anywhere tries to connect
using the cached address first. If that fails, or if the server name and protocol in the cache do not match the
connection string, the connection string information is used to search for the server using a broadcast. If the
broadcast is successful, the server name entry in the cache is overwritten. If no server is found, the server
name entry in the cache is removed. If the DoBroadcast protocol option is set to none, any cached addresses
are ignored.

Interactive SQL connections

Interactive SQL has a different behavior from the default embedded SQL behavior when a CONNECT
statement is issued while already connected to a database. If no database or server is specified in the
CONNECT statement, Interactive SQL connects to the current database, rather than to the default database.
This behavior is required for database reloading operations. See “CONNECT statement [ESQL] [Interactive
SQL]” [SQL Anywhere Server - SQL Reference].

Testing that a server can be found

Use the dbping utility to troubleshoot connections and determine if a server with a specific name is available
on your network.

The dbping utility takes a connection string as an option. The utility does not start the server and only the
information required to locate the server are used by default. Use the -d option with the dbping utility to start
the server.

Examples
The following command line tests to see if a server named Waterloo is available over a TCP/IP connection:
dbping -c "ENG=Waterloo;CommLinks=tcpip"
The following command tests to see if a default server is available on the current computer.

dbping

138 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Troubleshooting connections

See also
e “Ping utility (dbping)” on page 804

Testing embedded SQL connection performance

You can use the Ping utility (dbping) to obtain information about the performance of embedded SQL
connections by specifying the -s or -st options. The following statistics are gathered:

Statistic Description

DBL.ib connect and disconnect The time to perform one DBL.ib connect and disconnect. Note that
the performance of connecting and disconnecting using other inter-
faces, such as ODBC, is typically slower than DBL.ib because more
requests are required to complete the connection.

Round trip simple request The time it takes to send a request from the client to the server plus
the time it takes to send a response from the server back to the client.
The round trip time is twice the average latency.

Send throughput The throughput based on transferring 100 KB of data for each iter-
ation from dbping to the database server.

Receive throughput The throughput based on transferring 100 KB of data for each iter-
ation from the database server to dbping.

If your network has both high round trip times and high throughput, the reported throughput will be lower
than your actual network throughput because of the high round trip times. Using dbping -s can be useful to
give an indication of whether communication compression may improve performance. The performance
statistics are approximate, and are more accurate when both the client and server computers are fairly idle.
The transferred data can be compressed to approximately 25% of its original size if communication
compression is used.

The following is an example of the output from dbping -s for the dbping command dbping -s -c
""UID=DBA;PWD=sql ;ENG=sampleserver ; LINKS=TCPIP":

SQL Anywhere Server Ping Utility Version 11.0.1.1658
Connected to SQL Anywhere 11.0.1.1657 server "sampleserver™ and database
"sample" at address 10.25.107.108.

Performance statistic Number Total Time Average
DBLib connect and disconnect 175 times 1024 msec 5 msec
Round trip simple request 2050 requests 1024 msec <1 msec
Send throughput 7600 KB 1024 msec 7421 KB/sec
Receive throughput 10100 KB 1024 msec 9863 KB/sec

Ping database successful.

See also
e “Ping utility (dbping)” on page 804

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 139

SQL Anywhere database connections

Disconnecting from a database

To disconnect users from a database see “Managing connected users” on page 467.

To disconnect from a database (Sybase Central)

1. Select a database.

2. Choose File » Disconnect.

To disconnect from a database (SQL)
e Execute a DISCONNECT statement.

See “DISCONNECT statement [ESQL] [Interactive SQL]” [SQL Anywhere Server - SQL Reference] and
“DROP CONNECTION statement” [SQL Anywhere Server - SQL Reference].

To disconnect other users from a database (SQL)

1. Connect to the database as a user with DBA authority.

2. Use the sa_conn_info system procedure to determine the connection ID of the user you want to
disconnect.

3. Execute a DROP CONNECTION statement.

Examples

The following statement shows how to use the DISCONNECT statement to disconnect the current
connection, connl, in Interactive SQL.:

DISCONNECT connil;

The following statement shows how to use DISCONNECT in embedded SQL.:
EXEC SQL DISCONNECT :conn-name

The following statement drops connection number 4.

DROP CONNECTION 4;

140 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Client/server communications

Contents

Supported NEIWOIK PrOtOCOISccovvviiiiiiiiiiii e 142
Using the TCP/IP ProtOCOIcooiiiiiiiiiei et e e e e e e e e e e e eeanens 143
Adjusting communication compression settings to improve performance 149
Troubleshooting network commuNICatiONScoovvviiiiiiiii e e 151

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 141

Client/server communications

Supported network protocols

Properly configured SQL Anywhere database servers run under the following networks and protocols:

e Windows (except Windows 2003 Server) TCP/IP protocol.

e Windows 2003 Server (32-bit) TCP/IP protocol.

e Windows 2003 Server (64-bit) TCP/IP protocol.

e Windows Mobile TCP/IP protocol.

e Unix TCP/IP protocol.

The client library for each platform supports the same protocols as the corresponding server. In order for

SQL Anywhere to run properly, the network protocol (TCP/IP) must be installed and configured properly
on both the client and server computers.

142 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using the TCP/IP protocol

Using the TCP/IP protocol

TCP/IP is a suite of protocols that has gained widespread use with the expansion of the Internet and the
world wide web.

UDRP is a transport layer protocol that sits on top of IP. SQL Anywhere uses UDP on top of IP to do initial
server name resolution and uses TCP for connection and communication after that.

When you use the TCP/IP protocol, you can secure client/server communications using transport-layer
security and ECC or RSA encryption technology.

See “Transport-layer security” on page 1095.

IPv6 support in SQL Anywhere

On IPv6-enabled computers, the network database server listens by default on all IPv6 and IPv4 addresses.
IPV6 is supported on Windows, Linux, Mac OS X, Solaris, AlX, and HP-UX.

In most cases, no changes are required to the server start line to use IPv6. In the cases where specifying an
IP address is required, the server and the client libraries both accept IPv4 and IPv6 addresses. For example,
if a computer has more than one network card enabled, it will probably have two IPv4 addresses and two
IPv6 addresses. If you want the database server to listen on only one of the IPv6 addresses, you can specify
an address in the following format:

dbsrvll -x tcpip(MyIP=Fd77:55F:5a64:52a:202:5445:5245:444F) ...

Similarly, if a client application needs to specify the IP address of a server, the connection string or DSN
can contain the address, in the following format:

. . . ;LINKS=tcpip(HOST=Ffe80: :5445:5245:444F) ; . . .

Each interface is given an interface identifier, which appears at the end of an IPv6 address. For example, if
ipconfig.exe lists the address ¥e80: - 5445 :5245:444F%7, the interface identifier is 7. When specifying
an IPv6 address on a Windows platform, the interface identifier should be used. On Unix, you can specify
either an interface identifier or interface name (the interface name is the name of the interface reported by
ifconfig). For example, the interface name is ethl in the following IPv6 address:

Te80: :5445:5245:444F%ethl. An interface identifier is required when specifying IPv6 addresses on
Linux (kernel 2.6.13 and later). This requirement affects values specified by the following protocol options:

e Broadcast
e Host
e MylP

For example, suppose ipconfig.exe lists two interfaces, one with the identifier 1 and the other 2. If you are
looking for a database server that is on the network used by interface number 2, you can tell the client library
to broadcast only on that interface:

LINKS=tcpip(BROADCAST=FF02: : 1%2)

Note that FF02: - 1 is the IPv6 link-local multicast address.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 143

Client/server communications

See also

e “Broadcast protocol option [BCAST]” on page 302
e “Host protocol option [IP]” on page 310
e “MyIP protocol option [ME]” on page 319

Using TCP/IP with Windows

The TCP/IP implementation for database servers on all Windows platforms uses Winsock 2.2. Clients on
Windows Mobile use the Winsock 1.1 standard.

If you do not have TCP/IP installed, you can install the TCP/IP protocol from the Control Panel by double-
clicking Network Settings.

Tuning TCP/IP performance

Increasing the packet size may improve query response time, especially for queries transferring a large
amount of data between a client and a server process. You can set the packet size using the -p option in the
database server command, or by setting the CommBufferSize (CBSIZE) connection parameter in your
connection profile.

See also

e “-pserver option” on page 211
e “CommBufferSize connection parameter [CBSIZE]” on page 267

Connecting across a firewall

There are restrictions on connections when the client application is on one side of a firewall, and the server
is on the other. Firewall software filters network packets according to network port. Also, it is common to
disallow UDP packets from crossing the firewall.

When connecting across a firewall, you must use a set of protocol options in the CommLinks (LINKS)
connection parameter of your application's connection string.

e Host Set this parameter to the host name on which the database server is running. You can use the
short form IP.

e ServerPort If your database server is not using the default port of 2638, you must specify the port it
is using. You can use the short form Port.

e ClientPort Set this parameter to a range of allowed values for the client application to use. You can
use the short form CPort. This option may not be necessary depending on the firewall's configuration.

e DoBroadcast=NONE Set this parameter to prevent UDP from being used when connecting to the
server.

144 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using the TCP/IP protocol

The firewall must be configured to allow TCP/IP traffic between the SQL Anywhere server's address and
all the SQL Anywhere clients' addresses. The SQL Anywhere server's address is the IP address of the
computer running the SQL Anywhere server (the HOST parameter) and the SQL Anywhere server's IP port
number (the ServerPort protocol option, default 2638). Each SQL Anywhere client's address consists of the
IP address of the client computer, and the range of the client IP ports (the ClientPort protocol option). For
the simplest configuration, all client ports can be allowed. If only specific client ports are allowed, specify
a range with more ports than the maximum number of concurrent connections from each client computer,
since there is a several minute timeout before a client port can be reused.

See “ClientPort protocol option [CPORT]” on page 307.

Example

The following connection string fragment restricts the client application to ports 5050 through 5060, and
connects to a server named myeng running on the computer at address myhost using the server port 2020.
No UDP broadcast is performed because of the DoBroadcast option.

ENG=myeng; LINKS=tcpip(ClientPort=5050-5060;HOST=myhost;PORT=2020;DoBroadcast=
NONE)

See also

e “CommLinks connection parameter [LINKS]” on page 268
“ClientPort protocol option [CPORT]” on page 307
“ServerPort protocol option [PORT]” on page 321

“Host protocol option [IP]” on page 310

“DoBroadcast protocol option [DOBROAD]” on page 309

Connecting on a dial-up network connection

You can use connection and protocol options to assist with connecting to a database across a dial-up link.

On the client side, you should specify the following protocol options:

e Host parameter You should specify the host name or IP address of the database server using the
Host (IP) protocol option. See “Host protocol option [IP]” on page 310.

e DoBroadcast parameter If you specify the Host (IP) protocol option, there is no need to do a
broadcast search for the database server. For this reason, use direct broadcasting. See “DoBroadcast
protocol option [DOBROAD]” on page 309.

e MyIP parameter You should set MylIP=NONE on the client side. See “MyIP protocol option
[ME]” on page 319.

e TIMEOUT parameter Set the TIMEOUT (TO) protocol option to increase the time the client will
wait while searching for a server. See “Timeout protocol option [TO]” on page 324.

A typical CommLinks (LINKS) connection parameter may look as follows:

LINKS=tcpip(MyIP=NONE ;DoBroadcast=DIRECT ;HOST=server_ip)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 145

Client/server communications

Encrypting client/server communications over TCP/IP

By default, communication packets are not encrypted, which poses a potential security risk. You can secure
communications between client applications and the database server over TCP/IP using simple encryption
or transport-layer security. Transport-layer security provides server authentication, strong encryption using
ECC or RSA encryption technology, and other features for protecting data integrity.

See “Transport-layer security” on page 1095.

Connecting using an LDAP server

You can specify a central LDAP server to keep track of all database servers in an enterprise if you are
operating on a Windows (except Windows Mobile) or Unix platform. When the database server registers
itself with an LDAP server, clients can query the LDAP server and find the database server they are looking
for, regardless of whether they are on a WAN, LAN, or going through firewalls. Clients do not need to
specify an IP address (HOST=). The Server Enumeration utility (dblocate) can also use the LDAP server to
find other such servers.

LDAP is only used with TCP/IP, and only on network database servers.

Using SQL Anywhere with an LDAP server on AlX

To use SQL Anywhere 11 with AIX 6, you must either create links in /usr/lib or ensure that the directory
containing the LDAP libraries is included in the LIBPATH to ensure that the LDAP system libraries are
found.

To create links in /usr/lib

e Run the following commands as the root user:

cd Zusr/lib
In -s /opt/IBM/1dap/V6.1/1ib64/1ibibmldap.a libibmldap64.a
In -s /opt/1BM/ldap/V6.1/1ib/libibmldap.a

To add the directory containing the LDAP libraries to LIBPATH

1. Create links in /usr/lib by running the following commands as the root user:

cd Zusr/lib
In -s /opt/IBM/1dap/V6.1/1ib64/1ibibmldap.a libibmldap64.a
In -s /opt/1BM/ldap/V6.1/1ib/libibmldap.a

2. Ensure that the directory with the LDAP libraries are in the LIBPATH.

For example, for 64-bit libraries:
export LIBPATH=/opt/I1BM/ldap/V6.1/1ib64:$LIBPATH
For example, for 32-bit libraries:

export LIBPATH=/opt/1BM/ldap/V6.1/1ib:$LIBPATH

146 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using the TCP/IP protocol

Configuring the saldap.ini file

To enable this feature, a file containing information on how to find and connect to the LDAP server must
be created on both the database server computer and on each client computer. By default the name of this
file is saldap.ini, but it is configurable. If this file doesn't exist, LDAP support is silently disabled.

The file must be located in the same directory as the SQL Anywhere executables (for example, install-dir
\bin32 on Windows) unless a full path is specified with the LDAP parameter. The file must be in the following
format:

[LDAP]

server=computer-running-LDAP-server
port=port-number-of-LDAP-server

basedn=Base-DN

authdn=Authentication-DN
password=password-for-authdn
search_timeout=age-of-timestamps-to-be-ignored
update_timeout=frequency-of-timestamp-updates
read_authdn=read-only-authentication-domain-name
read_password=password-for-authdn

You can add simple encryption to obfuscate the contents of the saldap.ini file using the File Hiding utility
(dbfhide). See “File Hiding utility (dbfhide)” on page 768.

If the name of the file is not Idap.ini, then you must use the LDAP parameter to specify the file name.

server The name or IP address of the computer running the LDAP server. This value is required on Unix.
If this entry is missing on Windows, Windows looks for an LDAP server running on the local domain
controller.

port The port number used by the LDAP server. The default is 389.

basedn The domain name of the subtree where the SQL Anywhere entries are stored. This value defaults
to the root of the tree.

authdn The authentication domain name. The domain name must be an existing user object in the LDAP
directory that has write access to the basedn. This parameter is required for the database server, and ignored
on the client.

password The password for authdn. This parameter is required for the database server, and ignored on
the client.

search_timeout The age of timestamps at which they are ignored by the client and/or the Server
Enumeration utility (dblocate). A value of O disables this option so that all entries are assumed to be current.
The default is 600 seconds (10 minutes).

update_timeout The frequency of timestamp updates in the LDAP directory. A value of 0 disables this
option so that the database server never updates the timestamp. The default is 120 seconds (2 minutes).

read_authdn The read-only authentication domain name. The domain name must be an existing user

object in the LDAP directory that has read access to the basedn. This parameter is only required if the LDAP
server requires a non-anonymous binding before searching can be done. For example, this field is normally
required if Active Directory is used as the LDAP server. If this parameter is missing, the bind is anonymous.

read_password The password for authdn. This parameter is only required on the client if the read_authdn
parameter is specified.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 147

Client/server communications

Example

The following is a sample saldap.ini file:

[LDAP]

server=Ildapserver

basedn=dc=1Anywhere,dc=com

authdn=cn=SAServer ,ou=iAnywhereASA,dc=iAnywhere,dc=com
password=secret

The entries are stored in a subtree of the basedn called iAnywhereASA. This entry must be created before
SQL Anywhere can use LDAP. To create the subtree, you can use the LDAPADD utility, supplying the
following information:

dn: ou=iAnywhereASA,basedn
objectClass: organizationalUnit
objectClass: top

ou: TAnywhereASA

When the server starts, it checks for an existing entry with the same name in the LDAP file. If one is found,
it is replaced if either the location entries in LDAP match the database server attempting to start, or the
timestamp field in the LDAP entry is more than 10 minutes old (the timeout value is configurable).

If neither of these entries is true, then there is another database server running with the same name as the
one attempting to start, and startup fails.

To ensure that entries in LDAP are up-to-date, the database server updates a timestamp field in the LDAP
entry every 2 minutes. If an entry's timestamp is older than 10 minutes, clients ignore the LDAP entry. Both
of these settings are configurable.

On the client, the LDAP directory is searched before doing any broadcasting, so if the database server is
found, no broadcasts are sent. The LDAP search is very fast, so if it fails, there is no discernible delay.

The Server Enumeration utility (dblocate) also uses LDAP—all database servers listed in LDAP are added
to the list of database servers returned. This allows the Server Enumeration utility (dblocate) to list database
servers that wouldn't be returned normally, for example, those which broadcasts wouldn't reach. Entries with
timestamps older than 10 minutes are not included.

148

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Adjusting communication compression settings to improve performance

Adjusting communication compression settings to
Improve performance

Enabling compression for one or all connections, and setting the minimum size at which packets are
compressed, can improve SQL Anywhere performance in some circumstances.

To determine if enabling compression will help in your particular situation, it is recommended that you
conduct a performance analysis on your particular network and using your particular application before using
communication compression in a production environment. Performance results will vary according to the
type of network you are using, your applications, and the data you transfer.

The most basic way of tuning compression is as simple as enabling or disabling the Compression (COMP)
connection parameter on either the connection or server level. More advanced fine tuning of compression
performance is available by adjusting the CompressionThreshold (COMPTH) connection parameter.

Enabling compression increases the quantity of information stored in data packets, thereby reducing the
number of packets required to transmit a particular set of data. By reducing the number of packets, the data
can be transmitted more quickly.

For more information about performance analysis, see “Performance Monitor statistics” [SQL Anywhere
Server - SQL Usage], and “sa_conn_compression_info system procedure” [SQL Anywhere Server - SQL
Reference].

Enabling compression

Enabling compression for a connection (or all connections) can significantly improve SQL Anywhere
performance under some circumstances, including:

e \When used over slow networks such as some wireless networks, some modems, serial links and some
WAN:S.

e When used in conjunction with SQL Anywhere encryption over a slow network with built-in
compression, since packets are compressed before they are encrypted.

Enabling compression, however, can sometimes also cause slower performance. For instance:

e Communication compression uses more memory and more CPU. It may cause slower performance,
especially for LANs and other fast networks.

e Most modems and some slow networks already have built-in compression. In these cases, SQL Anywhere
communication compression will not likely provide additional performance benefits unless you are also
encrypting the data.

For more information about compression, see “Compress connection parameter [COMP]” on page 270 and
“-pc server option” on page 212.

Modifying the compression threshold

You can also adjust the compression threshold to improve SQL Anywhere performance. For most networks,
the compression threshold does not need to be changed.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 149

Client/server communications

When compression is enabled, individual packets may or may not be compressed, depending on their size.
For example, SQL Anywhere does not compress packets smaller than the compression threshold, even if
communication compression is enabled. As well, small packets (less than about 100 bytes) usually do not
compress at all. Since CPU time is required to compress packets, attempting to compress small packets could
actually decrease performance.

Generally speaking, lowering the compression threshold value may improve performance on very slow
networks, while raising the compression threshold may improve performance by reducing CPU usage.
However, since lowering the compression threshold value will increase CPU usage on both the client and
server, a performance analysis should be done to determine whether changing the compression threshold is
beneficial.

See “CompressionThreshold connection parameter [COMPTH]” on page 271, and *“-pt server
option” on page 212.

To adjust SQL Anywhere compression settings

1. Enable communication compression.

Large data transfers with highly compressible data and larger packet sizes tend to get the best compression
rates.

For more information about enabling compression, see “Compress connection parameter
[COMP]” on page 270, and “-pc server option” on page 212.

2. Adjust the CompressionThreshold setting.

Lowering the compression threshold value may improve performance on very slow networks, while
raising the compression threshold may improve performance by reducing CPU usage.

For more information about adjusting the CompressionThreshold (COMPTH) connection parameter, see
“CompressionThreshold connection parameter [COMPTH]” on page 271, and “-pt server
option” on page 212.

150

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Troubleshooting network communications

Troubleshooting network communications

Network software involves several different components, increasing the likelihood of problems. Although
some tips concerning network troubleshooting are provided here, the primary source of assistance in network
troubleshooting should be the documentation and technical support for your network communications
software, as provided by your network communications software vendor.

Use logging

Specifying the -z database server option displays diagnostic communication messages, and other messages
to the database server messages window for troubleshooting purposes. These messages can help you diagnose
how a connection is failing, what connection parameters are used for the connection attempt, and what
communication links are being used.

Ensure that you are using compatible protocols

Ensure that the client and the database server are using the same protocol. The -x option for the server selects
a list of protocols for the server to use, and the CommL.inks (LINKS) connection parameter does the same
for the client application.

You can use these options to ensure that each application is using the same protocol.

By default, the network database server uses all available protocols. The server supports client requests on
any active protocol. By default, the client only uses the shared memory protocol. The client can use all
available protocols by setting the CommLinks (LINKS) connection parameter to all.

See also

e ‘“-x server option” on page 234
e “CommLinks connection parameter [LINKS]” on page 268

Ensure that you have current drivers

Old network adapter drivers can be a source of communication problems. You should ensure that you have
the latest version of your network adapter. You should be able to obtain current network adapter drivers
from the manufacturer or supplier of the card.

Testing the TCP/IP protocol

The ping utility can be useful to test that TCP/IP is installed and configured properly.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 151

Client/server communications

Using ping to test the IP layer

Each IP layer has an associated address—for IPv4, this address is a four-integer, dot-separated number (such
as191.72.109.12). Ping takes an IP address as an argument and attempts to send a single packet to the address.

First, determine if your own computer is configured correctly by using the ping utility to detect your
computer. If your IP address is 191.72.109.12, you would run the following command and wait to see if the
packets are routed at all:

ping 191.72.109.12

If the packets are routed, output similar to the following appears:

Pinging 191.72.109.12 with 32 bytes of data:

Reply from 191.72.109.12: bytes=32 time<.10ms TTL=32
Reply from 191.72.109.12: bytes=32 time<.10ms TTL=32
Reply from 191.72.109.12: bytes=32 time<.10ms TTL=32

This means that the computer is able to route packets to itself. This is reasonable assurance that the IP layer
is set up correctly. You could also ask someone else running TCP/IP for their IP address and try using the
ping utility to detect their computer.

You should ensure that you can ping the computer running the database server from the client computer
before proceeding.

If you are attempting to connect to a host on an IPv6 network, you must first ensure that IPv6 is installed on
the client computer. On Windows XP, run the command ipv6 install toinstall IPv6. IPv6 is installed
by default on Windows Vista. Installing IPv6 is different on each Unix operating system; consult the
operating system documentation for instructions on enabling IPv6.

Once IPv6 is installed and enabled, you can use the ping6 command to do the same thing as the ping
command described above. For example:

ping6 Te80::213:ceff:fe24:cab

Pinging fe80::213:ceff:fe24:cab
from fe80::213:ceff:fe24:cab%6 with 32 bytes of data:

Reply from fe80::213:ceff:fe24:cab%6: bytes=32 time<lms
Reply from fe80::213:ceff:fe24:cab%6: bytes=32 time<lms
Reply from fe80::213:ceff:fe24:cab%6: bytes=32 time<lms

Diagnosing wiring problems

Faulty network wiring or connectors can cause problems that are difficult to track down. Try recreating
problems on a similar computer with the same configuration. If a problem occurs on only one computer, it
may be a wiring problem or a hardware problem.

152 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Troubleshooting network communications

A checklist of common problems

The following list presents some common problems and their solutions.

For information about troubleshooting connections to the database or database server, see “Troubleshooting
connections” on page 132 and “Troubleshooting server startup” on page 74.

If you receive the message Database server not found when trying to connect, the client cannot
find the database server on the network. Check for the following problems:

Under the TCP/IP protocol, clients search for database servers by broadcasting a request. Such broadcasts
will typically not pass through gateways, so any database server on a computer in another (sub)network,
will not be found. If this is the case, you must supply the host name of the computer on which the server
is running using the HOST (IP) protocol option.

A firewall between the client and server may be preventing the connection. See “Connecting across a
firewall” on page 144.

The personal server only accepts connections from the same computer. If the client and server are on
different computers, you must use the network server.

Your network drivers are not installed properly or the network wiring is not installed properly.

If you receive the message Unable to initialize requested communication links,
one ore more links failed to start. The probable cause is that your network drivers have not been installed.
Check your network documentation to find out how to install the driver you want to use.

The server should use the TCP/IP protocol if you are connecting via jConnect.

If you are trying to connect to a database server on your local computer, make sure the Search Network
For Database Servers option on the Database tab of the Connect window is cleared. You can select
this option if you are trying to connect to a database server running on a computer other than your local
computer.

For more information about network protocol options, see “Network protocol options” on page 301.

Adjusting timeout values

If you are experiencing problems with connections unexpectedly disconnecting, consider adjusting either
the liveness or the idle timeout values.

See also

“LivenessTimeout connection parameter [LTO]” on page 288
“-tl server option” on page 225

“Idle connection parameter” on page 283

“-ti server option” on page 225

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 153

154

The database server

Contents

The SQL Anywhere database SEIVEr ... 156
Database SErver OPLIONScii i e e 165
Database OPLIONScuiiiiiiiie e 248

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 155

The database server

The SQL Anywhere database server

Starts a personal database server or network database server.

Syntax
{dbeng1l | dbsrv1l}

[server-options] [database-file [database-options] ...]

Server options

Server option

Description

@data Reads in options from a configuration file or environment variable. See
“@data server option” on page 165.

-? Displays usage information. See “-? server option” on page 166.

-b Runs in bulk operations mode. See “-b server option” on page 166.

-C size Sets initial cache size. See “-c server option” on page 167.

-ca0 Disables dynamic cache sizing [Windows, Unix, Mac OS X]. See “-ca server
option” on page 169.

-cc{+]|-} Collects information about database pages to be used for cache warming. See
“~cc server option” on page 169.

-ch size Sets the cache size upper limit [Windows, Unix, Mac OS X]. See “-ch server
option” on page 170.

-cl size Sets the cache size lower limit [Windows, Unix, Mac OS X]. See “-cl server
option” on page 171.

-cm size Specifies the amount of address space allocated for an Address Windowing

Extensions (AWE) cache [Windows]. See “-cm server option” on page 172.

-cp location[;loca-

Specifies set of directories or jar files in which to search for classes. See “-cp

tion ...] server option” on page 173.

-cr{+]|-} Warms the cache with database pages. See “-cr server option” on page 174.

-CS Displays cache usage in the database server messages window. See “-cs server
option” on page 175.

-ecv{+]|-} Controls the appearance of messages about cache warming in the database
server messages window. See “-cv server option” on page 175.

-cw Enables use of Address Windowing Extensions for setting the size of the da-

tabase server cache [Windows]. See “-cw server option” on page 176.

156 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The SQL Anywhere database server

Server option

Description

-dt temp-file-dir

Specifies the directory where temporary files are stored. See “-dt server op-
tion” on page 179.

-ec encryption-options

Enables packet encryption [network server]. See “-ec server op-
tion” on page 180.

-ep Prompts for encryption key. See “-ep server option” on page 183.

-es Allows unencrypted connections over shared memory. See “-es server op-
tion” on page 184.

-f Forces the database to start without a transaction log. See “-f recovery op-
tion” on page 184.

-fc filename Specifies the file name of a DLL containing the file system full callback func-
tion. See “-fc server option” on page 185.

-fips Requires the use of FIPS-approved algorithms for strong database and com-
munication encryption [Windows]. See “-fips server option” on page 186.

-ga Automatically unloads the database after the last non-HTTP client connection
is closed. In addition, shut down after the last database is closed. See “-ga
server option” on page 188.

-gb level Sets database process priority class to level [Windows, Unix, Mac OS X]. See
“-gb server option” on page 188.

-gc num Sets maximum checkpoint timeout period to num minutes. See “-gc server
option” on page 189.

-gd level Sets database starting permission. See “-gd server option” on page 189.

-ge size Sets the stack size for threads that run external functions. See “-ge server
option” on page 190.

-gf Disables firing of triggers. See “-gf server option” on page 191.

-gk level Sets the permission required to stop the server. See “-gk server op-
tion” on page 191.

-gl level Sets the permission required to load or unload data. See “-gl server op-
tion” on page 192.

-gm num Sets the maximum number of connections. See “-gm server op-

tion” on page 192.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 157

The database server

Server option

Description

-gn num Sets the maximum number of tasks that the database server can execute con-
currently. See “-gn server option” on page 193.

-gp size Sets the maximum page size to size bytes. See “-gp server op-
tion” on page 194.

-gr minutes Sets the maximum recovery time. See “-gr server option” on page 194.

-gss size Sets the thread stack size to size bytes. See “-gss server op-
tion” on page 195.

-gt num Sets the maximum number of physical processors that can be used (up to the

licensed maximum). This option is only useful on multiprocessor systems.
See “-gt server option” on page 196.

-gtc logical-processors-
to-use

Controls the maximum processor concurrency that the database server allows.
See “~gtc server option” on page 197.

-gu level Sets the permission level for utility commands: utility_db, all, none, or DBA.
See “-gu server option” on page 198.

-im submode Runs the database server in memory, reducing or eliminating writes to disk.
See “-im server option” on page 199.

-k Controls the collection of Performance Monitor statistics. See “-k server op-

tion” on page 201.

-kl GSS-API-library-file

Specifies the file name of the Kerberos GSS-API library (or shared object on
Unix) and enable Kerberos authenticated connections to the database server.
See “-kl server option” on page 201.

-kr server-realm

Specifies the realm of the Kerberos server principal and enables Kerberos
authenticated connections to the database server. See “-kr server op-
tion” on page 202.

-krb Enables Kerberos-authenticated connections to the database server. See “-krb
server option” on page 203.

-ks Disables the creation of shared memory that the Performance Monitor uses to
collect counter values from the database server [Windows]. See “-ks server
option” on page 204.

-ksc Specifies the maximum number of connections that the Performance Monitor
can monitor [Windows]. See “-ksc server option” on page 204.

-ksd Specifies the maximum number of databases that the Performance Monitor

can monitor [Windows]. See “-ksd server option” on page 205.

158

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The SQL Anywhere database server

Server option

Description

-m Truncates the transaction log after each checkpoint for all databases. See “-m
server option” on page 205.

-n name Uses name as the name of the database server. Note that the -n option is po-
sitional. See “-n server option” on page 206.

-0 filename Outputs messages to the specified file. See “-0 server option” on page 208.

-oe filename Specifies file to log startup errors, fatal errors and assertions to. See “-oe server
option” on page 208.

-on size Specifies amaximum size for the database server message log file, after which
the file is renamed with the extension .old and a new file is started. See “-on
server option” on page 209.

-0s size Limits the size of the log file for messages. See “-0s server op-
tion” on page 210.

-ot filename Truncates the database server message log file and appends output messages

to it. See “-ot server option” on page 210.

-p packet-size

Sets the maximum network packet size [network server]. See “-p server op-
tion” on page 211.

_pc

Compresses all connections except same-computer connections. See “-pc
server option” on page 212.

-pt size_in_bytes

Sets the minimum network packet size to compress. See “-pt server op-
tion” on page 212.

-qi Does not display the database server system tray icon or database server mes-
sages window [Windows]. See “-qi server option” on page 213.

-gn Does not minimize the database server messages window on startup [Win-
dows and Linux]. See “-gn server option” on page 213.

-qp Suppresses messages about performance in the database server messages
window. See “-gp server option” on page 214.

-gs Suppresses startup error windows. See “-gs server option” on page 215.

-qw Does not display the database server message window. See “-qw server op-
tion” on page 215.

-r Opens database in read-only mode. See “-r server option” on page 216.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 159

The database server

Server option

Description

-s facility-1D Sets the Syslog facility ID [Unix, Mac OS X]. See “-s server op-
tion” on page 217.
-sb{0]|1} Specifies how the server reacts to broadcasts. See “-sh server op-

tion” on page 218.

-sf feature-list

Secures features for databases running on this database server. See “-sf server
option” on page 218.

-sk key

Specifies a key that can be used to enable features that are disabled for the
database server. See “-sk server option” on page 223.

-su password

Sets the password for the DBA user of the utility database (utility_db), or
disable connections to the utility database. See “-su server op-
tion” on page 224.

-ti minutes Sets the client idle time before shutdown—default 240 minutes. See “-ti server
option” on page 225.

-tl seconds Sets the default liveness timeout for clients in seconds—default 120 seconds.
See “-tl server option” on page 225.

-tmf Forces transaction manager recovery for distributed transactions [Windows].

See “-tmf server option” on page 226.

-tmt milliseconds

Sets the re-enlistment timeout for distributed transactions [Windows]. See “-
tmt server option” on page 227.

-tg time Sets quitting time [network server]. See “-tq server option” on page 227.

-u Uses buffered disk I/O [Windows, Unix, Mac OS X]. See “-u server op-
tion” on page 228.

-ua Turns off use of asynchronous I/O [Linux]. See “-ua server op-
tion” on page 228.

-uc Starts the database server in shell mode [Unix and Mac OS X]. See “-uc server
option” on page 228.

-ud Runs as a daemon [Unix, Mac OS X]. See “-ud server option” on page 229.

-uf Specifies the action to take when a fatal error occurs [Unix, Mac OS X]. See

“-uf server option” on page 230.

160

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The SQL Anywhere database server

Server option

Description

-ui Opens the Server Startup Options window and displays the database server
messages window, or starts the database server in shell mode if a usable dis-
play isn't available [Linux and Mac OS X]. See “-ui server op-
tion” on page 230.

-um Opens the Server Startup Options window and displays the database server
messages window [Mac OS X]. See “-um server option” on page 231.

-ut minutes Touches temporary files every min minutes [Unix, Mac OS X]. See “-ut server
option” on page 231.

-ux Displays the database server messages window and Server Startup Op-
tions window [Linux]. See “-ux server option” on page 232.

Y Displays database server version and stop. See “-v server op-
tion” on page 233.

-Vss Enables and disables the Volume Shadow Copy Service (VSS). See “-vss
server option” on page 233.

-x list Specifiesacomma-separated list of communication links to use. See *“-x server

option” on page 234.

-xa authentication-info

Specifies a list of database names and authentication strings for an arbiter
server. See “-xa server option” on page 235.

-xd Prevents the database server from becoming the default database server. See
“-xd server option” on page 236.

-xf state-file Specifies the location of the file used for maintaining state information about
your database mirroring system. See “-xf server option” on page 237.

-XS Specifies server side web services communications protocols. See “-xs server
option” on page 237.

-z Provides diagnostic information on communication links [network server].
See “-z server option” on page 239.

-ze Displays database server environment variables in the database server mes-
sages window. See “-ze server option” on page 240.

-zl Turns on capturing of the most recently-prepared SQL statement for each
connection. See “-zl server option” on page 240.

-zn integer Specifies the number of request log file copies to retain. See “-zn server op-

tion” on page 241.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 161

The database server

Server option

Description

-zo filename Redirects request logging information to a separate file. See “-zo server op-
tion” on page 242.

-Z0C Redirects web service client information to a file. See “-zoc server op-
tion” on page 243.

-Zp Turns on capturing of the plan most recently used by the query optimizer. See

“-zp server option” on page 243.

-zr { all | SQL | none }

Turns on logging of SQL operations. The default is NONE. See “-zr server
option” on page 244.

-ZS size Limits the size of the log file used for request logging. See “-zs server op-
tion” on page 245.
-zt Turns on logging of request timing information. See “-zt server op-

tion” on page 246.

Database options

The following options can only be specified after a database file name in the database server command.

Database option

Description

-a filename

Applies the named transaction log file. See “-a database op-
tion” on page 248.

-ad log-directory

Specifies the directory containing transaction log files to be applied to the
database. See “-ad database option” on page 248.

-ar Applies any log files located in the same directory as the transaction log to
the database. See “-ar database option” on page 249.

-as Continues running the database after transaction logs have been applied (used
in conjunction with -ad or -ar). See “-as database option” on page 250.

-dh Does not display the database when dblocate is used against this server. See
“-dh database option” on page 251.

-ds Specifies the location of the dbspaces for the database. See “-ds database op-
tion” on page 251.

-ek key Specifies encryption key. See “-ek database option” on page 252.

-m Truncates (deletes) the transaction log after each checkpoint for the specified

database. See “-m database option” on page 253.

162 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The SQL Anywhere database server

Database option Description
-n name Names the database. See “-n database option” on page 253.
-r Opens the specified database(s) in read-only mode. Database modifications

not allowed. See “-r database option” on page 255.

-sm Provides a database server name that can be used to access the read-only mirror
database. See “-sm database option” on page 255.

-sn alternate-server- Provides an alternate server name for a single database running on a database
name server. See “-sn database option” on page 257.

-Xp mirroring-options Provides information to an operational server that allows it to connect to its
partner and to the arbiter when database mirroring is being used. See “-xp
database option” on page 258.

Remarks
The dbeng11 command starts a personal database server. The dbsrv11 command starts a network database
server.

The database-file specifies the database file name. If database-file is specified without a file extension, SQL
Anywhere looks for database-file with extension .db. If you use a relative path, it is read relative to the
current working directory. You can supply a full path.

If you want to start a database server from a batch file, you must use the dbspawn utility. See “Start Server
in Background utility (dbspawn)” on page 829.

The personal database server has a maximum of ten concurrent connections, uses at most one CPU for request
processing, and doesn't support network client/server connections.

In addition, there are other minor differences, such as the default permission level that is required to start
new databases, or the permissions required to execute the CHECKPOINT statement.

Both personal and network database servers are supplied for each supported operating system, with one
exception. On Windows Mobile, only the network server is supplied. The support for TCP/IP in the network
server enables you to perform tasks from your desktop computer, including database management, with
Sybase Central.

Examples
The following command starts the SQL Anywhere sample database running on a personal database server:

dbengll ""c:\Documents and Settings\All Users\Documents\SQL Anywhere 11\Samples
\demo.db"

The following command starts the SQL Anywhere sample database running on a network database server:

dbsrv1l "'c:\Documents and Settings\All Users\Documents\SQL Anywhere 11\Samples
\demo.db"

The following example, entered all on one line, starts a server named myserver that starts with a cache size
of 3 MB and loads the sample database:

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 163

The database server

dbengll -c 3m -n myserver "‘samples-dir\demo.db""

For information about samples-dir, see “Samples directory” on page 390.

164 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

Database server options

These options apply to the server as a whole, not just to an individual database.

@data server option

Reads in options from the specified environment variable or configuration file.

Syntax
{dbsrv1l | dbengll } @data ...

Applies to

All operating systems and database servers, except Windows Mobile. It is supported for all database utilities
except the Language Selection utility (dblang), the Rebuild utility (rebuild), the Certificate Creation utility
(createcert), the Certificate Viewer utility (viewcert), the ActiveSync provider install utility (mlasinst), and
the File Hiding utility (dbfhide).

Remarks
Use this option to read in command line options from the specified environment variable or configuration
file. If both exist with the same name that is specified, the environment variable is used.

Configuration files can contain line breaks, and can contain any set of options. See “Using configuration
files” on page 737.

If you want to protect the information in a configuration file (for example, because it contains passwords)
you can use the File Hiding (dbfhide) utility to obfuscate the contents of configuration files. See “File Hiding
utility (dbfhide)” on page 768.

The @data parameter can occur at any point in the command line, and parameters contained in the file are
inserted at that point. Multiple files can be specified, and the file specifier can be used with command line
options.

See also
e “Using configuration files” on page 737

Example
The following configuration file holds a set of options for a server named myserver that starts with a cache
size of 4 MB and loads the sample database:

-c 4096
-n myserver
"c:\mydatabase.db"

If this configuration file is saved as c:\config.txt, it can be used in a command as follows:
dbsrvll @c:\config.txt

The following configuration file contains comments:

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 165

The database server

#This iIs the server name:
-n MyServer

#These are the protocols:
-x tcpip

#This iIs the database file
my -db

The following statement sets an environment variable that holds options for a database server that starts with
a cache size of 4 MB and loads the sample database.

SET envvar=-c 4096 "c:\mydatabase.db";

This command starts the database server using an environment variable named envvar.

dbsrvll @envvar

-? server option
Displays usage information.

Syntax
{dbsrv1l | dbeng1l}-?

Applies to
All operating systems and database servers, except Windows Mobile.

Remarks
Displays a short description of each server option. The database doesn't perform any other task.

-b server option

Uses bulk operation mode.

Syntax
{dbsrv1l |dbengll}-b ...

Applies to
All operating systems and database servers.

Remarks
This is useful for using the Interactive SQL INPUT command to load large quantities of data into a database.

The -b option should not be used if you are using LOAD TABLE to bulk load data.

When you use this option, the database server allows only one connection by one application. It keeps a
rollback log, but it doesn't keep a transaction log. The multi-user locking mechanism is turned off.

When you first start the database server after loading data with the -b option, you should use a new log file.

166 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

Bulk operation mode doesn't disable the firing of triggers.

See also

e “Data recovery issues for bulk operations” [SQL Anywhere Server - SQL Usage]
e “Performance aspects of bulk operations” [SQL Anywhere Server - SQL Usage]

-C server option

Sets the initial memory reserved for caching database pages and other server information.

Syntax
{dbsrv1l |dbengll}-c {sizeflk |m|g|p]}..

Applies to
All operating systems and database servers.

Remarks

The amount of memory available for use as a database server cache is one of the key factors controlling
performance. You can set the initial amount of cache memory using the -c server option. The more cache
memory that can be given the server, the better its performance.

The size is the amount of memory, in bytes. Use k, m, or g to specify units of kilobytes, megabytes, or
gigabytes, respectively.

The unit p is a percentage either of the physical system memory, or of the maximum non-AWE cache size,
whichever is lower. The maximum non-AWE cache size depends on the operating system. For example:

e 2.8 GB for Windows 32-bit Advanced Server, Enterprise Server, Datacenter Server, and Vista
e 3.8 GB for the 32-bit database server running on Windows x64 Edition
e 1.8 GB on all other 32-bit systems

e On Windows Mobile, the p option specifies a percentage of available physical memory

If you use p, the argument is a percentage. You can use % as an alternative to p, but as most non-Unix
operating systems use % as an environment variable escape character, you must escape the % character. To
set the initial cache size to 50 percent of the physical system memory, you would use the following:

dbengll -c 50%% ...
On Unix operating systems, the cache size is set to the lesser of:

e the value specified after -c

e 95% of (available memory - 5 MB)
On Windows Mobile, the cache size will be set to the lesser of:

e the value specified after -c

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 167

The database server

e 95% of (available memory - 2 MB)

If no -c option is provided, the database server computes the initial cache allocation as follows:

1. It uses the following operating-system-specific default cache sizes:
e Windows Mobile 600 KB
e Windows 2MB
e Unix 8MB
2. It computes a runtime-specific minimum default cache size, which is the lesser of the following items:
e 25% of the computer's physical memory

e The sum of the sizes of the main database files specified on the command line. Additional dbspaces
apart from the main database files aren't included in the calculation. If no files are specified, this
value is zero.

3. It allocates the greater of the two values computed.

If your database is encrypted, you may want to increase the cache size. As well, if you are using dynamic
cache resizing (-ca option), then the cache size that is used may be restricted by the amount of memory that
is available.

See “Increase the cache size” [SQL Anywhere Server - SQL Usage].

The database server messages window displays the size of the cache at startup, and you can use the following
statement to obtain the current size of the cache:

SELECT PROPERTY("CacheSize");

See also

“~ca server option” on page 169

“~cc server option” on page 169

“~ch server option” on page 170

“~cl server option” on page 171

“-cm server option” on page 172

“~cr server option” on page 174

“-cs server option” on page 175

“-cv server option” on page 175

“-cw server option” on page 176

“Limiting cache memory use” [SQL Anywhere Server - SQL Usage]
“Increase the cache size” [SQL Anywhere Server - SQL Usage]
“Using the cache to improve performance” [SQL Anywhere Server - SQL Usage]

Example

The following example, entered all on one line, starts a server named myserver that starts with a cache size
of 3 MB and loads the sample database:

dbengll -c 3m -n myserver ''samples-dir\demo.db"

168 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

For information about samples-dir, see “Samples directory” on page 390.

-ca server option

Enforces a static cache size.

Syntax
{dbsrv1l | dbengll}-caO...

Applies to
Windows, Unix, Mac OS X

Remarks
You can disable automatic cache increase because of high server load by specifying -ca 0 on the command
line. If you do not include the -ca 0 option, the database server automatically increases the cache size. The
cache size still increases if the database server would otherwise run into the error Fatal Error:
dynamic memory exhausted.

This server option must only be used in the form -ca 0.

This option is ignored if you are using an AWE cache. You can use the -cw option to create a larger cache
using AWE. See “-cw server option” on page 176.

See also

e “-cserver option” on page 167

e “-cc server option” on page 169

e “-ch server option” on page 170

e “-cl server option” on page 171

e “-cm server option” on page 172

e “-crserver option” on page 174

e “-csserver option” on page 175

e “-cv server option” on page 175

e “-cw server option” on page 176

e “Limiting cache memory use” [SQL Anywhere Server - SQL Usage]

Example

The following example starts a server named myserver that has a static cache that is 40% of the available
physical memory and loads the sample database:

dbsrvll -c 40P -ca 0 -n myserver ''samples-dir\demo.db"

For information about samples-dir, see “Samples directory” on page 390.

-CC server option

Collects information about database pages to be used for cache warming the next time the database is started.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 169

The database server

Syntax

{dbsrv1l |dbengll}-cc{+]|-}...

Applies to

All operating systems and database servers.

Remarks

By default, page collection is turned on. When collection is turned on, the database server keeps track of
each database page that is requested. Collection stops when the maximum number of pages has been
collected, the database is shut down, or the collection rate falls below the minimum value. Note that you
cannot configure the maximum number of pages collected or specify the value for the collection rate (the
value is based on cache size and database size). Once collection stops, information about the requested pages
is recorded in the database so those pages can be used to warm the cache the next time the database is started
with the -cr option. Collection of referenced pages is turned on by default.

See also

“~C server option” on page 167

“~ca server option” on page 169

“~ch server option” on page 170

“~cl server option” on page 171

“-cm server option” on page 172

“~cr server option” on page 174

“-cs server option” on page 175

“-cv server option” on page 175

“-cw server option” on page 176

“Using cache warming” [SQL Anywhere Server - SQL Usage]

-ch server option

Sets a maximum cache size, as a limit to automatic cache growth.

Syntax

{dbsrv1l | dbengll}-ch {sizefk |m|g|p]1}..

Applies to

Windows, Unix, Mac OS X

Remarks

This option limits the size of the database server cache during automatic cache growth. By default the upper
limit is approximately the lower of the maximum non-AWE cache size and 90% of the physical memory of
the computer.

The size is the amount of memory, in bytes. Use k, m, or g to specify units of kilobytes, megabytes, or
gigabytes, respectively.

170

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

The unit p is a percentage either of the physical system memory, or of the maximum non-AWE cache size,
whichever is lower. The maximum non-AWE cache size depends on the operating system. For example:

2.8 GB for Windows 32-bit Advanced Server, Enterprise Server and Datacenter Server
3.8 GB for the 32-bit database server running on Windows x64 Edition
1.8 GB on all other 32-bit systems

On Windows Mobile, the p option specifies a percentage of available physical memory

If you use p, the argument is a percentage. You can use % as an alternative to P, but as most non-Unix
operating systems use % as an environment variable escape character, you must escape the % character. To
set the minimum cache size to 50 percent of the physical system memory, you would use the following:

This option is ignored if you are using an AWE cache. You can use the -cw option to create a larger cache
using AWE. See “-cw server option” on page 176.

dbengll -ch 50%% ...

See also

“-c server option” on page 167

“-ca server option” on page 169

“~cc server option” on page 169

“-cl server option” on page 171

“-cm server option” on page 172

“~cr server option” on page 174

“-cs server option” on page 175

“-cv server option” on page 175

“Limiting cache memory use” [SQL Anywhere Server - SQL Usage]

Example

The following example starts a server named silver that has a maximum cache size of 2 MB and loads the
sample database:

dbengll -ch 2m -n silver "samples-dir\demo.db"

For information about samples-dir, see “Samples directory” on page 390.

-cl server option

Sets a minimum cache size as a lower limit to automatic cache resizing.

Syntax

{dbsrv11l |dbengll}-cl {size[k |m|g|p]}...

Applies to
Windows, Unix, Mac OS X

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 171

The database server

Remarks

This option sets a lower limit to the cache. If you specify an initial cache size with the -c option, then the
minimum cache size is the same as the initial cache size. If the initial cache size is not specified, then the
default initial cache size is 2 MB on Windows and 8 MB on Unix.

The size is the amount of memory, in bytes. Use k, m, or g to specify units of kilobytes, megabytes, or
gigabytes, respectively.

The unit p is a percentage either of the physical system memory, or of the maximum non-AWE cache size,
whichever is lower. The maximum non-AWE cache size depends on the operating system. For example:

e 2.8 GB for Windows 32-bit Advanced Server, Enterprise Server and Datacenter Server
e 3.8 GB for the 32-bit database server running on Windows x64 Edition
e 1.8 GB on all other 32-bit systems

e On Windows Mobile, the p option specifies a percentage of available physical memory

If you use p, the argument is a percentage. You can use % as an alternative to P, but as most non-Unix
operating systems use % as an environment variable escape character, you must escape the % character. To
set the minimum cache size to 50 percent of the physical system memory, you would use the following:

dbengll -cl 50%% ...

This option is ignored if you are using an AWE cache. You can use the -cw option to create a larger cache
using AWE. See “-cw server option” on page 176.

See also

“~c server option” on page 167

“-ca server option” on page 169

“~cc server option” on page 169

“-ch server option” on page 170

“-cm server option” on page 172

“~cr server option” on page 174

“-cs server option” on page 175

“-cv server option” on page 175

“-cw server option” on page 176

“Limiting cache memory use” [SQL Anywhere Server - SQL Usage]

Example

The following example starts a server named silver that has a minimum cache size of 5 MB and loads the
database file example.db:

dbengll -cl 5m -n silver "c:\example.db"

-cm server option

Specifies the amount of address space allocated for an Address Windowing Extensions (AWE) cache on
Windows.

172 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

Syntax
{dbsrv1l | dbengll}-cm {sizeflk |m|g|p]}..

Applies to
Windows

Remarks

When using an AWE cache on any of the supported platforms, the database server uses its entire address
space except for 512 MB to access the cache memory. The 512 MB address space is left available for other
purposes, such as DLLs that the server must load and for non-cache memory allocations. On most systems,
the default setting is enough. If you need to increase or decrease the amount of reserved address space, you
can do so by specifying the -cm option. The database server displays the amount of address space it is using
in the database server messages window at startup.

The size is the amount of memory, in bytes. Use k, m, or g to specify units of kilobytes, megabytes, or
gigabytes, respectively.

The unit p is a percentage of the maximum non-AWE cache size. If you use p, the argument is a percentage.
You can use % as an alternative to P, but as most non-Unix operating systems use % as an environment
variable escape character, you must escape the % character. To set the cache size to 50 percent of the address
space, you would use the following:

dbengll -cm 50%% - ..

See also

“~C server option” on page 167

“~ca server option” on page 169

“~cc server option” on page 169

“~ch server option” on page 170

“~cl server option” on page 171

“~cr server option” on page 174

“-cs server option” on page 175

“-cv server option” on page 175

“-cw server option” on page 176

“Limiting cache memory use” [SQL Anywhere Server - SQL Usage]

-Cp server option

Specifies set of directories or jar files in which to search for classes.

Syntax
{dbsrv1l | dbeng1l } -cp location[;location ...] ...

Applies to
All operating systems and database servers.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 173

The database server

Remarks

It is recommended that all classes and JAR files that are being used with Java in the database be installed in
the database. When you store the classes and JAR files within the database, the database can be easily moved
to a different computer or operating system. Another benefit of installing classes and JAR files into the
database is that the SQL Anywhere class loader can fetch the classes and resources from the database,
allowing each connection that is using Java in the database to have its own instance of these classes and its
own copy of static variables within these classes.

However, in cases where the class or JAR file must be loaded by the system class loader, they can be specified
with the -cp server option. This option adds directories and JAR files to the classpath that the database server
builds for launching the Java VM.

See also

e “Introduction to Java support” [SQL Anywhere Server - Programming]
e “How do I store Java classes in the database?” [SQL Anywhere Server - Programming]

-Cr server option

Reloads (warms) the cache with database pages using information collected the last time the database was
run.

Syntax
{dbsrv1l|dbengll}-cr{+|-}..

Applies to
All operating systems and database servers.

Remarks

You can instruct the database server to warm the cache using pages that were referenced the last time the
database was started (page collection is turned on using the -cc option). Cache warming is turned on by
default. When a database is started, the server checks the database to see if it contains a collection of pages
requested the last time the database was started. If the database contains this information, the previously-
referenced pages are then loaded into the cache.

Warming the cache with pages that were referenced the last time the database was started can improve
performance when the same query or similar queries are executed against a database each time it is started.

See also

e “-cc server option” on page 169

“~cl server option” on page 171

“-cm server option” on page 172

“-cs server option” on page 175

“-cv server option” on page 175

“-cw server option” on page 176

“Using cache warming” [SQL Anywhere Server - SQL Usage]

174 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

-CS server option
Displays cache size changes in the database server messages window.

Syntax
{dbsrv1l | dbengll}-cs ...

Applies to
Windows, Unix

Remarks

For troubleshooting purposes, display cache information in the database server messages window whenever
the cache size changes.

See also

“~c server option” on page 167

“~ca server option” on page 169

“~cc server option” on page 169

“~ch server option” on page 170

“~cl server option” on page 171

“-cm server option” on page 172

“~cr server option” on page 174

“-cv server option” on page 175

“-cw server option” on page 176

“Using cache warming” [SQL Anywhere Server - SQL Usage]

-CV server option
Controls the appearance of messages about cache warming in the database server messages window.

Syntax
{dbsrv1l | dbengll}-cv {+]-}...

Applies to
All operating systems and database servers.

Remarks

When -cv+ is specified, a message appears in the database server messages window when any of the
following cache warming activities occur:

e collection of requested pages starts or stops (controlled by the -cc server option)

e page reloading starts or stops (controlled by the -cr server option)

By default, this option is turned off.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 175

The database server

See also

“~c server option” on page 167

“~ca server option” on page 169

“~cc server option” on page 169

“~ch server option” on page 170

“~cl server option” on page 171

“-cm server option” on page 172

“~cr server option” on page 174

“-cs server option” on page 175

“-cw server option” on page 176

“Using cache warming” [SQL Anywhere Server - SQL Usage]

Example

The following command starts the database mydatabase.db with database page collection and page loading
turned on, and logs messages about these activities to the database server messages window:

dbsrvll -cc+ -cr+ -cv+ mydatabase.db

-CW server option

Enables use of Address Windowing Extensions (AWE) on Windows for setting the size of the database
server cache.

Syntax
{dbsrv1l | dbengll}-cw ...

Applies to
Windows

Remarks

The amount of memory available for use as a database server cache is one of the key factors controlling
performance. Because Windows supports Address Windowing Extensions, you can use the -cw option to
take advantage of large cache sizes based on the maximum amount of physical memory in the system.

AWE caches are not supported on 64-bit SQL Anywhere database servers.

Operating system Maximum non-AWE Maximum amount of physical mem-
cache size ory supported by Windows

Windows 2000 Professional 1.8GB 4GB

Windows 2000 Server 1.8GB 4GB

Windows 2000 Advanced Server | 2.7 GB? 8GB

Windows 2000 Datacenter Server | 2.7 GB? 64 GB

176 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

Operating system Maximum non-AWE Maximum amount of physical mem-
cache size ory supported by Windows

Windows XP Home Edition 1.8 GB 2GB

Windows XP Professional 1.8GB 4GB

Windows Server 2003, Web Edi- | 1.8 GB 2GB

tion

Windows Server 2003, Standard | 1.8 GB 4GB

Edition

Windows Server 2003, Enterprise | 2.7 GB! 32GB

Edition

Windows Server 2003, Datacen- | 2.7 GB! 64 GB

ter Edition

Windows Vista Ultimate 2.7 GB2 4GB

Windows Vista Enterprise 2.7 GB2 4GB

Windows Vista Business 2.7 GB2 4GB

Windows Vista Home Premium | 2.7 GB?2 4GB

Windows Vista Home Basic 2.7 GB? 4GB

Windows Vista Starter 2.7 GB2 1GB

1 On Windows XP/200x, you must start the operating system using the /3GB option to use a cache of this
size.

2 0n Windows Vista, you must restart the operating system after running the following command as an
administrator to use a cache of this size:

bcdedit /set increaseuserva 3072

When using an AWE cache, most of the available physical memory in the system can be allocated for the
cache.

If you can set a cache of the required size using a non-AWE cache, this is recommended because AWE
caches allocate memory that can only be used by the database server. This means that while the database
server is running, the operating system and other applications cannot use the memory allocated for the
database server cache. AWE caches do not support dynamic cache sizing. Therefore, if an AWE cache is
used and you specify the -ch or -cl options to set the upper and lower cache size, they are ignored.

By default, 512 MB of address space is reserved for purposes other than the SQL Anywhere AWE cache
(address space is the amount of memory that can be accessed by a program at any given time). While this
amount is enough in most cases, you can change the amount of reserved address space using the -cm option.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 177

The database server

On Windows Vista, only elevated database servers can use AWE memory. If you are autostarting a database
server on Windows Vista, you must specify ELEVATE=YES in your connection string so that autostarted
database server executables are elevated. See “Elevate connection parameter” on page 279.

To start a database server with an AWE cache, you must do the following:

On Windows Vista, you must run the database server as an administrator.
Have at least 130 MB of memory available on your system.

On Windows XP/200x, if your system has between 2 GB and 16 GB of memory, add the /3GB option
to the Windows boot line in the "[operating systems]" section of the boot.ini file.

On Windows Vista, if your system has between 2 GB and 16 GB of memory, you must run the following
command as an administrator:

bcdedit /set increaseuserva 3072

On Windows XP/200x, if your system has more than 16 GB of memory, do not add the /3GB option to
the Windows boot line in the [operating systems] section of the boot.ini file because Windows won't be
able to address memory beyond 16 GB.

On Windows XP/200x, if your system has more than 4 GB of memory, add the /PAE option to the
Windows boot line in the [operating systems] section of the boot.ini file.

On Windows Vista if your system has more than 4 GB of memory, run the following command as an
administrator:

bcdedit /set pae ForceEnable

Grant the Lock Pages in Memory privilege to the user 1D under which the server is run. The following
steps explain how to do this on Windows XP.

Log on to Windows as an administrator.

Open the Control Panel.

Double-click Administrative Tools.

Double-click Local Security Policy.

Open Local Policies in the left pane.

Double-click User Rights Assignment.

Double-click the Lock Pages In Memory policy in the right pane.
Click Add User Or Group.

© ® N o g ~ w0 D E

Type the name of the user, and then click OK.
10. Click OK on the Lock Pages In Memory window.

11. Close all open windows and restart the computer for the setting to take effect.

If you specify the -cw option and the -c option on the command line, the database server attempts the initial
cache allocation as follows:

178

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

1. The AWE cache is no larger than the cache size specified by the -c option. If the value specified by the
-c option is less than 2 MB, AWE isn't used.

2. The AWE cache is no larger than all available physical memory less 128 MB.

3. The AWE cache is no smaller than 2 MB. If this minimum amount of physical memory isn't available,
an AWE cache isn't used.

When you specify the -cw option and do not specify the -c option, the database server attempts the initial
cache allocation as follows:

1. The AWE cache uses 100% of all available memory except for 128 MB that is left free for the operating
system.

2. The AWE cache is no larger than the sum of the sizes of the main database files specified on the command
line. Additional dbspaces apart from the main database files aren't included in the calculation. If no files
are specified, this value is zero.

3. The AWE cache is no smaller than 2 MB. If this minimum amount of physical memory isn't available,
an AWE cache isn't used.

When the server uses an AWE cache, the cache page size will be no smaller than 4 KB and dynamic cache
sizing is disabled.

See “Using the cache to improve performance” [SQL Anywhere Server - SQL Usage].

See also

“~c server option” on page 167
“~ca server option” on page 169
“~cc server option” on page 169
“~ch server option” on page 170
“~cl server option” on page 171
“-cm server option” on page 172
“~cr server option” on page 174
“-cs server option” on page 175
“-cv server option” on page 175

Example

The following example starts a server named myserver that starts with a cache size of 12 GB and loads the
database c:\test\mydemo.db:

dbengll -n myserver -c 12G -cw c:\test\mydemo.db

-dt server option
Specifies the directory where temporary files are stored.

Syntax
{dbsrv1l | dbengl1l } -dt temp-file-dir ...

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 179

The database server

Applies to
All servers and operating systems, except shared memory connections on Unix.

Remarks

SQL Anywhere creates two types of temporary files: database server-related temporary files (created on all
platforms), and communications-related temporary files (created only on Unix for both the client and the
server).

You can use the -dt option to specify a directory for database server-related temporary files. If you do not
specify this option when starting the database server, SQL Anywhere examines the following environment
variables, in the order shown, to determine the directory in which to place the temporary file.

SATMP
TMP
TMPDIR
TEMP

If none of the environment variables are defined, SQL Anywhere places its temporary file in the current
directory on Windows, and in the /tmp directory on Unix.

Temporary files for communications on Unix are not placed in the directory specified by -dt. Instead, the
environment variables are examined, and /tmp is used if none of the environment variables are defined.

See also

“Overview of database files” on page 12

“SATMP environment variable” on page 379

“Place different files on different devices” [SQL Anywhere Server - SQL Usage]
“sa_disk_free_space system procedure” [SQL Anywhere Server - SQL Reference]
“temp_space_limit_check option [database]” on page 583

-ec server option

Uses transport-layer security or simple encryption to encrypt all native SQL Anywhere packets (DBL.ib,
ODBC, and OLE DB) transmitted to and from all clients. TDS packets aren't encrypted.

Syntax
{dbsrv11 | dbengll } -ec encryption-options ...

encryption-options :

{ NONE |
SIMPLE |
TLS (TLS_TYPE=cipher;
[FIPS={Y [N}]
IDENTITY=server-identity-filename;
IDENTITY_PASSWORD=password) }, ...

180 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

Applies to
NONE and SIMPLE apply to all servers and operating systems.

TLS applies to all servers and operating systems, except Windows Mobile.

For information about FIPS support, see http://www.sybase.com/detail?id=1061806.

Remarks

You can use this option to secure communication packets between client applications and the database server
using transport-layer security. See “Transport-layer security” on page 1095.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

The -ec option instructs the database server to accept only connections that are encrypted using one of the
specified types. Connections over the TDS protocol, which include Java applications using jConnect, are
always accepted regardless of the usage of the -ec option, and are never encrypted. Setting the TDS protocol
option to NO disallows these unencrypted TDS connections. See “TDS protocol option” on page 323.

By default, communication packets aren't encrypted, which poses a potential security risk. If you are
concerned about the security of network packets, use the -ec option. Encryption affects performance only
marginally. The -ec option controls the server's encryption settings and requires at least one of the following
parameters in a comma-separated list;

e NONE accepts connections that aren't encrypted.

e SIMPLE accepts connections that are encrypted with simple encryption. This type of encryption is
supported on all platforms, and on previous versions of SQL Anywhere. Simple encryption doesn't
provide server authentication, strong elliptic-curve or RSA encryption, or other features of transport-
layer security.

e TLS accepts connections that are encrypted. The TLS parameter accepts the following required
arguments:

o cipher canbe RSA or ECC for RSA and ECC encryption, respectively. For FIPS-approved RSA
encryption, specify TLS TYPE=RSA;FIPS=Y. RSA FIPS uses a separate approved library, but is
compatible with clients specifying RSA with SQL Anywhere 9.0.2 or later.

For a list of supported platforms for FIPS, see http://www.sybase.com/detail?id=1061806.
The cipher must match the encryption (ECC or RSA) used to create your certificates.

For information about enforcing the FIPS-approved algorithm, see “-fips server
option” on page 186.

Note
Version 10 and later clients cannot connect to version 9.0.2 or earlier database servers using the ECC
algorithm. If you require strong encryption for this configuration, use the RSA algorithm.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 181

http://www.sybase.com/detail?id=1061806
http://www.sybase.com/detail?id=1061806

The database server

o server-identity-filename is the path and file name of the server identity certificate. If you are
using FIPS-approved RSA encryption, you must generate your certificates using the RSA cipher.

For more information about creating the server certificate, which can be self-signed, or signed by a
Certificate Authority or enterprise root certificate, see “Creating digital certificates” on page 1101.

o password is the password for the server private key. You specify this password when you create
the server certificate.

If the database server accepts simple encryption, but does not accept unencrypted connections, then any non-
TDS connection attempts using no encryption automatically use simple encryption.

Starting the database server with —ec SIMPLE tells the database server to only accept connections using
simple encryption. TLS connections (ECC, RSA, and RSA FIPS) fail, and connections requesting no
encryption use simple encryption.

Starting the server with —ec SIMPLE, TLS(TLS_TYPE=ECC) tells the database server to only accept
connections with ECC encryption or simple encryption. Both RSA and RSA FIPS connections fail, and
connections requesting no encryption use simple encryption.

If you want the database server to accept encrypted connections over TCP/IP, but also want to be able to
connect to the database from the local computer over shared memory, you can specify the -es option along
with the -ec option when starting the database server. See “-es server option” on page 184.

The dbecc11.dll and dbrsall.dll files contain the ECC and RSA code used for encryption and decryption.
The file dbfips11.dll contains the code for the FIPS-approved RSA algorithm. When you connect to the
database server, if the appropriate file cannot be found, or if an error occurs, a message appears on the
database server messages window. The server doesn't start if the specified types of encryption cannot be
initiated.

The client's and the server's encryption settings must match or the connection will fail except in the following

cases:

e if -ec SIMPLE is specified on the database server, but -ec NONE is not, then connections that do not
request encryption can connect and automatically use simple encryption

e if the database server specifies RSA and the client specifies FIPS, or vice versa, the connection succeeds.
In this case, the Encryption connection property returns the value specified by the database server.

See also
e “Starting the database server with transport-layer security” on page 1107

e “Encryption connection parameter [ENC]” on page 280

e “-ek database option” on page 252

e “-ep server option” on page 183

e “-esserver option” on page 184

e “DatabaseKey connection parameter [DBKEY]” on page 274
Example

The following example specifies that connections with no encryption and simple encryption are allowed.

dbsrvll -ec NONE,SIMPLE -x tcpip c:\mydemo.db

182 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

The following example specifies starts a database server that uses the elliptic-curve server certificate
eccserver.id.

dbsrv1ll -ec TLS(TLS_TYPE=ECC;IDENTITY=eccserver.id; IDENTITY_PASSWORD=test) -
X tcpip c:\mydemo.db

The following example starts a database server that uses the RSA server certificate rsaserver.id.

dbsrvll -ec TLS(TLS_TYPE=RSA;IDENTITY=rsaserver.id; IDENTITY_PASSWORD=test) -
X tcpip c:\mydemo.db

The following example starts a database server that uses the FIPS-approved RSA server certificate
rsaserver.id.

dbsrvll -ec

TLS(TLS_TYPE=RSA;FIPS=Y; IDENTITY=rsaserver.id; IDENTITY_PASSWORD=test) -Xx
tcpip c:\mydemo.db

-ep server option
Prompts the user for the encryption key upon starting a strongly encrypted database.

Syntax
{dbsrv1l | dbengll}-ep ...

Applies to
All operating systems and database servers.

Remarks

The -ep option instructs the database server to make a window appear for the user to enter the encryption
key for database started on the command line that require an encryption key. This server option provides an
extra measure of security by never allowing the encryption key to be seen in clear text.

When used with the server, the user is prompted for the encryption key when the following are all true:

e the -ep option is specified
e the server is a Windows personal server, or the server is just starting up
e akey is required to start a database

e the server is either not a Windows service, or it is a Windows service with the interact with desktop
option turned ON

e the server isn't a daemon (Unix)

If you want to secure communication packets between client applications and the database server use the -
ec server option and transport-layer security. See “Transport-layer security” on page 1095.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 183

The database server

See also
e “Starting the database server with transport-layer security” on page 1107

e “-ec server option” on page 180

e “-ek database option” on page 252

e “Encryption connection parameter [ENC]” on page 280

e “DatabaseKey connection parameter [DBKEY]” on page 274
Example

The user is prompted for the encryption key when the myencrypted.db database is started:

dbsrvll -ep -x tcpip myencrypted.db

-es server option
Allows unencrypted connections over shared memory.

Syntax
{dbsrv1l | dbengll } -ec encryption-options -es ...

Applies to
All servers and operating systems, except Windows Mobile.

Remarks

This option is only effective when specified with the -ec option. The -es option instructs the database server
to allow unencrypted connections over shared memory. Connections over TCP/IP must use an encryption
type specified by the -ec option. This option is useful in situations where you want remote clients to use
encrypted connections, but for performance reasons you also want to access the database from the local
computer with an unencrypted connection.

See also

e ‘“-ec server option” on page 180
e “Starting the database server with transport-layer security” on page 1107

Example

The following example specifies that connections with simple encryption and unencrypted connections over
shared memory are allowed.

dbsrvll -ec SIMPLE -es -x tcpip c:\mydemo.db

-f recovery option

Forces the database server to start after the transaction log has been lost.

184 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

Syntax
{dbsrv1l | dbengl11}-f ...

Applies to
All operating systems and database servers.

Remarks

Caution
This option is for use in recovery situations only.

If there is no transaction log, the database server performs a checkpoint recovery of the database and then
shuts down—it doesn't continue to run. You can then restart the database server without the -f option for
normal operation.

If there is a transaction log in the same directory as the database, the database server performs a checkpoint
recovery, and a recovery using the transaction log, and then shuts down—it doesn't continue to run. You can
then restart the database server without the -f option for normal operation.

Specifying a cache size when starting the server can reduce recovery time.

See also

e “Running in special modes” on page 49
e “Backup and data recovery” on page 869

Example
The following command forces the database server to start and perform a recovery of the database
mydatabase.db:

dbengll mydatabase.db -T

-fc server option

Specifies the file name of a DLL (or shared object on Unix) containing the File System Full callback function.

Syntax
{dbsrv1l | dbeng1l} -fc filename ...

Applies to
All operating systems and database servers.

Remarks

This option can be used to notify users, and possibly take corrective action, when a file system full condition
is encountered. If you use the -fc option, the database server attempts to load the specified DLL and resolve
the entry point of the callback function during startup. If the SQL Anywhere database server cannot find
both the DLL and the entry point, the database server returns an error and shuts down. The DLL is user-
supplied and can use the callback to, among other things, invoke a batch file (or shell script on Unix) you

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 185

The database server

have supplied to take diagnostic or corrective action. Alternatively, the callback function itself can perform
such an action.

A sample disk full callback function is located in samples-din\SQLAnywhere\DiskFull.
For information about samples-dir, see “Samples directory” on page 390.

SQL Anywhere searches for the callback function DLL in the same locations as it searches for other DLLs
and files.

For more information about where SQL Anywhere searches for files, see “How SQL Anywhere locates
files” on page 392.

When the database server detects a disk full condition, it invokes the callback function (if one has been
provided), passing it the following information:

e the name of the dbspace where the condition was triggered

e the operating system-specific error code from the failed operation

The return code from the call to xp_out_of disk indicates whether the operation that caused the condition

should be aborted or retried. If a non-zero value is returned, the operation is aborted, otherwise it is retried.
The callback function is invoked repeatedly as long as it returns zero and the file system operation fails.

On Microsoft Windows platforms, if the database server is started with a database server messages window
(neither -gi nor -qw have been specified), and a callback DLL is not provided, a window appears when a
disk full condition occurs. This window contains the dbspace name and error code, and allows the user to
choose whether the operation that caused the disk full condition should be retried or aborted.

On all other operating systems, when -fc isn't specified and a disk full condition is encountered, a fatal error
occurs.

You can create system events to track the available disk space of devices holding the database file, the log
file, or the temporary file and alert administrators in case of a disk space shortage.

See “CREATE EVENT statement” [SQL Anywhere Server - SQL Reference].

See also
e “Using callback functions” [SQL Anywhere Server - Programming]

e “Understanding system events” on page 926

e “max_temp_space option [database]” on page 550

e “temp_space_limit_check option [database]” on page 583
Example

When the database server starts, it attempts to load the diskfull.dll DLL.
dbengll -fc diskfull.dll

-fips server option

Requires that only FIPS-approved algorithms should be used for strong database and communication
encryption.

186 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

Syntax
{dbsrvil | dbengl1} -fips ...

Applies to
Windows

Remarks

Specifying this option forces all server encryption to use FIPS-approved algorithms. This option applies to
strong database encryption, client/server transport-layer security, and web services transport-layer security.
You can still use unencrypted connections and databases when the -fips option is specified, but you cannot
use simple encryption.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

For strong database encryption, the -fips option causes new databases to use the AES_FIPS type, even if
AES is specified in the ALGORITHM clause of the CREATE DATABASE statement.

When the database server is started with -fips, you can run databases encrypted with AES, AES256,
AES_FIPS, or AES256_FIPS strong encryption, but not databases encrypted with simple encryption.
Unencrypted databases can also be started on the server when -fips is specified.

The SQL Anywhere security option must be installed on any computer used to run a database encrypted
with AES_FIPS or AES256_FIPS.

For SQL Anywhere transport-layer security, the -fips option causes the server to use the FIPS-approved
RSA encryption cipher, even if RSA is specified. If ECC is specified, an error occurs because a FIPS-
approved elliptic-curve algorithm is not available.

For transport-layer security for web services, the -fips option causes the server to use HTTPS FIPS, even if
HTTPS is specified.

When you specify -fips, the ENCRYPT and HASH functions use the FIPS-approved RSA encryption cipher,
and password hashing uses the SHA-256 FIPS algorithm rather than the SHA-256 algorithm.

See also

“Strong encryption” on page 1082

“Transport-layer security” on page 1095

“Encrypting SQL Anywhere web services” on page 1112

“-ec server option” on page 180

“ENCRYPT function [String]” [SQL Anywhere Server - SQL Reference]
“HASH function [String]” [SQL Anywhere Server - SQL Reference]

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 187

The database server

-ga server option

Unloads the database after the last non-HTTP client connection disconnects.

Syntax
{dbsrv1l | dbengll}-ga...

Applies to
All operating systems.

Remarks

Specifying this option on the network server causes each database to be unloaded after the last non-HTTP
client connection disconnects. In addition to unloading each database after the last non-HTTP connection
disconnects, the database server shuts down when the last database is stopped.

If the only connection to a database is an HTTP connection, and the database is configured to stop
automatically, when the HTTP connection disconnects, the database is not unloaded. As well, if you specify
the -ga option, and the database has an HTTP connection and a command sequence or TDS connection,
when the last command sequence or TDS connection disconnects, the database autostops, and any HTTP
connections are dropped.

See also

e “Rebuilding databases” [SQL Anywhere Server - SQL Usage]
e “AutoStop connection parameter [ASTOP]” on page 265

-gb server option
Sets the server process priority class.

Windows syntax
{dbsrv1l | dbengll}-gb {idle | normal | high | maximum } ...

Unix syntax
{dbsrvil | dbengll} -gb level ...

Applies to
Windows, Unix, Mac OS X

Remarks
This option sets the server process priority class.

On Windows, normal and high are the commonly-used settings. The value idle is provided for completeness,
and maximum may interfere with the running of your computer.

On Unix, the level is an integer from -20 to 19. The default value on Unix is the same as the nice value of
the parent process. Lower level values represent a more favorable scheduling priority. All restrictions placed

188 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

on setting a nice value apply to the -gb option. For example, on most Unix platforms, only the root user can
lower the priority level of a process (for example, changing it from 0 to -1).

-gcC server option

Sets the maximum interval between checkpoints.

Syntax
{dbsrv11l | dbengll } -gc minutes ...

Applies to
All operating systems and database servers.

Remarks

Set the maximum length of time in minutes that the database server runs without doing a checkpoint on each
database.

The default value is the setting of the checkpoint_time database option, which defaults to 60 minutes. If a
value of 0 is entered, the default value of 60 minutes is used.

Checkpoints generally occur more frequently than the specified time.

See “How the database server decides when to checkpoint” on page 910.

See also

e “checkpoint_time option [database]” on page 514
e “Understanding the checkpoint log” on page 18
e “How the database server decides when to checkpoint” on page 910

-gd server option

Sets the permissions required to start or stop a database.

Syntax
{dbsrv1l | dbengll}-gd { DBA | all | none} ...

Applies to
All operating systems and database servers.

Remarks

This is the permission required for a user to cause a new database file to be loaded by the server, or to stop
a database on a running database server. The level can be one of the following:

e DBA Only users with DBA authority can start or stop databases.

e all All users can start or stop databases.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 189

The database server

e none Starting and stopping databases isn't allowed apart from when the database server itself is started
and stopped.

The default setting is all for the personal database server, and DBA for the network database server. Both
uppercase and lowercase syntax is acceptable.

Note that when this option is set to DBA, the client application must already have a connection to the server
to start or stop a database. Providing a DBA user ID and password on a new connection is not enough.

You can obtain the setting of the -gd option using the StartDBPermission server property:

SELECT PROPERTY ("StartDBPermission”);

See also
e “Permissions overview” on page 452

Example
The following steps illustrates how to use the -gd option for the network database server.

1. Start the network database server:

dbsrvll -x tcpip -su mypwd -n myserver -gd DBA
2. Connect to the utility database from Interactive SQL.:

dbisql -c "UID=DBA;PWD=mypwd;ENG=myserver ;DBN=utility_db"
3. Start a database:

START DATABASE demo
ON myserver;

4. Connect to the database you have started:

CONNECT

TO myserver

DATABASE demo

USER DBA IDENTIFIED BY sql;

-ge server option

Sets the stack size for external functions.

Syntax
{dbsrv11 | dbengll} -ge integer ...

Applies to
Windows

Remarks
Sets the stack size for threads running external functions, in bytes. The default is 32 KB.

190 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

See also
e “Controlling threading behavior” on page 52

-gf server option

Disables firing of triggers by the server.

Syntax
{dbsrv1l | dbeng1l} -gf ...

Applies to
All operating systems and database servers.

Remarks
The -gf server option instructs the server to disable the firing of triggers.

See also
e “fire_triggers option [compatibility]” on page 531
e “Introduction to triggers” [SQL Anywhere Server - SQL Usage]

-gk server option

Sets the permissions required to stop the network server and personal server using dbstop.

Syntax
{dbsrv1l | dbengll}-gk { DBA | all | none} ...

Applies to
All operating systems and database servers.

Remarks
The allowed values include:

e DBA Only users with DBA authority can use dbstop to stop the server. This is the default for the
network server.

e all All users can use dbstop to stop the server. This is the default for the personal server.

e none The server cannot be stopped using dbstop.

Both uppercase and lowercase syntax is acceptable.

See also
e “Stop Server utility (dbstop)” on page 831

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 191

The database server

-gl server option

Sets the permission required to load data using LOAD TABLE, and to unload data using UNLOAD or
UNLOAD TABLE.

Syntax
{dbsrv1l | dbengll}-gl { DBA | all | none} ...

Applies to
All operating systems and database servers.

Remarks

Using the UNLOAD TABLE or UNLOAD statement places data in files on the database server computer,
and the LOAD TABLE statement reads files from the database server computer.

To control access to the file system using these statements, the -gl server option allows you to control the
level of database permission that is required to use these statements.

The allowed values are as follows:

e DBA Only users with DBA authority can load or unload data from the database.
e all Alluserscan load or unload data from the database.

e none Data cannot be unloaded or loaded.

Both uppercase and lowercase syntax is acceptable.

The default setting is all for personal database servers on non-Unix operating systems, and DBA for the
network database server and the Unix personal server. These settings reflect the fact that, on non-Unix
platforms, the personal database server is running on the current computer, and so the user already has access
to the file system.

See also

e “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]
e “UNLOAD statement” [SQL Anywhere Server - SQL Reference]

-gm server option

Limits the number of concurrent connections to the server.

Syntax
{dbsrv1l | dbengll} -gm integer ...

Applies to
All operating systems and database servers.

192 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

Remarks

Defines the connection limit for the server. If this number is greater than the number that is allowed under
licensing and memory constraints, it has no effect.

The database server allows one extra DBA connection above the connection limit to allow a user with DBA
authority to connect to the server and drop other connections in an emergency.

-gn server option

Sets the maximum number of tasks that the database server can execute concurrently.

Syntax
{dbsrv1l | dbengll} -gn integer ...

Applies to
All operating systems and database servers.

Remarks

This option sets the maximum multiprogramming level of the database server. It limits the number of tasks
(both user and system requests) that the database server can execute concurrently. If the database server
receives an additional request while at this limit, the new request must wait until an executing task completes.

The maximum number of combined unscheduled and active requests is limited by the -gm server option,
which limits the number of connections to the server.

Setting the -gn value too high can result in errors because the system resources for the database server are
consumed by the large -gn value.

The default value is 20 active tasks for both the network database server and the personal database server,
except on Windows Mobile where the default is 3, and the number of active tasks that can execute
simultaneously depends on the number of database server threads and the number of logical processors in
use.

The database server's kernel uses tasks as the scheduling unit. The execution of any user request requires at
least one task. However, a request may cause the scheduling of additional tasks on its behalf. One example
of this is if the request involves the execution of an external procedure or function (Java, Perl, CLR, and so
on) that in turn makes database requests back into the database server.

When intra-query parallelism is involved, each access plan component executed in parallel is a task. These
tasks count toward the -gn limit as if they were actually separate requests. However, tasks created for intra-
query parallelism are not reflected in the database properties that track the number of active and inactive
requests.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 193

The database server

Caution

A stack of the size specified by -gss is allocated for each database server task, and the maximum number of
tasks is specified by the -gn option. If you set both -gss and -gn to a high value, then the database server may
not be able to start, or the size of the cache can be limited significantly. For example if you specified -gss
16M and -gn 100 when starting the database server, then 1.6 GB of memory would be reserved just for
stacks.

See also

e “Threading in SQL Anywhere” on page 50

“Setting the database server's multiprogramming level” on page 53
“max_query_tasks option [database]” on page 547

“-gm server option” on page 192

“-gm server option” on page 192

“-gtc server option” on page 197

-gp server option

Sets the maximum allowed database page size.

Syntax
{dbsrvil | dbeng1l}-gp { 2048 | 4096 | 8192 | 16384 | 32768} ...

Applies to
All operating systems and database servers.

Remarks

Database files with a page size larger than the page size of the server cannot be loaded. This option explicitly
sets the page size of the server, in bytes.

If you do not use this option, then the page size of the first database on the command line is used.
On all platforms, if you do not use this option and start a server with no databases loaded, the default value
is 4096.

See also

e “Table and page sizes” [SQL Anywhere Server - SQL Usage]
e “Setting a maximum page size” on page 49

-gr server option

Sets the maximum length of time (in minutes) for recovery from system failure.

Syntax
{dbsrv11l | dbengll } -gr minutes ...

194 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

Applies to
All operating systems and database servers.

Remarks
When a database server is running with multiple databases, the recovery time that is specified by the first
database started is used unless overridden by this option.

The value specified by the -gr option instructs the database server how often to perform a checkpoint. For
example, if you set -gr to 5, then the database server tries to perform checkpoints often enough so that
recovery takes no longer than 5 minutes. However, if recovery is necessary, it runs to completion, even if it
takes longer than the length of time specified by -gr. The default value is the setting of the recovery_time
database option, which defaults to 2 minutes.

The recovery time includes both the estimated recovery time and the estimated checkpoint time for the
database.

See also

e “recovery_time option [database]” on page 568
e “How the database server decides when to checkpoint” on page 910

-gJSsS server option

Sets the stack size per internal execution thread in the server.

Syntax
{dbsrv1l | dbengll}-gss {integer[k |m]} ...

Applies to
All operating systems and servers. For Windows, this option is supported on Windows XP and later.

Remarks

The number of internal execution threads is controlled by the -gn option and has a default value of 20. The
-gss option allows you to lower the memory usage of the database server in environments with limited
memory.

The size is the amount of memory to use, in bytes. Use k or m to specify units of kilobytes or megabytes,
respectively.

Caution

A stack of the size specified by -gss is allocated for each database server task, and the maximum number of
tasks is specified by the -gn option. If you set both -gss and -gn to a high value, then the database server may
not be able to start, or the size of the cache can be limited significantly. For example if you specified -gss
16M and -gn 100 when starting the database server, then 1.6 GB of memory would be reserved just for
stacks.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 195

The database server

On Windows XP and later, the default stack size used by the database server is 1 MB on 32-bit operating
systems, and 4 MB on 64-bit operating systems. The maximum stack size used by the database server is 16
MB on 32-bit operating systems, and 256 MB on 64-bit operating systems. This option is ignored on
Windows 2000.

On Unix, the default and minimum stack size per internal execution thread is 500 KB, and the maximum
stack size is 4 MB.

This option is supported on Pocket PC 2003 and later. On supported Windows Mobile platforms, the default
and minimum stack size is 64 KB and the maximum stack size is 512 KB. On earlier Windows Mobile
platforms, 1MB per thread of address space is reserved.

See also
e “Threading in SQL Anywhere” on page 50

-gt server option

Sets the maximum number of physical processors that can be used (up to the licensed maximum). This option
is only useful on multiprocessor systems.

Syntax
{dbsrv1l | dbengl1} -gt integer ...

Applies to
Windows (except Windows Mobile), Linux, and Solaris.

Remarks

The personal database server is always limited to a single processor. With per-seat licensing, the network
database server uses all CPUs available on the computer (the default). With CPU-based licensing, the
network database server uses only the number of processors you are licensed for. The number of CPUs that
the network database server can use may also be affected by your SQL Anywhere edition. See “Editions and
licensing” [SQL Anywhere 11 - Introduction].

When you specify a value for the -gt option, the database server adjusts its affinity mask (if supported on
that hardware platform) to restrict the database server to run on only that number of physical processors. If
the database server is licensed for n processors, the server will, by default, run on all logical processors
(hyperthreads and cores) of n physical processors. This can be further restricted with the -gtc option.

Valid values for the -gt option are between 1 and the minimum of:

e the number of physical processors on the computer
e the maximum number of CPUs that the server is licensed for if CPU-licensing is in effect

If the -gt value specified lies outside this range, the lower or upper limit is imposed. For the personal database
server (dbengl11) the server uses a -gt value of 1.

196 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

See also

e “-gn server option” on page 193
e “-gtc server option” on page 197
e “Threading in SQL Anywhere” on page 50

-gtc server option

Controls the maximum processor concurrency that the database server allows.

Syntax
{dbsrv1l | dbengll } -gtc logical-processors-to-use ...

Applies to

Linux, Solaris, and Windows operating systems executing on Intel-compatible x86 and x64 platforms,
excluding Windows Mobile.

Remarks

When you start the database server, the number of physical and logical processors detected by the database
server appears in the database server messages window.

Physical processors are sometimes referred to as packages or dies, and are the CPUs of the computer.
Additional logical processors exist when the physical processors support hyperthreading or are themselves
configured as multiprocessors (usually referred to as multi-core processors). The operating system
schedules threads on logical processors.

The -gtc option allows you to specify the number of logical processors that can be used by the database
server. Its effect is to limit the number of database server threads that are created at server startup. This limits
the number of active database server tasks that can execute concurrently at any one time. By default, the
number of threads created is 1 + the number of logical processors on all licensed physical processors.

By default, the database server allows concurrent use of all logical processors (cores or hyperthreads) on
each licensed physical processor. For example, on a single-CPU system that supports hyperthreading, by
default the database server permits two threads to run concurrently on one physical processor. If the -gtc
option is specified, and the number of logical processors to be used is less than the total available for the
number of physical processors that are licensed, then the database server allocates logical processors based
on round-robin assignment. Specifying 1 for the -gtc option implicitly disables intra-query parallelism
(parallel processing of individual queries). Intra-query parallelism can also be explicitly limited or disabled
outright using the max_query_tasks option. See “max_query_tasks option [database]” on page 547.

See also

e “-gn server option” on page 193

e “-gt server option” on page 196

e “Parallelism during query execution” [SQL Anywhere Server - SQL Usage]
e “Threading in SQL Anywhere” on page 50

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 197

The database server

Example

Consider the following examples for a Windows-based SMP computer. In each case, assume a 4-processor
system with 2 cores on each physical processor for a total of 8 logical processors. The physical processors
are identified with letters and the logical processors (cores in this case) are identified with numbers. This 4-
processor system therefore has processing units A0, Al, B0, B1, CO0, C1, DO, and D1.

Scenario Network database server settings
A single CPU license or -gt 1 specified e tl

e -gtc2

e -gn20

Threads can execute on A0 and Al.

No licensing restrictions on the CPU with -gtc 5 o -gt4
specified e -gic5
e -gn20

Threads can execute on A0, Al, B0, CO, and DO.

A database server with a 3 CPU license and -gtc 5 e t3
specified e -gich
e -gn20

Threads can execute on A0, Al, BO, B1, and CO.

No licensing restrictions on the CPU with -gtc 1 o -gt4
specified o gtcl
e -gn20

Threads can execute only on AO0.

-gu server option

Sets the permission levels for utility commands.

Syntax
{dbsrv1l | dbengll}-gu {all | none | DBA | utility_db } ...

Applies to
All operating systems and database servers.

Remarks

Sets permission levels for utility commands such as CREATE DATABASE and DROP DATABASE. The
level can be set to one of the following: utility_db, all, none, or DBA. The default is DBA.

198 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

The utility_db level restricts the use of these commands to only those users who can connect to the utility
database. The all, none, and DBA levels permit all users, no users, or users with DBA authority, respectively,
to execute utility commands.

See also
e “Specifying the permissions required to execute file administration statements” on page 33

-im server option

Runs the database server in memory, reducing or eliminating writes to disk.

Syntax
{dbsrv1l | dbengll}-im {c|nw}...

Applies to
All operating systems and database servers.

Separately licensed component required
In-memory mode requires a separate license. See “Separately licensed components” [SQL Anywhere 11 -
Introduction].

Remarks

This feature is most useful on systems with a large amount of available memory, typically enough to hold
all the database files within the cache. There are two in-memory modes available:

e Checkpoint only (-im ¢) When running in checkpoint-only mode, the database server does not use
a transaction log, so you cannot recover to the most recent committed transaction. However, because the
checkpoint log is enabled, the database can be recovered to the most recent checkpoint. Normally when
you run a database without a transaction log, the database server still performs a checkpoint on a commit,
which affects performance. However, when you run the database server in checkpoint only mode, the
database server does not perform a checkpoint after each commit.

This mode is useful in applications where increased performance is desirable, and the loss of committed
transactions after the most recent checkpoint is acceptable.

The following restrictions apply when running in checkpoint-only mode:

1. There is no transaction log.

2. There is no temporary file.

3. Checkpoints are allowed both on demand and at the database server's normal checkpoint frequency.
4. Dirty pages are flushed to disk only on checkpoint.

e Never write (-im nw) When running in never write mode, committed transactions are not written to
the database file on disk. All changes are lost if the database is shut down or crashes, so database files
are always left in their original state. Requests to extend or create new dbspaces are allowed, but the
changes are not reflected in the database files. You can create and use new dbspaces, but they are not

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 199

The database server

written to disk. Making a backup in never write mode is not useful because any changes to the system
dbspace are not written to the file.

The following restrictions apply when running in never write mode:
1. There is no transaction log.

2. There is no checkpoint log.

3. There is no temporary file.

4. Dirty database pages are never flushed to disk.

5

The original database file is never modified.

Because changes are never written to the original database files, if a persistent copy of current database
contents is required, you must use the dbunload utility or the UNLOAD TABLE statement. You can also
use SQL queries to retrieve the changes, but you must then manually write these changes to the database
file.

The performance benefits gained from in-memory mode depend on the application workload and the speed
of the 1/O subsystem. The largest performance gains are seen in applications that insert or update large
amounts of data, and in applications that commit and checkpoint frequently.

Often, performance of the in-memory modes is as good as, or better than the performance of using
transactional global temporary tables. The smallest performance improvement may be seen with applications
that predominately query the database. In general, when using in-memory mode, the best performance can
be achieved by pre-growing the cache to an amount large enough to hold the full expected contents of the
database files. This eliminates much of the overhead involved in growing the cache in increments while the
application is running.

Caution

Since pages are not flushed from cache in never write mode, it is possible to exhaust the available cache if
the amount of data in the database grows too large. When this happens, SQL Anywhere issues an error and
stops processing requests. For this reason, never write mode should be used with caution, and always with
a cache large enough to hold the expected complete working set of pages that an application may use. Since
checkpoints continue to occur in the "checkpoint only™ mode, there is a reduced risk of the server running

out of available cache as compared to the "never write" mode.

For the LOAD TABLE and some ALTER TABLE statements, the checkpoint log is used to partially reverse
the effects of a failure or to recover from an error. In never write mode, a checkpoint log is not created and
you cannot partially reverse the effects of some statements if they fail or an error occurs. Incorrect or
incomplete data could remain in tables. See “Understanding the checkpoint log” on page 18.

See also

e “Separately licensed components” [SQL Anywhere 11 - Introduction]
e “-cserver option” on page 167
e “Use in-memory mode” [SQL Anywhere Server - SQL Usage]

200

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

-k server option

Controls the collection of Performance Monitor statistics.

Syntax
{dbsrv1l | dbengl1l} -k ...

Applies to
All operating systems and database servers.

Remarks
The database server collects Performance Monitor statistics by default.

If you specify -k when you start the database server, then the server does not collect Performance Monitor
statistics. The -k option does not affect the collection of column statistics used by the query optimizer.

This option should only be used in situations where the database server is running on a multi-processor
computer where it can be shown by testing to improve performance. For most workloads, the benefit will
be negligible, so use of this option is not recommended. When you disable the performance counters, this
information is not available for analyzing performance problems.

You can also change the setting for the collection of Performance Monitor statistics using the
sa_server_option system procedure. See “sa_server_option system procedure” [SQL Anywhere Server - SQL
Reference].

See also

e “-ks server option” on page 204

e “-ksc server option” on page 204

e “-ksd server option” on page 205

e “Monitoring statistics using Sybase Central Performance Monitor” [SQL Anywhere Server - SQL
Usage]

-kl server option

Specifies the file name of the Kerberos GSS-API library (or shared object on Unix) and enables Kerberos
authenticated connections to the database server.

Syntax
{dbsrv1l | dbengll } -kl GSS-API-library-file ...

Applies to
All operating systems except Windows Moabile.

Remarks

This option specifies the location and name of the Kerberos GSS-API. This option is only required if the
Kerberos client uses a different file name for the Kerberos GSS-API library than the default, or if there are

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 201

The database server

multiple GSS-API libraries installed on the computer running the database server. A Kerberos client must
already be installed and configured, and SSPI cannot be used by the database server.

Specifying this option enables Kerberos authentication to the database server.

See also
e “-kr server option” on page 202

e “-krb server option” on page 203

e “Kerberos connection parameter [KRB]” on page 285

e “Kerberos authentication” on page 114

e “GRANT statement” [SQL Anywhere Server - SQL Reference]
Example

The following command starts a database server that uses the libgssapi_krb5.so shared object for Kerberos
authentication.

dbsrvll -kl libgssapi_krb5.so -n my_server_princ /opt/myapp/kerberos.db

-kr server option

Specifies the realm of the Kerberos server principal and enable Kerberos authenticated connections to the
database server.

Syntax
{dbsrv1l | dbeng1l } -kr server-realm ...

Applies to
All operating systems except Windows Moabile.

Remarks

This option specifies the realm of the Kerberos server principal. Normally, the principal used by the database
server for Kerberos authentication is server-name@default-realm, where default-realm is the default realm
configured for the Kerberos client. Use this option if you want the server principal to use a different realm
than the default realm, in which case the server principal used is server-name@server-realm.

Specifying this option enables Kerberos authentication to the database server.

See also

e “-kl server option” on page 201

“-krb server option” on page 203

“Kerberos connection parameter [KRB]” on page 285
“Kerberos authentication” on page 114

“GRANT statement” [SQL Anywhere Server - SQL Reference]

202 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

Example
The following command starts a database server that accepts Kerberos logins and uses the principal
my_server_princ@ MYREALM for authentication.

dbengll -kr MYREALM -n my_server_princ C:\kerberos.db

-krb server option

Enables Kerberos-authenticated connections to the database server.

Syntax
{dbsrv1l | dbeng1l} -krb ...

Applies to
All operating systems except Windows Mobile.

Remarks

This option enables Kerberos authentication to the database server. You must specify one or more of the -
krb, -kl, and -kr options for the database server to be able to authenticate clients using Kerberos.

Before you can use Kerberos authentication, a Kerberos client must already be installed and configured on
both the client and database server computers. Additionally, the principal server-name@REALM must
already exist in the Kerberos KDC, and the keytab for the principal server-name@REALM must already
have been securely extracted to the keytab file on the database server computer. The database server will
not start if the -krb option is specified, but this setup has not been performed.

Note
The database server name cannot contain any of the following characters: /, \, or @, and database server
names with multibyte characters cannot be used with Kerberos.

The login_mode database option must be set to allow Kerberos logins, and Kerberos client principals must
be mapped to database user 1Ds using the GRANT KERBEROS LOGIN statement.

See also
e “-Kkl server option” on page 201

e “-Kkr server option” on page 202

e “Kerberos connection parameter [KRB]” on page 285

e “Kerberos authentication” on page 114

e “GRANT statement” [SQL Anywhere Server - SQL Reference]
Example

For a Kerberos principal for the database server named my_server_princ@ MYREALM, the following
command starts a database server named my_server_princ.

dbsrvll -krb -n my_server_princ C:\kerberos.db

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 203

The database server

-ks server option

Disables the creation of shared memory that the Performance Monitor uses to collect counter values from
the database server.

Syntax
{dbsrv1l | dbengl1l}-ksO...

Applies to
Windows

Remarks

When you specify this option, the Performance Monitor does not show any server, database, or connection
statistics for the current database server.

See also

e “Monitoring statistics using Sybase Central Performance Monitor” [SQL Anywhere Server - SQL
Usage]

e “-kserver option” on page 201

e “-ksc server option” on page 204

e “-ksd server option” on page 205

-ksc server option
Specifies the maximum number of connections that the Performance Monitor can monitor.

Syntax
{dbsrv1l | dbengll } -ksc integer ...

Applies to
Windows

Remarks
By default, the Performance Monitor monitors 10 connections.

See also

e “Monitoring statistics using Sybase Central Performance Monitor” [SQL Anywhere Server - SQL
Usage]

e “-kserver option” on page 201

e “-ks server option” on page 204

e “-ksd server option” on page 205

204 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

-ksd server option
Specifies the maximum number of databases that the Performance Monitor can monitor.

Syntax
{dbsrv1l | dbengll }-ksd integer ...

Applies to
Windows

Remarks
By default, the Performance Monitor monitors two databases.

See also

e “Monitoring statistics using Sybase Central Performance Monitor” [SQL Anywhere Server - SQL
Usage]

e “-kserver option” on page 201

e “-ks server option” on page 204

e “-ksc server option” on page 204

-m server option
Truncates the transaction log when a checkpoint is done.

Syntax
{dbsrv1l | dbengll}-m ...

Applies to
All operating systems and database servers.

Remarks

This option truncates the transaction log when a checkpoint is done, either at shutdown or as a result of a
checkpoint scheduled by the server.

Caution
When this option is selected, there is no protection against media failure on the device that contains the
database files.

This option provides a way to automatically limit the growth of the transaction log. Checkpoint frequency
is still controlled by the checkpoint_time and recovery_time options (which you can also set on the command
line).

The -moption is useful for limiting the size of the transaction log in situations where high volume transactions
requiring fast response times are being processed, and the contents of the transaction log aren't being relied
upon for recovery or replication. The -m option provides an alternative to operating without a transaction

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 205

The database server

log at all, in which case a checkpoint would be required following each COMMIT and performance would
suffer as a result. When the -m option is specified, there is no protection against media failure on the device
that contains the database files. Other alternatives for managing the transaction log (for example, using the
BACKUP statement and events) should be considered before using the -m option.

To avoid database file fragmentation, it is recommended that where this option is used, the transaction log
be placed on a separate device or partition from the database itself.

When this option is used, no operations can proceed while a checkpoint is in progress.

Caution
Do not use the -m option with databases that are being replicated or synchronized. Replication and
synchronization, used by SQL Remote and MobiLink, inherently rely on transaction log information.

See also

“-m database option” on page 253

“The transaction log” on page 14

“Understanding the checkpoint log” on page 18
“Transaction Log utility (dblog)” on page 842
“checkpoint_time option [database]” on page 514
“recovery_time option [database]” on page 568

-n server option

Sets the name of the database server.

Syntax
{dbsrv1l | dbengll } -n server-name database-filename ...

Applies to
All operating systems and database servers.

Remarks
By default, the database server receives the name of the first database file with the path and extension
removed. For example, if the server is started on the file samples-dir\demo.db and no -n option is specified,
the name of the server is demo.

When a database server starts, it attempts to become the default database server on that computer. The first
database server to start when there is no default server becomes the default database server. Shared memory
connection attempts on that computer that do not explicitly specify a database server name connect to the
default server.

206 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

Note

It is recommended that you use the -xd option for database servers being used by deployed applications, and
that all clients explicitly specify the name of the database server to which they should connect by using the
ENG connection parameter. This ensures that the database connects to the correct database server when a
computer is running multiple SQL Anywhere database servers.

There is no character set conversion performed on the server name. If the client character set and the database
server character set are different, using extended characters in the server name can cause the server to not
be found. If your clients and servers are running on different operating systems or locales, you should use
7-bit ASCII characters in the server name. See “Connection strings and character sets” on page 410.

Database server names must be valid identifiers. Long database server names are truncated to different
lengths depending on the protocol. Database server names cannot:

begin with white space, single quotes, or double quotes
end with white space

contain semicolons

be longer than 250 bytes

Note
On Windows and Unix, version 9.0.2 and earlier clients cannot connect to version 10.0.0 and later database
servers with names longer than the following lengths:

e 40 bytes for Windows shared memory
e 31 bytes for Unix shared memory
e 40 bytes for TCP/IP

The server name specifies the name to be used in the ServerName (ENG) connection parameter of client
application connection strings or profiles. With shared memory, unless -xd is specified, there is a default
database server that is used if no server name is specified, provided that at least one database server is running
on the computer.

Running multiple database servers with the same name is not recommended.

There are two -n options
The -n option is positional. If it appears before any database file names, it is a server option and names the
server. If it appears after a database file name, it is a database option and names the database.

For example, the following command names the database server SERV and the database DATA:

dbsrvll -n SERV sales.db -n DATA

See “-n database option” on page 253.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 207

The database server

See also
e “Identifiers” [SQL Anywhere Server - SQL Reference]
e “ServerName connection parameter [ENG]” on page 296
e “Naming the server and the databases” on page 46
e “-xd server option” on page 236

-0 server option

Prints all database server messages to the database server message log file.

Syntax
{dbsrv1l | dbeng1l} -o filename ...

Applies to
All operating systems and database servers.

Remarks

Print all database server messages, including informational messages, errors, warnings, and MESSAGE
statement output, to the specified file, and to the database server messages window. If you specify the -qi
option with -o, all messages appear only in the database server message log file.

It is recommended that you do not end the file name with .log because this can create problems for utilities
that perform operations using the transaction log.

You can obtain the name of the database server message log file by executing the following command:

SELECT PROPERTY ("ConsoleLogFile®);

See also
e “Logging database server actions” on page 43
e “-0e server option” on page 208
e “-on server option” on page 209
e “-0s server option” on page 210
e “-ot server option” on page 210
e “-qi server option” on page 213

-0e server option

Specifies a file name to log startup errors, fatal errors, and assertions.

Syntax
{dbsrv1l | dbengll } -oe filename ...

Applies to
All operating systems and database servers.

208 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

Remarks
Each line in the output log file is prefixed with the date and time. Startup errors include such errors as:

e Couldn't open/read database file: database file

e A database server with that name has already started

Fatal errors and assertions are logged to the Windows Application Event Log (except on Windows Mobile)
or the Unix system log regardless of whether -oe is specified.

It is recommended that you do not end the file name with .log because this can create problems for utilities
that perform operations using the transaction log.

See also

e “-0server option” on page 208

“-on server option” on page 209
“-0s server option” on page 210
“-ot server option” on page 210
“-qi server option” on page 213

-on server option

Specifies a maximum size for the database server message log, after which the file is renamed with the
extension .old and a new file is started.

Syntax
{dbsrvil | dbengll}-on {size[k | m|g]}..

Applies to
All operating systems and database servers.

Remarks
The size is the maximum file size for the database server message log, in bytes. Use k, m, or g to specify
units of kilobytes, megabytes, or gigabytes respectively. The minimum size limit is 10 KB. By default, there
is no maximum size limit.

When the database server message log reaches the specified size, the database server renames the file with
the extension .old, and starts a new file with the original name.

Note
If the .old database server message log file already exists, it is overwritten. To avoid losing old database
server message log files, use the -0s option instead.

This option cannot be used with the -os option.

It is recommended that you do not end the database server message log file name with .log because this can
create problems for utilities that perform operations using the transaction log.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 209

The database server

See also

e “Logging database server actions” on page 43
“-0 server option” on page 208

“-0e server option” on page 208

“-0s server option” on page 210

“-ot server option” on page 210

-0S server option
Specifies a maximum size for the database server message log file, at which point the file is renamed.

Syntax
{dbsrv1l | dbengll}-os {size[k | m|g]}...

Applies to
All operating systems and database servers.

Remarks

The size is the maximum file size for logging database server messages, in bytes. Use k, m, or g to specify
units of kilobytes, megabytes, or gigabytes respectively. The minimum size limit is 10 KB. By default, there
is no maximum size limit.

Before the database server logs output messages to the database server message log file, it checks the current
file size. If the log message will make the file size exceed the specified size, the database server renames
the database server message log file to yymmddxx.slg, where yymmdd represents the year, month, and day
the file was created, and xx is a number that starts at 00 and continues incrementing.

This option allows you to identify old database server message log files that can be deleted to free up disk
space.

This option cannot be used with the -on option.

It is recommended that you do not end the database server message log file name with .log because this can
create problems for utilities that perform operations using the transaction log.

See also

e “Logging database server actions” on page 43
“-0 server option” on page 208

“-0e server option” on page 208

“-on server option” on page 209

“-ot server option” on page 210

-0t server option

Truncates the database server message log file and appends output messages to it.

210 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

Syntax
{dbsrv1l | dbeng11 } -ot logdfile ...

Applies to
All operating systems and database servers.

Remarks

The functionality is the same as the -0 option except the database server message log file is truncated before
any messages are written to it. You can obtain the name of the database server message log file using the
following command:

SELECT PROPERTY ("ConsoleLogFile®);

It is recommended that you do not end the database server message log file name with .log because this can
create problems for utilities that perform operations using the transaction log.

See also

e “Logging database server actions” on page 43
“-0 server option” on page 208

“-0e server option” on page 208

“-on server option” on page 209

“-0s server option” on page 210

-p server option
Sets the maximum size of communication packets.

Syntax
{dbsrv1l | dbengll} -p integer ...

Applies to
All operating systems and database servers.

Remarks
The default is 7300 bytes on all operating systems except Windows Mobile. On Windows Mobile, the default
is 1460 bytes. The minimum value is 500 bytes and the maximum value is 16000.

You can change the communication buffer size for a connection by setting the CommBufferSize (CBSIZE)
connection parameter.

See also
e “-pc server option” on page 212
e “-ptserver option” on page 212
e “CommBufferSize connection parameter [CBSIZE]” on page 267

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 211

The database server

-pC server option
Compresses all connections except for same-computer connections.

Syntax
dbsrv1l -pc ...

Applies to
All operating systems and network servers, except web servers.

Remarks

The packets sent between a SQL Anywhere client and server can be compressed using the -pc option.
Compressing a connection may improve performance under some circumstances. Large data transfers with
highly compressible data tend to get the best compression rates. This option can be overridden for a particular
client by specifying COMPRESS=NO in the client's connection parameters.

By default, connections are not compressed. Specifying the -pc option compresses all connections except
same-computer connections, web services connections, and TDS connections. TDS connections (including
jConnect) do not support SQL Anywhere communication compression.

Same-computer connections over any communication link are not compressed, even if the -pc option or
COMPRESS=YES connection parameter is used.

See also

e “-p server option” on page 211

“-pt server option” on page 212

“Adjusting communication compression settings to improve performance” on page 149
“Compress connection parameter [COMP]” on page 270

“Use the compression features” [SQL Anywhere Server - SQL Usage]

-pt server option
Increases or decreases the size limit at which packets are compressed.

Syntax
dbsrv11 -pt size ...

Applies to
All operating systems and network servers.

Remarks

This parameter takes an integer value representing the minimum byte-size of packets to be compressed.
Values less than 80 are not recommended. The default is 120 bytes.

212 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

Under some circumstances, changing the compression threshold can help performance of a compressed
connection by allowing you to compress packets only when compression will increase the speed at which
the packets are transferred. The default setting should be appropriate for most cases.

If both client and server specify different compression threshold settings, the client setting applies.

See also

e “-pserver option” on page 211

“-pc server option” on page 212

“Adjusting communication compression settings to improve performance” on page 149
“CompressionThreshold connection parameter [COMPTH]” on page 271

“Use the compression features” [SQL Anywhere Server - SQL Usage]

-qi server option
Controls whether database server system tray icon and database server messages window appear.

Syntax
{dbsrvil | dbengl1}-qi ...

Applies to
Windows

Remarks

This option leaves no visual indication that the server is running, other than possible startup error windows.
You can use either (or both) the -o or -oe log files to diagnose errors.

See also
e “-qn server option” on page 213
e “-gp server option” on page 214
e “-gs server option” on page 215
e “-qw server option” on page 215
e “-0server option” on page 208
e “-0e server option” on page 208

-gn server option

Specifies that the database server messages window is not minimized on startup.

Syntax
{dbsrv1l | dbengll}-qn ...

Applies to
Windows

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 213

The database server

Linux (if X window server is used)

Remarks

By default, the database server messages window automatically minimizes once database server startup
completes. When this option is specified, the database server messages window does not minimize after the
database server starts.

The database server messages window may appear in the background if an application autostarting the
database server it is not active and -gn is specified.

On Linux, you must specify the -ux option (use X window server) with the -qn option.

See also
e “-ux server option” on page 232

e “-qi server option” on page 213

e “-gp server option” on page 214

e “-gs server option” on page 215

e “-qw server option” on page 215
Example

The following command starts the database server on Linux or Solaris, displays the database server messages
window, and does not minimize the database server messages window once the database server is started:

dbengll -ux -gn sample.db

-gp server option

Specifies that messages about performance do not appear in the database server messages window.

Syntax
{dbsrv1l|dbengll}-qp ...

Applies to
All operating systems and database servers.

Remarks

Do not display messages about performance in the database server messages window. Messages that are
suppressed include the following:

e No unique index or primary key for table ‘table-name’

e Database file "mydatabase.db™ consists of nnn fragments

214 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

See also

“~qi server option” on page 213

e “-qn server option” on page 213
e “-gs server option” on page 215

e “-qw server option” on page 215

-gs server option

Suppresses startup error windows.

Syntax
{dbsrv11l | dbengll}-gs ...

Applies to
Windows

Remarks

This option suppresses startup error windows. Examples of startup errors include the database server not
being able to open or read a database file or a database server not starting because another database server
with the specified name is already running.

On Windows platforms, if the server isn't being autostarted, these errors appear in a window and must be
cleared before the server stops. These windows do not appear if the -qs option is used.

If there is an error loading the language DLL, no window appears if -qs was specified on the command line
and not in @data. This error isn't logged to the -0 or -oe logs, but rather to the Windows Application Event
Log (except on Windows Mobile).

Usage errors are suppressed if -gs is on the command line, but not in @data expansion.

See also

e “-qi server option” on page 213
“-gn server option” on page 213
“-gp server option” on page 214
“-gqw server option” on page 215
“-0 server option” on page 208
“-0e server option” on page 208

-gw server option
Specifies that the database server messages window does not appear.

Syntax
{dbsrv1l | dbengll}-qw ...

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 215

The database server

Applies to

All operating systems and database servers.

Remarks

This option suppresses the database server messages window. On Windows platforms, the database server
system tray icon is still visible. You can use either (or both) the -o or -oe log files to diagnose errors.

See also

e “-qi server option” on page 213
e “-gn server option” on page 213
e “-gp server option” on page 214
e “-gs server option” on page 215

-r server option

Forces all databases that start on the database server to be read-only. No changes to the database(s) are
allowed: the database server doesn't modify the database file(s) or transaction log files.

Syntax

{dbsrv1l | dbengll}-r ...

Applies to

All operating systems and database servers.

Remarks

Opens all database files as read-only with the exception of the temporary file when the option is specified
before any database names on the command line. If the -r option is specified after a database name, only that
specific database is read-only. You can make changes on temporary tables, but ROLLBACK has no effect,
since the transaction and rollback logs are disabled.

A database distributed on a CD-ROM device is an example of a database file that cannot be modified. You
can use read-only mode to access this sort of database.

If you attempt to modify the database, for example with an INSERT or DELETE statement, a
SQLSTATE_READ_ONLY_DATABASE error is returned.

Databases that require recovery cannot be started in read-only mode. For example, database files created
using an online backup cannot be started in read-only mode if there were any open transactions when the
backup was started, since these transactions would require recovery when the backup copy is started.

Databases with auditing turned on cannot be started in read-only mode.

If you are checking the validity of a backup copy, you should run the database in read-only mode so that it
is not modified in any way. See “Validate a database” on page 918.

216

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

See also

“-r database option” on page 255

e “auditing option [database]” on page 511

e “Deploying databases on read-only media” [SQL Anywhere Server - Programming]
e “Running in special modes” on page 49

Example
To open two databases in read-only mode

dbengll -r databasel.db database2.db

To open only the first of two databases in read-only mode.

dbengll databasel.db -r database2.db

-S server option

Sets the user ID for Syslog messages.

Syntax
{dbsrv1l | dbengll}-s { none | user | daemon |localn}...

Applies to
Unix, Mac OS X

Remarks

Sets the system user ID used in messages to the Syslog facility. The default is user for database servers that
are started in the foreground, and daemon for those that are run in the background (for example, started by
dbspawn, autostarted by a client, or started with the -ud database server option).

A value of none prevents any Syslog messages from being logged. The localn argument allows you to use
a facility identifier to redirect messages to a file. You can specify a number between 0 and 7, inclusive, for
n. Refer to the Unix Syslog(3) man page for more information.

The following steps illustrate how to redirect messages on Solaris, but you can also do this on Linux, AlX,
and Mac OS X. Note that on other platforms, such as HP-UX, the syslog.conf file is found in a different
location. You can place the /var/adm/sqlanywhere file in whatever location you want.

To redirect messages to a file using a facility identifier

1. Choose a unique facility identifier that isn't already being used by another application that is running on
your system.

You can do this by looking in the /etc/syslog.conf file to see of any of the localn facilities are referenced.

2. Edit the /etc/syslog.conf file and add the following line, where localn is the facility identifier you chose
in step 1:

localn.err;localn._info;localn.notice /var/adm/sqlanywhere

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 217

The database server

3. Create the /var/fadm/sglanywhere file:

touch /var/adm/sqlanywhere

4. Tell the syslogd process that you have madified the syslog.conf file by finding the process ID of syslogd:
ps -ef | grep syslogd
and then executing the following command where pid is the process ID of syslogd:

Kill -HUP pid

5. Start your SQL Anywhere database server with the following command, where localn is the facility
identifier you chose in step 1:

dbengll -s localn ...

Now any messages that the SQL Anywhere database server reports to Syslog are redirected to the /var/
adm/sglanywhere file.

See also
e “MESSAGE statement” [SQL Anywhere Server - SQL Reference]

-sb server option

Specifies how the server reacts to broadcasts.

Syntax
{dbsrv1l |dbengl1}-sb{0|1}..

Applies to
TCP/IP

Remarks

Using -sb 0 causes the server not to start up any UDP broadcast listeners. In addition to forcing clients to
use the DoBroadcast=NONE and HOST= options to connect to the server, this option causes the server to
be unlisted when using dblocate.

Using -sb 1 causes the server to not respond to broadcasts from dblocate, while leaving connection logic
unaffected. You can connect to the server by specifying LINKS=tcpip and ENG=name.

See also
e “BroadcastListener protocol option [BLISTENER]” on page 303

-sf server option

Enables and disables features for databases running on the current database server.

218 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

Syntax
{dbsrv1l | dbengll } -sf feature-list ...

Applies to
All operating systems and database servers.

Remarks

This option allows you to enable and disable features for a database server. These settings affect all databases
running on the database server. You can enable all disabled (secured) features for a connection by setting
the secure_feature_key option to the key specified by the -sk option. Any connection that sets the
secure_feature_key option to the key specified by -sk can also change the set of secured features for a database
server using the SecureFeatures property of the sa_server_option system procedure.

The feature-list is a comma-separated list of feature names or feature sets to secure for the database server.
Use feature-name to indicate that the feature should be disabled, and -feature-name to indicate that the feature
should be removed from the disabled features list. For example, the following command indicates that only
dbspace features are enabled:

dbengll -n secure_server -sft all,-dbspace

The following feature-name values are supported (values enclosed in parentheses are the short forms of
feature names that can also be specified):

e none Specifies that no features are disabled.
e all Disables all features that can be disabled including the following groups.

o client Disables all features that allow access to client-related input/output. This includes access
to the client computing environment. This set consists of the following features.

e read_client_file Disables the use of statements that can cause a client file to be read. For
example, the READ_CLIENT_FILE function and the LOAD TABLE statement. See “Accessing
data on client computers” [SQL Anywhere Server - SQL Usage].

e write_client_file Disables the use of all statements that can cause a client file to be written
to. For example, the UNLOAD statement and the WRITE_CLIENT_FILE function. See
“Accessing data on client computers” [SQL Anywhere Server - SQL Usage].

o local Disablesalllocal-related features. This includes access to the server computing environment.
This set consists of the local_call, local_db, local_io, and local_log feature subsets described below.

e local_call Disablesall features that provide the ability to execute code that is not directly part
of the server and is not controlled by the server. This set consists of the following features.

o cmdshell Disables the use of the xp_cmdshell procedure. See “xp_cmdshell system
procedure” [SQL Anywhere Server - SQL Reference].

o external_procedure Disables the use of external stored procedures. This setting does
not disable the use of the xp_* system procedures (such as xp_cmdshell, xp_readfile, and so
on) that are built into the database server. Separate feature control options are provided for
these system procedures. See “Calling external libraries from procedures” [SQL Anywhere
Server - Programming].

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 219

The database server

o

java Disables the use of Java-related features, such as Java procedures. See “Creating a
Java class for use with SQL Anywhere” [SQL Anywhere Server - Programming].

local_db Disables all features related to database files. This set consists of the following
features.

o

backup Disablesthe use of the BACKUP statement, and therefore, the ability to run server-
side backups. You can still perform client-side backups using dbbackup. See “BACKUP
statement” [SQL Anywhere Server - SQL Reference].

restore Disables the use of the RESTORE DATABASE statement. See “RESTORE
DATABASE statement” [SQL Anywhere Server - SQL Reference].

database Disables the use of the CREATE DATABASE, ALTER DATABASE, DROP
DATABASE, CREATE ENCRYPTED FILE, CREATE DECRYPTED FILE, CREATE
ENCRYPTED DATABASE, and CREATE DECRYPTED DATABASE statements.

dbspace Disables the use of the CREATE DBSPACE, ALTER DBSPACE, and DROP
DBSPACE statements.

local_io Disables all features that allow direct access to files and their contents. This set
consists of the following features.

o

read_file Disables the use of statements that can cause a local file to be read. For example,
the xp_read_file system procedure, the LOAD TABLE statement, and the use of
OPENSTRING(FILE ...). The alternate names load_table and xp_read_file are deprecated.

write_file Disables the use of all statements that can cause a local file to be written to. For
example, the UNLOAD statement and the xp_write_file system procedure. The alternate
names unload_table and xp_write_file are deprecated.

delete_file Disables the use of all statements that can cause a local file to be deleted. For
example, it disables the use of the db_delete_file DBL.ib function, which deletes database
files. The db_delete_file function is used by the dbbackup -x and -xo options, so securing
db_delete_file causes dbbackup to fail if the -x or -xo options are specified. See
“db_delete_file function” [SQL Anywhere Server - Programming].

directory Disables the use of directory class proxy tables. This feature is also disabled
when remote_data_access is disabled.

local_log Disables all logging features that result in creating or writing data directly to a file
on disk. This set consists of the following features.

o

request_log Disables the ability to change the request log file name and also disables the
ability to increase the limits of the request log file size or number of files. You can specify
the request log file and limits on this file, in the command to start the database server; however,
they cannot be changed once the server is started. When request log features are disabled,
you can still turn request logging on and off, and reduce the maximum file size and number
of request logging files. See “Request logging” [SQL Anywhere Server - SQL Usage].

console_log Disables the ability to change the database server message log file name
using the ConsoleLogFile option of the sa_server_option system procedure . It also disables
the ability to increase the maximum size of the log file using the ConsoleLogMaxSize option

220

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

of the sa_server_option system procedure . You can specify a server log file and its size when
starting the database server.

o webclient_log Disables the ability to change the web service client log file name using
the WebClientLogFile option of the sa_server_option system procedure. You can specify a
web service client log file when starting the database server. See “-zoc server
option” on page 243.
o remote Disables all features that allow remote access or communication with remote processes.
This set consists of the following features.

e remote_data_access Disables the use of any remote data access services, such as proxy
tables.

e send_udp Disables the ability to send UDP packets to a specified address using the
sa_send_udp system procedure.

e web_service_client Disables the use of web service client stored procedure calls (that is,
stored procedures that issue HTTP requests).

Feature set hierarchy
The following table lists all the feature set keywords and their hierarchy. For example, local_io encompasses
the read_file, write_file, delete_file, and directory features.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 221

The database server

/ Secure Feature Hierarchy 1\
Secure Features
none all
I |
local remaole cllent
I E—
| |
lacal log local_db local_call lacal_io
1 1 1 I |
i remole_data_ -
| | webdient_lag | | | restore crdshell read_file | acress write_client_fila
request_log database u java delete_file | [web_service_client| | | read client_file
axtarnal .
console_log backup L] procedurs directory send_udp
dbspace write_file

See also

e ‘“-skserver option” on page 223

e “secure_feature_key [database]” on page 574

e “sa server_option system procedure” [SQL Anywhere Server - SQL Reference]
e “Specifying secured features” on page 1072

Example

The following command starts a database server named secure_server with access to the request log and
with all remote data access features disabled. The key specified by the -sk option can be used later with the
secure_feature_key database option to enable these features for a specific connection.

dbsrvll -n secure_server -st request_log,remote -sk j978klsl12

If a user connected to a database running on the secure_server database server sets the secure_feature_key
option to the value specified by -sk, that connection has access to the request log and remote data access
features:

222

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

SET TEMPORARY OPTION secure_feature_key = "j978klsl2";

The following command disables all features, with the exception of local database features:

dbengll -n secure_server -st all,-local_db

-sk server option

Specifies a key that can be used to enable features that are disabled for the database server.

Syntax
{dbsrv1l | dbengll}-sk key ...

Applies to
All operating systems and database servers.

Remarks

When you secure features for a database server using the -sf option, you can also include the -sk option,
which specifies a key that can be used with the secure_feature_key database option to enable secured features
for a connection. That connection can also use the sa_server_option system procedure to modify the features
or feature sets that are secured for all databases running on the database server.

If the secure_feature_key option is set to any value other than the one specified by -sk, no error is given, and
the features specified by -sf remain secured for the connection.

See also

e “-sf server option” on page 218

e “secure_feature_key [database]” on page 574

e “sa server_option system procedure” [SQL Anywhere Server - SQL Reference]
e “Specifying secured features” on page 1072

Example

The following command starts a database server named secure_server with access to the backup features
disabled. The key specified by the -sk option can be used later to enable these features for a specific
connection.

dbsrvll -n secure_server -st backup -sk j978kls12

Setting the secure_feature_key option to the value specified by -sk for a connection to a database running
on the secure_server database server allows that connection to perform backups or change the features that
are disabled on the secure_server database server:

SET TEMPORARY OPTION secure_feature_key = "j978kls12";

The user could then disable the use of all secured features for databases running on secure_server by
executing the following command:

CALL sa_server_option("SecureFeatures®, "all”®);

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 223

The database server

-Su server option

Sets the password for the DBA user of the utility database (utility_db), or disable connections to the utility
database.

Syntax
{dbsrv1l | dbengll }-su password ...

Applies to
All operating systems and database servers.

Remarks

This option specifies the initial password for the DBA user of the utility database. The password is case
sensitive. You can specify none for the password to disable all connections to the utility database. To avoid
having the utility database password in clear text on the command line, you can use dbfhide to obfuscate a
file containing the password, and then reference the obfuscated file on the command line.

If you are using a personal database server and do not specify the -su option, connections to the utility
database are allowed with the DBA user ID and any password. If you are using the network database server
and do not specify the -su option, connections to the utility database are not allowed unless the util_db.ini
file exists and the user ID is DBA with a password that matches the password in the util_db.ini file. On a
network server, if both -su and util_db.ini are used, util_db.ini is ignored. Note that the util_db.ini file is
deprecated.

You can execute a CREATE USER DBA IDENTIFIED BY new-password statement while connected to
utility_db to change the password for the DBA user of the utility database. The REVOKE CONNECT FROM
DBA statement can be used to disable connections to the utility _db database.

See also

e “Connecting to the utility database” on page 31

e “File Hiding utility (dbfhide)” on page 768

e “CREATE USER statement” [SQL Anywhere Server - SQL Reference]
e “REVOKE statement” [SQL Anywhere Server - SQL Reference]

Example
The following command disables all connections to the utility database:

dbengll -su none c:\inventory.db

In the following example, the file named util_db_pwd.cfg that contains the utility database password is
obfuscated using dbfhide and renamed util_db_pwd_hide.cfg:

dbfhide util_db_pwd.cfg util_db_pwd_hide.cfg

The util_db_pwd_hide.cfg file can then be used to specify the utility database password:

dbsrvll -su @util _db_pwd hide.cfg -n my_server c:\inventory.db

224 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

-ti server option

Disconnects inactive connections.

Syntax
{dbsrv1l | dbengll } -ti minutes ...

Applies to
All operating systems and database servers.

Remarks

Disconnect connections that haven't submitted a request for the specified number of minutes. The default is
240 (4 hours). The maximum value is 32767. A client computer in the middle of a database transaction holds
locks until the transaction is ended or the connection is disconnected. The -ti option is provided to disconnect
inactive connections, freeing their locks.

The -ti option is very useful when used in conjunction with dbsrv11 since most connections will be over
network links (TCP).

The -ti option is useful with dbeng11 only for local TCP/IP connections. Using -ti has no effect on
connections to a local server using shared memory.

Setting the value to zero disables checking of inactive connections, so that no connections are disconnected.

See also

e “-tl server option” on page 225
e “sa server_option system procedure” [SQL Anywhere Server - SQL Reference]
e “Adjusting timeout values” on page 153

-tl server option

Sets the period at which to send liveness packets.

Syntax
{dbsrv11l | dbengll}-tl seconds ...

Applies to
All database servers using TCP/IP.

Remarks

A liveness packet is sent periodically across a client/server TCP/IP communications protocol to confirm that
a connection is intact. If the server runs for a LivenessTimeout period (default 2 minutes) without detecting
a liveness packet on a connection, the communication is severed, and the server drops the connection
associated with that client. Unix non-threaded clients and TDS connections do not do liveness checking.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 225

The database server

The -tl option on the server sets the LivenessTimeout value for all clients that do not specify a liveness
period.

Liveness packets are sent when a connection hasn't sent any packets for between one third and two thirds of
the LivenessTimeout value.

When there are more than 200 connections, the server automatically calculates a higher LivenessTimeout
value based on the stated LivenessTimeout value, so the server can handle a large number of connections
more efficiently. Liveness packets are sent between one third and two thirds of the LivenessTimeout on each
idle connection. Large numbers of liveness packets aren't sent at the same time. If liveness packets take a
long time to send (depending on the network, the computer's hardware, and the CPU and network load on
the computer), it is possible that liveness packets will sent after two thirds of the LivenessTimeout. A warning
appears in the database server message log if the liveness sends take a long time. If this warning occurs,
consider increasing the LivenessTimeout value.

Although it isn't generally recommended, you can disable liveness by specifying the following:

dbsrvil -tl O

Rather than disabling the LivenessTimeout option, consider increasing the value to 1 hour as follows:

dbsrvil -tl 3600

See also

e “-ti server option” on page 225
e “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]
e “Adjusting timeout values” on page 153

-tmf server option
Helps recover from distributed transactions in unusual circumstances.

Syntax
{dbsrv1l | dbengll}-tmf ...

Applies to
Windows

Remarks

Used during recovery of distributed transactions when the distributed transaction coordinator isn't available.
It could also be used if starting a database with distributed transactions in the transaction log, on a platform
where the distributed transaction coordinator isn't available.

Caution
If you use this option, distributed transactions are not recovered properly. It is not intended for routine use.

226 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

See also

e “-tmt server option” on page 227
e “Recovery from distributed transactions” [SQL Anywhere Server - Programming]

-tmt server option

Sets a re-enlistment timeout for participation in distributed transactions.

Syntax
{dbsrv1l | dbengll } -tmt milliseconds ...

Applies to
Windows

Remarks

Used during recovery of distributed transactions. The value specifies how long the database server should
wait to be reenlisted. By default there is no timeout (the database server waits indefinitely).

See also

e “-tmf server option” on page 226
e “Recovery from distributed transactions” [SQL Anywhere Server - Programming]

-tq server option

Shuts down the server at a specified time.

Syntax
{dbsrv1l | dbengll} -tq { datetime | time } ...

Applies to
All operating systems and database servers.

Remarks
This option is useful for setting up automatic off-line backup procedures. See “Backup and data
recovery” on page 8609.

The format for the time is in hh:mm (24 hour clock), and can be preceded by an optional date. If a date is
specified, the date and time must be enclosed in double quotes and be in the format YYYY/MM/DD
HH:MM.

See also
e “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 227

The database server

-u server option
Opens files using the operating system disk cache.

Syntax
{dbsrv1l | dbengll}-u ...

Applies to
Windows, Unix

Remarks
Files are opened using the operating system disk cache in addition to the database cache.

While the operating system disk cache may improve performance in some cases, in general better
performance is obtained without this option, using the database cache only.

If the server is running on a dedicated computer, you shouldn't use the -u option, as the database cache itself
is generally more efficient. You may want to use the -u option if the server is running on a computer with
several other applications (so that a large database cache may interfere with other applications) and yet 10-
intensive tasks are run intermittently on the server (so that a large cache will improve performance).

-ua server option

Turns off use of asynchronous 1/0.

Syntax
{dbsrv11l | dbengll} -ua...

Applies to
Linux

Remarks

By default, the database server uses asynchronous 1/0 on Linux when possible. To use asynchronous 1/0O,
the following conditions must be met:

1. The library libaio.so can be loaded at run time.

2. The kernel has asynchronous 1/O support.

If you want to turn off the use of asynchronous 1/O, specify the -ua option on the database server command
line.

-uc server option

Starts the database server in shell mode. This is the default.

228 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

Syntax
{dbsrv1l | dbengll} -uc ...

Applies to
Unix, Mac OS X

Remarks
Starts the database server in shell mode. You should only specify one of -uc, -ui, -um, or -ux. When you
specify -uc, this starts the database server in the same manner as previous releases of the software.

For more information about starting the database server as a daemon, see “-ud server option” on page 229.

See also

e “-ui server option” on page 230
e “-um server option” on page 231
e “-ux server option” on page 232

-ud server option

Runs as a daemon.

Syntax
{dbsrv1l | dbengl1l}-ud ...

Applies to
Unix, Mac OS X

Remarks
Using this option lets you run the server so that it continues running after the current user session ends.

When you start the daemon directly using the -ud option, the dbeng11 and dbsrv11 commands create the
daemon process and return immediately (exiting and allowing the next command to be executed) before the
daemon initializes itself or attempts to open any of the databases specified in the command.

One advantage of using dbspawn instead of the -ud option is that the dbspawn process does not shut down
until it has confirmed that the daemon has started and is ready to accept requests. If for any reason the daemon
fails to start, the exit code for dbspawn is non-zero.

See also

“Start Server in Background utility (dbspawn)” on page 829

“Software component exit codes” [SQL Anywhere Server - Programming]
“Running the server outside the current session” on page 62

“Security tips” on page 1066

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 229

The database server

-uf server option
Specifies the action to take when a fatal error occurs.

Syntax
{dbsrv1l | dbengll } -uf action ...

Applies to
Unix, Mac OS X

Remarks
Use this option to specify which of the following actions is taken when a fatal error occurs:

e abort the Unix abort function is called, and a core file is generated.

e default the database server behaves in the same manner as abort in all cases, except when a device-
full fatal error occurs. In this case, it behaves in the same manner as defunct. This action prevents the
system from trying to write a core file on a full device. This is the default behavior.

e defunct the database server continues running and does not call abort. Any new connection attempts
made to the database server receive the SQL error of the original fatal error.

See also

e “-oe server option” on page 208

“Support utility (dbsupport)” on page 833
“Error reporting in SQL Anywhere” on page 83
“Logging database server actions” on page 43

-ui server option

On Linux this option opens the Server Startup Options window, displays the database server messages
window, and starts the database server whether or not the X window server starts. On Mac OS X -ui displays
database server messages in a new window and starts the database server in shell mode if a usable display
isn't available.

Syntax
{dbsrv1l | dbeng1l} -ui ...

Applies to
Linux with X window server support, Mac OS X

Remarks

On Linux the -ui option allows you to use the Server Startup Options window to specify server options
when starting the database server, and to display the database server messages window once the database
server has started. On Mac OS X, server messages are redirected to a new window within
DBLauncher.app.

230 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

On Linux, when the -ui option is the only option specified on the server command line, the Server Startup
Options window appears where you can enter options for starting the database server. On Mac OS X you
must use the -ui option with the other options required to start the database server.

The database server attempts to find a usable display when -ui is specified. If it cannot find one, for example
because the DISPLAY environment variable isn't set or because X window server isn't running, then the

database server starts in shell mode. If you do not want the database server to start when it cannot locate a
usable display, specify the -ux option rather than -ui. You should only specify one of -uc, -ui, -um, or -ux.

For information about starting the database server as a daemon, see “-ud server option” on page 229.

See also

e “-uc server option” on page 228
e “-um server option” on page 231
e “-ux server option” on page 232

-um server option
Displays database server messages in a new window within DBLauncher.app.

Syntax
{dbsrv1l |dbengll}-um ...

Applies to
Mac OS X

Remarks

The -um option allows you to connect to the DBLauncher.app instance, if it is running, and displays messages
in a new window within DBLauncher.app. The -um option must be used with the other options required to
start the database server. Server messages appear in this window instead of in the shell. Closing this window
shuts down the database server. If a connection to the DBLauncher.app instance cannot be established, the
database server does not start.

For the database server to connect to a DBLauncher.app instance, both must be running in the same Mac
OS X security context. For example, a database server started from an ssh session cannot find a
DBLauncher.app instance that was started by Launch Services.

For information about starting the database server as a daemon, see “-ud server option” on page 229.

See also

e “-uc server option” on page 228
e “-ui server option” on page 230

-ut server option

Touches temporary files.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 231

The database server

Syntax
{dbsrv1l | dbengll } -ut minutes ...

Applies to
Unix, Mac OS X

Remarks
This option causes the server to touch temporary files at specified intervals.

-ux server option

Opens the Server Startup Options window or displays the database server messages window on Linux (use
the X window server).

Syntax
{dbsrv1l | dbengll}-ux ...

Applies to
Linux with X window server support

Remarks

The -ux option allows you to do two things when starting the database server: use the Server Startup
Options window to specify server options when starting the database server and display the database server
messages window once the server has started.

When the -ux option is the only option specified on the server command line, the Server Startup
Options window appears where you can enter options for starting the database server.

The server must be able to find a usable display when -ux is specified. If it cannot find one, for example
because the DISPLAY environment variable isn't set or because X window server isn't running, then the
database server fails to start. If you want the database server to start, even if it cannot find a usable display,
use the -ui option instead of -ux.

If you specify other server options in addition to -ux, then the database server messages window appears
once the database server is started. You should only specify one of -uc, -ui, or -ux.

For more information about starting the database server as a daemon, see “-ud server option” on page 229.

See also

e “-uc server option” on page 228
e “-ui server option” on page 230
e “-gn server option” on page 213

Example

The following command displays the Server Startup Options window where you can enter options for
starting the database server:

232 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

dbengll -ux

The following command starts the database server and displays the database server messages window:

dbengll -ux sample.db

-V server option
Displays the software version.

Syntax
{dbsrv1l | dbengll}-v ...

Applies to
All operating systems and database servers.

Remarks

Supplies the database server version in a window, and then stops. You can also obtain the software version
by right-clicking the title bar of the database server messages window and choosing About.

-VSS Server option

Enables and disables the Volume Shadow Copy Service (VSS).

Syntax
{dbsrv1l |dbengll}-vss {+]|-}...

Applies to

32-bit Microsoft Windows XP and 32-bit and 64-bit editions of Microsoft Windows 2003 and later operating
systems.

Remarks

By default, all SQL Anywhere databases can use the VSS service for backups if the SQL Anywhere VSS
writer (dbvss11.exe) is running. You can use VSS without the SQL Anywhere VSS writer to back up
databases. However, you might need to use the full SQL Anywhere recovery procedures to restore those
databases. To prevent a database server from participating in the VSS service, include -vss- when starting
the database server.

See also

e “Using the SQL Anywhere Volume Shadow Copy Service (VSS)” on page 884
e “Service utility (dbsvc) for Windows” on page 820
e “Recover from media failure on the data” on page 897

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 233

The database server

Example

The following command starts the mydatabase.db database and instructs the database server not to participate
in VSS operations even if the (dbvss11.exe) writer is running:

dbsrvll -vss- mydatabase.db

-X server option

Specifies server side network communications protocols.

Syntax 1

dbsrv1l -x { all | none | srv-protocols } ...

srv-protocols:

{tcpip parmlist },...
parmlist:

(parm=value;...)

Syntax 2

dbengl1l -x { all | none | eng-protocols } ...

eng-protocols:

{tcpip [parmlist] },...
parmlist:

(parm=value;...)

Applies to

All operating systems and database servers.

Remarks

Use the -x option to specify which communications protocols, in addition to shared memory, you want to
use to listen for client connection broadcasts.

If you do not specify the -x option, the server attempts to listen for client connection broadcasts using all
protocols supported by the database server running on your operating system, including shared memory.

If you specify the -x option with one or more protocols, the server attempts to listen for client connection
broadcasts using the specified protocol(s) and also using a shared memory protocol.

For information about securing shared memory connections on Unix, see “Security tips” on page 1066.

Note
If you are running Windows Mobile and specify the -x option, the server only attempts to listen for client
connection broadcasts using the TCP/IP protocol unless you explicitly request otherwise.

Regardless of which settings you choose for the -x option, the server always listens for connection broadcasts
using the shared memory protocol. In addition to the shared memory protocol, you can also specify the
following:

234

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

e ALL Listenforconnectionattempts by the client using all communications protocols that are supported

by the server on this platform, including shared memory. This is the default.
NONE Listen for connection attempts by the client using only the shared memory protocol.

TCPIP (TCP) Listen for connection attempts by the client using the TCP/IP protocol. The TCP/IP
protocol is supported by the network server on all operating systems, and by the personal database server
for same-computer communications.

By default, the database server listens for broadcasts on port 2638, and redirects them to the appropriate
port. This ensures a connection in most cases.

You can override this default and cause the server not to listen on port 2638 by setting the option -sb 0,
or by turning off the BroadcastListener option (BroadcastListener=0). Additionally, if the client and
server are communicating through a firewall, the client must send the packet to the exact port the server
is listening on by specifying DoBroadcast=None and Host=.

See “ServerPort protocol option [PORT]” on page 321.

For some protocols, additional parameters may be provided, in the format

-x tcpip(PARM1=valuel;PARM2=value2;...)

For more information about available parameters, see “Network protocol options” on page 301.

For Unix, quotation marks are required if more than one parameter is supplied:

-x "tcpip(PARM1=valuel;PARM2=value2;...)"

See also

“-xa server option” on page 235

“-xd server option” on page 236

“-xf server option” on page 237

“-xp database option” on page 258

“-Xs server option” on page 237

“CommL.inks connection parameter [LINKS]” on page 268
“Supported network protocols” on page 142

Example
Allow only shared memory and TCP/IP communications:

-x tcpip

-Xa server option

Specifies a comma-separated list of database names and authentication strings for an arbiter server.

Syntax

dbsrv11 -xa auth=auth-strings;DBN=database-names

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 235

The database server

Applies to
All operating systems, network server only.

Remarks
This option is only specified when starting the arbiter server in a database mirroring system.
The authentication string must match the authentication string specified for the primary and mirror servers.

If the lists of authentication strings and database names each contain only one entry, the server will act as
the arbiter for only one database mirroring system; otherwise, each list must contain the same number of
entries.

See also
e “DatabaseName connection parameter [DBN]” on page 275

e “-sn database option” on page 257

e “-x server option” on page 234

e “-xf server option” on page 237

e “-xp database option” on page 258

e “-Xs server option” on page 237
Example

The following command starts an arbiter database server named arbiter.

dbsrvll -x tcpip -n arbiter -xa AUTH=abc;DBN=demo -xf c:\arbiterstate.txt

-xd server option
Prevents the database server from becoming the default database server.

Syntax
dbsrv11 -xd ...

Applies to
All operating systems, network server only.

Remarks

When a database server starts, it attempts to become the default database server on that computer. The first
database server to start when there is no default server becomes the default database server. Shared memory
connection attempts on that computer that do not explicitly specify a database server name connect to the
default server.

Specifying this option prevents the database server from becoming the default database server. If this option
is specified, clients that do not specify a database server name cannot find the database server over shared
memory. The -xd option also prevents the database server from using the default TCP port. If a TCP port is
not specified, the database server uses a port other than port 2638.

236 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

See also

e “-nserver option” on page 206
e “StartLine connection parameter [START]” on page 297
e “-x server option” on page 234

-xf server option
Specifies the location of the file used for maintaining state information about your database mirroring system.

Syntax
dbsrv1l -xf state-file ...

Applies to
All operating systems, network server only.

Remarks

The -xf option specifies the location of the file used for maintaining state information about the mirroring
system. This option is required for database mirroring. By default, the state information file is named server-
name.mirror_state.

For more information about the database mirroring state information file, see “State information
files” on page 944.

See also
e “-sn database option” on page 257

e “-xserver option” on page 234

e “-xa server option” on page 235

e “-xp database option” on page 258

e “-Xs server option” on page 237
Example

The following command (entered all on one line) starts a database server named serverl, that uses the state
information file c:\serverlstate.txt.

dbsrvll.exe -n serverl -x tcpip{DOBROADCAST=no}

-xF c:\serverlstate.txt mydemo.db -sn mirrordemo

-xp ""partner=(ENG=server2;LINKS=tcpip(TIMEOUT=1));
AUTH=abc;arbiter=(ENG=arbsrv;LINKS=tcpip(TIMEOUT=1));
MODE=sync"*

-XS server option

Specifies server-side web services communications protocols.

Syntax
{dbeng11l | dbsrv11} -xs { protocol,... } ...

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 237

The database server

protocol : {
NONE
| HTTP [(option=value;...)]
| HTTPS [(option=value;...)]

HTTPS-only options:

FIPS={Y|N}
IDENTITY=server-identity-filename
IDENTITY_PASSWORD=password

Applies to

All operating systems and database servers.

Remarks

Use the -xs option to specify which web protocols you want to use to listen for requests.
If you do not specify the -xs option, the database server doesn't attempt to listen for web requests.

If you specify the -xs option with one or more protocols, the server attempts to listen for web requests using
the specified protocol(s).

Note
If you want to start multiple web servers at the same time, then you must change the port for one of them
since they both have the same default port.

You canuse the HTTPS or the FIPS-approved HTTPS protocols for transport-layer security. See “Encrypting
SQL Anywhere web services” on page 1112.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

Regardless of which settings you specify with the -xs option, the server always listens for connection attempts
using the shared memory protocol. You can specify any of the following:

e option For a list of supported option values for each protocol, see “Network protocol
options” on page 301.

e HTTP Listen for web requests by the client using the HTTP protocol. The default port on which to
listen is 80.

e HTTPS Listen for web requests by the client using the HTTPS protocol. The default port on which to
listen is 443. You must specify the server's certificate and password to use HTTPS. The password must
be an RSA certificate because HTTPS uses RSA encryption.

The SQL Anywhere HTTP server supports HTTPS connections using SSL version 3.0 and TLS version
1.0.

You can specify HTTPS, or HTTPS with FIPS=Y for FIPS-approved RSA encryption. FIPS-approved
HTTPS uses a separate approved library, but is compatible with HTTPS.

238

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

Note

The Mozilla Firefox browser can connect when FIPS-approved HTTPS is used. However, the cipher
suite used by FIPS-approved HTTPS is not supported by most versions of the Internet Explorer, Opera,
or Safari browsers—if you are using FIPS-approved HTTPS, these browsers may not be able to connect.

For information about enforcing the FIPS-approved algorithm, see “-fips server option” on page 186.

o server-identity-filename The path and file name of the server identity. For HTTPS, you must
use an RSA certificate.

o password The password for the server private key. You specify this password when you create
the server certificate.

NONE Do not listen for web requests. This is the default.

For more information about available parameters, see “Network protocol options” on page 301.

On Unix, quotation marks are required if more than one parameter is supplied:

-xs "HTTP(OPTION1=valuel;OPTION2=value2;...)"

See also

“-sn database option” on page 257

e ‘“-x server option” on page 234

e “-xaserver option” on page 235

e “-xf server option” on page 237

e “-xp database option” on page 258

e “SQL Anywhere web services” [SQL Anywhere Server - Programming]
Example

Listen for HTTP web requests on port 80:

dbengll web.db -xs HTTP(PORT=80)

Listen for web requests using HTTPS:

dbengll web.db -xs
HTTPS(FIPS=N;PORT=82; IDENTITY=eccserver.id; IDENTITY_PASSWORD=test)

-z server option

Displays diagnostic communication messages, and other messages, for troubleshooting purposes.

Syntax

{dbsrv1l | dbengll}-z ...

Applies to
All operating systems and database servers.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 239

The database server

Remarks

This should only be used when tracking problems. The information appears in the database server messages
window.

See also
e “-ze server option” on page 240

-ze server option
Displays database server environment variables in the database server messages window.

Syntax
{dbsrv1l | dbengll}-ze ...

Applies to
All operating systems and database servers except Windows Mobile.

Remarks

When you specify the -ze option, environment variables are listed in the database server messages window
on startup. You can log the contents of the database server messages window to a file by specifying the -o
option when starting the database server.

See also

e “SQL Anywhere environment variables” on page 365
e “-0server option” on page 208
e “-z server option” on page 239

Example

The following command starts a database server named myserver, and outputs the environment variables
set for the server to the database server messages window and the file server-log.txt.

dbengll -n myserver -ze -0 server-log.txt

-zl server option

Turns on capturing of the most recently-prepared SQL statement for each connection to databases on the
Server.

Syntax
{dbsrv1l | dbeng11} -zl ...

Applies to
All operating systems and database servers.

240 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

Remarks

This feature can also be turned on using the RememberLastStatement server setting. You can obtain the most
recently-prepared SQL statement for a connection using the LastStatement value of the
CONNECTION_PROPERTY function. The sa_conn_activity stored procedure allows you to obtain the
most recently-prepared SQL statement for all current connections to databases on the server.

The LastStatement value is set when a statement is prepared, and is cleared when a statement is dropped.
Only one statement string is remembered for each connection.

If sa_conn_activity reports a non-empty value for a connection, it is most likely the statement that the
connection is currently executing. If the statement had completed, it would likely have been dropped and
the property value would have been cleared. If an application prepares multiple statements and retains their
statement handles, the LastStatement value does not reflect what a connection is currently doing.

For stored procedure calls, only the outermost procedure call appears, not the statements within the
procedure.

Caution

When -zl is specified or when the RememberLastStatement server setting is turned on, any user can call the
sa_conn_activity system procedure or obtain the value of the LastStatement connection property to find out
the most recently-prepared SQL statement for any other user. This option should be used with caution and
turned off when it isn't required.

See also

e LastStatement property: “Connection properties” on page 598
e “sa_conn_activity system procedure” [SQL Anywhere Server - SQL Reference]
e “sa server_option system procedure” [SQL Anywhere Server - SQL Reference]

-zn server option

Specifies the number of request log file copies to retain.

Syntax
{dbsrv1l | dbengll }-zn integer

Applies to
All operating systems and database servers.

Remarks

If request logging is enabled over a long period of time, the request log file can become large. The -zn option
allows you to specify the number of request log file copies to retain. It only takes effect if -zs is also specified.
The -zs option allows you to create a new log file and rename the original log file when the original log file
reaches a specified size. See “-zs server option” on page 245.

For example, if you redirect request logging information to the file req.out, and specify five request log file
copies using the -zn option, the server creates files in the following order: req.out.1, req.out.2, reg.out.3,
reg.out.4, and req.out.5. When these files exist and the active request log fills again, the following happens:

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 241

The database server

e req.out.l is deleted
e the files reg.out.2 to reg.out.5 are renamed reg.out.1 to reg.out.4

e the copy of the active log is renamed req.out.5

Request logging is turned on using the -zr option and redirected to a separate file using the -zo option. You
can also set the number of request logs using the sa_server_option system procedure where nn specifies the
number of request log file copies:

CALL sa_server_option(“RequestLogNumFiles®,nn);

See also
e “-70 server option” on page 242

e “-zr server option” on page 244
e “-7sserver option” on page 245
e “sa server_option system procedure” [SQL Anywhere Server - SQL Reference]
e “Request logging” [SQL Anywhere Server - SQL Usage]
Example

In the following example, entered all on one line, request logging information is output to a request log file
named mydatabase.log, which has a maximum size of 10 KB, and three copies of the request log are kept:

dbengll "c:\my data\mydatabase.db" -zr all -zn 3
-zs 10 -zo mydatabase.log

-Z0 server option

Redirects request logging information to a file separate from the regular log file.

Syntax
{dbsrv1l | dbengll } -zo filename ...

Applies to
All operating systems and database servers.

Remarks
Request logging is turned on using the -zr option. You can direct the output from this file to a different file
that is not the regular log file by specifying the -zo option.

This option also prevents request logging from appearing in the database server messages window.

See also

e “-zn server option” on page 241
e “-zr server option” on page 244
e “-7sserver option” on page 245
e “Request logging” [SQL Anywhere Server - SQL Usage]

242 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

-Z0C server option

Redirects web service client information to a file.

Syntax
{dbsrv1l | dbengll } -zoc filename ...

Applies to
All operating systems and database servers.

Remarks

The web service client log file contains HTTP requests and transport data recorded for outbound web service
client calls. Logging is enabled automatically when you specify the -zoc server option. You can enable and
disable logging to this file using the sa_server_option system procedure:

CALL sa_server_option(“WebClientLogging®, “ON");

See also

e WebhClientLogging property: “Database server properties” on page 624

WebClientLogFile property: “Database server properties” on page 624

“sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]

“SQL Anywhere web services” [SQL Anywhere Server - Programming]

“CREATE FUNCTION statement (web services)” [SQL Anywhere Server - SQL Reference]
“CREATE PROCEDURE statement (web services)” [SQL Anywhere Server - SQL Reference]

Example

The following command starts the database server so that it listens for HTTP web requests on port 80, and
logs outbound web service client information to the file clientinfo.txt:

dbengll web.db -xs HTTP(PORT=80) -zoc clientinfo.txt

-Zp server option
Turns on capturing of the plan most recently used by the query optimizer.

Syntax
{dbsrv1l | dbengll}-zp ...

Applies to
All operating systems and database servers.

Remarks

Include this option if you want the database server to store the query execution plan that was used most
recently by each connection. This feature can also be turned on using the RememberLastPlan server setting

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 243

The database server

with the sa_server_option system procedure. You can view the text of the most recently-used plan by using
the LastPlanText connection property.

See also

e LastPlanText property: “Connection properties” on page 598
e “sa_conn_activity system procedure” [SQL Anywhere Server - SQL Reference]
e “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]

-Zr server option
Enables request logging of operations.

Syntax

{dbsrvi11 | dbengll}-zr { SQL | HOSTVARS | PLAN | PROCEDURES | TRIGGERS | OTHER |
BLOCKS | REPLACE | ALL | YES | NONE |NO} ...

Applies to
All operating systems and database servers.

Remarks

This option should only be used when tracking problems. The information appears in the database server
messages window or is sent to the request log.

The values for -zr return the following types of information:
e SQL enables logging of the following:

START DATABASE statements
STOP DATABASE statements
STOP ENGINE statements
Statement preparation and execution
EXECUTE IMMEDIATE statement
Option settings

COMMIT statements

ROLLBACK statements

PREPARE TO COMMIT operations
Connects and disconnects
Beginnings of transactions

DROP STATEMENT statements
Cursor explanations

Cursor open, close, and resume
Errors

O O 0 0O O O O 0O O O O O o0 0 O

e PLAN enables logging of execution plans (short form). Execution plans for procedures are also
recorded if logging of procedures (PROCEDURES) is enabled.

244 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

HOSTVARS enables logging of host variable values. If you specify HOSTVARS, the information
listed for SQL is also logged.

PROCEDURES enables logging of statements executed from within procedures.
TRIGGERS enables logging of statements executed from within triggers.

OTHER enables logging of additional request types not included by SQL, such as FETCH and
PREFETCH. However, if you specify OTHER but do not specify SQL, it is the equivalent of specifying
SQL+OTHER. Including OTHER can cause the log file to grow rapidly and could negatively impact
server performance.

BLOCKS enables logging of details showing when a connection is blocked and unblocked on another
connection.

REPLACE at the start of logging, the existing request log is replaced with a new (empty) one of the
same name. Otherwise, the existing request log is opened and new entries are appended to the end of the
file.

ALL logs all supported information. This setting is equivalent to specifying SQL+PLAN
+HOSTVARS+PROCEDURES+TRIGGERS+OTHER+BLOCKS. This setting can cause the log file
to grow rapidly and could negatively impact server performance.

NO or NONE turns off logging to the request log.

Once the database server is started, you can change the request log settings to log more or less information
using the sa_server_option system procedure. See “sa_server_option system procedure” [SQL Anywhere
Server - SQL Reference].

You can find the current value of the RequestLogging setting using the following query:

SELECT PROPERTY("RequestLogging”®);

See also

“-zn server option” on page 241
“-z0 server option” on page 242
“Request logging” [SQL Anywhere Server - SQL Usage]

-ZS server option

Limits the size of the request log.

Syntax

{dbsrv1l | dbengll}-zs {size[k|m|g]}...

Applies to

All operating systems and database servers.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 245

The database server

Remarks
Request logging is turned on using the -zr option, and redirected to a separate file using the -zo option. You
can limit the size of the file using the -zs option.
The size is the maximum file size for the request log, in bytes. Use k, m, or g to specify units of kilobytes,
megabytes, or gigabytes respectively.
If you specify -zs 0, then there is no maximum size for the request logging file, and the file is never renamed.
This is the default value.

When the request log file reaches the size specified by either the -zs option or the sa_server_option system
procedure, the file is renamed with the extension .old appended (replacing an existing file with the same
name if one exists). The request log file is then restarted.

See also
e “-zn server option” on page 241

e “-70 server option” on page 242
e “-zr server option” on page 244
e “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]
e “Request logging” [SQL Anywhere Server - SQL Usage]
Example

The following example shows how the -zs option is used to control log file size. Suppose you start a database
server with the following command line:

dbengll -zr all -zs 10k -zo mydatabase.log

A new log file mydatabase.log is created. When this file reaches 10 KB in size, any existing
mydatabase.old files are deleted, mydatabase.log is renamed to mydatabase.old, and a new
mydatabase.log file is started. This process is repeated each time the mydatabase.log file reaches the specified
size (in this case 10 KB).

-zt server option

Turns on logging of request timing information.

Syntax
{dbsrv1l | dbengl1l} -zt ...

Applies to
All operating systems and database servers.

Remarks

Once the database server is started, you can change the status for logging of request timing information using
the sa_server_option system procedure. See “sa_server_option system procedure” [SQL Anywhere Server -
SQL Reference].

You can find the current value of the RequestTiming setting using the following query:

246 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database server options

SELECT PROPERTY(“RequestTiming®);

See also
e “sa_performance_diagnostics system procedure” [SQL Anywhere Server - SQL Reference]
e “sa_performance_statistics system procedure” [SQL Anywhere Server - SQL Reference]
e “Request logging” [SQL Anywhere Server - SQL Usage]

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 247

The database server

Database options

These options are specified after the database file, and apply only to that database.

-a database option

Applies the named transaction log. The -a database option must be specified after the database-file, and
applies only to that database.

Syntax
{dbsrv1l | dbengll } [server-options] database-file -a log-filename ...

Applies to
All operating systems and database servers.

Remarks

This option is used to recover from media failure on the database file. When this option is specified, the
database server applies the log and then shuts down—it doesn't continue to run. If you need to apply multiple
transaction logs, you must know the correct order in which to apply them when using -a. The database server
automatically applies multiple transaction logs in the correct order if you use the -ad or -ar option instead
of -a.

Specifying a cache size when starting the server can reduce recovery time.

See “Backup and data recovery” on page 869.

See also
e “Recover from media failure on the data” on page 897

e “Recovering a database with multiple transaction logs” on page 893
e “-ad database option” on page 248
e “-ar database option” on page 249
e “-as database option” on page 250
Example

The following example, entered all on one line, applies the log file demo.log to a backup copy of the sample
database.

dbengll "‘c:\backup\demo.db" -a "‘c:\backup\demo.log"

-ad database option

Specifies the directory containing transaction log files to be applied to the database. The -ad database option
must be specified after the database-file, and applies only to that database.

248 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database options

Syntax
{dbsrv1l | dbengll } [server-options] database-file -ad log-directory ...

Applies to
All operating systems and database servers.

Remarks

When you include the -ad option, the specified directory is scanned for transaction log files associated with
the database. Transaction log files with starting log offsets greater than or equal to the start log offset stored
in the database file are applied, in log offset order. Once all the transaction log files have been applied, the
database is stopped. You must also specify the -as option if you want the database to continue running once
the transaction log files have been applied.

See also
e “Recover from media failure on the data” on page 897

e “Recovering a database with multiple transaction logs” on page 893
e “-adatabase option” on page 248
e “-ar database option” on page 249
e “-as database option” on page 250
Example

The database server applies the log files in the backup directory to the mysample.db database and then stops
the database once the log files have been applied.

dbengll "c:\mysample.db" -ad "c:\backup"

The database server applies the log files in the backup directory to the mysample.db database and the database
continues running once the log files have been applied.

dbengll "‘c:\mysample.db"™ -ad "‘c:\backup' -as

-ar database option

Specifies that any transaction log files located in the same directory as the current transaction log should be
applied to the database. The -ar database option must be specified after the database-file, and applies only
to that database.

Syntax
{dbsrv1l | dbengll} [server-options] database-file -ar ...

Applies to
All operating systems and database servers.

Remarks

When you include the -ar option, the database server looks for transaction log files associated with the
database that are located in the same directory as the current transaction log. The transaction log location is

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 249

The database server

obtained from the database. Transaction log files with starting log offsets greater than or equal to the start
log offset stored in the database are applied, in log offset order. Once all the transaction log files have been
applied, the database is stopped. You must also specify the -as option if you want the database to continue
running once the transaction log files have been applied.

See also
e “Recover from media failure on the data” on page 897

e “Recovering a database with multiple transaction logs” on page 893
e “-adatabase option” on page 248
e “-ad database option” on page 248
e “-as database option” on page 250
Example

The database server applies the transaction log files (whose location is obtained from the database) to the
mysample.db database. The database continues running after the transaction log files have been applied.

dbengll "c:\mysample.db" -ar -as

-as database option

Specifies that the database should continue to run after transaction logs have been applied (used in
conjunction with -ad or -ar). The -as database option must be specified after the database-file, and applies
only to that database.

Syntax
{dbsrv1l | dbengll } [server-options] database-file { -ad log-dir | -ar } -as ...

Applies to
All operating systems and database servers.

Remarks

The -as option must be specified in conjunction with either the -ad or -ar option. When you include -as, the
database continues running after the transaction logs are applied to it.

See also
e “Recover from media failure on the data” on page 897

e “Recovering a database with multiple transaction logs” on page 893
e “-adatabase option” on page 248
e “-ad database option” on page 248
e “-ar database option” on page 249
Example

The database server applies the transaction log files to the mysample.db database. In this case, because -ar
is specified, the database server obtains the location of the transaction logs from the database. The database
continues running after the log files have been applied.

250 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database options

dbengll "c:\mysample.db"™ -ar -as

The database server applies the log files in the backup directory to the mysample.db database. The database
continues running after the log files have been applied.

dbengll "‘c:\mysample.db"™ -ad "‘c:\backup' -as

-ds database option

Specifies the directory where the dbspaces for the database are located. The -ds database option must be
specified after the database-file, and applies only to that database.

Syntax
{dbsrv1l | dbengll } -ds dbspace-directory ...

Applies to
All operating systems and database servers.

Remarks

When a dbspace directory is specified, the database server only searches this directory for dbspaces. The
location of the dbspace appears in the database server messages window.

If your backup includes dbspaces with full path names, you can use this option to start the backed up copy
of the database on the same computer as the original database while the original database is still running.

See also

e “Using additional dbspaces” on page 25

e “START DATABASE statement” [SQL Anywhere Server - SQL Reference]
e “STOP DATABASE statement” [SQL Anywhere Server - SQL Reference]
e “default_dbspace option [database]” on page 526

Example
The following example starts a database server that looks for dbspaces in the directory c:\backup\Nov15:
dbengll c:\backup\Nov1l5\my.db -ds c:\backup\Nov15\
The following example starts a database server that looks for dbspaces in the current directory:

dbengll my.db -ds

-dh database option

Prevents this database from appearing when the Server Enumeration utility (dblocate) is used against this
server. The -dh database option must be specified after the database-file, and applies only to that database.

Syntax
{dbsrv1l | dbengll } [server-options] database-file -dh ...

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 251

The database server

Applies to
All platforms.

Remarks

The -dh option makes a database undetectable when the Server Enumeration utility (dblocate) is run against
the server. Therefore, when dblocate is used with the -d option, the -dn option, or the -dv option, the database
isn't listed.

See also
e “Server Enumeration utility (dblocate)” on page 810

-ek database option

Specifies the key for a strongly encrypted database. The -ek database option must be specified after the
database-file, and applies only to that database.

Syntax
{dbsrv1l | dbengll } [server-options] database-file -ek key ...

Applies to
All operating systems and servers.

Remarks
You must provide the key value with the -ek option to start an encrypted database. The key is a string,
including mixed cases, numbers, letters, and special characters.

If you want to enter the encryption key in a window so it cannot be seen in clear text, use the -ep server
option. See “-ep server option” on page 183.

If you want to secure communication packets between client applications and the database server use the -
ec server option and transport-layer security. See “Transport-layer security” on page 1095.

See also
e “-ec server option” on page 180

e “-ep server option” on page 183

e “DatabaseKey connection parameter [DBKEY]” on page 274

e “Encrypting and decrypting a database” on page 1082
Example

The following example starts a database and specifies the encryption key on the command line.

dbsrvll -x tcpip mydata.db -ek "Akmm9u70y"

252 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database options

-m database option

Truncates the transaction log when a checkpoint is done. The -m database option must be specified after the
database-file, and applies only to that database.

Syntax
{dbsrv1l | dbengll } [server-options] database-file -m ...

Applies to
All operating systems and database servers.

Remarks

Truncates the transaction log when a checkpoint is done, either at shutdown or as a result of a checkpoint
scheduled by the server. This option provides a way to limit the growth of the transaction log automatically.
Checkpoint frequency is still controlled by the checkpoint_time and recovery_time options (or -gc and -gr
database server command line options).

The -m option is useful where high volume transactions requiring fast response times are being processed,
and the contents of the transaction log aren't being relied upon for recovery or replication. When this option
is selected, there is no protection against media failure on the device that contains the database files.

To avoid database file fragmentation, it is recommended that where this option is used, the transaction log
be placed on a separate device or partition from the database itself.

This option is the same as the -m server option, but applies only to the current database or the database
identified by the database-file variable.

Caution
Do not use the -m option with databases that are being replicated or synchronized. Replication and
synchronization, used by SQL Remote and MobiLink, inherently rely on transaction log information.

See also

e “-mserver option” on page 205
e “The transaction log” on page 14
e “Transaction Log utility (dblog)” on page 842

Example

The following example starts a database server named silver and loads the database salesdata.db. When a
checkpoint is done, the transaction log contents are deleted.

dbsrvll -n silver "c:\inventory details\salesdata.db™ -m

-n database option

Sets the name of the database. The -n database option must be specified after the database-file, and applies
only to that database.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 253

The database server

Syntax
{dbsrv1l | dbengll } [server-options] database-file -n string ...

Applies to
All operating systems and database servers.

Remarks

Both database servers and databases can be named. Since a database server can load several databases, the
database name is used to distinguish the different databases.

By default, the database receives the name of the database file with the path and extension removed. For
example, if the database is started on samples-dir\demo.db and no -n option is specified, the name of the
database is demo.

Database names cannot:

begin with white space, single quotes, or double quotes
end with white space

contain semicolons

be longer than 250 bytes

You can only use the database name utility db to connect to the SQL Anywhere utility database. See “Using
the utility database” on page 30.

See also

e “Naming the server and the databases” on page 46
e “-n server option” on page 206

Example

The following example starts the database server with a cache size of 3 MB, loads the database, and names
the database test. Since no database server name has been specified, the server takes its name from the first
database, so the server's name is also test.

dbsrvll -c 3MB "‘c:\mydata.db™ -n *"test"

There are two -n options
The -n option is position dependent. If it appears before a database file name, it is a server option and names
the server. If it appears after a database file name, it is a database option and names the database.

For example, the following command names the server SERV and the database DATA:

dbsrvll -n SERV c:\mydata.db -n DATA

See “-n server option” on page 206.

254 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database options

-r database option

Starts the named database as read-only. No changes to the database(s) are allowed: the database server does
not modify the database file(s) and transaction log files. The -r database option must be specified after the
database-file, and applies only to that database.

Syntax
{dbsrv1l | dbengll } [server-options] database-file -r ...

Applies to
All operating systems and database servers.

Remarks

Opens all database files (the main database file, dbspaces, transaction log, and transaction log mirrors) as
read-only with the exception of the temporary file when the option is specified before any database names
on the command line. If the -r option is specified after a database name, only that specific database is read-
only. You can make changes on temporary tables, but ROLLBACK has no effect, since the transaction and
rollback logs are disabled.

A database distributed on a CD-ROM device is an example of a database file that cannot be modified. You
can use read-only mode to access this sort of database.

If you attempt to modify the database, for example with an INSERT or DELETE statement, a
SQLSTATE_READ_ONLY_DATABASE error is returned.

Databases that require recovery cannot be started in read-only mode. For example, database files created
using an online backup cannot be started in read-only mode if there were any open transactions when the
backup was started, since these transactions would require recovery when the backup copy is started.

You cannot start a database in read-only mode if auditing is turned on.

See also

e ‘“-rserver option” on page 216
e “auditing option [database]” on page 511

Example
To open two databases in read-only mode

dbengll -r databasel.db database2.db

To open only the first of two databases in read-only mode.

dbengll databasel.db -r database2.db

-sm database option

Provides an alternate database server name that can be used to access the read-only mirror database.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 255

The database server

Syntax

dbsrv11l [server-options] database-file -sm alternate-server-name

Applies to

All operating systems, network server only.

Remarks

The alternate-server-name is only active when the database server is acting as mirror for the database. By
using the -smand -sn command-line options, an application can always connect to the database on the primary
or the mirror server, without knowing which physical server is acting as primary or mirror.

See also

“Separately licensed components” [SQL Anywhere 11 - Introduction]

“Configuring read-only access to a database running on the mirror server” on page 956
“-xa server option” on page 235

“-xf server option” on page 237

“-xp database option” on page 258

“START DATABASE statement” [SQL Anywhere Server - SQL Reference]
“Introduction to database mirroring” on page 938

“Server Enumeration utility (dblocate)” on page 810

ReadOnly property: “Database properties” on page 639

Example

The following command starts the databases satest.db and sample.db on a database server named myserver.
The -sn option instructs the database server to use mysampleprimary as an alternate server name when
connecting to sample.db, while the -sm option instructs the database server to use mysamplemirror as an
alternate server name to connect to sample.db, running on the mirror server.

dbsrvll -n myserver satest.db sample.db -sn mysampleprimary -sm
mysamplemirror

-xp "'partner=(ENG=server2;LINKS=TCPIP(PORT=2637;TIMEOUT=1));auth=abc;
arbiter=(ENG=arbiter;LINKS=TCPIP;(PORT=2639;TIMEOUT=1));mode=sync"

You can connect to sample.db while it is running on the primary server using any of the following connection
parameters:

e ENG=myserver;DBN=sample
e ENG=mysampleprimary
e ENG=mysampleprimary;DBN=sample

You cannot connect to satest.db using ENG=mysampleprimary.

You can connect to sample.db while it is running on the mirror server using any of the following connection
parameters:

e ENG=myserver;DBN=sample
e ENG=mysamplemirror
e ENG=mysamplemirror;DBN=sample

256

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database options

You cannot connect to satest.db using ENG=mysamplemirror.

-sn database option

Provides an alternate server name for a single database running on a database server. The -sn database option
must be specified after the database-file, and applies only to that database.

Syntax

dbsrv11 [server-options] database-file -sn alternate-server-name

Applies to
All operating systems, network server only.

Remarks

The database server can be configured to listen for more than one server name for a particular database
server. Server names other than the real server name are called alternate server names, and are specific to a
particular database running on the database server. Clients using the alternate server name to connect can
only connect to the database that specified the alternate server name.

Alternate server names must be unique on the network; otherwise, the database fails to start. If the database
is started in the server command and the alternate server name is not unique, the server fails to start. You
can also provide an alternate server name using the START DATABASE statement.

Clients that specify an alternate server name can only connect to the database that specified the alternate

server name. They cannot connect to any other database running on that database server. If the DBN or DBF
connection parameter is specified, it must match the database name or database file, respectively. If the DBN
or DBF connection parameter is not specified, then the database acts as the default database for that server.

The Server Enumeration utility (dblocate) detects alternate server names.

Using alternate server names for database mirroring
When using database mirroring, an alternate server name must be specified for client applications to be able
to connect to the current primary server without knowing in advance which server is the primary server and
which is the mirror server. Both operational servers must use the same name for the alternate server name.

See also

“Separately licensed components” [SQL Anywhere 11 - Introduction]

“-xa server option” on page 235

“-xf server option” on page 237

“-xp database option” on page 258

“START DATABASE statement” [SQL Anywhere Server - SQL Reference]
“Introduction to database mirroring” on page 938

“Server Enumeration utility (dblocate)” on page 810

AlternateServerName property: “Database properties” on page 639

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

257

The database server

Example

The following command starts the databases satest.db and sample.db on a database server named myserver.
The -sn option instructs the database server to use mysample as an alternate server name when connecting
to sample.db.

dbsrvll -n myserver satest.db sample.db -sn mysample
You can connect to sample.db using any of the following connection parameters:

e ENG=myserver;DBN=sample
e ENG=mysample
e ENG=mysample;DBN=sample

You cannot connect to satest.db using ENG=mysample.

-Xp database option

Provides information to an operational server that allows it to connect to its partner and to the arbiter when
database mirroring is being used. The -xp database option must be specified after the database-file, and
applies only to that database.

Syntax

dbsrv11 [server-options] database-file
-Xp partner=(partner-conn);
auth=auth-str;

[;arbiter=(arbiter-conn)]

[;mode=[sync | async | page]

[;autofailover=[YES | NO]]

[;pagetimeout=n]

[;preferred=[YES|NO] ...

Applies to

All operating systems, except Windows Mobile, network server only.

Remarks

When you specify -xp, you must also specify the location of the database mirroring state information file
with the -xf option.

if the connection parameters specified in the -xp option are invalid, and there are multiple databases running
on the server, then the mirrored database fails to start and does not attempt to reconnect. If the mirrored
database is the only database running on the database server, then the database server does not start.

partner-conn Specifies the connection string for the partner server. A user ID and password are not
required. It is recommended that you specify a timeout to reduce failover time.

auth-str ~ Specifies the authentication string used by the arbiter.

arbiter-conn Specifies the connection string for the arbiter server. A user ID and password are not
required. It is recommended that you specify a timeout to reduce failover time.

258

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Database options

mode Specifies the synchronization mode used for database mirroring: synchronous (sync), asynchronous
(async), or asyncfullpage (page).

autofailover Specifies whether the mirror server automatically takes over as the primary server when the
original primary server goes down. This option does not apply to synchronous mode.

Note

Itis recommended that if you are using asynchronous or asyncfullpage mode, that you set the -xp autofailover
option to yes. Then, if the primary server goes down, the mirror server automatically takes over as the primary
Server.

pagetimeout Specifies how often, in seconds, transaction log pages are sent to the mirror server, whether
or not they are full. This option applies only when using asyncfullpage mode.

preferred Specifies whether the server is the preferred server in the mirroring system. The preferred server
assumes the role of primary server whenever possible. See “Specifying a preferred database
server” on page 956.

See also

e “Separately licensed components” [SQL Anywhere 11 - Introduction]
“Choosing a database mirroring mode” on page 942

“-sn database option” on page 257

“-xa server option” on page 235

“-xf server option” on page 237

MirrorMode property: “Database properties” on page 639

Example

The following command specifies parameters for the partner server named server2 and the arbiter server
named arbsrv.

dbsrvll -n serverl mydata.db -sn mydata
-xp "‘partner=(ENG=server2;LINKS=tcpip(TIMEOUT=1));
AUTH=abc;arbiter=(ENG=arbsrv;LINKS=tcpip(TIMEOUT=1))""

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 259

260

Connection parameters and network protocol
options

Contents
(Of0]p] o [Tt U] g I o =T =T 1= = £ 262
NEetwOork protoCOl OPLIONSccciiiiiiiiiiiieee et e e 301

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 261

Connection parameters and network protocol options

Connection parameters

Connection parameters are included in connection strings. They can be entered in the following places:

e Inan application's connection string. See “Assembling a list of connection parameters” on page 133 and
“Connection parameters passed as connection strings” on page 87.

e Inan ODBC data source. See “Creating ODBC data sources” on page 97.

e Inthe SQL Anywhere Connect window. See “Connecting from SQL Anywhere utilities” on page 131.

The ODBC Configuration For SQL Anywhere 11 window and the SQL Anywhere Connect window for
Windows operating systems share a common format. Some of the parameters correspond to checkboxes and
fields in these windows, while others can be entered in the text box on the Advanced tab.

Notes
e Connection parameters are case insensitive, although their values may not be (for example, file names
on Unix).

e Boolean parameters are turned on with YES, Y, ON, TRUE, T, or 1, and are turned off with any of NO,
N, OFF, FALSE, F, and 0. The parameters are case insensitive.

e The Usage for each connection parameter describes the circumstances under which the parameter is to
be used. Common usage entries include the following:

o Embedded databases When SQL Anywhere is used as an embedded database, the connection
starts a personal server and loads the database. When the application disconnects from the database,
the database is unloaded and the server stops.

o Running local databases This refers to the case where a SQL Anywhere personal server is
already running, and the database is already loaded on the server.

o Network servers When SQL Anywhere is used as a network server, the client application must
locate a server already running somewhere on the network and connect to a database.

e You can use the dbping utility to test connection strings. The -c option is used to specify the connection
parameters. For example, suppose a personal server with the name demo11 is running the sample database
(which can be started with the command dbengl11l samples-dir\demo.db). The following string
returns the message Ping database success¥ful if a database server named demol1 is running
on the local computer and has a database named demo running:

dbping -d -c "ENG=demol1l;DBN=demo;UID=DBA;PWD=sql"

The following command, however, returns the message Ping database failed - Database
server not running if no database server named other-server is running on the local computer:

dbping -d -c "ENG=other-server;UID=DBA;PWD=sql"
See “Ping utility (dbping)” on page 804.

See also
e “Connection parameters” on page 86

262 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connection parameters

Applinfo connection parameter [APP]

Assists administrators in identifying the origin of particular client connections from a database server.

Usage

Anywhere

Values

String

Default

Empty string

Remarks

This connection parameter is sent to the database server from embedded SQL, ODBC, OLE DB, or
ADO.NET clients and from applications using the iAnywhere JDBC driver. It is not available from Open
Client or jConnect applications.

It consists of a generated string that holds information about the client process, such as the IP address of the
client computer, the operating system it is running on, and so on. The string is associated in the database
server with the connection, and you can retrieve it using the following statement:

SELECT CONNECTION_PROPERTY("AppInfo®);:

Clients can also specify their own string, which is appended to the generated string. The Applinfo property
string is a sequence of semicolon-delimited key=value pairs. The valid keys are as follows:

APl DBLIB, ODBC, OLEDB, ADO.NET, iAnywhereJDBC, PHP, PerIDBD, or DBEXPRESS.
APPINFO If you specified Applnfo in the connection string, the string entered.

EXE The name of the client executable (Windows, Linux, and Solaris).

HOST The host name of the client computer.

IP The IP address of the client computer.

OS The operating system name and version number (for example, Windows 2000).

OSUSER The operating system user name associated with the client process. If the client process is
impersonating another user (or the set ID bit is set on Unix), the impersonated user name is returned. An
empty string is returned for version 10.0.1 and earlier clients, and for HTTP and TDS clients.

PID The process ID of the client (Windows and Unix only).
THREAD The thread ID of the client (Windows and Unix only).

TIMEZONEADJUSTMENT The number of minutes that must be added to the Coordinated Universal
Time (UTC) to display time local to the connection.

VERSION The version of the client library in use, including major and minor values, and a build
number (for example 11.0.0.2023).

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 263

Connection parameters and network protocol options

If you specify a debug log file in your client connection parameters, the APPINFO string is added to the file.

See also
e “Connection parameters” on page 86
e “Resolving connection parameter conflicts” on page 87
e “request_timeout option [database]” on page 570
e Applnfo property: “Connection properties” on page 598

Example
Connect to the sample database from Interactive SQL (the iAnywhere JDBC driver is used by default):

dbisqgl -c "UID=DBA;PWD=sql ;DBF=samples-dir\demo.db"

View the application information:
SELECT CONNECTION_PROPERTY(“ApplInfo”);

The result is as follows (in a single string):

IP=ip-address;

HOST=computer-name;

OSUSER=user-name;

0S="Windows XP Build 2600 Service Pack 2%;
EXE="C:\Program Files\SQL Anywhere 11\Bin32\dbisql.exe" ;P
I1D=0xcac;

THREAD=0xca8;VERSION=11.0.0.1200;

API=iAnywhereJDBC;

TIMEZONEADJUSTMENT=-240

Connect to the sample database from Interactive SQL, appending your own information to the Applnfo

property:
dbisql -c "UID=DBA;PWD=sql ;DBF=samples-dir\demo.db;APP=Interactive SQL
connection"

View the application information:
SELECT CONNECTION_PROPERTY(“ApplInfo®);

The result is as follows (in a single string):

IP=ip-address;
HOST=computer-name;

OSUSER=user-name;

0S=Windows XP Builld 2600 Service Pack 2;
EXE=C:\Program Files\SQL Anywhere 11\Bin32\dbisql.exe;
PID=0xcac;

THREAD=0xba8;

VERSION=11.0.0.1200;

API=1AnywhereJDBC;
TIMEZONEADJUSTMENT=-240;
APPINFO="Interactive SQL connection®

AutoStart connection parameter [ASTART]

Controls whether a local database server is started if no connection is found.

264 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connection parameters

Usage
Anywhere

Values
YES, NO

Default
YES

Remarks

By default, if no server is found during a connection attempt, and a database file, database name, or the
START connection parameter is specified, then a database server is started on the same computer. You can
turn this behavior off by setting the AutoStart (ASTART) connection parameter to NO in the connection
string. The database server is not autostarted if the CommLinks [LINKS] parameter includes TCPIP.

To improve query performance for autostarted databases, start the database as soon as possible, even if users
are not connecting rightaway. This allows the cache to warm before queries are executed against the database.
See “Using cache warming” [SQL Anywhere Server - SQL Usage].

See also

e “Connection parameters” on page 86

“Resolving connection parameter conflicts” on page 87
“Locating a database server” on page 134

“CommL.inks connection parameter [LINKS]” on page 268
“Elevate connection parameter” on page 279

AutoStop connection parameter [ASTOP]

Controls whether a database is stopped when there are no more open non-HTTP connections.

Usage
Embedded databases

Values
YES, NO

Default
YES

Remarks

By default, any database server that is started from a connection string is stopped when there are no more
non-HTTP connections to it. As well, any database that is loaded from a connection string is unloaded when
there are no more non-HTTP connections to it. This behavior is equivalent to AutoStop=YES.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 265

Connection parameters and network protocol options

If you supply AutoStop=NO, any database that you start in that connection remains running when there are
no more non-HTTP connections to it. As a result, the database server remains operational as well.

If the only connection to a database is an HTTP connection, and the database is configured to stop
automatically, when the HTTP connection disconnects, the database does not autostop. As well, if a database
that is configured to stop automatically has an HTTP connection and a command sequence or TDS
connection, when the last command sequence or TDS connection disconnects, the database autostops, and
any HTTP connections are dropped. See “-ga server option” on page 188 and “AutoStop connection
parameter [ASTOP]” on page 265.

The AutoStop (ASTOP) connection parameter is used only if you are connecting to a database that is not
currently running. It is ignored if the database is already started.

In .NET applications, you should be careful when using the AutoStop connection parameter. Closing a
connection will close it as far as the application is concerned, but active connections remain open when
connection pooling is enabled. As a result the server does not shut down, even though you may expect it to
do so.

See also

e “Connection parameters” on page 86

“Resolving connection parameter conflicts” on page 87

“Connection pooling” [SQL Anywhere Server - Programming]

“Starting and stopping databases” on page 59

“START DATABASE statement” [SQL Anywhere Server - SQL Reference]

CharSet connection parameter [CS]

Specifies the character set to be used on this connection.

Usage
Anywhere

Values
String

Default
The local character set.

For more information about how the local character set is determined, see “Determining locale
information” on page 424.

Remarks

If you supply a value for CharSet, the specified character set is used for the current connection. Setting
CharSet=none disables character set conversion for the connection.

266 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connection parameters

When unloading data, you can specify the character set using the CharSet connection parameter. For more
information about valid character set values, see “Recommended character sets and
collations” on page 433.

To avoid lossy character set conversions, setting the CHARSET connection parameter is not recommended
when using Unicode client APIs. Unicode client APIs include ADO.NET, OLE DB, and the iAnywhere
JDBC driver. ODBC is also a Unicode client API when the wide (Unicode) functions are used.

See also

e “Connection parameters” on page 86

e “Resolving connection parameter conflicts” on page 87
e “SACHARSET environment variable” on page 374

e “Understanding the locale character set” on page 415

CommBufferSize connection parameter [CBSIZE]
Sets the maximum size of communication packets, in bytes.

Usage
Anywhere

Values
Integer [k]

Default

If no CommBufferSize value is set, the CommBufferSize is controlled by the setting on the server, which
defaults to 7300 bytes on all operating systems except Windows Mobile. On Windows Mobile, the default
is 1460 bytes.

Remarks

The CommBufferSize (CBSIZE) connection parameter specifies the size of communication packets, in
bytes. Use k to specify units of kilobytes. The minimum value of CommBufferSize is 500 bytes, and the
maximum is 16000 bytes.

The protocol stack sets the maximum size of a packet on a network. If you set the CommBufferSize to be
larger than that permitted by your network, the communication packets are broken up by the network
software. The default size is a multiple of the standard ethernet TCP/IP maximum packet size (1460 bytes).

A larger packet size may improve performance for multi-row fetches and fetches of larger rows, but it also
increases memory usage for both the client and the server.

If CommBufferSize is not specified on the client, the connection uses the server's buffer size. If
CommBufferSize is specified on the client, the connection uses the CommBufferSize value.

Using the -p database server option to set the CommBufferSize causes all clients that do not specify their
own CommBufferSize to use the size specified by the -p database server option.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 267

Connection parameters and network protocol options

See also

e “Connection parameters” on page 86

e “Resolving connection parameter conflicts” on page 87
e “Tuning TCP/IP performance” on page 144

e “-p server option” on page 211

Example
To set the buffer size to 1460 bytes:

C-I(-)rﬁmBuffe rSize=1460

Alternatively, you can set this parameter by entering its value in the Buffer Size text box on the Network
tab of the ODBC Configuration For SQL Anywhere 11 window.

CommLinks connection parameter [LINKS]
Specifies client-side network protocol options.

Usage

Anywhere. The CommLinks (LINKS) connection parameter is optional for connections to a personal server,
and required for connections to a network server.

Values
String

Default
Use only the shared memory communication protocol to connect.

Remarks

If you do not specify a CommLinks (LINKS) connection parameter, the client searches for a server on the
current computer only, and only using a shared memory connection. This is the default behavior, and is
equivalent to CommLinks=ShMem. The shared memory protocol is the fastest communication link between
a client and server running on the same computer, as is typical for applications connecting to a personal
database server.

For information about securing shared memory connections on Unix, see “Security tips” on page 1066.

If you specify CommLinks=ALL, the client searches for a server using all available communication
protocols. Since there may be an impact on performance if you specify CommLinks=ALL, use this setting
only when you don't know which protocol to use.

If you specify one or more protocols in the CommLinks (LINKS) connection parameter, the client uses the
named communication protocol(s), in the order specified, to search for a network database server. Note that
if shared memory is specified, an attempt to connect using shared memory is made first, and then the
remaining communication protocols are tried in the order in which they are specified. A connection error

268 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connection parameters

appears and the connection attempt aborts if the connection fails to connect using a specified protocol, even
if there are protocols remaining in the list to try.

CommLinks (LINKS) connection parameter values are case insensitive, and include:

e SharedMemory (ShMem) Start the shared memory protocol for same-computer communication.
This is the default setting. The client tries shared memory first if it is included in a list of protocols,
regardless of the order in which protocols appear.

e ALL Attempt to connect using the shared memory protocol first, followed by all remaining and
available communication protocols. Use this setting if you are unsure of which communication
protocol(s) to use.

e TCPIP(TCP) Startthe TCP/IP communication protocol. TCP/IP is supported on all operating systems.
A personal database server is not autostarted if the CommLinks [LINKS] parameter includes TCPIP.

Each of these values can have additional network protocol options supplied.
See “Network protocol options” on page 301.

You may want to use a specific protocol, as opposed to ALL, for the following reasons:

e The network library starts slightly faster if the client uses only necessary network protocols.
e Connecting to the database may be faster.

e You mustspecify the protocol explicitly if you want to tune the broadcast behavior of a particular protocol
by providing additional network protocol options.

The CommLinks (LINKS) connection parameter corresponds to the database server -x option.

See also
e “Network protocol options” on page 301

e “Client/server communications” on page 141

e ‘“-x server option” on page 234

e “Connection parameters” on page 86

e “Resolving connection parameter conflicts” on page 87

e “Server name caching for faster connections” on page 137

e CommLinks property: “Connection properties” on page 598
Examples

The following connection string fragment starts the TCP/IP protocol only:
CommLinks=tcpip

The following connection string fragment starts the shared memory protocol and searches for the database
server over shared memory. If the search fails, it then starts the TCP/IP protocol and searches for the server
on the local network.

CommLinks=tcpip,shmem

The following connection string fragment starts the shared memory protocol and searches for the server over
shared memory. If the search fails, the TCP protocol is started and it searches for the server on the local

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 269

Connection parameters and network protocol options

network, and the host kangaroo. Note that if the server is found over shared memory, the TCP link is not
started.

CommL inks=shmem, tcpip(HOST=kangaroo)

Compress connection parameter [COMP]

Turns compression on or off for a connection. Compressing a connection may improve performance under
some circumstances.

Usage
Anywhere except with TDS connections. TDS connections (including jConnect) do not support SQL
Anywhere communication compression.

Values
YES, NO

In the case of a difference between client and server settings, the client setting applies.

Default
NO

If avalue is not set for the Compress connection parameter, the compression status is controlled by the setting
on the server, which defaults to no compression.

Remarks
The packets sent between a SQL Anywhere client and server can be compressed using the Compress (COMP)
connection parameter. Large data transfers with highly compressible data tend to get the best compression
rates.

Specify YES or NO to turn communication compression on or off for the connection. They are case
insensitive.

It is recommended that you conduct a performance analysis on the particular network and using the particular
application before using communication compression in a production environment.

To enable compression for all remote connections on the server, use the -pc server option.

Note that same-computer connections over any communication link will not enable compression, even if
the -pc option or COMPRESS=YES parameter is used.

See also

e “Connection parameters” on page 86

“Resolving connection parameter conflicts” on page 87

“-pc server option” on page 212

“Adjusting communication compression settings to improve performance” on page 149
“Use the compression features” [SQL Anywhere Server - SQL Usage]

270 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connection parameters

Examples
The following connection string fragment turns packet compression ON:

Compress=YES

The following connection string fragment turns packet compression OFF:

Compress=NO

CompressionThreshold connection parameter [COMPTH]

Increases or decreases the size limit at which packets are compressed. Changing the compression threshold
can help performance of a compressed connection by allowing you to only compress packets when
compression will increase the speed at which the packets are transferred.

Usage
Anywhere except TDS. Only applies to compressed connections.

Values
Integer [k]

If both the client and server specify different compression threshold settings, the client setting applies.

Default
120

If no CompressionThreshold value is set, the compression threshold value is controlled by the setting on the
server, which defaults to 120 bytes.

Remarks

When compression is enabled, individual packets may or may not be compressed, depending on their size.
For example, SQL Anywhere does not compress packets smaller than the compression threshold, even if
communication compression is enabled. As well, small packets (less than about 100 bytes) usually do not
compress atall. Since CPU time is required to compress packets, attempting to compress small packets could
actually decrease performance.

This value represents the minimum size, in bytes, of packets to be compressed. Use k to specify units of
kilobytes. The minimum supported value is 1 byte, and the maximum supported value is 32767 bytes. Values
less than 80 bytes are not recommended.

Generally speaking, lowering the compression threshold value may improve performance on very slow
networks, while raising the compression threshold may improve performance by reducing CPU. However,
since lowering the compression threshold value will increase CPU usage on both the client and server, a
performance analysis should be done to determine whether changing the compression threshold is beneficial.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 271

Connection parameters and network protocol options

See also

e “-ptserver option” on page 212

e “Adjusting communication compression settings to improve performance” on page 149
e “Connection parameters” on page 86

e “Resolving connection parameter conflicts” on page 87

Example
Connect, with a compression threshold of 100 bytes.

CompressionThreshold=100

ConnectionName connection parameter [CON]

Names a connection, to make switching to it easier in multi-connection applications.

Usage
Anywhere

Values
String

Default
No connection name.

Remarks

An optional parameter, providing a name for the particular connection you are making. You can leave this
unspecified unless you are going to establish more than one connection, and switch between them.

The connection name is not the same as the data source name.

See also

e “Connection parameters” on page 86
e “Resolving connection parameter conflicts” on page 87
e “SET CONNECTION statement [Interactive SQL] [ESQL]” [SQL Anywhere Server - SQL Reference]

Example
Connect, naming the connection first-con:

CON=First-con

DatabaseFile connection parameter [DBF]

Indicates which database file you want to load and connect to when starting a database that is not running.

If you want to connect to an already-running database, use the DatabaseName (DBN) parameter.

272 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connection parameters

Usage

Embedded databases

Values

String

Default

There is no default setting.

Remarks

The DatabaseFile (DBF) connection parameter is used to load and connect to a specific database file that is
not running on a database server.

If the database you want to connect to is not running, use the DatabaseFile (DBF) connection parameter
so the database can be started.

If the file name does not include an extension, SQL Anywhere looks for a file with the .db extension.

The path of the file is relative to the working directory of the database server. If you start the server from
a command prompt, the working directory is the directory that you are in when entering the command.
If you start the server froman icon or shortcut, it is the working directory that the icon or shortcut specifies.
It is recommended that you supply a complete path and file name.

If you specify both the database file and the database name, an attempt is made to connect to a running
database with the specified name (the database file is ignored), and if that fails, an attempt is made to
autostart a database using both the database file and database name. The database server is not autostarted
if the CommLinks [LINKS] parameter includes TCPIP.

You can also use UNC file names.

For more information about using UNC file names, see “The SQL Anywhere database
server” on page 156.

It is recommended that deployed applications specify a database server name using the ServerName (ENG)
parameter when attempting to autostart a database file if it is not running. Otherwise, the application may
connect to a different database server than intended. For example, the database server could connect to a
different version of the SQL Anywhere server that is part of an embedded application and already running.

Caution
The database file must be on the same computer as the database server. Starting a database file that is located
on a network drive can lead to file corruption.

See also

“-gd server option” on page 189

“CommLinks connection parameter [LINKS]” on page 268
“DatabaseName connection parameter [DBN]” on page 275
“Connection parameters” on page 86

“Resolving connection parameter conflicts” on page 87
“Connecting to an embedded database” on page 126

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 273

Connection parameters and network protocol options

Examples

The DatabaseFile (DBF) connection parameter in the following example loads and connects to the sample
database, demo.db:

DBF=samples-dir\demo.db

For information about samples-dir, see “Samples directory” on page 390.

The following two examples assume that you have started a database file named cities.db, and renamed the
database Kitchener as follows:

dbengll cities.db -n Kitchener

To successfully start and connect to a database and name it Kitchener:

DBN=Kitchener ;DBF=cities.db

Specifying DBF=cities.db would fail to connect to the running database named Kitchener.

DatabaseKey connection parameter [DBKEY]

Starts an encrypted database with a connect request.

Usage
Anywhere

Values
String

Default
None

Remarks
You must specify this parameter when you start an encrypted database with a connect request. You do not
need to specify this parameter if you are connecting to an encrypted database that is already running.

The encryption key is a string, including mixed cases, numbers, letters, and special characters. Database
keys cannot include leading spaces, trailing spaces, or semicolons.

If you want to secure communication packets between client applications and the database server use the -
ec server option and transport-layer security. See “Transport-layer security” on page 1095.

274 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connection parameters

See also

e “Configuring client applications to use transport-layer security” on page 1108
“-ec server option” on page 180

“-ek database option” on page 252

“-ep server option” on page 183

“-gs server option” on page 184

“Connection parameters” on page 86

“Resolving connection parameter conflicts” on page 87

“Encryption connection parameter [ENC]” on page 280

Example
The following fragment illustrates the use of the DatabaseKey (DBKEY) connection parameter:

"UID=DBA; PWD=sql ; ENG=myeng ; DBKEY=V3mo J 3952B ; DBF=samples-dir\demo.db"

DatabaseName connection parameter [DBN]

Identifies a loaded database to which a connection needs to be made when connecting to a database that is
already running.

If you want to connect to a database that is not running, use the DatabaseFile (DBF) parameter.

Usage
Running local databases or network servers

Values
String

Default
There is no default setting.

Remarks
Whenever a database is started on a server, it is assigned a database name, either by the administrator using
the -n option, or by the server using the base of the file name with the extension and path removed.

You can only use the database hame utility db to connect to the SQL Anywhere utility database. See “Using
the utility database” on page 30.

Note
The DatabaseName (DBN) connection parameter is recommended for naming databases, rather than using
the -n option with the DatabaseSwitches (DBS) connection parameter.

If the database you want to connect to is already running, you should specify the database name rather than
the database file.

A connection will only occur if the name of the running database matches the name that is specified in the
DatabaseName (DBN) parameter.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 275

Connection parameters and network protocol options

Note

If you specify both the database file and the database name, an attempt is made to connect to a running
database with the specified name (the database file is ignored), and if that fails, an attempt is made to autostart
a database using both the database file and database name.

See also

e “Connection parameters” on page 86
e “Resolving connection parameter conflicts” on page 87
e “DatabaseName protocol option [DBN]” on page 308

Example
To start a database file named cities.db and rename the database Kitchener, you can use the following
command:

dbengll cities.db -n Kitchener

Assuming you have run the above command, you can successfully connect to the running database named
Kitchener as follows:

DBN=Kitchener

Alternatively, you could use the following to successfully connect to the running database named Kitchener:
DBN=Kitchener ;DBF=cities.db

However, specifying the following would fail to connect to the database named Kitchener:

DBF=cities.db

DatabaseSwitches connection parameter [DBS]

Provides database-specific options when starting a database.

Usage
Connecting to a server when the database is not loaded. This connection parameter autostarts a server with
the specified database and options if a database server is not running.

Values
String

Default
No options.

Remarks
You should supply DatabaseSwitches only if you are connecting to a database that is not currently running.
When the server starts the database specified by DatabaseFile, the server uses the supplied DatabaseSwitches
to determine startup options for the database.

276 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connection parameters

Only database options can be supplied using this parameter. Server options must be supplied using the
StartLine connection parameter.

See “Database options” on page 248.

Note
The DatabaseName (DBN) connection parameter is recommended for naming databases, rather than using
the -n option with the DatabaseSwitches (DBS) connection parameter.

See also
“The SQL Anywhere database server” on page 156

e “StartLine connection parameter [START]” on page 297

e “Connection parameters” on page 86

e “Resolving connection parameter conflicts” on page 87

e “DatabaseName connection parameter [DBN]” on page 275
Example

The following command, entered on one line at a command prompt, connects to the default database server,
loads the database file demo.db (DatabaseFile (DBF) connection parameter), names it my-db (DatabaseName
(DBN) connection parameter) and starts it in read-only mode (-r option).

dbisql -c "UID=DBA;PWD=sql ;DBF=samples-dir\demo.db;DBN=my-db;DBS=-r"

For information about samples-dir, see “Samples directory” on page 390.

DataSourceName connection parameter [DSN]

Tells the ODBC driver manager or embedded SQL library where to look in the registry or the system
information file (named .odbc.ini by default) to find ODBC data source information.

Usage
Anywhere

Values
String

Default
There is no default data source name.

Remarks

It is common practice for ODBC applications to send only a data source name to ODBC. The ODBC driver
manager and ODBC driver locate the data source, which contains the remainder of the connection parameters.

In SQL Anywhere, embedded SQL applications can also use ODBC data sources to store connection
parameters.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 277

Connection parameters and network protocol options

See also
e “FileDataSourceName connection parameter [FILEDSN]” on page 282

e “Connection parameters” on page 86
e “Resolving connection parameter conflicts” on page 87
e “Using ODBC data sources on Unix” on page 102
e “Creating ODBC data sources” on page 97
Example

The following parameter uses a data source name:

DSN=My Database

DisableMultiRowFetch connection parameter [DMRF]

Turns off multi-row fetches across the network.

Usage
Anywhere

Values
YES, NO

Default
NO

Remarks

By default, when the database server gets a simple fetch request, the application asks for extra rows. You
can disable this behavior by setting this parameter to YES.

See “Using cursors in procedures and triggers” [SQL Anywhere Server - SQL Usage].

Setting the DisableMultiRowFetch (DMRF) connection parameter to YES is equivalent to setting the
prefetch database option to Off.

See “Prefetching rows” [SQL Anywhere Server - Programming].

See also

e “Connection parameters” on page 86
e “Resolving connection parameter conflicts” on page 87
e “prefetch option [database]” on page 563

Example
The following connection string fragment prevents prefetching:

DMRF=YES

278 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connection parameters

Elevate connection parameter

Elevates autostarted database server executables automatically on Windows Vista.

Usage
Windows Vista only

Values
YES, NO

Default
NO

Remarks

You can specify ELEVATE=YES in your connection string so that autostarted database server executables
are elevated. This allows non-elevated client processes to autostart elevated servers, which is necessary on
Windows Vista because non-elevated servers cannot use AWE memory. This parameter is ignored if the
database server is not autostarted. You must specify the -cw option when starting the database server
command to use an AWE cache.

See also

e “-cm server option” on page 172
e “-cw server option” on page 176

Example

The following connection string fragment causes autostarted database servers to be elevated on Windows
Vista so that they can use an AWE cache:

"Elevate=YES;START=dbengll -cw"

EncryptedPassword connection parameter [ENP]

Provides a password, stored in an encrypted fashion in a data source.

Usage
Anywhere

Values
String

Default
None

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 279

Connection parameters and network protocol options

Remarks

Caution

Data sources are stored on disk as a file or in the registry. Storing passwords in clear text or using an encrypted
password is a significant security risk. It is not recommended if there is any sensitive data stored in the
database. When you enter a password into a data source, it can be stored in an encrypted form to provide
slightly more security than storing it in clear text.

On Unix, this information is stored in the system information file (named .odbc.ini by default).

For more information about how the system information file is located, see “Using ODBC data sources on
Unix” on page 102.

If both the Password (PWD) connection parameter and the EncryptedPassword (ENP) connection parameter
are specified, Password (PWD) takes precedence.

See also
e “Connection parameters” on page 86

e “Resolving connection parameter conflicts” on page 87
e “Password connection parameter [PWD]” on page 291

Encryption connection parameter [ENC]

Encrypts packets sent between the client application and the server using transport-layer security or simple
encryption.

Usage
TLS: supported for TCP/IP only

NONE or SIMPLE: anywhere

Values

Encryption={ NONE

| SIMPLE

| TLS(TLS_TYPE=cipher;
[FIPS={Y [N}]
TRUSTED_CERTIFICATES=public-certificate;
[CERTIFICATE_COMPANY=organization;]
[CERTIFICATE_NAME=common-name;]
[CERTIFICATE_UNIT=organization-unit])

Default
NONE

Remarks

You can use this parameter if you want to secure communications between client applications and the
database server using transport-layer security or simple encryption. See “Transport-layer
security” on page 1095.

280 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connection parameters

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

The Encryption (ENC) connection parameter accepts the following arguments:

e NONE Accepts communication packets that are not encrypted.

e SIMPLE Accepts communication packets that are encrypted with simple encryption supported on all
platforms and on previous versions of SQL Anywhere. Simple encryption does not provide server
authentication, strong elliptic-curve or RSA encryption, or other features of transport-layer security.

If the database server accepts simple encryption, but does not accept no encryption, then any non-TDS
connection attempts using no encryption automatically use simple encryption.

Starting the database server with —ec SIMPLE tells the database server to accept only connections
using simple encryption. TLS connections (ECC, RSA, RSA FIPS) fail, and connections requesting no
encryption use simple encryption.

Starting the database server with —-ec SIMPLE,TLS(TLS_TYPE=ECC; ...) tellsthe database
server to accept only connections with ECC TLS encryption or simple encryption. Both RSA and RSA
FIPS connections fail, and connections requesting no encryption use simple encryption.

e cipher canbe RSA or ECC for RSA and ECC encryption, respectively. For FIPS-approved RSA
encryption specify TLS_TYPE=RSA;FIPS=Y. RSA FIPS uses a separate approved library, but is
compatible with servers specifying RSA with SQL Anywhere 9.0.2 or later.

The connection fails if the cipher does not match the encryption (RSA or ECC) used to create your
certificates.

The client can use the following arguments to verify the field values in the server's public certificate:

trusted_certificates
certificate_company
certificate_unit
certificate_name

O O O O

For more information about verifying certificate fields for server authentication, see “Verifying certificate
fields” on page 1109.

For more information about using digital certificates, see “Creating digital certificates” on page 1101.

You can use the CONNECTION_PROPERTY system function to retrieve the encryption settings for the
current connection:

SELECT CONNECTION_PROPERTY ("Encryption”);

The function returns one of five values: None, Simple, ecc _tls, rsa_tls, or rsa_tls_fips depending which type
of encryption is being used by the connection.

See “CONNECTION_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference].

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 281

Connection parameters and network protocol options

See also
“Configuring client applications to use transport-layer security” on page 1108

e “-ec server option” on page 180

e “-ek database option” on page 252

e “-ep server option” on page 183

e “-esserver option” on page 184

e “Connection parameters” on page 86

e “Resolving connection parameter conflicts” on page 87

e “DatabaseKey connection parameter [DBKEY]” on page 274

e “certificate_company protocol option” on page 304

e “certificate_name protocol option” on page 305

e “certificate_unit protocol option” on page 306

e “trusted_certificates protocol option” on page 325
Examples

The following connection string fragment connects to a database server named demo with a TCP/IP link,
using transport-layer security and elliptic-curve encryption:

"ENG=demo; LINKS=tcpip;ENCRYPTION=tIs(tls_type=ecc;trusted_certificates=eccroo
t.crt)”

The following connection string fragment connects to a database server named demo with a TCP/IP link,
using transport-layer security and RSA encryption:

"ENG=demo; LINKS=tcpip;ENCRYPTION=tIs(tls_type=rsa;fips=n;trusted_certificates
=rsaroot.crt)"

The following connection string fragment connects to a database server named demo with a TCP/IP link,
using simple encryption:

"ENG=demo; LINKS=tcpip;ENCRYPTION=simple"

EngineName connection parameter [ENG]

Thisisasynonym for the ServerName (ENG) connection parameter. See “ServerName connection parameter
[ENG]” on page 296.

FileDataSourceName connection parameter [FILEDSN]

Tells the client library there is an ODBC file data source holding information about the database to which
you want to connect.

Usage
Anywhere

Values
String

282 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connection parameters

Default
There is no default name.

Remarks

File data sources hold the same information as ODBC data sources stored in the registry. File data sources
can be easily distributed to end users so that connection information does not have to be reconstructed on
each computer.

Both ODBC and embedded SQL applications can use File data sources.

See also

e “DataSourceName connection parameter [DSN]” on page 277
e “Connection parameters” on page 86

e “Resolving connection parameter conflicts” on page 87

e “Using file data sources on Windows” on page 101

ForceStart connection parameter [FORCE]

Start a database server without attempting to connect to one.

Usage
Only with the db_start_engine function.

Values
YES, NO

Default
NO

Remarks

By setting ForceStart=YES, the db_start_engine function starts a server without attempting to connect to
one, even if there is one already running.

See also

e “db_start_engine function” [SQL Anywhere Server - Programming]
e “Connection parameters” on page 86
e “Resolving connection parameter conflicts” on page 87

Idle connection parameter

Specifies a connection's idle timeout period.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 283

Connection parameters and network protocol options

Usage

Anywhere except with TDS and Shared Memory connections. Shared Memory and TDS connections
(including jConnect) ignore the SQL Anywhere Idle (IDLE) connection parameter.

Values
Integer

Default
None

Remarks
The Idle (IDLE) connection parameter applies only to the current connection. You can have multiple
connections on the same server set to different timeout values.

If no connection idle timeout value is set, the idle timeout value is controlled by the setting on the server,
which defaults to 240 minutes. In case of a conflict between timeout values, the connection timeout value
supercedes any server timeout value whether specified or unspecified.

The minimum value for the IDLE connection parameter is 1 minute, and the maximum supported value is
32767 minutes. If you specify 0, idle timeout checking is turned off for the connection.

See also

e “-ti server option” on page 225

e “Connection parameters” on page 86

e “Resolving connection parameter conflicts” on page 87
e “Adjusting timeout values” on page 153

Example
The following connection string fragment sets the timeout value for this connection to 10 minutes:

"ENG=myeng;LINKS=tcpip; IDLE=10"

Integrated connection parameter [INT]

Specifies whether an integrated login can be attempted.

Usage
Anywhere

Values
YES, NO

Default
NO

284 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connection parameters

Remarks
The Integrated (INT) connection parameter has the following settings:

e YES Anintegrated login is attempted. If the connection attempt fails and the login_mode option is set
to Standard,Integrated, a standard login is attempted.

e NO This is the default setting. No integrated login is attempted.

For a client application to use an integrated login, the server must be running with the login_mode database
option set to a value that includes Integrated.

See also
e “login_mode option [database]” on page 540
e “Connection parameters” on page 86
e “Resolving connection parameter conflicts” on page 87
e “Using integrated logins” on page 106

Example

The following data source fragment uses an integrated login:

INT=YES

Kerberos connection parameter [KRB]
Specifies whether Kerberos authentication can be used when connecting to the database server.

Usage
All platforms except Windows Mobile.

Values
YES, NO, SSPI, or GSS-API-library-file

Default
NO

Remarks
The Kerberos [KRB] connection parameter has the following settings:

e YES A Kerberos authenticated login is attempted.
e NO No Kerberos authenticated login is attempted. This is the default.

e SSPI A Kerberos authenticated login is attempted, and the built-in Windows SSPI interface is used
instead of a GSS-API library. SSPI can only be used on Windows platforms, and it cannot be used with
a Key Distribution Center (KDC) other than the Domain Controller Active Directory KDC. If your
Windows client computer has already logged in to a Windows domain, SSPI can be used without needing
to install or configure a Kerberos client.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 285

Connection parameters and network protocol options

e GSS-API-library-file A Kerberos authenticated login is attempted, and this string specifies the file
name of the Kerberos GSS-API library (or shared object on Unix). This is only required if the Kerberos
client uses a different file name for the Kerberos GSS-API library than the default, or if there are multiple
GSS-API libraries installed on the computer.

The UserlID and Password connection parameters are ignored when using a Kerberos authenticated login.

To use Kerberos authentication, a Kerberos client must already be installed and configured (nothing needs
to be done for SSPI), the user must have already logged in to Kerberos (have a valid ticket-granting ticket),
and the database server must have enabled and configured Kerberos authenticated logins.

See also
e “-Kkl server option” on page 201

e “-kr server option” on page 202

e “-krb server option” on page 203

e “Kerberos authentication” on page 114

e “GRANT statement” [SQL Anywhere Server - SQL Reference]

e “Use SSPI for Kerberos logins on Windows” on page 119
Examples

Kerberos=YES
Kerberos=SSPI1
Kerberos=c:\Program Files\MIT\Kerberos\bin\gssapi32.dll

Language connection parameter [LANG]

Specifies the language of the connection.

Usage
Anywhere

Values

The two-letter combination representing a language. For example, specifying LANG=DE sets the default
language to German.

Default
The language specified by (in order) the SALANG environment variable, the dblang utility, or the installer.

Remarks

This connection parameter establishes the language for the connection. Any errors or warnings from the
server are delivered in the specified language, assuming that the server supports the language.

If no language is specified, the default language is used. The default language is the language specified by,
in order, the SALANG environment variable, the dblang utility, or the installer.

For more information about language codes, see “Understanding the locale language” on page 413.

286 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connection parameters

This connection parameter only affects the connection. Messages returned from SQL Anywhere tools and
utilities appear in the default language, while the messages returned from the server appear in the connection's
language.

See also

e “Connection parameters” on page 86
e “Resolving connection parameter conflicts” on page 87

LazyClose connection parameter [LCLOSE]

Controls whether cursor requests are queued until the next request or performed immediately. Queuing close
cursor requests saves a round trip and improves performance.

Usage
Anywhere

Values
YES, NO, AUTO

Default
AUTO

Remarks

e YES Always queue the cursor close request, which saves a round trip, but can cause locks and other
resources to be held after the cursor is closed by the client. The cursor close is performed when the next
request is sent to the database server on the same connection. Any isolation level 1 cursor stability locks
still apply to the cursor while the CLOSE cursor-name database request is queued.

e NO Close the cursor immediately.

e AUTO Queue the cursor close request and save a round trip, only when doing so doesn't change how
long locks or significant server resources are held. If the cursor uses isolation level 1 cursor stability
locks, or could consume significant server resources that are not released until the cursor is closed, then
the cursor is closed immediately. A query that requires a work table is an example of a cursor that can
consume significant server resources.

When this connection parameter is set to YES or AUTO, cursors are not closed until the next database
request.

Enabling this option can improve performance, if your network exhibits poor latency or your application
sends many cursor open and close requests.

See also
e “Connection parameters” on page 86
e “Resolving connection parameter conflicts” on page 87
e “Reduce requests between client and server” [SQL Anywhere Server - SQL Usage]

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 287

Connection parameters and network protocol options

LivenessTimeout connection parameter [LTO]

Controls the shutdown of connections when they are no longer intact.

Usage

Network server only.

All platforms except non-threaded Unix applications.

Values

Integer, in seconds

Default

None

If no LivenessTimeout value is set, the LivenessTimeout is controlled by the setting on the server, which
defaults to 120 seconds.

Remarks

A liveness packet is sent periodically across a client/server TCP/IP communication protocol to confirm that
a connection is intact. If the client runs for the LivenessTimeout period without detecting a liveness request
or response packet, the communication is ended.

Liveness packets are sent when a connection has not sent any packets for between one third and two thirds
of the LivenessTimeout value.

When there are more than 200 connections to a server, the server automatically calculates a higher
LivenessTimeout value based on the stated LivenessTimeout value. This enables the server to handle a large
number of connections more efficiently.

Alternatively, you can set this parameter by entering its value in the LivenessTimeout text box on the
Network tab of the ODBC Configuration For SQL Anywhere 11 window.

The minimum value for the LivenessTimeout connection parameter is 30 seconds, and the maximum value
is 32767 seconds. If you specify 0, liveness timeout checking is turned off for the connection. Any non-zero
value less than the minimum value is reset to the minimum value. For example, a connection string containing
"LivenessTimeout=5" uses "LivenessTimeout=30".

See also

e “Connection parameters” on page 86
e “Resolving connection parameter conflicts” on page 87
e “-tl server option” on page 225

Example

The following connection string fragment sets a LivenessTimeout value of 10 minutes:

LTO=600

288

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connection parameters

LogFile connection parameter [LOG]

Sends client error messages and debugging messages to a file.

Usage
Anywhere

Values
String

Default
No log file.

Remarks

If you want to save client error messages and debugging messages in a file, use the LogFile (LOG) connection
parameter.

If the file name does not include a path, it is relative to the current working directory of the client application.

The LogFile (LOG) connection parameter is connection-specific, so from a single application you can set
different LogFile arguments for different connections.

Typical log file contents are as follows:

Mon Aug 28 2006 12:29:46

12:29:46 Attempting to connect using:

UID=DBA; PWD=********-DBF="C:\Documents and Settings\All Users\Documents\SQL
Anywhere 11\Samples\demo.db" ;ENG=demoll;START="C:\Program Files\

SQL Anywhere 11\bin32\dbengll.exe" ;CON="Sybase Central 1-°;
ASTOP=YES;LOG=c:\mylog. txt

12:29:46 Attempting to connect to a running server...

12:29:46 Trying to start SharedMemory link ...

12:29:46 SharedMemory link started successfully
12:29:46 Attempting SharedMemory connection (no sasrv.ini cached address)
12:29:46 Failed to connect over SharedMemory

12:29:46 No server found, attempting to run START line...

12:29:47 Autostarted server, attempting to connect using:

UID=DBA ; PWD=********-DBE="C:\Documents and Settlngs\All Users\Documents\
SQL Anywhere 11\Samples\demo db*® ;ENG=demol1;START="C:\Program Files\

SQL Anywhere 11\bin32\dbengll.exe';CON:'Sybase Central 17°;ASTOP=YES
12:29:47 Attempting SharedMemory connection (no sasrv.ini cached address)

12:29:47 Connected to server over SharedMemory

12:29:47 Connected to SQL Anywhere Server version 11.0.0.2456
12:29:47 Application information:
12:29:47 1P=10.25.99.227;HOST=mymachine-XP;0S="Windows XP Build 2600
Service Pack 2" ;PID=0x21c;THREAD=0xa38;EXE="C:\Program Files\
SQL Anywhere 11\bin32\scjview.exe" ;VERSION=11.0.0.2456;
API=iAnywhereJDBC; TIMEZONEADJUSTMENT=-240
12:29:47 Connected to the server, attempting to connect to a

running database. ..

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 289

Connection parameters and network protocol options

12:29:48 [1] Connected to database successfully
12:29:53 [1] The number of prefetch rows has been reduced to 168 due
to the prefetch buffer
12:29:53 [1] limit. Consider using the PrefetchBuffer connection parameter.

See also

e “Connection parameters” on page 86
e “Resolving connection parameter conflicts” on page 87
e “LogFile protocol option [LOG]” on page 314

Example
The following command line starts Interactive SQL, connecting to the sample database with a LogFile (LOG)
connection parameter:

dbisql -c "DSN=SQL Anywhere 11 Demo;LOG=d:\logs\test.txt"

NewPassword connection parameter [NEWPWD]

Allows users to change passwords, even if they have expired, without DBA intervention.

Usage
Anywhere. The client library prompting for a new password is only supported on Microsoft Windows.

Values
String, *

Default
The password is not changed, and the client library does not prompt for a new password.

Remarks

This connection parameter is very effective when you implement a login policy using the password_life_time
or password_expiry_on_next_login options. Alternatively, you can implement a password expiry policy by
having the login_procedure signal the Password has expired error.

If the user provides a new password, the database server authenticates the user ID and password and attempts
to change the password before the login_procedure option is called. This process allows the user to change
an expired password without the involvement of a DBA. If you have set the verify _password_function option,
the new password is verified. If you are authenticating with an Integrated or Kerberos login, the original
password is not validated and the database server ignores the new password value and the password is not
changed.

On Microsoft Windows, if you use the special value *, the client library prompts for a new password during
a connection attempt only if the existing password has expired. The user must provide their existing

password, provide their new password, and confirm their new password. When the user completes the fields
and clicks OK, the old password is authenticated and the database server attempts to change the password.
If you have set the verify_password_function option, the new password is verified. The process of verifying

290 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connection parameters

if a user's password has expired, prompting for a password, and authenticating and changing the password
occurs with a single connect call to the client library.

A user receives a Password has expired error if their environment does not support password
prompting. Ina Microsoft Windows environment, the prompt window might not correctly prevent interaction
with the calling application's window (it may not be modal or have the correct parent window) if the calling
application has multiple top-level windows or if the application's top level windows are minimized.

In a Windows environment, if you use the ODBC SQLDriverConnect function and the DriverCompletion
argument is anything other than SQL_DRIVER_NOPROMPT, the connection prompts for a new password
if the password has expired. The connection might prompt for a new password in OLE DB when the
DBPROP_INIT_PROMPT property is anything other than DBPROMPT_NOPROMPT. Both cases function
as if the NewPassword=* connection parameter was specified.

See also
“GRANT statement” [SQL Anywhere Server - SQL Reference]

e “login_procedure option [database]” on page 541

e “verify_password_function option [database]” on page 591

e “post_login_procedure option [database]” on page 561
Example

The following connection string changes the password of user Testl when they connect:

"UID=Test1 ; PWD=we lcome ; NEWPWD=hel 0"

In a Windows environment, the following connection string prompts the user Test1 for a new password when
the existing password expires:

"UID=Test1 ; PWD=we lcome ; NEWPWD=*""

Password connection parameter [PWD]

Provides a password for a connection.

Usage
Anywhere

Values
String

Default
No password provided.

Remarks
Every user of a database has a password. The password must be supplied for the user to be allowed to connect
to the database. Passwords have a maximum length of 255 bytes and are case sensitive. Passwords cannot
include leading spaces, trailing spaces, or semicolons.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 291

Connection parameters and network protocol options

The Password (PWD) connection parameter is not encrypted. If you are storing passwords in a data source,
you should use the EncryptedPassword (ENP) connection parameter. Sybase Central and the SQL Anywhere
ODBC configuration tool both use encrypted passwords.

If both the Password (PWD) connection parameter and the EncryptedPassword (ENP) connection parameter
are specified, the Password (PWD) connection parameter takes precedence.

Alternatively, you can set this parameter in the Password text box in the Connect window and ODBC
Configuration For SQL Anywhere 11 window.

Caution

Storing the password in a DSN or text file is a significant security risk. It is not recommended if there is any
sensitive data stored in the database. Sybase Central and the SQL Anywhere ODBC Configuration tool both
store the password in a DSN using encrypted passwords, but even encrypted passwords provide only a low
level of security.

See also

e “Setting a password” on page 457

“Increasing password security” on page 1068
“EncryptedPassword connection parameter [ENP]” on page 279
“GRANT statement” [SQL Anywhere Server - SQL Reference]
“Case sensitivity” [SQL Anywhere Server - SQL Usage]
“Connection parameters” on page 86

“Resolving connection parameter conflicts” on page 87

Example
The following connection string fragment supplies the user ID DBA and password sql.

UID=DBA;PWD=sqgl

PrefetchBuffer connection parameter [PBUF]

Sets the maximum amount of memory for buffering rows, in bytes.

Usage
Anywhere

Values
Integer [k | m]

Default
512 KB (524288) all platforms except Windows Mobile

64 KB (65536 bytes) Windows Mobile

292 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connection parameters

Remarks

The PrefetchBuffer (PBUF) connection parameter controls the memory allocated on the client to store
prefetched rows. The value is in bytes, but you can use k or m to specify units of kilobytes or megabytes,
respectively. This connection parameter accepts values between 64 KB and 8 MB.

In some circumstances, increasing the number of prefetched rows can improve query performance. You can
increase the number of prefetched rows using the PrefetchRows (PROWS) and PrefetchBuffer (PBUF)
connection parameters.

Increasing the PrefetchBuffer (PBUF) connection parameter also increases the amount of memory used to
buffer GET DATA requests. This may improve performance for some applications that process many GET
DATA (SQLGetData) requests.

For compatibility with previous versions, if a value less than 16384 is specified, it is interpreted as kilobytes.

Using kilobytes without the k suffix in the PrefetchBuffer connection parameter is deprecated. See
“PrefetchRows connection parameter [PROWS]” on page 294.

See also

e “Connection parameters” on page 86
e “Resolving connection parameter conflicts” on page 87

Examples

The following connection string fragment could be used to determine if the PrefetchBuffer memory limit is
reducing the number of prefetched rows.

- . .PrefetchRows=100;LogFile=c:\client.txt

The following string could be used to increase the memory limit to 256 KB:

. . .PrefetchRows=100;PrefetchBuffer=256k

PrefetchOnOpen connection parameter

Sends a prefetch request with a cursor open request when this parameter is enab