
Message Bridge for Java™ User’s Guide

EAServer
Version 5.2

DOCUMENT ID: DC36716-01-0520-01

LAST REVISED: January 2005

Copyright © 1997-2005 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Warehouse, Afaria, Answers Anywhere, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, AvantGo Mobile Delivery, AvantGo Mobile
Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon
Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, Direct Connect
Anywhere, DirectConnect, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, M2M Anywhere, Mail Anywhere Studio,
MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network, M-Business Server,
MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, mFolio, Mirror Activator, My AvantGo, My AvantGo Media
Channel, My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, Orchestration Studio, PB-Gen,
PC APT Execute, PC DB-Net, PC Net Library, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder,
PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerScript, PowerSite, PowerSocket,
Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare
Enterprise, ProcessAnalyst, QAnywhere, Rapport, RemoteWare, RepConnector, Replication Agent, Replication Driver, Replication
Server, Replication Server Manager, Replication Toolkit, Report-Execute, Report Workbench, Resource Manager, RFID Anywhere, RW-
DisplayLib, RW-Library, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners,
smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL
Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/
CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T. Message Format Libraries,
Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase IQ, Sybase MPP, Sybase SQL
Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist,
SybFlex, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Translation
Toolkit, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, VisualWriter, VQL,
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server,
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, and
XP Server are trademarks of Sybase, Inc. 10/04

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

MessageBridge for Java User’s Guide iii

About This Book .. v

CHAPTER 1 Introduction to Sybase Message Bridge for Java™ 1
Why use Message Bridge .. 1

The problem .. 1
The solution... 4
What is Message Bridge? ... 4
How does Message Bridge work?... 6

CHAPTER 2 Understanding the DataBean Framework..................................... 9
Binding framework ... 9

DataBean object graph.. 9
DataBean method summary.. 10
Names and identifiers.. 11
An example ... 11
Recipe DTD schema ... 12
Using the generated DataBeans ... 15

CHAPTER 3 Using the Message Bridge GUI.. 19
Schema groups .. 19

Adding a new schema group... 19
Changing the name of a schema group 20

Message definitions ... 20
Adding a message definition for a DTD................................... 21
Adding a message definition for an XML Schema 22
Defining namespaces in message definitions that use DTDs . 23
Modifying an element name .. 23
Creating views... 24

Code generation... 24

CHAPTER 4 Using Views ... 27
The purpose of views ... 27

Contents

iv EAServer

An example of using a view ... 28

CHAPTER 5 Locating the Java documentation.. 31

CHAPTER 6 Advanced Topics ... 33
DataBeanOpaque .. 33

Deserialization... 33
Serialization... 34
Validation... 34

Directory structure of generated code.. 35
Runtime location of schemas for validation.................................... 36

CHAPTER 7 Using Message Bridge Samples .. 39
Sample descriptions and locations... 39
Sample directory content ... 40
Running a sample .. 41
Understanding the output ... 42

CHAPTER 8 Supported Elements and Declarations for Schemas 45

Index ... 51

Message Bridge for Java User’s Guide v

About This Book

Audience The audience for this document is composed of IT professionals and
applications developers building new Web applications in a Java 2
Enterprise Edition (J2EE) environment. Sybase assumes that these
professionals have training in Java and XML.

How to use this book Use this document to understand the use of Sybase Message Bridge for
Java™.

Table 1 describes the contents of this book.

Table 1: Chapter descriptions

Chapter Contents

Chapter 1,
“Introduction to
Sybase Message
Bridge for Java™”

Description of what Message Bridge is

Chapter 2,
“Understanding the
DataBean Framework”

Description of the framework for DataBeans

Chapter 3, “Using the
Message Bridge GUI”

Description of procedures in the Message Bridge
GUI

Chapter 4, “Using
Views”

Description of views, what they are and how to use
them

Chapter 5, “Locating
the Java
documentation”

Where to find Javadoc

Chapter 6, “Advanced
Topics”

Description of using generated code, directory
structure, and locating DTDs

Chapter 7, “Using
Message Bridge
Samples”

Description of code generated from Message Bridge

Chapter 8, “Supported
Elements and
Declarations for
Schemas”

Description of the supported DTD declarations, and
supported XML Schema elements

vi EAServer

Conventions This section describes the conventions used in this manual, including
terminology and format. The following table shows some of the style
conventions used in the documentation for this product.

Table 2: Style conventions

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Information Type Example

• Programs

• Utilities

• Procedures

• Commands

create connection

• File names

• Directory names

• Properties

sybase/Message Bridge/bin

• Code examples

• Screen text

Message Bridge

• User input

• Command line input

start.bat

Variables (replace these with the
appropriate values for your site)

host_name

Variables in code that you type
(replace these with the appropriate
values for your site)

<designated Jaguar server>

 About This Book

Message Bridge for Java User’s Guide vii

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

viii EAServer

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Accessibility
features

EAServer has been tested for compliance with U.S. government Section 508
Accessibility requirements. The online help for this product is also provided in
HTML, JavaHelp, and Eclipse help formats, which you can navigate using a
screen reader.

EAServer Manager supports working without a mouse. For more information,
see “Keyboard navigation” on page 16.

The WST plug-in for Eclipse supports accessibility features for those that
cannot use a mouse, are visually impaired or have other special needs. For
information about these features refer to Eclipse help:

1 Start Eclipse

2 Select Help | Help Contents

3 Enter Accessibility in the Search dialog box

4 Select Accessible user interfaces or Accessibility features for Eclipse

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For additional information about how Sybase supports accessibility, see
Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase
Accessibility site includes links to information on Section 508 and W3C
standards.

 About This Book

Message Bridge for Java User’s Guide ix

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

x EAServer

MessageBridge for Java User’s Guide 1

C H A P T E R 1 Introduction to Sybase Message
Bridge for Java™

Why use Message Bridge
Message Bridge simplifies and speeds development of applications for
today’s competitive businesses who want to:

• Generate and accept electronic orders

• Tightly manage the manufacturing process, delivering on time
without leaving extra product on the shelves

• Streamline internal processes to improve employee productivity

Message Bridge allows you to build these kinds of collaborative
applications enabling developers who need to access, generate,
manipulate, and exchange documents and messages quickly and
effectively.

The problem
The applications making a difference today are using the Web to enable
communication and cooperation between businesses. This new focus
forces Information Technology (IT) to go well beyond traditional
department or company boundaries. Developing these new applications
can be extremely slow and difficult. Data definitions taken from off-the-
shelf applications can be cryptic and arcane. Custom application
development and integration projects too often use definitions
decipherable only to a company’s IT “insiders”. An effective platform for
application interoperability is a goal rarely achieved.

Sometimes useful abstractions can be layered on top of a legacy
application. But these abstractions are difficult to design and hard to keep
up to date when support for new documents and messages needs to be
added every day to a company’s application portfolio.

Why use Message Bridge

2 EAServer

Java and XML capabilities

Java and Extensible Markup Language (XML) are breaking down some of the
traditional barriers to building collaborative applications. The Java platform’s
portable code capability allows Java applications to be deployed to a wide
variety of platforms and to any application tier. The Java language itself is a
well-designed object-oriented programming language that allows Java
developers to easily build applications by creating hierarchies of objects.

XML is a syntax for defining markup languages that in many ways is
analogous to Java. Using XML, documents or messages become hierarchical
containers within which the data content is “marked up” in a manner that is
totally independent of platform or language. Java’s object-orientation lends
itself well to representing the hierarchy of XML data as a hierarchy of objects.
It is important to note that XML can be processed by any language or
application—there is no specific tie to Java. As such, XML allows applications
to exchange data with minimal dependencies between the producer of a
document or message and its recipient.

XML parser strengths and limitations

The Java community has made robust XML parsers available to developers for
free, and Sun Microsystems has even defined a standard set of Java APIs for
XML Parsing (JAXP). JAXP provides a straightforward API for developers to
load DOM or Simple API for XML (SAX) XML parsers, and each parser
provides methods that allow a developer to access the content of any XML
document.

Each of these parser APIs offer its own strengths. Document Object Model
(DOM) parsers allow developers to load the data of an entire XML document
into memory, and provide powerful features to allow developers to modify the
document while it is in memory. Using DOM, developers can both deserialize
XML (read a document into in-memory objects) and serialize XML (for
example, write a document out to disk). In contrast, because SAX XML parsers
are read-only you do not use them to build a new XML document. The SAX
event-based parser is faster and consumes far less memory than the DOM
parser; consequently, it allows developers to parse the data out of an XML
document more effectively.

CHAPTER 1 Introduction to Sybase Message Bridge for Java™

MessageBridge for Java User’s Guide 3

While these parsers are powerful tools, both are limited in their ability to
handle the data in XML documents productively. Although the SAX parser is
efficient, when a parse is complete, the only data remaining for an application’s
use is that which the developer wrote custom code to store. This is acceptable
if the developer wants access to only one or two pieces of data in the document
and does not mind writing SAX callbacks to capture and store the relevant data
in some other custom objects they wrote. But because the document data is not
stored in memory, it can require a lot of code on the developer’s part to perform
data processing on the document (for example, calculating the total dollar
value of a series of order line items). The developer can easily use the DOM
parser to store the XML document in memory and provide Java APIs to
navigate through the document. Unfortunately, the interface to every single
XML document is identical in DOM, as shown in Figure 1-1.

Figure 1-1: DOM’s generic representation of unique documents

The DOM parse tree makes every document look the same from a
programming API perspective: A request for quote, a purchase order, and a
shipping inquiry appear identical to the developer. A purchase order has a
reference number, customer information, payment terms, and a list of items
being ordered—not generalized document objects, like nodes, node lists, node
maps, and so on. This generic abstraction limits developer productivity: Java
objects are most valuable when they have some resemblance to the physical
entity being modeled.

An ideal solution would be to represent the specific document hierarchy in a
corresponding object hierarchy, without requiring months of developer time to
achieve the kind of useful data abstraction that permits the rest of the
application to be developed quickly. This solution is shown in Figure 1-2.

Why use Message Bridge

4 EAServer

Figure 1-2: Document to object hierarchy mapping

The solution
So, how might a solution be approached? The World Wide Web Consortium’s
(W3C) XML specification does outline rules that XML documents must follow
to be considered “well-formed”. But two well-formed purchase orders can look
very different from each other. Even if they share the same concepts, such as
reference number and customer information, the flexibility of XML would
make two companies hard pressed to exchange these documents reliably.

Fortunately, the creators of XML recognized the need to allow document
structures to be more finely constrained so that multiple parties could interpret
them consistently. Generically speaking, the set of rules that outline a
document’s components, structure, and content is called a schema. Schemas
can be written in all sorts of languages, but the important schemas that
constrain XML are Document Type Definitions (DTDs) and XML Schema.
Documents that conform to a schema are said to be “valid” instead of just
“well-formed”. Therefore, developers who want to use Java objects to
represent the data in XML documents should model their Java classes from
whatever schema constrains the XML document.

What is Message Bridge?
Message Bridge compiles schemas into Java classes during design and binds
specific XML documents to specific Java objects at runtime, as shown in
Figure 1-3.

CHAPTER 1 Introduction to Sybase Message Bridge for Java™

MessageBridge for Java User’s Guide 5

Figure 1-3: Message Bridge design and runtime

Message Bridge helps developers build applications that make use of
structured messages, such as XML documents or messages exchanged between
enterprise systems or business partners. Message Bridge improves developer
productivity by modeling the schema of a document or message as Java
classes. When used in an application, these classes provide an intuitive way to
access and manipulate message content in memory, and to read and write
messages to and from the network.

Message Bridge provides a schema compiler that binds a document or message
schema into Java classes. Each class provides access to the data content of the
corresponding schema component through accessor (get) and mutator (set)
methods similar to those used in standard JavaBeans. Because these classes
model the data content of a document or message instance, we refer to them as
DataBeans. In short, a DataBean is a Java binding of a particular schema.

Message Bridge features

Features are:

Why use Message Bridge

6 EAServer

• Message Bridge represents document or message content in memory so it
can be used for data-centric applications, yet the representation is not
generic—it represents data at the same conceptual level as the document’s
schema.

• Message Bridge provides a graphical design environment that developers
use to import document or message schemas and automatically generate
corresponding Java classes. As a result developers can quickly get access
to document-specific data abstractions without having to spend time and
effort modeling these abstractions themselves.

• Developers using code generated by Message Bridge do not need to write
low-level parser code. As a result, they have the freedom to extend the
generated classes to fine-tune the data abstractions but do not need to
create the abstractions themselves. And Message Bridge provides
additional developer artifacts (XML DTDs, XML Schemas, and HTML
documentation for DataBeans) to aid development of applications using
DataBeans.

How does Message Bridge work?
Message Bridge generates code (DataBeans) that developers use in their
application to make generation and consumption of document and message
data easier.

Developers use Message Bridge to import XML DTDs and XML Schemas.
Message Bridge converts these schemas into a neutral representation that
developers can modify, enhance, and group into projects with other related
schemas, as shown in Figure 1-4.

CHAPTER 1 Introduction to Sybase Message Bridge for Java™

MessageBridge for Java User’s Guide 7

Figure 1-4: Building DataBeans

Using Message Bridge, developers can generate DataBeans for the individual
schema definitions they select. These DataBean classes abstract the data
contained in documents or messages in an intuitive manner. Each articular
DataBean leverages shared runtime classes. The DataBean framework
serializes and deserializes content from the network, validates content, and
provides a read/write in-memory representation of message data.

Figure 1-5: Using DataBeans

Why use Message Bridge

8 EAServer

Message Bridge can also generate artifacts to assist developers in using
DataBeans in their applications. These artifacts facilitate development in
various ways. For example, the XML DTD and Schema provide the developer
with content model descriptions of each DataBean. By using these content
models during design, developers are able to bring their own XML-based tools
to bear, easily modeling runtime systems based on XML data authoring,
manipulation, and transmission. The HTML documentation provides the Java
developer with a detailed view of each particular DataBean’s content model,
facilitating the incorporation of particular DataBeans and the DataBean
framework into their own custom applications.

MessageBridge for Java User’s Guide 9

C H A P T E R 2 Understanding the DataBean
Framework

At the heart of Sybase Message Bridge for Java™ is the DataBean, which
models the content of a specific document or message schema. It can be
used to access and manipulate the content of document instances or
messages that conform to the schema.

Binding framework
Individual DataBeans rely on an underlying binding framework that
allows the components of a document to be mapped to in-memory objects
reflecting the document’s structure. These objects can then be consumed,
manipulated, and possibly serialized back into a document. The runtime
classes making up the binding framework provide the implementation of
all get() and set() methods exposed for access to class instances, attributes,
and data. They also handle deserialization (parsing a document into a set
of related classes), serialization (generating a document from the data
stored in the related classes) and validation.

DataBean object graph
It is important to understand the DataBean object graph in order to access
these features correctly. When a schema is imported into Message
Bridge, a root element is identified directly by Message Bridge itself, or
is selected by the user. When code is generated, Message Bridge creates
two types of DataBeans::

• A Root DataBean that represents the root element of a complete
document described by a schema

• Zero or more additional Element DataBeans that represent the
document’s member elements, attributes, and data

Binding framework

10 EAServer

Both Root and Element DataBeans expose various types of get() and set()
methods that are used to navigate through objects in the object graph and to
access or modify the content of those objects. All DataBeans extend class
DataBeanElement.

Figure 2-1: DataBean object graph

Root DataBeans expose additional methods for interacting with the main
document they represent. This main document is an instance of a document that
conforms to a schema and has a given root. All Root DataBeans extend class
DataBeanOpaque, which itself extends class DataBeanElement.

DataBean method summary

All DataBeans expose the following methods:

• get() methods to access member class instances, attributes, and data

• set() methods to modify member class instances, attributes, and data

Root DataBeans also expose the following additional methods:

• Constructors to create a new DataBean object graph

CHAPTER 2 Understanding the DataBean Framework

MessageBridge for Java User’s Guide 11

• get()and set() methods to identify and retrieve the main document

• get() and set() methods to access and modify the root name and the location
of the source schema for the main document

• Methods to serialize and deserialize a document

• A method to validate a document

Names and identifiers

The set of strings allowed in schemas is much larger than the set of valid Java
class identifiers. Therefore, Message Bridge will change the names of schema
components when generating DataBeans, according to the following
approach. Message Bridge:

• Splits the XML name into a word list by removing any leading and trailing
punctuation characters and then searching for word breaks

• Converts the first character of each word to uppercase

• Converts the rest of the characters of each word to lowercase

An example
A good way to illustrate DataBean is to work through an example. In this
example, Message Bridge generates bindings for a Recipe schema defined in
the following DTD:

Binding framework

12 EAServer

Recipe DTD schema

The following DTD, called Recipe, is mapped to Java classes described in
Table 2-1 on page 13.

XML document instances conforming to this DTD can have two potential
roots: recipe and comments. In this example, recipe is the root.

<!ELEMENT Recipe (#PCDATA | IndexCard | IngredientList
StepList)* >

<!ELEMENT IndexCard (Name, Description, Source) >

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Description (#PCDATA)>

<!ELEMENT Source (#PCDATA)>

<!ELEMENT IngredientList (Ingredient+)>

<!ATTLIST IngredientList serves CDATA #REQUIRED>

<!ELEMENT Ingredient (Food,Quantity) >

<!ELEMENT Food (#PCDATA)>

<!ELEMENT Quantity (#PCDATA)>

<!ELEMENT StepList (Step+) >

<!ELEMENT Step (#PCDATA)>

<!ELEMENT Comments (#PCDATA)>

Schema to class mappings

A summary of how schemas are mapped to classes follows:

• For each element in the schema there is a corresponding Java class.

• If the element has data, setData() and getData() methods are provided to
access and manipulate the element data.

• An element containing attributes is mapped to a Java class containing an
instance variable for the entire set of attributes.

• Elements having attributes contain the methods setAttribute<attribute
name>() and getAttribute<attribute name>() in their class for accessing and
manipulating the attributes.

• For elements with children, get() and set() methods are provided to access
and modify child elements.

CHAPTER 2 Understanding the DataBean Framework

MessageBridge for Java User’s Guide 13

• The get<element name>() methods are used to access child element class
instances. They return opaque java.lang.Object. The get() methods always
return a valid class instance, and through the hasValidElement() method,
you can find out if the class instance holds a valid element.

• The set<element name>() methods are available to access the existing
child element class instances or create new child element class instances.

• The root element class has more methods than member element classes
because validation, serialization, deserialization and other methods are
provided in the root class only.

The following table shows some highlights of the DataBeans generated for the
Recipe DTD:

Table 2-1: DTD to Java class mapping

DTD element Generated Java class

An element containing only text.

<!ELEMENT Name
(#PCDATA)>

A single Java class representing the element, with public accessor and mutator
methods for the text.

Class: Name

Methods:

 public String getData()

 public void setData(String data)

An element containing child
elements.

<!ELEMENT Ingredient (Food,
Quantity)

A Java class representing the parent element, with public
accessor and mutator methods for the child element.

Class: Ingredient

Methods:

 public Food getFood()

 public Food setFood()

 public Quantity getQuantity()

 public Quantity setQuantity()

An element containing a
repeating child and attributes.

<!ELEMENT IngredientList
(Ingredient+)>

<!ATTLIST IngredientList serves
CDATA #REQUIRED>

A Java class representing the parent element, with public
methods for accessing and modifying the list of children.

Class: IngredientList

Methods:

public Ingredient setIngredient(int index)

public Ingredient getIngredient(int index)

java.lang.Object (getint index)

java.util.List get Ingredient()

void set Ingredient (Ingredient instance, int index)

java.lang.String getAttributeServes(java.lang.String
attrValue)

Binding framework

14 EAServer

An element containing child
elements and text. Recipe is the
root.

<!ELEMENT Recipe (#PCDATA
| IndexCard | IngredientList |
StepList)*>

A Java class representing the parent with accessor and mutator methods for each
child, for the text data, and for the object. The get object method is for any
element that has more than one child and enables you to retrieve the children in
the order they were originally specified.

Class: Recipe

Methods:

public java.util.List getIndexCard()

public IndexCard getIndexCard(int index)

public void setIndexCard(IndexCard instance, int
index)

public IndexCard setIndexCard(int index)

public java.util.List getIngredientList()

public IngredientList getIngredientList(int index)

public void setIngredientList(IngredientList
instance, int index)

public IngredientList setIngredientList(int index)

public java.util.List getStepList()

public StepList getStepList(int index)

public void setStepList(StepList instance, int
index)

public StepList setStepList(int index)

public Data getData(int index)

public Data setData(String data, int index)

public Object get(int index)

public void setMainDocument
(com.sybase.DataBean.serializable.
DataBeanSerializable mainDocument)

public void validate()

public void serializeXML
(java.io.OutputStream ostrm)

public void deserializeXML
(java.io.InputStream istrm, boolean validate)

DTD element Generated Java class

CHAPTER 2 Understanding the DataBean Framework

MessageBridge for Java User’s Guide 15

Using the generated DataBeans
This section contains examples of code written using generated DataBeans
from the previous Recipe DTD.

Constructing instances of classes from an XML document

The following example illustrates constructing instances of Recipe classes
from an XML document. In this example, false means there is no validation
against a DTD document.

FileInputStream fiStream = new FileInputStream

xmlFileName);

Recipe iRecipe = new Recipe(fiStream, false);

or

FileInputStream fiStream = new FileInputStream

xmlFileName);

Recipe iRecipe = new Recipe();

iRecipe.deserializeXML(fiStream, false);

Getting the IngredientList from the Recipe

IngredientList ingList = iRecipe.getIngredientList();

Using getAttribute to get the number of servings

String serves = ingList.getAttributeServes();

Getting the ingredient elements from the IngredientList

To get the first ingredient:

Ingredient ing = ingList.getIngredient(0);

if(!ing.hasValidElement())

{

 // We are at the end of the list of Ingredients

ing=null;

Binding framework

16 EAServer

break;

}

To target all ingredients:

java.util.List ings=ingList.getIngredients();

Constructing a new instance of Recipe from scratch (a new Recipe XML
document)

Recipe oRecipe = new Recipe();

Setting the food and quantity of an Ingredient in a Recipe

oRecipe.setIngredientList(0).setIngredient(0).

setFood().setData(“Onions”);

 oRecipe.setIngredientList(0).setIngredient(0).
setQuantity().setData(“2”)

Creating an XML document from instances of Recipe class

FileOutputStream foStream = new FileOutputStream

(xmlFileName);

oRecipe.serializeXML(foStream);

Using DataBeanOpaque to get DTD name prior to choosing binding classes

FileInputStream fiStream =

new FileInputStream(xmlFileName);

DataBeanOpaque recipeVersionUnknown =

new DataBeanOpaque(fiStream, false);

String dtdName = recipeVersionUnknown.

getDocTypeSystemID();

if (dtdName.equals("recipe.dtd"))

{

 // Do something with version 1 recipes.

CHAPTER 2 Understanding the DataBean Framework

MessageBridge for Java User’s Guide 17

 com.cooksmart.v1.Recipe = new

com.cooksmart.v1.Recipe(recipeVersionUnknown,

true);

 .

 .

}

else

{

if (dtdName.equals("recipe_v2.dtd"))

{

// Do something with version 2 recipes.

com.cooksmart.v2.Recipe = new

com.cooksmart.v2.Recipe(recipeVersionUnknown, true);

 .

 .

 }

 }

Binding framework

18 EAServer

MessageBridge for Java User’s Guide 19

C H A P T E R 3 Using the Message Bridge GUI

This chapter describes how to use the Message Bridge GUI to create and
administer schema groups and message definitions, and to generate code.
It covers the following topics:

• Schema groups

• Message definitions

• Code generation

Schema groups
You can organize your projects by schema group. A schema group might
contain different message definitions for the same schema, or message
definitions for multiple schemas.

At start-up, Message Bridge checks to see if any schema groups have been
created and saved in a previous session. If it finds none, Message Bridge
opens the Default Group, which you can rename.

This section covers the following topics:

• Adding a new schema group

• Changing the name of a schema group

Adding a new schema group

❖ To add a new schema group

1 Go to File | New | Schema Group. The Schema Group Name dialog
box opens.

2 Enter a name for the new schema group. Click OK. The new schema
group appears in the Definitions panel.

Message definitions

20 EAServer

You can now add new message definitions to your schema group. See Message
definitions for details.

Changing the name of a schema group

❖ To change the name of an existing schema group

1 In the Definitions panel, select the Schema Group name you want to
change.

2 Right-click the name. The Rename Object dialog box opens.

3 Enter the new name and click OK. The new name appears in the
Definitions panel.

Message definitions
When you add a new message definition, you are associating a root element
with a schema you have imported into the Message Bridge GUI. The root
element is defined in the imported schema. Sometimes a message definition
incorporates all the root elements from an imported schema. Other times, your
message definition may use only one of many root elements of the imported
schema, making it in effect, a subset of the schema.

Your message definition determines the API of the code Message Bridge
generates. The generated code binds the schema to a Java DataBean that you
can use in an application. See Chapter 2, “Understanding the DataBean
Framework”, for more information on DataBeans.

This section covers the following topics:

• Adding a message definition for a DTD

• Adding a message definition for an XML Schema

CHAPTER 3 Using the Message Bridge GUI

MessageBridge for Java User’s Guide 21

Adding a message definition for a DTD
You can add a message definition by importing a Document Type Definition
(DTD). When you add a message definition, Message Bridge binds the root
element to the DTD. To add a message definition, you must know the root
elements of the DTD you want to import.

❖ To add a message definition for a DTD

1 In the Definitions panel, select a Schema Group. Select Default Group if
no others exist. See Schema groups for information on new schema
groups.

2 Go to File | New | Message Definition. The Add Message Schema dialog
box opens.

3 In the Metadata Source drop-down list, use the default selection, DTD
Importer. In the Files of Type drop-down list, use the default selection,
Document Type Definition (DTD).

4 Enter the name of the DTD you want to import. You can change directories
by clicking the Down arrow in the Look In drop-down list. Navigate to the
directory where the DTD file resides and select the file.

5 Click OK. The Select Root Element dialog box opens.

Note If your DTD has namespaces, see Defining namespaces in message
definitions that use DTDs. Elements with colons signify namespaces.

6 Select a root element from the DTD that corresponds to the document for
this message definition. Click OK.

Note To find the root element of the DTD you are importing, review the
DTD file you imported in a text editor.

The DTD you imported appears in the Definitions panel, and a graphical
representation of the DTD appears in the Message Bridge GUI. The
representation shows the element you selected as root and its children, as
defined in the DTD.

You can now continue defining your message by:

• Defining namespaces in message definitions that use DTDs

• Modifying an element name

• Creating views

Message definitions

22 EAServer

Adding a message definition for an XML Schema
You can add a message definition by importing an XML Schema. When you
add a message definition, Message Bridge binds the root element to the XML
Schema. To add a message definition, you must know the root elements of the
XML Schema you want to import.

❖ To add a message definition for XML Schema

1 In the Definitions panel, select a Schema Group. Select Default Group if
no others exist. See Schema groups for information on new schema
groups.

2 Go to File | New | Message Definition. The Add Message Schema dialog
box opens.

3 In the Metadata Source drop-down list, select XML Schema Importer. In
the Files of Type drop-down list, XML Schema (.xsd) becomes the default.

4 Enter the name of the XML Schema you want to import. You can change
directories by clicking the Down arrow in the Look In drop-down list.
Navigate to the directory where the XML Schema resides and select it.

5 Click OK. The Select Root Element dialog box opens.

6 Select a root element from the XML Schema that corresponds to the
document for this message definition. Click OK.

Note To find the root element of the XML Schema you are importing,
review the XML Schema file you imported in a text editor.

The XML Schema you imported appears in the Definitions panel, and a
graphical representation of the XML Schema appears in the Message
Bridge GUI. The representation shows the element you selected as the root
and its children, as defined in the XML Schema.

You can now continue defining your message by:

• Defining namespaces in message definitions that use DTDs

• Modifying an element name

• Creating views

CHAPTER 3 Using the Message Bridge GUI

MessageBridge for Java User’s Guide 23

Defining namespaces in message definitions that use DTDs
If you are using a DTD with namespaces, you must register the namespace
Uniform Resource Identifier (URI) in the Message Bridge GUI. In order to
generate Java bound to your message definition, the URIs must be registered.
Since XML Schemas support a namespace declaration, their URIs are
automatically registered in the GUI.

You have to determine which elements and attributes have namespaces. Look
at the DTD or go to the Select Root Element dialog box. You also have to know
the URI of each namespace. When you import your DTD, Message Bridge will
assume that every colon represents a namespace.

❖ To register namespaces in DTDs

1 Elements with namespaces appear in the Select Root Element dialog box
with colons. The Select Root Element dialog box opens when you import
your DTD. See Adding a message definition for a DTD to import a DTD.
Note the elements that have colons; you are required to register their URIs.

2 Find an element or attribute with a namespace in the graphical
representation of the DTD and select it.

3 In the Properties panel, below the Definitions panel, the namespace prefix
appears in the Value field. Enter the URI in the Value field of Namespace
URI, for example, sybase=http://sybase.com/sybase.

The URI is registered for all instances of the namespace when you register
it for one.

Note Because namespaces are not supported in DTDs, you have to get the
URI from the author of the DTD. If you have an XML document that
conforms to the DTD, the URI is in the document.

4 Repeat steps 2 and 3 for all namespaces.

Modifying an element name
Because the application you are writing may have local naming conventions or
styles to conform with, Message Bridge allows you to change the name of an
element that occurs in the code it generates. You change the name in the
graphical representation of your schema. The name of the element does not
change in the schema, only in the GUI. Your modified name occurs in the
DataBean.

Code generation

24 EAServer

❖ To modify an element name

1 Select the element whose name you want to modify.

2 Right-click the element name in the graphical representation of the
schema.

Note If you right-click an attribute and select Rename Element, you
rename the element above the attribute. Renaming attributes is not
supported.

3 Select Rename Element. The Rename Object dialog box opens.

4 Enter the new name of the element and click OK. The new name appears
in the graphical representation of the schema.

Creating views
You can create a view on one of your message definitions and create a subset
of the schema. A graphical representation of the view is displayed in the GUI.

❖ To create a view

1 Open the message definition from which you want to create a view.

2 Right-click an element that is part of the view you want to create. Message
Bridge automatically includes all the parents and children of the element
you select.

3 Select New View. The View Name dialog box opens.

4 Enter a name for your view. Click OK. A graphical representation of your
view appears.

Code generation
Message Bridge generates DataBeans for your message definition. See
Chapter 2, “Understanding the DataBean Framework” for more information
on DataBeans.

CHAPTER 3 Using the Message Bridge GUI

MessageBridge for Java User’s Guide 25

❖ To generate code from your message definitions

1 In the Definitions panel, select the message definition for which you want
to generate code.

2 Go to Tools | Generate.

3 If you have not saved your message definition yet, you are prompted to do
so. Save your message definition and click Yes. The Generate dialog box
opens.

4 If you want to create Javadoc, click the Create Documentation box.

This tells Message Bridge to create HTML comments (javadoc) for all the
DataBean classes it generates for this message definition.

5 Enter a package name in the Package Name field.

This identifies the package name used in all the DataBean classes that
Message Bridge generates for this message definition.

6 Using the browse button, set the directory to where you want Message
Bridge to generate code.

This is where Message Bridge places the DataBean classes and other
developer artifacts.

7 Accept the default .jar file name.

This identifies the .jar file into which all of the DataBean classes will be
placed. If you are using XSD files, xsd is automatically appended to the
.jar file name.

8 Click OK to generate the DataBean classes for your message definition.

Code generation

26 EAServer

MessageBridge for Java User’s Guide 27

C H A P T E R 4 Using Views

This chapter describes views and how developers can use them during
development. It covers the following topics:

• The purpose of views

• An example of using a view

The purpose of views
Because XML documents can contain multiple messages and they can
have very deep hierarchies, Message Bridge allows developers to create a
view into an XML document. The view represents a subset of the XML
document and that subset’s schema information. Once a view is created, a
developer can use it at runtime to manipulate a subset of a larger document
without needing to understand or even to know about the content model
of the parent document. A view can also be serialized and passed around
as a smaller XML document for future merger with the parent document.
Once the XML document and its content model have been divided into
views, the work in the original document can be distributed.

Note These smaller XML documents have the view root as their root.

An example of using a view

28 EAServer

An example of using a view
You have an XML document and want to receive part of the information for a
single large message in a database and part of it in a Java Server Page (JSP).
You supply the developers for each group—the database group and the Web
group—with their own view of the information that they need to retrieve. This
allows each group to concentrate on the information that is pertinent to them,
and to use tools to map directly to their view of the schema without dealing
with a potentially large message. Later, each resulting view message can be
merged back into the original message that will be sent to a target system.

To merge views back into the original message you use the generated class
com.sybase.DataBean.util.ViewSet. It takes XML documents that represent
views and collects them back into a single XML document. Each of these
documents can be added to a ViewSet and then serialized as a single XML
document.

In the following example, at design time a developer creates a view on the
ingredient element of recipe.dtd. This allows the developer to concentrate on a
recipe's ingredient element without needing to understand the entire content
model of recipe.dtd.

Without using a view, to find an ingredient you use the following:

Ingredient ing = recipe.getIngredientList().getIngredient();

Using a view to find an ingredient, you use the following:

ingredient ing = ingView.getIngredient(i);

This particular implementation of a view identifies all ingredients of a recipe
that contain eggs.

public class IngSample

{

public static void main(String[] args) throws Exception

{

System.out.println("\n...Processing [" + args[0] + "]..."

);

 // Create the request view document, and set the input

XML as the main document.

Recipe recipe = new Recipe(new FileInputStream(

args[0]), true);

CHAPTER 4 Using Views

MessageBridge for Java User’s Guide 29

IngView ingView = new IngView(new FileInputStream(args[0]),

true);

IngView ingView = new IngView();

ingView.setMainDocument(recipe);

 int ingCount = ingView.getSize();

 // Print list of all ingredient names that contain a

Food item of "egg".

 System.out.println("Recipe [" +

recipe.getHeader().getRecipeName().getData() + "] has

the following ingredients with eggs:");

for(int i=0; i<ingCount; i++)

{

String content = ingView.getIngredient(i).getFood().

getData();

if(content.startsWith("egg") || content.

endsWith("eggs"))

{

System.out.println(content);

}

}

}

}

An example of using a view

30 EAServer

MessageBridge for Java User’s Guide 31

C H A P T E R 5 Locating the Java documentation

To see DataBean-related methods that are used by the generated code, see
the Java documentation at:
<Message Bridge Installation directory>/docs/javadoc.

32 EAServer

MessageBridge for Java User’s Guide 33

C H A P T E R 6 Advanced Topics

This chapter provides information about the following advanced topics:

• DataBeanOpaque

• Deserialization

• Serialization

• Validation

• Directory structure of generated code

• Runtime location of schemas for validation

DataBeanOpaque
The binding framework is implemented in the class called
DataBeanOpaque, which represents an XML document. All generated root
classes extend class DataBeanOpaque. In addition to providing all
methods for serializing and deserializing XML, DataBeanOpaque also
provides methods that expose access to the root name and doc type of a
particular document instance.

Individual DataBeans use the functionality of the binding framework by
extending the class DataBeanOpaque.

Deserialization
The state of DataBeans can be set automatically with the data in an XML
instance document. This process is called deserialization. After
deserializing, you use accessors and mutators to manipulate the XML
document data from Java code.

There are different ways to deserialize XML documents into DataBean
instances. The most common way is through the following constructor of
a DataBean instance:

DataBeanOpaque

34 EAServer

RootName(InputStream istrm, boolean validate)

Another way to deserialize XML is by calling the following method on an
existing DataBean instance:

void deserializeXML(java.io.InputStream istrm, boolean
validate)

A third way to deserialize XML into a DataBean instance allows the user to do
a late binding without incurring the overhead of parsing an XML document
twice. This approach is helpful when you require some information from the
document instance before determining which particular DataBean instance to
bind.

To use this approach, use one of the previous methods to deserialize XML into
a DataBeanOpaque object. This object provides methods to retrieve the root
name, SYSTEM URI, and PUBLIC URI from the XML document instance.
Then, using this information, you can bind a specific DataBean instance one of
two ways:

• By passing the DataBeanOpaque object to its constructor

• By creating a DataBean instance with the default constructor and passing
the DataBeanOpaque object to its setMainDocument() method.

The XML document is parsed only once with this approach.

Serialization
Serialization allows you to get an XML document directly from the DataBean
and use it for your purposes. The data structure from the root class is exported
into an XML document through the following method:

void serializeXML(java.io.OutputStream ostrm)

Validation
Validation is available through the root class, at the XML-document level.
There are two ways to perform a validation. In the first, you use the following
constructor:

RootName(InputStream istrm, boolean validate)

If the input XML document does not use a DTD attached and validate =
true, an exception is thrown.

CHAPTER 6 Advanced Topics

MessageBridge for Java User’s Guide 35

Only one exception is thrown in an exception case:

DataBeanException

You can use get Message() to get the error information. The error message
is usually composed of the class name and function name where the error
occurred, as well as a detailed error message.

The second way to perform validation is through a method on the DataBean:

void iRecipe.validate()

Directory structure of generated code
As shown in Figure 6-1, Message Bridge creates a directory tree in the Output
Directory specified in the Generate dialog box.

Figure 6-1: Generate dialog box

In the case of an individual schema, the code generation process creates three
subdirectories:

• docs

Runtime location of schemas for validation

36 EAServer

• lib

• schemas

The docs directory is created only if you selected the Create Documentation
option in the Generate dialog box. Within the docs directory, another
subdirectory corresponding to the schema name is created. This contains the
output of the JavaDoc command, including HTML and CSS files, as well as
deeper subdirectories. The exact contents will depend on the schema for which
documentation is being generated and the top-level package name that was
supplied in the Generate dialog box.

The lib directory contains a .jar file whose name is the same as the schema
name. This .jar file contains .class files which comprise the schema-specific
portion of the Message Bridge runtime.

The schemas directory contains both a DTD and an XML Schema
representation of the original schema, when importing a DTD.

Note that it is possible to repeat the process of selecting an individual schema
and generating code, while reusing the previously-specified output directory.
The result will be multiple .jar files in the lib directory, and multiple schema
and DTD files in the schemas directory. Also, the docs directory will get a
subdirectory for each such schema.

Runtime location of schemas for validation
When creating instances of the generated classes from an XML input
document, you can direct the binding framework to do validation. This requires
that the XML document contains a declaration that identifies which schema to
use for validation. For example, a DOCTYPE for DTDs or a
xsi:noNamespaceSchemaLocation for XSDs. The runtime DataBean
framework uses the following rules to locate the DTD.

❖ If the SYSTEM keyword is specified:

1 If the SYSTEM keyword specifies an absolute name, the framework tries
to use the absolute path specified by the SYSTEM keyword.

2 If the SYSTEM keyword specifies a relative name, the XML parser’s
default location is used (usually the “current directory”).

CHAPTER 6 Advanced Topics

MessageBridge for Java User’s Guide 37

3 The framework parses the SYSTEM keyword to find the DTD name
(removing any path information, if found), and tries to locate the DTD in
one of the directories specified by the System property
com.sybase.DataBean.EntityResolver.dtds, which can contain a
semicolon-separated list of directories that will be successively searched
for the DTD.

❖ If the PUBLIC keyword is specified:

1 If the PUBLIC keyword specifies an absolute name, the framework tries to
use the absolute path specified by the PUBLIC keyword.

2 If the PUBLIC keyword specifies a relative name, the XML parser’s default
location is used (usually the “current directory”).

3 The framework parses the PUBLIC keyword to find the DTD name
(removing any path information, if found), and tries to locate the DTD in
one of the directories specified by the System property
com.sybase.DataBean.EntityResolver.dtds, which contains a semicolon-
separated list of directories that will be successively searched for the DTD.

Most of the time, the name of the DTD will be specified in the DOCTYPE
using the SYSTEM keyword. Again, most of the time, this name will be a “rel-
ative” name. For example, the following XML fragment indicates that the
DTD name is recipe.dtd.

<!DOCTYPE recipe SYSTEM "recipe.dtd">

<recipe serves="10" region="n-america" type="snacks">

.

.

</recipe>

To ensure that the runtime framework can locate the DTD for validation,
Sybase recommends that you put your DTDs in a directory (or directories) on
the file system, and identify those directories through the System.property. This
can be done in one of the following ways:

• Use the –D parameter of the java command when starting your application.
For example:

java -D com.sybase.DataBean.EntityResolver.dtds=

/software/myapp/dtds

• Add the system property programmatically. For example, in your
application’s start-up code, do something like the following:

Runtime location of schemas for validation

38 EAServer

System.setProperty(“com.sybase.DataBean.

EntityResolver.dtds”,

“/software/myapp/dtds”);

MessageBridge for Java User’s Guide 39

C H A P T E R 7 Using Message Bridge Samples

The samples provided with Sybase Message Bridge for Java™ are
intended to demonstrate the use of code generated from the GUI. For an
explanation of data binding that happens at design time, see Chapter 2,
“Understanding the DataBean Framework”.

This chapter covers the following topics about samples:

• Sample descriptions and locations

• Sample directory content

• Running a sample

• Understanding the output

Sample descriptions and locations
Table 7-1 lists the samples and their descriptions. %MB% represents the
installation directory of Sybase Message Bridge for Java™.

Table 7-1: Sample descriptions and locations

 Name Description Location

Any Content Demonstrates the generated code from a DTD with
elements that have type ANY as the content

%MB%\samples\dtd\any_content

Attributes
(DTD)

Demonstrates the generated code from a DTD with an
element that has attributes. See also the Attributes
(XML Schema) example.

%MB%\samples\dtd\attributes

Attributes (XML
Schema)

Demonstrates the generated code from an XSD with an
element that has attributes. See also the Attributes
(DTD) example.

%MB%\samples\xsd\attributes

Sample directory content

40 EAServer

Sample directory content
The following table outlines the contents of a sample directory. It is specific to
the "Elements with Character" sample directory, and its layout it is very similar
to all the other sample directory layouts.

Bookstore Demonstrates the following DTD-related features:

• use of a PUBLIC identifier in a DTD to select
generated code for execution

• a parameter entity

• INCLUDE and IGNORE directives to add or remove
declarations

• specification of directory paths in which to
look for DTD files

%MB%\samples\dtd\bookstore

Build XML This example uses the generated code associated with
a DTD to construct a new XML document instance
from scratch.

%MB%\samples\misc\build_xml

Datatypes This example shows how the generated code represents
(and provides access to) primitive data types in XML
Schema.

%MB%\samples\xsd\datatypes

Mixed Content Demonstrates the generated code from a DTD which
specifies a sequence of elements and character data.

%MB%\samples\dtd\mixed_content

Recursive Demonstrates the generated code from a DTD in which
an element is nested recursively.

%MB%\samples\dtd\recursive

SOAP Envelope Demonstrates parsing and navigation of data carried in
a SOAP message.

%MB%\samples\xsd\soap

Stock Portfolio Demonstrates the following XSD-related features:

• XSD document-level attributes

• Namespaces

• INCLUDE and IMPORT directives

• Data type definition via restriction

%MB%\samples\xsd\stock_portfolio

View Demonstrates the generated code from a view. %MB%\samples\dtd\view

 Name Description Location

CHAPTER 7 Using Message Bridge Samples

MessageBridge for Java User’s Guide 41

Table 7-2: Sample directory contents

Running a sample
Each sample directory contains a run.bat file if you are running Message
Bridge on Windows platforms, and a run.sh file if you are using the Sun Solaris
platform.

❖ To run a sample:

1 Navigate to the directory of the sample you want to run.

For Windows:

cd %MB%\samples\<Sample Name>

For Sun Solaris:

Directory name Contents description

docs The docs directory contains Javadoc of the
generated source code.

lib The lib directory the client class file and also
contains a jar file that contains the generated
classes.

schemas The schemas directory contains the generated
DTD and XSD files that were produced along
with the generated code. This directory only
exists for samples based on DTD files, not
XSD files.

mixed_content.dtd This is the DTD that was used when
generating classes.

mixed_content.xml This is the XML that was loaded by client.java
through the generated code.

client.java This Java file is the source for the client. Each
client binds the XML document to the
generated Java classes and then gets the value,
or values that were set during the binding. The
original XML, the result of the binding,
expected result of the binding, and a generated
XML document are all displayed on the
screen.

run.bat, run.sh run files run the client against the generated
code.

Understanding the output

42 EAServer

cd $MB/samples/<Sample Name>

Note %MB% and $MB represent the location of the directory in which
you installed Message Bridge.

2 Type the appropriate command, based on which operating system you are
running.

For Windows, type:

run.bat

For Sun Solaris, type:

run.sh

Understanding the output
After you have run a sample, you will see output on the screen. The following
example is output after running the "Element with Character" sample. (Output
from other samples will be similar to this XML document.)

1. <?xml version="1.0" encoding="UTF-8"?>

2. <!-- element containing only character data -->

3. <!DOCTYPE checkbook SYSTEM "element_character.dtd">

4. <checkbook>Deposit $2,000,000 into my
checkbook!</checkbook>

5. payment amount = <Deposit $2,000,000 into my
checkbook!>

6. payment expected amount = <Deposit $2,000,000 into
my checkbook!>

7. ...Building XML...

8. <?xml version="1.0" encoding="UTF-8"?>

9. <!DOCTYPE checkbook SYSTEM
"element_character.dtd"><!-- element containing only
character data --><checkbook>Deposit $2,000,000 into my
checkbook!</checkbook>

CHAPTER 7 Using Message Bridge Samples

MessageBridge for Java User’s Guide 43

The first piece of output to appear on the screen is the original XML document,
lines 1 through 4. The second piece of output is the result of the binding, line
5. The third piece of output is the expected output of the binding, line 6, which
should be exactly the same as line 5. The rest of the output, lines 7 through 9,
is the generated XML after the binding, which should be very similar to the
original XML document.

Most of the samples’ output is similar to the previous description, with a few
differences. To validate the output you see on the screen, compare it with the
data in the output.txt file in the sample's directory.

Understanding the output

44 EAServer

MessageBridge for Java User’s Guide 45

C H A P T E R 8 Supported Elements and
Declarations for Schemas

The following tables outline how Message Bridge supports both
Document Type Definitions (DTD) and XML Schema (XSD). Each of the
declarations and elements listed in these tables are supported, either fully
or partially. Where there is not full support, the extent of the support is
described in the Comments column.

Message Bridge is capable of importing DTDs and XSDs with these
declarations and elements, and it generates the Java code necessary for
implementing each of the features in Message Bridge DataBeans.

The following table shows the elements for which Message Bridge
provides either full or partial support.

Note Elements that are part of the W3C XML Schema structure that are
not listed in the following table are not supported in this release.

Table 8-1: Supported elements for XML Schemas (XSDs)

Elements Can include Comments

all

annotation

element

any Its attributes are currently not used for code
generation.

attribute

simpleType

attributeGroup

attribute

attributeGroup

choice xsd:any currently only shows by itself under
xsd:choice.

46 EAServer

any Does not support multiple any or any mixed
with elements.

choice

element

group

sequence

complexContent

extension

restriction xsd:restriction for xsd:complexContent
should have all its base type members, plus
the restriction.

complexType Its attribute final, block, and abstract are
currently not used for code generation.

all

attribute

attributeGroup

choice

complexContent

group

sequence

simpleContent

element final, block, and abstract attributes are
currently not used for code generation.

complexType

key

keyref

simpleType

unique

enumeration

extension

attribute

attributeGroup

field

group

all

choice

sequence

Elements Can include Comments

CHAPTER 8 Supported Elements and Declarations for Schemas

MessageBridge for Java User’s Guide 47

key

field

selector

keyref

field

selector

restriction

enumeration Used for XML document validation.

fractionDigits

length

maxExclusive

maxInclusive

maxLength

minExclusive

minInclusive

minLength

pattern

simpleType

totalDigits

whiteSpace

schema Currently, blockDefault, finalDefault, version,
xml:lang attributes and esd:include,
xsd:import, and xsd:redefine content are not
supported.

attribute

attributeGroup

complexType

element

group

notation

simpleType

selector

annotation

sequence xsd:any only shows by itself under
xsd:choice.

Elements Can include Comments

48 EAServer

The following table shows the declarations for which Message Bridge provides
either full or partial support.

Table 8-2: Supported declarations for Document Type Definitions
(DTDs)

any

choice

element

group

sequence

simpleContent

extension

restriction

simpleType Currently, xsd:list and xsd:union content are
not supported.

restriction

unique

field

selector

Elements Can include Comments

Declaration Can include Comments

DOCTYPE

ELEMENT

, (comma) Sequence of elements, AND
operator

| (bar) OR operator

() (parenthesis) Content grouping

? (question mark) Optional, 0 or 1 occurances

+ (plus) at least one, 1 or more occurrences

* (asterisk) any number, 0 or more
occurrences

EMPTY

ANY

PCDATA

CHAPTER 8 Supported Elements and Declarations for Schemas

MessageBridge for Java User’s Guide 49

ATTLIST

CDATA

NMTOKEN

NMTOKENS Validation is using attached DTD.

ID Validation is using attached DTD.

IDREF Validation is using attached DTD.

IDREFS Validation is using attached DTD.

ENTITY Validation is using attached DTD.

ENTITIES Validation is using attached DTD.

Enumerated value list Validation is using attached DTD.

NOTATION Validation is using attached DTD.

DEFAULT or default value
assigned

IMPLIED

REQUIRED

FIXED

NOTATION

ENTITY

parameter entity

internal entity

SYSTEM ID (External
parsed entity)

PUBLIC ID (External
parsed entity)

Handled the same as SYSTEM ID.

SYSTEM ID (External
unparsed entity)

Passed on to DTD generation.

PUBLIC ID (External
unparsed entity)

Passed on to DTD generation.

Declaration Can include Comments

50 EAServer

MessageBridge for Java User’s Guide 51

A
adding for DTDs 20
adding for XML Schema 20
audience v

B
binding framework 9, 33

C
changing the name of 19
code generation 42

directory structure for output 35
conventions, style vi
creating 19

D
DataBean

directory structure for output 35
element 10
example 11
framework 9
object graph 9
root 10

DataBeanOpaque 33
DataBeans

examples of using 15
using 15

deserialization
explanation 33
how to 33

directory structure
for output 35

DTD

supported elements 45, 48

E
element

modifying element name 23
explanation 19

G
generated code 9

examples 13
generating code

procedure 25
GUI

using 19

I
identifiers 11

J
javadoc

creating 25
location of 31

K
keyword

PUBLIC 37
SYSTEM 36

Index

Index

52 EAServer

M
message definitions

adding for DTDs 21
adding for XML Schemas 22
explanation 20

Methods
summary 10

N
namespaces 23

registering 23

R
runtime

DTD location for validation 36

S
samples

description 39
directory content 40
explanation of output from the samples 42
location 39
running the samples 41
using 39

schema
Recipe 12
schema to class mapping 12, 13

schema groups 19
schema to class mapping examples 13
schemas

splitting into views 27
supported declarations and elements 45
supported elements in DTDs 48

serialization 9, 34
style conventions vi
supported declarations 45
supported elements 45

U
URI 23

V
validation 34
views

creating 24
example of using a view 28
merging 27
purpose of 27

X
XML Schemas 22
XSD

supported declarations 45

	Message Bridge for Java™ User’s Guide
	About This Book
	CHAPTER 1 Introduction to Sybase Message Bridge for Java™
	Why use Message Bridge
	The problem
	Java and XML capabilities
	XML parser strengths and limitations

	The solution
	What is Message Bridge?
	Message Bridge features

	How does Message Bridge work?

	CHAPTER 2 Understanding the DataBean Framework
	Binding framework
	DataBean object graph
	DataBean method summary
	Names and identifiers
	An example
	Recipe DTD schema
	Schema to class mappings

	Using the generated DataBeans
	Constructing instances of classes from an XML document
	Getting the IngredientList from the Recipe
	Using getAttribute to get the number of servings
	Getting the ingredient elements from the IngredientList
	Constructing a new instance of Recipe from scratch (a new Recipe XML document)
	Setting the food and quantity of an Ingredient in a Recipe
	Creating an XML document from instances of Recipe class
	Using DataBeanOpaque to get DTD name prior to choosing binding classes

	CHAPTER 3 Using the Message Bridge GUI
	Schema groups
	Adding a new schema group
	Changing the name of a schema group

	Message definitions
	Adding a message definition for a DTD
	Adding a message definition for an XML Schema
	Defining namespaces in message definitions that use DTDs
	Modifying an element name
	Creating views

	Code generation

	CHAPTER 4 Using Views
	The purpose of views
	An example of using a view

	CHAPTER 5 Locating the Java documentation
	CHAPTER 6 Advanced Topics
	DataBeanOpaque
	Deserialization
	Serialization
	Validation

	Directory structure of generated code
	Runtime location of schemas for validation

	CHAPTER 7 Using Message Bridge Samples
	Sample descriptions and locations
	Sample directory content
	Running a sample
	Understanding the output

	CHAPTER 8 Supported Elements and Declarations for Schemas
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

