
QAnywhere™

Published: October 2006

Copyright and trademarks
Copyright © 2006 iAnywhere Solutions, Inc. Portions copyright © 2006 Sybase, Inc. All rights reserved.

iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

iAnywhere grants you permission to use this document for your own informational, educational, and other non-commercial purposes; provided
that (1) you include this and all other copyright and proprietary notices in the document in all copies; (2) you do not attempt to "pass-off" the
document as your own; and (3) you do not modify the document. You may not publish or distribute the document or any portion thereof without
the express prior written consent of iAnywhere.

This document is not a commitment on the part of iAnywhere to do or refrain from any activity, and iAnywhere may change the content of
this document at its sole discretion without notice. Except as otherwise provided in a written agreement between you and iAnywhere, this
document is provided “as is”, and iAnywhere assumes no liability for its use or any inaccuracies it may contain.

iAnywhere®, Sybase®, and the marks listed at http://www.ianywhere.com/trademarks are trademarks of Sybase, Inc. or its subsidiaries. ®
indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.ianywhere.com/trademarks

Contents

About This Manual ... vii

SQL Anywhere documentation ... viii
Documentation conventions ... xi
Finding out more and providing feedback .. xv

I. Creating QAnywhere Applications .. 1

Introduction to QAnywhere .. 3
QAnywhere application-to-application messaging ... 4
What QAnywhere does .. 5
QAnywhere architecture .. 7
QAnywhere message delivery ... 12
QAnywhere plug-in .. 13
Quick start .. 14

Tutorial: Exploring TestMessage ... 15
About the tutorial .. 16
Lesson 1: Start MobiLink with messaging ... 17
Lesson 2: Run the TestMessage application ... 20
Lesson 3: Send a message ... 22
Lesson 4: Explore the TestMessage client source code 23
Tutorial cleanup ... 27

Setting Up QAnywhere Messaging .. 29
Setting up server-side components ... 30
Setting up client-side components ... 33
Using push notifications ... 41
Setting up a failover mechanism .. 42

Writing QAnywhere Client Applications .. 45
Introduction to the QAnywhere interfaces .. 46
Overview of writing a client application .. 49
QAnywhere message addresses ... 50
Initializing a QAnywhere API ... 54
Multi-threaded QAManager ... 61
QAnywhere manager configuration properties .. 62

Copyright © 2006, iAnywhere Solutions, Inc. iii

Sending QAnywhere messages .. 66
Cancelling QAnywhere messages ... 73
Receiving QAnywhere messages .. 75
Reading very large messages ... 80
Browsing QAnywhere messages ... 81
Handling QAnywhere exceptions ... 85
Shutting down QAnywhere .. 88
Deploying QAnywhere applications ... 89

Server management requests .. 91
About server management requests .. 92
Administering the server message store with server management requests 101
Administering connectors .. 104
Setting server properties with a server management request 114
Specifying transmission rules with a server management request 116
Creating destination aliases using server management requests 117
Monitoring QAnywhere .. 120
Monitoring QAnywhere clients ... 124
Monitoring properties ... 125

JMS Connectors .. 127
Introduction .. 128
Setting up JMS connectors .. 129
Starting the MobiLink server for JMS integration ... 131
JMS connector properties .. 132
Configuring multiple connectors .. 136
Addressing QAnywhere messages meant for JMS ... 137
Mapping QAnywhere messages on to JMS messages 138
Tutorial: Using JMS connectors ... 141

QAnywhere Agent ... 143
qaagent syntax .. 145
@data option ... 147
-c option ... 148
-fd option .. 150
-fr option ... 151
-id option .. 152
-iu option .. 153

QAnywhere™

iv Copyright © 2006, iAnywhere Solutions, Inc.

-lp option .. 154
-mn option .. 155
-mp option .. 156
-mu option .. 157
-o option ... 158
-on option ... 159
-os option ... 160
-ot option .. 161
-pc option ... 162
-policy option .. 163
-push option ... 165
-q option ... 167
-qi option .. 168
-si option .. 169
-su option ... 170
-sur option .. 171
-v option ... 172
-x option ... 173

Writing Secure Messaging Applications ... 175
Creating a secure client message store .. 176
Encrypting the communication stream ... 178
Using password authentication with MobiLink ... 179

Mobile Web Services ... 181
Introducing mobile web services .. 182
Running the QAnywhere WSDL compiler .. 184
Writing mobile web service applications .. 185
Compiling and running mobile web service applications 191
Making web service requests .. 192
Setting up web service connectors .. 195
Mobile web service example .. 198

QAnywhere Properties .. 205
Message headers and message properties ... 206
Client message store properties .. 215
Server properties ... 222

QAnywhere Transmission and Delete Rules .. 225

QAnywhere™

Copyright © 2006, iAnywhere Solutions, Inc. v

Rule syntax .. 226
Rule variables .. 231
Message transmission rules .. 234
Message delete rules ... 239

II. QAnywhere API Reference .. 241

QAnywhere .NET API Reference .. 243
iAnywhere.QAnywhere.Client namespace (.NET) .. 244
iAnywhere.QAnywhere.WS namespace (.NET) ... 342

QAnywhere C++ API .. 391
AcknowledgementMode class ... 392
MessageProperties class ... 394
MessageStoreProperties class .. 401
MessageType class ... 402
QABinaryMessage class .. 404
QAError class .. 418
QAManager class .. 427
QAManagerBase class .. 432
QAManagerFactory class .. 462
QAMessage class .. 466
QAMessageListener class ... 487
QATextMessage class ... 488
QATransactionalManager class ... 492
QueueDepthFilter class ... 496
StatusCodes class ... 498

QAnywhere Java API Reference .. 503
ianywhere.qanywhere.client package .. 504
ianywhere.qanywhere.ws package .. 602

QAnywhere SQL API Reference ... 635
Message properties, headers, and content ... 636
Message store properties .. 664
Message management .. 666

Index .. 675

QAnywhere™

vi Copyright © 2006, iAnywhere Solutions, Inc.

About This Manual
Subject

This manual describes QAnywhere, which is a messaging platform for mobile and wireless clients as well
as traditional desktop and laptop clients.

Audience
This manual is for users of SQL Anywhere and other relational database systems who want to add messaging
to their mobile applications, or who want to build new mobile application-to-application messaging
solutions.

Copyright © 2006, iAnywhere Solutions, Inc. vii

SQL Anywhere documentation
This book is part of the SQL Anywhere documentation set. This section describes the books in the
documentation set and how you can use them.

The SQL Anywhere documentation
The complete SQL Anywhere documentation is available in two forms: an online form that combines all
books, and as separate PDF files for each book. Both forms of the documentation contain identical
information and consist of the following books:

♦ SQL Anywhere 10 - Introduction This book introduces SQL Anywhere 10—a comprehensive
package that provides data management and data exchange, enabling the rapid development of database-
powered applications for server, desktop, mobile, and remote office environments.

♦ SQL Anywhere 10 - Changes and Upgrading This book describes new features in SQL Anywhere
10 and in previous versions of the software.

♦ SQL Anywhere Server - Database Administration This book covers material related to running,
managing, and configuring SQL Anywhere databases. It describes database connections, the database
server, database files, security, backup procedures, security, and replication with Replication Server, as
well as administration utilities and options.

♦ SQL Anywhere Server - SQL Usage This book describes how to design and create databases; how
to import, export, and modify data; how to retrieve data; and how to build stored procedures and triggers.

♦ SQL Anywhere Server - SQL Reference This book provides a complete reference for the SQL
language used by SQL Anywhere. It also describes the SQL Anywhere system views and procedures.

♦ SQL Anywhere Server - Programming This book describes how to build and deploy database
applications using the C, C++, and Java programming languages, as well as Visual Studio .NET. Users
of tools such as Visual Basic and PowerBuilder can use the programming interfaces provided by those
tools.

♦ SQL Anywhere 10 - Error Messages This book provides a complete listing of SQL Anywhere error
messages together with diagnostic information.

♦ MobiLink - Getting Started This manual introduces MobiLink, a session-based relational-database
synchronization system. MobiLink technology allows two-way replication and is well suited to mobile
computing environments.

♦ MobiLink - Server Administration This manual describes how to set up and administer MobiLink
applications.

♦ MobiLink - Client Administration This manual describes how to set up, configure, and synchronize
MobiLink clients. MobiLink clients can be SQL Anywhere or UltraLite databases.

♦ MobiLink - Server-Initiated Synchronization This manual describes MobiLink server-initiated
synchronization, a feature of MobiLink that allows you to initiate synchronization or other remote actions
from the consolidated database.

About This Manual

viii Copyright © 2006, iAnywhere Solutions, Inc.

♦ QAnywhere This manual describes QAnywhere, which defines a messaging platform for mobile and
wireless clients as well as traditional desktop and laptop clients.

♦ SQL Remote This book describes the SQL Remote data replication system for mobile computing,
which enables sharing of data between a SQL Anywhere consolidated database and many SQL Anywhere
remote databases using an indirect link such as email or file transfer.

♦ SQL Anywhere 10 - Context-Sensitive Help This manual provides context-sensitive help for the
Connect dialog, the Query Editor, the MobiLink Monitor, the SQL Anywhere Console utility, the Index
Consultant, and Interactive SQL.

♦ UltraLite - Database Management and Reference This manual introduces the UltraLite database
system for small devices.

♦ UltraLite - AppForge Programming This manual describes UltraLite for AppForge. With UltraLite
for AppForge you can develop and deploy database applications to handheld, mobile, or embedded
devices, running Palm OS, Symbian OS, or Windows CE.

♦ UltraLite - .NET Programming This manual describes UltraLite.NET. With UltraLite.NET you can
develop and deploy database applications to computers, or handheld, mobile, or embedded devices.

♦ UltraLite - M-Business Anywhere Programming This manual describes UltraLite for M-Business
Anywhere. With UltraLite for M-Business Anywhere you can develop and deploy web-based database
applications to handheld, mobile, or embedded devices, running Palm OS, Windows CE, or Windows XP.

♦ UltraLite - C and C++ Programming This manual describes UltraLite C and C++ programming
interfaces. With UltraLite you can develop and deploy database applications to handheld, mobile, or
embedded devices.

Documentation formats
SQL Anywhere provides documentation in the following formats:

♦ Online documentation The online documentation contains the complete SQL Anywhere
documentation, including the books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product, and is the most complete and
up-to-date source of documentation.

To access the online documentation on Windows operating systems, choose Start ► Programs ► SQL
Anywhere 10 ► Online Books. You can navigate the online documentation using the HTML Help table
of contents, index, and search facility in the left pane, as well as using the links and menus in the right
pane.

To access the online documentation on Unix operating systems, see the HTML documentation under
your SQL Anywhere installation or on your installation CD.

♦ PDF files The complete set of SQL Anywhere books is provided as a set of Adobe Portable Document
Format (pdf) files, viewable with Adobe Reader.

On Windows, the PDF books are accessible from the online books via the PDF link at the top of each
page, or from the Windows Start menu (Start ► Programs ► SQL Anywhere 10 ► Online Books - PDF
Format).

SQL Anywhere documentation

Copyright © 2006, iAnywhere Solutions, Inc. ix

On Unix, the PDF books are accessible on your installation CD.

About This Manual

x Copyright © 2006, iAnywhere Solutions, Inc.

Documentation conventions
This section lists the typographic and graphical conventions used in this documentation.

Syntax conventions
The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in uppercase, like the words ALTER TABLE in the following
example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers or expressions are shown like
the words owner and table-name in the following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of the list followed by an ellipsis
(three dots), like column-constraint in the following example:

ADD column-definition [column-constraint, …]

One or more list elements are allowed. In this example, if more than one is specified, they must be
separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that the savepoint-name is optional. The square brackets should not be
typed.

♦ Options When none or only one of a list of items can be chosen, vertical bars separate the items and
the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the alternatives are enclosed in curly
braces and a bar is used to separate the options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The brackets and braces should not
be typed.

Documentation conventions

Copyright © 2006, iAnywhere Solutions, Inc. xi

File name conventions

The documentation generally adopts Windows conventions when describing operating-system dependent
tasks and features such as paths and file names. In most cases, there is a simple transformation to the syntax
used on other operating systems.

♦ Directories and path names The documentation typically lists directory paths using Windows
conventions, including colons for drives and backslashes as a directory separator. For example,

MobiLink\redirector

On Unix, Linux, and Mac OS X, you should use forward slashes instead. For example,

MobiLink/redirector
♦ Executable files The documentation shows executable file names using Windows conventions, with

the suffix .exe. On Unix, Linux, and Mac OS X, executable file names have no suffix. On NetWare,
executable file names use the suffix .nlm.

For example, on Windows, the network database server is dbsrv10.exe. On Unix, Linux, and Mac OS
X, it is dbsrv10. On NetWare, it is dbsrv10.nlm.

♦ install-dir The installation process allows you to choose where to install SQL Anywhere, and the
documentation refers to this location using the convention install-dir.

After installation is complete, the environment variable SQLANY10 specifies the location of the
installation directory containing the SQL Anywhere components (install-dir). SQLANYSH10 specifies
the location of the directory containing components shared by SQL Anywhere with other Sybase
applications.

For more information on the default location of install-dir, by operating system, see “File Locations and
Installation Settings” [SQL Anywhere Server - Database Administration].

♦ samples-dir The installation process allows you to choose where to install the samples that are
included with SQL Anywhere, and the documentation refers to this location using the convention
samples-dir.

After installation is complete, the environment variable SQLANYSAMP10 specifies the location of the
directory containing the samples (samples-dir). From the Windows Start menu, choosing
Programs ► SQL Anywhere 10 ► Sample Applications and Projects opens a Windows Explorer window
in this directory.

For more information on the default location of samples-dir, by operating system, see “The samples
directory” [SQL Anywhere Server - Database Administration].

♦ Environment variables The documentation refers to setting environment variables. On Windows,
environment variables are referred to using the syntax %envvar%. On Unix, Linux, and Mac OS X,
environment variables are referred to using the syntax $envvar or ${envvar}.

About This Manual

xii Copyright © 2006, iAnywhere Solutions, Inc.

Unix, Linux, and Mac OS X environment variables are stored in shell and login startup files, such
as .cshrc or .tcshrc.

Graphic icons
The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as SQL Anywhere.

♦ An UltraLite application.

♦ A database. In some high-level diagrams, the icon may be used to represent both the database and the
database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data among databases. Examples are
the MobiLink server and the SQL Remote Message Agent.

♦ A Sybase Replication Server

Documentation conventions

Copyright © 2006, iAnywhere Solutions, Inc. xiii

♦ A programming interface.

Interface

About This Manual

xiv Copyright © 2006, iAnywhere Solutions, Inc.

Finding out more and providing feedback
Finding out more

Additional information and resources, including a code exchange, are available at the iAnywhere Developer
Network at http://www.ianywhere.com/developer/.

If you have questions or need help, you can post messages to the iAnywhere Solutions newsgroups listed
below.

When you write to one of these newsgroups, always provide detailed information about your problem,
including the build number of your version of SQL Anywhere. You can find this information by entering
dbeng10 -v at a command prompt.

The newsgroups are located on the forums.sybase.com news server. The newsgroups include the following:

♦ sybase.public.sqlanywhere.general

♦ sybase.public.sqlanywhere.linux

♦ sybase.public.sqlanywhere.mobilink

♦ sybase.public.sqlanywhere.product_futures_discussion

♦ sybase.public.sqlanywhere.replication

♦ sybase.public.sqlanywhere.ultralite

♦ ianywhere.public.sqlanywhere.qanywhere

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information, or ideas on its newsgroups, nor is
iAnywhere Solutions obliged to provide anything other than a systems operator to monitor the service and
ensure its operation and availability.
iAnywhere Solutions Technical Advisors as well as other staff assist on the newsgroup service when they
have time available. They offer their help on a volunteer basis and may not be available on a regular basis
to provide solutions and information. Their ability to help is based on their workload.

Feedback
We would like to receive your opinions, suggestions, and feedback on this documentation.

You can email comments and suggestions to the SQL Anywhere documentation team at
iasdoc@ianywhere.com. Although we do not reply to emails sent to that address, we read all suggestions
with interest.

In addition, you can provide feedback on the documentation and the software through the newsgroups listed
above.

Finding out more and providing feedback

Copyright © 2006, iAnywhere Solutions, Inc. xv

http://www.ianywhere.com/developer/
news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
mailto:iasdoc@ianywhere.com

Part I. Creating QAnywhere
Applications

This part shows you how to set up QAnywhere and write client applications.

CHAPTER 1

Introduction to QAnywhere

Contents
QAnywhere application-to-application messaging ... 4
What QAnywhere does .. 5
QAnywhere architecture .. 7
QAnywhere message delivery ... 12
QAnywhere plug-in .. 13
Quick start ... 14

About this chapter
QAnywhere is a comprehensive application-to-application messaging system for mobile users. It provides
the infrastructure for you to write applications that exchange messages with remote applications located on
a variety of devices running on Windows or Windows CE operating systems.

Copyright © 2006, iAnywhere Solutions, Inc. 3

QAnywhere application-to-application messaging
Application-to-application messaging permits communication between custom programs running on mobile
or wireless devices and a centrally located server application. QAnywhere messaging is a useful application-
to-application communication mechanism in a variety of situations:

♦ It provides messaging between mobile devices and between mobile devices and the enterprise.

♦ It provides communication in occasionally-connected environments.

The store-and-forward nature of messaging means that messages can be constructed even when the
destination application is not reachable over the network; the message is delivered when the network
becomes available.

QAnywhere messages are exchanged via a central server, so that the sender and recipient of a message
never have to be connected to the network at the same time.

♦ It provides network-independent communication.

QAnywhere messages can be transported over TCP/IP, HTTP, or HTTPS protocols. They can also be
delivered from a Windows CE handheld device by ActiveSync. The message itself is independent of the
network protocol, and can be received by an application that communicates over a different network.

QAnywhere handles the challenges of wireless networks, such as slow speed, spotty geographic coverage,
and dropped network connections. It can protect proprietary or sensitive information by encrypting all
messages sent over public networks. You can customize the delivery of messages using transmission rules
so that, for example, messages are transmitted during off-peak hours.

QAnywhere compresses and, optionally, encrypts data sent between mobile applications and enterprise
servers. Furthermore, it implements a store-and-forward messaging paradigm that guarantees message
delivery.

QAnywhere is designed for messaging solutions on a variety of handheld devices. This system provides a
QAnywhere C++, Java, .NET, and SQL API to provide solutions to developers with different skill sets.

QAnywhere permits seamless communication with other messaging systems that have a JMS interface. This
allows integration with J2EE applications.

Introduction to QAnywhere

4 Copyright © 2006, iAnywhere Solutions, Inc.

What QAnywhere does
QAnywhere provides the following application-to-application features and components.

♦ QAnywhere API The object-oriented QAnywhere API provides the infrastructure to build messaging
applications for Windows desktop and Windows CE devices. The QAnywhere API is available in Java,
C++, .NET, and SQL.

♦ Store-and-forward QAnywhere applications store messages locally until a connection between the
client and the server is available for data transmission.

♦ Complements data synchronization QAnywhere applications use relational databases as a
temporary message store. The relational database ensures that the message store has security, transaction-
based computing, and the other benefits of relational databases.

The use of SQL Anywhere relational databases as message stores makes it easy to use QAnywhere together
with a data synchronization solution. Both use MobiLink synchronization as the underlying mechanism
for exchanging information between client and server.

♦ Integration with external messaging systems In addition to exchanging messages among
QAnywhere applications, you can integrate QAnywhere clients into external messaging systems that
support a JMS interface.

♦ Encryption Messages can be sent encrypted using transport-layer security. In addition, messages
stores can be encrypted using simple encryption or any FIPS-approved AES algorithm.

♦ Compression Message content can be stored compressed using the popular ZLIB compression
library.

♦ Authentication You can authenticate QAnywhere clients using a built-in facility or through custom
authentication scripts (including existing authentication services used in your organization).

♦ Multiple networks QAnywhere works over any wired or wireless network that supports TCP/IP or
HTTP.

♦ Failover You can run multiple MobiLink servers so that there are alternate servers in case one fails.

♦ Administration A QAnywhere application can browse and manipulate messages on the client and
server side.

♦ Multiple queues Support for multiple arbitrarily-named queues on client devices permits multiple
client applications to coexist on a single device. Applications can send and receive on any number of
queues. Messages can be sent between applications that are coexisting on the same device and between
applications on different devices.

♦ Server-initiated send and receive QAnywhere can push messages to client devices, allowing
client applications to implement message-driven logic.

♦ Transmission rules You can create rules that specify when message transmission should occur.

♦ Resumable downloads Large messages or groups of messages are sent to QAnywhere clients in
piecemeal fashion to minimize the retransmission of data during network failures.

What QAnywhere does

Copyright © 2006, iAnywhere Solutions, Inc. 5

♦ Guaranteed delivery QAnywhere guarantees the delivery of messages.

♦ Mobile web services Mobile web services facilitate the transport of web service requests and
responses over QAnywhere.

Introduction to QAnywhere

6 Copyright © 2006, iAnywhere Solutions, Inc.

QAnywhere architecture
This section explains the architecture of QAnywhere messaging applications. The discussion begins with a
simple messaging scenario and then progresses to more advanced scenarios.

Client applications send and receive messages using the QAnywhere API. Messages are queued in the client
message store. Message transmission is the exchange of messages between client message stores through a
central QAnywhere server message store.

The following typical messaging scenarios are supported by QAnywhere:

♦ Simple messaging For exchanging messages among QAnywhere clients. Client applications control
when to transmit messages between the client and server message stores.

F See “Simple messaging scenario” on page 7.

♦ Messaging with push notifications For exchanging messages among QAnywhere clients. In this
scenario, the MobiLink server can initiate message transmission between clients. This is done by
exchanging messages between client and server message stores.

F See “Scenario for messaging with push notifications” on page 9.

♦ Messaging with external messaging systems For exchanging messages among QAnywhere
clients or an external system that supplies a JMS provider, such as BEA WebLogic or Sybase EAServer.

F See “Scenario for messaging with external messaging systems” on page 11.

Push notifications and external messaging systems can be used together, providing the most general solution.

Simple messaging scenario

A simple QAnywhere messaging setup is illustrated in the following diagram. For simplicity, only a single
client is shown. However, a typical scenario has multiple clients with the server message store existing to
transmit messages between them.

QAnywhere architecture

Copyright © 2006, iAnywhere Solutions, Inc. 7

MobiLink
synchronization
server with
messaging

Client
message
store

QAnywhere
Agent

QAnywhere
client
application

Server
message
store

Messaging

Server

Client

This setup includes the following components:

♦ Server message store At the server, the messages are stored in a relational database. The database
must be set up as a MobiLink consolidated database, and may be any supported consolidated database
(SQL Anywhere, Adaptive Server Enterprise, Microsoft SQL Server, DB2, or Oracle).

♦ Client message store The messages at each client are also stored in a relational database. The
database used is SQL Anywhere.

♦ MobiLink server with messaging MobiLink synchronization provides the transport for
transmitting and tracking messages between QAnywhere clients and the server. MobiLink provides
security, authentication, encryption, and flexibility. It also allows messaging to be combined with data
synchronization.

To manage QAnywhere message transmission, the MobiLink server must be started with messaging
enabled. You do this by supplying the MobiLink server -m command line option.

F For more information, see “Starting the MobiLink server for QAnywhere messaging” on page 31.

♦ QAnywhere Agent The QAnywhere Agent manages the transmission of messages on the client side.
This process is independent of QAnywhere client applications.

F For more information, see “Running the QAnywhere Agent” on page 35.

♦ QAnywhere client application An application written using the QAnywhere C++, Java, or .NET
API makes method calls to send and receive messages. The basic object used by the client application is
the QAManager.

Introduction to QAnywhere

8 Copyright © 2006, iAnywhere Solutions, Inc.

F For information about writing applications using the QAnywhere API, see “Writing QAnywhere
Client Applications” on page 45.

Messages are sent and received by QAnywhere clients. Messages at the server will not be picked up until
the client initiates a message transmission. QAnywhere clients use policies to determine when to carry out
a message transmission. Policies include on-demand, automatic, scheduled, and custom. The on-demand
policy permits the user to control message transmission. The automatic policy initiates a message
transmission whenever a message to or from the client is ready for delivery.

F For more information, see “Determining when message transmission should occur on the
client” on page 36.

Scenario for messaging with push notifications

A push notification is a special message delivered from the server to a QAnywhere client. The push
notification occurs when a message arrives at the server message store. The messaging server automatically
notifies the recipient client Listener of the push request. The client initiates message transmission to receive
messages waiting at the server or takes a custom action.

F For more information about the client's response to a push notification, see “Determining when message
transmission should occur on the client” on page 36.

Push notifications introduce two extra components to the QAnywhere architecture. At the server, a
QAnywhere Notifier sends push notifications. At the client, a QAnywhere Listener receives these push
notifications and passes them on to the QAnywhere Agent.

If you do not use push notifications, messages are still transmitted from the server message store to the client
message store, but the transmission must be initiated at the client, such as by using a scheduled transmission
policy.

The architecture for messaging with push notifications is an extension of that described in “Simple messaging
scenario” on page 7. The following diagram shows this architecture:

QAnywhere architecture

Copyright © 2006, iAnywhere Solutions, Inc. 9

MobiLink
synchronization
server with
messaging

Client
message
store

QAnywhere
Agent

QAnywhere
client
application

Server
message
store

Messaging

Server

Client

Notifier

Listener

The following components are added to the “Simple messaging scenario” on page 7 enable push notification:

♦ QAnywhere Notifier The Notifier is the component of the MobiLink server that is used to deliver
push notifications.

The QAnywhere Notifier is a specially configured instance of the Notifier that sends push notifications
when a message is ready for delivery.

♦ QAnywhere Listener The QAnywhere Listener is a separate process that runs at the client. It receives
push notifications and passes them on to the QAnywhere Agent. QAnywhere Agent policies determine if
push notifications automatically cause message transmission.

F For more information, see “Determining when message transmission should occur on the
client” on page 36.

See also
♦ “Using push notifications” on page 41
♦ “Receiving messages asynchronously” on page 76
♦ “Introducing Server-Initiated Synchronization” [MobiLink - Server-Initiated Synchronization]

Introduction to QAnywhere

10 Copyright © 2006, iAnywhere Solutions, Inc.

Scenario for messaging with external messaging systems

In addition to exchanging messages among QAnywhere applications, you can exchange messages with
systems that have a JMS interface using a specially configured client known as a connector. JMS is the Java
Message Service API for adding messaging capabilities to Java applications.

The external messaging system is set up to act like a special client. It has its own address and configuration.

The architecture for messaging with external messaging systems is an extension of the architecture described
in “Simple messaging scenario” on page 7. The following diagram shows this architecture:

MobiLink
synchronization
server with
messaging

Client
message
store

QAnywhere
Agent

QAnywhere
client
application

Server
message
store

Messaging

Server

Client

Connector

External JMS
system

JMS
application

The component that is added to “Simple messaging scenario” on page 7 in order to enable messaging with
an external messaging system is as follows:

♦ QAnywhere JMS Connector The JMS Connector provides an interface between QAnywhere and
the external messaging system.

The JMS Connector is a special QAnywhere client that moves messages between QAnywhere and the
external JMS system.

See also
♦ “JMS Connectors” on page 127
♦ “Tutorial: Using JMS connectors” on page 141

QAnywhere architecture

Copyright © 2006, iAnywhere Solutions, Inc. 11

QAnywhere message delivery
Messages are sent from a client message store to a server message store, and then on to another client message
store. QAnywhere does this via queues: a message is put on a queue in the client message store; when it is
received by the server message store, it is put on a queue for delivery to one or more client message stores;
and when it is received by a client message store, it is put on a queue for pickup.

Once a message is sent, it will be delivered unless one of the following occurs:

♦ The message expires (only if an expiration is specified).

♦ The message is cancelled via Sybase Central.

♦ The device from which the message is sent is lost unrecoverably before it can synchronize with the server
message store (or for some other reason, synchronization is impossible).

A message will not be delivered more than once. If an application successfully acknowledges or commits
the receipt of a message, then the same message will not be delivered again. There is a possible exception
with JMS servers: in the event of the MobiLink server or JMS server crashing, there is a possibility that a
message will be delivered twice.

Introduction to QAnywhere

12 Copyright © 2006, iAnywhere Solutions, Inc.

QAnywhere plug-in
The Sybase Central QAnywhere plug-in helps you create and administer your QAnywhere application. With
the plug-in, you can:

♦ Create client and server message stores.

♦ Create and maintain configuration files for the QAnywhere Agent.

♦ Browse QAnywhere Agent log files.

♦ Create or modify destination aliases.

♦ Create JMS connectors and web service connectors.

♦ Create and maintain transmission rules files.

♦ Browse message stores remotely.

♦ Track messages.

♦ To start the QAnywhere plug-in

1. Start Sybase Central:

Choose Start ► Programs ► SQL Anywhere 10 ► Sybase Central.

2. From Connections, choose Connect with QAnywhere 10.

3. Specify an ODBC data source name or file, and a user ID and password if required.

4. Click OK.

QAnywhere plug-in

Copyright © 2006, iAnywhere Solutions, Inc. 13

Quick start
The following steps provide an overview of the tasks required to set up and run QAnywhere messaging.

♦ To set up and run QAnywhere messaging

1. Set up a server message store or use an existing MobiLink consolidated database.

F See “Setting up the server message store” on page 30.

2. Start the MobiLink server with the -m option and a connection to the server message store.

F See “Starting the MobiLink server for QAnywhere messaging” on page 31.

3. Set up client message stores. These are SQL Anywhere databases that are used to temporarily store
messages.

F See “Setting up the client message store” on page 33.

4. For each client, write a messaging application.

F See “Writing QAnywhere Client Applications” on page 45.

5. If you want to integrate with an external JMS messaging system, set up JMS messaging for QAnywhere.

F See “JMS Connectors” on page 127.

6. For each client, start the QAnywhere Agent with a connection to the local client message store.

F See “Running the QAnywhere Agent” on page 35.

F For information about setting up mobile web services, see “Mobile Web Services” on page 181.

Other resources for getting started
♦ “Tutorial: Exploring TestMessage” on page 15
♦ “Tutorial: Using JMS connectors” on page 141
♦ Sample applications are installed to samples-dir\QAnywhere. For information about samples-dir, see

“The samples directory” [SQL Anywhere Server - Database Administration].

Introduction to QAnywhere

14 Copyright © 2006, iAnywhere Solutions, Inc.

CHAPTER 2

Tutorial: Exploring TestMessage

Contents
About the tutorial ... 16
Lesson 1: Start MobiLink with messaging ... 17
Lesson 2: Run the TestMessage application ... 20
Lesson 3: Send a message ... 22
Lesson 4: Explore the TestMessage client source code ... 23
Tutorial cleanup ... 27

About this chapter
This tutorial explores the capabilities of QAnywhere through a sample client application named
TestMessage. QAnywhere applications can run on many devices, such as PDAs, laptops, and tablets,
extending application-to-application messaging to these devices. However, for demonstration purposes, this
tutorial runs the client on a Windows computer.

Copyright © 2006, iAnywhere Solutions, Inc. 15

About the tutorial
TestMessage is a sample QAnywhere client application. This application demonstrates how you can use
QAnywhere to create your own messaging client applications. TestMessage provides a single client-to-client
interface to send, receive, and display messages. Being human-readable, text messages provide a useful
demonstration of QAnywhere messaging, but QAnywhere provides much more than text messaging. It is a
general purpose application-to-application messaging system that provides message-based communication
among many clients.

The tutorial is written for a Windows desktop system. While these platforms are convenient for demonstration
purposes, you can also use the QAnywhere API to write applications that run on Windows CE devices.
Source code is provided for Windows CE for C++, Visual Basic .NET, C#, and Java. There is also a C#
version written on the .NET Compact Framework.

Tutorial: Exploring TestMessage

16 Copyright © 2006, iAnywhere Solutions, Inc.

Lesson 1: Start MobiLink with messaging
Background

QAnywhere uses MobiLink synchronization to send and receive messages. All messages from one client to
another are delivered through a central MobiLink server. The architecture of a typical system, with only two
QAnywhere clients, is shown in the following diagram.

Messaging

MobiLink synchronization
server with messaging

Server
message
store

Messaging

Client
message
store

QAnywhere
Agent

QAnywhere
client
application

Client

Client
message
store

QAnywhere
Agent

QAnywhere
client
application

Server

Client

The server message store is a database configured for use as a MobiLink consolidated database. The
TestMessage sample uses a SQL Anywhere consolidated database as its server message store.

The only tables needed in the server message store are the MobiLink system tables that are included in any
supported database that is set up as a MobiLink consolidated database.

The system tables are maintained by MobiLink. A relational database provides a secure, high performance
message store. It enables you to easily integrate messaging into an existing data management and
synchronization system.

QAnywhere messaging is usually carried out over separate computers, but in this tutorial all components
are running on a single computer. It is important to keep track of which activities are client activities and
which are server activities.

Lesson 1: Start MobiLink with messaging

Copyright © 2006, iAnywhere Solutions, Inc. 17

In this lesson, you carry out actions at the server.

Activity
The MobiLink server can be started with messaging by supplying the -m option, as well as specifying a
connection string to the server message store. The TestMessage sample uses a QAnywhere sample database
for the server message store. For the TestMessage sample, you can start the MobiLink server for messaging
using the command line options, using a sample shortcut in your SQL Anywhere installation, or with the
QAnywhere plug-in to Sybase Central.

♦ Start the messaging server

1. From the Windows Start menu, choose Programs ► SQL Anywhere 10 ► MobiLink ► MobiLink
with Messaging Sample.

Alternatively, at a command prompt, navigate to samples-dir\QAnywhere\server and type the following
command:

mlsrv10 -m -c "dsn=QAnywhere 10 Demo" -vcrs -zu+

This command line uses the following mlsrv10 options:

Option Description

-m The -m option enables messaging.

F See “-m option” [MobiLink - Server Administration].

-c The -c option specifies the connection string to the server message store, in this case
using the QAnywhere 10.0 Demo ODBC data source.

F See “-c option” [MobiLink - Server Administration].

-vcrs The -vcrs option provides verbose logging of server activities, which is useful during
development.

F See “-v option” [MobiLink - Server Administration].

-zu+ The -zu+ option automatically adds user names to the system; this is convenient for
tutorial or development purposes but is not normally used in a production environment.

F See “-zu option” [MobiLink - Server Administration].

2. Move the MobiLink server window to the center of your screen, which represents the server in this
tutorial.

Once the MobiLink server is started, you can move on to the next lesson.

Further reading
♦ “Starting the MobiLink server for QAnywhere messaging” on page 31
♦ “-m option” [MobiLink - Server Administration]
♦ “Quick start” on page 14

Tutorial: Exploring TestMessage

18 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “Simple messaging scenario” on page 7

Lesson 1: Start MobiLink with messaging

Copyright © 2006, iAnywhere Solutions, Inc. 19

Lesson 2: Run the TestMessage application
Background

TestMessage is a simple application that uses QAnywhere to send and receive text messages. Text messaging
is used in this tutorial because it provides a simple and accessible demonstration of messaging. QAnywhere
is, however, not just a text messaging system; it provides general purpose application-to-application
messaging.

In this lesson, you are carrying out activities at a client. Typically, clients run on separate computers from
the server.

In this lesson, you start the client message store that is part of the TestMessage sample. In Lesson 3, you
will use this message store to send a message to another client message store.

Activity
♦ To start the QAnywhere Agent with the TestMessage client message store

1. From the Start menu, choose Programs ► SQL Anywhere 10 ► QAnywhere ► Agent for Client1
Sample.

This starts an instance of the QAnywhere Agent. This Agent connects to the first TestMessage sample
client message store and manages message transmission to and from this message store.

2. Move the first QAnywhere Agent window to the right side of your screen, which represents the first
client in this tutorial.

3. From the Start menu, choose Programs ► SQL Anywhere 10 ► QAnywhere ► Agent for Client2
Sample.

This starts another instance of the QAnywhere Agent. This Agent connects to the second TestMessage
sample client message store and manages message transmission to and from this message store.

4. Move the second QAnywhere Agent window to the left side of your screen, which represents the second
client in this tutorial.

5. Each of the QAnywhere Agent windows displays a client message store ID, called client1 and client2.

♦ To start TestMessage

1. From the Windows Start menu, choose Programs ► SQL Anywhere 10 ► QAnywhere ► TestMessage
for Client1 Sample.

The TestMessage window is displayed. The application is connected to the first TestMessage client
message store that you started in the above procedure.

2. Move the TestMessage window to the right side of your screen, together with the first QAnywhere
Agent. Both these components belong on the first client.

3. Check the message queue.

Tutorial: Exploring TestMessage

20 Copyright © 2006, iAnywhere Solutions, Inc.

From the TestMessage - client 1 Tools menu, choose Options. You will see that the queue name
testmessage is specified. This is the queue that the TestMessage application is listening on for
incoming messages. Do not change this name.

4. From the Windows Start menu, choose Programs ► SQL Anywhere 10 ► QAnywhere ► TestMessage
for Client2 Sample.

The TestMessage window is displayed. The application is connected to the second TestMessage client
message store that you started in the above procedure.

5. Move the TestMessage window to the left side of your screen, together with the second QAnywhere
Agent. Both these components belong on the second client.

6. Check the message queue.

From the TestMessage - client 2 Tools menu, choose Options. You will see that the queue name
testmessage is specified. This is the queue that the TestMessage application is listening on for
incoming messages. Do not change this name.

Discussion

You can configure the way that the QAnywhere Agent monitors messages by setting a message transmission
policy. This sample starts the QAnywhere Agent using the automatic policy.

♦ scheduled This policy setting instructs the QAnywhere Agent to transmit messages periodically. If
you don't specify an interval, the default is 15 minutes.

♦ automatic This default policy setting causes the QAnywhere Agent to transmit messages whenever
a message to or from the client message store is ready for delivery.

♦ ondemand This policy setting causes the QAnywhere Agent to transmit messages only when
instructed to by an application.

♦ custom In this mode, you provide a set of rules to specify more complicated transmission behavior.

QAnywhere messages are delivered to a QAnywhere address, which consists of a client message store ID
and a queue name. The default ID is the computer name on which the QAnywhere Agent is running. Each
message store requires its own QAnywhere Agent. Each application can listen to multiple queues, but each
queue should be specific to a single application.

Further reading
♦ “Running the QAnywhere Agent” on page 35
♦ “Determining when message transmission should occur on the client” on page 36
♦ “qaagent syntax” on page 145
♦ “QAnywhere Transmission and Delete Rules” on page 225
♦ “Writing QAnywhere Client Applications” on page 45
♦ QAnywhere samples, which are installed to samples-dir\QAnywhere. (For more information about

samples-dir, see “The samples directory” [SQL Anywhere Server - Database Administration].)

Lesson 2: Run the TestMessage application

Copyright © 2006, iAnywhere Solutions, Inc. 21

Lesson 3: Send a message
Background

The TestMessage sample includes two client message stores, which you started in Lesson 1. In this lesson
you will send a message from the TestMessage client1 application to the TestMessage client2 application.

Activity
♦ To send a message from TestMessage

1. From the TestMessage - client1 Message menu, choose New. The New Message window appears.

2. In the Destination ID field, enter client2. (Leave testmessage in the Destination Queue field.)

3. Fill out the Subject and Message fields with sample text, and click Send.

When testing messaging, it is often useful to use the current time as a subject line to make it easy to
track individual messages.

An Alert appears.

4. Read the message.

Switch to the TestMessage client2 window. Select the message to display its contents in the bottom
pane of the window.

Discussion
Like other QAnywhere applications, TestMessage uses the QAnywhere API to manage messages. The
QAnywhere API is supplied as a C++ API, a Java API, a Microsoft .NET API, and a SQL API.

Further reading
♦ “QAnywhere message addresses” on page 50
♦ “Sending QAnywhere messages” on page 66
♦ “Message delete rules” on page 239

Tutorial: Exploring TestMessage

22 Copyright © 2006, iAnywhere Solutions, Inc.

Lesson 4: Explore the TestMessage client source code
Background

This section of the tutorial takes you on a brief tour of the source code behind the TestMessage client
application.

A good deal of the code implements the Windows interface, through which you can send, receive, and view
the messages. This portion of the tutorial, however, focuses on the portions of the code given to QAnywhere.

You can find the TestMessage source code in the samples-dir\QAnywhere.

Several versions of the TestMessage source code are provided. The following versions are provided for
Windows 2000 and Windows XP:

♦ A C++ version built using the Microsoft Foundation Classes is provided as Samples\QAnywhere\Desktop
\MFC\TestMessage\TestMessage.sln.

♦ A Visual Basic .NET version built on the .NET Framework is provided as Samples\QAnywhere\Desktop
\.NET\VB\TestMessage\TestMessage.sln.

♦ A C# version built on the .NET Framework is provided as Samples\QAnywhere\Desktop\.NET\CS
\TestMessage\TestMessage.sln.

♦ A Java version is provided as Samples\QAnywhere\Java\TestMessage\TestMessage.java.

The following version is provided for Pocket PC:

♦ A C# version built on the .NET Compact Framework is provided as Samples\QAnywhere\PocketPC
\.NET\CS\TestMessage\TestMessage.sln.

Required software
Visual Studio .NET 2003 or later is required to open the solution files and build the .NET Framework projects
and the .NET Compact Framework project.

Exploring the C# source
This section takes you through the C# source code. The two versions are structured in a very similar manner.

Rather than look at each line in the application, this lesson highlights particular lines that are useful for
understanding QAnywhere applications. It uses the C# version to illustrate these lines.

1. Open the version of the TestMessage project that you are interested in.

Double-click the solution file to open the project in Visual Studio .NET. For example, Samples
\QAnywhere\Desktop\.NET\CS\TestMessage\TestMessage.sln is a solution file. There are several
solution files for different environments.

2. Ensure the Solution Explorer is open.

You can open the Solution Explorer from the View menu.

3. Inspect the Source Files folder.

Lesson 4: Explore the TestMessage client source code

Copyright © 2006, iAnywhere Solutions, Inc. 23

There are two files of particular importance. The MessageList file (MessageList.cs) receives messages
and lets you view them. The NewMessage file (NewMessage.cs) allows you to construct and send
messages.

4. From the Solution Explorer, open the MessageList file.

5. Inspect the included namespaces.

Every QAnywhere application requires the iAnywhere.QAnywhere.Client namespace. The assembly
that defines this namespace is supplied as the DLL iAnywhere.QAnywhere.Client.dll. The locations for
this file are (relative to your SQL Anywhere installation directory):

♦ .NET Framework 1.1: \Assembly\v1
♦ .NET Framework 2.0: \Assembly\v2
♦ .NET Compact Framework 1.0: ce\Assembly\v1
♦ .NET Compact Framework 2.0: ce\Assembly\v2

For your own projects, you must include a reference to this DLL when compiling. The namespace is
included using the following line at the top of each file:

using iAnywhere.QAnywhere.Client;
6. Inspect the startReceiver method.

This method performs initialization tasks that are common to QAnywhere applications:

♦ Create a QAManager object.

_qaManager =
QAManagerFactory.Instance.CreateQAManager(null);

QAnywhere provides a QAManagerFactory object to create QAManager objects. The QAManager
object handles QAnywhere messaging operations: in particular, receiving messages (getting
messages from a queue) and sending messages (putting messages on a queue).

QAnywhere provides two types of manager: QAManager and QATransactionalManager. When
using QATransactionalManager, all send and receive operations occur within a transaction, so that
either all messages are sent (or received) or none are.

♦ Write a method to handle messages.

The onMessage() method is called by QAnywhere to handle regular non-system messages. The
message it receives is encoded as a QAMessage object. The QAMessage class and its children,
QATextMessage and QABinaryMessage, provide properties and methods that hold all the
information QAnywhere applications need about a message.

private void onMessage(QAMessage msg) {
 Invoke(new onMessageDelegate(onMessageReceived),
 new Object [] { msg });
}

This code uses the Invoke method of the Form to cause the event to be processed on the thread that
runs the underlying window so that the user interface can be updated to display the message. This

Tutorial: Exploring TestMessage

24 Copyright © 2006, iAnywhere Solutions, Inc.

is also the thread that created the QAManager. With some exceptions, the QAManager can only be
accessed from the thread that created it.

♦ Declare a MessageListener.

_receiveListener = new
 QAManager.MessageListener(onMessage);

The OnMessage() method is called whenever a message is received by the QAnywhere Agent and
placed in the queue that the application listens to.

Message listeners and notification listeners
Message listeners are different from the Listener component described in “Scenario for messaging
with push notifications” on page 9. The Listener component receives notifications, while message
listener objects retrieve messages from the queue.

When you set a message listener for the queue, the QAnywhere Manager passes messages that arrive
on that queue to that listener. Only one listener can be set for a given queue. Setting with a null listener
clears out any listener for that queue.

The MessageListener implementation receives messages asynchronously. You can also receive
messages synchronously; that is, the application explicitly goes and looks for messages on the queue,
perhaps in response to a user action such as clicking a Refresh button, rather than being notified when
messages appear.

Other initialization tasks include:

♦ Open and start the QAManager object.

_qaManager.Open(
 AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);
_qaManager.Start();

The AcknowledgementMode enumeration constants determine how the receipt of messages is
acknowledged to the sender. The EXPLICIT_ACKNOWLEDGEMENT constant indicates that
messages are not acknowledged until a call to one of the QAManager acknowledge methods is
made.

♦ Load any messages that are waiting in the queue.

loadMessages();
♦ Assign a listener to a queue for future messages.

The listener was declared in the MessageList_Load() method.

_qaManager.SetMessageListener(
 _options.ReceiveQueueName,
 _receiveListener);

The Options ReceiveQueueName property contains the string testmessage, which is the
TestMessage queue as set in the TestMessage Options dialog.

Lesson 4: Explore the TestMessage client source code

Copyright © 2006, iAnywhere Solutions, Inc. 25

7. Inspect the addMessage() method in the same file.

This method is called whenever the application receives a message. It gets properties of the message
such as its reply-to address, preferred name, and the time it was sent (Timestamp), and displays the
information in the TestMessage user interface. The following lines cast the incoming message into a
QATextMessage object and get the reply-to address of the message:

text_msg = (QATextMessage)msg;
from = text_msg.ReplyToAddress;

This completes a brief look at some of the major tasks carried out in the MessageList file.

8. From the Solution Explorer, open the NewMessage file.

9. Inspect the sendMessage() method.

This method takes the information entered in the New Message dialog and constructs a QATextMessage
object. The QAManager then puts the message in the queue to be sent.

Here are the lines that create a QATextMessage object and set its ReplyToAddress property:

qa_manager = MessageList.GetQAManager();
msg = qa_manager.CreateTextMessage();
msg.ReplyToAddress = MessageList.getOptions().ReceiveQueueName;

Here are the lines that put the message in the queue to be sent. The variable to is the destination address,
supplied as an argument to the function.

qa_manager.PutMessage(dest, msg);

Further reading
♦ “QAnywhere C++ API Reference” on page 391
♦ “iAnywhere.QAnywhere.Client namespace (.NET)” on page 244
♦ “Writing QAnywhere Client Applications” on page 45
♦ The TestMessage sample, which is installed to samples-dir\QAnywhere. (For information about samples-

dir, see “The samples directory” [SQL Anywhere Server - Database Administration].)

Tutorial: Exploring TestMessage

26 Copyright © 2006, iAnywhere Solutions, Inc.

Tutorial cleanup
Shut down all instances of TestMessage, the QAnywhere Agent, and the MobiLink server.

Tutorial cleanup

Copyright © 2006, iAnywhere Solutions, Inc. 27

CHAPTER 3

Setting Up QAnywhere Messaging

Contents
Setting up server-side components ... 30
Setting up client-side components ... 33
Using push notifications ... 41
Setting up a failover mechanism ... 42

About this chapter
This chapter describes how to set up and run QAnywhere messaging.

QAnywhere uses MobiLink synchronization to transport messages. This chapter describes how to set up and
run the MobiLink server with messaging.

Copyright © 2006, iAnywhere Solutions, Inc. 29

Setting up server-side components

♦ Overview of setting up QAnywhere server-side components

1. Set up a server message store and start it. This can be any MobiLink consolidated database.

F See “Setting up the server message store” on page 30.

2. Start mlsrv10 with the -m option and a connection to the server message store.

F See “Starting the MobiLink server for QAnywhere messaging” on page 31.

3. Add client user names to the server message store.

F See “Registering client user names” on page 31.

Setting up the server message store

The server message store is a relational database on the server that temporarily stores messages until they
are transmitted to a client message store, web service or JMS system. Messages are exchanged between
clients via the server message store.

A server message store is a MobiLink consolidated database, and so can be any RDBMS that MobiLink
supports (SQL Anywhere, Adaptive Server Enterprise, Microsoft SQL Server, Oracle, or DB2). You can
create a new database for this purpose, or use an existing database.

To set up a database to use as a MobiLink consolidated database (and hence a server message store), you
must run a setup script.

F See “Setting up a consolidated database” [MobiLink - Server Administration].

F For information about creating SQL Anywhere databases, see “The Initialization utility” [SQL Anywhere
Server - Database Administration].

If you are using a SQL Anywhere database that was created before version 9.0.2, it must be upgraded.

F For information on upgrading your database, see “Upgrading to SQL Anywhere 10” [SQL Anywhere 10
- Changes and Upgrading].

Example
To create a SQL Anywhere database called qanytest.db, type the following at a command prompt:

dbinit -n -s qanytest.db

Run the MobiLink setup script on the database:

%SQLANY10%\MobiLink\setup\syncsa.sql

This database is ready to use as a server message store.

Setting Up QAnywhere Messaging

30 Copyright © 2006, iAnywhere Solutions, Inc.

Starting the MobiLink server for QAnywhere messaging

QAnywhere uses MobiLink synchronization to transport messages. To use QAnywhere messaging, you must
start the MobiLink server (mlsrv10) with the following options:

♦ -c connection-string Specifies the connection string to connect to the server message store.

F See “-c option” [MobiLink - Server Administration].

♦ -m Enables QAnywhere messaging.

F See “-m option” [MobiLink - Server Administration].

F You can also use other MobiLink server options to customize your operations. For more information,
see “mlsrv10 syntax” [MobiLink - Server Administration].

Notes
♦ If you are integrating with a JMS messaging system, there are other options you must specify when you

start the MobiLink server.

See “Starting the MobiLink server for JMS integration” on page 131.

Example
To start QAnywhere messaging when you are using a server message store called qanyserv.db, navigate to
samples-dir\QAnywhere\server and type the following at a command prompt (all on one line):

mlsrv10 -m
 -c "dsn=QAnywhere 10 Demo"

For information about samples-dir, see “The samples directory” [SQL Anywhere Server - Database
Administration].

Registering client user names

Each client message store has a unique ID that identifies it. In addition, the client message store has a
MobiLink user name that you can optionally use to authenticate your client message store with the MobiLink
server. You can specify a MobiLink user name with the qaagent -mu option, or if you do not, one is created
with the same name as your client message store ID.

You must register the MobiLink user name with the server message store. There are several methods for
doing this:

♦ Use the mluser utility.

For more information, see “MobiLink user authentication utility [mluser]” [MobiLink - Server
Administration].

Setting up server-side components

Copyright © 2006, iAnywhere Solutions, Inc. 31

♦ Use MobiLink Admin mode in Sybase Central.

♦ Specify the -zu+ option with mlsrv10. In this case, any existing MobiLink users that have not been added
to the consolidated database are added when they first synchronize. This is useful during development,
but is not recommended for production environments.

For more information, see “-zu option” [MobiLink - Server Administration].

F For more information about MobiLink user names, see “About MobiLink users” [MobiLink - Client
Administration].

F For more information about client message store IDs, see “-id option” on page 152.

Setting properties for clients on the server
As a convenience, you can use the QAnywhere plug-in to set properties for clients on the server. When you
do this, you need to add the client to the server. The first time you synchronize to the client, the properties
will be downloaded.

♦ To add a client user name using Sybase Central

1. Start Sybase Central:

♦ Choose Start ► Programs ► SQL Anywhere 10 ► Sybase Central.

♦ From Connections, choose Connect with QAnywhere 10.

♦ Specify an ODBC data source name or file, and a user ID and password if required. Click OK.

2. Choose File ► New ► Client.

3. Type the name of the client.

4. Click OK.

See also
♦ “Registering client user names” on page 31

Setting Up QAnywhere Messaging

32 Copyright © 2006, iAnywhere Solutions, Inc.

Setting up client-side components

♦ Overview of setting up client-side components

1. Create a SQL Anywhere database and initialize it as a client message store.

F See “Setting up the client message store” on page 33.

2. Write client applications.

F See “Writing QAnywhere Client Applications” on page 45.

3. Start the QAnywhere Agent.

F See “Running the QAnywhere Agent” on page 35.

Setting up the client message store

The client message store is a SQL Anywhere database on the remote device. The application connects to
this message store using the QAnywhere API.

Using a relational database as a message store provides a secure and high-performance store.

F See also: “Creating a secure client message store” on page 176.

♦ To create a client message store

1. Create a SQL Anywhere database.

Note: QAnywhere does not use or manage a transaction log. You can create a database with a transaction
log if you want to use one for backups or other uses, but it may grow very large. In most cases, it is
recommended that your client message store not have a transaction log.

F See “Creating a database” [SQL Anywhere Server - SQL Usage].

2. Initialize each client message store by running the QAnywhere Agent (qaagent) with the following
options:

♦ -c option to specify a connection string to the database you just created.

F See “-c option” on page 148.

♦ -si option to initialize the database. The -si option creates a default database user and password.
The QAnywhere agent shuts down after initializing the database.

F See “-si option” on page 169.

♦ -id option optionally, if you want to pre-assign a client message store ID.

Setting up client-side components

Copyright © 2006, iAnywhere Solutions, Inc. 33

F See “Creating client message store IDs” on page 34 and “-id option” on page 152.

♦ -mu option optionally, if you want to create a user name to use for authentication with the
MobiLink server. If you do not use -mu at this point, you can specify it any time you start the
QAnywhere Agent and the name will be created if it does not already exist.

3. If you used the -mu option to create a user name, you need to add the name to the server message store.
This can be done automatically using the mlsrv10 -zu+ option, or can be done in other ways.

F See “Registering client user names” on page 31.

4. Change the default passwords and take other steps to ensure that the client message store is secure.

F See “Creating a secure client message store” on page 176.

You can also upgrade a client message store that was created in a previous version of QAnywhere.

F See “-su option” on page 170 and “-sur option” on page 171.

Creating client message store IDs
Client message store IDs can be set in various ways:

♦ You can specify the ID with the qaagent -id option when you use the qaagent -si option to initialize the
client message store.

♦ You can specify the ID with the -id option the first time you run qaagent after you initialize the client
message store.

♦ If you do not specify an ID in either of the previous ways, then the first time you run qaagent after you
run qaagent with -si, the device name is assigned as the client message store ID. The ID appears in the
QAnywhere Agent window.

F For more information, see “QAnywhere Agent” on page 143.

Example of creating a client message store
The following command creates a SQL Anywhere database called qanyclient.db. (The dbinit -i and -s options
are not required, but are good practice on small devices.)

dbinit -i -n -s qanyclient.db

The following command connects to qanyclient.db and initializes it as a QAnywhere client database:

qaagent -si -c "DBF=qanyclient.db"

F For more information about dbinit, see “Initialization utility (dbinit)” [SQL Anywhere Server - Database
Administration].

Setting Up QAnywhere Messaging

34 Copyright © 2006, iAnywhere Solutions, Inc.

Running the QAnywhere Agent

The QAnywhere Agent (qaagent) is a separate process running on the client device. It monitors the client
message store and determines when message transmission should occur.

The QAnywhere Agent transmits messages between the server message store and the client message store.
You can run multiple instances of the QAnywhere Agent on the same device, but each instance must be
connected to its own message store. Each message store must have a unique message store ID.

You can run the Agent on the command line using command line options. At a minimum, you need to start
the Agent with the following options:

♦ Connection parameters to connect to the client message store.

In the Agent command file properties dialog, this is the information on the Message Store tab.

In the qaagent command line, this is specified with the -c option.

F See “-c option” on page 148.

♦ Client message store ID to identify the client message store. The first time you run qaagent after
you have initialized a client message store, you can optionally use this option to name the message store;
if you do not, the device name is used by default. After that, you must use the -id option every time you
start qaagent to specify a unique client message store ID.

In the Agent Command file properties dialog, this is specified on the General tab.

In the qaagent command line, this is specified with the -id option.

F See “-id option” on page 152.

♦ Network protocol and protocol options to connect to the MobiLink server. This is required unless
the MobiLink server is running on the same device as the QAnywhere agent and default communication
parameters are used.

In the Agent command file properties dialog, this is the server information on the Server tab.

In the qaagent command line, this is the -x option.

F See “-x option” on page 173.

F For a complete list of all QAnywhere Agent options, see “qaagent syntax” on page 145.

Starting qaagent on Windows CE

On Windows CE, you might want to start the QAnywhere Agent in quiet mode by specifying the -qi option.

F See “-qi option” on page 168.

Running multiple instances of QAnywhere Agent
You can run multiple instances of qaagent on a device. However, when you start a second instance:

Setting up client-side components

Copyright © 2006, iAnywhere Solutions, Inc. 35

♦ The second instance of QAnywhere Agent must be started with a different database file.

♦ You must specify a unique message store ID using the -id option.

See “-id option” on page 152.

Stopping QAnywhere Agent

To stop the QAnywhere Agent, click Shutdown on the console.

When you start the QAnywhere Agent in quiet mode, you can only stop it by running qastop.

F See “-qi option” on page 168.

Processes started by QAnywhere Agent
The QAnywhere Agent starts other processes to handle various messaging tasks. Each of these processes is
managed by the QAnywhere Agent, and does not need to be managed separately. When you start the
QAnywhere Agent, it spawns the following processes:

♦ dbmlsync The dbmlsync executable is the MobiLink synchronization client. MobiLink
synchronization is used to send and receive messages, so the dbmlsync executable is required.

♦ dblsn The dblsn executable is the Listener utility. It receives push notifications. If you are not using
push notifications, you do not need to supply the dblsn executable when you deploy your application, and
you must run qaagent with -push none.

F See “-push option” on page 165.

♦ database server The client message store is a SQL Anywhere database. QAnywhere Agent requires
the SQL Anywhere database server to run the database. For Windows CE, the database server is
dbsrv10.exe. For Windows, the database server is the personal database server dbeng10.exe.

The QAnywhere Agent can spawn a database server or connect to a running server, depending on the
communication parameters that you specify in the qaagent -c option.

F See “-c option” on page 148.

Deploying QAnywhere Agent

F For deployment information, see “Deploying QAnywhere applications” on page 89.

Determining when message transmission should occur on the client

On the client side, you determine when message transmission should occur by specifying policies. A policy
tells the QAnywhere Agent when a message should be moved from the client message store to the server
message store. If you do not specify a policy, transmission occurs automatically when a message is queued
for delivery to the server by default. There are three pre-defined policies: scheduled, automatic, and
ondemand, as well as a custom policy.

You can speciy policies in two ways:

Setting Up QAnywhere Messaging

36 Copyright © 2006, iAnywhere Solutions, Inc.

♦ Using the QAnywhere plug-in in Sybase Central, choose the task Create an Agent Command File.
Policies are specified on the General tab of the command file Properties dialog.

To specify custom properties, you must also choose the task Create an Agent Rule File. This task creates
a file with a .qar extension; this extension is a Sybase Central convention.

♦ Run qaagent on the command line using the -policy option. For custom policies, create a rules file and
specify it.

Scheduled policy
The scheduled policy instructs the Agent to perform a transmission at a specified time interval.

To invoke a schedule, choose scheduled in the command file Properties dialog or specify the keyword when
you start the QAnywhere Agent:

qaagent –policy scheduled [interval] ...

where interval is in seconds.

The default is 900 seconds (15 minutes).

When a schedule is specified, every n seconds the Agent performs message transmission if any of the
following conditions are met:

♦ New messages were placed in the client message store since the previous time interval elapsed.

♦ A message status change occurred since the previous time interval elapsed. This typically occurs when
a message is acknowledged by the application.

For more information about acknowledgement, see “AcknowledgementMode
enumeration” on page 244 for .NET clients, “AcknowledgementMode class” on page 392 for C++
clients and “Interface AcknowledgementMode” on page 504 for Java clients.

♦ A push notification was received since the previous time interval elapsed.

♦ A network status change notification was received since the previous time interval elapsed.

♦ Push notifications are disabled.

You can call the trigger send receive method to override the time interval. It forces message transmission to
occur before the time interval elapses.

For more information about trigger send receive, see:

♦ .NET: “TriggerSendReceive method” on page 309

♦ C++: “triggerSendReceive function” on page 461

♦ Java: “setStringStoreProperty method” on page 564

♦ SQL: “ml_qa_triggersendreceive” on page 672

Setting up client-side components

Copyright © 2006, iAnywhere Solutions, Inc. 37

Automatic policy
The automatic policy attempts to keep the client and server message stores as up-to-date as possible.

When using the automatic policy, message transmission is performed when any of the following conditions
occurs:

♦ PutMessage() is called.

For more information about PutMessage see:

♦ .NET: “PutMessage method” on page 298
♦ C++: “putMessage function” on page 452
♦ Java: “getStringStoreProperty method” on page 557
♦ SQL: “ml_qa_putmessage” on page 672

♦ A message status changes has occurred. This typically occurs when a received message is acknowledged
by the application.

For more information about acknowledgement, see:

♦ .NET: “AcknowledgementMode enumeration” on page 244
♦ C++: “AcknowledgementMode class” on page 392
♦ Java: “Interface AcknowledgementMode” on page 504
♦ SQL: all messaging using the SQL API is transactional

♦ A Push Notification is received.

For more information about push notifications, see “Using push notifications” on page 41.

♦ A Network Status Change Notification is received.

For more information, see “Notifications of push notification” on page 53.

♦ TriggerSendReceive() is called.

For more information about TriggerSendReceive, see:

♦ .NET: “TriggerSendReceive method” on page 309
♦ C++: “triggerSendReceive function” on page 461
♦ Java: “setStringStoreProperty method” on page 564
♦ SQL: “ml_qa_triggersendreceive” on page 672

Ondemand policy
The ondemand policy causes message transmission to occur only when instructed to do so by an application.

An application forces a message transmission to occur by calling TriggerSendReceive().

When the agent receives a Push Notification or a Network Status Change Notification, a corresponding
message is sent to the system queue. This allows an application to detect these events and force a message
transmission by calling TriggerSendReceive().

Setting Up QAnywhere Messaging

38 Copyright © 2006, iAnywhere Solutions, Inc.

F For more information about TriggerSendReceive, see:

♦ .NET: “TriggerSendReceive method” on page 309

♦ C++: “triggerSendReceive function” on page 461

♦ Java: “setStringStoreProperty method” on page 564

♦ SQL: “ml_qa_triggersendreceive” on page 672

F For more information about handling push notifications and network status changes, see “System
queue” on page 51.

Custom policy
A custom policy allows you to define when message transmission occurs and which messages to send in the
message transmission. The custom policy is defined by a set of transmission rules.

Each rule is of the following form:

schedule = condition

where schedule defines when condition is evaluated. For more information, see “Rule
syntax” on page 226.

All messages satisfying condition are transmitted. In particular, if schedule is automatic, the condition is
evaluated when any of the following conditions occurs:

♦ PutMessage() is called.

For more information about PutMessage, see:

♦ .NET: “PutMessage method” on page 298
♦ C++: “putMessage function” on page 452
♦ Java: “getStringStoreProperty method” on page 557
♦ SQL: “ml_qa_putmessage” on page 672

♦ A message status change has occurred. This typically occurs when a message is acknowledged by the
application.

For more information about acknowledgement, see:

♦ .NET: “AcknowledgementMode enumeration” on page 244
♦ C++: “AcknowledgementMode class” on page 392
♦ Java: “Interface AcknowledgementMode” on page 504
♦ SQL: all messaging using the SQL API is transactional

♦ A Push Notification is received.

For more information about push notifications, see “Using push notifications” on page 41.

♦ A Network Status Change Notification is received.

Setting up client-side components

Copyright © 2006, iAnywhere Solutions, Inc. 39

♦ TriggerSendReceive () is called.

For more information about TriggerSendReceive, see:

♦ .NET: “TriggerSendReceive method” on page 309
♦ C++: “triggerSendReceive function” on page 461
♦ Java: “setStringStoreProperty method” on page 564
♦ SQL: “ml_qa_triggersendreceive” on page 672

F For more information about transmission rules, see “Message transmission rules” on page 234.

F For more information about creating policies, see “-policy option” on page 163.

Setting Up QAnywhere Messaging

40 Copyright © 2006, iAnywhere Solutions, Inc.

Using push notifications
A push notification is a special message delivered from the server message store to a QAnywhere client that
prompts the client to initiate a message transmission. Push notification is on by default but is optional. Push
notifications introduce extra components to the QAnywhere architecture:

♦ At the server, a QAnywhere Notifier sends push notifications.

♦ At the client, a QAnywhere Listener receives these push notifications and passes them on to the
QAnywhere Agent.

♦ At the client, a notification of each push notification is sent to the system queue.

If you use the scheduled or automatic QAnywhere Agent policies, push notifications automatically cause
clients to initiate message transmission. If you use the ondemand policy, you must handle push requests
manually using an event handler.

F For more information about manually handling push notifications, see “Notifications of push
notification” on page 53.

F For more information about QAnywhere Agent policies, see “Determining when message transmission
should occur on the client” on page 36.

Push notifications are enabled by default: the qaagent -push option is by default set to connected. In connected
mode, push notifications are sent over TCP/IP persistent connection.

If you are using UDP, push notifications are likely to work without any configuration, but due to a limitation
in the UDP implementation of ActiveSync, they will not work with ActiveSync.

See also
♦ “Scenario for messaging with push notifications” on page 9
♦ “Notifications of push notification” on page 53
♦ “-push option” on page 165

Using push notifications

Copyright © 2006, iAnywhere Solutions, Inc. 41

Setting up a failover mechanism
QAnywhere applications can be set up with a failover mechanism so that alternate MobiLink servers can be
used if one fails. In order to support failover, each QAnywhere Agent must be started with a list of MobiLink
servers. The first MobiLink server specified in the list is the primary server. The remaining servers in the
list are alternate servers.

For example, running the following command on the remote device will start the QAnywhere Agent with
one primary server and one alternate server:

qaagent –x tcpip(host=ml1.ianywhere.com)
 –x tcpip(host=ml2.ianywhere.com)

Each QAnywhere Agent can have a different primary server.

The following diagram describes a failover configuration in which you have multiple MobiLink servers and
multiple QAnywhere agents. You have multiple client message stores, but all MobiLink servers are
connected to the same server-side message store.

Client
Message
Store 1

MobiLink
Server n

MobiLink
Server 1 ...

Client
Message
Store m

...

Server
Message

Store

 Agent 1 Agent m

This configuration has the following characteristics:

♦ When a message transmission occurs, all messages in the server message store are delivered to the client
message store regardless of the server that the QAnywhere Agent is connected to.

♦ Push Notifications are sent to a QAnywhere Agent only when the QAnywhere Agent is connected to its
primary server.

♦ There is a single point of failure. If the machine with the server message store is unavailable, no messaging
can take place.

Setting Up QAnywhere Messaging

42 Copyright © 2006, iAnywhere Solutions, Inc.

By default, when you set up failover MobiLink servers, the QAnywhere Agent always tries an alternate
server immediately upon a failure to reach the primary server. If you want to change this default behavior,
you can use the QAnywhere Agent -fr option to cause the QAnywhere Agent to try the primary server again
before going to the alternate server, and to specify the number of times it should retry. You can use the -fd
option to specify the amount of time between retries of the primary server.

The -fr and -fd options apply only to the primary server. If a connection to the primary server cannot be
established after the specified number of attempts, the QAnywhere Agent tries to connect to an alternate
server. The Agent attempts to connect to each alternate server only once. An error is issued if the Agent
cannot establish a connection to an alternate server.

See also
♦ “-x option” on page 173
♦ “-fd option” on page 150
♦ “-fr option” on page 151
♦ “Running the QAnywhere Agent” on page 35

Setting up a failover mechanism

Copyright © 2006, iAnywhere Solutions, Inc. 43

CHAPTER 4

Writing QAnywhere Client Applications

Contents
Introduction to the QAnywhere interfaces ... 46
Overview of writing a client application .. 49
QAnywhere message addresses ... 50
Initializing a QAnywhere API ... 54
Multi-threaded QAManager ... 61
QAnywhere manager configuration properties .. 62
Sending QAnywhere messages .. 66
Cancelling QAnywhere messages ... 73
Receiving QAnywhere messages .. 75
Reading very large messages ... 80
Browsing QAnywhere messages ... 81
Handling QAnywhere exceptions .. 85
Shutting down QAnywhere .. 88
Deploying QAnywhere applications ... 89

About this chapter
This chapter describes how to write QAnywhere client applications.

Copyright © 2006, iAnywhere Solutions, Inc. 45

Introduction to the QAnywhere interfaces
QAnywhere client applications manage the receiving and sending of QAnywhere messages. The applications
can be written using one of several QAnywhere APIs:

♦ QAnywhere .NET API

♦ QAnywhere C++ API

♦ QAnywhere Java API

♦ QAnywhere SQL API

You can use a combination of client types in your QAnywhere system. For example, messages that are
generated using QAnywhere SQL can also be received by a client created using the APIs for .NET, C++, or
Java. If you have configured a JMS connector on your server, the messages can also be received by JMS
clients. Similarly, QAnywhere SQL can be used to receive messages that were generated by
QAnywhere .NET, C++, Java, or JMS clients.

QAnywhere .NET API

The QAnywhere .NET API is a programming interface for deployment to Windows computers using the
Microsoft .NET Framework and to handheld devices running the Microsoft .NET Compact Framework. The
QAnywhere .NET API is provided as the iAnywhere.QAnywhere.Client namespace.

QAnywhere supports Microsoft Visual Studio .NET 2003 and 2005.

Note
In this document, code samples for the .NET API use the C# programming language, but the API can be
accessed using any programming language that Microsoft .NET supports.

Versions of the TestMessage sample application are written in Java, C#, and Visual Basic.NET. There is
also a .NET compact framework sample.

F For more information about the .NET version of the TestMessage sample application, see “Lesson 4:
Explore the TestMessage client source code” on page 23.

F For more information about the QAnywhere .NET API, see “iAnywhere.QAnywhere.Client namespace
(.NET)” on page 244.

QAnywhere C++ API

The QAnywhere C++ API supports Microsoft Visual C++ 6.0, Microsoft Visual Studio .NET 2003,
Microsoft eMbedded Visual C++ 3.0, Microsoft eMbedded Visual C++ 4.0, and Visual Studio 2005.

The QAnywhere C++ API consists of the following files:

♦ A set of header files (the main one being qa.hpp) located in the QAnywhere\h subdirectory of your SQL
Anywhere installation.

Writing QAnywhere Client Applications

46 Copyright © 2006, iAnywhere Solutions, Inc.

♦ An import library (qany10.lib) located in the \ce\arm.30\lib, \ce\arm.50\lib, QAnywhere\lib, and ce
\x86.30\lib subdirectories of your SQL Anywhere installation.

♦ A run-time DLL (qany10.dll) located in the win32, ce\arm.30, and ce\x86.30 subdirectories of your SQL
Anywhere installation.

Your source code file must include the header file in order to access the API. The import library is used to
link your application to the run-time DLL. The run-time DLL must be deployed with your application.

A version of the TestMessage sample application written in C++ is supplied in samples-dir\QAnywhere. (For
information about samples-dir, see “The samples directory” [SQL Anywhere Server - Database
Administration].)

F For more information about the QAnywhere C++ API, see “QAnywhere C++ API
Reference” on page 391.

QAnywhere Java API

The QAnywhere Java API supports JRE 1.4.2 and 1.5.0.

The QAnywhere Java API consists of the following files:

♦ API reference material, available in this book or in Javadoc format in the \docs\\javadocs\QAnywhere
subdirectory of your SQL Anywhere 10 installation.

♦ Runtime DLLs (qany10jni.dll and qany10.dll), located in the win32 subdirectory of your SQL Anywhere
10 installation.

♦ An archive of the class files (qaclient.jar), located in the java subdirectory of your SQL Anywhere 10
installation.

The class file archive must be included in your path when you compile your application. The run-time DLLs
must be deployed with your application.

A version of the TestMessage sample application written in Java is supplied in \samples-dir\QAnywhere
\Desktop\J2SE\. (For information about samples-dir, see “The samples directory” [SQL Anywhere Server -
Database Administration].)

F For more information about the QAnywhere Java API, see “QAnywhere Java API
Reference” on page 503.

QAnywhere SQL API

The QAnywhere SQL API is a set of stored procedures that implement a messaging API in SQL. Using the
QAnywhere SQL API, you can create messages, set or get message properties and content, send and receive
messages, trigger message synchronization, and set and get message store properties.

F For more information about QAnywhere SQL, see “QAnywhere SQL API Reference” on page 635.

Introduction to the QAnywhere interfaces

Copyright © 2006, iAnywhere Solutions, Inc. 47

JMS connector
QAnywhere includes a JMS connector that provides connectivity between QAnywhere and JMS
applications.

For more information, see:

♦ “Scenario for messaging with external messaging systems” on page 11

♦ “Introduction” on page 128

♦ “Tutorial: Using JMS connectors” on page 141

Mobile web services connector
QAnywhere includes a mobile web services connector for messaging between QAnywhere and web services.

F For more information, see “Mobile Web Services” on page 181.

Writing QAnywhere Client Applications

48 Copyright © 2006, iAnywhere Solutions, Inc.

Overview of writing a client application
♦ To build a client application

1. Initialize the appropriate QAnywhere API. See:

♦ “Setting up .NET applications” on page 54

♦ “Setting up C++ applications” on page 56

♦ “Setting up Java applications” on page 58

♦ “Setting up SQL applications” on page 59

2. Set QAnywhere manager configuration properties. See “QAnywhere manager configuration
properties” on page 62.

3. Write application code and compile. See the following sections:

♦ “Message headers and message properties” on page 206

♦ “Client message store properties” on page 215

♦ “Sending QAnywhere messages” on page 66

♦ “Receiving QAnywhere messages” on page 75

♦ “Reading very large messages” on page 80

♦ “Implementing transactional messaging” on page 68

♦ “Shutting down QAnywhere” on page 88

4. Deploy the application to the target device.

F See “Deploying QAnywhere applications” on page 89.

Overview of writing a client application

Copyright © 2006, iAnywhere Solutions, Inc. 49

QAnywhere message addresses
A QAnywhere message destination has two parts, the client message store ID and the application queue
name:

id\queue-name

The queue name is specified inside the application, and must be known to instances of the sending application
on other devices. For information about client message store IDs, see “Setting up the client message
store” on page 33.

When constructing addresses as strings in an application, be sure to escape the backslash character if
necessary. Follow the string escaping rules for the programming language you are using. If your JMS
destination contains a backslash, you must escape it with another backslash.

System queue
Notifications and network status changes are both sent to QAnywhere applications as system messages.
System messages are the same as other messages, but are received in a separate queue named system.

F See “System queue” on page 51.

Sending a message to a JMS connector

A QAnywhere-to-JMS destination address has two parts:

♦ The connector address. This is the value of the ianywhere.connector.address property.

For more information, see “JMS connector properties” on page 132.

♦ The JMS queue name. This is a queue that you create using your JMS administration tools.

The form of the destination address is:

connector-address\JMS-queue-name

For more information about addressing messages in a JMS application, see:

♦ “Addressing QAnywhere messages meant for JMS” on page 137
♦ “Addressing JMS messages meant for QAnywhere” on page 139
♦ “JMS Connectors” on page 127

Destination aliases

A destination alias is a list of message addresses and other destination aliases. When a message is sent to
a destination alias, it is sent to all members of the list.

A member of a destination alias can have a delivery condition associated with it. Only messages that match
the condition are forwarded to the corresponding member.

Writing QAnywhere Client Applications

50 Copyright © 2006, iAnywhere Solutions, Inc.

Example
Define a destination alias called all_clients with members client1 and client2.

Define the following delivery condition for client1:

ias_Priority=1

Define the following delivery condition for client2:

ias_Priority=9

Only messages with priority 1 are sent to client1 and those with priority 9 are sent to client2.

Creating destination aliases
You can create and manage a destination alias using the following methods:

♦ Server management requests

See “Creating destination aliases using server management requests” on page 117.

♦ Sybase Central

See “Creating destination aliases using Sybase Central” on page 51.

Creating destination aliases using Sybase Central

You can use Sybase Central to create or modify a destination alias.

♦ To create a destination alias using Sybase Central

1. Start Sybase Central:

♦ Choose Start ► Programs ► SQL Anywhere 10 ► Sybase Central.

♦ Choose Connections ► Connect to QAnywhere 10.

♦ Specify an ODBC data source name or file, and a user ID and password if required.

♦ Click OK.

2. Choose File ► New ► Destination Alias.

3. In the Alias field, type a name for the alias.

4. In the Destinations field, type the name of each destination on its own line.

5. Click OK.

System queue

A special queue called system exists to receive QAnywhere system messages. There are two types of message
that are sent to the system queue:

QAnywhere message addresses

Copyright © 2006, iAnywhere Solutions, Inc. 51

♦ “Network status notifications” on page 52

♦ “Notifications of push notification” on page 53

Example
The following C# code processes system and normal messages and can be useful if you are using an
ondemand policy. It assumes that you have defined the message handling methods onMessage() and
onSystemMessage() that implement the application logic for processing the messages.

// Declare the message listener and system listener.
private QAManager.MessageListener _receiveListener;
private QAManager.MessageListener _systemListener;
...
// Create a MessageListener that uses the appropriate message handlers.
_receiveListener = new QAManager.MessageListener(onMessage);
_systemListener = new QAManager.MessageListener(onSystemMessage);
...
// Register the message handler.
mgr.SetMessageListener(queue-name, _receiveListener);
mgr.SetMessageListener("system", _systemListener);

The system message handler may query the message properties to identify what information it contains. The
message type property indicates if the message holds a network status notification. For example, for a
message msg, you could perform the following processing:

msg_type = (MessageType)msg.GetIntProperty(MessageProperties.MSG_TYPE);
if(msg_type == MessageType.NETWORK_STATUS_NOTIFICATION) {
 // Process a network status change.
 mgr.TriggerSendReceive();
} else if (msg_type == MessageType.PUSH_NOTIFICATION) {
 // Process a push notification.
 mgr.TriggerSendReceive();
} else if (msg_type == MessageType.REGULAR) {
 // This message type should not be received on the
 // system queue. Take appropriate action here.
}

Network status notifications

When there is a change in network status, a message of type NETWORK_STATUS_NOTIFICATION is
sent to the system queue. It has an expiry of one minute. This expiry time cannot be changed.

When a device goes into network coverage or out of network coverage, a message is sent to the system queue
that contains the following information:

♦ ias_Adapters String. A list of network adapters that can be used to connect to the MobiLink server.
The list is delimited by a vertical bar. This property can be read but should not be set.

For more information, see:

♦ .NET: “ADAPTER field” on page 246
♦ C++: “ADAPTER variable” on page 395

Writing QAnywhere Client Applications

52 Copyright © 2006, iAnywhere Solutions, Inc.

♦ Java: “ADAPTERS variable” on page 507

♦ ias_RASNames String. A list of network names that can be used to connect to the MobiLink server.
The list is delimited by a vertical bar.

For more information, see:

♦ .NET: “RASNAMES field” on page 251
♦ Java: “RASNAMES variable” on page 509
♦ C++: “RASNAMES variable” on page 399

♦ ias_NetworkStatus Int. The state of the network connection. The value is 1 if connected, 0 otherwise.

For more information, see:

♦ .NET: “NETWORK_STATUS field” on page 249
♦ Java: “NETWORK_STATUS variable” on page 508
♦ C++: “NETWORK_STATUS variable” on page 397

Monitoring network availability
You can use network status notifications to monitor network availability and take action when a device
comes into coverage. For example, use the ondemand policy and call QAManagerBase triggerSendReceive
when a system queue message is received of type NETWORK_STATUS_NOTIFICATION with
ias_NetworkStatus=1.

See also
♦ ias_MessageType in “Pre-defined message properties” on page 209
♦ “System queue” on page 50

Notifications of push notification

A message of type PUSH_NOTIFICATION is sent to the system queue when a push notification is received
from the server. This message is a notification that messages are queued on the server. It has an expiry of
one minute. This expiry time cannot be changed.

This type of system message is useful if you are using the ondemand policy. For example, you can call
QAManagerBase triggerSendReceive when a system queue message is received of type
PUSH_NOTIFICATION.

See also
♦ “Scenario for messaging with push notifications” on page 9
♦ “Using push notifications” on page 41
♦ “System queue” on page 50
♦ “Receiving messages asynchronously” on page 76
♦ ias_MessageType in “Pre-defined message properties” on page 209
♦ .NET: “MessageProperties class” on page 245
♦ C++: “MessageProperties class” on page 394
♦ Java: “Interface MessageProperties” on page 505

QAnywhere message addresses

Copyright © 2006, iAnywhere Solutions, Inc. 53

Initializing a QAnywhere API
Before you can send or receive messages using QAnywhere, you must complete the following initialization
tasks.

Setting up .NET applications

Before you can send or receive messages using QAnywhere .NET clients, you must complete the following
initialization tasks.

You must make two changes to your Visual Studio .NET project to be able to use it:

♦ Add a reference to the QAnywhere .NET DLL. Adding a reference tells Visual Studio.NET which DLL
to include to find the code for the QAnywhere .NET API.

♦ Add a line to your source code to reference the QAnywhere .NET API classes. In order to use the
QAnywhere .NET API, you must add a line to your source code to reference the data provider. You must
add a different line for C# than for Visual Basic.NET.

In addition, you must initialize the QAnywhere .NET API.

♦ To add a reference to the QAnywhere .NET API in a Visual Studio .NET project

1. Start Visual Studio .NET and open your project.

2. In the Solution Explorer window, right-click the References folder and choose Add Reference from the
popup menu.

The Add Reference dialog appears.

3. On the .NET tab, click Browse to locate iAnywhere.QAnywhere.Client.dll. The default locations are
(relative to your SQL Anywhere installation directory):

♦ .NET Framework 1.1: \Assembly\v1
♦ .NET Framework 2.0: \Assembly\v2
♦ .NET Compact Framework 1.0: ce\Assembly\v1
♦ .NET Compact Framework 2.0: ce\Assembly\v2

Select the DLL and click Open.

4. You can verify that the DLL is added to your project. Open the Add Reference dialog and then click
the .NET tab. iAnywhere.QAnywhere.Client.dll appears in the Selected Components list. Click OK to
close the dialog.

Referencing the data provider classes in your source code
♦ To reference the QAnywhere .NET API classes in your code

1. Start Visual Studio .NET and open your project.

Writing QAnywhere Client Applications

54 Copyright © 2006, iAnywhere Solutions, Inc.

2. If you are using C#, add the following line to the list of using directives at the beginning of your file:

using iAnywhere.QAnywhere.Client;
3. If you are using Visual Basic .NET, add the following line to the list of imports at the beginning of your

file:

Imports iAnywhere.QAnywhere.Client

This line is not strictly required. However, it allows you to use short forms for the QAnywhere classes.
Without it, you can still use the fully qualified class name in your code. For example:

iAnywhere.QAnywhere.Client.QAManager
mgr =
 new iAnywhere.QAnywhere.Client.QAManagerFactory.Instance.CreateQAManager
(
"qa_manager.props");

instead of

QAManager mgr = QAManagerFactory.Instance.CreateQAManager(
 "qa_manager.props");

♦ To initialize the QAnywhere .NET API

1. Include the iAnywhere.QAnywhere.Client namespace, as described in the previous procedure.

using iAnywhere.QAnywhere.Client;
2. Create a QAManager object.

For example, to create a default QAManager object, invoke CreateQAManager with null as its
parameter:

QAManager mgr;
mgr = QAManagerFactory.Instance.CreateQAManager(null);

Tip
For maximum concurrency benefits, multi-threaded applications should create a QAManager for each
thread. See “Multi-threaded QAManager” on page 61.

F For more information about QAManagerFactory, see “QAManagerFactory class” on page 310.

You can alternatively create a QAManager object that is customized using a properties file. The
properties file is specified in the CreateQAManager method:

mgr = QAManagerFactory.Instance.CreateQAManager(
 "qa_mgr.props");

where qa_mgr.props is the name of the properties file that resides on the remote device.

3. Initialize the QAManager object. For example:

mgr.Open(
 AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);

Initializing a QAnywhere API

Copyright © 2006, iAnywhere Solutions, Inc. 55

The argument to the open method is an acknowledgement mode, which indicates how messages are to
be acknowledged. It must be one of IMPLICIT_ACKNOWLEDGEMENT or
EXPLICIT_ACKNOWLEDGEMENT. With implicit acknowledgement, messages are acknowledged
as soon as they are received by the client. With explicit acknowledgement, you must call the
acknowledgement method on the QAManager to acknowledge the message.

F For more information about acknowledgement modes, see “AcknowledgementMode
enumeration” on page 244.

You are now ready to send messages.

Instead of creating a QAManager, you can create a QATransactionalManager. See “Implementing
transactional messaging for .NET clients” on page 68.

See also
♦ “iAnywhere.QAnywhere.Client namespace (.NET)” on page 244

Setting up C++ applications

Before you can send or receive messages using QAnywhere C++ clients, you must complete the following
initialization tasks.

♦ To initialize the QAnywhere C++ API

1. Include the QAnywhere header file.

#include <qa.hpp>

qa.hpp defines the QAnywhere classes.

2. Initialize QAnywhere.

To do this, initialize a factory for creating QAManager objects.

QAManagerFactory * factory;
factory = QAnywhereFactory_init();
if(factory == NULL) {
 // Fatal error.
}

F For more information about QAManagerFactory, see “QAManagerFactory class” on page 462.

3. Create a QAManager instance.

You can create a default QAManager object as follows:

QAManager * mgr;
// Create a manager
mgr = factory->createQAManager(NULL);

Writing QAnywhere Client Applications

56 Copyright © 2006, iAnywhere Solutions, Inc.

if(mgr == NULL) {
 // fatal error
}

F For more information about QAManager, see “QAManager class” on page 427.

Tip
For maximum concurrency benefits, multi-threaded applications should create a QAManager for each
thread. See “Multi-threaded QAManager” on page 61.

You can customize a QAManager object programmatically or using a properties file.

♦ To customize QAManager programmatically, use setProperty().

For more information, see “Setting QAnywhere manager configuration properties
programmatically” on page 64.

♦ To use a properties file, specify the properties file in createQAManager():

mgr = factory->createQAManager("qa_mgr.props");

where qa_mgr.props is the name of the properties file on the remote device.

For more information, see “Setting QAnywhere manager configuration properties in a
file” on page 62.

4. Initialize the QAManager object.

qa_bool rc;
rc=mgr->open(
 AcknowledgementMode::IMPLICIT_ACKNOWLEDGEMENT);

The argument to the open method is an acknowledgement mode, which indicates how messages are to
be acknowledged. It must be one of IMPLICIT_ACKNOWLEDGEMENT or
EXPLICIT_ACKNOWLEDGEMENT. With implicit acknowledgement, messages are acknowledged as
soon as they are received by the client. With explicit acknowledgement, you must call one of the
acknowledge methods on the QAManager to acknowledge the message.

F For more information about acknowledgement modes, see “AcknowledgementMode
class” on page 392.

Instead of creating a QAManager, you can create a QATransactionalManager. See “Implementing
transactional messaging for C++ clients” on page 70.

You are now ready to send messages.

See also
♦ “QAnywhere C++ API Reference” on page 391

Initializing a QAnywhere API

Copyright © 2006, iAnywhere Solutions, Inc. 57

Setting up Java applications

Before you can send or receive messages using QAnywhere Java clients, you must complete the following
initialization tasks.

♦ To initialize the QAnywhere Java API

1. Add the location of qaclient.jar to your classpath. By default, it is located in the java subdirectory of
your SQL Anywhere installation.

2. Import the ianywhere.qanywhere.client package.

import ianywhere.qanywhere.client.*;
3. Create a QAManager object.

QAManager mgr;
mgr = QAManagerFactory.getInstance().createQAManager(null);

You can also customize a QAManager object by specifying a properties file to the createQAManager
method:

mgr = QAManagerFactory.getInstance().createQAManager("qa_mgr.props.");

Tip
For maximum concurrency benefits, multi-threaded applications should create a QAManager for each
thread. See “Multi-threaded QAManager” on page 61.

4. Initialize the QAManager object.

mgr.open(AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);

The argument to the open method is an acknowledgement mode, which indicates how messages are to
be acknowledged. It must be one of IMPLICIT_ACKNOWLEDGEMENT or
EXPLICIT_ACKNOWLEDGEMENT. With implicit acknowledgement, messages are acknowledged
as soon as they are received by the client. With explicit acknowledgement, you must call one of the
acknowledge methods on the QAManager to acknowledge the message.

F For more information about acknowledgement modes, see “Interface
AcknowledgementMode” on page 504.

Instead of creating a QAManager, you can create a QATransactionalManager. See “Implementing
transactional messaging for Java clients” on page 71.

You are now ready to send messages.

See also
♦ “QAnywhere Java API Reference” on page 503

Writing QAnywhere Client Applications

58 Copyright © 2006, iAnywhere Solutions, Inc.

Setting up SQL applications

QAnywhere SQL allows you to perform, in SQL, much of the messaging functionality of the
QAnywhere .NET, C++, and Java APIs. This functionality includes creating messages, setting or getting
message properties and content, sending and receiving messages, triggering message synchronization, and
setting and getting message store properties.

Messages that are generated with QAnywhere SQL can also be received by clients created with the
programming APIs. If you have configured a JMS connector on your server, the messages can also be
received by JMS clients. Similarly, QAnywhere SQL can be used to receive messages that were generated
by QAnywhere .NET, C++, or Java API, or JMS clients.

QAnywhere SQL messaging coexists with user transactions. This means that committing a transaction
commits all the QAnywhere operations on that connection.

F For more information about QAnywhere applications, see “Writing QAnywhere Client
Applications” on page 45.

Permissions
Only users with DBA privilege have automatic permission to execute the QAnywhere stored procedures.
To give permission to a user, a user with DBA privilege must call the procedure
ml_qa_grant_messaging_permissions.

F See “ml_qa_grant_messaging_permissions” on page 670.

Acknowledgement modes

The QAnywhere SQL API does not support IMPLICIT_ACKNOWLEDGEMENT or
EXPLICIT_ACKNOWLEDGEMENT modes. All messaging through the SQL API is transactional.

Example
The following example creates a trigger on an inventory table. The trigger sends a message when the
inventory for an item falls below a certain threshold. The message is sent after the transaction invoking the
trigger is committed. If the transaction is rolled back, the message is not sent.

CREATE TRIGGER inventory_trigger AFTER UPDATE ON inventory
REFERENCING old AS oldinv new AS newinv
FOR EACH ROW
begin
 DECLARE msgid VARCHAR(128);
 IF oldinv.quantity > newinv.quantity AND newinv.quantity < 10 THEN
 -- Create the message
 SET msgid = ml_qa_createmessage();
 -- Set the message content
 CALL ml_qa_settextcontent(msgid,
 'Inventory of item ' || newinv.itemname
 || ' has fallen to only ' || newinv.quantity);
 -- Make the message high priority
 CALL ml_qa_setpriority(msgid, 9);
 -- Set a message subject
 CALL ml_qa_setstringproperty(msgid,
 'tm_Subject', 'Inventory low!');
 -- Send the message to the inventoryManager queue
 CALL ml_qa_putmessage(msgid,

Initializing a QAnywhere API

Copyright © 2006, iAnywhere Solutions, Inc. 59

 'inventoryManager');
 end if;
end

See also
♦ “QAnywhere SQL API Reference” on page 635

Writing QAnywhere Client Applications

60 Copyright © 2006, iAnywhere Solutions, Inc.

Multi-threaded QAManager
Access to a QAManager is serialized. When you have multiple threads accessing a single QAManager,
threads will block while one thread performs a method call on the QAManager. Use a different QAManager
for each thread in order to maximize concurrency. Only one thread is allowed to access an instance of
QAManager at one time. Other threads will block until the QAManager method that was invoked by the
first thread returns.

Multi-threaded QAManager

Copyright © 2006, iAnywhere Solutions, Inc. 61

QAnywhere manager configuration properties
You can set QAnywhere manager configuration properties in one of the following ways:

♦ Create a properties text file to define the QAnywhere manager configuration properties that will be used
by one Manager instance.

See “Setting QAnywhere manager configuration properties in a file” on page 62.

♦ Set QAnywhere manager configuration properties programmatically.

See “Setting QAnywhere manager configuration properties programmatically” on page 64.

Following are the QAnywhere manager configuration properties:

♦ COMPRESSION_LEVEL=n Set the compression level.

n is the compression factor, which is expressed as is an integer between 0 and 9, where 0 indicates no
compression and 9 indicates maximum compression.

♦ CONNECT_PARAMS=connect-string Specify a connection string for the QAnywhere manager
to use to connect to the message store database. Specify each connection option in the form
keyword=value with multiple options separated by semi-colons.

The default is "eng=qanywhere;uid=ml_qa_user;pwd=qanywhere"

F For a list of options, see “Connection parameters” [SQL Anywhere Server - Database
Administration].

F For information about managing the database user and password, see “Writing Secure Messaging
Applications” on page 175.

♦ LOG_FILE=filename Specify the name of a file to use to write logging messages. Specifying this
option implicitly enables logging.

♦ MAX_IN_MEMORY_MESSAGE_SIZE=n When reading a message, n is the largest message, in
bytes, for which a buffer is allocated. A message larger than n bytes must be read using streaming
operations. The default value is 1MB on Windows and 64KB on Windows CE.

Setting QAnywhere manager configuration properties in a file

The information in a QAnywhere manager properties file is specific to one instance of a QAManager.

When using a properties file, it must be configured for and installed on the remote device with each deployed
copy of your application.

For information on specifying the name of the property file, see:

♦ .NET API: “CreateQAManager method” on page 313

Writing QAnywhere Client Applications

62 Copyright © 2006, iAnywhere Solutions, Inc.

♦ C++ API: “createQAManager function” on page 462

♦ Java API: “createQAManager method” on page 568

♦ SQL API: You cannot set properties in a file using the QAnywhere SQL API. See “Setting QAnywhere
manager configuration properties programmatically” on page 64.

If the properties file does not reside in the same directory as your client executable, you must also specify
the absolute path. If you want to use the default settings for the properties, use NULL instead of a file name.

Values set in the file permit you to enable or disable some of the QAnywhere features, such as automatic
message compression and logging.

Entries in a QAnywhere manager configuration properties file take the form name=value. For a list of
property names, see “QAnywhere manager configuration properties” on page 62. If value has spaces, enclose
it in double-quotes. Comment lines start with #. For example:

contents of QAnywhere manager configuration properties file
LOG_FILE=.\sender.ini.txt
A comment
CONNECT_PARAMS=eng=qanywhere;uid=ml_qa_user;pwd=qanywhere
MAX_IN_MEMORY_MESSAGE_SIZE=2048
COMPRESSION_LEVEL=0

Referencing the configuration file
Suppose you have a QAnywhere manager configuration properties file called mymanager.props with the
following content:

COMPRESSION_LEVEL=9
CONNECT_PARMS=DBF=mystore.db

When you create QAManager, you reference the file by name.

Following is an example using C#:

QAManager mgr;
mgr = QAManagerFactory.Instance.CreateQAManager(“mymanager.props”);
mgr.Open(AcknowledgeMode.EXPLICIT_ACKNOWLEDGEMENT);

F For more information, see “QAManager interface” on page 271 and “QAManagerFactory
class” on page 310 in the QAnywhere .NET API reference.

Following is an example using C++:

QAManagerFactory * qa_factory;
QAManager * mgr;
qa_factory = QAnywhereFactory_init();
qa_factory->createQAManager(“mymanager.props”);
mgr->open(AcknowledgementMode::EXPLICIT_ACKNOWLEDGEMENT);

F For more information, see “QAManager class” on page 427 and “QAManagerFactory
class” on page 462 in the QAnywhere C++ API reference.

Following is an example using Java:

QAnywhere manager configuration properties

Copyright © 2006, iAnywhere Solutions, Inc. 63

QAManager mgr;
mgr = QAManagerFactory.getInstance().createQAManager("mymanager.props");
mgr.open(AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);

F For more information, see “Class QAManagerFactory” on page 566 and “Interface
QAManager” on page 536 in the QAnywhere Java API reference.

Setting QAnywhere manager configuration properties programmatically

In the QAnywhere APIs, you can use the QAManagerBase set property method to set properties
programmatically. Setting QAnywhere manager configuration properties programmatically must be done
before calling the open method of a QAManager instance.

F For more information about QAManagerProperties, see “QAnywhere manager configuration
properties” on page 62.

Example
The following C# example sets properties programmatically. When you create the QAManager, you specify
the property settings.

QAManager mgr;
mgr = QAManagerFactory.Instance.CreateQAManager(null);
mgr.SetProperty(“COMPRESSION_LEVEL”, “9”);
mgr.SetProperty(“CONNECT_PARAMS”, “DBF=mystore.db”);
mgr.Open(AcknowledgeMode.EXPLICIT_ACKNOWLEDGEMENT);

F For more information, see“QAManager interface” on page 271 and “QAManagerFactory
class” on page 310 in the QAnywhere .NET API reference.

The following C++ example sets properties programmatically. When you create the QAManager, you specify
the property settings.

QAManagerFactory * qa_factory;
QAManager * mgr;
qa_factory = QAnywhereFactory_init();
mgr = qa_factory->createQAManager(NULL);
mgr->setProperty(“COMPRESSION_LEVEL”, “9”);
mgr->setProperty(“CONNECT_PARAMS”, “DBF=mystore.db”);
mgr->open(AcknowledgementMode::EXPLICIT_ACKNOWLEDGEMENT);

F For more information, see “QAManager class” on page 427 and “QAManagerFactory
class” on page 462 in the QAnywhere C++ API reference.

The following Java example sets properties programmatically. When you create the QAManager, you specify
the property settings.

QAManager mgr;
mgr = QAManagerFactory.getInstance().createQAManager(null);
mgr.setProperty("COMPRESSION_LEVEL", 9);
mgr.setStringProperty("CONNECT_PARMS", "DBF=mystore.db");
mgr.open(AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);

Writing QAnywhere Client Applications

64 Copyright © 2006, iAnywhere Solutions, Inc.

F For more information, see “Class QAManagerFactory” on page 566 and “Interface
QAManager” on page 536 in the QAnywhere Java API reference.

QAnywhere manager configuration properties

Copyright © 2006, iAnywhere Solutions, Inc. 65

Sending QAnywhere messages
The following procedures describe how to send messages from QAnywhere applications. These procedures
assume that you have created and opened a QAManager object.

Sending a message from your application does not ensure it is delivered from your device. It simply places
the message on a queue to be delivered. The QAnywhere Agent carries out the task of sending the message
to the MobiLink server, which in turn delivers it to its destination.

F For more information about when message transmission occurs, see “Determining when message
transmission should occur on the client” on page 36.

♦ To send a message (.NET)

1. Create a new message.

You can create either a text message or a binary message, using CreateTextMessage() or
CreateBinaryMessage(), respectively.

QATextMessage msg;
msg = mgr.CreateTextMessage();

2. Set message properties.

Use methods of the QATextMessage or QABinaryMessage class to set properties.

F For more information, see “Message headers and message properties” on page 206.

3. Put the message on the queue, ready for sending.

mgr.PutMessage("store-id\\queue-name", msg);

where store-id and queue-name are strings that combine to form the destination address.

F For more information, see “PutMessage method” on page 298 in the .NET API.

F For more information about determining when a message is transmitted, see “Determining when
message transmission should occur on the client” on page 36.

♦ To send a message (C++)

1. Create a new message.

You can create either a text message or a binary message, using createTextMessage() or
createBinaryMessage(), respectively.

QATextMessage * msg;
msg = mgr->createTextMessage();

2. Set message properties.

Use methods of the QATextMessage or QABinaryMessage class to set message properties.

Writing QAnywhere Client Applications

66 Copyright © 2006, iAnywhere Solutions, Inc.

F For more information, see “Message headers and message properties” on page 206.

3. Put the message on the queue, ready for sending.

if(msg != NULL) {
 if(!mgr->putMessage("store-id\\queue-name", msg)) {
 // Display error using mgr->getLastErrorMsg().
 }
 mgr->deleteMessage(msg);
}

where store-id and queue-name are strings that combine to form the destination address.

F For more information, see “putMessage function” on page 452 in the C++ API.

F For more information about determining when a message is transmitted, see “Determining when
message transmission should occur on the client” on page 36.

♦ To send a message (Java)

1. Create a new message.

You can create a text message or a binary message, using QAManagerBase.createTextMessage() or
QAManagerBase.createBinaryMessage(), respectively.

QATextMessage msg;
msg = mgr.createTextMessage();

2. Set message properties.

Use QATextMessage or QABinaryMessage methods to set message properties.

F For more information, see “Message headers and message properties” on page 206.

3. Put the message on the queue.

mgr.putMessage("store-id\\queue-name", msg);

F For more information, see “getStringStoreProperty method” on page 557 in the Java API.

F For more information about determining when a message is transmitted, see “Determining when message
transmission should occur on the client” on page 36.

♦ To send a message (SQL)

1. Declare a variable to hold the message ID.

begin
 declare @msgid varchar(128);

2. Create a new message.

 set @msgid = ml_qa_createmessage();

Sending QAnywhere messages

Copyright © 2006, iAnywhere Solutions, Inc. 67

3. Set message properties.

F For more information, see “Message properties” on page 645.

4. Put the message on the queue.

 call ml_qa_putmessage(@msgid, 'someclient\someaddress');
 commit;
end

F For more information, see “ml_qa_putmessage” on page 672.

For more information about determining when a message is transmitted, see “Determining when message
transmission should occur on the client” on page 36.

Implementing transactional messaging

Transactional messaging provides the ability to group messages in a way that guarantees that either all
messages in the group are delivered, or none are. This is more commonly referred to as a single
transaction.

When implementing transactional messaging, you create a special QAManagerBase object called
QATransactionalManager.

For more information, see:

♦ .NET clients: “QATransactionalManager interface” on page 337
♦ C++ clients: “QATransactionalManager class” on page 492
♦ Java clients: “Interface QATransactionalManager” on page 594
♦ SQL clients: all messaging is transactional for SQL clients and no transactional manager is required

Implementing transactional messaging for .NET clients

♦ To create a transactional manager

1. Initialize QAnywhere.

This step is the same as in non-transactional messaging.

using iAnywhere.QAnywhere.Client;
2. Create a QATransactionalManager object.

For example, to create a default QATransactionalManager object, invoke
CreateQATransactionalManager with null as its parameter:

QAManager mgr;
mgr =
 QAManagerFactory.Instance.CreateQATransactionalManager(
 null);

F For more information about QAManagerFactory, see “QAManagerFactory class” on page 310.

Writing QAnywhere Client Applications

68 Copyright © 2006, iAnywhere Solutions, Inc.

You can alternatively create a QATransactionalManager object that is customized using a properties
file. The properties file is specified in the CreateQATransactionalManager method:

mgr =
 QAManagerFactory.Instance.CreateQATransactionalManager(
 "qa_mgr.props");

where qa_mgr.props is the name of the properties file that resides on the remote device.

3. Initialize the QAManager object.

mgr.Open();

You are now ready to send messages. The following procedure sends two messages in a single transaction.

♦ To send multiple messages in a single transaction

1. Initialize message objects.

QATextMessage msg_1;
QATextMessage msg_2;

2. Send the messages.

The following code sends two messages in a single transaction:

msg_1 = mgr.CreateTextMessage();
if(msg_1 != null) {
 msg_2 = mgr.CreateTextMessage();
 if(msg_2 != null) {
 if(!mgr.PutMessage("jms_1\\queue_name", msg_1)) {
 // Display message using mgr.GetLastErrorMsg().
 } else {
 if(!mgr.PutMessage("jms_1\\queue_name", msg_2)) {
 // Display message using mgr.GetLastErrorMsg().
 } else {
 mgr.Commit();
 }
 }
 }
}

The Commit method commits the current transaction and begins a new transaction. This method
commits all PutMessage() method and GetMessage() method invocations.

Note
The first transaction begins with the call to open method.

See also
♦ “QATransactionalManager interface” on page 337

Sending QAnywhere messages

Copyright © 2006, iAnywhere Solutions, Inc. 69

Implementing transactional messaging for C++ clients

♦ To create a transactional manager

1. Initialize QAnywhere.

This step is the same as in non-transactional messaging.

#include <qa.hpp>
QAManagerFactory * factory;
factory = QAnywhereFactory_init();
if(factory == NULL) {
 // Fatal error.
}

2. Create a transactional manager.

QATransactionalManager * mgr;
mgr = factory->createQATransactionalManager(NULL);
if(mgr == NULL) {
 // Fatal error.
}

As with non-transactional managers, you can specify a properties file to customize QAnywhere
behavior. In this example, no properties file is used.

3. Initialize the manager.

if(!mgr->open()) {
 // Display message using mgr->getLastErrorMsg().
}

You are now ready to send messages. The following procedure sends two messages in a single transaction.

♦ To send multiple messages in a single transaction

1. Initialize message objects.

QATextMessage * msg_1;
QATextMessage * msg_2;

2. Send the messages.

The following code sends two messages in a single transaction:

msg_1 = mgr->createTextMessage();
if(msg_1 != NULL) {
 msg_2 = mgr->createTextMessage();
 if(msg_2 != NULL) {
 if(!mgr->putMessage("jms_1\\queue_name", msg_1)) {
 // Display message using mgr->getLastErrorMsg().
 } else {
 if(!mgr->putMessage("jms_1\\queue_name", msg_2)) {
 // Display message using mgr->getLastErrorMsg().
 } else {
 mgr->commit();
 }
 }
 mgr->deleteMessage(msg_2);

Writing QAnywhere Client Applications

70 Copyright © 2006, iAnywhere Solutions, Inc.

 }
 mgr->deleteMessage(msg_1);
}

The commit method commits the current transaction and begins a new transaction. This method
commits all putMessage() method and getMessage() method invocations.

Note
The first transaction begins with the call to open method.

See also
♦ C++: “QATransactionalManager class” on page 492
♦ Java: “Interface QATransactionalManager” on page 594

Implementing transactional messaging for Java clients

♦ To create a transactional manager

1. Initialize QAnywhere.

This step is the same as in non-transactional messaging.

import ianywhere.qanywhere.client;
QAManagerFactory factory = new QAManagerFactory();

F For more information about QAManagerFactory, see “QAManagerFactory class” on page 310.

2. Create a QATransactionalManager object.

For example, to create a default QATransactionalManager object, invoke
createQATransactionalManager with null as its parameter:

QAManager mgr;
mgr = factory.createQATransactionalManager(null);

You can alternatively create a QATransactionalManager object that is customized using a properties
file. The properties file is specified in the createQATransactionalManager method:

mgr = factory.createQATransactionalManager("qa_mgr.props");

where qa_manager.props is the name of the properties file that resides on the remote device.

3. Initialize the QAManager object.

mgr.open();

You are now ready to send messages. The following procedure sends two messages in a single transaction.

♦ To send multiple messages in a single transaction

1. Initialize message objects.

Sending QAnywhere messages

Copyright © 2006, iAnywhere Solutions, Inc. 71

QATextMessage msg_1;
QATextMessage msg_2;

2. Send the messages.

The following code sends two messages in a single transaction:

msg_1 = mgr.createTextMessage();
if(msg_1 != null) {
 msg_2 = mgr.createTextMessage();
 if(msg_2 != null) {
 if(!mgr.putMessage("jms_1\\queue_name", msg_1)) {
 // Display message using mgr.getLastErrorMsg().
 } else {
 if(!mgr.putMessage("jms_1\\queue_name", msg_2)) {
 // Display message using mgr.getLastErrorMsg().
 } else {
 mgr.commit();
 }
 }
 }
}

The commit method commits the current transaction and begins a new transaction. This method
commits all putMessage() method and getMessage() method invocations.

Note
The first transaction begins with the call to open method.

Writing QAnywhere Client Applications

72 Copyright © 2006, iAnywhere Solutions, Inc.

Cancelling QAnywhere messages
Cancelling a QAnywhere message puts the message into a cancelled state before it is transmitted. With the
default delete rules of the QAnywhere Agent, cancelled messages are eventually deleted from the message
store. Cancelling a QAnywhere message fails if the message is already in a final state, or if it has been
transmitted to the central messaging server.

The following procedures describe how to cancel QAnywhere messages.

Note
You cannot cancel a message using the QAnywhere SQL API.

♦ To cancel a message (.NET)

1. Get the ID of the message to cancel.

// msg is a QAMessage instance that has not been
// transmitted.
string msgID = msg.getMessageID();

2. Call CancelMessage with the ID of the message to cancel.

mgr.CancelMessage(msgID);

F For more information, see “CancelMessage method” on page 283.

♦ To cancel a message (C++)

1. Get the ID of the message to cancel.

// msg is a QAMessage instance that has not been
// transmitted.
qa_string msgID = msg->getMessageID();

2. Call cancelMessage with the ID of the message to cancel.

bool result = mgr->cancelMessage(msgID);

F For more information, see “cancelMessage function” on page 438.

♦ To cancel a message (Java)

1. Get the ID of the message to cancel.

// msg is a QAMessage instance that has not been
// transmitted.
String msgID = msg.getMessageID();

2. Call cancelMessage with the ID of the message to cancel.

Cancelling QAnywhere messages

Copyright © 2006, iAnywhere Solutions, Inc. 73

boolean result = mgr.cancelMessage(msgID);

For more information, see “cancelMessage method” on page 544.

Writing QAnywhere Client Applications

74 Copyright © 2006, iAnywhere Solutions, Inc.

Receiving QAnywhere messages
The following topics describe how to receive QAnywhere messages.

Receiving messages synchronously

To receive messages synchronously, your application explicitly polls the queue for messages. It may poll
the queue periodically, or when a user initiates a particular action such as clicking a Refresh button.

♦ To receive messages synchronously (.NET)

1. Declare message objects to hold the incoming messages.

QAMessage msg;
QATextMessage text_msg;

2. Poll the message queue, collecting messages:

if(mgr.start()) {
 for(;;) {
 msg = mgr.GetMessageNoWait("queue-name");
 if(msg == null) {
 break;
 }
 addMessage(msg);
 }
 mgr.stop();
}

F For more information, see “GetMessageNoWait method” on page 292.

♦ To receive messages synchronously (C++)

1. Declare message objects to hold the incoming messages.

QAMessage * msg;
QATextMessage * text_msg;

2. Poll the message queue, collecting messages:

if(mgr->start()) {
 for(;;) {
 msg = mgr->getMessageNoWait("queue-name");
 if(msg == NULL) {
 break;
 }
 addMessage(msg);
 }
 mgr->stop();
}

F For more information, see “getMessageNoWait method” on page 552.

Receiving QAnywhere messages

Copyright © 2006, iAnywhere Solutions, Inc. 75

♦ To receive messages synchronously (Java)

1. Declare message objects to hold the incoming messages.

QAMessage msg;
QATextMessage text_message;

2. Poll the message queue, collecting messages:

if(mgr.start()) {
 for (;;) {
 msg = mgr.getMessageNoWait("queue-name");
 if (msg == null) {
 break;
 }
 addMessage(msg);
 }
 mgr.stop();
}

F For more information, see “getMessageNoWait method” on page 552.

♦ To receive messages synchronously (SQL)

1. Declare an object to hold the message ID.

begin
 declare @msgid varchar(128);

2. Poll the message queue, collecting messages.

 loop
 set @msgid = ml_qa_getmessagenowait('myaddress');
 if @msgid is null then leave end if;
 message 'a message with content ' || ml_qa_gettextcontent(@msgid)
|| ' has been received';
 end loop;
 commit;
end

For more information, see:

♦ “ml_qa_getmessagenowait” on page 668
♦ “ml_qa_getmessagetimeout” on page 669
♦ “ml_qa_getmessage” on page 666

Receiving messages asynchronously

To receive messages asynchronously using the .NET, C++, and Java APIs, you can write and register a
message listener function that is called by QAnywhere when a message appears in the queue. The message
listener takes the incoming message as a parameter. The task you perform in your message listener depends
on your application. For example, in the TestMessage sample application the message listener adds the
message to the list of messages in the main TestMessage window.

Writing QAnywhere Client Applications

76 Copyright © 2006, iAnywhere Solutions, Inc.

♦ To receive messages asynchronously (.NET)

1. Implement a message handler method.

private void onMessage(QAMessage msg) {
 // Process message.
}

2. Register the message handler.

To register a message handler, create a QAManager.MessageListener object that has the message
handler function as its argument. Then use the QAManager.SetMessageListener function to register
the MessageListener with a specific queue. In the following example, queue-name is a string and
listener is the name of the queue the QAManager object listens to.

MessageListener listener;
listener = new MessageListener(onMessage);
mgr.SetMessageListener("queue-name", listener);

F For more information about MessageListener, see “MessageListener delegate” on page 245.

F For more information about SetMessageListener, see “SetMessageListener
method” on page 303.

♦ To receive messages asynchronously (C++)

1. Create a class that implements the QAMessageListener interface.

class MyClass: public QAMessageListener {
 public:
 void onMessage(QAMessage * Msg);
};

F For more information, see “QAMessageListener class” on page 487.

2. Implement the onMessage method.

The QAMessageListener interface contains one method, onMessage. Each time a message arrives in
the queue, the QAnywhere library calls this method, passing the new message as the single argument.

void MyClass::onMessage(QAMessage * msg) {
 // Process message.
}

3. Register the message listener.

my_listener = new MyClass();
mgr->setMessageListener("queue-name", my_listener);

F For more information, see “setMessageListener function” on page 457.

♦ To receive a message asynchronously (Java)

1. Implement a message handler method and an exception handler method.

Receiving QAnywhere messages

Copyright © 2006, iAnywhere Solutions, Inc. 77

class MyClass implements QAMessageListener {
 public void onMessage(QAMessage message) {
 // Process the message.
 }
 public void onException(
 QAException exception, QAMessage message) {
 // Handle the exception.
 }
}

2. Register the message handler.

MyClass listener = new MyClass();
mgr.setMessageListener("queue-name", listener);

For more information, see:

♦ “Interface QAMessageListener” on page 588
♦ “setLongStoreProperty method” on page 561

♦ To receive messages asynchronously (SQL)

• Create a stored procedure with the name ml_qa_listener_queue, where queue is the name of a message
queue.

This procedure is called whenever a message is queued on the given queue.

F See “ml_qa_listener_queue” on page 670.

Development tip for .NET, C++ and Java
It is safer to use QAManagers in mode EXPLICIT_ACKNOWLEDGEMENT to guard against the possibility
of an application error occurring part way through the processing of received messages and the message
being acknowledged anyway.

If the QAManager is opened in mode EXPLICIT_ACKNOWLEDGEMENT, the message can be
acknowledged in the onMessage method only after it has been successfully processed. That way if there was
an error processing the message, the message will be received again because it was not acknowledged.

If the QAManager is opened in mode IMPLICIT_ACKNOWLEDGEMENT, the message passed to
onMessage is acknowledged implicitly when onMessage returns. If the user application encounters an error
while processing the message, the message is acknowledged and never received again.

Receiving messages using a selector
You can use message selectors to select messages for receiving. A message selector is a SQL-like expression
that specifies a condition to select a subset of messages to consider for receive operations.

The syntax and semantics of message selectors are exactly the same as the condition part of transmission
rules.

F See “Condition syntax” on page 228.

Writing QAnywhere Client Applications

78 Copyright © 2006, iAnywhere Solutions, Inc.

Example
The following C# example gets the next message from receiveQueue that has a message property called
intprop with value 1.

msg = receiver.GetMessageBySelectorNoWait(
 receiveQueue, "intprop=1");

The following C++ example gets the next message from receiveQueue that has a message property called
intprop with value 1.

msg = receiver->getMessageBySelectorNoWait(
 receiveQueue, "intprop=1");

The following Java example gets the next message from receiveQueue that has a message property called
intprop with value 1.

msg = receiver.getMessageBySelectorNoWait(
 receiveQueue, "intprop=1");

See also
♦ .NET: “GetMessageBySelector method” on page 290 and “GetMessageBySelectorNoWait

method” on page 291
♦ C++: “getMessageBySelector function” on page 446 and “getMessageBySelectorNoWait

function” on page 447
♦ Java: “getMessageBySelector method” on page 550 and “getMessageBySelectorNoWait

method” on page 551
♦ SQL: the SQL API does not support receiving messages using a selector

Receiving QAnywhere messages

Copyright © 2006, iAnywhere Solutions, Inc. 79

Reading very large messages
Sometimes messages are so large that they exceed the limit set with the QAManager property
MAX_IN_MEMORY_MESSAGE_SIZE or its defaults of 1MB on Windows and 64KB on Windows CE.
In this case, the message object cannot contain the full content of the message in memory, so methods that
rely on the full content of the message being loaded into memory, such as readInt() and readString(), cannot
be used. However, you can read very large messages directly from the message store in pieces. To do this,
use QATextMessage.readText() or QABinaryMessage.readBinary() in a loop.

For more information, see:

♦ .NET: “ReadBinary method” on page 258 and “ReadText method” on page 336
♦ C++: “readBinary function” on page 406 and “readText function” on page 490
♦ Java: “readBinary method” on page 517 and “readText method” on page 591
♦ SQL: the SQL API does not support receiving very large messages

When you do this, you cannot use a QAManager that was opened with
IMPLICIT_ACKNOWLEDGEMENT. You must use a QAManager that was opened with
EXPLICIT_ACKNOWLEDGEMENT and you must complete all calls to readText() or readBinary() before
acknowledging the message.

F For more information, see “Acknowledgement modes” on page 59.

Writing QAnywhere Client Applications

80 Copyright © 2006, iAnywhere Solutions, Inc.

Browsing QAnywhere messages
You can browse messages in incoming and outgoing queues. Browse operations do not affect the status of
messages.

F For more information about message status, see ias_Status in “Pre-defined message
properties” on page 209.

The following topics describe how to browse QAnywhere messages.

Browse all messages
You can browse the messages in all queues by calling the appropriate browseMessages() method.

Example
The following .NET example uses the QAManager.BrowseMessages() method to browse all queues:

QAMessage msg;
IEnumerator msgs = mgr.BrowseMessages();
while(msgs.MoveNext()) {
 msg = (QAMessage)msgs.Current;
 // Process message.
}

The following C++ example uses the QAManager browseMessages function to browse all queues:

QAMessage *msg;
qa_browse_handle bh = mgr->browseMessages();
for (;;) {
 msg = mgr->browseNextMessage(bh);
 if(msg == qa_null) {
 break;
 }
 // Process message.
 mgr->browseClose(bh);
}

The following Java example uses the QAManager.browseMessages method to browse all queues:

QAMessage msg;
java.util.Enumeration msgs = mgr.browseMessages();
while(msgs.hasMoreElements()) {
 msg = (QAMessage)msgs.nextElement();
 // Process message.
}

See also
♦ .NET: “BrowseMessages method” on page 280
♦ C++: “browseMessages function” on page 434
♦ Java: “browseMessages method” on page 542
♦ SQL: the SQL API does not support browsing messages

Browsing QAnywhere messages

Copyright © 2006, iAnywhere Solutions, Inc. 81

Browsing messages in a queue
You can browse the messages in a given queue by supplying the queue name to the appropriate
browseMessagesByQueue() method.

Example
The following .NET example uses the QAManager.BrowseMessagesByQueue method to browse a queue:

QAMessage msg;
IEnumerator msgs = mgr.BrowseMessagesByQueue("q1");
while(msgs.MoveNext()) {
 msg = (QAMessage)msgs.Current;
 // Process message.
}

The following C++ example uses the QAManager browseMessagesByQueue function to browse a queue:

QAMessage *msg;
qa_browse_handle bh = mgr->browseMessagesByQueue(_T("q1"));
for (;;) {
 msg = mgr->browseNextMessage(bh);
 if(msg == qa_null) {
 break;
 }
 // Process message.
}
mgr->browseClose(bh);

The following Java example uses the QAManager.browseMessagesByQueue method to browse a queue:

QAMessage msg;
java.util.Enumeration msgs = mgr.browseMessagesByQueue("q1");
while(msgs.hasMoreElements()) {
 msg = (QAMessage)msgs.nextElement();
 // Process message.
}

See also
♦ .NET: “BrowseMessagesByQueue method” on page 282
♦ C++: “browseMessagesByQueue function” on page 436
♦ Java: “browseMessagesByQueue method” on page 543
♦ SQL: the SQL API does not support browsing messages

Browsing a message by ID
You can browse a particular message by specifying its ID to a browseMessagesbyID() method.

Example
The following .NET example uses the QAManager.BrowseMessageByID method to browse a message:

QAMessage msg;
IEnumerator msgs = mgr.BrowseMessagesByID("ID:123");
if(msgs.MoveNext()) {
 msg = (QAMessage)msgs.Current;
 // Process message.
}

Writing QAnywhere Client Applications

82 Copyright © 2006, iAnywhere Solutions, Inc.

The following C++ example uses the QAManager browseMessageByID function to browse a message :

QAMessage *msg;
qa_browse_handle bh = mgr->browseMessagesByID(_T("ID:123"));
msg = mgr->browseNextMessage(bh);
if(msg != qa_null) {
 // Process message.
}
mgr->browseClose(bh);

The following Java example uses the QAManager.browseMessageByID method to browse a message:

QAMessage msg;
java.util.Enumeration msgs = mgr.browseMessagesByID("ID:123");
if(msgs.hasMoreElements()) {
 msg = (QAMessage)msgs.nextElement();
 // Process message.
}

See also
♦ .NET: “BrowseMessagesByID method” on page 281
♦ C++: “browseMessagesByID function” on page 435
♦ Java: “browseMessagesByID method” on page 542
♦ SQL: the SQL API does not support browsing messages

Browsing messages using a selector
You can use message selectors to select messages for browsing. A message selector is a SQL-like expression
that specifies a condition to select a subset of messages to consider for browse operations.

The syntax and semantics of message selectors are exactly the same as the condition part of transmission
rules.

F See “Condition syntax” on page 228.

Example
The following .NET example browses all messages in the message store that have a property called intprop
with value 1.

QAMessage msg;
IEnumerator msgs = mgr.BrowseMessagesBySelector("intprop = 1");
while(msgs.MoveNext()) {
 msg = (QAMessage)msgs.Current;
 // Process message.
}

The following C++ example browses all messages in the message store that have a property called intprop
with value 1.

QAMessage *msg;
qa_browse_handle bh = mgr->browseMessagesBySelector(_T("intprop = 1"));
for (;;) {
 msg = mgr->browseNextMessage(bh);
 if(msg == qa_null) {
 break;

Browsing QAnywhere messages

Copyright © 2006, iAnywhere Solutions, Inc. 83

 }
 // Process message.
}
mgr->browseClose(bh);

The following Java example browses all messages in the message store that have a property called intprop
with value 1.

QAMessage msg;
java.util.Enumeration msgs = mgr.browseMessagesBySelector("intprop = 1");
while(msgs.hasMoreElements()) {
 msg = (QAMessage)msgs.nextElement();
 // Process message.
}

See also
♦ .NET: “BrowseMessagesBySelector method” on page 282
♦ C++: “browseMessagesBySelector function” on page 436
♦ Java: “browseMessagesBySelector method” on page 544
♦ SQL: the SQL API does not support browsing messages

Writing QAnywhere Client Applications

84 Copyright © 2006, iAnywhere Solutions, Inc.

Handling QAnywhere exceptions
The QAnywhere C++, Java, and .NET APIs include special objects and properties for exception handling.

.NET exceptions
The QAException class encapsulates QAnywhere client application exceptions. After you catch a
QAnywhere exception, you can use the QAException ErrorCode and Message properties to determine the
error code and error message.

Note that if a QAException is thrown inside a message listener delegate and it is not caught in the message
listener, then it will be logged to the QAManager log file. Since uncaught QAExceptions are only logged,
it is recommended that all exceptions be handled within message listener delegates so that they can be dealt
with appropriately.

F For more information about the log file, see “QAnywhere manager configuration
properties” on page 62.

When a QAException is thrown the current transaction is rolled back. When this happens in a message
listener with a QATransactionalManager, the message that was being processed when the QAException was
thrown is put back in the receive queue and so that it will be re-received. You can use the message store
property ias_MaxDeliveryAttempts to prevent an infinite loop.

When the property ias_MaxDeliveryAttempts is set to a positive integer n by a QAnywhere application, as
in mgr.SetIntStoreProperty("ias_MaxDeliveryAttempts", 5), the QAnywhere
client will attempt to receive an unacknowledged message up to n times before setting the status of the
message to unreceivable. If the property ias_MaxDeliveryAttempts is not set or is negative, the QAnywhere
client will attempt to receive messages an unlimited number of times.

For more information, see:

♦ “QAException class” on page 269
♦ “ErrorCode property” on page 271

The following table lists error code values for the LastError property:

LastError value Description

0 No error.

1000 Initialization error.

1001 Termination error.

1002 Unable to access the client properties file.

1003 No destination.

1004 The function is not implemented.

1005 You cannot write to a message as it is in read-only mode.

Handling QAnywhere exceptions

Copyright © 2006, iAnywhere Solutions, Inc. 85

LastError value Description

1006 Error storing a message in the client message store.

1007 Error retrieving a message from the client message store.

1008 Error initializing the background thread.

1009 Error opening a connection to the message store.

1010 There is an invalid property in the client properties file.

1011 Error opening the log file.

1012 Unexpected end of message reached.

1013 The message store is too large relative to the free disk space on the device.

1014 The message store has not been initialized for messaging.

1015 Error getting queue depth.

1016 Cannot use QAManagerBase.getQueueDepth when the message store ID has not been
set.

1017 Cannot use QAManagerBase.getQueueDepth on a given destination when filter is
ALL.

1018 Error cancelling message.

1019 Error cancelling message. Cannot cancel a message that has already been sent.

1020 Error acknowledging the message.

1021 The QAManager is not open.

1022 The QAManager is already open.

1023 The given selector has a syntax error.

1024 The timestamp is outside of the acceptable range.

C++ exceptions
For C++, the QAError class encapsulates QAnywhere client application exceptions. You can use the
QAManagerBase::getLastError() method or QAManagerFactory::getLastError() method to determine the
error code associated with the last executed method. You can use the corresponding getLastErrorMessage
() method to obtain the error text.

F For a list of error codes and more information, see “QAError class” on page 418.

For more information about getLastError and getLastErrorMessage, see:

♦ QAManagerBase “getLastError function” on page 444 and “getLastErrorMsg function” on page 444.

Writing QAnywhere Client Applications

86 Copyright © 2006, iAnywhere Solutions, Inc.

♦ QAManagerFactory “getLastError function” on page 464 and “getLastErrorMsg
function” on page 464.

Java exceptions
For Java, the QAException class encapsulates QAnywhere client application exceptions. You can catch the
exception to determine the error code and error text associated with the last executed method.

F For a list of error codes and more information, see “Class QAException” on page 530.

Handling QAnywhere exceptions

Copyright © 2006, iAnywhere Solutions, Inc. 87

Shutting down QAnywhere
After you have completed sending and receiving messages, you can shut down the QAnywhere messaging
system by completing one of the following procedures.

♦ To shut down QAnywhere (.NET)

• Stop and close the QAnywhere manager.

mgr.Stop();
mgr.Close();

♦ To shut down QAnywhere (C++)

1. Close the QAnywhere manager.

mgr->stop();
mgr->close();

2. Terminate the factory.

QAnywhereFactory_term();

This step shuts down the messaging part of your application.

♦ To shut down QAnywhere (Java)

• Stop and close the QAnywhere manager.

mgr.stop();
mgr.close();

See also
♦ .NET: “Stop method” on page 309
♦ C++: “stop function” on page 460
♦ Java: “setStoreProperty method” on page 564
♦ SQL: the SQL API does not support shutting down QAnywhere

Writing QAnywhere Client Applications

88 Copyright © 2006, iAnywhere Solutions, Inc.

Deploying QAnywhere applications
F For information about the files needed to deploy QAnywhere applications, see “Deploying QAnywhere
applications” [MobiLink - Server Administration].

Deploying QAnywhere applications

Copyright © 2006, iAnywhere Solutions, Inc. 89

CHAPTER 5

Server management requests

Contents
About server management requests ... 92
Administering the server message store with server management requests 101
Administering connectors .. 104
Setting server properties with a server management request 114
Specifying transmission rules with a server management request 116
Creating destination aliases using server management requests 117
Monitoring QAnywhere .. 120
Monitoring QAnywhere clients ... 124
Monitoring properties ... 125

About this chapter
This chapter describes how to use server management requests to perform administrative tasks and to monitor
QAnywhere messaging.

Copyright © 2006, iAnywhere Solutions, Inc. 91

About server management requests
A QAnywhere client application can send special messages to the server called server management
requests. These messages contain content that is formatted as XML and are addressed to the QAnywhere
system queue. They require a special authentication string. Server management requests can perform a
variety of functions, such as:

♦ Starting and stopping connectors and web services.

See “Opening connectors” on page 106 and “Closing connectors” on page 106.

♦ Monitoring connector status.

See “Monitoring connectors” on page 107.

♦ Setting and refreshing client transmission rules.

See “Specifying transmission rules with a server management request” on page 116.

♦ Monitoring message status.

See “Monitoring QAnywhere” on page 120.

♦ Setting, updating, deleting, and querying client message store properties on the server.

See “Setting server properties with a server management request” on page 114.

♦ Cancelling messages.

See “Cancelling messages” on page 101.

♦ Querying for active clients, message store properties, and messages.

Addressing server management requests
By default, server management requests must be addressed to ianywhere.server\system. To change the
client ID portion of this address, set the ianywhere.qa.server.id property and restart the server. For example,
if the ianywhere.qa.server.id property is set to myServer, server management requests are addressed to
myServer\system.

F For more information about setting the ianywhere.qa.server.id property, see “Server
properties” on page 222.

F For more information about addressing QAnywhere messages, see “Sending QAnywhere
messages” on page 66.

F For more information about the system queue, see “System queue” on page 51.

Server management requests

92 Copyright © 2006, iAnywhere Solutions, Inc.

Authenticating server management requests

The message string property ias_ServerPassword specifies the server password. The server password is set
using the ianywhere.qa.server.password.e property. If this property is not set, the password is QAnywhere.

The server password is transmitted as text. Use an encrypted communication stream to send server
management requests that require a server password.

For more information about the ianywhere.qa.server.password.e property, see “Server
properties” on page 222.

Examples
The following is a sample message details request. It generates a single report that displays the message ID,
status, and target address of all messages with priority 9 currently on the server.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <MessageDetailsRequest>
 <request>
 <requestId>testRequest</requestId>
 <condition>
 <priority>9</priority>
 </condition>
 <status/>
 <address/>
 </request>
 </MessageDetailsRequest>
</actions>

The following example is in C#. It sets a server-side transmission rule for a client such that messages from
the server are only transmitted to the client called someClient if the priority is greater than 4.

QAManager mgr = …; // Initialize the QAManager
QAMessage msg = mgr.CreateTextMessage();
msg.SetStringProperty(“ias_ServerPassword”, “QAnywhere”);
// Indenting and newlines are just for readability
msg.Text = “<?xml version="1.0" encoding="UTF-8"?>\n”
+ “<actions>\n”
+ “ <SetProperty>\n”
+ “ <prop>\n”
+ “ <client>someClient</client>\n”
+ “ <name>ianywhere.qa.server.rules</name>\n”
+ “ <value>ias_Priority > 4</value>\n”
+ “ </prop>\n”
+ “ </SetProperty>\n”
+ “ <RestartRules>\n”
+ “ <client>someClient</client>\n”
+ “ </RestartRules>\n”
+ “</actions>\n”;
mgr.PutMessage(@“ianywhere.server\system”, msg);

Writing server management requests

Server management requests contain content that is formatted as XML.

About server management requests

Copyright © 2006, iAnywhere Solutions, Inc. 93

Note
You cannot use symbols such as > or < in the content of server management requests. Instead, use > and
<.

Each server management request starts with an <actions> tag.

Each type of server management request includes it own XML tags. For example, to close a connector you
use the <CloseConnector> tag.

request tag

In addition, most server management requests can include a <request> tag that describes the request. Within
a <request> tag, you can use the following subtags:

<request> subtags Description

<condition> Groups conditions for including a message in the report. Only used in the <request>
tag, which is a subtag of <MessageDetailsRequest> and <CancelMes-
sageRequest>.

<onEvent> Specifies the events upon which the server should generate reports. Only used with
<ClientStatusRequest>. You can include one or more <onEvent> tags, with one
event type per tag. If these tags are omitted, the Client Status Request produces a
one-time request. Otherwise, the Client Status Request registers event listeners for
the specified events.

<persistent> Specifies that the results of the request should be made persistent in the server
database (so that the report is sent even if the server is restarted). Only used with
schedules.

<report> Specifies that a report should be sent each time the request is activated. Only used
in the <request> tag, which is a subtag of <CancelMessageRequest>.

<requestId> Specifies a unique identifier for the request that is included in each report generated
as a result of this request. Only used when a server management request generates
a response or report. Using different values for this field allows more than one
request to be active at the same time. Using the same request ID allows the client
to override or delete active requests.

<replyAddr> Specifies the return address for each report generated as a result of this request. If
this tag is omitted, the default return address of reports is the reply address of the
originating message. Only used when a server management request generates a
response or report.

<schedule> Specifies that the report should be generated on a schedule. Only used when a
server management request generates a response or report. See “Scheduling server
management requests” on page 98.

Condition tag

Use the following condition subtags to filter the messages to include in the MessageDetailsRequest. You
can specify as many of these tags as you want in the <condition> tag. If you use more than one of the same

Server management requests

94 Copyright © 2006, iAnywhere Solutions, Inc.

tag, then the values given are logically "OR"ed together, whereas if you use two different tags, the values
are logically "AND"ed together.

<condition> subtags Description

<address> Selects the messages that are addressed to the specified address.

<customRule> Selects messages based on rules. See “Custom message re-
quests” on page 95.

<kind> Filters either binary or text messages.

For example, <kind>text</kind> filters text messages, and
<kind>binary</kind> filters binary messages.

<messageId> Selects the message with a particular message ID.

<originator> Selects messages that originated from the specified client.

<priority> Selects the messages that currently have the priority specified.

<property> Selects messages that have the specified message property. To
check a property name and value, use the syntax <property>prop-
erty-name=property-value</property>. To check the existence of
a property, use the format <property>property-name</proper-
ty>.

<status> Selects messages that currently have the status specified.

Custom message requests

To construct more complex condition statements, use the <customRule> tag as a subtag to the <condition>
tag (and other tags). This tag takes as its data a server rule similar to those used for server transmission rules.
You can construct these queries in the same manner as the condition part of a transmission rule.

F See “Condition syntax” on page 228.

Example
The following condition selects messages following the search criteria: (priority=4) AND (originator LIKE
'%sender%' AND status >= 20)

<condition>
 <priority>4</priority>
 <customRule>ias_Originator LIKE '%sender%' AND ias_Status >=
ias_FinalState</customRule>
</condition>

Server management request DTD

Following is the complete definition of the server management request XML document type. This DTD is
provided as a summary of the server management tags that are described in this chapter.

About server management requests

Copyright © 2006, iAnywhere Solutions, Inc. 95

<!-- Set of requests -->
<!ELEMENT actions ((CloseConnector|OpenConnector|RestartRules|SetProperty
 |ClientStatusRequest|MessageDetailsRequest|CancelMessageRequest
 |GetClientList)+)>
<!-- Request for list of all clients -->
<!ELEMENT GetClientList EMPTY>
<!-- Request to close a connector -->
<!ELEMENT CloseConnector (client)>
<!-- Request to open a connector -->
<!ELEMENT OpenConnector (client)>
<!-- Request to restart transmission rules for a client -->
<!ELEMENT RestartRules (client)>
<!-- Request for setting a property -->
<!ELEMENT SetProperty (client,prop)>
<!-- Request for client properties -->
<!ELEMENT GetProperties (client,replyAddr?)>
<!-- Request for the status on a connector -->
<!ELEMENT ClientStatusRequest (request)>
<!-- Request for clients -->
<!ELEMENT MessageDetailsRequest (request)>
<!ELEMENT CancelMessageRequest (request)>
<!ELEMENT request (requestId?,replyAddr?,schedule*,onEvent*,condition?,

persistent?,report?,messageId?,status?,priority?,address?,originator?,kind?,
 statusTime?,contentSize?,customRule?,property*)>
<!ELEMENT client (#PCDATA)>
<!ELEMENT prop (name?,value?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT value (#PCDATA)>
<!ELEMENT replyAddr (#PCDATA)>
<!ELEMENT requestId (#PCDATA)>
<!ELEMENT persistent EMPTY>
<!ELEMENT report EMPTY>
<!ELEMENT schedule ((starttime|
between)?,everyhour?,everyminute?,everysecond?,
 ondayofweek*,ondayofmonth*)>

Server management requests

96 Copyright © 2006, iAnywhere Solutions, Inc.

<!ELEMENT between (starttime,endtime)>
<!ELEMENT starttime (#PCDATA)>
<!ELEMENT endtime (#PCDATA)>
<!ELEMENT everyhour (#PCDATA)>
<!ELEMENT everyminute (#PCDATA)>
<!ELEMENT everysecond (#PCDATA)>
<!ELEMENT ondayofweek (#PCDATA)>
<!ELEMENT ondayofmonth (#PCDATA)>
<!ELEMENT onEvent (#PCDATA)>
<!ELEMENT condition ((messageId|status|priority|address|originator|kind|
 customRule|property)+)>
<!ELEMENT messageId (#PCDATA)>
<!ELEMENT status (#PCDATA)>
<!ELEMENT priority (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT originator (#PCDATA)>
<!ELEMENT kind (#PCDATA)>
<!ELEMENT statusTime (#PCDATA)>
<!ELEMENT expires (#PCDATA)>
<!ELEMENT contentSize (#PCDATA)>
<!ELEMENT customRule (#PCDATA)>
<!ELEMENT property (#PCDATA)>
<!-- Reports and response sent back by the server -->
<!-- Report returned as a response to a CancelMessageRequest -->
<!ELEMENT CancelMessageReport (requestId,UTCDatetime,statusDescription,
 messageCount,message*)>
<!-- Report returned as a response to a ClientStatusRequest -->
<!ELEMENT ClientStatusReport (requestId,componentReport)>
<!-- Report returned as a response to a MessageDetailsRequest -->
<!ELEMENT MessageDetailsReport (requestId,UTCDatetime,statusDescription,
 messageCount,message*)>

<!-- Response to a GetPropertiesRequest -->
<!ELEMENT GetPropertiesResponse (client,prop*)>
<!-- Response to a GetClientList -->
<!ELEMENT GetClientListResponse (client*)>
<!ELEMENT UTCDatetime (#PCDATA)>
<!ELEMENT statusDescription (#PCDATA)>
<!ELEMENT messageCount (#PCDATA)>
<!ELEMENT message ((messageId|status|priority|address|originator|kind|
 statusTime|expires|contentSize|property)*)>
<!-- Report on a specific server component (such as a connector) -->
<!ELEMENT componentReport (client,UTCDatetime,statusCode,statusSubcode?,
 statusDescription?,vendorStatusCode?,vendorStatusDescription?)>

About server management requests

Copyright © 2006, iAnywhere Solutions, Inc. 97

<!ELEMENT statusCode (#PCDATA)>
<!ELEMENT statusSubcode (#PCDATA)>
<!ELEMENT vendorStatusCode (#PCDATA)>
<!ELEMENT vendorStatusDescription (#PCDATA)>

Scheduling server management requests

You can optionally set up server management requests to run on a schedule. Use the following <schedule>
subtags to define the schedule on which the request runs.

<schedule> subtags Description

<starttime> Defines the time of day at which the server begins generating reports. For ex-
ample:

<starttime>09:00:00</starttime>

<between> Contains two subtags, starttime and endtime, which define an interval during
which the server generates reports. May not be used in the same schedule as
starttime. For example:

<between>
 <starttime>Mon Jan 16 09:00:00 EST 2006</starttime>
 <endtime>Mon Jan 17 09:00:00 EST 2006</endtime>
</between>

<everyhour> Defines the interval between subsequent reports in hours. May not be used in the
same schedule as everyminute or everysecond. For example, the following re-
quest generates a report every two hours starting on January 16 at 9 AM:

<schedule>
 <starttime>09:00:00</starttime>
 <everyhour>2</everyhour>
</schedule>

<everyminute> Defines the interval between subsequent reports in minutes. May not be used in
the same schedule as everyhour or everysecond.

<schedule>
 <everyminute>10</everyminute>
</schedule>

<everysecond> Defines the interval between subsequent reports in seconds. May not be used in
the same schedule as everyhour or everyminute.

<schedule>
 <everysecond>45</everysecond>
</schedule>

<ondayofweek> Each tag contains one day of the week in which the schedule is active. For ex-
ample, the following schedule runs on Mondays and Tuesdays:

<schedule>
 <ondayofweek>Monday</ondayofweek>
 <ondayofweek>Tuesday</ondayofweek>
</schedule>

Server management requests

98 Copyright © 2006, iAnywhere Solutions, Inc.

<schedule> subtags Description

<ondayofmonth> Each tag contains one day of the month on which the schedule is active. For
example, the following schedule runs on the fifteenth of the month:

<schedule>
 <ondayofmonth>15</ondayofmonth>
</schedule>

<startdate> The date on which the schedule becomes active. For example:

<startdate>Mon Jan 16 2006</startdate>

To modify a schedule, register a new server management request with the same requestId. To delete a
schedule, register a server management request with the same requestId, but include the schedule tag
<schedule>none</schedule>.

Notes
♦ Each tag, except for the <ondayofweek> and <ondayofmonth> tags, can only be used once in a schedule.

♦ The <between> tag and the individual <starttime> tag may not both be used in the same schedule.

♦ Only one of <everysecond>, <everyminute>, and <everyhour> may be used in the same schedule.

Example
The following example creates a persistent schedule that will report on all the messages on the server,
including the ID and status of each message. It will also overwrite any previous persistent requests assigned
to the request ID dailyMessageStatus.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <MessageDetailsRequest>
 <request>
 <replyAddr>myclient\messageStatusQueue</replyAddr>
 <requestId>dailyMessageStatus</requestId>
 <schedule>
 <everyhour>24</everyhour>
 </schedule>
 <persistent/>
 <messageId/>
 <status/>
 </request>
 </MessageDetailsRequest>
</actions>

Following is an example of what the report might look like. It is sent to the address myclient
\messageStatusQueue. It indicates that there are two messages on the server, one with status 60 (received)
and one with status 1 (pending).

<?xml version="1.0" encoding="UTF-8"?>
<MessageDetailsReport>
 <requestId>dailyMessageStatus</requestId>
 <UTCDatetime>Mon Jan 16 15:03:04 EST 2007</UTCDatetime>
 <statusDescription>Scheduled report</statusDescription>
 <messageCount>2</messageCount>
 <message>
 <messageId>ID:26080b8927f83f9722357eab0a0628eb</messageId>

About server management requests

Copyright © 2006, iAnywhere Solutions, Inc. 99

 <status>60</status>
 </message>
 <message>
 <messageId>ID:fe857fa8-a7d7-4266-985b-a1818a85d1a2</messageId>
 <status>1</status>
 </message>
</MessageDetailsReport>

Server management requests

100 Copyright © 2006, iAnywhere Solutions, Inc.

Administering the server message store with server
management requests

You can use server management requests to administer the server message store.

F For an overview of how to use server management requests, including how to authenticate and schedule
them, see “About server management requests” on page 92.

Refreshing client transmission rules

When a server-side client transmission rule is changed, the rules for the corresponding client must be
refreshed. You can do this in a server management request by setting the property ianywhere.qa.server.rules.

A RestartRules tag contains a single client tag, which specifies the name of the client to refresh.

<RestartRules> subtags Description

<client> The name of the client for which to refresh transmission rules.

Example
The server XML needs to specify the new transmission rule property and then restart rule processing using
the RestartRules tag. For example, the following XML changes the server-side transmission rule for client
myclient to auto = ias_Priority > 4. Note the proper encoding of ">" in the XML.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <SetProperty>
 <prop>
 <client>myclient</client>
 <name>ianywhere.qa.server.rules</name>
 <value>auto = ias_Priority > 4</value>
 </prop>
 </SetProperty>
 <RestartRules>
 <client>myclient</client>
 </RestartRules>
</actions>

Cancelling messages

You can create a server management request to cancel messages in the server message store. You can create
a one-time cancellation request or you can schedule your cancellation request to happen automatically. You
can also optionally generate a report that details the messages that have been cancelled.

Messages can only be cancelled if they are on the server and in a non-final state when the request is activated.

Administering the server message store with server management requests

Copyright © 2006, iAnywhere Solutions, Inc. 101

<CancelMessageRequest> subtags

<request> Groups information about a particular request. Specifying more
than one <request> tag is equivalent to sending multiple separate
server managment requests.

<Request> subtags Description

<condition> Groups conditions for including a message to be cancelled. See “Condition
tag” on page 94.

<persistent> Specifies that the request should be made persistent in the server database (so that
messages can be cancelled even if the server is restarted). Only used with sched-
ules.

<requestId> Specifies a unique identifier for the request that is included in each report gener-
ated as a result of this request. Using different values for this field allows more
than one request to be active at the same time. Using the same request id allows
the client to override or delete active requests.

<replyAddr> The return address for each report generated as a result of this request. If this tag
is omitted, the default return address of reports is the return address of the origi-
nating message.

<report> Causes a report to be sent each time the request is activated. To cause a report to
be sent each time the request is activated, put an empty <report> tag inside the
<request> tag.

<schedule> Specifies that the report should be generated on a schedule. See “Scheduling server
management requests” on page 98.

Example
This request cancels messages on the server with the address ianywhere.connector.myConnector\deadqueue:

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <CancelMessageRequest>
 <request>
 <requestId>cancelRequest</client>
 <condition>
 <customRule>ias_Address='ianywhere.connector.myConnector
\deadqueue'</customRule>
 </condition>
 </request>
 </CancelMessageRequest>
</actions>

Deleting messages
To specify a clean-up policy on the server, set the property ianywhere.qa.server.deleteRules for the special
client ianywhere.server.deleteRules with the rule or rules governing which messages can be deleted from
the server.

The following example changes the message clean-up policy to delete expired and cancelled messages:

Server management requests

102 Copyright © 2006, iAnywhere Solutions, Inc.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <SetProperty>
 <prop>
 <client>ianywhere.server.deleteRules</client>
 <name>ianywhere.qa.server.deleteRules</name>
 <value>auto = ias_Status in (ias_ExpiredStatus, ias_CancelledStatus)
and ias_TransmissionStatus = IAS_TRANSMITTED</value>
 </prop>
 </SetProperty>
 <RestartRules>
 <client>ianywhere.server.deleteRules</client>
 </RestartRules>
</actions>

Administering the server message store with server management requests

Copyright © 2006, iAnywhere Solutions, Inc. 103

Administering connectors
You can use server management requests to create, configure, delete, start, stop, and monitor connectors.

F For an overview of how to use server management requests, including how to authenticate and schedule
them, see “About server management requests” on page 92.

See also
♦ “JMS Connectors” on page 127
♦ “Setting up web service connectors” on page 195

Creating and configuring connectors
To create connectors, use <OpenConnector>.

Example
In the following example, the server management request first sets a number of relevant properties and
associates them with the client ianywhere.connector.jboss, which is the client ID of the new connector. JMS-
specific properties are set in such a way that a connector to a local JBOSS JMS server are indicated. The
connector is then started using the OpenConnector tag. Note that if you have not started the MobiLink server
with the relevant jar files of the JMS client, the connector will not be started.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <SetProperty>
 <prop>
 <client>ianywhere.connector.jboss</client>
 <name>ianywhere.connector.nativeConnection</name>
 <value>ianywhere.message.connector.jms.NativeConnectionJMS</value>
 </prop>
 <prop>
 <client>ianywhere.connector.jboss</client>
 <name>ianywhere.connector.address</name>
 <value>ianywhere.connector.jboss</value>
 </prop>
 <prop>
 <client>ianywhere.connector.jboss</client>
 <name>xjms.jndi.factory</name>
 <value>org.jnp.interfaces.NamingContextFactory</value>
 </prop>
 <prop>
 <client>ianywhere.connector.jboss</client>
 <name>xjms.jndi.url</name>
 <value>jnp://0.0.0.0:1099</value>
 </prop>
 <prop>
 <client>ianywhere.connector.jboss</client>
 <name>xjms.topicFactory</name>
 <value>ConnectionFactory</value>
 </prop>
 <prop>
 <client>ianywhere.connector.jboss</client>
 <name>xjms.queueFactory</name>
 <value>ConnectionFactory</value>
 </prop>

Server management requests

104 Copyright © 2006, iAnywhere Solutions, Inc.

 <prop>
 <client>ianywhere.connector.jboss</client>
 <name>xjms.receiveDestination</name>
 <value>qanywhere_receive</value>
 </prop>
 <prop>
 <client>ianywhere.connector.jboss</client>
 <name>xjms.deadMessageDestination</name>
 <value>qanywhere_deadMessage</value>
 </prop>
 </SetProperty>
 <OpenConnector>
 <client>ianywhere.connector.jboss</client>
 </OpenConnector>
</actions>

Modifying connectors
To modify connectors, close the connector, change properties with the <SetProperty> tag, and then open the
connector.

Example
In the following example, the logging level of the connector is changed to 4. The connector with the ID
ianywhere.connector.jboss is closed; the connector property logLevel is changed to 4, and then the connector
is re-opened with the new log level.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <CloseConnector>
 <client>ianywhere.connector.jboss</client>
 </CloseConnector>
 <SetProperty>
 <prop>
 <client>ianywhere.connector.jboss</client>
 <name>ianywhere.connector.logLevel</name>
 <value>4</value>
 </prop>
 </SetProperty>
 <OpenConnector>
 <client>ianywhere.connector.jboss</client>
 </OpenConnector>
</actions>

Deleting connectors
To delete connectors, use <SetProperty> with a client name but no other values.

Example
In the following example, the connector with the ID ianywhere.connector.jboss is closed. All of its properties
are deleted by the <SetProperty> tag, omitting the name and value tags.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <CloseConnector>
 <client>ianywhere.connector.jboss</client>
 </CloseConnector>

Administering connectors

Copyright © 2006, iAnywhere Solutions, Inc. 105

 <SetProperty>
 <prop>
 <client>ianywhere.connector.jboss</client>
 </prop>
 </SetProperty>
</actions>

Opening connectors

To open connectors, use <OpenConnector>.

An OpenConnector tag contains a single client tag that specifies the name of the connector to open.

<OpenConnector> subtag Description

<client> The name of the connector to open.

See also
♦ “JMS Connectors” on page 127
♦ “Setting up web service connectors” on page 195

Example
The following example opens the simpleGroup connector.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <OpenConnector>
 <client>simpleGroup</client>
 </OpenConnector>
</actions>

Closing connectors

To close connectors, use <CloseConnector>. A CloseConnector tag contains a single client tag that specifies
the name of the connector to close.

<CloseConnector> subtags Description

<client> The name of the connector to close.

See also
♦ “JMS Connectors” on page 127
♦ “Setting up web service connectors” on page 195

Example
The following example closes the simpleGroup connector.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <CloseConnector>

Server management requests

106 Copyright © 2006, iAnywhere Solutions, Inc.

 <client>simpleGroup</client>
 </CloseConnector>
</actions>

Monitoring connectors

To obtain information about connectors, write a special kind of server management request called a client
status request. It contains a <ClientStatusRequest> tag that uses one or more <request> tags containing the
information necessary to register the request.

Your client status request can obtain reports about connectors in several ways:

♦ Make a one-time request.

♦ Register a State Change Listener to have a report sent whenever the connector's state changes.

♦ Register an Error Listener to have a report sent whenever an error occurs on the connector.

In addition, you can schedule a report to be sent at certain times or intervals.

ClientStatusRequest tag

To get information about connectors, use <ClientStatusRequest>.

A client status request is composed of one or more <request> tags containing all the necessary information
to register the request.

<ClientStatusRequest> subtag

<request> Groups information in requests.

request tag for client status requests
In the <request> tag, use an optional <replyAddr> tag to specify the return address for each report generated
as a result of this request. If this tag is omitted, the default return address of reports is the reply address of
the originating message.

Use an optional <requestId> to add a label for the request that is included in each report. When you register
multiple requests, or when you delete or modify requests, the ID makes it possible to distinguish which
reports were generated from a particular request.

To specify a list of connectors for the request, include one or more <client> tags, each with one connector
address. In the case of a one-time request, all of the connectors are included in the report. In the case of an
event listener request, the server listens to each of these connectors.

To specify that event details should be made persistent during any server downtime, specify the <persistent>
tag. This tag does not require any data and can be of the form <persistent/> or <persistent></persistent>.

You can optionally specify a list of events by including one or more <onEvent> tags with one event type
per tag. If these tags are omitted, the client status request produces a one-time request. Otherwise, the client
status request registers event listeners for the specified events.

Administering connectors

Copyright © 2006, iAnywhere Solutions, Inc. 107

<request> subtags for client status requests Description

<client> You can include one or more <client> tags, with one
connector address per tag. In the case of a one-time
request, all of the connectors listed are included in the
report. In the case of an event listener request, the serv-
er will begin to listen to each of these connectors.

<onEvent> Specifies the events upon which the server should gen-
erate reports. You can include one or more <onEvent>
tags, with one event type per tag. If these tags are omit-
ted, the Client Status Request will produce a one-time
request. Otherwise, the Client Status Request will be
used to register event listeners for the specified events.

<persistent> Specifies that the details information in this Client Sta-
tus Request should be made persistent in the server
database.

<replyAddr> Specifies the return address for each report generated
as a result of this request. If this tag is omitted, the
default return address of reports is the reply address of
the originating message.

<requestId> A label for the report. This value is used as a label for
the request and is included in each report generated as
a result of this request. This makes it possible to dis-
tinguish which reports were generated from a particu-
lar request when multiple requests have been registered
and to delete or modify outstanding requests.

<schedule> See “Scheduling server management
requests” on page 98.

condition tag
To filter the request, use <condition> subtags. You can use as many of the following subtags as you want
in a <condition> tag. If you use more than one of the same tag, the values are logically "OR"ed together,
whereas if you use two different tags, the values are logically "AND"ed together.

<condition> subtags Description

<messageId> Selects the message with a particular message ID.

<status> Selects messages that currently have the status specified.

<priority> Selects the messages that currently have the priority specified.

<address> Selects the messages that are addressed to the specified address.

<originator> Selects messages that originated from the specified client.

Server management requests

108 Copyright © 2006, iAnywhere Solutions, Inc.

<condition> subtags Description

<kind> Filters either binary or text messages.

For example, <kind>text</kind> filters text messages, and
<kind>binary</kind> filters binary messages.

<property> Selects messages that have the specified message property. To
check a property name and value, use the syntax <property>prop-
erty-name=property-value</property>. To check the existence of
a property, use the format <property>property-name</proper-
ty>.

<customRule> Selects messages based on rules. See “Custom message re-
quests” on page 95.

One-time client status requests
You create a one-time request by omitting <onEvent> tags from the client status request. In this case, a single
report is generated that contains the current status information for each connector specified in the client
status request.

The following XML message omits the <onEvent> tag and so is an example of a one-time request. It generates
a single report containing the current status information for each connector specified in the
<ClientStatusRequest> tag.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <ClientStatusRequest>
 <request>
 <replyAddr>ianywhere.connector.beajms\q11</replyAddr>
 <requestId>myOneTimeRequest</requestId>
 <client>ianywhere.server</client>
 <client>ianywhere.connector.beajms</client>
 </request>
 </ClientStatusRequest>
</actions>

On-event client status requests
To specify events for which you want the QAnywhere Server to generate status reports, include one or more
<onEvent> tags in your client status request. Unlike one-time requests, the server will not immediately
respond to the request, but instead will begin listening for events to occur. Each time one of these events is
triggered, a report is sent containing information about the connector that caused the event.

The following events are supported for on-event requests:

Event When it occurs

open A closed connector is opened.

close A previously opened or paused connector is closed.

statusChange The status of the connector is changed from one state to another. Possible states are open
and close.

Administering connectors

Copyright © 2006, iAnywhere Solutions, Inc. 109

Event When it occurs

error An unexpected error is thrown by the connector.

fatalError An unhandled fatal error is thrown by the connector.

none This never occurs. This effectively removes all previous event watches from the connec-
tor.

In the following example, the connector with address ianywhere.connector.beajms\q11 is sent a status report
each time the server connector changes its status or generates an error.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <ClientStatusRequest>
 <request>
 <replyAddr>ianywhere.connector.beajms\q11</replyAddr>
 <requestId>myEventRequest</requestId>
 <client>ianywhere.server</client>
 <onEvent>statusChange</onEvent>
 <onEvent>error</onEvent>
 </request>
 </ClientStatusRequest>
</actions>

Multiple simultaneous requests
Each return address can have its own set of event listeners for any number of connectors, including the server
connector. Adding an event listener to a connector will not disturb any other event listeners in the server
(except possibly one that it is replacing).

Request replacement
If you add an event listener to a connector that already has an event listener registered to it by the same return
address, it will replace the old listener with the new one. For example, if a statusChange listener for connector
abc is registered to address x/y and you register an error listener for abc to address x/y, abc will no longer
respond to statusChange events.

To register more than one event to the same address, you must create a single request with more than one
<onEvent> tag.

Removing a request
If an event listener for a connector is registered to an address, you can remove the event listener by providing
another client status request from the same address with the "none" event specified.

In the following example, all event listeners are removed for the server connector registered to the address
ianywhere.connector.beajms\q11:

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <ClientStatusRequest>
 <request>
 <replyAddr>ianywhere.connector.beajms\q11</replyAddr>
 <client>ianywhere.server</client>
 <onEvent>none</onEvent>
 </request>

Server management requests

110 Copyright © 2006, iAnywhere Solutions, Inc.

 </ClientStatusRequest>
</actions>

Persistent client status requests
To specify that the details of a request are saved into the global properties table on the message store (where
they can be automatically reinstated after a server restart), include the <persistent> tag in a client status
request. Persistence can be used with scheduled events and event listeners, but not one-time requests. The
rules for adding and removing persistent requests are similar to those for regular requests, except that
scheduled events and event listeners cannot be added separately. Instead, when adding a persistent request,
the client must specify all event listeners and schedules for a particular connector/reply address pair in the
same request.

The following example adds the event listener and schedule to ianywhere.connector.myConnector and makes
them persistent. It also overwrites any previous persistent requests from this connector/reply address pair.
A report will be sent every half hour, as well as any time a connector status change occurs.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <ClientStatusRequest>
 <request>
 <replyAddr>ianywhere.connector.beajms\q11</replyAddr>
 <client>ianywhere.connector.myConnector</client>
 <onEvent>statusChange</onEvent>
 <schedule>
 <everyminute>30</everyminute>
 </schedule>
 <persistent/>
 </request>
 </ClientStatusRequest>
</actions>

Client status reports

A client status report is generated by the server each time a report is requested by a connector or a registered
event occurs. It is generated as a simple text message which does not contain any message properties.

Depending on what information is available at the time of the event, any of the following values may be
included in each component report:

♦ client (always present)
♦ UTCDatetime (always present)
♦ vendorStatusDescription (always present)
♦ statusCode (always present)
♦ vendorStatusCode
♦ statusSubCode
♦ statusDescription

For example:

<?xml version="1.0" encoding="UTF-8"?>
<ClientStatusReport>
 <requestId>myRequest</requestId>
 <componentReport>
 <client>ianywhere.server</client>

Administering connectors

Copyright © 2006, iAnywhere Solutions, Inc. 111

 <UTCDatetime>Tue May 31 13:53:02 EDT 2005</UTCDatetime>
 <statusCode>Running</statusCode>
 <vendorStatusDescription></vendorStatusDescription>
 </componentReport>
 <componentReport>
 <client>ianywhere.connector.beajms</client>
 <UTCDatetime>Tue May 31 13:53:02 EDT 2005</UTCDatetime>
 <statusCode>Not running</statusCode>
 <vendorStatusDescription></vendorStatusDescription>
 </componentReport>
</ClientStatusReport>

Monitoring connectors

Each return address can have its own set of event listeners for any number of connectors, including the server
connector. Adding an event listener to a connector will not disturb any other event listeners in the server
(except possibly one that it is replacing).

Adding an event listener to a connector that already has an event listener registered to it by the same return
address will replace the old listener with the new one. For example, if a statusChange listener for connector
abc is registered to address x/y, and then you register an error listener for abc to address x/y, abc will no
longer respond to statusChange events. To register more than one event to the same address, you must use
a single request by specifying more than one <onEvent> tag.

Removing a request
If an event listener for a connector is registered to an address, you can remove the event listener by providing
another client status request from the same address with the "none" event specified.

In the following example, all event listeners for the server connector registered to the address
ianywhere.connector.beajms\q11 are removed.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <ClientStatusRequest>
 <request>
 <replyAddr>ianywhere.connector.beajms\q11</replyAddr>
 <client>ianywhere.server</client>
 <onEvent>none</onEvent>
 </request>
 </ClientStatusRequest>
</actions>

Event listener persistence
If a connector is closed, any event listeners it has registered to its address will persist in the server until the
server is shut down. If the connector is reopened, the stored event listeners will become active again.

Connector states
A connector can be in one of 2 states:

♦ running The connector is accepting and processing incoming and outgoing messages. This state is
reflected in the connector property ianywhere.connector.state=1.

Server management requests

112 Copyright © 2006, iAnywhere Solutions, Inc.

♦ not running The connector is not accepting or processing incoming or outgoing messages. When the
connector state is changed to "running" the connector will be initialized from scratch. This state is reflected
in the connector property ianywhere.connector.state=2.

F For information about how to change the connector state, see “Modifying connectors” on page 105.

Administering connectors

Copyright © 2006, iAnywhere Solutions, Inc. 113

Setting server properties with a server management
request

A <SetProperty> tag contains one or more <prop> tags, each of which specifies a property to set. Each prop
tag consists of a <client> tag, a <name> tag, and a <value> tag. To delete a property, omit the <value> tag.

<prop> subtags Description

<client> The name of the client for which to set a server property.

<name> The name of the property to set.

<value> The value of the property being set. If not included, the property will be deleted.

F For an overview of how to use server management requests, including how to authenticate and schedule
them, see “About server management requests” on page 92.

Example
The following server management request sets the ianywhere.qa.member.client3 property to Y for the
destination alias called simpleGroup, which adds client3 to simpleGroup.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <SetProperty>
 <prop>
 <client>simpleGroup</client>
 <name>ianywhere.qa.member.client3</name>
 <value>Y</value>
 </prop>
 </SetProperty>
</actions>

The next example does the following:

♦ Creates or modifies the value of the client1 property myProp1 to 3.

♦ Deletes the client1 property myProp2.

♦ Modifies the value of the client2 property myProp3 to "some value".

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <SetProperty>
 <prop>
 <client>client1</client>
 <name>myProp1</name>
 <value>3</value>
 </prop>
 <prop>
 <client>client1</client>
 <name>myProp2</name>
 </prop>
 <prop>
 <client>client2</client>
 <name>myProp3</name>

Server management requests

114 Copyright © 2006, iAnywhere Solutions, Inc.

 <value>some value</value>
 </prop>
 </SetProperty>
</actions>

Setting server properties with a server management request

Copyright © 2006, iAnywhere Solutions, Inc. 115

Specifying transmission rules with a server management
request

With a server management request, you can specify default server transmission rules that apply to all users,
or you can specify transmission rules for each client. You specify server transmission rules using the
ianywhere.qa.server.rules property for a client.

To specify default transmission rules, set the ianywhere.qa.server.rules property for the client
ianywhere.server.defaultClient.

F For an overview of how to use server management requests, including how to authenticate and schedule
them, see “About server management requests” on page 92.

Example
The following example creates the default rule that only high priority messages (priority greater than 6)
should be sent:

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <SetProperty>
 <prop>
 <client>ianywhere.server.defaultClient</client>
 <name>ianywhere.qa.server.rules</name>
 <value>auto = ias_Priority > 6</value>
 </prop>
 </SetProperty>
 <RestartRules>
 <client>ianywhere.server.defaultClient</client>
 </RestartRules>
</actions>

The following example creates a rule for client sample_store_id that only messages with a content size greater
than 100 should be transmitted during business hours (8 a.m. and 6 p.m.):

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <SetProperty>
 <prop>
 <client>ianywhere.server.defaultClient</client>
 <name>ianywhere.qa.server.rules</name>
 <value>auto = ias_ContentSize < 100
 or ias_CurrentTime < '8:00:00'
 or ias_CurrentTime > '18:00:00'</value>
 </prop>
 </SetProperty>
 <RestartRules>
 <client>ianywhere.server.defaultClient</client>
 </RestartRules>
</actions>

Server management requests

116 Copyright © 2006, iAnywhere Solutions, Inc.

Creating destination aliases using server management
requests

You can use server management requests to crete and modify destination aliases.

F For more information about destination aliases, see “Destination aliases” on page 50.

F For an overview of how to use server management requests, including how to authenticate and schedule
them, see “About server management requests” on page 92.

To create a destination alias, send a server management request in which the client name is the name of the
destination alias and the following properties are specified. The group is identified by the group, address,
and nativeConnection properties. Members of the group are specified with the member property.

<prop>
 <client>simpleGroup</client>
 <name>ianywhere.connector.nativeConnection</name>
 <value>ianywhere.message.connector.group.GroupConnector
 </value>
</prop>

Property Description

ianywhere.qa.group Set this property to Y to indicate that you are configuring a destination alias.
For example:

<prop>
 <client>simpleGroup</client>
 <name>ianywhere.qa.group</name>
 <value>Y</value>
</prop>

ianywhere.connector.ad-
dress

Specify the client ID of the destination alias. For example:

<prop>
 <client>simpleGroup</client>
 <name>ianywhere.connector.address</name>
 <value>simpleGroup</value>
</prop>

ianywhere.connector.na-
tiveConnection

Set to ianywhere.message.connector.group.GroupConnector. For example:

<prop>
 <client>simpleGroup</client>
 <name>ianywhere.connector.nativeConnection</name>

<value>ianywhere.message.connector.group.GroupConnector
 </value>
</prop>

Creating destination aliases using server management requests

Copyright © 2006, iAnywhere Solutions, Inc. 117

Property Description

ianywhere.qa.mem-
ber.client-name\queue-
name

Specify Y to add a member or N to remove a member. You can also optionally
specify a delivery condition. See “Condition syntax” on page 228. For ex-
ample, to add client1 to the destination alias simpleGroup, set the property as
follows. The queue-name is optional. Repeat this property for every client you
want to add:

<prop>
 <client>simpleGroup</client>
 <name>ianywhere.qa.member.client1\queue1</name>
 <value>Y</value>
</prop>

F For more information about server management requests, see “About server management
requests” on page 92.

See also
♦ “QAnywhere Transmission and Delete Rules” on page 225

Example
The following server management request creates a destination alias called simpleGroup with members
called client1 and client2\queue11. This example starts the destination alias so that it immediately begins
handling messages.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <SetProperty>
 <prop>
 <client>simpleGroup</client>
 <name>ianywhere.qa.group</name>
 <value>Y</value>
 </prop>
 <prop>
 <client>simpleGroup</client>
 <name>ianywhere.connector.address</name>
 <value>simpleGroup</value>
 </prop>
 <prop>
 <client>simpleGroup</client>
 <name>ianywhere.connector.nativeConnection</name>
 <value>ianywhere.message.connector.group.GroupConnector</value>
 </prop>
 <prop>
 <client>simpleGroup</client>
 <name>ianywhere.connector.logLevel</name>
 <value>4</value>
 </prop>
 <prop>
 <client>simpleGroup</client>
 <name>ianywhere.qa.member.client1</name>
 <value>Y</value>
 </prop>
 <prop>
 <client>simpleGroup</client>
 <name>ianywhere.qa.member.client2\q11</name>
 <value>Y</value>
 </prop>

Server management requests

118 Copyright © 2006, iAnywhere Solutions, Inc.

 </SetProperty>
 <OpenConnector>
 <client>simpleGroup</client>
 </OpenConnector>
</actions>

Adding and removing members in a destination alias
To add members to a destination alias, create a server management request that specifies the member in a
property. The group must be restarted for the member setting to take effect.

The following example adds the member client3 and restarts the group simpleGroup:

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <SetProperty>
 <prop>
 <client>simpleGroup</client>
 <name>ianywhere.qa.member.client3</name>
 <value>Y</value>
 </prop>
 </SetProperty>
 <CloseConnector>
 <client>simpleGroup</client>
 </CloseConnector>
 <OpenConnector>
 <client>simpleGroup</client>
 </OpenConnector>
</actions>

To remove members from a destination alias, create a server management request that contains a property
setting indicating that the member must be removed. The group must be restarted for the member removal
setting to take effect.

The following example removes the member client3 and restarts the group simpleGroup:

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <SetProperty>
 <prop>
 <client>simpleGroup</client>
 <name>ianywhere.qa.member.client3</name>
 </prop>
 </SetProperty>
 <CloseConnector>
 <client>simpleGroup</client>
 </CloseConnector>
 <OpenConnector>
 <client>simpleGroup</client>
 </OpenConnector>
</actions>

Creating destination aliases using server management requests

Copyright © 2006, iAnywhere Solutions, Inc. 119

Monitoring QAnywhere
You can use a server management request to get information about a set of messages. The server compiles
the information and sends it back to the client in a message. You can create a one-time message details
request or schedule your message details request to happen automatically. In addition, you can specify that
your request should be persistent, so that the message is sent even if the server is restarted.

F For an overview of how to use server management requests, including how to authenticate and schedule
them, see “About server management requests” on page 92.

Message details requests
To write a server management request for message details, use the <MessageDetailsRequest> tag.

A message details request contains one or more <request> tags containing all the necessary information to
register the request. Specifying more than one <request> tag is equivalent to sending multiple separate
message details requests.

Use the optional <replyAddr> tag to specify the return address for each report generated as a result of the
request. If this tag is omitted, the default return address of reports is the reply address of the originating
message.

Use a <requestId> tag to specify a unique identifier for the request that is included in each report generated
as a result of this request. Using different values for this field allows more than one request to be active at
the same time. Using the same request ID allows the client to override or delete active requests.

Specify a <condition> tag to determine which messages should be included in the report. See “Condition
tag” on page 94.

You can also specify a list of details to determine what details of each message should be included in the
report. You do this by by including a set of empty detail element tags in the request.

You can use the <persistent> tag to specify that event details should be made persistent during any server
downtime. This tag does not require any data and can be of the form <persistent/> or <persistent></
persistent>.

You can use <schedule> to include all the necessary details needed to register a scheduled report. See
“Scheduling server management requests” on page 98.

<MessageDetailsRequest> sub-
tags

Description

<request> Groups information about a particular request. Specifying more
than one <request> tag is equivalent to sending multiple separate
server managment requests for message information. See below.

Server management requests

120 Copyright © 2006, iAnywhere Solutions, Inc.

Request tag

<Request> subtags Description

<address> Displays the address of each message.

<condition> Groups conditions for including a message in the report. See “Condition
tag” on page 94.

<contentSize> Requests the content size of each message.

<customRule> See “Custom message requests” on page 95.

<expires> Requests the expiration time of each message.

<kind> Requests whether the message is text or binary.

<messageId> Requests the message ID of each message.

<originator> Requests the originator or each message.

<persistent> Including this tag indicates that the results of the request should be made persistent
in the server database (so that the report is sent even if the server is restarted).

<priority> Requests the priority of each message.

<property> Requests a list of all message properties and values for each message.

<statusTime> Requests the status time of each message.

<replyAddr> Specifies the return address for each report generated as a result of this request.
If this tag is omitted, the default return address of reports is the reply address of
the originating message.

<requestId> This value is a unique identifier for the request and is included in each report
generated as a result of this request. Using different values for this field allows
more than one request to be active at the same time. Using the same request id
allows the client to override or delete active requests.

<schedule> Including this tag indicates that the report should be generated on a schedule.
Subtags of <schedule> identify the schedule on which the report runs.

F See “Scheduling server management requests” on page 98.

<status> Requests the status of each message.

MessageDetailsReport tag
Each Message Details Report is an XML message containing the <MessageDetailsReport> tag, and is
composed of a report header followed by optional <message> tags. The header of each report consists of the
following tags:

Monitoring QAnywhere

Copyright © 2006, iAnywhere Solutions, Inc. 121

<MessageDetailsReport> subtags Description

<message> The body of the report consists of a list of <message> tags
whose subtags display the specific details of each message
that satisfied the selection criteria. If no messages were se-
lected, or no detail elements were specified in the original
request, then no <message> tags will be included in the re-
port. Otherwise, each message will have its own <message>
tag.

<messageCount> The number of messages that satisfy the selection criteria of
the request.

<requestId> The ID of the request that generated the report.

<statusDescription> A brief description of the reason why this report was gener-
ated.

<UTCDateline> The time and date that this report was generated.

Examples
Following is an example of a message details report:

<?xml version="1.0" encoding="UTF-8"?>
<MessageDetailsReport>
 <requestId>testReport</requestId>
 <UTCDatetime>Mon Jan 16 15:03:04 EST 2006</UTCDatetime>
 <statusDescription>Scheduled report</statusDescription>
 <messageCount>1</messageCount>
 <message>
 <messageId>ID:26080b8927f83f9722357eab0a0628eb</messageId>
 <status>60</status>
 <property>
 <name>myPropName</name>
 <value>myPropVal</value>
 </property>
 </message>
</MessageDetailsReport>

The following condition selects messages following the search criteria: (msgId=ID:144... OR
msgId=ID225...) AND (status=pending) AND (kind=textmessage) AND (contains the property 'myProp'
with value 'myVal')

<condition>
 <messageId>ID:144d7e44dc2d7e1d</messageId>
 <messageId>ID:22578sd5dsd99s8e</messageId>
 <status>1</status>
 <kind>text</kind>
 <property>myProp=myVal</property>
</condition>

A one-time request is a request that has omitted the <schedule> tag. These requests are used to generate a
single report and are deleted as soon as the report has been sent. This request generates a single report that
displays the message id, status, and target address of all messages with priority 9 currently on the server.

<?xml version="1.0" encoding="UTF-8"?>
<actions>

Server management requests

122 Copyright © 2006, iAnywhere Solutions, Inc.

 <MessageDetailsRequest>
 <request>
 <requestId>testRequest</client>
 <condition>
 <priority>9</priority>
 </condition>
 <messageId/>
 <status/>
 <address/>
 </request>
 </MessageDetailsRequest>
</actions>

The following sample message details request generates a report that includes the message ID and message
status.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <MessageDetailsRequest>
 <!-- ... -->
 <messageId />
 <status />
 </MessageDetailsRequest>
</actions>

Monitoring QAnywhere

Copyright © 2006, iAnywhere Solutions, Inc. 123

Monitoring QAnywhere clients
You can use a server management request to obtain a list of clients currently on the server. This list contains
clients who are registered on the server, including remote clients, open connectors, and destination aliases.

F For an overview of how to use server management requests, including how to authenticate and schedule
them, see “About server management requests” on page 92.

To obtain a list of clients, use the <GetClientList> tag in your server management request. For example:

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <GetClientList/> (or <GetClientList></GetClientList>)
</actions>

The response that is generated is sent to the reply address of the message containing the request. The response
contains a list of <client> tags, each naming one client connected to the server. For example:

<?xml version="1.0" encoding="UTF-8"?>
<GetClientListResponse>
 <client>ianywhere.server</client>
 <client>ianywhere.connector.myConnector</client>
 <client>myClient</client>
</GetClientListResponse>

Server management requests

124 Copyright © 2006, iAnywhere Solutions, Inc.

Monitoring properties
You can use a server management request to see what properties are set for a client. The response lists only
the properties that have been set for the client (not defaults).

F For an overview of how to use server management requests, including how to authenticate and schedule
them, see “About server management requests” on page 92.

To get a list of properties for a client, use the <GetProperties> tag in your server management request. For
example:

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <GetProperties>
 <client>ianywhere.connector.myConnector</client>
 </GetProperties>
</actions>

The response that is generated is sent to the reply address of the message containing the request. The response
contains the name of the client and a list of <prop> tags, each containing the details of one property. For
example:

<?xml version="1.0" encoding="UTF-8"?>
<GetPropertiesResponse>
 <client>ianywhere.connector.myConnector</client>
 <prop>
 <name>ianywhere.connector.logLevel</name>
 <value>4</value>
 </prop>
 <prop>
 <name>ianywhere.connector.state</name>
 <value>2</value>
 </prop>
</GetPropertiesResponse>

Monitoring properties

Copyright © 2006, iAnywhere Solutions, Inc. 125

CHAPTER 6

JMS Connectors

Contents
Introduction .. 128
Setting up JMS connectors .. 129
Starting the MobiLink server for JMS integration ... 131
JMS connector properties .. 132
Configuring multiple connectors .. 136
Addressing QAnywhere messages meant for JMS ... 137
Mapping QAnywhere messages on to JMS messages ... 138
Tutorial: Using JMS connectors ... 141

About this chapter
This chapter describes how to write QAnywhere client applications to exchange messages with external
messaging systems that support a JMS interface.

Copyright © 2006, iAnywhere Solutions, Inc. 127

Introduction
The Java Message Service (JMS) API provides messaging capabilities to Java applications. In addition to
exchanging messages among QAnywhere client applications, you can exchange messages with external
messaging systems that support a JMS interface. You do this using a specially configured client known as
a connector. In a QAnywhere application, the external messaging system is set up to act like a QAnywhere
client. It has its own address and configuration.

F For more information about the architecture of this approach, see “Scenario for messaging with external
messaging systems” on page 11.

JMS Connectors

128 Copyright © 2006, iAnywhere Solutions, Inc.

Setting up JMS connectors
The following steps provide an overview of the tasks required to set up QAnywhere with JMS connectors,
assuming that you already have QAnywhere set up.

♦ Overview of integrating a QAnywhere application with an external JMS system

1. Create JMS queues using the JMS administration tools for your JMS system. The QAnywhere connector
listens on a single JMS queue for JMS messages. You must create this queue if it does not already exist.

F See the documentation of your JMS product for information about how to create queues.

2. Open Sybase Central and connect to your server message store.

3. Choose File ► New Connector.

The Connector wizard appears.

4. Ensure that JMS is selected and then select the type of web server you are using. Click Next.

5. In the Connector Names page, enter the following values:

♦ Connector name The connector address that a QAnywhere client should use to address the
connector.

F See “Addressing QAnywhere messages meant for JMS” on page 137.

♦ Receiver destination The queue name used by the connector to listen for messages from JMS
targeted for QAnywhere clients.

6. In the JNDI Settings page, enter the following values:

♦ JNDI factory The factory name used to access the external JMS JNDI name service.

♦ Name service URL The URL to access the JMS JNDI name service.

♦ User name The authentication name to connect to the external JMS JNDI name service.

♦ Password The authentication password to connect to the external JMS JNDI name service.

7. In the JMS Queue Settings page, enter the following values:

♦ Queue factory The external JMS provider queue factory name.

♦ User name The user ID to connect to the external JMS queue connection.

♦ Password The password to connect to the external JMS queue connection.

8. In the JMS Topic Settings page, enter the following values:

♦ Topic factory The external JMS provider topic factory name.

♦ User name The user ID to connect to the external JMS topic connection.

Setting up JMS connectors

Copyright © 2006, iAnywhere Solutions, Inc. 129

♦ Password The password to connect to the external JMS topic connection.

9. Click Finish.

You are prompted to add the client JAR files in the mlsrv10 command line.

10. Start the MobiLink server with a connection to the server message store and the -sl java option.

F See “Starting the MobiLink server for JMS integration” on page 131.

11. To set additional options on your JMS connector, right-click the connector you just created and choose
properties; or you can use server management requests.

F For a list of available properties, see “JMS connector properties” on page 132.

For information about how to set connector properties with server management requests, see
“Administering connectors” on page 104.

♦ To send messages

1. To send a message from an application in your QAnywhere system to the external messaging system,
create a QAnywhere message and send it to connector-address\JMS-queue-name.

F See “Addressing QAnywhere messages meant for JMS” on page 137.

2. To send a message from the external messaging system to an application in your QAnywhere system:

♦ Create a JMS message.

♦ Set the ias_ToAddress property to the QAnywhere id\queue (where id is the ID of your client
message store and queue is your application queue name).

♦ Put the message in the JMS queue.

F See “Addressing JMS messages meant for QAnywhere” on page 139.

Other resources for getting started
♦ QAnywhere JMS samples are installed to samples-dir\QAnywhere\connectors. (For information about

samples-dir, see “The samples directory” [SQL Anywhere Server - Database Administration].)

JMS Connectors

130 Copyright © 2006, iAnywhere Solutions, Inc.

Starting the MobiLink server for JMS integration
To exchange messages with an external messaging system that supports a JMS interface, you must start the
MobiLink server (mlsrv10) with the following options:

♦ -c connection-string To connect to the server message store.

F See “-c option” [MobiLink - Server Administration].

♦ -m To enable QAnywhere messaging.

♦ -sl java (-cp "jarfile.jar") To add the client jar files required to use the external JMS provider.

F See “-sl java option” [MobiLink - Server Administration].

Example
The following example starts a MobiLink server using a JMS client library called jmsclient.jar (in the current
working directory) and the QAnywhere sample database as a message store. The command should be entered
all on one line.

mlsrv10 -sl java(-cp "jmsclient.jar")
 -m -c "QAnywhere 10.0 Demo" ...

Starting the MobiLink server for JMS integration

Copyright © 2006, iAnywhere Solutions, Inc. 131

JMS connector properties
You use JMS connector properties to specify connection information with the JMS system. They configure
a connector to a third party JMS messaging system such as BEA WebLogic or Sybase EAServer.

You can set and/or view properties in several places:

♦ Sybase Central Connector Wizard.

See “Setting up JMS connectors” on page 129.

♦ Sybase Central Connector Properties dialog.

♦ Server management requests.

See “Creating and configuring connectors” on page 104.

♦ The ml_qa_global_props MobiLink system table.

See “ml_qa_global_props” [MobiLink - Server Administration].

The following properties are used to configure the JMS connector:

♦ ianywhere.connector.nativeConnection The Java class that implements the connector. It is for
QAnywhere internal use only, and should not be deleted or modified.

♦ ianywhere.connector.id (deprecated) An identifier that uniquely identifies the connector. The
default is the value of the connector property ianywhere.connector.address.

♦ ianywhere.connector.address The connector address that a QAnywhere client should use to
address the connector. This address is also used to prefix all logged error, warning, and informational
messages appearing in the server console for this connector.

F For more information, see “Addressing QAnywhere messages meant for JMS” on page 137.

In Sybase Central, set this property in the Connector wizard, Connector Names page, Connector Name
field.

♦ ianywhere.connector.incoming.retry.max The maximum number of times the connector will
retry transferring a JMS message to a QAnywhere message store before giving up. After the maximum
number of failed attempts, the JMS message is re-addressed to the
ianywhere.connector.jms.deadMessageDestination property value. The default is -1, which means that
the connector will never give up.

♦ ianywhere.connector.outgoing.deadMessageAddress The address that a message is sent to
when it cannot be processed. For example, if a message contains a JMS address that is malformed or
unknown, the message is marked as unreceivable and a copy of the message is sent to the dead message
address.

If no dead message address is specified, the message is marked as unreceivable but no copy of the message
is sent.

JMS Connectors

132 Copyright © 2006, iAnywhere Solutions, Inc.

In Sybase Central, you can set this property in the connector properties dialog Properties tab, by clicking
New.

♦ ianywhere.connector.logLevel The amount of connector information displayed in the MobiLink
server console and log file. Values for the log level are as follows:

♦ 1 Log error messages.

♦ 2 Log error and warning messages.

♦ 3 Log error, warning, and information messages.

♦ 4 Log error, warning, information, and debug messages.

In Sybase Central, set this property on the connector properties dialog, on the General tab, in the Logging
Level section.

You can also set this property for all connectors. To do this in Sybase Central, connect to a server message
store and choose the task Change Properties of this Message Store. Open the Server Properties tab.

♦ ianywhere.connector.compressionLevel The default message compression factor of messages
received from JMS: an integer between 0 and 9, with 0 indicating no compression and 9 indicating
maximum compression.

In Sybase Central, set this property on the connector properties dialog, on the General tab, in the
Compression Level section.

You can also set this property for all connectors. To do this in Sybase Central, connect to a server message
store, choose the task Change Properties of this Message Store, and open the Server Properties tab.

♦ ianywhere.connector.jms.deadMessageDestination The address that a JMS message is sent
to when it cannot be converted to a QAnywhere message. This might occur if the JMS message is an
instance of an unsupported class, if the JMS message does not specify a QAnywhere address, if an
unexpected JMS provider exception occurs, or if an unexpected QAnywhere exception occurs.

In Sybase Central, set this property on the connector properties dialog, on the JMS tab, in the Other section,
in the Dead Message Destination field.

♦ ianywhere.connector.outgoing.retry.max The default number of retries for messages going from
QAnywhere to the external messaging system. The default value is 5. Specify 0 to have the connector
retry forever.

In Sybase Central, you can set this property in the connector properties dialog, Properties tab, by clicking
New.

♦ ianywhere.connector.runtimeError.retry.max The number of times a connector retries a
message that causes a RuntimeException. If a dead message queue is specified, the message is put in that
queue. Otherwise, the message is marked as unreceivable and skipped. Specify a value of 0 to have the
server never give up.

♦ ianywhere.connector.startupType Startup types can be automatic, manual, or disabled.

♦ xjms.jndi.authName The authentication name to connect to the external JMS JNDI name service.

JMS connector properties

Copyright © 2006, iAnywhere Solutions, Inc. 133

In Sybase Central, set this property in the Connector wizard, JNDI Settings page, User Name field; or on
the connector properties dialog on the JMS tab, JNDI section, User Name field.

♦ xjms.jndi.factory The factory name used to access the external JMS JNDI name service.

In Sybase Central, set this property in the Connector wizard, JNDI Settings page, Password field; or on
the connector properties dialog on the JMS tab, JNDI section, Password field.

♦ xjms.jndi.password.e The authentication password to connect to the external JMS JNDI name
service.

In Sybase Central, set this property in the Connector wizard, JNDI Settings page, Name Service URL
field; or on the connector properties dialog on the JMS tab, JNDI section, URL field.

♦ xjms.jndi.url The URL to access the JMS JNDI name service.

In Sybase Central, set this property in the Connector wizard, JNDI Settings page, Name Service URL
field; or on the connector properties dialog on the JMS tab, JNDI section, URL field.

♦ xjms.password.e The authentication password to connect to the external JMS provider.

♦ xjms.queueConnectionAuthName The user ID to connect to the external JMS queue connection.

In Sybase Central, set this property in the Connector wizard, JMS Queue Settings page, User Name field;
or on the connector properties dialog on the JMS tab, Queue section, User Name field.

♦ xjms.queueConnectionPassword.e The password to connect to the external JMS queue
connection.

In Sybase Central, set this property in the Connector wizard, JMS Queue Settings page, Password field;
or on the connector properties dialog on the JMS tab, Queue section, Password field.

♦ xjms.queueFactory The external JMS provider queue factory name.

In Sybase Central, set this property in the Connector wizard, JMS Queue Settings page, Queue Factory
field; or on the connector properties dialog on the JMS tab, Queue section, Queue Factory field.

♦ xjms.receiveDestination The queue name used by the connector to listen for messages from JMS
targeted for QAnywhere clients.

In Sybase Central, set this property in the Connector wizard, Connector Names page, Receiver Destination
field.

♦ xjms.topicFactory The external JMS provider topic factory name.

In Sybase Central, set this property in the Connector wizard, JMS Topic Settings page, Topic Factory
field; or on the connector properties dialog on the JMS tab, Topic section, Topic Factory field.

♦ xjms.topicConnectionAuthName The user ID to connect to the external JMS topic connection.

In Sybase Central, set this property in the Connector wizard, JMS Topic Settings page, User Name field;
or on the connector properties dialog on the JMS tab, Topic section, User Name field.

♦ xjms.topicConnectionPassword.e The password to connect to the external JMS topic connection.

JMS Connectors

134 Copyright © 2006, iAnywhere Solutions, Inc.

In Sybase Central, set this property in the Connector wizard, JMS Topic Settings page, Password field;
or on the connector properties dialog on the JMS tab, Topic section, Password field.

JMS connector properties

Copyright © 2006, iAnywhere Solutions, Inc. 135

Configuring multiple connectors
QAnywhere can connect to multiple JMS message systems by defining a JMS connector for each JMS
system. The only property value that must be unique among the configured connectors is
ianywhere.connector.address.

The ianywhere.connector.address property is the address prefix that QAnywhere clients must specify to
address messages meant for the JMS system.

F For information about specifying the address of QAnywhere clients, see “Addressing QAnywhere
messages meant for JMS” on page 137.

F For information about the connector properties, see “JMS connector properties” on page 132.

F For information about configuring connectors, see “Creating and configuring
connectors” on page 104.

JMS Connectors

136 Copyright © 2006, iAnywhere Solutions, Inc.

Addressing QAnywhere messages meant for JMS
A QAnywhere client can send a message to a JMS system by setting the address to the following value:

connector-address\JMS-queue-name

The connector-address is the value of the connector property ianywhere.connector.address, while JMS-
queue-name is the name used to look up the JMS queue or topic using the Java Naming and Directory
Interface.

If your JMS-queue-name contains a backslash, you must escape the backslash with another backslash. For
example, a queue called qq in the context ss should be specified as ss\\qq.

// C# example
QAMessage msg;
QAManager mgr;
...
mgr.PutMessage(@"ianywhere.connector.wsmqfs\ss\\qq",msg);
// C++ example
QAManagerBase *mgr;
QATextMessage *msg;
...
mgr->putMessage("ianywhere.connector.easerver\\ss\\\\qq", msg);

Example
For example, if the ianywhere.connector.address is set to ianywhere.connector.easerver and the JMS queue
name is myqueue, then the code to set the address would be:

// C# example
QAManagerBase mgr;
QAMessage msg;
// Initialize the manager.
...
msg = mgr.CreateTextMessage();
// Set the message content.
...
mgr.PutMessage(@"ianywhere.connector.easerver\myqueue", msg);
 // C++ example
QAManagerBase *mgr;
QATextMessage *msg;
// Initialize the manager.
...
msg = mgr.createTextMessage();
// Set the message content.
...
mgr->putMessage("ianywhere.connector.easerver\\myqueue", msg);

See also
♦ “QAnywhere message addresses” on page 50
♦ “JMS connector properties” on page 132

Addressing QAnywhere messages meant for JMS

Copyright © 2006, iAnywhere Solutions, Inc. 137

Mapping QAnywhere messages on to JMS messages
QAnywhere messages are mapped naturally on to JMS messages.

QAnywhere message content

QAnywhere JMS Remarks

QATextMessage javax.jms.TextMessage message text copied as Unicode

QABinaryMessage javax.jms.BytesMessage message bytes copied exactly

QAnywhere built-in headers
The following table describes the mapping of built-in headers. In C++ and JMS, these are method names;
for example, Address is called getAddress() or setAddress() for QAnywhere, and getJMSDestination() or
setJMSDestination() for JMS. In .NET, these are properties with the exact name given below; for example,
Address is Address.

QAnywhere JMS Remarks

Address JMSDestination and JMS property

ias_ToAddress

If the destination contains a backslash,
you must escape it with a second back-
slash.

Only the JMS part of the address is
mapped to the Destination. Under rare
circumstances, in the case of a mes-
sage looping back into QAnywhere,
there may be an additional QAny-
where address suffix. This is put in
ias_ToAddress.

Expiration JMSExpiration

InReplyToID N/A Not mapped.

MessageID N/A Not mapped.

Priority JMSPriority

Redelivered N/A Not mapped.

ReplyToAddress JMS property

ias_ReplyToAddress

Mapped to JMS property.

Connector's xjms.re-
ceiveDestination property
value

JMSReplyTo ReplyTo set to Destination used by
connector to receive JMS messages.

Timestamp N/A Not mapped.

JMS Connectors

138 Copyright © 2006, iAnywhere Solutions, Inc.

QAnywhere properties

QAnywhere properties are all mapped naturally to JMS properties, preserving type, with the following
exception: if the QAnywhere message has a property called JMSType, then this is mapped to the JMS header
property JMSType.

Addressing JMS messages meant for QAnywhere

A JMS client can send a message to a QAnywhere client by setting the JMS message property ias_ToAddress
to the QAnywhere address, and then sending the message to the JMS Destination corresponding to the
connector property xjms.receiveDestination.

F For more information, see “QAnywhere message addresses” on page 50.

Example
For example, to send a message to the QAnywhere address "qaddr" (where the connector setting of
xjms.receiveDestination is "qanywhere_receive"):

import javax.jms.*;
...
try {
 QueueSession session;
 QueueSender sender;
 TextMessage mgr;
 Queue connectorQueue;
 // Initialize the session.
 ...
 connectorQueue = session.createQueue("qanywhere_receive");
 sender = session.createSender(connectorQueue);
 msg = session.createTextMessage();
 msg.setStringProperty("ias_ToAddress", "qaddr");
 // Set the message content.
 ...
 sender.send(msg);
} catch(JMSException e) {
 // Handle the exception
 ...
}

Mapping JMS messages on to QAnywhere messages

JMS messages are mapped naturally on to QAnywhere messages.

JMS message content

JMS QAnywhere Remarks

javax.jms.TextMessage QATextMessage Message text copied as Unicode

javax.jms.BytesMessage QABinaryMessage Message bytes copied exactly

javax.jms.StreamMessage N/A Not supported

Mapping QAnywhere messages on to JMS messages

Copyright © 2006, iAnywhere Solutions, Inc. 139

JMS QAnywhere Remarks

javax.jms.MapMessage N/A Not supported

javax.jms.ObjectMessage N/A Not supported

JMS built-in headers
The following table describes the mapping of built-in headers. In C++ and JMS, these are method names;
for example, Address is called getAddress() or setAddress() for QAnywhere, and getJMSDestination() or
setJMSDestination() for JMS. In .NET, these are properties with the exact name given below; for example,
Address is Address.

JMS QAnywhere Remarks

JMS Destination N/A The JMS destination must be
set to the queue specified in
the connector property
xjms.receiveDestination.

JMS Expiration Expiration

JMS CorrelationID InReplyToID

JMS MessageID N/A Not mapped.

JMS Priority Priority

JMS Redelivered N/A Not mapped.

JMS ReplyTo and connector's
ianywhere.connector.address property value

ReplyToAddress The connector address is con-
catenated with the JMS Re-
plyTo Destination name de-
limited by '\'.

JMS DeliveryMode N/A Not mapped.

JMS Type QAnywhere message
property JMSType

JMS Timestamp N/A Not mapped.

JMS properties

JMS properties are all mapped naturally to QAnywhere properties, preserving type, with a few exceptions.
The QAnywhere Address property is set from the value of the JMS message property ias_ToAddress. If the
JMS message property ias_ReplyToAddress is set, then the QAnywhere ReplyToAddress is additionally
suffixed with this value delimited by a '\'.

JMS Connectors

140 Copyright © 2006, iAnywhere Solutions, Inc.

Tutorial: Using JMS connectors
A JMS connector provides connectivity between a JMS message system and QAnywhere. This tutorial sends
messages between a JMS system and QAnywhere.

About the tutorial
This tutorial starts a JMS connector and sends a message from a JMS client to a QAnywhere client.

Required software
For this tutorial, you need access to a JMS provider and basic knowledge of how to configure it. In addition,
you need JDK version 1.3.1 or later and any JAR files required by a JMS client of the JMS provider.

Lesson 1: Start a JMS connector

♦ To prepare your JMS provider

1. Start your JMS server.

F See the documentation for your JMS server.

2. Create two queues within your JMS server: qa_testmessage and qa_receive. You may need to restart
your JMS server after creating the queues.

F See the documentation for your JMS server.

♦ To start QAnywhere client and server components

1. Create a directory to hold the files you create for this tutorial. For example, c:\JMSTestMessage.
Navigate to that directory.

2. Create a QAnywhere connector:

♦ In Sybase Central, choose File ► New Connector and following the prompts in the Connector
wizard.

For more information, see “Setting up JMS connectors” on page 129.

3. Start the MobiLink server for messaging:

From the Windows Start menu, choose Programs ► SQL Anywhere 10 ► MobiLink ► MobiLink
with Messaging Sample.

Alternatively, at a command prompt, navigate to samples-dir\QAnywhere\server and type the following
command:

mlsrv10 -m -c "dsn=QAnywhere 10.0 Demo" -sl java(-cp "jarfiles") -vcrs -zu
+

4. Start the QAnywhere Agent:

Tutorial: Using JMS connectors

Copyright © 2006, iAnywhere Solutions, Inc. 141

From the Start menu, choose Programs ► SQL Anywhere 10 ► QAnywhere ► Agent for Client1
Sample.

5. Start the TestMessage sample:

From the Windows Start menu, choose Programs ► SQL Anywhere 10 ► QAnywhere ► TestMessage
for Client1 Sample.

♦ To start the Java version of the TestMessage client

1. At a command prompt, navigate to Samples\QAnywhere\connectors\JMS\TestMessage and type the
following:

java -cp .;JMS-client-jar-files ianywhere.message.samples.TestMessage

where JMS-client-jar-files is a semi-colon delimited list of jar files that are required to access the JMS
server. See your JMS server documentation for details.

For Sybase EAServer, this command would be:

java -cp .;path\easclient.jar;path\easj2ee.jar
ianywhere.message.samples.TestMessage

where path is the location of the jar files.

Note
On Unix, use colons instead of semicolons.

2. Move the JMS TestMessage window to the right side of your screen under the existing TestMessage
for Client1 window.

Lesson 2: Send a message from a JMS client to a QAnywhere client

♦ To send a message from a JMS client to a QAnywhere client

1. From the JMS TestMessage Message menu, choose New.

The New Message window appears.

2. In the To field, enter the client message store ID of client1.

3. Fill out the Subject and Message fields with sample text, and click Send.

4. Within a short time a message box appears, indicating that a message has been received by TestMessage
for Client2.

Tutorial cleanup
Shut down TestMessage clients, the QAnywhere Agent, and the MobiLink server.

JMS Connectors

142 Copyright © 2006, iAnywhere Solutions, Inc.

CHAPTER 7

QAnywhere Agent

Contents
qaagent syntax .. 145
@data option ... 147
-c option ... 148
-fd option .. 150
-fr option .. 151
-id option .. 152
-iu option .. 153
-lp option .. 154
-mn option .. 155
-mp option .. 156
-mu option .. 157
-o option ... 158
-on option ... 159
-os option ... 160
-ot option .. 161
-pc option ... 162
-policy option ... 163
-push option ... 165
-q option ... 167
-qi option .. 168
-si option .. 169
-su option ... 170
-sur option .. 171
-v option ... 172
-x option ... 173

About this chapter
This chapter describes the syntax and options of the QAnywhere Agent, qaagent.

Copyright © 2006, iAnywhere Solutions, Inc. 143

F For an overview of how to run the QAnywhere Agent, see “Running the QAnywhere
Agent” on page 35.

QAnywhere Agent

144 Copyright © 2006, iAnywhere Solutions, Inc.

qaagent syntax
Use the QAnywhere Agent to send and receive messages for all QAnywhere applications on a single client
device.

Syntax
qaagent [option ...]

Option Description

@data Reads options from the specified environment variable or configuration
file. See “@data option” on page 147.

-c connection-string Specifies a connection string to the client message store. See “-c op-
tion” on page 148.

-id id Specifies the ID of the client message store that the QAnywhere Agent
is to connect to. See “-id option” on page 152.

-iu upload-size Specifies the maximum size of an upload to use during a message
transmission . See “-iu option” on page 153.

-lp number Specifies the port on which the Listener listens for notifications from
the MobiLink server. The default is 5001. See “-lp
option” on page 154.

-mp password Specifies a new password for the MobiLink user. See “-mp op-
tion” on page 156.

-mp password Specifies the MobiLink password for the ID being synchronized. See
“-mp option” on page 156.

-mu username Specifies the MobiLink user. See “-mu option” on page 157.

-o logfile Specifies a file to which to log output messages. See “-o
option” on page 158.

-on size Specifies a maximum size for the QAnywhere Agent message log file,
after which the file is renamed with the extension .old and a new file is
started. See “-on option” on page 159.

-os size Specifies a maximum size for the QAnywhere Agent message log file,
after which a new log file with a new name is created and used. See “-
os option” on page 160.

-ot logfile Specifies a file to which to log output messages. See “-ot
option” on page 161.

-pc{+|-} Enables persistent connections for message transmission. See “-pc op-
tion” on page 162.

-policy policy-type Specifies the transmission policy used by the QAnywhere Agent. See
“-policy option” on page 163.

qaagent syntax

Copyright © 2006, iAnywhere Solutions, Inc. 145

Option Description

-push mode Enables or disables push notifications. The default is enabled. See “-
push option” on page 165.

-q Starts the QAnywhere Agent in quiet mode with the window minimized
in the system tray. See “-q option” on page 167.

-qi Starts the QAnywhere Agent in quiet mode with the window completely
hidden. See “-qi option” on page 168.

-si Initializes the database for use as a client message store. See “-si op-
tion” on page 169.

-su Upgrades a client message store to the current version without running
dbunload/reload. See “-su option” on page 170.

-sur Upgrades a client message store to the current version and performs
dbunload/reload of the message store. See “-sur option” on page 171

-v [levels] Specifies a level of verbosity. See “-v option” on page 172.

-x { http|tcpip|tls|https }
[(keyword=value;...)]

Specifies protocol options for communication with the MobiLink serv-
er. See “-x option” on page 173.

Usage
For usage information about qaagent, see “Running the QAnywhere Agent” on page 35.

QAnywhere Agent

146 Copyright © 2006, iAnywhere Solutions, Inc.

@data option
Function

Reads options from the specified environment variable or configuration file.

Syntax
qaagent @{ filename | environment-variable } ...

Remarks
With this option, you can put command line options in an environment variable or configuration file. If both
exist with the name you specify, the environment variable is used.

F For more information about configuration files, see “Using configuration files” [SQL Anywhere Server
- Database Administration].

If you want to protect passwords or other information in the configuration file, you can use the File Hiding
utility to obfuscate the contents of the configuration file.

This option is useful for Windows CE because command lines in shortcuts are limited to 256 characters.

F See “File Hiding utility (dbfhide)” [SQL Anywhere Server - Database Administration].

Sybase Central equivalent
The QAnywhere plug-in to Sybase Central has a task called Create An Agent Command File. When you
choose it, you are prompted to enter a file name and then a Properties dialog appears that helps you enter
the command information. The file that is produced has a .qaa extension. The .qaa file extension is a Sybase
Central convention; this file is the same as what you would create for the @data option. You can use the
command file created by Sybase Central as your @data configuration file.

@data option

Copyright © 2006, iAnywhere Solutions, Inc. 147

-c option
Function

Specify a connection string to the client message store.

Syntax
qaagent -c connection-string ...

Defaults

Connection parameter Default value

uid ml_qa_user

pwd qanywhere

Remarks
The connection string must specify connection parameters in the form keyword=value, separated by
semicolons, with no spaces between parameters.

DSNs are not typically used on client devices. ODBC is not used by qaagent.

F For a complete list of connection parameters, see “Connection parameters” [SQL Anywhere Server -
Database Administration].

Following are some of the connection parameters you may need to use:

♦ dbf=filename Connect to a message store with the specified filename.

♦ dbn=database-name If the client message store is already running when the QAnywhere Agent starts,
you can connect to it by specifying a database name rather than a database file.

♦ eng=server-name If you want to use a database server that is already running, use this option to specify
the server name. The default value is the name of the database.

♦ uid=user Specify a database user ID to connect to the client message store. This parameter is required
if you change the defaults.

♦ pwd=password Specify the password for the database user ID. This is required if you change the
defaults.

♦ dbkey=key If the client message store is encrypted using strong encryption, specify the encryption
key required to access the database.

See also
♦ “Connection parameters” [SQL Anywhere Server - Database Administration]
♦ “Connecting to a Database” [SQL Anywhere Server - Database Administration]

QAnywhere Agent

148 Copyright © 2006, iAnywhere Solutions, Inc.

Example
qaagent -id Device1 -c "DBF=qanyclient.db" -x tcpip(host=hostname) -policy
automatic

-c option

Copyright © 2006, iAnywhere Solutions, Inc. 149

-fd option
Function

This option, when specified in conjunction with the -fr option, specifies the delay between attempts to connect
to the MobiLink server.

Syntax
qaagent -fd seconds ...

Default
♦ If you specify -fr and do not specify -fd, the delay is 0 (no delay between retry attempts).
♦ If you do not specify -fr, the default is no retry attempts.

Remarks
You must use this option with the -fr option. The -fr option specifies how many times to retry the connection
to the primary server, and the -fd option specifies the delay between retry attempts.

This option is typically used when you specify failover MobiLink servers with the -x option. By default
when you set up a failover MobiLink server, the QAnywhere Agent tries an alternate server immediately
upon a failure to reach the primary server. You can use the -fr option to cause the QAnywhere Agent to try
the primary server again before going to the alternate server, and you can use the -fd option to specify the
amount of time between retries of the primary server.

It is recommended that you set this option to 10 seconds or less.

See also
♦ “-fr option” on page 151
♦ “-x option” on page 173
♦ “Setting up a failover mechanism” on page 42

QAnywhere Agent

150 Copyright © 2006, iAnywhere Solutions, Inc.

-fr option
Function

This option specifies the number of times that the QAnywhere Agent should retry the connection to the
primary MobiLink server.

Syntax
qaagent -fr number-of-retries ...

Default
0 (the QAnywhere Agent will not attempt to retry the primary MobiLink server)

Remarks
By default, if the QAnywhere Agent is not able to connect to the MobiLink server, there is no error and
messages are not sent. This option specifies that the QAnywhere Agent should retry the connection to the
MobiLink server, and specifies the number of times that it should retry before trying an alternate server or
issuing an error if you have not specified an alternate server.

This option is typically used when you specify failover MobiLink servers with the -x option. By default
when you set up a failover MobiLink server, the QAnywhere Agent tries an alternate server immediately
upon a failure to reach the primary server. This option causes the QAnywhere Agent to try the primary server
again before going to the alternate server.

In addition, you can use the -fd option to specify the amount of time between retries of the primary server.

See also
♦ “-fd option” on page 150
♦ “-x option” on page 173
♦ “Setting up a failover mechanism” on page 42

-fr option

Copyright © 2006, iAnywhere Solutions, Inc. 151

-id option
Function

Specify the ID of the client message store that the QAnywhere Agent is to connect to.

Syntax
qaagent -id id ...

Default
The default value of the ID is the device name on which the Agent is running. In some cases, device names
may not be unique, in which case you must use the -id option.

Remarks
Each client message store is represented by a unique sequence of characters called the message store ID. If
you do not supply an ID when you first connect to the message store, the default is the device name. On
subsequent connections, you must always specify the same message store ID with the -id option.

The message store ID corresponds to the MobiLink remote ID. It is required because in all MobiLink
applications, each remote database must have a unique ID.

F For more information, see “Creating and registering MobiLink users” [MobiLink - Client
Administration].

If you are starting a second instance of the qaagent on a device, the -id option must be used to specify a
unique message store ID.

You cannot use the following characters in an ID:

♦ double quotes

♦ control characters

♦ double backslashes

The following additional constraints apply:

♦ You can use a single backslash only if it is used as an escape character.

♦ If your client message store database has the quoted_identifier database option set to Off (not the default),
then your ID can only include alphanumeric characters and underscores, at signs, pounds, and dollar
signs.

See also
♦ “About MobiLink users” [MobiLink - Client Administration]
♦ “Setting up the client message store” on page 33

QAnywhere Agent

152 Copyright © 2006, iAnywhere Solutions, Inc.

-iu option
Function

Specifies the increment upload size.

Syntax
qaagent -iu upload-size [K | M] ...

Default
256K.

Remarks
This option specifies the size in bytes of the upload part of a message transmission. Use the suffix k or m to
specify units of kilobytes or megabytes, respectively.

When the QAnywhere Agent starts, it assigns the value specified by this option to the ias_MaxUploadSize
message store property. This message store property defines an upper bound on the size of an upload. When
a transmission is triggered, the Agent tags messages for delivery to the server until the total size of all
messages reaches the limit set with this option. When the limit is reached, these messages are sent to the
server. As long as the messages arrive at the server and an acknowledgement is successfully sent from the
server to the client, these messages are considered to be successfully delivered, even if the download phase
of the transmission fails. The Agent continues sending batches of messages to the server until all queued
messages have been delivered. Transmission rules are re-executed after each batch of messages is transmitted
so that if a high priority messages gets queued during a transmission, it will jump to the front of the queue.

An upload will always contain at least one message (if there are messages queued for delivery) and messages
will not be split. Therefore, the incremental upload size is an approximation, and it will be a poor
approximation if there is a message to be uploaded that is many times larger than the incremental upload
size.

See also
♦ ias_MaxUploadSize in “Pre-defined client message store properties” on page 215

-iu option

Copyright © 2006, iAnywhere Solutions, Inc. 153

-lp option
Function

Specifies the Listener port.

Syntax
qaagent -lp number ...

Default
5001.

Remarks
The port number on which the Listener listens for UDP notifications from the MobiLink server. Notifications
are used to inform the QAnywhere Agent that a message is waiting.

A UDP listener port is only established if the Agent is started with the -push disconnected option.

See also
♦ “Scenario for messaging with push notifications” on page 9
♦ “-push option” on page 165

QAnywhere Agent

154 Copyright © 2006, iAnywhere Solutions, Inc.

-mn option
Function

Specify a new password for the MobiLink user.

Syntax
qaagent -mp password ...

Default
None.

Remarks
Use to change the password.

See also
♦ “MobiLink Users” [MobiLink - Client Administration]
♦ “-mp option” on page 156
♦ “-mu option” on page 157

-mn option

Copyright © 2006, iAnywhere Solutions, Inc. 155

-mp option
Function

Specify the MobiLink password for the MobiLink user.

Syntax
qaagent -mp password ...

Default
None.

Remarks
If the MobiLink server requires user authentication, use -mp to supply the MobiLink password.

See also
♦ “MobiLink Users” [MobiLink - Client Administration]
♦ “-mu option” on page 157

QAnywhere Agent

156 Copyright © 2006, iAnywhere Solutions, Inc.

-mu option
Function

Specify the MobiLink user.

Syntax
qaagent -mu username ...

Default
The client message store ID.

Remarks
The MobiLink user is used for authentication with the MobiLink server.

If you specify a user name that does not exist, it is created for you.

All MobiLink user names must be registered in the server message store. See “Registering client user
names” on page 31.

See also
♦ “MobiLink Users” [MobiLink - Client Administration]
♦ “-id option” on page 152
♦ “-mp option” on page 156
♦ “Remote IDs” [MobiLink - Client Administration]

-mu option

Copyright © 2006, iAnywhere Solutions, Inc. 157

-o option
Function

Sends output to a log file.

Syntax
qaagent -o logfile ...

Default
None.

Remarks
The QAnywhere Agent logs output to the file name that you specify. If the file already exists, new log
information is appended to the file. The SQL Anywhere synchronization client (dbmlsync) logs output to a
file with the same name, but including the suffix _sync. The Listener utility (dblsn) logs output to a file with
the same name, but including the suffix _lsn.

For example, if you specify the log file c:\tmp\mylog.out, then qaagent logs to c:\tmp\mylog.out, dbmlsync
logs to c:\tmp\mylog_sync.out, and dblsn logs to c:\tmp\mylog_lsn.out.

See also
♦ “-ot option” on page 161
♦ “-on option” on page 159
♦ “-os option” on page 160
♦ “-v option” on page 172

QAnywhere Agent

158 Copyright © 2006, iAnywhere Solutions, Inc.

-on option
Function

Specifies a maximum size for the QAnywhere Agent message log file, after which the file is renamed with
the extension .old and a new file is started.

Syntax
qaagent –on size [k | m]…

Default
None.

Description
The size is the maximum file size for the output log, in bytes. Use the suffix k or m to specify units of
kilobytes or megabytes, respectively. The minimum size limit is 10KB.

When the log file reaches the specified size, the QAnywhere Agent renames the output file with the
extension .old, and starts a new one with the original name.

Notes
If the .old file already exists, it is overwritten. To avoid losing old log files, use the -os option instead.
This option cannot be used with the -os option.

See also
♦ “-o option” on page 158
♦ “-ot option” on page 161
♦ “-os option” on page 160
♦ “-v option” on page 172

-on option

Copyright © 2006, iAnywhere Solutions, Inc. 159

-os option
Function

Specifies a maximum size for the QAnywhere Agent message log file, after which a new log file with a new
name is created and used.

Syntax
qaagent –os size [k | m] …

Default
None.

Description
The size is the maximum file size for logging output messages. The default units is bytes. Use the suffix k
or m to specify units of kilobytes or megabytes, respectively. The minimum size limit is 10K.

Before the QAnywhere Agent logs output messages to a file, it checks the current file size. If the log message
will make the file size exceed the specified size, the QAnywhere Agent renames the message log file to
yymmddxx.mls. In this instance, xx are sequential characters ranging from 00 to 99, and yymmdd represents
the current year, month, and day.

You can use this option to prune old message log files to free up disk space. The latest output is always
appended to the file specified by -o or -ot.

Note
This option cannot be used with the -on option.

See also
♦ “-o option” on page 158
♦ “-ot option” on page 161
♦ “-on option” on page 159
♦ “-v option” on page 172

QAnywhere Agent

160 Copyright © 2006, iAnywhere Solutions, Inc.

-ot option
Function

Truncates the log file and appends output messages to it.

Syntax
qaagent -ot logfile ...

Default
None.

Remarks
The QAnywhere Agent logs output to the file name that you specify. If the file exists, it is first truncated to
a size of 0. The SQL Anywhere synchronization client (dbmlsync) logs output to a file with the same name,
but including the suffix _sync. The Listener utility (dblsn) logs output to a file with the same name, but
including the suffix _lsn.

For example, if you specify the log file c:\tmp\mylog.out, then qaagent logs to c:\tmp\mylog.out, dbmlsync
logs to c:\tmp\mylog_sync.out, and dblsn logs to c:\tmp\mylog_lsn.out.

See also
♦ “-o option” on page 158
♦ “-on option” on page 159
♦ “-os option” on page 160
♦ “-v option” on page 172

-ot option

Copyright © 2006, iAnywhere Solutions, Inc. 161

-pc option
Function

Maintain a persistent connection to the MobiLink server between synchronizations.

Syntax
qaagent -pc { + | - } ...

Default
-pc-

Remarks
Enabling persistent connections (-pc+) is useful when network coverage is good and there is heavy message
traffic over QAnywhere. In this scenario, you can reduce the network overhead of setting up and taking
down a TCP/IP connection every time a message transmission occurs.

Disabling persistent connections (-pc-) is useful in the following scenarios when the client device has a
public IP address and is reachable by UDP or SMS:

♦ The client device is using dial-up networking and connection time charges are an issue.
♦ There is light message traffic over QAnywhere. Persistent TCP/IP connections consume network server

resources, and so could have an impact on scalability.
♦ The client device network coverage is unreliable. You can use the automatic policy to transmit messages

when connection is possible. Trying to maintain persistent connections in this environment is not useful
and can waste CPU resources.

See also
♦ “-push option” on page 165
♦ “-pc option” [MobiLink - Client Administration]

QAnywhere Agent

162 Copyright © 2006, iAnywhere Solutions, Inc.

-policy option
Function

Specifies a policy that determines when message transmission occurs.

Syntax
qaagent -policy policy-type ...

policy-type: ondemand | scheduled[interval-in-seconds] | automatic | rules-file

Defaults
♦ The default policy type is automatic.
♦ The default interval for scheduled policies is 900 seconds (15 minutes).

Remarks
QAnywhere uses a policy to determine when message transmission occurs. The policy-type can be one of
the following values:

♦ ondemand Only transmit messages when the QAnywhere client application makes the appropriate
method call.

The QAManager PutMessage() method causes messages to be queued locally. These messages are not
transmitted to the server until the QAManager TriggerSendReceive() method is called. Similarly,
messages waiting on the server are not sent to the client until TriggerSendReceive() is called by the client.

When using the ondemand policy, the application is responsible for causing a message transmission to
occur when it receives a push notification from the server. A push notification causes a system message
to be delivered to the QAnywhere client. In your application, you may choose to respond to this system
message by calling TriggerSendReceive().

F For an example, see “System queue” on page 51.

♦ scheduled Transmit messages at a specified interval. The default value is 900 seconds (15 minutes).

Transmission of messages between the client and the server takes place at a specified time interval.

The QAManager PutMessage() method causes messages to be queued locally. These messages are not
transmitted until the time interval has elapsed. Messages queued on the server for delivery to the client
are also transmitted when the time interval has elapsed.

If push notifications are enabled, messages queued on the server for delivery to the client are transmitted
when the next time interval elapses.

TriggerSendReceive() can override the time interval. It forces a message transmission to occur before the
time interval elapses.

The optional interval argument is the number of seconds between send/receive operations. For example,
the following command schedules the QAnywhere Agent to send/receive messages every 20 minutes:

qaagent.exe -policy scheduled[1200]

-policy option

Copyright © 2006, iAnywhere Solutions, Inc. 163

♦ automatic Transmit messages when one of the events described below occurs.

The QAnywhere agent attempts to keep message queues as current as possible. Any of the following
events cause messages queued on the client to be delivered to the server and messages queued on the
server to be delivered to the client:

♦ Invoking PutMessage().

♦ Invoking TriggerSendReceive().

♦ A push notification.

For information about notifications, see “Scenario for messaging with push notifications” on page 9.

♦ A message status change on the client. For example, a status change occurs when an application
retrieves a message from a local queue which causes the message status to change from pending to
received.

♦ rules-file Specifies a client transmission rules file. The transmission rules file can indicate a more
complicated set of rules to determine when messages are transmitted.

F See “Client transmission rules” on page 234.

See also
♦ “Determining when message transmission should occur on the client” on page 36
♦ “Scenario for messaging with push notifications” on page 9

QAnywhere Agent

164 Copyright © 2006, iAnywhere Solutions, Inc.

-push option
Function

Specifies whether push notifications are enabled.

Syntax
qaagent -push mode ...

mode : none | connected | disconnected

Default
connected

Options

Mode Description

none Push notifications are disabled for this agent. The Listener (dblsn) is not started.

connected Push notifications are enabled for this agent over TCP/IP with persistent connection.
The Listener (dblsn) is started by qaagent and attempts to maintain a persistent con-
nection to the MobiLink server. This mode is useful when the client device does not
have a public IP address or when the MobiLink server is behind a firewall that does
not allow UDP messages out. This is the default.

disconnected Push notifications are enabled for this agent over UDP without a persistent connection.
The Listener (dblsn) is started by qaagent but does not maintain a persistent connection
to the MobiLink server. Instead, a UDP listener receives push notifications from Mo-
biLink. This mode is useful in the following scenarios when the client device has a
public IP address and is reachable by UDP or SMS:

♦ The client device is using dial-up networking and connection time charges are an
issue.

♦ There is light message traffic over QAnywhere. Persistent TCP/IP connections
consume network server resources, and so could have an impact on scalability.

♦ The client device network coverage is unreliable. You can use the automatic policy
to transmit messages when connection is possible. Trying to maintain persistent
connections in this environment is not useful and can waste CPU resources.

See “-lp option” on page 154.

Remarks
If you do not want to use notifications, set this option to none. You then do not have to deploy the
dblsn.exe executable with your clients.

F For a description of QAnywhere without notifications, see “Simple messaging scenario” on page 7.

If you are using UDP, you cannot use push notifications in disconnected mode with ActiveSync due to the
limitations of the UDP implementation of ActiveSync.

-push option

Copyright © 2006, iAnywhere Solutions, Inc. 165

See also
♦ “Using push notifications” on page 41
♦ “-pc option” on page 162
♦ “Running the QAnywhere Agent” on page 35
♦ “Notifications of push notification” on page 53

QAnywhere Agent

166 Copyright © 2006, iAnywhere Solutions, Inc.

-q option
Function

Starts the QAnywhere Agent in quiet mode with the window minimized in the system tray.

Syntax
qaagent -q ...

Default
None.

Remarks
When you start the QAnywhere Agent in quiet mode with -q, the main window is minimized to the system
tray. In addition, the database server for the message store is started with the -qi option.

See also
♦ “-qi option” on page 168

-q option

Copyright © 2006, iAnywhere Solutions, Inc. 167

-qi option
Starts the QAnywhere Agent in quiet mode with the window completely hidden.

Syntax
qaagent -qi ...

Default
None.

Remarks
When you start the QAnywhere Agent in quiet mode, on Windows desktop the main window is minimized
to the system tray, and on Windows CE the main window is hidden. In addition, the database server for the
message store is started with the -qi option.

Quiet mode is useful for some Windows CE applications because it prevents an application from being closed
when Windows CE reaches its limit of 32 concurrent processes. Quiet mode allows the QAnywhere Agent
to run like a service.

When in -qi quiet mode, you can only stop the QAnywhere Agent by typing qastop.

See also
♦ “-q option” on page 167

QAnywhere Agent

168 Copyright © 2006, iAnywhere Solutions, Inc.

-si option
Function

Initializes the database for use as a client message store.

Syntax
qaagent -c "connection-string" -si ...

Default
None. You only use this option once, to initialize the client message store.

Remarks
Before using this option, you must create a SQL Anywhere database. When you use -si, the QAnywhere
Agent initializes the database with database objects such as QAnywhere system tables; it then exits
immediately.

When you run -si, you must specify a connection string with the -c option that indicates which database to
initialize. The connection string specified in the -c option should also specify a user ID with DBA privileges.
If you do not specify a user ID and password, the default user DBA with password SQL is used.

The -si option creates a database user named ml_qa_user and password qanywhere for the client message
store. The user called ml_qa_user has permissions suitable for QAnywhere applications only. If you do not
change this database user name and password, then you do not need to specify the pwd or uid in the -c option
when you start qaagent. If you change either of them, then you must supply the uid and/or pwd in the -c
option on the qaagent command line.

Note
You should change the default passwords. To change them, use the GRANT statement. For more information,
see “Changing a password” [SQL Anywhere Server - Database Administration].

The -si option does not provide an ID for the client message store. You can assign an ID using the -id option
when you run -si or the next time you run qaagent; or, if you do not do that, qaagent will by default assign
the device name as the ID.

When a message store is created but is not set up with an ID, QAnywhere applications local to the message
store can send and receive messages, but cannot exchange messages with remote QAnywhere applications.
Once an ID is assigned, remote messaging may also occur.

See also
♦ “Setting up the client message store” on page 33
♦ “Creating a secure client message store” on page 176

Examples
The following command connects to a database called qaclient.db and initializes it as a QAnywhere client
message store. The QAnywhere Agent immediately exits when the initialization is complete.

qaagent -si -c "DBF=qaclient.db"

-si option

Copyright © 2006, iAnywhere Solutions, Inc. 169

-su option
Function

Upgrades a client message store to the current version. If you are upgrading from a pre-10.0.0 message store,
you must first manually unload and reload the message store.

Syntax
qaagent -su -c "connection-string" ...

Remarks
This option is useful if you want to perform custom actions after the unload/reload and before the qaagent
upgrade. Use the -sur option if you are upgrading from a pre-10.0.0 message store and you want the Agent
to automatically perform the unload/reload step for you.

This operation exits when the upgrade is complete.

This operation cannot be undone.

See also
♦ “-sur option” on page 171

Example
To upgrade from a version 9 database, first, unload and reload the database:

dbunload -q -c "UID=dba;PWD=sql;DBF=qanywhere.db" -ar

Next, run qaagent with the -su option:

qaagent -q -su -c "UID=dba;PWD=sql;DBF=qanywhere.db"

QAnywhere Agent

170 Copyright © 2006, iAnywhere Solutions, Inc.

-sur option
Function

Upgrades a client message store to the current version.

Syntax
qaagent -sur -c "connection-string" ...

Remarks
Specify the database to upgrade in the connection string. The -sur option automatically unloads the message
store, reloads it, and upgrades it.

The unload/reload is necessary to upgrade from a version 9 message store to a version 10 message store.
The unload/reload can be done manually along with the -su option. For example, if you need to perform
custom actions after the reload and before the upgrade, use the -su option.

This operation exits when the upgrade is complete.

This operation cannot be undone.

See also
♦ “-su option” on page 170

Example
The following example unloads and reloads a version 9.0.2 SQL Anywhere database called qanywhere.db,
making it useful with QAnywhere version 10.0.0.

qaagent -q -sur -c "UID=dba;PWD=sql;DBF=qanywhere.db"

-sur option

Copyright © 2006, iAnywhere Solutions, Inc. 171

-v option
Function

Allows you to specify what information is logged to the message log file and displayed in the QAnywhere
Agent console. A high level of verbosity may affect performance and should normally be used in the
development phase only.

Syntax
qaagent -v levels ...

Default
Minimal verbosity.

Remarks
The -v option affects the log files and console. You only have a message log if you specify -o or -ot on the
qaagent command line.

If you specify –v alone, a small amount of information is logged.

The values of levels are as follows. You can use one or more of these options at once; for example, -vlm.

♦ + Turn on all logging options.

♦ l Show all MobiLink Listener logging. This causes the MobiLink Listener (dblsn) to start with verbosity
level -v3.

F For more information, see the -v option in the “Listener syntax” [MobiLink - Server-Initiated
Synchronization].

♦ m Show all dbmlsync logging. This causes the SQL Anywhere synchronization client (dbmlsync) to
start with verbosity level -v+.

F For more information, see the dbmlsync “-v option” [MobiLink - Client Administration].

♦ n Show all network status change notifications. the QAnywhere Agent receives these notifications from
the Listener utility.

♦ p Show all message push notifications. The QAnywhere Agent receives these notifications from the
Listener utility via the MobiLink server, which includes a MobiLink Notifier.

♦ q Show the SQL that is used to represent the transmission rules.

♦ s Show all the message synchronizations that are initialized by QAnywhere Agent.

See also
♦ “-o option” on page 158
♦ “-ot option” on page 161
♦ “-on option” on page 159
♦ “-os option” on page 160

QAnywhere Agent

172 Copyright © 2006, iAnywhere Solutions, Inc.

-x option
Function

Specify the network protocol and the protocol options for communication with the MobiLink server.

Syntax
qaagent -x protocol [(protocol-options;...) ...

protocol: http, tcpip, https, tls

protocol-options: keyword=value

Remarks
For a complete list of protocol-options, see “MobiLink Client Network Protocol Options” [MobiLink - Client
Administration].

The -x option is required when the MobiLink server is not on the same device as the QAnywhere Agent.

You can specify -x multiple times. This allows you to set up failover to multiple MobiLink servers. When
you set up failover, the QAnywhere Agent attempts to connect to the MobiLink servers in the order in which
you enter them on the command line.

The QAnywhere Agent also has a Listener that receives notifications from the MobiLink server that messages
are available at the server for transmission to the client. This Listener only uses the first MobiLink server
that is specified, and does not fail over to others.

See also
♦ “MobiLink Client Network Protocol Options” [MobiLink - Client Administration]
♦ “Encrypting the communication stream” on page 178
♦ “Transport-Layer Security” [SQL Anywhere Server - Database Administration]
♦ “Setting up a failover mechanism” on page 42
♦ “-fd option” on page 150
♦ “-fr option” on page 151

-x option

Copyright © 2006, iAnywhere Solutions, Inc. 173

CHAPTER 8

Writing Secure Messaging Applications

Contents
Creating a secure client message store .. 176
Encrypting the communication stream .. 178
Using password authentication with MobiLink ... 179

About this chapter
This chapter describes techniques for implementing a secure messaging solution.

Copyright © 2006, iAnywhere Solutions, Inc. 175

Creating a secure client message store
To secure your client message store, you can:

♦ Change the default passwords.

See “Manage client message store passwords” on page 176.

♦ Encrypt the contents of the message store.

See “Encrypting the client message store” on page 177.

Example
First, create a SQL Anywhere database with an encryption key:

dbinit mystore.db -n -i -s -ek some_phrase

The -i and -s options are optimal for small devices. The -ek option specifies the encryption key for strong
encryption. The -n option initializes the database without a transaction log, because a transaction log is not
required for or managed by QAnywhere. See “Initialization utility (dbinit)” [SQL Anywhere Server -
Database Administration].

Next, initialize the database as a client message store:

qaagent -id mystore -si -c "dbf=mystore.db;dbkey=some_phrase"

Next, create a new remote user with DBA authority, and a password for this user. Revoke the default
QAnywhere user and change the password of the default DBA user. Log in as user DBA with password SQL
and execute the following SQL statements:

GRANT CONNECT TO secure_user IDENTIFIED BY secure_password
GRANT MEMBERSHIP IN GROUP ml_qa_user_group TO secure_user
GRANT REMOTE dba TO secure_user
REVOKE CONNECT FROM ml_qa_user
GRANT CONNECT TO dba IDENTIFIED BY new_dba_password
COMMIT

Note
All QAnywhere users must belong to ml_qa_user_group and have remote DBA authority.

Next, start the QAnywhere Agent with the secure DBA user:

 qaagent -id mystore -c
"dbf=mystore.db;dbkey=some_phrase;uid=secure_user;pwd=secure_password"

Manage client message store passwords

You should change the passwords for the default user IDs that were created for the message store. The default
user ID DBA with password SQL is created for every SQL Anywhere database. In addition, the qaagent -si

Writing Secure Messaging Applications

176 Copyright © 2006, iAnywhere Solutions, Inc.

option creates a default user ID of ml_qa_user, and creates a default password of qanywhere. To change
these passwords, use the GRANT statement.

F For more information, see “Changing a password” [SQL Anywhere Server - Database
Administration].

Encrypting the client message store

The following command can be used to encrypt the client message store when you create it.

dbinit -n -i -s –ek encryption-key database-file

(The -i and -s options are good practice for creating databases on small devices.) When a message store has
been initialized with an encryption key, the encryption key is required to start the database server on the
encrypted message store.

Use the following command to specify the encryption key to start the QAnywhere Agent with an encrypted
message store. The QAnywhere Agent automatically starts the database server on the encrypted message
store using the encryption key provided.

qaagent –c "DBF=database-file;DBKEY=encryption-key"

Any application can now access the encrypted message store through the QAnywhere APIs. Note that, since
the database server used to manage the message store is already running, the application does not need to
provide the encryption key.

If the QAnywhere Agent is not running and an application needs to access an encrypted message store, the
QAnywhere APIs automatically starts the database server using the connection parameters specified in the
QAnywhere Manager initialization file. In order to start the database server on an encrypted message store,
the encryption key must be specified in the database connection parameters as follows.

CONNECT_PARAMS=DBF=database-file;DBKEY=encryption-key

See also
♦ “Encrypting a database” [SQL Anywhere Server - Database Administration]
♦ “Initialization utility (dbinit)” [SQL Anywhere Server - Database Administration]
♦ QAnywhere Agent “-c option” on page 148

Creating a secure client message store

Copyright © 2006, iAnywhere Solutions, Inc. 177

Encrypting the communication stream
The qaagent -x option can be used to specify a secure communication stream that the QAnywhere Agent
can use to communicate with a MobiLink server. It allows you to implement server authentication using
server-side certificates, and it allows you to encrypt the communication stream using strong encryption.

F For more information, see “-x option” on page 173.

You must set up transport-layer security for the MobiLink server as well. For information about creating
digital certificates and setting up the MobiLink server, see “Encrypting MobiLink client/server
communications” [SQL Anywhere Server - Database Administration].

Separately licensed component required
ECC encryption and FIPS-approved encryption require a separate license. All strong encryption technologies
are subject to export regulations.
See “Separately licensed components” [SQL Anywhere 10 - Introduction].

Examples
The following examples show how to establish a secure communication stream between the QAnywhere
Agent and the MobiLink server. They use sample certificates that are installed when the SQL Anywhere
security option is installed.

Secure TCP/IP using RSA:

mlsrv10 -x tls
(tls_type=rsa;certificate=rsaserver.crt;certificate_password=test)
qaagent –x tls(tls_type=rsa;trusted_certificates=rsaroot.crt)

Secure TCP/IP using ECC:

mlsrv10 -x tls
(tls_type=ecc;certificate=sample.crt;certificate_password=tJ1#m6+W)
qaagent –x tls(tls_type=ecc;trusted_certificates=eccroot.crt)

Secure HTTP using HTTPS (only RSA certificates are supported for HTTPS):

mlsrv10 -x https(certificate=rsaserver.crt;certificate_password=test)
qaagent –x https(trusted_certificates=rsaroot.crt)

Writing Secure Messaging Applications

178 Copyright © 2006, iAnywhere Solutions, Inc.

Using password authentication with MobiLink
Once you have established a secure communication stream between the remote device and the server, you
may also want to authenticate the user of the device to ensure that they are allowed to communicate with
the server.

You do this by creating a MobiLink user name for the client message store and registering it on the server
message store.

See also
♦ “-mu option” on page 157
♦ “-mp option” on page 156
♦ “MobiLink Users” [MobiLink - Client Administration]

Using password authentication with MobiLink

Copyright © 2006, iAnywhere Solutions, Inc. 179

CHAPTER 9

Mobile Web Services

Contents
Introducing mobile web services ... 182
Running the QAnywhere WSDL compiler ... 184
Writing mobile web service applications .. 185
Compiling and running mobile web service applications ... 191
Making web service requests .. 192
Setting up web service connectors .. 195
Mobile web service example ... 198

About this chapter
QAnywhere provides functionality that greatly simplifies the development of mobile web service
applications. This functionality is provided in the Java and .NET APIs.

This chapter describes how to write QAnywhere client applications that access a web service.

Copyright © 2006, iAnywhere Solutions, Inc. 181

Introducing mobile web services
Web Services have become a popular way to expose application functionality and enable better
interoperability between the resources of various enterprises. They broaden the capabilities of mobile
applications and simplify the development process.

Implementing web services in a mobile environment can be challenging because connectivity may not be
available (or may be interrupted) and because of other limitations of wireless environments and devices. For
example, a user working with a mobile application may want to make a request to a web service while offline
and obtain the response when they go online, or an IT administrator may want to specify rules that restrict
the size of web service responses based on the type of network connectivity the mobile application is using
(such as GPRS, 802.11, or cradled).

QAnywhere addresses these challenges with mobile-optimized asynchronous web services that leverage the
QAnywhere store-and-forward messaging architecture. By using QAnywhere mobile web services, your
mobile applications can make web service requests, even when they are offline, and have those requests
queued up for transmission later. The requests are delivered as QAnywhere messages and then a web services
connector on the server side makes the request, gets the response from the web service, and returns the
response to the client as a message. QAnywhere transmission rules can control which requests and responses
are transmitted based on a wide variety of parameters (network being used, size of request/response, location,
time of day, and so on). The result is a sophisticated and flexible architecture that allows mobile applications
to tap into the vast functionality of web services using proven technology and a simple programming model.

From a development point of view, you can work with web service proxy classes much as you would in a
connected environment and QAnywhere handles all of the transmission, authentication, serialization, and
so on. A WSDL compiler is provided to take a WSDL document and generate special proxy classes
(either .NET or Java) that a mobile application can use to invoke a web service. These classes use the
underlying QAnywhere infrastructure to send requests and receive responses. When an object method call
is made, a SOAP request is built automatically and delivered as a message to the server where a connector
makes the web service request and returns the result as a message.

See also
♦ “Mobile web services” [SQL Anywhere 10 - Introduction]

Setting up mobile web services

The following steps provide an overview of the tasks required to set up mobile web services.

♦ Overview of setting up mobile web services

1. Set up a server message store, if you don't already have one.

F See “Setting up the server message store” on page 30.

2. Start the MobiLink server with the -m option and a connection to the server message store.

F See “Starting the MobiLink server for QAnywhere messaging” on page 31.

Mobile Web Services

182 Copyright © 2006, iAnywhere Solutions, Inc.

3. Set up client message stores, if you don't already have them. These are SQL Anywhere databases that
are used to temporarily store messages.

F See “Setting up the client message store” on page 33.

4. Run the QAnywhere WSDL compiler to create classes you can use in your application.

F See “Running the QAnywhere WSDL compiler” on page 184.

5. For each client, write a web service client application that uses the classes generated by the WSDL
compiler.

F See “Writing mobile web service applications” on page 185.

6. Create a web services connector.

F See “Setting up web service connectors” on page 195.

7. For each client, start the QAnywhere Agent (qaagent) with a connection to the local client message
store.

F See “Running the QAnywhere Agent” on page 35.

Other resources for getting started
♦ A simple example using a hypothetical web service is described in “Mobile web service

example” on page 198.
♦ A full-featured mobile web service sample application is installed to samples-dir\QAnywhere

\MobileWebServices. (For information about samples-dir, see “The samples directory” [SQL Anywhere
Server - Database Administration].) This sample, which is provided in both Java and C#, demonstrates
how to use mobile web services to make asynchronous web service requests.

Introducing mobile web services

Copyright © 2006, iAnywhere Solutions, Inc. 183

Running the QAnywhere WSDL compiler
Given a WSDL file that describes a web service, the QAnywhere WSDL compiler generates a set of Java
or C# proxy classes that you include in your application. These classes expose web service operations as
method calls. The classes that are generated are:

♦ The main service binding class (this class inherits from WSBase in the mobile web services runtime).
♦ A proxy class for each complex type specified in the WSDL file.

For information about the generated proxy classes, see:

♦ .NET: “iAnywhere.QAnywhere.WS namespace (.NET)” on page 342
♦ Java: “ianywhere.qanywhere.ws package” on page 602

The WSDL compiler supports WSDL 1.1 and SOAP 1.1 over HTTP and HTTPS.

Syntax
wsdlc -l programming-language wsdl-file [options]

Parameters
programming-language: cs | java

wsdl-file: the name of the WSDL file that describes a web service

Options Description

-h Print a help screen.

-v Print verbose information.

-o output-directory Specify an output directory for generated files.

-d Print debug information.

-n For C# output only, specify a namespace.

-p For Java output only, specify a package name.

Mobile Web Services

184 Copyright © 2006, iAnywhere Solutions, Inc.

Writing mobile web service applications
Your application sends a web service request to QAnywhere, which sends the request to the mobile web
service connector in the MobiLink server. The connector sends the request to the web service or queues the
request until the web service is available. When QAnywhere receives the response, it notifies your application
or queues the response until your application is available.

Setting up .NET mobile web service applications

Before using .NET with QAnywhere, you must make the following changes to your Visual Studio .NET
project:

♦ Add references to the QAnywhere .NET DLL and the mobile web services .NET DLL. This tells Visual
Studio.NET which DLL to include to find the code for the QAnywhere .NET API and the mobile web
services .NET API.

♦ Add lines to your source code to reference the QAnywhere .NET API classes and the mobile web
services .NET API classes. In order to use the QAnywhere .NET API, you must add a line to your source
code to reference the data provider. You must add a different line for C# than for Visual Basic.NET.

Complete instructions follow.

♦ To add references to the QAnywhere .NET API and mobile web services API in a Visual
Studio .NET project

1. Start Visual Studio .NET and open your project.

2. In the Solution Explorer window, right-click the References folder and choose Add Reference from the
popup menu.

The Add Reference dialog appears.

3. On the .NET tab, click Browse to locate iAnywhere.QAnywhere.Client.dll and
iAnywhere.QAnywhere.WS.dll. The location of these files is (relative to your SQL Anywhere
installation directory):

♦ .NET Framework 1.1: \Assembly\v1
♦ .NET Framework 2.0: \Assembly\v2
♦ .NET Compact Framework 1.0: ce\Assembly\v1
♦ .NET Compact Framework 2.0: ce\Assembly\v2

From the appropriate directory for your environment, select each DLL and click Open.

4. To verify that the DLLs are added to your project, open the Add Reference dialog and open the .NET
tab. iAnywhere.QAnywhere.Client.dll and iAnywhere.QAnywhere.WS.dll appear in the Selected
Components list. Click OK.

Writing mobile web service applications

Copyright © 2006, iAnywhere Solutions, Inc. 185

Referencing the data provider classes in your source code
♦ To reference the QAnywhere .NET API and mobile web services API classes in your code

1. Start Visual Studio .NET and open your project.

2. If you are using C#, add the following lines to the list of using directives at the beginning of your file:

using iAnywhere.QAnywhere.Client;
using iAnywhere.QAnywhere.WS;

3. If you are using Visual Basic .NET, add the following lines to the list of imports at the beginning of
your file:

Imports iAnywhere.QAnywhere.Client
Imports iAnywhere.QAnywhere.WS

The Imports lines are not strictly required. However, they allow you to use short forms for the
QAnywhere and mobile web services classes. Without them, you can still use the fully qualified class
name in your code. For example, the following code uses the long form:

iAnywhere.QAnywhere.Client.QAManager
mgr =
 new iAnywhere.QAnywhere.Client.QAManagerFactory.Instance.CreateQAManager
(
"qa_manager.props");

The following code uses the short forms:

QAManager mgr = QAManagerFactory.Instance.CreateQAManager(
 "qa_manager.props");

♦ To initialize QAnywhere and mobile web services for .NET

1. Include the iAnywhere.QAnywhere.Client and iAnywhere.QAnywhere.WS namespaces, as described
in the previous procedure.

using iAnywhere.QAnywhere.Client;
using iAnywhere.QAnywhere.WS;

2. Create a QAManager object.

For example, to create a default QAManager object, invoke CreateQAManager with null as its
parameter:

QAManager mgr;
mgr = QAManagerFactory.Instance.CreateQAManager(null);

Tip
For maximum concurrency benefits, multi-threaded applications should create a QAManager for each
thread. See “Multi-threaded QAManager” on page 61.

F For more information about QAManagerFactory, see “QAManagerFactory class” on page 310.

Alternatively, you can create a QAManager object that is customized using a properties file. The
properties file is specified in the CreateQAManager method:

Mobile Web Services

186 Copyright © 2006, iAnywhere Solutions, Inc.

mgr = QAManagerFactory.Instance.CreateQAManager(
 "qa_mgr.props");

where qa_mgr.props is the name of the properties file that resides on the remote device.

3. Initialize the QAManager object. For example:

mgr.Open(
 AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);

The argument to the open method is an acknowledgement mode, which indicates how messages are to
be acknowledged. It must be one of IMPLICIT_ACKNOWLEDGEMENT or
EXPLICIT_ACKNOWLEDGEMENT.

QAnywhere messages used by mobile web services are not accessible to the mobile web services
application. When using a QAManager in EXPLICIT_ACKNOWLEDGEMENT mode, use the
Acknowledge method of WSResult to acknowledge the QAnywhere message that contains the result
of a web services request. This method indicates that the application has successfully processed the
response.

For more information about acknowledgement modes, see:

♦ WSBase “SetQAManager method” on page 346
♦ WSResult “Acknowledge method” on page 358

Instead of creating a QAManager, you can create a QATransactionalManager. See “Implementing
transactional messaging for .NET clients” on page 68.

4. Create an instance of the service binding class.

The mobile web services WSDL compiler generates the service binding class from the WSDL document
that defines the web service.

The QAManager is used by the instance of the web service binding class to perform messaging
operations in the process of making web service requests. You specify the connector address to use to
send web service requests through QAnywhere by setting the property WS_CONNECTOR_ADDRESS
of the service binding class. You configure each QAnywhere web service connector with the URL of
a web service to connect to, and if an application needs web services located at more than one URL,
configure the connector for each URL.

For example:

CurrencyConverterSoap service = new CurrencyConverterSoap()
service.SetQAManager(mgr);
service.setProperty(
 "WS_CONNECTOR_ADDRESS",
 "ianywhere.connector.currencyconvertor\\");

Note that the final \\ in the address must be included.

See also
♦ “iAnywhere.QAnywhere.WS namespace (.NET)” on page 342

Writing mobile web service applications

Copyright © 2006, iAnywhere Solutions, Inc. 187

♦ “iAnywhere.QAnywhere.Client namespace (.NET)” on page 244

Example
To initialize mobile web services, you must create a QAManager and create an instance of the service binding
class. For example:

// QAnywhere initialization
 QAManager mgr = QAManagerFactory.Instance.CreateQAManager(null);
 mgr.SetProperty("CONNECT_PARAMS",
"eng=qanywhere;dbf=qanywhere.db;uid=ml_qa_user;pwd=qanywhere");
 mgr.Open(AcknowledgementMode.IMPLICIT_ACKNOWLEDGEMENT);
 mgr.Start();

 // Instantiate the web service proxy
 CurrencyConvertorSoap service = new CurrencyConvertorSoap();
 service.SetQAManager(mgr);
 service.SetProperty("WS_CONNECTOR_ADDRESS",
"ianywhere.connector.currencyconvertor\\");

Setting up Java mobile web service applications

To create mobile web service applications in Java, you must complete the following initialization tasks.

♦ To initialize QAnywhere and mobile web services for Java

1. Add the location of the following files to your classpath. By default, they are located in install-dir
\java:

♦ qaclient.jar
♦ iawsrt.jar
♦ jaxrpc.jar

2. Import the ianywhere.qanywhere.client and ianywhere.qanywhere.ws packages:

import ianywhere.qanywhere.client.*;
import ianywhere.qanywhere.ws.*;

3. Create a QAManager object.

QAManager mgr;
mgr = QAManagerFactory.getInstance().createQAManager(null);

You can also customize a QAManager object by specifying a properties file to the createQAManager
method:

mgr = QAManagerFactory.getInstance().createQAManager("qa_mgr.props.");

Tip
For maximum concurrency benefits, multi-threaded applications should create a QAManager for each
thread. See “Multi-threaded QAManager” on page 61.

4. Initialize the QAManager object.

mgr.open(AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);

Mobile Web Services

188 Copyright © 2006, iAnywhere Solutions, Inc.

The argument to the open method is an acknowledgement mode, which indicates how messages are to
be acknowledged. It must be one of IMPLICIT_ACKNOWLEDGEMENT or
EXPLICIT_ACKNOWLEDGEMENT.

QAnywhere messages used by mobile web services are not accessible to the mobile web services
application. When using a QAManager in EXPLICIT_ACKNOWLEDGEMENT mode, use the
Acknowledge method of WSResult to acknowledge the QAnywhere message that contains the result
of a web services request. This method indicates that the application has successfully processed the
response.

For more information about acknowledgement modes, see:

♦ WSBase “setQAManager method” on page 605
♦ WSResult “acknowledge method” on page 611

Instead of creating a QAManager, you can create a QATransactionalManager. See “Implementing
transactional messaging for Java clients” on page 71.

5. Create an instance of the service binding class.

The mobile web services WSDL compiler generates the service binding class from the WSDL document
that defines the web service.

In the process of making web service requests, the QAManager is used by the instance of the web
service binding class to perform messaging operations. You specify the connector address to use to
send web service requests through QAnywhere by setting the WS_CONNECTOR_ADDRESS property
of the service binding class. Each QAnywhere web service connector is configured with a URL of a
web service to connect to. This means that if an application needs web services located at more than
one URL, then a QAnywhere connector must be configured for each service URL.

For example:

CurrencyConverterSoap service = new CurrencyConverterSoap();
service.setQAManager(mgr);
service.setProperty("WS_CONNECTOR_ADDRESS",
"ianywhere.connector.currencyconvertor\\");

Note that the final \\ in the address must be included.

See also
♦ “ianywhere.qanywhere.ws package” on page 602
♦ “ianywhere.qanywhere.client package” on page 504

Example
To initialize mobile web services, you must create a QAManager and create an instance of the service binding
class. For example:

// QAnywhere initialization
 Properties props = new Properties();
 props.put("CONNECT_PARAMS",
"eng=qanywhere;dbf=qanywhere.db;uid=ml_qa_user;pwd=qanywhere");

Writing mobile web service applications

Copyright © 2006, iAnywhere Solutions, Inc. 189

 QAManager mgr = QAManagerFactory.getInstance().createQAManager(props);
 mgr.open(AcknowledgementMode.IMPLICIT_ACKNOWLEDGEMENT);
 mgr.start();

 // Instantiate the web service proxy
 CurrencyConvertorSoap service = new CurrencyConvertorSoap();
 service.setQAManager(mgr);
 service.setProperty("WS_CONNECTOR_ADDRESS",
"ianywhere.connector.currencyconvertor\\");

Multiple instances of the service binding class

You should create an instance of the service binding class for each QAManager. If a mobile web services
application has more than one instance of a service binding class, it is important that the service ID be set
using the SetServiceID method. For example:

service1.SetServiceID("1")
service2.SetServiceID("2")

The service ID is combined with the service name to form a queue name for receiving web service responses.
It is important that each instance of a given service has a unique service ID so that a given instance does not
get responses to requests made by another instance of the service. If the service ID is not set, it defaults to
"". The service ID is also important for preventing multiple applications that use the same service from
conflicting with each other, since queue names persist messages in the message store across applications
that are transient.

Mobile Web Services

190 Copyright © 2006, iAnywhere Solutions, Inc.

Compiling and running mobile web service applications
Runtime libraries

The runtime library for Java is iawsrt.jar, located in the java subdirectory of your SQL Anywhere installation.

The runtime library for C# is iAnywhere.QAnywhere.WS.dll, located in the following directories (relative to
your SQL Anywhere directory):

♦ .NET Framework 1.1: \Assembly\v1
♦ .NET Framework 2.0: \Assembly\v2
♦ .NET Compact Framework 1.0: ce\Assembly\v1
♦ .NET Compact Framework 2.0: ce\Assembly\v2

The following sections describe the files you need to compile and run mobile web service applications.

Required runtime libraries (Java)
Include the following files, located in the java subdirectory of your SQL Anywhere 10 installation, in your
classpath:

♦ jaxrpc.jar
♦ qaclient.jar
♦ iawsrt.jar

Required runtime libraries (.NET)
The SQL Anywhere 10 installation automatically includes the following files in your Global Assembly
Cache:

♦ iAnywhere.QAnywhere.Client.dll
♦ iAnywhere.QAnywhere.WS.dll

Shutting down mobile web services

A mobile web services application performs orderly shutdown by closing the QAManager. For example:

// QAnywhere finalization in C#:
mgr.Stop();
mgr.Close();
// QAnywhere finalization in Java:
mgr.stop();
mgr.close();

Compiling and running mobile web service applications

Copyright © 2006, iAnywhere Solutions, Inc. 191

Making web service requests
There are two basic methods of making web service requests in a mobile web services application:

♦ Synchronous See “Synchronous web service requests” on page 192.

♦ Asynchronous See “Asynchronous web service requests” on page 192.

Synchronous web service requests

Synchronous web service requests are used when the application is connected to a network. With this method,
a web service request is made by calling a method on the service binding class, and the result is returned
only when the web service response has been received from the server.

Example
The following example makes a request to get the USD-to-CAD exchange rate:

//C#
double r = service.ConversionRate(Currency.USD, Currency.CAD);
// Java
double r = service.conversionRate(NET.webserviceX.Currency.USD,
NET.webserviceX.Currency.CAD);

Asynchronous web service requests

Asynchronous web service requests are useful when the mobile web service application is only occasionally
connected to a network. With this method, a web service request is made by calling a method on the service
binding class to place the request in an outgoing queue. The method returns a WSResult, which can be used
to query the status of the response at a later time, even after the application has been restarted.

The following example makes an asynchronous request to get the USD-to-CAD exchange rate:

// C#
WSResult r = service.AsyncConversionRate(Currency.USD, Currency.CAD);

// Get the request ID. Save it for later use if necessary.
string reqID = r.GetRequestID();
// Later: get the response for the specified request ID
WSResult r = service.GetResult(reqID);
if(r.GetStatus() == WSStatus.STATUS_RESULT_AVAILABLE) {
 Console.WriteLine("The conversion rate is " + r.GetDoubleValue
("ConversionRateResult"));
} else {
 Console.WriteLine("Response not available");
}
// Java
WSResult r = service.asyncConversionRate(NET.webserviceX.Currency.USD,
NET.webserviceX.Currency.CAD);

// Get the request ID. Save it for later use if necessary.

Mobile Web Services

192 Copyright © 2006, iAnywhere Solutions, Inc.

String reqID = r.getRequestID();
// Later: get the response for the specified request ID
WSResult r = service.getResult(reqID);
if(r.getStatus() == WSStatus.STATUS_RESULT_AVAILABLE) {
 System.out.println("The conversion rate is " + r.getDoubleValue
("ConversionRateResult"));
} else {
 System.out.println("Response not available");
}

It is also possible to use a WSListener to get an asynchronous callback when the response to a web service
request is available. For example:

// C#
// Make a request to get the USD to CAD exchange rate
WSResult r = service.AsyncConversionRate(Currency.USD, Currency.CAD);

// Register a listener for the result
service.SetListener(r.GetRequestID(), new CurrencyConvertorListener());
// Java
// Make a request to get the USD to CAD exchange rate
WSResult r = service.asyncConversionRate(NET.webserviceX.Currency.USD,
NET.webserviceX.Currency.CAD);

// Register a listener for the result
service.setListener(r.getRequestID(), new CurrencyConvertorListener());

The WSListener interface defines two methods for handling asynchronous events:

♦ OnResult An OnResult method is implemented to handle a response to a web service request. It is
passed a WSResult object that represents the result of the web service request.

♦ OnException An OnException method is implemented to handle errors that occurred during
processing of the response to the web service request. It is passed a WSException object and a WSResult
object. The WSException object contains information about the error that occurred, and the WSResult
object can be used to obtain the request ID that the response corresponds to.

// C#
class CurrencyConvertorListener : WSListener
{
 public CurrencyConvertorListener() {
 }
 public void OnResult(WSResult r) {
 try {
 USDToCAD._statusMessage = "USD to CAD currency exchange rate: " +
r.GetDoubleValue("ConversionRateResult");
 } catch(Exception exc) {
 USDToCAD._statusMessage = "Request " + r.GetRequestID() + " failed: "
+ exc.Message;
 }
 }
 public void OnException(WSException exc, WSResult r) {
 USDToCAD._statusMessage = "Request " + r.GetRequestID() + " failed: " +
exc.Message;
 }
}

Making web service requests

Copyright © 2006, iAnywhere Solutions, Inc. 193

// Java
private class CurrencyConvertorListener implements WSListener
{
 public CurrencyConvertorListener() {
 }

 public void onResult(WSResult r) {
 try {
 USDToCAD._statusMessage = "USD to CAD currency exchange rate: " +
r.getDoubleValue("ConversionRateResult");
 } catch(Exception exc) {
 USDToCAD._statusMessage = "Request " + r.getRequestID() + " failed: "
+ exc.getMessage();
 }
 }
 public void onException(WSException exc, WSResult r) {
 USDToCAD._statusMessage = "Request " + r.getRequestID() + " failed: "
+ exc.getMessage();
 }
}

Mobile Web Services

194 Copyright © 2006, iAnywhere Solutions, Inc.

Setting up web service connectors
A web service connector listens for QAnywhere messages sent to a particular address, and makes web service
calls when messages arrive. Web service responses are sent back to the originating client as QAnywhere
messages. All messages sent to the web services connector should be created using the proxy classes
generated by the QAnywhere WSDL compiler.

♦ To create a web service connector

1. Open Sybase Central and connect to your server message store.

2. Choose File ► New Connector.

The Connector wizard appears.

3. In the Connector Type page, choose Web Services and click Next.

4. In the Connector Name page, enter the Connector Name.

This is the connector address that a QAnywhere client should use to address the connector. It sets the
property ianywhere.connector.address.

5. In the Communication Parameters page, enter the URL.

This is the URL where the web service is located. (For example, http://localhost:8080/qanyserv/
F2C.) It sets the property webservice.url.

You can optionally specify a timeout period in milliseconds, which cancels requests if the web service
does not respond in the amount of time your specify. This sets the property webservice.socket.timeout.

6. In the HTTP Parameters page, optionally enter the following values:

♦ HTTP User Name If the web service requires HTTP authentication, use this property to specify
the user name.

This sets the property webservice.http.authName.

♦ HTTP Password If the web service requires HTTP authentication, use this property to specify
the password.

This sets the property webservice.http.password.e.

♦ Proxy Host Name If the web service must be accessed through an HTTP proxy, use this property
to specify the host name. If you specify this property, you must specify the webservice.http.proxy.port
property.

This sets the property webservice.http.proxy.host.

♦ Proxy Port The port to connect to on the proxy server. If you specify this property, you must
specify the webservice.http.proxy.host property.

This sets the property webservice.http.proxy.port.

Setting up web service connectors

Copyright © 2006, iAnywhere Solutions, Inc. 195

♦ Proxy User Name The proxy user name to use if the proxy requires authentication. If you specify
this property, you must also specify the webservice.http.proxy.password.e property.

This sets the property webservice.http.proxy.authName.

♦ Proxy Password The proxy password to use if the proxy requires authentication. If you specify
this property, you must also specify the webservice.http.proxy.authName property.

This sets the property webservice.http.proxy.password.e.

7. Click Finish.

8. To set additional options on your web service connector, you can right-click the connector you just
created and choose Properties; or you can use server management requests.

F For a list of available properties, see “Web service connector properties” on page 196.

F For information about using server management requests, see “Administering
connectors” on page 104.

Web service connector properties

Use web service connector properties to specify connection information with the web service. You can set
these properties in the Sybase Central Connector wizard.

F See “Setting up web service connectors” on page 195.

You can view web service connector properties in the Sybase Central Connector Properties dialog, or in the
ml_qa_global_props MobiLink system table.

To open the Connector Properties dialog, right-click the connector in Sybase Central and choose Properties.

F For more information about the ml_qa_global_props MobiLink system table, see
“ml_qa_global_props” [MobiLink - Server Administration].

Web service connector properties
♦ ianywhere.connector.nativeConnection The Java class that implements the connector. It is for

QAnywhere internal use only, and should not be deleted or modified.

♦ ianywhere.connector.id (deprecated) An identifier that uniquely identifies the connector. The
default is ianywhere.connector.address.

♦ ianywhere.connector.address The connector address that a QAnywhere client should use to
address the connector. This address is also used to prefix all logged error, warning, and informational
messages appearing in the server console for this connector.

In Sybase Central, you set this property in the Connector wizard, Connector Name page, Connector Name
field.

Mobile Web Services

196 Copyright © 2006, iAnywhere Solutions, Inc.

♦ ianywhere.connector.compressionLevel The default compression factor of messages received
from the web service. Compression is an integer between 0 and 9, with 0 indicating no compression and
9 indicating maximum compression.

In Sybase Central, you set this property on the connector properties dialog, on the General tab, in the
Compression Level section.

♦ ianywhere.connector.logLevel The amount of connector information displayed in the MobiLink
server console and log file. Values for the log level are as follows:

♦ 1 Log error messages.

♦ 2 Log error and warning messages.

♦ 3 Log error, warning, and information messages.

♦ 4 Log error, warning, information, and debug messages.

In Sybase Central, you set this property on the connector properties dialog, on the General tab, in the
Logging Level section.

♦ ianywhere.connector.outgoing.retry.max The default number of retries for messages going from
QAnywhere to the external messaging system. The default value is 5. Specify 0 to have the connector
retry forever.

In Sybase Central, you can set this property in the connector properties dialog Properties tab, by clicking
New.

♦ ianywhere.connector.startupType Startup types can be automatic, manual, or disabled.

♦ webservice.http.authName If the web service requires HTTP authentication, use this property to
specify the user name.

♦ webservice.http.password.e If the web service requires HTTP authentication, use this property to
specify the password.

♦ webservice.http.proxy.authName If the proxy requires authentication, use this property to set the
proxy user name. If you specify this property, you must also specify the webservice.http.proxy.password.e
property.

♦ webservice.http.proxy.host If the web service must be accessed through an HTTP proxy, use this
property to specify the host name. If you specify this property, you must specify the
webservice.http.proxy.port property.

♦ webservice.http.proxy.password.e If the proxy requires authentication, use this property to set
the proxy password. If you specify this property, you must also specify the
webservice.http.proxy.authName property.

♦ webservice.http.proxy.port The port to connect to on the proxy server. If you specify this property,
you must specify the webservice.http.proxy.host property.

Setting up web service connectors

Copyright © 2006, iAnywhere Solutions, Inc. 197

Mobile web service example
This example shows you how to create a mobile web service application. The example uses a non-existent
web service and so is designed to be read, not run.

For a more full-featured example, see the sample that is installed to samples-dir\QAnywhere
\MobileWebServices. (For information about samples-dir, see “The samples directory” [SQL Anywhere
Server - Database Administration].)

Global Weather web service
Suppose there is a web service called Global Weather. The following WSDL file, called
globalweather.wsdl, describes this web service:

<?xml version="1.0" encoding="utf-8"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:s="http://www.w3.org/2001/XMLSchema"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:tns="http://www.myweather.com"
 targetNamespace="http://www.myweather.com"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <wsdl:types>
 <s:schema targetNamespace="http://www.myweather.com">
 <s:element name="GetWeather">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="CityName"
type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="CountryName"
type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="GetWeatherResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="GetWeatherResult"
type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 </s:schema>
 </wsdl:types>

 <wsdl:message name="GetWeatherSoapIn">
 <wsdl:part name="parameters" element="tns:GetWeather" />
 </wsdl:message>
 <wsdl:message name="GetWeatherSoapOut">
 <wsdl:part name="parameters" element="tns:GetWeatherResponse" />
 </wsdl:message>
 <wsdl:portType name="GlobalWeatherSoap">
 <wsdl:operation name="GetWeather">
 <wsdl:input message="tns:GetWeatherSoapIn" />
 <wsdl:output message="tns:GetWeatherSoapOut" />
 </wsdl:operation>
 </wsdl:portType>

Mobile Web Services

198 Copyright © 2006, iAnywhere Solutions, Inc.

 <wsdl:binding name="GlobalWeatherSoap" type="tns:GlobalWeatherSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />
 <wsdl:operation name="GetWeather">
 <soap:operation soapAction="http://www.myweather.com/GetWeather"
style="document" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="GlobalWeather">
 <wsdl:port name="GlobalWeatherSoap" binding="tns:GlobalWeatherSoap">
 <soap:address location="http://www.myweather.com/" />
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Generate proxy class
To create a mobile application to access the Global Weather web service, you first run the QAnywhere
WSDL compiler. It generates a proxy class that can be used in an application to make requests of the global
weather service. In this example, the application is written in Java.

wsdlc -l java globalweather.wsdl

This command generates a proxy class called GlobalWeatherSoap.java, located in the com\myweather
directory (relative to the current directory). This proxy class is the service binding class for your application.
The following is the content of GlobalWeatherSoap.java:

/*
 * GlobalWeatherSoap.java
 *
 * Generated by the iAnywhere WSDL Compiler
 */
package com.myweather;
import ianywhere.qanywhere.ws.*;
import ianywhere.qanywhere.client.QABinaryMessage;
import ianywhere.qanywhere.client.QAException;
public class GlobalWeatherSoap extends ianywhere.qanywhere.ws.WSBase
{
 public GlobalWeatherSoap(String iniFile) throws WSException
 {
 super(iniFile);
 init();
 }
 public GlobalWeatherSoap() throws WSException
 {
 init();
 }

Mobile web service example

Copyright © 2006, iAnywhere Solutions, Inc. 199

 public void init()
 {
 setServiceName("GlobalWeather");
 }

 public java.lang.String getWeather(java.lang.String cityName,
 java.lang.String countryName) throws
QAException,WSException,WSFaultException
 {
 StringBuffer soapRequest = new StringBuffer();
 QABinaryMessage qaRequestMsg = null;
 String responsePartName = "GetWeatherResult";
 java.lang.String returnValue;
 writeSOAPHeader(soapRequest, "GetWeather", "http://
www.myweather.com");
 soapRequest.append(WSBaseTypeSerializer.serialize
("CityName",cityName,"string","http://www.w3.org/2001/
XMLSchema",true,true));
 soapRequest.append(WSBaseTypeSerializer.serialize
("CountryName",countryName,"string","http://www.w3.org/2001/
XMLSchema",true,true));
 writeSOAPFooter(soapRequest, "GetWeather");
 qaRequestMsg = createQAMessage(soapRequest.toString(), "http://
www.myweather.com/GetWeather", "GetWeatherResponse");
 WSResult wsResult = invokeWait(qaRequestMsg);
 returnValue = wsResult.getStringValue(responsePartName);
 return returnValue;
 }

 public WSResult asyncGetWeather(java.lang.String cityName,
 java.lang.String countryName) throws
QAException,WSException
 {
 StringBuffer soapRequest = new StringBuffer();
 QABinaryMessage qaRequestMsg = null;
 writeSOAPHeader(soapRequest, "GetWeather", "http://
www.myweather.com");
 soapRequest.append(WSBaseTypeSerializer.serialize
("CityName",cityName,"string","http://www.w3.org/2001/
XMLSchema",true,true));
 soapRequest.append(WSBaseTypeSerializer.serialize
("CountryName",countryName,"string","http://www.w3.org/2001/
XMLSchema",true,true));
 writeSOAPFooter(soapRequest, "GetWeather");
 qaRequestMsg = createQAMessage(soapRequest.toString(), "http://
www.myweather.com/GetWeather", "GetWeatherResponse");
 WSResult wsResult = invoke(qaRequestMsg);
 return wsResult;
 }
}

Mobile Web Services

200 Copyright © 2006, iAnywhere Solutions, Inc.

Write mobile web service applications
Next, write applications that use the service binding class to make requests of the web service and process
the results. Following are two applications, both of which make web service requests offline and process the
results at a later time.

The first application, called RequestWeather, makes a request of the global weather service and displays the
ID of the request:

import ianywhere.qanywhere.client.*;
import ianywhere.qanywhere.ws.*;
import com.myweather.GlobalWeatherSoap;
class RequestWeather
{
 public static void main(String [] args) {
 try {
 // QAnywhere initialization
 QAManager mgr = QAManagerFactory.getInstance().createQAManager();
 mgr.open(AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);
 mgr.start();

 // Instantiate the web service proxy
 GlobalWeatherSoap service = new GlobalWeatherSoap();
 service.setQAManager(mgr);
 service.setProperty("WS_CONNECTOR_ADDRESS",
"ianywhere.connector.globalweather\\");

 // Make a request to get weather for Beijing
 WSResult r = service.asyncGetWeather("Beijing", "China");

 // Display the request ID so that it can be used by ShowWeather
 System.out.println("Request ID: " + r.getRequestID());

 // QAnywhere finalization
 mgr.stop();
 mgr.close();

 } catch(Exception exc) {
 System.out.println(exc.getMessage());
 }
 }
}

The second application, called ShowWeather, shows the weather conditions for a given request ID:

import ianywhere.qanywhere.client.*;
import ianywhere.qanywhere.ws.*;
import com.myweather.GlobalWeatherSoap;
class ShowWeather
{
 public static void main(String [] args) {
 try {
 // QAnywhere initialization
 QAManager mgr = QAManagerFactory.getInstance().createQAManager();
 mgr.open(AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);
 mgr.start();

 // Instantiate the web service proxy
 GlobalWeatherSoap service = new GlobalWeatherSoap();

Mobile web service example

Copyright © 2006, iAnywhere Solutions, Inc. 201

 service.setQAManager(mgr);

 // Get the response for the specified request ID
 WSResult r = service.getResult(args[0]);
 if(r.getStatus() == WSStatus.STATUS_RESULT_AVAILABLE) {
 System.out.println("The weather is " + r.getStringValue
("GetWeatherResult"));
 r.acknowledge();
 } else {
 System.out.println("Response not available");
 }

 // QAnywhere finalization
 mgr.stop();
 mgr.close();

 } catch(Exception exc) {
 System.out.println(exc.getMessage());
 }
 }
}

Compile the application and the service binding class:

javac -classpath ".;%sqlany10%\java\iawsrt.jar;%sqlany10%\java\qaclient.jar"
com\myweather\GlobalWeatherSoap.java RequestWeather.java
javac -classpath ".;%sqlany10%\java\iawsrt.jar;%sqlany10%\java\qaclient.jar"
com\myweather\GlobalWeatherSoap.java ShowWeather.java

Create QAnywhere message stores and start a QAnywhere Agent
Your mobile web service application requires a client message store on each mobile device. It also requires
a server message store, but this example uses the QAnywhere sample server message store.

To create a client message store, create a SQL Anywhere database with the dbinit utility and then run the
QAnywhere Agent to set it up as a client message store:

dbinit -n -i qanywhere.db
qaagent -q -si -c "dbf=qanywhere.db"

Start the QAnywhere Agent to connect to your client message store. The following must all be on one
command line:

qaagent
 -c "dbf=qanywhere.db;eng=qanywhere;uid=ml_qa_user;pwd=qanywhere"
 -policy automatic

Start the MobiLink server. This example uses the QAnywhere sample database as the server message store.
The following must all be on one command line:

mlsrv10
 -m
 -zu+
 -c "dsn=QAnywhere 10 Demo;uid=ml_server;pwd=sql;start=dbsrv10
 -xs http(port=8080)"
 -v+
 -ot qanyserv.mls

For more information about these components, see:

Mobile Web Services

202 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “Setting up the client message store” on page 33
♦ “Setting up the server message store” on page 30
♦ “Running the QAnywhere Agent” on page 35
♦ “Starting the MobiLink server for QAnywhere messaging” on page 31

Create a web service connector
You must create a web service connector that listens for QAnywhere messages sent to the GetWeather web
service, makes web service calls when messages arrive, and sends back responses to the originating client.

Open Sybase Central and connect to your server message store. To create your web service connector, choose
File ► New Connector. When the Connector wizard appears, choose Web Services. In the wizard pages,
you must set the following properties to match the mobile applications you created earlier in the example:

♦ In the Connector Name page, enter the Connector Name ianywhere.connector.globalweather

♦ In the Communication Parameters page, enter the URL http://www.myweather.com/GetWeather

Mobile web service example

Copyright © 2006, iAnywhere Solutions, Inc. 203

CHAPTER 10

QAnywhere Properties

Contents
Message headers and message properties .. 206
Client message store properties .. 215
Server properties ... 222

About this chapter
This chapter describes the message properties and client message store properties that you can use in
QAnywhere transmission rules and applications.

Copyright © 2006, iAnywhere Solutions, Inc. 205

Message headers and message properties
QAnywhere messages consist of the following parts:

♦ headers

♦ properties

♦ content

Message properties can be referenced in transmission rules and delete rules or in your application.

The following sections describe message headers and properties, and how you can set them in QAnywhere
messages.

Notes
♦ Message headers, message properties, and message content cannot be altered after the message is sent.

♦ You can read message headers, message properties, and message content after a message is received. If
you are using the QAnywhere SQL API, these become unreadable after a commit or rollback occurs.

♦ The content is unreadable after acknowledgement or commit in all APIs.

Message headers

All QAnywhere messages support the same set of header fields. Header fields contain values that are used
by both clients and providers to identify and route messages.

The following message headers are pre-defined. How you use them depends on the type of client application
you have.

♦ Message ID Read-only. The message ID of the new message. This header has a value only after the
message is sent. See:

♦ .NET API: “MessageID property” on page 318
♦ C++ API: “getMessageID function” on page 474 and “setMessageID function” on page 484
♦ Java API: “getMessageID method” on page 577
♦ SQL API: “ml_qa_createmessage” on page 666 and “ml_qa_getmessage” on page 666

♦ Message creation timestamp Read-only. The Timestamp header field contains the time a message
was created. It is a coordinated universal time (UTC). It is not the time the message was actually
transmitted, because the actual send may occur later due to transactions or other client-side queuing of
messages. You can read this header after a message is received and until a rollback or commit occurs;
after that you cannot read it. See:

♦ .NET API: “Timestamp property” on page 319
♦ C++ API: “getTimestamp function” on page 478 and “setTimestamp function” on page 486
♦ Java API: “getTimestamp method” on page 581
♦ SQL API: “ml_qa_gettimestamp” on page 641

QAnywhere Properties

206 Copyright © 2006, iAnywhere Solutions, Inc.

♦ Reply-to address Read-write. The reply address as VARCHAR(128) or NULL if it does not exist.
You can read this header after a message is received and until a rollback or commit occurs; after that you
cannot read it. See:

♦ .NET API: “ReplyToAddress property” on page 319
♦ C++ API: “getReplyToAddress function” on page 476 and “setReplyToAddress

function” on page 485
♦ Java API: “getReplyToAddress method” on page 579 and “setReplyToAddress

method” on page 587
♦ SQL API:“ml_qa_getreplytoaddress” on page 640 and “ml_qa_setreplytoaddress” on page 645

♦ Message address Read-write. The QAnywhere message address as VARCHAR(128). QAnywhere
message addresses take the form id\queue-name. You can read this header after a message is received and
until a rollback or commit occurs; after that you cannot read it. See:

♦ .NET API: “Address property” on page 316
♦ C++ API: “getAddress function” on page 469 and “setAddress function” on page 480
♦ Java API: “getAddress method” on page 572 and “setAddress method” on page 582
♦ SQL API:“ml_qa_getaddress” on page 636 and “ml_qa_getaddress” on page 636

♦ Redelivered state of message Read-only. The redelivered value as BIT. A value of 1 indicates
that the message is being redelivered; 0 indicates that it is not being redelivered.

A message may be redelivered if it was previously received but not acknowledged. For example, the
message was received but the application receiving the message did not complete processing the message
content before it crashed. In these cases, QAnywhere marks the message as redelivered to alert the receiver
that the message might be partly processed.

For example, assume that the receipt of a message occurs in three steps:

1. An application using a non-transactional QAnywhere manager receives the message.

2. The application writes the message content and message ID to a database table called T1, and commits
the change.

3. The application acknowledges the message.

If the application fails between steps 1 and 2 or between steps 2 and 3, the message is redelivered when
the application restarts.

If the failure occurs between steps 1 and 2, you should process the redelivered message by running steps
2 and 3. If the failure occurs between steps 2 and 3, then the message is already processed and you only
need to acknowledge it.

To determine what happened when the application fails, you can have the application call
ml_qa_getredelivered to check if the message has been previously redelivered. Only messages that are
redelivered need to be looked up in table T1. This is more efficient than having the application access the
received message's message ID to check whether the message is in the table T1, because application
failures are rare.

You can read this header after a message is received and until a rollback or commit occurs; after that you
cannot read it.

Message headers and message properties

Copyright © 2006, iAnywhere Solutions, Inc. 207

See:

♦ .NET API: “Redelivered property” on page 318
♦ C++ API: “getRedelivered function” on page 475 and “setRedelivered function” on page 484
♦ Java API: “getRedelivered method” on page 579
♦ SQL API: “ml_qa_getredelivered” on page 639

♦ Expiration of message Read-only except in the SQL API, where it is read-write. The expiration
time as TIMESTAMP. Returns NULL if there is no expiration. A message expires if it is not received by
the intended recipient in the specified time. The message may then be deleted using default QAnywhere
delete rules. You can read this header after a message is received and until a rollback or commit occurs;
after that you cannot read it. See:

♦ .NET API: “Expiration property” on page 317
♦ C++ API: “getExpiration function” on page 471
♦ Java API: “getExpiration method” on page 574
♦ SQL API: “ml_qa_getexpiration” on page 637 and “ml_qa_setexpiration” on page 642

♦ Priority of message Read-write. The QAnywhere API defines ten levels of priority value, with 0 as
the lowest priority and 9 as the highest. Clients should consider priorities 0-4 as gradations of normal
priority and priorities 5-9 as gradations of expedited priority. You can read this header after a message is
received and until a rollback or commit occurs; after that you cannot read it. See:

♦ .NET API: “Priority property” on page 318
♦ C++ API: “getPriority function” on page 474
♦ Java API: “getPriority method” on page 577
♦ SQL API: “ml_qa_getpriority” on page 638

♦ Message ID of a message for which this message is a reply Read-write. The in-reply-to ID
as VARCHAR(128). A client can use the InReplyToID header field to link one message with another. A
typical use is to link a response message with its request message. The in-reply-to ID is the ID of the
message that this message is replying to. You can read this header after a message is received and until a
rollback or commit occurs; after that you cannot read it. See:

♦ .NET API: “InReplyToID property” on page 317
♦ C++ API: “getInReplyToID function” on page 472
♦ Java API: “getInReplyToID method” on page 575
♦ SQL API: “ml_qa_getinreplytoid” on page 637

Some message headers can be used in transmission rules. For details, see “Variables defined by the rule
engine” on page 231.

See also
♦ .NET API: “QAMessage members” on page 315
♦ C++ API: “QAMessage class” on page 466
♦ Java API: “Interface QAMessage” on page 570
♦ SQL API: “Message headers” on page 636

QAnywhere Properties

208 Copyright © 2006, iAnywhere Solutions, Inc.

Message properties

Each message contains a built-in facility for supporting application-defined property values. These message
properties allow you to implement application-defined message filtering.

Message properties are name-value pairs that you can optionally insert into messages to provide structure.
For example, in the .NET API the pre-defined message property ias_Originator, identified by the constant
MessageProperties.ORIGINATOR, provides the message store ID that sent the message. Message properties
can be used in transmission rules to determine the suitability of a message for transmission.

There are two types of message property:

♦ Pre-defined message properties These message properties are always prefixed with ias_ or IAS_.

♦ Custom message properties These are message properties that you defined. You cannot prefix
them with ias_ or IAS_.

In either case, you access message store properties using get and set methods and pass the name of the pre-
defined or custom property as the first parameter.

F For more information, see “Managing message properties” on page 211.

Pre-defined message properties

Some message properties have been pre-defined for your convenience. Pre-defined properties can be read
but should not be set. The predefined message properties are:

♦ ias_Adapters For network status notification messages, a list of network adapters that can be used
to connect to the MobiLink server. The list is a string and is delimited by a vertical bar.

♦ ias_DeliveryCount Int. The number of attempts that have been made so far to deliver the message.

♦ ias_MessageType Int. Indicates the type of the message. The message types can be:

Value Message type Description

0 REGULAR If a message does not have the ias_MessageType
property set, it is a regular message.

13 PUSH_NOTIFICATION When a push notification is received from the
server, a message of type PUSH_NOTIFICA-
TION is sent to the system queue. See “Notifi-
cations of push notification” on page 53.

14 NETWORK_STATUS_NOTIFICATION When there is a change in network status, a mes-
sage of this type is sent to the system queue. See
“Network status notifications” on page 52.

♦ ias_RASNames String. For network status notification messages, a list of RAS entry names that can
be used to connect to the MobiLink server. The list is delimited by a vertical bar.

Message headers and message properties

Copyright © 2006, iAnywhere Solutions, Inc. 209

♦ ias_NetworkStatus Int. For network status notification messages, the state of the network
connection. The value is 1 if connected, 0 otherwise.

♦ ias_Originator String. The message store ID of the originator of the message.

♦ ias_Status Int. The current status of the message. This property is not supported in the SQL API. The
values can be:

Status Code Description

1 Pending - The message has been sent but not received.

10 Receiving - The message is in the process of being received, or it was received
but not acknowledged.

20 Final - The message has achieved a final state.

30 Expired - The message was not received before its expiration time has passed.

40 Cancelled - The message has been cancelled.

50 Unreceivable - The message is either malformed, or there were too many failed
attempts to deliver it.

60 Received - The message has been received and acknowledged.

There are constants for the status values. See:

♦ .NET API: “StatusCodes enumeration” on page 340
♦ C++ API: “StatusCodes class” on page 498
♦ Java API: “Interface StatusCodes” on page 598

♦ ias_StatusTime The time at which the message became its current status. It is in units that are natural
for the platform. It is a local time. In the C++ API, for Windows and PocketPC platforms, the timestamp
is the SYSTEMTIME, converted to a FILETIME, which is copied to a qa_long value. This property is
not supported in the SQL API.

API This property returns...

.NET DateTime

C++ string

Java java.util.Date object

Message property constants
The QAnywhere APIs for .NET, C++, and Java provide constants for specifying message properties. See:

♦ .NET API: “MessageProperties members” on page 245
♦ C++ API: “MessageProperties class” on page 394
♦ Java API: “Interface MessageProperties” on page 505

QAnywhere Properties

210 Copyright © 2006, iAnywhere Solutions, Inc.

Custom message properties

QAnywhere allows you to define message properties using the C++, Java, or .NET APIs. Custom message
properties allow you to create name-value pairs that you associate with an object. For example:

msg.SetStringProperty("Product", "widget");
msg.SetFloatProperty("Price",1.00);
msg.SetIntProperty("Quantity",10);

Message property names are case insensitive. You can use a sequence of letters, digits and underscores, but
the first character must be a letter. The following names are reserved and may not be used as message property
names:

♦ NULL
♦ TRUE
♦ FALSE
♦ NOT
♦ AND
♦ OR
♦ BETWEEN
♦ LIKE
♦ IN
♦ IS
♦ ESCAPE
♦ Any name beginning with ias_

Managing message properties

The following QAMessage methods can be used to manage message properties.

You can get and set custom properties, but should only get pre-defined properties.

.NET methods to manage message properties
♦ Object GetProperty(String name)
♦ void SetProperty(String name, Object value)
♦ boolean GetBooleanProperty(String name)
♦ void SetBooleanProperty(String name, boolean value)
♦ byte GetByteProperty(String name)
♦ void SetByteProperty(String name, byte value)
♦ short GetShortProperty(String name)
♦ void SetShortProperty(String name, short value)
♦ int GetIntProperty(String name)
♦ void SetIntProperty(String name, int value)
♦ long GetLongProperty(String name)
♦ void SetLongProperty(String name, long value)
♦ float GetFloatProperty(String name)
♦ void SetFloatProperty(String name, float value)

Message headers and message properties

Copyright © 2006, iAnywhere Solutions, Inc. 211

♦ double GetDoubleProperty(String name)
♦ void SetDoubleProperty(String name, double value)
♦ String GetStringProperty(String name)
♦ void SetStringProperty(String name, String value)
♦ IEnumerator GetPropertyNames()
♦ void ClearProperties()
♦ PropertyType GetPropertyType(string propName)
♦ bool PropertyExists(string propName)

F For more information, see “QAMessage interface” on page 314.

C++ methods to manage message properties
♦ qa_bool getBooleanProperty(qa_const_string name, qa_bool * value)
♦ qa_bool setBooleanProperty(qa_const_string name, qa_bool value)
♦ qa_bool getByteProperty(qa_const_string name, qa_byte * value)
♦ qa_bool setByteProperty(qa_const_string name, qa_byte value)
♦ qa_bool getShortProperty(qa_const_string name, qa_short * value)
♦ qa_bool setShortProperty(qa_const_string name, qa_short value)
♦ qa_bool getIntProperty(qa_const_string name, qa_int * value)
♦ qa_bool setIntProperty(qa_const_string name, qa_int value)
♦ qa_bool getLongProperty(qa_const_string name, qa_long * value)
♦ qa_bool setLongProperty(qa_const_string name, qa_long value)
♦ qa_bool getFloatProperty(qa_const_string name, qa_float * value)
♦ qa_bool setFloatProperty(qa_const_string name, qa_float value)
♦ qa_bool getDoubleProperty(qa_const_string name, qa_double * value)
♦ qa_bool setDoubleProperty(qa_const_string name, qa_double value)
♦ qa_int getStringProperty(qa_const_string name, qa_string value, qa_int len)
♦ qa_bool setStringProperty(qa_const_string name, qa_const_string value)
♦ void QAMessage::clearProperties()
♦ qa_short QAMessage::getPropertyType(qa_const_string name)
♦ qa_bool QAMessage::propertyExists(qa_const_string name)
♦

F For more information, see “QAMessage class” on page 466.

Java methods to manage message properties
♦ void clearProperties()
♦ boolean getBooleanProperty(String name)
♦ void setBooleanProperty(String name, boolean value)
♦ byte getByteProperty(String name)
♦ void setByteProperty(String name, byte value)
♦ double getDoubleProperty(String name)
♦ void setDoubleProperty(String name, double value)
♦ java.util.Date getExpiration() void setFloatProperty(String name, float value)
♦ float getFloatProperty(String name)
♦ int getIntProperty(String name)
♦ void setIntProperty(String name, int value)

QAnywhere Properties

212 Copyright © 2006, iAnywhere Solutions, Inc.

♦ long getLongProperty(String name)
♦ void setLongProperty(String name, long value)
♦ Object getProperty(String name)
♦ void setProperty(String name, Object value)
♦ java.util.Enumeration getPropertyNames()
♦ short getPropertyType(String name)
♦ short getShortProperty(String name)
♦ void setShortProperty(String name, short value)
♦ String getStringProperty(String name)
♦ void setStringProperty(String name, String value)
♦ boolean propertyExists(String name)

F For more information, see “Interface QAMessage” on page 570.

SQL stored procedures to manage message properties
♦ ml_qa_getbooleanproperty
♦ ml_qa_getbyteproperty
♦ ml_qa_getdoubleproperty
♦ ml_qa_getfloatproperty
♦ ml_qa_getintproperty
♦ ml_qa_getlongproperty
♦ ml_qa_getpropertynames
♦ ml_qa_getshortproperty
♦ ml_qa_getstringproperty
♦ ml_qa_setbooleanproperty
♦ ml_qa_setbyteproperty
♦ ml_qa_setdoubleproperty
♦ ml_qa_setfloatproperty
♦ ml_qa_setfloatproperty
♦ ml_qa_setintproperty
♦ ml_qa_setlongproperty
♦ ml_qa_setshortproperty
♦ ml_qa_setstringproperty

F For more information, see “Message properties” on page 645.

Example
// C++ example.
QAManagerFactory factory;
QAManager * mgr = factory->createQAManager(NULL);
mgr->open(AcknowledgementMode::EXPLICIT_ACKNOWLEDGEMENT);
QAMessage * msg = mgr->createTextMessage();
msg->setStringProperty("tm_Subject", "Some message subject.");
mgr->putMessage("myqueue", mgr);
// C# example.
QAManager mgr = QAManagerFactory.Instance.CreateQAManager(null);
mgr.Open(AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);
QAMessage msg = mgr.CreateTextMessage();
msg.SetStringProperty("tm_Subject", "Some message subject.");
mgr.PutMessage("myqueue", msg);

Message headers and message properties

Copyright © 2006, iAnywhere Solutions, Inc. 213

// Java example
QAManager mgr = QAManagerFactory.getInstance().createQAManager(null);
mgr.open(AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);
QAMessage msg = mgr.createTextMessage();
msg.setStringProperty("tm_Subject", "Some message subject.");
mgr.putMessage("myqueue", mgr);
-- SQL example
begin
 DECLARE @msgid VARCHAR(128);
 SET @msgid = ml_qa_createmessage();
 CALL ml_qa_setfloatproperty(@msgid, 'myfloatproperty1', -1.3e-5);
 CALL ml_qa_setfloatproperty(@msgid, 'myfloatproperty2', 1.3e5);
 CALL ml_qa_putmessage(@msgid, 'someclient\someaddress');
 COMMIT;
end

QAnywhere Properties

214 Copyright © 2006, iAnywhere Solutions, Inc.

Client message store properties
There are two types of client message store property:

♦ Pre-defined message store properties These message store properties are always prefixed with
ias_ or IAS_.

♦ Custom message store properties These are message store properties that you defined. You
cannot prefix them with ias_ or IAS_.

In either case, you access client message store properties using get and set methods defined in the appropriate
class and pass the name of the pre-defined or custom property as the first parameter.

F For more information, see “Managing client message store properties” on page 219.

You can also use message store properties in transmission rules, delete rules, and message selectors. See:

♦ “QAnywhere Transmission and Delete Rules” on page 225

Pre-defined client message store properties

A number of client message store properties have been pre-defined for your convenience. The predefined
message store properties are:

♦ ias_Adapters A list of network adapters that can be used to connect to the MobiLink server. The list
is a string and is delimited by a vertical bar.

♦ ias_MaxDeliveryAttempts When defined, the maximum number of times that a message can be
received without being acknowledged before its status is set to UNRECEIVABLE. By default, this
property is not defined and is equivalent to a value of -1, which means that the client library will continue
to attempt to deliver an unacknowledged message forever.

♦ ias_MaxUploadSize The upload increment size. By default, QAnywhere uploads messages in
increments of 256K, but no matter what the upload size is set to, QAnywhere will send at least one message
per increment and will not split messages. This property is identical to the qaagent -iu option. See “-iu
option” on page 153.

♦ ias_Network Information about the current network in use. This property can be read but should not
be set. ias_Network is a special property. It has a number of built-in attributes that provide information
regarding the current network that is being used by the device. The following attributes are automatically
set by QAnywhere:

♦ ias_Network.Adapter The current name of the network card, if any. (The name of the network
card that is assigned to the Adapter attribute is displayed in the Agent window when the network
connection is established.)

♦ ias_Network.RAS The current RAS entry name, if any.

♦ ias_Network.IP The current IP address assigned to the device, if any.

Client message store properties

Copyright © 2006, iAnywhere Solutions, Inc. 215

♦ ias_Network.MAC The current MAC address of the network card being used, if any.

♦ ias_RASNames String. A list of RAS entry names that can be used to connect to the MobiLink server.
The list is delimited by a vertical bar.

♦ ias_StoreID The message store ID.

♦ ias_StoreInitialized True if this message stores has successfully been initialized for QAnywhere
messaging; otherwise False.

F See “-si option” on page 169.

♦ ias_StoreVersion The QAnywhere-defined version number of this message store.

For information about managing pre-defined message properties, see:

♦ C++ API: “MessageStoreProperties class” on page 401
♦ .NET API: “MessageStoreProperties class” on page 253
♦ Java API: “Interface MessageStoreProperties” on page 510
♦ SQL API: “Message store properties” on page 664

Custom client message store properties

QAnywhere allows you to define your own client message store properties using the QAnywhere C++, Java,
SQL or .NET APIs. These properties are shared between applications connected to the same message store.
They are also synchronized to the server message store so that they are available to server-side transmission
rules for this client.

Client message store property names are case insensitive. You can use a sequence of letters, digits, and
underscores, but the first character must be a letter. The following names are reserved and may not be used
as message store property names:

♦ NULL
♦ TRUE
♦ FALSE
♦ NOT
♦ AND
♦ OR
♦ BETWEEN
♦ LIKE
♦ IN
♦ IS
♦ ESCAPE
♦ Any name beginning with ias_

QAnywhere Properties

216 Copyright © 2006, iAnywhere Solutions, Inc.

Using custom client message store property attributes

Client message store properties can have attributes that you define. An attribute is defined by appending a
dot after the property name followed by the attribute name. The main use of this feature is to be able to use
information about your network in your transmission rules.

Example
Following is a simple example of how to set custom client message store property attributes. In this example,
the Object property has two attributes: Shape and Color. The value of the Shape attribute is Round and the
value of the Color attribute is Blue.

// C++ example.
mgr->setStringStoreProperty(“Object.Shape”, “Round”);
mgr->setStringStoreProperty(“Object.Color”, “Blue”);
// C# example.
mgr.SetStoreStringProperty(“Object.Shape”, “Round”);
mgr.SetStringStoreProperty(“Object.Color”, “Blue”);
// Java example
mgr.setStringStoreProperty("Object.Shape", "Round");
mgr.setStringStoreProperty("Object.Color", "Blue");
-- SQL example
BEGIN
 CALL ml_qa_setstoreproperty('Object.Shape', 'Round');
 CALL ml_qa_setstoreproperty('Object.Color', 'Blue');
 COMMIT;
END

All client message store properties have a Type attribute that initially has no value. The value of the Type
attribute must be the name of another property. When setting the Type attribute of a property, the property
inherits the attributes of the property being assigned to it. In the following example, the Object property
inherits the attributes of the Circle property. Therefore, the value of Object.Shape is Round and the value of
Object.Color is Blue.

// C++ example
QAManager qa_manager;
qa_manager->setStoreStringProperty(“Circle.Shape”, “Round”);
qa_manager->setStoreStringProperty(“Circle.Color”, “Blue”);
qa_manager->setStoreStringProperty(“Object.Type”, “Circle”);
// C# example
QAManager qa_manager;
qa_manager.SetStringStoreProperty(“Circle.Shape”, “Round”);
qa_manager.SetStringStoreProperty(“Circle.Color”, “Blue”);
qa_manager.SetStringStoreProperty(“Object.Type”, “Circle”);
// Java example
QAManager qa_manager;
qa_manager.setStringStoreProperty("Circle.Shape", "Round");
qa_manager.setStringStoreProperty("Circle.Color", "Blue");
qa_manager.setStringStoreProperty("Object.Type", "Circle");
-- SQL example
BEGIN
 CALL ml_qa_setstoreproperty('Circle.Shape', 'Round');
 CALL ml_qa_setstoreproperty('Circle.Color', 'Blue');
 CALL ml_qa_setstoreproperty('Object.Type', 'Circle');

Client message store properties

Copyright © 2006, iAnywhere Solutions, Inc. 217

 COMMIT;
END

Example
The following C# example shows how you can use message store properties to provide information about
your network to your transmission rules.

Assume you have a Windows laptop that has the following network connectivity options: LAN, Wireless
LAN, and Wireless WAN. Access to the network via LAN is provided by a network card named My LAN
Card. Access to the network via Wireless LAN is provided by a network card named My Wireless LAN
Card. Access to the network via Wireless WAN is provided by a network card named My Wireless WAN
Card.

Assume you want to develop a messaging application that sends all messages to the server when connected
using LAN or Wireless LAN and only high priority messages when connected using Wireless WAN. You
define high priority messages as those whose priority is greater than or equal to 7.

First, find the names of your network adapters. The names of network adapters are fixed when the card is
plugged in and the driver is installed. To find the name of a particular network card, connect to the network
through that adapter, and then run qaagent with the -vn option. The QAnywhere Agent displays the network
adapter name, as follows:

"Listener thread received message '[netstat] network-adapter-name !...'
Next, define three client message store properties for each of the network types: LAN, WLAN, and WWAN.
Each of these properties will be assigned a Cost attribute. The Cost attribute is a value between 1 and 3 and
represents the cost incurred when using the network. A value of 1 represents the lowest cost.

QAManager qa_manager;
qa_manager.SetStoreProperty(“LAN.Cost”, “1”);
qa_manager.SetStoreProperty(“WLAN.Cost”, “2”);
qa_manager.SetStoreProperty(“WWAN.Cost”, “3”);

Next, define three client message store properties, one for each network card that will be used. The property
name must match the network card name. Assign the appropriate network classification to each property by
assigning the network type to the Type attribute. Each property will therefore inherit the attributes of the
network types assigned to them.

QAManager qa_manager;
qa_manager.SetStoreProperty(“My LAN Card.Type”, “LAN”);
qa_manager.SetStoreProperty(“My Wireless LAN Card.Type”, “WLAN”);
qa_manager.SetStoreProperty(“My Wireless WAN Card.Type”, “WWAN”);

When network connectivity is established, QAnywhere automatically defines the Adapter attribute of the
ias_Network property to one of My LAN Card, My Wireless LAN Card or My Wireless WAN Card,
depending on the network in use. Similarly, it automatically sets the Type attribute of the ias_Network
property to one of My LAN Card, My Wireless LAN Card, or My Wireless WAN Card so that the
ias_Network property inherits the attributes of the network being used.

Finally, create the following transmission rule.

automatic=ias_Network.Cost < 3 or ias_Priority >= 7

QAnywhere Properties

218 Copyright © 2006, iAnywhere Solutions, Inc.

F For more information about transmission rules, see “QAnywhere Transmission and Delete
Rules” on page 225.

Enumerating client message store properties
The QAnywhere .NET, C++, and Java APIs can provide an enumeration of predefined and custom client
message store properties.

.NET example

F For more information, see “GetStorePropertyNames method” on page 297.

// qaManager is a QAManager instance.
IEnumerator propertyNames = qaManager.GetStorePropertyNames();

C++ example

F For more information, see “beginEnumStorePropertyNames function” on page 433.

// qaManager is a QAManager instance.
qa_store_property_enum_handle handle = qaManager->beginEnumStorePropertyNames
();
qa_char propertyName[256];
if(handle != qa_null) {
 while(qaManager->nextStorePropertyName(handle, propertyName, 255) !=
-1) {
 // Do something with the message store property name.
 }
 // Message store properties cannot be set after
 // the beginEnumStorePropertyNames call
 // and before the endEnumStorePropertyNames call.
 qaManager->endEnumStorePropertyNames(handle);
}

Java example

F For more information, see “getStorePropertyNames method” on page 556.

// qaManager is a QAManager instance.
Enumeration propertyNames = qaManager.getStorePropertyNames();

Managing client message store properties

Client message store properties can be set in your client application for each client message store.

F See “Managing client message store properties in your application” on page 220.

Client message store properties can be used in transmission rules to filter messages to the client or used in
delete rules to determine messages to add.

F See “QAnywhere Transmission and Delete Rules” on page 225.

Client message store properties can also be specified in server management messages, and stored on the
server message store.

Client message store properties

Copyright © 2006, iAnywhere Solutions, Inc. 219

F See “About server management requests” on page 92.

Managing client message store properties in your application

The following QAManagerBase methods can be used to get and set client message store properties.

C++ methods to manage client message store properties
♦ qa_bool getBooleanStoreProperty(qa_const_string name, qa_bool * value)
♦ qa_bool setBooleanStoreProperty(qa_const_string name, qa_bool value)
♦ qa_bool getByteStoreProperty(qa_const_string name, qa_byte * value)
♦ qa_bool setByteStoreProperty(qa_const_string name, qa_byte value)
♦ qa_bool getShortStoreProperty(qa_const_string name, qa_short * value)
♦ qa_bool setShortStoreProperty(qa_const_string name, qa_short value)
♦ qa_bool getIntStoreProperty(qa_const_string name, qa_int * value)
♦ qa_bool setIntStoreProperty(qa_const_string name, qa_int value)
♦ qa_bool getLongStoreProperty(qa_const_string name, qa_long * value)
♦ qa_bool setLongStoreProperty(qa_const_string name, qa_long value)
♦ qa_bool getFloatStoreProperty(qa_const_string name, qa_float * value)
♦ qa_bool setFloatStoreProperty(qa_const_string name, qa_float value)
♦ qa_bool getDoubleStoreProperty(qa_const_string name, qa_double * value)
♦ qa_bool setDoubleStoreProperty(qa_const_string name, qa_double value)
♦ qa_int getStringStoreProperty(qa_const_string name, qa_string value, qa_int len)
♦ qa_bool setStringStoreProperty(qa_const_string name, qa_const_string value)
♦ qa_store_property_enum_handle QAManagerBase::beginEnumStorePropertyNames()
♦ virtual qa_int QAManagerBase::nextStorePropertyName(qa_store_property_enum_handle h, qa_string

buffer, qa_int bufferLen)
♦ virtual void QAManagerBase::endEnumStorePropertyNames(qa_store_property_enum_handle h)

F See “QAManagerBase class” on page 432.

C# methods to manage client message store properties
♦ Object GetStoreProperty(String name)
♦ void SetStoreProperty(String name, Object value)
♦ boolean GetBooleanStoreProperty(String name)
♦ void SetBooleanStoreProperty(String name, boolean value)
♦ byte GetByteStoreProperty(String name)
♦ void SetByteStoreProperty(String name, byte value)
♦ short GetShortStoreProperty(String name)
♦ void SetShortStoreProperty(String name, short value)
♦ int GetIntStoreProperty(String name)
♦ void SetIntStoreProperty(String name, int value)
♦ long GetLongStoreProperty(String name)
♦ void SetLongStoreProperty(String name, long value)
♦ float GetFloatStoreProperty(String name)
♦ void SetFloatStoreProperty(String name, float value)
♦ double GetDoubleStoreProperty(String name)

QAnywhere Properties

220 Copyright © 2006, iAnywhere Solutions, Inc.

♦ void SetDoubleStoreProperty(String name, double value)
♦ String GetStringStoreProperty(String name)
♦ void SetStringStoreProperty(String name, String value)
♦ IEnumerator GetStorePropertyNames()

F See “QAManagerBase interface” on page 275.

Java methods to manage client message store properties
♦ boolean getBooleanStoreProperty(String name)
♦ void setBooleanStoreProperty(String name, boolean value)
♦ byte getByteStoreProperty(String name)
♦ void setByteStoreProperty(String name, byte value)
♦ double getDoubleStoreProperty(String name)
♦ void setDoubleStoreProperty(String name, double value)
♦ float getFloatStoreProperty(String name)
♦ void setFloatStoreProperty(String name, float value)
♦ int getIntStoreProperty(String name)
♦ void setIntStoreProperty(String name, int value)
♦ long getLongStoreProperty(String name)
♦ void setLongStoreProperty(String name, long value)
♦ short getShortStoreProperty(String name)
♦ void setShortStoreProperty(String name, short value)
♦ void setStringStoreProperty(String name, String value)
♦ String getStringStoreProperty(String name)
♦ java.util.Enumeration getStorePropertyNames()

F See “Interface QAManagerBase” on page 540.

SQL stored procedures to manage client message store properties
♦ ml_qa_getstoreproperty
♦ ml_qa_setstoreproperty

F See “Message store properties” on page 664.

Client message store properties

Copyright © 2006, iAnywhere Solutions, Inc. 221

Server properties
You can set server properties in Sybase Central or with a server management request. In all cases, the server
properties are stored in the database. See:

♦ “Setting server properties with a server management request” on page 114
♦ “Setting server properties with Sybase Central” on page 223

Server properties
♦ ianywhere.qa.server.autoRulesEvaluationPeriod The time in milliseconds between

evaluations of rules, including message transmission and persistence rules. Since, typically, rules are
evaluated on the fly as messages are transmitted to the server store, the rule evaluation period is only for
rules that are timing-sensitive. The default value is 60000 (one minute).

♦ ianywhere.qa.compressionLevel The default amount of compression applied to each message
received by a QAnywhere connector. The compression is an integer between 0 and 9, with 0 being no
compression and 9 being the most compression. The default is 0.

If you also set the compression level for a connector in the connector properties file, this setting is
overridden for that connector. For more information, see “JMS connector properties” on page 132.

♦ ianywhere.qa.server.connectorPropertiesFiles

Deprecated feature
Replaced by Sybase Central.

A list of one or more files that specify the configuration of QAnywhere connectors to an external message
system such as JMS. The default is no connectors.

F For more information, see “JMS Connectors” on page 127.

♦ ianywhere.qa.server.disableNotifications Set this to true to disable notification from the server
about pending messages. This disables the processing on the server that is required to initiate notifications
to clients when messages are waiting on the server for those clients. Set to true in any setup where
notifications cannot be sent from the server, such as when firewall restrictions make notifications
impossible. The default is false.

♦ ianywhere.qa.server.logLevel The logging level of the messaging. The property value may be one
of 1, 2, 3, or 4. 1 indicates that only message errors are logged. 2 additionally causes warnings to be logged.
3 additionally causes informational messages to be logged. 4 additionally causes more verbose
informational messages to be logged, including details about each QAnywhere message that is transmitted
with the MobiLink server. The default is 2.

These logging messages are output to the MobiLink server console. If the mlsrv10 -o or -ot option was
specified, the messages are output to the MobiLink server log file.

♦ ianywhere.qa.server.id Specifies the agent portion of the address to which to send server
management requests. If this property is not set, this value is ianywhere.server.

QAnywhere Properties

222 Copyright © 2006, iAnywhere Solutions, Inc.

♦ ianywhere.qa.server.password.e Specifies the password for authenticating server management
requests. If this property is not set, the password is QAnywhere.

F See “About server management requests” on page 92.

♦ ianywhere.qa.server.scheduleDateFormat Specifies the date format used for server-side
transmission rules. By default, the date format is yyyy-MM-dd.

Letter Date component Example

y year 1996

M month in year July

d day in month 10

♦ ianywhere.qa.server.scheduleTimeFormat Specifies the time format used for server-side
transmission rules. By default, the time format is HH:mm:ss.

Letter Date component Example

a AM/PM marker PM

H hour in day, a value between 0 and 23 0

k hour in day, a value between 1 and 24 24

K hour in AM/PM, a value between 0 and 11 0

h hour in AM/PM, a value between 1 and 12 12

m minute in hour 30

s second in minute 55

♦ ianywhere.qa.server.transmissionRulesFile

Deprecated feature
Replaced by Sybase Central.

A file used to specify rules for governing the transmission and persistence of messages. By default, there
are no filters for messages, and messages are deleted when the final status of the message has been
transmitted to the message originator.

Setting server properties with Sybase Central

♦ To set server properties with Sybase Central

1. Start Sybase Central:

Server properties

Copyright © 2006, iAnywhere Solutions, Inc. 223

♦ Choose Start ► Programs ► SQL Anywhere 10 ► Sybase Central.

♦ From Connections, choose Connect with QAnywhere 10.

♦ Specify an ODBC data source name or file, and a user ID and password if required. Click OK.

2. Under Server Store tasks in the left pane, choose Change Properties of this message store.

The message store Properties dialog appears.

QAnywhere Properties

224 Copyright © 2006, iAnywhere Solutions, Inc.

CHAPTER 11

QAnywhere Transmission and Delete Rules

Contents
Rule syntax .. 226
Rule variables .. 231
Message transmission rules .. 234
Message delete rules .. 239

About this chapter
This chapter describes how to write transmission rules. You can create rules on the server to define which
messages should be downloaded to the client and when they should be transmitted, and rules on the client
to define which messages should be uploaded to the server and when they should be uploaded.

Copyright © 2006, iAnywhere Solutions, Inc. 225

Rule syntax
Rules have two parts: a schedule and a condition. The schedule defines when an event is to occur. The
condition defines which messages are to be part of the event. For example, if the event is message
transmission, then the schedule indicates when transmission will occur and the condition defines which
messages will be included in the transmission. If the event is message deletion, then the schedule indicates
when deleting will occur and the condition indicates which messages will be deleted.

Rule syntax
Each rule has the following form:

schedules=condition

Schedule syntax

Schedule syntax
schedules : { AUTOMATIC | schedule-spec ,… }

schedule-spec :
 { START TIME start-time | BETWEEN start-time AND end-time }
 [EVERY period { HOURS | MINUTES | SECONDS }]
 [ON { (day-of-week, …) | (day-of-month, …) }]
 [START DATE start-date]

Parameters
♦ AUTOMATIC For transmission rules, rules are evaluated when a message changes state or there is a

change in network status. For delete rules, messages that satisfy the delete rule condition are deleted when
a message transmission is initiated.

♦ schedule-spec Schedule specifications other than AUTOMATIC specify times when conditions are
to be evaluated. At those scheduled times, the corresponding condition is evaluated.

♦ START TIME The first scheduled time for each day on which the event is scheduled. If a START
DATE is specified, the START TIME refers to that date. If no START DATE is specified, the START
TIME is on the current day (unless the time has passed) and each subsequent day (if the schedule includes
EVERY or ON).

♦ BETWEEN ... AND ... A range of times during the day outside of which no scheduled times occur.
If a START DATE is specified, the scheduled times do not occur until that date.

♦ EVERY An interval between successive scheduled events. Scheduled events occur only after the
START TIME for the day, or in the range specified by BETWEEN … AND.

♦ ON A list of days on which the scheduled events occur. The default is every day if EVERY is specified.
Days can be specified as days of the week or days of the month.

Days of the week are Mon, Tues, and so on. You may also use the full forms of the day, such as Monday.
You must use the full forms of the day names if the language you are using is not English, is not the

QAnywhere Transmission and Delete Rules

226 Copyright © 2006, iAnywhere Solutions, Inc.

language requested by the client in the connection string, and is not the language that appears in the server
window.

Days of the month are integers from 0 to 31. A value of 0 represents the last day of any month.

♦ START DATE The date on which scheduled events are to start occurring. The default is the current
date.

Usage
You can create more than one schedule for a given condition. This permits complex schedules to be
implemented.

A schedule specification is recurring if its definition includes EVERY or ON; if neither of these reserved
words is used, the schedule specifies at most a single time. An attempt to create a non-recurring schedule
for which the start time has passed generates an error.

Each time a scheduled time occurs, the associated condition is evaluated and then the next scheduled time
and date is calculated.

The next scheduled time is computed by inspecting the schedule or schedules, and finding the next schedule
time that is in the future. If a schedule specifies every minute, and it takes 65 seconds to evaluate the
conditions, it runs every two minutes. If you want execution to overlap, you must create more than one rule.

1. If the EVERY clause is used, find whether the next scheduled time falls on the current day, and is before
the end of the BETWEEN … AND range. If so, that is the next scheduled time.

2. If the next scheduled time does not fall on the current day, find the next date on which the event is to
be executed.

3. Find the START TIME for that date, or the beginning of the BETWEEN … AND range.

The QAnywhere schedule syntax is derived from the SQL Anywhere CREATE EVENT schedule syntax.

Keywords are case insensitive.

See also
♦ “CREATE EVENT statement” [SQL Anywhere Server - SQL Reference]

Example
The following sample server transmission rules file applies to the client identified by the client message
store ID sample_store_id. It creates a dual schedule: high priority messages are sent once an hour. The
schedule is every 1 hours and the condition is ias_priority=9. Also, between the hours of 8 A.M.
and 9 A.M., high priority messages are sent every minute.

[sample_store_id]
; This rule governs when messages are transmitted to the client
; store with id sample_store_id.
;
 every 1 hours = ias_priority=9
 between 8:00 and 9:00 every 1 minutes = iasPriority=9

Rule syntax

Copyright © 2006, iAnywhere Solutions, Inc. 227

Condition syntax

QAnywhere conditions use a SQL-like syntax. Conditions are evaluated against messages in the message
store. A condition evaluates to true, false, or unknown. If a condition is empty, all messages are judged to
satisfy the condition. Conditions can be used in transmission rules, delete rules, and the QAnywhere
programming APIs.

Keywords and string comparisons are case insensitive.

Syntax
condition :
expression IS [NOT] NULL
| expression compare expression
| expression [NOT] BETWEEN expression AND expression
| expression [NOT] LIKE string [ESCAPE character]
| expression [NOT] IN (string, ...)
| NOT condition
| condition AND condition
| condition OR condition
| (condition)

compare: = > | < | >= | <= | <>

expression:
constant
| rule-variable
| -expression
| expression operator expression
| (expression)
| rule-function (expression, ...)

integer: An integer in the range -2**63 to 2**63-1

number: A n umber in scientific notation in the range 2.2250738585072e-308 to 1.79769313486231e+308

string: A sequence of characters enclosed in single quotes. A single quote in a string is represented by two
consecutive single quotes.

constant: integer | number | string | TRUE | FALSE

operator: + | - | * | /

rule-variable:

See “Rule variables” on page 231

rule-function:

See “Rule functions” on page 230

Parameters
♦ BETWEEN The BETWEEN condition can evaluate as true, false, or unknown. Without the NOT

keyword, the condition evaluates as TRUE if expression is greater than or equal to the start expression
and less than or equal to the end expression.

QAnywhere Transmission and Delete Rules

228 Copyright © 2006, iAnywhere Solutions, Inc.

The NOT keyword reverses the meaning of the condition but leaves UNKNOWN unchanged.

The BETWEEN condition is equivalent to a combination of two inequalities:

[NOT] (expression >= start-expression AND arithmetic-expression <= end-expr)

For example:

♦ age BETWEEN 15 AND 19 is equivalent to age >=15 AND age <= 19
♦ age NOT BETWEEN 15 AND 19 is equivalent to age < 15 OR age > 19.

♦ IN The IN condition evaluates according to the following rules:

♦ True if expression is not null and equals at least one of the values in the list.

♦ Unknown if expression is null and the values list is not empty, or if at least one of the values is null
and expression does not equal any of the other values.

♦ False if none of the values are null, and expression does not equal any of the values in the list.

The NOT keyword interchanges true and false.

For example:

♦ Country IN ('UK', 'US', 'France') is true for 'UK' and false for 'Peru'. It is
equivalent to the following:

(Country = 'UK') \
OR (Country = 'US') \
OR (Country = 'France')

♦ Country NOT IN ('UK', 'US', 'France') is false for 'UK' and true for 'Peru'. It
is equivalent to the following:

NOT ((Country = 'UK') \
 OR (Country = 'US') \
 OR (Country = 'France'))

♦ LIKE The LIKE condition can evaluate as true, false, or unknown.

Without the NOT keyword, the condition evaluates as TRUE if expression matches the like expression.
If either expression or like expression is NULL, this condition is unknown.

The NOT keyword reverses the meaning of the condition, but leaves UNKNOWN unchanged.

The like expression may contain any number of wildcards. The wildcards are:

Wildcard Matches

_ (underscore) Any one character

% (percent) Any string of zero or more characters

For example:

♦ phone LIKE 12%3 is true for '123' or '12993' and false for '1234'

Rule syntax

Copyright © 2006, iAnywhere Solutions, Inc. 229

♦ word LIKE 's_d' is true for 'sad' and false for 'said'
♦ phone NOT LIKE '12%3' is false for '123' or '12993' and true for '1234'

♦ ESCAPE CHARACTER The ESCAPE CHARACTER is a single character string literal whose
character is used to escape the special meaning of the wildcard characters (_, %) in pattern. For example:

♦ underscored LIKE '_%' ESCAPE '\' is true for '_myvar' and false for 'myvar'.

♦ IS NULL The IS NULL condition evaluates to true if the rule-variable is unknown; otherwise it
evaluates to false. The NOT keyword reverses the meaning of the condition. This condition cannot evaluate
to unknown.

Rule functions

You can use the following functions in transmission rules:

Syntax Description

DATEADD(datepart, count, datetime) Returns a datetime produced by adding a number of date parts
to a datetime. The datepart can be one of year, quarter, month,
week, day, hour, minute, or second. For example, the following
example adds two months, resulting in the value 2006-07-02
00:00:00.0:

DATEADD(month, 2, '2006/05/02')

DATEPART(datepart, date) Returns the value of part of a datetime value. The datepart can
be one of year, quarter, month, week, day, dayofyear, weekday,
hour, minute, or second. For example, the following example
gets the month May as a number, resulting in the value 5:

DATEPART(month, '2006/05/02')

DATETIME(string) Converts a string value to a datetime. The string must have the
format 'yyyy-mm-dd hh:nn:ss'.

LENGTH(string) Returns the number of characters in a string.

SUBSTRING(string, start, length) Returns a substring of a string. The start is the start position of
the substring to return, in characters. The length is the length of
the substring to return, in characters.

Example
The following delete rule deletes all messages that entered a final state more than 10 days ago:

every 1 hours = ias_Status >= ias_FinalState
 AND ias_StatusTime < DATEADD(day, -10, ias_CurrentTimestamp)
 AND ias_TransmissionStatus = 1

QAnywhere Transmission and Delete Rules

230 Copyright © 2006, iAnywhere Solutions, Inc.

Rule variables
QAnywhere rule variables can be used in the condition part of rules. You can use the following as rule
variables:

♦ “Message properties” on page 209

♦ “Client message store properties” on page 215

♦ “Variables defined by the rule engine” on page 231

Using properties as rule variables
Message properties and message store properties can be used as transmission rule variables. In both cases
you can use pre-defined properties or you can create custom properties. If you have a message property and
a message store property with the same name, the message property is used. To override this precedence,
you can explicitly reference the property as follows:

♦ Preface a message store property name with ias_Store.

♦ Preface a message property name with ias_Message.

For example, the following automatic transmission rule selects all messages with the custom message
property called urgent set to yes:

automatic = ias_Message.urgent = 'yes'

The following automatic transmission rule selects messages when the custom message store property
transmitNow is set to yes:

automatic = ias_Store.transmitNow = 'yes'

Variables defined by the rule engine

The following variables are defined by the rule engine:

♦ ias_Address The address of the message. For example, myclient\myqueue.

♦ ias_Content The body of the message. Character comparisons are done in the character set of the
message store default. Searching content can significantly slow rule evaluation.

♦ ias_ContentSize The size of the message content. If the message is a text message, this is the number
of characters. If the message is binary, this is the number of bytes.

♦ ias_ContentType The type of message:

IAS_TEXT_CONTENT The message content consists of unicode characters.

IAS_BINARY_CONTENT The message content is treated as an uninterpreted sequence of bytes.

♦ ias_Expires The date and time when the message will expire if it is not delivered.

Rule variables

Copyright © 2006, iAnywhere Solutions, Inc. 231

♦ ias_Priority The priority of message: an integer between 0 and 9, where 0 indicates less priority and
9 indicates more priority.

♦ ias_TransmissionStatus The synchronization status of the message. It can be one of:

IAS_UNTRANSMITTED The message has not been transmitted to its intended recipient message
store.

IAS_TRANSMITTED The message has been transmitted to its intended recipient message
store.

IAS_DO_NOT_TRANSMIT The recipient and originating message stores are the same so no trans-
mission is necessary.

IAS_TRANSMITTING The message has been transmitted to its intended recipient, but that
transmission has yet to be confirmed. There is a possibility that the
message transmission was interrupted, and that QAnywhere may trans-
mit the message again.

Status constants defined by the rule engine

♦ ias_CurrentDate The current date.

A string can be compared against ias_currentDate if it is supplied in one of two ways:

♦ as a string of format, which is interpreted unambiguously.

♦ as a string according to the date_format database option set for the client message store database.

For more information, see “Setting options” [SQL Anywhere Server - Database Administration] and
“date_format option [compatibility]” [SQL Anywhere Server - Database Administration].

♦ ias_Status The current status of the message. The values can be:

♦ ias_CancelledState The message has been cancelled.

♦ ias_ExpiredState The message expired before it could be received by the intended recipient.

♦ ias_FinalState The message is received or expired. Therefore, >=ias_FinalState means that
the message is received or expired, and <ias_FinalState means that the message is neither
received nor expired.

♦ ias_PendingState The message has not yet been received by the intended recipient.

♦ ias_ReceivedState The message was received by the intended recipient.

♦ ias_UnreceivableState The message has been marked as unreceivable because it is either
malformed or there were too many failed attempts to deliver it.

♦ ias_Network Information about the current network in use. ias_Network is a special transmission
variable. It has a number of built-in attributes that provide information regarding the current network that
is being used by the device.

QAnywhere Transmission and Delete Rules

232 Copyright © 2006, iAnywhere Solutions, Inc.

♦ ias_CurrentTime The current time.

A string can be compared against ias_CurrentTime if the hours, minutes, and seconds are separated by
colons in the format hh:mm:ss:sss. A 24-hour clock is assumed unless am or pm is specified. See
“time_format option [compatibility]” [SQL Anywhere Server - Database Administration].

♦ ias_CurrentTimestamp The current timestamp (current date and time). See “time_format option
[compatibility]” [SQL Anywhere Server - Database Administration].

Example
For an example of how to create client store properties and use them in transmission rules, see “Using custom
client message store property attributes” on page 217.

Rule variables

Copyright © 2006, iAnywhere Solutions, Inc. 233

Message transmission rules
Message transmission is the action of moving messages from a client message store to a server message
store, or vice versa.

Message transmission is handled by the QAnywhere Agent and the MobiLink server:

♦ The QAnywhere Agent is connected to the client message store. It transmits messages to and from the
MobiLink server.

♦ The MobiLink server is connected to the server message store. It receives message transmissions from
QAnywhere Agents and transmits them to other QAnywhere Agents.

Message transmission can only take place between a client message store and a server message store. A
message transmission can only occur when a QAnywhere Agent is connected to a MobiLink server.

Transmission rules allow you to specify when message transmission is to occur and which messages to
transmit. Delete rules allow you to specify when messages should be deleted from the message stores, if you
do not want to use the default behavior.

You can specify transmission rules on the server and on the client. For more information, see:

♦ “Client transmission rules” on page 234
♦ “Server transmission rules” on page 235

Client transmission rules

Client transmission rules govern the behavior of messages going from the client to the server. Client
transmission rules are handled by the QAnywhere Agent.

By default, the QAnywhere Agent uses the automatic policy. You can change and customize this behavior
by specifying a transmission rules file as the transmission policy for the QAnywhere Agent.

The following partial qaagent command line shows how to specify a rules file for the QAnywhere Agent:

qaagent -policy myrules.txt ...

F For a complete description of how to write transmission rules, see “Rule syntax” on page 226.

F For more information about policies, see:

♦ “Determining when message transmission should occur on the client” on page 36
♦ “-policy option” on page 163

F For information about client delete rules, see “Client delete rules” on page 239.

The transmission rules file holds the following kinds of entry:

♦ Rules No more than one rule can be entered per line.

QAnywhere Transmission and Delete Rules

234 Copyright © 2006, iAnywhere Solutions, Inc.

Each rule must be entered on a single line, but you can use \ as a line continuation character.

♦ Comments Comments are indicated by a line beginning with either a # or ; character. Any characters
on that line are ignored.

F For more information, see “Rule syntax” on page 226 and “Condition syntax” on page 228.

You can also use transmission rules files to determine when messages are to be deleted from the message
stores.

F For more information, see “Message delete rules” on page 239.

You can also use the Sybase Central QAnywhere plug-in to create a QAnywhere Agent rules file.

Example
For example, the following client transmission rules file specifies that during business hours only small high
priority messages should be transmitted, while outside of business hours, any message can be transmitted.
This rule is automatic, which indicates that if the condition is satisfied, the message is transmitted
immediately. This example demonstrates that conditions can use information derived from the message as
well as other information such as the current time.

automatic = (ias_ContentSize < 100000 and ias_Priority > 7) \
 or datepart(Weekday,Ias_CurrentDate) in (1, 7) \
 or ias_CurrentTime < '8:00:00' or ias_CurrentTime > '18:00:00'

Server transmission rules

Server transmission rules govern the behavior of messages going from the server to the client. Server
transmission rules are handled by the MobiLink server. They apply both when you are using push
notifications and when you are not using notifications.

There are several ways to set server transmission rules:

♦ Write a server management request to set the transmission rule.

See “Specifying transmission rules with a server management request” on page 116.

♦ Use Sybase Central to set the rules.

See “Specifying server transmission rules using Sybase Central” on page 236.

♦ Create a server transmission rules file and specify it when you start the MobiLink server. This method
is deprecated.

See “Specifying server transmission rules with a transmission rules file (deprecated)” on page 236.

Message transmission rules

Copyright © 2006, iAnywhere Solutions, Inc. 235

Setting default rules

You can specify server transmission rules for a particular message store or destination alias, or you can set
default rules for all clients. Every user that does not have an explicit transmission rule will use the default
rule.

To set default rules, you use the special client name ianywhere.server.defaultClient.

Specifying server transmission rules using Sybase Central

You can create and edit transmission rules in Sybase Central.

♦ To specify default server transmission rules

1. Start Sybase Central:

♦ Choose Start ► Programs ► SQL Anywhere 10 ► Sybase Central.

♦ From Connections, choose Connect with QAnywhere 10.

♦ Specify an ODBC data source name or file, and a user ID and password if required. Click OK.

2. From Server Store Tasks, click Change Properties of this Message Store.

The Properties dialog appears.

3. Open the Transmission Rules tab and select Customize the Default Transmission Rules.

4. Click New to add a rule.

The Rule Editor appears.

5. Add conditions either by typing them into the text field or by choosing Message Variables or Status
Constants from the drop-down lists.

6. Click OK to exit.

Specifying server transmission rules with a transmission rules file (deprecated)

You can create a server transmission rules file and specify it with the
ianywhere.qa.server.transmissionRulesFile property in your QAnywhere messaging properties file.

F For more information about the messaging properties file, see “-m option” [MobiLink - Server
Administration].

To specify transmission rules for a particular client, precede a section of rules with the client message store
ID in square brackets.

Default server transmission rules can be created that apply to all users.

To specify default transmission rules, start a section with the following line:

QAnywhere Transmission and Delete Rules

236 Copyright © 2006, iAnywhere Solutions, Inc.

[ianywhere.server.defaultClient]

For new transmission rules to take effect, you must restart the MobiLink server. This only applies to
transmission rules specified in a transmission rules file. Server transmission rules specified using Sybase
Central or a server management request take effect immediately.

F For information about server delete rules, see “Server delete rules” on page 239.

Example
The following section of a server transmission rules file creates the default rule that only high priority
messages should be sent:

[ianywhere.server.defaultClient]
auto = ias_Priority > 6

In the following sample server transmission rules file, the rules apply only to the client identified by the
client message store ID sample_store_id.

[sample_store_id]
; This rule governs when messages are transmitted to the client
; store with id sample_store_id.
;
; ias_Priority >= 7
;
; Messages with priority 7 or greater should always be
; transmitted.
;
; ias_ContentSize < 100
;
; Small messages (messages less than 100 characters or
; bytes in size) should always be transmitted.
;
; ias_CurrentTime < '8:00am' or ias_CurrentTime > '6:00pm'
;
; Outside of business hours messages should always be
; transmitted
auto = ias_Priority >= 7 or ias_ContentSize < 100 \
 or ias_CurrentTime < '8:00:00' or ias_CurrentTime > '18:00:00'

In the following example, the rules apply only to the client identified by the client message store ID
qanywhere.

[qanywhere]
; This rule governs when messages are transmitted to the client
; store with id qanywhere.
;
; tm_Subject not like '%non-business%'
;
; Messages with the property tm_Subject set to a value that
; includes the phrase 'non-business' should not be transmitted
;
; ias_CurrentTime < '8:00:00' or ias_CurrentTime > '18:00:00'
;
; Outside of business hours, messages should always be
; transmitted

Message transmission rules

Copyright © 2006, iAnywhere Solutions, Inc. 237

auto = tm_Subject not like '%non-business%' \
 or ias_CurrentTime < '8:00am' or ias_CurrentTime > '6:00pm'

QAnywhere Transmission and Delete Rules

238 Copyright © 2006, iAnywhere Solutions, Inc.

Message delete rules
Delete rules determine the persistence of messages in the client message store and the server message store.

Client delete rules

By default, messages are deleted from the client message store when the status of the message is determined
to be received, expired, cancelled, or undeliverable and the final state has been transmitted to the server
message store. You may want messages to be deleted faster than that, or to hold on to messages longer. You
do that by creating a delete section in your client transmission rules file. The delete section must be prefaced
by [system:delete].

For more information about acknowledgement, see:

♦ .NET: “AcknowledgementMode enumeration” on page 244
♦ C++: “AcknowledgementMode class” on page 392
♦ Java: “Interface AcknowledgementMode” on page 504

F For more information about client transmission rules, see “Client transmission rules” on page 234.

Following is an example of the delete rules section in a client transmission rules file:

[system:delete]
; This rule governs when messages are deleted from the client
; store.
;
; start time '1:00:00' on ('Sunday')
;
; Messages are deleted every Sunday at 1:00 A.M.
;
; ias_Status >= ias_FinalState
;
; Typically, messages are deleted when they reach a final
; state: received, unreceivable, expired, or cancelled.
start time '1:00:00' on ('Sunday') = ias_Status >= ias_FinalState

F For an explanation of ias_Status, see “Rule variables” on page 231.

Server delete rules
By default, messages are deleted from the server message store when the status of the message is determined
to be received, expired, cancelled, or undeliverable and the final state has been transmitted back to the
message originator. You may want to keep messages longer for purposes such as auditing.

Server-side delete rules apply to all messages in the server message store.

F For more information about server transmission rules, see “Server transmission rules” on page 235.

F For an explanation of ias_Status, see “Rule variables” on page 231.

Message delete rules

Copyright © 2006, iAnywhere Solutions, Inc. 239

Part II. QAnywhere API Reference

This part provides reference documentation of the QAnywhere APIs.

CHAPTER 12

QAnywhere .NET API Reference

Contents
iAnywhere.QAnywhere.Client namespace (.NET) .. 244
iAnywhere.QAnywhere.WS namespace (.NET) ... 342

About this chapter
The iAnywhere.QAnywhere.Client namespace contains classes and enumerations for building applications
that handle QAnywhere messages.

Copyright © 2006, iAnywhere Solutions, Inc. 243

iAnywhere.QAnywhere.Client namespace (.NET)

AcknowledgementMode enumeration

Indicates how messages should be acknowledged by QAnywhere client applications.

Prototypes
' Visual Basic
Public Enum AcknowledgementMode

// C#
public enum AcknowledgementMode

Remarks
The implicit and explicit acknowledgement modes are assigned to a QAManager instance using the Open
method.

For more information, see “Initializing a QAnywhere API” on page 54.

With implicit acknowledgement, messages are acknowledged as soon as they are received by a client
application. With explicit acknowledgement, you must call one of the QAManager acknowledgement
methods. The server propagates all status changes from client to client.

For more information, see “Receiving messages synchronously” on page 75 and “Receiving messages
asynchronously” on page 76.

Member name

Member name Description

EXPLICIT_ACKNOWLEDGE-
MENT

Indicates that received messages are acknowledged using one of the
QAManager interface acknowledge methods.

IMPLICIT_ACKNOWLEDGE-
MENT

Indicates that all messages are acknowledged as soon as they are re-
ceived by a client application. If you receive messages synchronously,
messages are acknowledged as soon as the GetMessage method re-
turns. If you receive messages asynchronously, the message is ac-
knowledged as soon as the event handling function returns.

TRANSACTIONAL This mode indicates that messages are only acknowledged as part of
the on going transaction. This mode is automatically assigned to QA-
TransactionalManager interface instances.

See also
♦ “QAManager interface” on page 271
♦ “QATransactionalManager interface” on page 337
♦ “QAManagerBase interface” on page 275

QAnywhere .NET API Reference

244 Copyright © 2006, iAnywhere Solutions, Inc.

MessageListener delegate

MessageListener delegate definition. You pass a MessageListener to the SetMessageListener method.

Prototypes
' Visual Basic
Public Delegate Sub MessageListener(_
 ByVal msg As QAMessage _
)

// C#
public delegate void MessageListener(
 QAMessage msg
);

Parameters
♦ msg The message that was received.

MessageProperties class

Provides fields storing standard message property names.

Prototypes
' Visual Basic
Public Class MessageProperties

// C#
public class MessageProperties

Remarks
The MessageProperties class provides standard message property names. You can pass MessageProperties
fields to QAMessage methods used to get and set message properties.

For more information, see “Message headers and message properties” on page 206.

See also
♦ “MessageProperties members” on page 245
♦ “QAMessage interface” on page 314

MessageProperties members

Public static fields (shared)

Member name Description

ADAPTER field For "system" queue messages, the network adapter that is being used
to connect to the QAnywhere server.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 245

Member name Description

ADAPTERS field This property name refers to a delimited list of network adapters that
can be used to connect to the QAnywhere server.

DELIVERY_COUNT field This property name refers to the number of attempts that have been
made so far to deliver the message.

IP field For "system" queue messages, the IP address of the network adapter
that is being used to connect to the QAnywhere server.

MAC field For "system" queue messages, the MAC address of the network
adapter that is being used to connect to the QAnywhere server.

MSG_TYPE field This property name refers to MessageType enumeration values asso-
ciated with a QAnywhere message.

NETWORK_STATUS field This property name refers to the state of the network connection.

ORIGINATOR field This property name refers to the message store ID of the originator of
the message.

RAS field For "system" queue messages, the RAS entry name that is being used
to connect to the QAnywhere server.

RASNAMES field For "system" queue messages, a delimited list of RAS entry names
that can be used to connect to the QAnywhere server.

STATUS field This property name refers to the current status of the message.

STATUS_TIME field This property name refers to the time at which the message became
its current status.

TRANSMISSION_STATUS
field

This property name refers to the current transmission status of the
message.

ADAPTER field

For "system" queue messages, the network adapter that is being used to connect to the QAnywhere server.

Prototypes
' Visual Basic
Public Shared ADAPTER As String

// C#
public const string ADAPTER;

Remarks
The value of this field is "ias_Network.Adapter".

For more information, see “Pre-defined client message store properties” on page 215.

QAnywhere .NET API Reference

246 Copyright © 2006, iAnywhere Solutions, Inc.

You can pass MessageProperties.ADAPTER in the QAMessage interfaceGetStringProperty method to
access the associated property.

See also
♦ “MessageProperties class” on page 245
♦ “MessageProperties members” on page 245
♦ “MessageProperties class” on page 245

ADAPTERS field

This property name refers to a delimited list of network adapters that can be used to connect to the QAnywhere
server.

Prototypes
' Visual Basic
Public Shared ADAPTERS As String

// C#
public const string ADAPTERS;

Remarks
It is used for system queue messages.

You can pass MessageProperties.ADAPTERS in the QAMessage interfaceGetStringProperty method to
access the associated property.

For more information, see “Pre-defined client message store properties” on page 215.

See also
♦ “MessageProperties class” on page 245
♦ “MessageProperties members” on page 245
♦ “MessageProperties class” on page 245

DELIVERY_COUNT field

This property name refers to the number of attempts that have been made so far to deliver the message.

Prototypes
' Visual Basic
Public Shared DELIVERY_COUNT As String

// C#
public const string DELIVERY_COUNT;

Remarks
The value of this field is "ias_DeliveryCount".

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 247

You can pass MessageProperties.DELIVERY_COUNT in the QAMessage interfaceGetIntProperty
method to access the associated property.

See also
♦ “MessageProperties class” on page 245
♦ “MessageProperties members” on page 245
♦ “MessageProperties class” on page 245

IP field

For "system" queue messages, the IP address of the network adapter that is being used to connect to the
QAnywhere server.

Prototypes
' Visual Basic
Public Shared IP As String

// C#
public const string IP;

Remarks
The value of this field is "ias_Network.IP".

For more information, see “Pre-defined client message store properties” on page 215.

You can pass MessageProperties.IP in the QAMessage interfaceGetStringProperty method to access the
associated property.

See also
♦ “MessageProperties class” on page 245
♦ “MessageProperties members” on page 245
♦ “MessageProperties class” on page 245

MAC field

For "system" queue messages, the MAC address of the network adapter that is being used to connect to the
QAnywhere server.

Prototypes
' Visual Basic
Public Shared MAC As String

// C#
public const string MAC;

Remarks
The value of this field is "ias_Network.MAC".

QAnywhere .NET API Reference

248 Copyright © 2006, iAnywhere Solutions, Inc.

For more information, see “Pre-defined client message store properties” on page 215.

You can pass MessageProperties.MAC in the QAMessage interfaceGetStringProperty method to access the
associated property.

See also
♦ “MessageProperties class” on page 245
♦ “MessageProperties members” on page 245
♦ “MessageProperties class” on page 245

MSG_TYPE field

This property name refers to MessageType enumeration values associated with a QAnywhere message.

Prototypes
' Visual Basic
Public Shared MSG_TYPE As String

// C#
public const string MSG_TYPE;

Remarks
The value of this field is "ias_MessageType".

You can pass MessageProperties.MSG_TYPE in the QAMessage interfaceGetIntProperty method to access
the associated property.

See also
♦ “MessageProperties class” on page 245
♦ “MessageProperties members” on page 245
♦ “MessageProperties class” on page 245

NETWORK_STATUS field

This property name refers to the state of the network connection.

Prototypes
' Visual Basic
Public Shared NETWORK_STATUS As String

// C#
public const string NETWORK_STATUS;

Remarks
The value is 1 if the network is accessible and 0 otherwise.

The network status is used for system queue messages (for example, network status changes).

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 249

For more information, see “Pre-defined client message store properties” on page 215.

You can pass MessageProperties.NETWORK_STATUS in the QAMessage interfaceGetIntProperty
method to access the associated property.

See also
♦ “MessageProperties class” on page 245
♦ “MessageProperties members” on page 245
♦ “MessageProperties class” on page 245

ORIGINATOR field

This property name refers to the message store ID of the originator of the message.

Prototypes
' Visual Basic
Public Shared ORIGINATOR As String

// C#
public const string ORIGINATOR;

Remarks
The value of this field is "ias_Originator".

You can pass MessageProperties.ORIGINATOR in the QAMessage interfaceGetStringProperty method to
access the associated property.

See also
♦ “MessageProperties class” on page 245
♦ “MessageProperties members” on page 245
♦ “MessageProperties class” on page 245

RAS field

For "system" queue messages, the RAS entry name that is being used to connect to the QAnywhere server.

Prototypes
' Visual Basic
Public Shared RAS As String

// C#
public const string RAS;

Remarks
The value of this field is "ias_Network.RAS".

For more information, see “Pre-defined client message store properties” on page 215.

QAnywhere .NET API Reference

250 Copyright © 2006, iAnywhere Solutions, Inc.

You can pass MessageProperties.RAS in the QAMessage interfaceGetStringProperty method to access the
associated property.

See also
♦ “MessageProperties class” on page 245
♦ “MessageProperties members” on page 245
♦ “MessageProperties class” on page 245

RASNAMES field

For "system" queue messages, a delimited list of RAS entry names that can be used to connect to the
QAnywhere server.

Prototypes
' Visual Basic
Public Shared RASNAMES As String

// C#
public const string RASNAMES;

Remarks
The value of this field is "ias_RASNames".

For more information, see “Pre-defined client message store properties” on page 215.

You can pass MessageProperties.RASNAMES in the QAMessage interfaceGetStringProperty method to
access the associated property.

See also
♦ “MessageProperties class” on page 245
♦ “MessageProperties members” on page 245
♦ “MessageProperties class” on page 245

STATUS field

This property name refers to the current status of the message.

Prototypes
' Visual Basic
Public Shared STATUS As String

// C#
public const string STATUS;

Remarks
For a list of property values, see the StatusCodes enumeration class.

The value of this field is "ias_Status".

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 251

You can pass MessageProperties.STATUS in the QAMessage interfaceGetIntProperty method to access the
associated property.

See also
♦ “MessageProperties class” on page 245
♦ “MessageProperties members” on page 245
♦ “StatusCodes enumeration” on page 340
♦ “MessageProperties class” on page 245

STATUS_TIME field

This property name refers to the time at which the message became its current status.

Prototypes
' Visual Basic
Public Shared STATUS_TIME As String

// C#
public const string STATUS_TIME;

Remarks
It is a local time. When STATUS_TIME is passed to GetProperty method, it returns a DateTime object. The
value of this field is "ias_StatusTime".

See also
♦ “MessageProperties class” on page 245
♦ “MessageProperties members” on page 245
♦ “GetProperty method” on page 324
♦ “MessageProperties class” on page 245

TRANSMISSION_STATUS field

This property name refers to the current transmission status of the message.

Prototypes
' Visual Basic
Public Shared TRANSMISSION_STATUS As String

// C#
public const string TRANSMISSION_STATUS;

Remarks
For a list of property values, see the StatusCodes enumeration class.

The value of this field is "ias_TransmissionStatus".

You can pass MessageProperties.TRANSMISSION_STATUS in the QAMessage interfaceGetIntProperty
method to access the associated property.

QAnywhere .NET API Reference

252 Copyright © 2006, iAnywhere Solutions, Inc.

See also
♦ “MessageProperties class” on page 245
♦ “MessageProperties members” on page 245
♦ “StatusCodes enumeration” on page 340
♦ “MessageProperties class” on page 245

MessageStoreProperties class

This class defines constant values for useful message store property names. The MessageStoreProperties
class provides standard message property names. You can pass MessageProperties fields to QAManagerBase
methods used to get and set pre-defined or custom message store properties. For more information, see
“Client message store properties” on page 215.

Prototypes
' Visual Basic
Public Class MessageStoreProperties

// C#
public class MessageStoreProperties

MessageStoreProperties members

Public static fields (shared)

Member name Description

MAX_DELIVERY_AT-
TEMPTS field

This property name refers to the maximum number of times that a
message can be received, without explicit acknowledgement, before
its status is set to StatusCodes enumeration.UNRECEIVABLE. The
value of this field is "ias_MaxDeliveryAttempts".

Public constructors

Member name Description

MessageStoreProperties con-
structor

Initializes a new instance of the MessageStoreProperties class class.

MessageStoreProperties constructor

Initializes a new instance of the MessageStoreProperties class class.

Prototypes
' Visual Basic
Public Sub New()

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 253

// C#
public MessageStoreProperties();

MAX_DELIVERY_ATTEMPTS field

This property name refers to the maximum number of times that a message can be received, without explicit
acknowledgement, before its status is set to StatusCodes enumeration.UNRECEIVABLE. The value of this
field is "ias_MaxDeliveryAttempts".

Prototypes
' Visual Basic
Public Shared MAX_DELIVERY_ATTEMPTS As String

// C#
public const string MAX_DELIVERY_ATTEMPTS;

MessageType enumeration

Defines constant values for the MessageProperties class.MSG_TYPE message property.

Prototypes
' Visual Basic
Public Enum MessageType

// C#
public enum MessageType

Member name

Member name Description

NETWORK_STATUS_NOTI-
FICATION

Identifies a QAnywhere system message used to notify QAnywhere
client applications of network status changes.

PUSH_NOTIFICATION Identifies a QAnywhere system message used to notify QAnywhere
client applications of push notifications.

REGULAR If no message type property exists then the message type is assumed
to be REGULAR.

PropertyType enumeration

QAMessage property type enumeration, corresponding naturally to the C# types.

Prototypes
' Visual Basic
Public Enum PropertyType

QAnywhere .NET API Reference

254 Copyright © 2006, iAnywhere Solutions, Inc.

// C#
public enum PropertyType

Member name

Member name Description

BOOLEAN Indicates a boolean property.

BYTE Indicates a signed byte property.

DOUBLE Indicates a double property.

FLOAT Indicates a float property.

INT Indicates an int property.

LONG Indicates an long property.

SHORT Indicates a short property.

STRING Indicates a string property.

UNKNOWN Indicates an unknown property type, usually because the property is
unknown.

QABinaryMessage interface

An QABinaryMessage object is used to send a message containing a stream of uninterpreted bytes. It inherits
from the QAMessage interface class and adds a bytes message body. QABinaryMessage provides a variety
of functions to read from and write to the bytes message body.

When the message is first created, the body of the message is in write-only mode. After a message has been
sent, the client that sent it can retain and modify it without affecting the message that has been sent. The
same message object can be sent multiple times.

When a message is received, the provider has called Reset method so that the message body is in read-only
mode and reading of values starts from the beginning of the message body.

Prototypes
' Visual Basic
Public Interface QABinaryMessage

// C#
public interface QABinaryMessage

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 255

QABinaryMessage members

Public properties

Member name Description

BodyLength property Returns the size of the message body in bytes.

Public methods

Member name Description

ReadBinary method Reads a specified number of bytes starting from the unread portion of
a QABinaryMessage instance body.

ReadBoolean method Reads a boolean value starting from the unread portion of the QABi-
naryMessage instance's message body.

ReadChar method Reads a char value starting from the unread portion of a QABina-
ryMessage message body.

ReadDouble method Reads a double value starting from the unread portion of a QABina-
ryMessage message body.

ReadFloat method Reads a float value starting from the unread portion of a QABina-
ryMessage message body.

ReadInt method Reads an integer value starting from the unread portion of a QABi-
naryMessage message body.

ReadLong method Reads a long value starting from the unread portion of a QABina-
ryMessage message body.

ReadSbyte method Reads a signed byte value starting from the unread portion of a QABi-
naryMessage message body.

ReadShort method Reads a short value starting from the unread portion of a QABina-
ryMessage message body.

ReadString method Reads a string value starting from the unread portion of a QABina-
ryMessage message body.

Reset method Resets a message so that the reading of values starts from the begin-
ning of the message body. The Reset method also puts the QABina-
ryMessage message body in read-only mode.

WriteBinary method Appends a byte array value to the QABinaryMessage instance's mes-
sage body.

WriteBoolean method Appends a boolean value to the QABinaryMessage instance's mes-
sage body. The boolean is represented as a one byte value. True is
represented as 1; false is represented as 0.

QAnywhere .NET API Reference

256 Copyright © 2006, iAnywhere Solutions, Inc.

Member name Description

WriteChar method Appends a char value to the QABinaryMessage instance's message
body. The char is represented as a two byte value and the high order
byte is appended first.

WriteDouble method Appends a double value to the QABinaryMessage instance's message
body. The double is converted to a representive 8-byte long and higher
order bytes are appended first.

WriteFloat method Appends a float value to the QABinaryMessage instance's message
body. The float parameter is converted to a representative 4-byte in-
teger and the higher order bytes are appended first.

WriteInt method Appends an integer value to the QABinaryMessage instance's mes-
sage body. The integer parameter is represented as a 4 byte value and
higher order bytes are appended first.

WriteLong method Appends a long value to the QABinaryMessage instance's message
body. The long parameter is represented using 8-bytes value and
higher order bytes are appended first.

WriteSbyte method Appends a signed byte value to the QABinaryMessage instance's
message body. The signed byte is represented as a one byte value.

WriteShort method Appends a short value to the QABinaryMessage instance's message
body. The short parameter is represented as a two byte value and the
higher order byte is appended first.

WriteString method Appends a string value to the QABinaryMessage instance's message
body. Note: the receving application needs to invoke ReadString
method for each WriteString invocation. Note: The UTF-8 represen-
tation of the string to be written can be at most 32767 bytes.

BodyLength property

Returns the size of the message body in bytes.

Prototypes
' Visual Basic
Public Readonly Property BodyLength As Long

// C#
public long BodyLength {get;}

See also
♦ “QABinaryMessage interface” on page 255
♦ “QABinaryMessage members” on page 256
♦ “QABinaryMessage interface” on page 255

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 257

ReadBinary method

Reads a specified number of bytes starting from the unread portion of a QABinaryMessage instance body.

Prototypes
' Visual Basic
Public Function ReadBinary(_
 ByVal bytes As Byte(), _
 ByVal len As Integer _
) As Integer

// C#
public int ReadBinary(
 byte[] bytes,
 int len
);

Parameters
♦ bytes the byte array that will contain the read bytes.

♦ len the maximum number of bytes to read

Return value
the number of bytes read from the message body.

Exceptions
♦ QAException class - if there was a conversion error reading the value or if there is no more input.

See also
♦ “QABinaryMessage interface” on page 255
♦ “QABinaryMessage members” on page 256
♦ “QABinaryMessage interface” on page 255
♦ “WriteBinary method” on page 263

ReadBoolean method

Reads a boolean value starting from the unread portion of the QABinaryMessage instance's message body.

Prototypes
' Visual Basic
Public Function ReadBoolean() As Boolean

// C#
public bool ReadBoolean();

Return value
the boolean value read from the message body.

QAnywhere .NET API Reference

258 Copyright © 2006, iAnywhere Solutions, Inc.

Exceptions
♦ QAException class - if there was a conversion error reading the value or if there is no more input.

See also
♦ “QABinaryMessage interface” on page 255
♦ “QABinaryMessage members” on page 256
♦ “QABinaryMessage interface” on page 255
♦ “WriteBoolean method” on page 264

ReadChar method

Reads a char value starting from the unread portion of a QABinaryMessage message body.

Prototypes
' Visual Basic
Public Function ReadChar() As Char

// C#
public char ReadChar();

Return value
the character value read from the message body.

Exceptions
♦ QAException class - if there was a conversion error reading the value or if there is no more input.

See also
♦ “QABinaryMessage interface” on page 255
♦ “QABinaryMessage members” on page 256
♦ “QABinaryMessage interface” on page 255
♦ “WriteChar method” on page 264

ReadDouble method

Reads a double value starting from the unread portion of a QABinaryMessage message body.

Prototypes
' Visual Basic
Public Function ReadDouble() As Double

// C#
public double ReadDouble();

Return value
the double value read from the message body.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 259

Exceptions
♦ QAException class - if there was a conversion error reading the value or if there is no more input.

See also
♦ “QABinaryMessage interface” on page 255
♦ “QABinaryMessage members” on page 256
♦ “QABinaryMessage interface” on page 255
♦ “WriteDouble method” on page 265

ReadFloat method

Reads a float value starting from the unread portion of a QABinaryMessage message body.

Prototypes
' Visual Basic
Public Function ReadFloat() As Single

// C#
public float ReadFloat();

Return value
the float value read from the message body.

Exceptions
♦ QAException class - if there was a conversion error reading the value or if there is no more input.

See also
♦ “QABinaryMessage interface” on page 255
♦ “QABinaryMessage members” on page 256
♦ “QABinaryMessage interface” on page 255
♦ “WriteFloat method” on page 265

ReadInt method

Reads an integer value starting from the unread portion of a QABinaryMessage message body.

Prototypes
' Visual Basic
Public Function ReadInt() As Integer

// C#
public int ReadInt();

Return value
the int value read from the message body.

QAnywhere .NET API Reference

260 Copyright © 2006, iAnywhere Solutions, Inc.

Exceptions
♦ QAException class - if there was a conversion error reading the value or if there is no more input.

See also
♦ “QABinaryMessage interface” on page 255
♦ “QABinaryMessage members” on page 256
♦ “QABinaryMessage interface” on page 255
♦ “WriteInt method” on page 266

ReadLong method

Reads a long value starting from the unread portion of a QABinaryMessage message body.

Prototypes
' Visual Basic
Public Function ReadLong() As Long

// C#
public long ReadLong();

Return value
the long value read from the message body.

Exceptions
♦ QAException class - if there was a conversion error reading the value or if there is no more input.

See also
♦ “QABinaryMessage interface” on page 255
♦ “QABinaryMessage members” on page 256
♦ “QABinaryMessage interface” on page 255
♦ “WriteLong method” on page 266

ReadSbyte method

Reads a signed byte value starting from the unread portion of a QABinaryMessage message body.

Prototypes
' Visual Basic
Public Function ReadSbyte() As System.SByte

// C#
public System.Sbyte ReadSbyte();

Return value
the signed byte value read from the message body.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 261

Exceptions
♦ QAException class - if there was a conversion error reading the value or if there is no more input.

See also
♦ “QABinaryMessage interface” on page 255
♦ “QABinaryMessage members” on page 256
♦ “QABinaryMessage interface” on page 255
♦ “WriteSbyte method” on page 267

ReadShort method

Reads a short value starting from the unread portion of a QABinaryMessage message body.

Prototypes
' Visual Basic
Public Function ReadShort() As Short

// C#
public short ReadShort();

Return value
the short value read from the message body.

Exceptions
♦ QAException class - if there was a conversion error reading the value or if there is no more input.

See also
♦ “QABinaryMessage interface” on page 255
♦ “QABinaryMessage members” on page 256
♦ “QABinaryMessage interface” on page 255
♦ “WriteShort method” on page 267

ReadString method

Reads a string value starting from the unread portion of a QABinaryMessage message body.

Prototypes
' Visual Basic
Public Function ReadString() As String

// C#
public string ReadString();

Return value
the string value read from the message body.

QAnywhere .NET API Reference

262 Copyright © 2006, iAnywhere Solutions, Inc.

Exceptions
♦ QAException class - if there was a conversion error reading the value or if there is no more input.

See also
♦ “QABinaryMessage interface” on page 255
♦ “QABinaryMessage members” on page 256
♦ “QABinaryMessage interface” on page 255
♦ “WriteString method” on page 268

Reset method

Resets a message so that the reading of values starts from the beginning of the message body. The Reset
method also puts the QABinaryMessage message body in read-only mode.

Prototypes
' Visual Basic
Public Sub Reset()

// C#
public void Reset();

See also
♦ “QABinaryMessage interface” on page 255
♦ “QABinaryMessage members” on page 256
♦ “QABinaryMessage interface” on page 255

WriteBinary method

Appends a byte array value to the QABinaryMessage instance's message body.

Prototypes
' Visual Basic
Public Sub WriteBinary(_
 ByVal val As Byte(), _
 ByVal offset As Integer, _
 ByVal len As Integer _
)

// C#
public void WriteBinary(
 byte[] val,
 int offset,
 int len
);

Parameters
♦ val the byte array value to write to the message body.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 263

♦ len the number of bytes to write.

♦ offset the offset within the byte array to begin writing.

See also
♦ “QABinaryMessage interface” on page 255
♦ “QABinaryMessage members” on page 256
♦ “QABinaryMessage interface” on page 255
♦ “ReadBinary method” on page 258

WriteBoolean method

Appends a boolean value to the QABinaryMessage instance's message body. The boolean is represented as
a one byte value. True is represented as 1; false is represented as 0.

Prototypes
' Visual Basic
Public Sub WriteBoolean(_
 ByVal val As Boolean _
)

// C#
public void WriteBoolean(
 bool val
);

Parameters
♦ val the boolean value to write to the message body.

See also
♦ “QABinaryMessage interface” on page 255
♦ “QABinaryMessage members” on page 256
♦ “QABinaryMessage interface” on page 255
♦ “ReadBoolean method” on page 258

WriteChar method

Appends a char value to the QABinaryMessage instance's message body. The char is represented as a two
byte value and the high order byte is appended first.

Prototypes
' Visual Basic
Public Sub WriteChar(_
 ByVal val As Char _
)

// C#
public void WriteChar(

QAnywhere .NET API Reference

264 Copyright © 2006, iAnywhere Solutions, Inc.

 char val
);

Parameters
♦ val the char value to write to the message body.

See also
♦ “QABinaryMessage interface” on page 255
♦ “QABinaryMessage members” on page 256
♦ “QABinaryMessage interface” on page 255
♦ “ReadChar method” on page 259

WriteDouble method

Appends a double value to the QABinaryMessage instance's message body. The double is converted to a
representive 8-byte long and higher order bytes are appended first.

Prototypes
' Visual Basic
Public Sub WriteDouble(_
 ByVal val As Double _
)

// C#
public void WriteDouble(
 double val
);

Parameters
♦ val the double value to write to the message body.

See also
♦ “QABinaryMessage interface” on page 255
♦ “QABinaryMessage members” on page 256
♦ “QABinaryMessage interface” on page 255
♦ “ReadDouble method” on page 259

WriteFloat method

Appends a float value to the QABinaryMessage instance's message body. The float parameter is converted
to a representative 4-byte integer and the higher order bytes are appended first.

Prototypes
' Visual Basic
Public Sub WriteFloat(_
 ByVal val As Single _
)

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 265

// C#
public void WriteFloat(
 float val
);

Parameters
♦ val the float value to write to the message body.

See also
♦ “QABinaryMessage interface” on page 255
♦ “QABinaryMessage members” on page 256
♦ “QABinaryMessage interface” on page 255
♦ “ReadFloat method” on page 260

WriteInt method

Appends an integer value to the QABinaryMessage instance's message body. The integer parameter is
represented as a 4 byte value and higher order bytes are appended first.

Prototypes
' Visual Basic
Public Sub WriteInt(_
 ByVal val As Integer _
)

// C#
public void WriteInt(
 int val
);

Parameters
♦ val the int value to write to the message body.

See also
♦ “QABinaryMessage interface” on page 255
♦ “QABinaryMessage members” on page 256
♦ “QABinaryMessage interface” on page 255
♦ “ReadInt method” on page 260

WriteLong method

Appends a long value to the QABinaryMessage instance's message body. The long parameter is represented
using 8-bytes value and higher order bytes are appended first.

Prototypes
' Visual Basic
Public Sub WriteLong(_

QAnywhere .NET API Reference

266 Copyright © 2006, iAnywhere Solutions, Inc.

 ByVal val As Long _
)

// C#
public void WriteLong(
 long val
);

Parameters
♦ val the long value to write to the message body.

See also
♦ “QABinaryMessage interface” on page 255
♦ “QABinaryMessage members” on page 256
♦ “QABinaryMessage interface” on page 255
♦ “ReadLong method” on page 261

WriteSbyte method

Appends a signed byte value to the QABinaryMessage instance's message body. The signed byte is
represented as a one byte value.

Prototypes
' Visual Basic
Public Sub WriteSbyte(_
 ByVal val As System.SByte _
)

// C#
public void WriteSbyte(
 System.Sbyte val
);

Parameters
♦ val the signed byte value to write to the message body.

See also
♦ “QABinaryMessage interface” on page 255
♦ “QABinaryMessage members” on page 256
♦ “QABinaryMessage interface” on page 255
♦ “ReadSbyte method” on page 261

WriteShort method

Appends a short value to the QABinaryMessage instance's message body. The short parameter is represented
as a two byte value and the higher order byte is appended first.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 267

Prototypes
' Visual Basic
Public Sub WriteShort(_
 ByVal val As Short _
)

// C#
public void WriteShort(
 short val
);

Parameters
♦ val the short value to write to the message body.

See also
♦ “QABinaryMessage interface” on page 255
♦ “QABinaryMessage members” on page 256
♦ “QABinaryMessage interface” on page 255
♦ “ReadShort method” on page 262

WriteString method

Appends a string value to the QABinaryMessage instance's message body. Note: the receving application
needs to invoke ReadString method for each WriteString invocation. Note: The UTF-8 representation of the
string to be written can be at most 32767 bytes.

Prototypes
' Visual Basic
Public Sub WriteString(_
 ByVal val As String _
)

// C#
public void WriteString(
 string val
);

Parameters
♦ val the string value to write to the message body.

See also
♦ “QABinaryMessage interface” on page 255
♦ “QABinaryMessage members” on page 256
♦ “QABinaryMessage interface” on page 255
♦ “ReadString method” on page 262

QAnywhere .NET API Reference

268 Copyright © 2006, iAnywhere Solutions, Inc.

QAException class

Encapsulates QAnywhere client application exceptions. You can use the QAException class to catch
QAnywhere exceptions.

Prototypes
' Visual Basic
Public Class QAException
 Inherits ApplicationException

// C#
public class QAException :
 ApplicationException

QAException members

Public constructors

Member name Description

QAException constructor Create a QAException instance providing the error message text.

QAException constructor Create a QAException instance providing the error code and the error
message text.

Public properties

Member name Description

ErrorCode property The error code of the exception.

HelpLink (inherited from Excep-
tion)

Gets or sets a link to the help file associated with this exception.

InnerException (inherited from
Exception)

Gets the System.Exception instance that caused the current exception.

Message (inherited from Excep-
tion)

Gets a message that describes the current exception.

Source (inherited from Excep-
tion)

Gets or sets the name of the application or the object that causes the
error.

StackTrace (inherited from Ex-
ception)

Gets a string representation of the frames on the call stack at the time
the current exception was thrown.

TargetSite (inherited from Ex-
ception)

Gets the method that throws the current exception.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 269

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassHelpLinkTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassInnerExceptionTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassMessageTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassSourceTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassStackTraceTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassTargetSiteTopic.asp

Public methods

Member name Description

GetBaseException (inherited
from Exception)

When overridden in a derived class, returns the System.Exception that
is the root cause of one or more subsequent exceptions.

GetObjectData (inherited from
Exception)

When overridden in a derived class, sets the
System.Runtime.Serialization.SerializationInfo with information
about the exception.

ToString (inherited from Excep-
tion)

Creates and returns a string representation of the current exception.

QAException constructor

Create a QAException instance providing the error message text.

Prototypes
' Visual Basic
Overloads Public Sub New(_
 ByVal msg As String _
)

// C#
public QAException(
 string msg
);

Parameters
♦ msg the text description of the exception.

QAException constructor

Create a QAException instance providing the error code and the error message text.

Prototypes
' Visual Basic
Overloads Public Sub New(_
 ByVal msg As String, _
 ByVal errCode As Integer _
)

// C#
public QAException(
 string msg,
 int errCode
);

QAnywhere .NET API Reference

270 Copyright © 2006, iAnywhere Solutions, Inc.

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassGetBaseExceptionTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassGetObjectDataTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemRuntimeSerializationSerializationInfoClassTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassToStringTopic.asp

Parameters
♦ msg the text description of the exception.

♦ errCode the error code.

ErrorCode property

The error code of the exception.

Prototypes
' Visual Basic
Public Readonly Property ErrorCode As Integer

// C#
public int ErrorCode {get;}

QAManager interface

The QAManager class derives from QAManagerBase interface and manages non-transactional QAnywhere
messaging operations.

Prototypes
' Visual Basic
Public Interface QAManager

// C#
public interface QAManager

Remarks
For a detailed description of derived behavior, see QAManagerBase interface.

The QAManager can be configured for implicit or explicit acknowledgement as defined in the
AcknowledgementMode enumeration. To acknowledge messages as part of a transaction, use
QATransactionalManager interface. Use the QAManagerFactory class to create QAManager and
QATransactionalManager interface objects.

QAManager members

Public methods

Member name Description

Acknowledge method Acknowledges that the client application successfully received a
QAnywhere message.

AcknowledgeAll method Acknowledges that the client application successfully received
QAnywhere messages. All unacknowledged messages are acknowl-
edged.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 271

Member name Description

AcknowledgeUntil method Acknowledges the given QAMessage instance and all unacknowl-
edged messages received before the given message.

Open method Open the QAManager with the given AcknowledgementMode enu-
meration value.

Recover method Forces all unacknowledged messages into a state of unreceived.

Acknowledge method

Acknowledges that the client application successfully received a QAnywhere message.

Prototypes
' Visual Basic
Public Sub Acknowledge(_
 ByVal msg As QAMessage _
)

// C#
public void Acknowledge(
 QAMessage msg
);

Parameters
♦ msg the message to acknowledge.

Remarks
Note: when a QAMessage is acknowledged, its status property changes to StatusCodes
enumeration.RECEIVED. When a QAMessage STATUS field message property changes to StatusCodes
enumeration.RECEIVED, it can be deleted using the default delete rule.

For more information about delete rules, see “Message delete rules” on page 239.

Exceptions
♦ QAException class - Thrown if there is a problem acknowledging the message.

See also
♦ “QAManager interface” on page 271
♦ “QAManager members” on page 271
♦ “QAManager interface” on page 271
♦ “AcknowledgeUntil method” on page 273
♦ “AcknowledgeAll method” on page 273

QAnywhere .NET API Reference

272 Copyright © 2006, iAnywhere Solutions, Inc.

AcknowledgeAll method

Acknowledges that the client application successfully received QAnywhere messages. All unacknowledged
messages are acknowledged.

Prototypes
' Visual Basic
Public Sub AcknowledgeAll()

// C#
public void AcknowledgeAll();

Remarks
Note: when a QAMessage is acknowledged, its STATUS field property changes to StatusCodes
enumeration.RECEIVED. When a QAMessage status changes to StatusCodes enumeration.RECEIVED, it
can be deleted using the default delete rule.

For more information about delete rules, see “Message delete rules” on page 239.

Exceptions
♦ QAException class - Thrown if there is a problem acknowledging the messages.

See also
♦ “QAManager interface” on page 271
♦ “QAManager members” on page 271
♦ “QAManager interface” on page 271
♦ “Acknowledge method” on page 272
♦ “AcknowledgeUntil method” on page 273

AcknowledgeUntil method

Acknowledges the given QAMessage instance and all unacknowledged messages received before the given
message.

Prototypes
' Visual Basic
Public Sub AcknowledgeUntil(_
 ByVal msg As QAMessage _
)

// C#
public void AcknowledgeUntil(
 QAMessage msg
);

Parameters
♦ msg The last message to acknowledge. All earlier unacknowledged messages are also acknowledged.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 273

Remarks
Note: when a QAMessage is acknowledged, its MessageProperties class.STATUS property changes to
StatusCodes.RECEIVED. When a QAMessage status changes to StatusCodes enumeration.RECEIVED, it
can be deleted using the default delete rule.

For more information about delete rules, see “Message delete rules” on page 239.

Exceptions
♦ QAException class - Thrown if there is a problem acknowledging the messages.

See also
♦ “QAManager interface” on page 271
♦ “QAManager members” on page 271
♦ “QAManager interface” on page 271
♦ “Acknowledge method” on page 272
♦ “AcknowledgeAll method” on page 273

Open method

Open the QAManager with the given AcknowledgementMode enumeration value.

Prototypes
' Visual Basic
Public Sub Open(_
 ByVal mode As AcknowledgementMode _
)

// C#
public void Open(
 AcknowledgementMode mode
);

Parameters
♦ mode The acknowledgement mode, one of AcknowledgementMode

enumeration.EXPLICIT_ACKNOWLEDGEMENT or AcknowledgementMode
enumeration.IMPLICIT_ACKNOWLEDGEMENT.

Remarks
The Open method must be the first method called after creating a QAManager.

Exceptions
♦ QAException class - Thrown if there is a problem opening the QAManager instance.

See also
♦ “QAManager interface” on page 271
♦ “QAManager members” on page 271
♦ “QAManager interface” on page 271

QAnywhere .NET API Reference

274 Copyright © 2006, iAnywhere Solutions, Inc.

Recover method

Forces all unacknowledged messages into a state of unreceived.

Prototypes
' Visual Basic
Public Sub Recover()

// C#
public void Recover();

Remarks
That is, these messages must be received again using GetMessage method.

Exceptions
♦ QAException class - Thrown if there is a problem recovering.

See also
♦ “QAManager interface” on page 271
♦ “QAManager members” on page 271
♦ “QAManager interface” on page 271

QAManagerBase interface

This class acts as a base class for QATransactionalManager interface and QAManager interface, which
manage transactional and non-transactional messaging, respectively.

Prototypes
' Visual Basic
Public Interface QAManagerBase

// C#
public interface QAManagerBase

Remarks
Use the Start method to allow a QAManagerBase instance to listen for messages. There must be only a single
instance of QAManagerBase per thread in your application.

You can use instances of this class to create and manage QAnywhere messages. Use the
CreateBinaryMessage method and CreateTextMessage method to create appropriate QAMessage
interface instances. QAMessage interface instances provide a variety of methods to set message content and
properties.

To send QAnywhere messages, use the PutMessage method to place the addressed message in the local
message store queue. The message is transmitted by the QAnywhere Agent based on its transmission policies
or when you call TriggerSendReceive method.

For more information about qaagent transmission policies, see “Determining when message transmission
should occur on the client” on page 36.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 275

Messages are released from memory when you close a QAManagerBase instance using the Close method.

You can use LastError property and LastErrorMessage property to return error information when a
QAException class occurs. You may also obtain the error information from the QAException class object.

QAManagerBase also provides methods to set and get message store properties.

For more information, see “Client message store properties” on page 215 and the MessageStoreProperties
class.

QAManagerBase members

Public properties

Member name Description

LastError property The error code associated with the last excecuted QAManagerBase
method.

LastErrorMessage property The error text associated with the last executed QAManagerBase
method.

Mode property Returns the QAManager acknowledgement mode for received mes-
sages.

Public methods

Member name Description

BrowseMessages method Browses all available messages in the message store.

BrowseMessages method This method is deprecated. Use the BrowseMessagesByQueue
method instead.

BrowseMessagesByID method Browses the message with the given message ID.

BrowseMessagesByQueue
method

Browses the next available messages waiting that have been sent to
the given address.

BrowseMessagesBySelector
method

Browses messages queued in the message store that satisfy the given
selector.

CancelMessage method Cancels the message with the given message ID.

Close method Closes the connection to the QAnywhere message system and releases
any resources used by the QAManagerBase interface.

CreateBinaryMessage method Creates a QABinaryMessage interface object.

CreateTextMessage method Creates a QATextMessage interface object.

GetBooleanStoreProperty
method

Gets a boolean value for a pre-defined or custom message store prop-
erty.

QAnywhere .NET API Reference

276 Copyright © 2006, iAnywhere Solutions, Inc.

Member name Description

GetDoubleStoreProperty method Gets a double value for a pre-defined or custom message store prop-
erty.

GetFloatStoreProperty method Gets a float value for a pre-defined or custom message store property.

GetIntStoreProperty method Gets a int value for a pre-defined or custom message store property.

GetLongStoreProperty method Gets a long value for a pre-defined or custom message store property.

GetMessage method Returns the next available QAMessage interface sent to the specified
address.

GetMessageBySelector method Returns the next available QAMessage interface sent to the specified
address that satisfies the given selector.

GetMessageBySelectorNoWait
method

Returns the next available QAMessage interface sent to the given ad-
dress that satisfies the given selector.

GetMessageBySelectorTimeout
method

Returns the next available QAMessage interface sent to the given ad-
dress that satisfies the given selector.

GetMessageNoWait method Returns the next available QAMessage interface sent to the given ad-
dress.

GetMessageTimeout method Returns the next available QAMessage interface sent to the given ad-
dress.

GetQueueDepth method Returns the depth of a queue, based on a given filter.

GetQueueDepth method Returns the total depth of all queues, based on a given filter.

GetSbyteStoreProperty method Gets a signed byte value for a pre-defined or custom message store
property.

GetShortStoreProperty method Gets a short value for a pre-defined or custom message store property.

GetStoreProperty method Gets a System.Object representing a message store property.

GetStorePropertyNames method Gets an enumerator over the message store property names.

GetStringStoreProperty method Gets a string value for a pre-defined or custom message store property.

PutMessage method Prepares a message to send to another QAnywhere client.

PutMessageTimeToLive method Prepares a message to send to another QAnywhere client.

SetBooleanStoreProperty
method

Sets a pre-defined or custom message store property to a boolean val-
ue.

SetDoubleStoreProperty method Sets a pre-defined or custom message store property to a double value.

SetFloatStoreProperty method Sets a pre-defined or custom message store property to a float value.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 277

Member name Description

SetIntStoreProperty method Sets a pre-defined or custom message store property to a int value.

SetLongStoreProperty method Sets a pre-defined or custom message store property to a long value.

SetMessageListener method Sets a MessageListener delegate delegate to recieve QAnywhere
messages asynchronously.

SetMessageListenerBySelector
method

Sets a MessageListener delegate delegate to recieve QAnywhere
messages asynchronously, with a message selector.

SetProperty method Allows you to set QAnywhere Manager configuration properties pro-
grammatically.

SetSbyteStoreProperty method Sets a pre-defined or custom message store property to a sbyte value.

SetShortStoreProperty method Sets a pre-defined or custom message store property to a short value.

SetStoreProperty method Sets a pre-defined or custom message store property to a System.Ob-
ject value.

SetStringStoreProperty method Sets a pre-defined or custom message store property to a string value.

Start method Starts the QAManagerBase for receiving incoming messages in mes-
sage listeners. The QAManagerBase does not need to be started if
there are no message listeners set, ie. if messages are received with
the GetMessage methods. It is not recommended to use the GetMes-
sage methods as well as message listeners for receiving messages, one
should use one or the other of the asynchronous (message listener) or
synchronous (GetMessage) models. Any calls to Start() beyond the
first without an intervening Stop method call are ignored.

Stop method Stops the QAManagerBase's reception of incoming messages.

TriggerSendReceive method Causes a synchronization with the QAnywhere message server, up-
loading any messages addressed to other clients, and downloading
any messages addressed to the local client.

LastError property

The error code associated with the last excecuted QAManagerBase method.

Prototypes
' Visual Basic
Public Readonly Property LastError As Integer

// C#
public int LastError {get;}

Return value
The error code.

QAnywhere .NET API Reference

278 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
A value of 0 indicates no error. You can retrieve this property after catching a QAException class.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “QAException class” on page 269

LastErrorMessage property

The error text associated with the last executed QAManagerBase method.

Prototypes
' Visual Basic
Public Readonly Property LastErrorMessage As String

// C#
public string LastErrorMessage {get;}

Remarks
This value is null if the LastError property is 0. You can retrieve this property after catching a QAException
class.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “QAException class” on page 269

Mode property

Returns the QAManager acknowledgement mode for received messages.

Prototypes
' Visual Basic
Public Readonly Property Mode As AcknowledgementMode

// C#
public AcknowledgementMode Mode {get;}

Remarks
For a list of possible values, see AcknowledgementMode enumeration. AcknowledgementMode
enumeration.EXPLICIT_ACKNOWLEDGEMENT and AcknowledgementMode
enumeration.IMPLICIT_ACKNOWLEDGEMENT apply to QAManager instances;
AcknowledgementMode enumeration.TRANSACTIONAL is the mode for QATransactionalManager
instances.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 279

BrowseMessages method

Browses all available messages in the message store.

Prototypes
' Visual Basic
Overloads Public Function BrowseMessages() As System.Collections.IEnumerator

// C#
public System.Collections.IEnumerator BrowseMessages();

Return value
An enumerator over the available messages.

Remarks
The messages are just being browsed, so they cannot be acknowledged. Because browsing messages allocates
native resources, you should call the Reset() method of the enumerator when you are done with it. If it is
not called, the native resources will not be freed until this QAManagerBase object is freed.

Use GetMessage method to receive messages so they can be acknowledged.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “BrowseMessagesByQueue method” on page 282
♦ “BrowseMessagesByID method” on page 281
♦ “BrowseMessages method” on page 280

BrowseMessages method

This method is deprecated. Use the BrowseMessagesByQueue method instead.

Prototypes
' Visual Basic
Overloads Public Function BrowseMessages(_
 ByVal address As String _
) As System.Collections.IEnumerator

// C#
public System.Collections.IEnumerator BrowseMessages(
 string address
);

Parameters
♦ address The address of the messages.

Return value
An enumerator over the available messages.

QAnywhere .NET API Reference

280 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Browses the next available messages waiting that have been sent to a given address. The address parameter
takes the form 'store-id\queue-name' or 'queue-name'. The messages are just being browsed, so they cannot
be acknowledged.

Because browsing messages allocates native resources, you should call the Reset() method of the enumerator
when you are done with it. If it is not called, the native resources will not be freed until this QAManagerBase
interface object is freed.

Use GetMessage method to receive messages so they can be acknowledged.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “BrowseMessagesByQueue method” on page 282
♦ “BrowseMessagesByID method” on page 281
♦ “BrowseMessagesBySelector method” on page 282
♦ “BrowseMessages method” on page 280

BrowseMessagesByID method

Browses the message with the given message ID.

Prototypes
' Visual Basic
Public Function BrowseMessagesByID(_
 ByVal msgid As String _
) As System.Collections.IEnumerator

// C#
public System.Collections.IEnumerator BrowseMessagesByID(
 string msgid
);

Parameters
♦ msgid The message id of the message.

Return value
An enumerator containing 0 or 1 messages.

Remarks
The message is just being browsed, so it cannot be acknowledged. Because browsing messages allocates
native resources, you should call the Reset() method of the enumerator when you are done with it. If it is
not called, the native resources will not be freed until this QAManagerBase object is freed.

Use GetMessage method to receive messages so they can be acknowledged.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 281

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “BrowseMessagesByQueue method” on page 282
♦ “BrowseMessages method” on page 280
♦ “BrowseMessages method” on page 280

BrowseMessagesByQueue method

Browses the next available messages waiting that have been sent to the given address.

Prototypes
' Visual Basic
Public Function BrowseMessagesByQueue(_
 ByVal address As String _
) As System.Collections.IEnumerator

// C#
public System.Collections.IEnumerator BrowseMessagesByQueue(
 string address
);

Parameters
♦ address The address of the messages.

Return value
An enumerator over the available messages.

Remarks
The messages are just being browsed, so they cannot be acknowledged. Because browsing messages allocates
native resources, you should call the Reset() method of the enumerator when you are done with it. If it is
not called, the native resources will not be freed until this QAManagerBase object is freed.

Use GetMessage method to receive messages so they can be acknowledged.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “BrowseMessagesByID method” on page 281
♦ “BrowseMessages method” on page 280
♦ “BrowseMessages method” on page 280

BrowseMessagesBySelector method

Browses messages queued in the message store that satisfy the given selector.

QAnywhere .NET API Reference

282 Copyright © 2006, iAnywhere Solutions, Inc.

Prototypes
' Visual Basic
Public Function BrowseMessagesBySelector(_
 ByVal selector As String _
) As System.Collections.IEnumerator

// C#
public System.Collections.IEnumerator BrowseMessagesBySelector(
 string selector
);

Parameters
♦ selector The selector.

Return value
An enumerator over the available messages.

Remarks
The message is just being browsed, so it cannot be acknowledged. Because browsing messages allocates
native resources, you should call the Reset() method of the enumerator when you are done with it. If it is
not called, the native resources will not be freed until this QAManagerBase object is freed.

Use GetMessage method to receive messages so they can be acknowledged.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “BrowseMessagesByQueue method” on page 282
♦ “BrowseMessages method” on page 280
♦ “BrowseMessages method” on page 280
♦ “BrowseMessagesByID method” on page 281

CancelMessage method

Cancels the message with the given message ID.

Prototypes
' Visual Basic
Public Sub CancelMessage(_
 ByVal msgid As String _
)

// C#
public void CancelMessage(
 string msgid
);

Parameters
♦ msgid The message ID of the message to cancel.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 283

Remarks
CancelMessage puts a message into a cancelled state before it is transmitted. With the default delete rules
of the QAnywhere Agent, cancelled messages will eventually be deleted from the message store.

CancelMessage will fail if the message is already in a final state, or if it has been transmitted to the central
messaging server.

For more information about delete rules, see “Message delete rules” on page 239.

Exceptions
♦ QAException class - Thrown if there is a problem cancelling the message.

Close method

Closes the connection to the QAnywhere message system and releases any resources used by the
QAManagerBase interface.

Prototypes
' Visual Basic
Public Sub Close()

// C#
public void Close();

Remarks
Additional calls to Close() following the first are ignored. Any subsequent calls to a QAManagerBase
method, other than Close(), will result in a QAException class. You must create and open a new
QAManagerBase interface instance in this case.

Exceptions
♦ QAException class - Thrown if there is a problem closing the QAManagerBase instance.

CreateBinaryMessage method

Creates a QABinaryMessage interface object.

Prototypes
' Visual Basic
Public Function CreateBinaryMessage() As QABinaryMessage

// C#
public QABinaryMessage CreateBinaryMessage();

Return value
A new QABinaryMessage interface instance.

QAnywhere .NET API Reference

284 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
A QABinaryMessage object is used to send a message containing a message body of uninterpreted bytes.

Exceptions
♦ QAException class - Thrown if there is a problem creating the message.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “QABinaryMessage interface” on page 255

CreateTextMessage method

Creates a QATextMessage interface object.

Prototypes
' Visual Basic
Public Function CreateTextMessage() As QATextMessage

// C#
public QATextMessage CreateTextMessage();

Return value
A new QATextMessage interface instance.

Remarks
A QATextMessage interface object is used to send a message containing a string message body.

Exceptions
♦ QAException class - Thrown if there is a problem creating the message.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “QATextMessage interface” on page 335

GetBooleanStoreProperty method

Gets a boolean value for a pre-defined or custom message store property.

Prototypes
' Visual Basic
Public Function GetBooleanStoreProperty(_
 ByVal propName As String _
) As Boolean

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 285

// C#
public bool GetBooleanStoreProperty(
 string propName
);

Parameters
♦ propName The pre-defined or custom property name.

Return value
The boolean property value.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class. For more information, see “Client
message store properties” on page 215.

Exceptions
♦ QAException class - Thrown if there is a conversion error getting the property value or if the property

does not exist.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “MessageStoreProperties class” on page 253

GetDoubleStoreProperty method

Gets a double value for a pre-defined or custom message store property.

Prototypes
' Visual Basic
Public Function GetDoubleStoreProperty(_
 ByVal propName As String _
) As Double

// C#
public double GetDoubleStoreProperty(
 string propName
);

Parameters
♦ propName The pre-defined or custom property name.

Return value
The double property value.

QAnywhere .NET API Reference

286 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

Exceptions
♦ QAException class - Thrown if there is a conversion error getting the property value or if the property

does not exist.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “MessageStoreProperties class” on page 253

GetFloatStoreProperty method

Gets a float value for a pre-defined or custom message store property.

Prototypes
' Visual Basic
Public Function GetFloatStoreProperty(_
 ByVal propName As String _
) As Single

// C#
public float GetFloatStoreProperty(
 string propName
);

Parameters
♦ propName The pre-defined or custom property name.

Return value
The float property value.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

Exceptions
♦ QAException class - Thrown if there is a conversion error getting the property value or if the property

does not exist.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 287

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “MessageStoreProperties class” on page 253

GetIntStoreProperty method

Gets a int value for a pre-defined or custom message store property.

Prototypes
' Visual Basic
Public Function GetIntStoreProperty(_
 ByVal propName As String _
) As Integer

// C#
public int GetIntStoreProperty(
 string propName
);

Parameters
♦ propName The pre-defined or custom property name.

Return value
The integer property value.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

Exceptions
♦ QAException class - Thrown if there is a conversion error getting the property value or if the property

does not exist.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “MessageStoreProperties class” on page 253

GetLongStoreProperty method

Gets a long value for a pre-defined or custom message store property.

QAnywhere .NET API Reference

288 Copyright © 2006, iAnywhere Solutions, Inc.

Prototypes
' Visual Basic
Public Function GetLongStoreProperty(_
 ByVal propName As String _
) As Long

// C#
public long GetLongStoreProperty(
 string propName
);

Parameters
♦ propName The pre-defined or custom property name.

Return value
The long property value.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215

Exceptions
♦ QAException class - Thrown if there is a conversion error getting the property value or if the property

does not exist.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “MessageStoreProperties class” on page 253

GetMessage method

Returns the next available QAMessage interface sent to the specified address.

Prototypes
' Visual Basic
Public Function GetMessage(_
 ByVal address As String _
) As QAMessage

// C#
public QAMessage GetMessage(
 string address
);

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 289

Parameters
♦ address Specifies the queue name used by the QAnywhere client to receive messages.

Return value
The next QAMessage interface, or null if no message is available.

Remarks
The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'.

If there is no message available, this call blocks indefinitely until a message is available. Use this method
to receive messages synchronously.

For more information about receiving messages asynchronously (using a message event handler), see
“Receiving messages asynchronously” on page 76.

Exceptions
♦ QAException class - Thrown if there is a problem getting the message.

GetMessageBySelector method

Returns the next available QAMessage interface sent to the specified address that satisfies the given selector.

Prototypes
' Visual Basic
Public Function GetMessageBySelector(_
 ByVal address As String, _
 ByVal selector As String _
) As QAMessage

// C#
public QAMessage GetMessageBySelector(
 string address,
 string selector
);

Parameters
♦ address This address specifies the queue name used by the QAnywhere client to receive messages.

♦ selector The selector.

Return value
The next QAMessage interface, or null if no message is available.

Remarks
The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'.

QAnywhere .NET API Reference

290 Copyright © 2006, iAnywhere Solutions, Inc.

If there is no message available, this call blocks indefinitely until a message is available. Use this method
to receive messages synchronously.

For more information about receiving messages asynchronously (using a message event handler), see
“Receiving messages asynchronously” on page 76.

Exceptions
♦ QAException class - Thrown if there is a problem getting the message.

GetMessageBySelectorNoWait method

Returns the next available QAMessage interface sent to the given address that satisfies the given selector.

Prototypes
' Visual Basic
Public Function GetMessageBySelectorNoWait(_
 ByVal address As String, _
 ByVal selector As String _
) As QAMessage

// C#
public QAMessage GetMessageBySelectorNoWait(
 string address,
 string selector
);

Parameters
♦ address Specifies the queue name used by the QAnywhere client to receive messages.

♦ selector The selector.

Return value
The next available message or null there are no available message.

Remarks
The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'. If no message is available, this method returns immediately. Use this method to receive
messages synchronously.

For more information about receiving messages asynchronously (using a message event handler), see
“Receiving messages asynchronously” on page 76.

Exceptions
♦ QAException class - Thrown if there is a problem getting the message.

GetMessageBySelectorTimeout method

Returns the next available QAMessage interface sent to the given address that satisfies the given selector.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 291

Prototypes
' Visual Basic
Public Function GetMessageBySelectorTimeout(_
 ByVal address As String, _
 ByVal selector As String, _
 ByVal timeout As Long _
) As QAMessage

// C#
public QAMessage GetMessageBySelectorTimeout(
 string address,
 string selector,
 long timeout
);

Parameters
♦ address Specifies the queue name used by the QAnywhere client to receive messages.

♦ selector The selector.

♦ timeout The time to wait, in milliseconds, for a message to become available.

Return value
The next QAMessage interface, or null if no message is available.

Remarks
The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'. If no message is available, this method waits for the specified timeout and then returns.
Use this method to receive messages synchronously.

For more information about receiving messages asynchronously (using a message event handler), see
“Receiving messages asynchronously” on page 76.

Exceptions
♦ QAException class - Thrown if there is a problem getting the message.

GetMessageNoWait method

Returns the next available QAMessage interface sent to the given address.

Prototypes
' Visual Basic
Public Function GetMessageNoWait(_
 ByVal address As String _
) As QAMessage

// C#
public QAMessage GetMessageNoWait(
 string address
);

QAnywhere .NET API Reference

292 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
♦ address this address specifies the queue name used by the QAnywhere client to receive messages.

Return value
The next available message or null there is no available message.

Remarks
The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'. If no message is available, this method returns immediately. Use this method to receive
messages synchronously. For more information about receiving messages asynchronously (using a message
event handler), see “Receiving messages asynchronously” on page 76.

Exceptions
♦ QAException class - Thrown if there is a problem getting the message.

GetMessageTimeout method

Returns the next available QAMessage interface sent to the given address.

Prototypes
' Visual Basic
Public Function GetMessageTimeout(_
 ByVal address As String, _
 ByVal timeout As Long _
) As QAMessage

// C#
public QAMessage GetMessageTimeout(
 string address,
 long timeout
);

Parameters
♦ address Specifies the queue name used by the QAnywhere client to receive messages.

♦ timeout The time to wait, in milliseconds, for a message to become available.

Return value
The next QAMessage interface, or null if no message is available.

Remarks
The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'.

If no message is available, this method waits for the specified timeout and then returns. Use this method to
receive messages synchronously.

For more information about receiving messages asynchronously (using a message event handler), see
“Receiving messages asynchronously” on page 76.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 293

Exceptions
♦ QAException class - Thrown if there is a problem getting the message.

GetQueueDepth method

Returns the depth of a queue, based on a given filter.

Prototypes
' Visual Basic
Overloads Public Function GetQueueDepth(_
 ByVal address As String, _
 ByVal filter As QueueDepthFilter _
) As Integer

// C#
public int GetQueueDepth(
 string address,
 QueueDepthFilter filter
);

Parameters
♦ filter A filter indicating incoming messages, outgoing messages, or all messages.

♦ address The queue name.

Return value
The number of messages.

Remarks
The depth of the queue is the number of messages which have not been received (for example, using
GetMessage method).

Exceptions
♦ QAException class - Thrown if there was an error.

GetQueueDepth method

Returns the total depth of all queues, based on a given filter.

Prototypes
' Visual Basic
Overloads Public Function GetQueueDepth(_
 ByVal filter As QueueDepthFilter _
) As Integer

// C#
public int GetQueueDepth(

QAnywhere .NET API Reference

294 Copyright © 2006, iAnywhere Solutions, Inc.

 QueueDepthFilter filter
);

Parameters
♦ filter A filter indicating incoming messages, outgoing messages, or all messages.

Return value
The number of messages.

Remarks
The depth of the queue is the number of messages which have not been received (for example, using
GetMessage method).

Exceptions
♦ QAException class - Thrown if there was an error.

GetSbyteStoreProperty method

Gets a signed byte value for a pre-defined or custom message store property.

Prototypes
' Visual Basic
Public Function GetSbyteStoreProperty(_
 ByVal propName As String _
) As System.SByte

// C#
public System.Sbyte GetSbyteStoreProperty(
 string propName
);

Parameters
♦ propName The pre-defined or custom property name.

Return value
The signed byte property value.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

Exceptions
♦ QAException class - Thrown if there is a conversion error getting the property value or if the property

does not exist.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 295

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “MessageStoreProperties class” on page 253

GetShortStoreProperty method

Gets a short value for a pre-defined or custom message store property.

Prototypes
' Visual Basic
Public Function GetShortStoreProperty(_
 ByVal propName As String _
) As Short

// C#
public short GetShortStoreProperty(
 string propName
);

Parameters
♦ propName the pre-defined or custom property name.

Return value
The short property value.

Remarks
You can use this method to access pre-defined or user-defined client store properties. For a list of pre-defined
properties, see MessageStoreProperties class. For more information, see “Client message store
properties” on page 215.

Exceptions
♦ QAException class - Thrown if there is a conversion error getting the property value or if the property

does not exist.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “MessageStoreProperties class” on page 253

GetStoreProperty method

Gets a System.Object representing a message store property.

QAnywhere .NET API Reference

296 Copyright © 2006, iAnywhere Solutions, Inc.

Prototypes
' Visual Basic
Public Function GetStoreProperty(_
 ByVal propName As String _
) As Object

// C#
public object GetStoreProperty(
 string propName
);

Parameters
♦ propName The pre-defined or custom property name.

Return value
The property value.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

Exceptions
♦ QAException class - Thrown if the property does not exist

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “MessageStoreProperties class” on page 253

GetStorePropertyNames method

Gets an enumerator over the message store property names.

Prototypes
' Visual Basic
Public Function GetStorePropertyNames() As System.Collections.IEnumerator

// C#
public System.Collections.IEnumerator GetStorePropertyNames();

Return value
An enumerator over the message store property names.

Remarks
For more information about client store properties, see “Client message store properties” on page 215.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 297

GetStringStoreProperty method

Gets a string value for a pre-defined or custom message store property.

Prototypes
' Visual Basic
Public Function GetStringStoreProperty(_
 ByVal propName As String _
) As String

// C#
public string GetStringStoreProperty(
 string propName
);

Parameters
♦ propName The pre-defined or custom property name.

Return value
The string property value or null if the property does not exist.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “MessageStoreProperties class” on page 253

PutMessage method

Prepares a message to send to another QAnywhere client.

Prototypes
' Visual Basic
Public Sub PutMessage(_
 ByVal address As String, _
 ByVal msg As QAMessage _
)

// C#
public void PutMessage(
 string address,
 QAMessage msg
);

QAnywhere .NET API Reference

298 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
♦ address The address of the message specifying the destination queue name.

♦ msg The message to put in the local message store for transmission.

Remarks
The PutMessage method inserts a message and a destination address into your local message store. The time
of message transmission depends on QAnywhere Agent transmission policies.

For more information, see “Determining when message transmission should occur on the
client” on page 36.

The address takes the form 'id\queue-name', where 'id' is the destination message store ID and 'queue-name'
identifies a queue that is used by the destination QAnywhere client to listen for or receive messages.

For more information about QAnywhere addresses, see “QAnywhere message addresses” on page 50.

Exceptions
♦ QAException class - Thrown if there is a problem putting the message.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “PutMessageTimeToLive method” on page 299

PutMessageTimeToLive method

Prepares a message to send to another QAnywhere client.

Prototypes
' Visual Basic
Public Sub PutMessageTimeToLive(_
 ByVal address As String, _
 ByVal msg As QAMessage, _
 ByVal ttl As Long _
)

// C#
public void PutMessageTimeToLive(
 string address,
 QAMessage msg,
 long ttl
);

Parameters
♦ address The address of the message specifying the destination queue name.

♦ msg The message to put.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 299

♦ ttl The delay, in milliseconds, before the message will expire if it has not been delivered. A value of 0
indicates the message will not expire.

Remarks
The PutMessageTimeToLive method inserts a message and a destination address into your local message
store. The time of message transmission depends on QAnywhere Agent transmission policies. However, if
the next message tranmission time exceeds the given time-to-live value, the message expires.

For more information, see “Determining when message transmission should occur on the
client” on page 36.

The address takes the form 'id\queue-name', where 'id' is the destination message store id and 'queue-name'
identifies a queue that is used by the destination QAnywhere client to listen for or receive messages.

For more information about QAnywhere addresses, see “QAnywhere message addresses” on page 50.

Exceptions
♦ QAException class - Thrown if there is a problem putting the message.

SetBooleanStoreProperty method

Sets a pre-defined or custom message store property to a boolean value.

Prototypes
' Visual Basic
Public Sub SetBooleanStoreProperty(_
 ByVal propName As String, _
 ByVal val As Boolean _
)

// C#
public void SetBooleanStoreProperty(
 string propName,
 bool val
);

Parameters
♦ propName The pre-defined or custom property name.

♦ val The boolean property value.

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

See also
♦ “QAManagerBase interface” on page 275

QAnywhere .NET API Reference

300 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “QAManagerBase members” on page 276
♦ “MessageStoreProperties class” on page 253

SetDoubleStoreProperty method

Sets a pre-defined or custom message store property to a double value.

Prototypes
' Visual Basic
Public Sub SetDoubleStoreProperty(_
 ByVal propName As String, _
 ByVal val As Double _
)

// C#
public void SetDoubleStoreProperty(
 string propName,
 double val
);

Parameters
♦ propName The pre-defined or custom property name.

♦ val The double property value.

Remarks
You can use this method to set pre-defined or user-defined client. store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “MessageStoreProperties class” on page 253

SetFloatStoreProperty method

Sets a pre-defined or custom message store property to a float value.

Prototypes
' Visual Basic
Public Sub SetFloatStoreProperty(_
 ByVal propName As String, _
 ByVal val As Single _
)

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 301

// C#
public void SetFloatStoreProperty(
 string propName,
 float val
);

Parameters
♦ propName The pre-defined or custom property name.

♦ val The float property value.

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “MessageStoreProperties class” on page 253

SetIntStoreProperty method

Sets a pre-defined or custom message store property to a int value.

Prototypes
' Visual Basic
Public Sub SetIntStoreProperty(_
 ByVal propName As String, _
 ByVal val As Integer _
)

// C#
public void SetIntStoreProperty(
 string propName,
 int val
);

Parameters
♦ propName The pre-defined or custom property name.

♦ val The int property value.

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

QAnywhere .NET API Reference

302 Copyright © 2006, iAnywhere Solutions, Inc.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “MessageStoreProperties class” on page 253

SetLongStoreProperty method

Sets a pre-defined or custom message store property to a long value.

Prototypes
' Visual Basic
Public Sub SetLongStoreProperty(_
 ByVal propName As String, _
 ByVal val As Long _
)

// C#
public void SetLongStoreProperty(
 string propName,
 long val
);

Parameters
♦ propName The pre-defined or custom property name.

♦ val The long property value

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “MessageStoreProperties class” on page 253

SetMessageListener method

Sets a MessageListener delegate delegate to recieve QAnywhere messages asynchronously.

Prototypes
' Visual Basic
Public Sub SetMessageListener(_
 ByVal address As String, _
 ByVal listener As MessageListener _
)

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 303

// C#
public void SetMessageListener(
 string address,
 MessageListener listener
);

Parameters
♦ address The address of messages.

♦ listener The listener to register.

Remarks
Use this method to receive message asynchronously.

MessageListener delegate accepts a single QAMessage parameter.

The SetMessageListener address parameter specifies a local queue name used to receive the message. You
can only have one listener delegate assigned to a given queue.

If you want to listen for QAnywhere system messages, including push notifications and network status
changes, specify "system" as the queue name.

For more information, see “Receiving messages asynchronously” on page 76.

SetMessageListenerBySelector method

Sets a MessageListener delegate delegate to recieve QAnywhere messages asynchronously, with a message
selector.

Prototypes
' Visual Basic
Public Sub SetMessageListenerBySelector(_
 ByVal address As String, _
 ByVal selector As String, _
 ByVal listener As MessageListener _
)

// C#
public void SetMessageListenerBySelector(
 string address,
 string selector,
 MessageListener listener
);

Parameters
♦ address The address of messages.

♦ listener The listener to register.

♦ selector The selector to be used to filter the messages to be received.

QAnywhere .NET API Reference

304 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Use this method to receive message asynchronously.

MessageListener delegate accepts a single QAMessage parameter.

The SetMessageListener address parameter specifies a local queue name used to receive the message. You
can only have one listener delegate assigned to a given queue. The selector parameter specifies a selector to
be used to filter the messages to be received on the given address.

If you want to listen for QAnywhere system messages, including push notifications and network status
changes, specify "system" as the queue name.

For more information, see “Receiving messages asynchronously” on page 76 and “System
queue” on page 50.

SetProperty method

Allows you to set QAnywhere Manager configuration properties programmatically.

Prototypes
' Visual Basic
Public Sub SetProperty(_
 ByVal name As String, _
 ByVal val As String _
)

// C#
public void SetProperty(
 string name,
 string val
);

Parameters
♦ name The QAnywhere Manager configuration property name.

♦ val The QAnywhere Manager configuration property value

Remarks
You can use this method to override default QAnywhere Manager configuration properties by specifying a
property name and value. For a list of properties, see “QAnywhere manager configuration
properties” on page 62.

You can also set QAnywhere Manager configuration properties using a properties file and the
CreateQAManager method.

For more information, see “Setting QAnywhere manager configuration properties in a file” on page 62.
Note: you must set required properties before calling Open method or Open method.

Exceptions
♦ QAException class - Thrown if there is a problem setting the property.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 305

SetSbyteStoreProperty method

Sets a pre-defined or custom message store property to a sbyte value.

Prototypes
' Visual Basic
Public Sub SetSbyteStoreProperty(_
 ByVal propName As String, _
 ByVal val As System.SByte _
)

// C#
public void SetSbyteStoreProperty(
 string propName,
 System.Sbyte val
);

Parameters
♦ propName The pre-defined or custom property name.

♦ val The sbyte property value.

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “MessageStoreProperties class” on page 253

SetShortStoreProperty method

Sets a pre-defined or custom message store property to a short value.

Prototypes
' Visual Basic
Public Sub SetShortStoreProperty(_
 ByVal propName As String, _
 ByVal val As Short _
)

// C#
public void SetShortStoreProperty(
 string propName,
 short val
);

QAnywhere .NET API Reference

306 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
♦ propName The pre-defined or custom property name.

♦ val The short property value.

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class. For more information, see “Client
message store properties” on page 215.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “MessageStoreProperties class” on page 253

SetStoreProperty method

Sets a pre-defined or custom message store property to a System.Object value.

Prototypes
' Visual Basic
Public Sub SetStoreProperty(_
 ByVal propName As String, _
 ByVal val As Object _
)

// C#
public void SetStoreProperty(
 string propName,
 object val
);

Parameters
♦ propName The pre-defined or custom property name.

♦ val The property value.

Remarks
The property type must be one of the acceptable primitive types, or String. You can use this method to set
pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 307

♦ “MessageStoreProperties class” on page 253

SetStringStoreProperty method

Sets a pre-defined or custom message store property to a string value.

Prototypes
' Visual Basic
Public Sub SetStringStoreProperty(_
 ByVal propName As String, _
 ByVal val As String _
)

// C#
public void SetStringStoreProperty(
 string propName,
 string val
);

Parameters
♦ propName The pre-defined or custom property name.

♦ val The string property value.

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “MessageStoreProperties class” on page 253

Start method

Starts the QAManagerBase for receiving incoming messages in message listeners. The QAManagerBase
does not need to be started if there are no message listeners set, ie. if messages are received with the
GetMessage methods. It is not recommended to use the GetMessage methods as well as message listeners
for receiving messages, one should use one or the other of the asynchronous (message listener) or
synchronous (GetMessage) models. Any calls to Start() beyond the first without an intervening Stop
method call are ignored.

Prototypes
' Visual Basic
Public Sub Start()

QAnywhere .NET API Reference

308 Copyright © 2006, iAnywhere Solutions, Inc.

// C#
public void Start();

Exceptions
♦ QAException class - Thrown if there is a problem starting the QAManagerBase instance.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “Stop method” on page 309

Stop method

Stops the QAManagerBase's reception of incoming messages.

Prototypes
' Visual Basic
Public Sub Stop()

// C#
public void Stop();

Remarks
The messages are not lost. They just won't be received until the manager is started again. Any calls to Stop
() beyond the first without an intervening Start method are ignored.

Exceptions
♦ QAException class - Thrown if there is a problem stopping the QAManagerBase instance.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “Start method” on page 308

TriggerSendReceive method

Causes a synchronization with the QAnywhere message server, uploading any messages addressed to other
clients, and downloading any messages addressed to the local client.

Prototypes
' Visual Basic
Public Sub TriggerSendReceive()

// C#
public void TriggerSendReceive();

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 309

Remarks
QAManagerBase TriggerSendReceive results in immediate message synchronization between a QAnywhere
Agent and the central messaging server. A manual TriggerSendReceive call results in immediate message
transmission, independent of the QAnywhere Agent transmission policies.

QAnywhere Agent transmission policies determine how message transmission occurs. For example, message
transmission can occur automatically at regular intervals, when your client receives a push notification, or
when you call the PutMessage method to send a message.

For more information, see “Determining when message transmission should occur on the
client” on page 36.

Exceptions
♦ QAException class - Thrown if there is a problem triggering the send/receive.

See also
♦ “QAManagerBase interface” on page 275
♦ “QAManagerBase members” on page 276
♦ “PutMessage method” on page 298

QAManagerFactory class

This class acts as a factory class for creating QATransactionalManager and QAManager objects.

Prototypes
' Visual Basic
MustInherit Public Class QAManagerFactory
 Inherits Component

// C#
public abstract class QAManagerFactory :
 Component

Remarks
You can only have one instance of QAManagerFactory.

QAManagerFactory members

Public static properties (shared)

Member name Description

Instance property A singleton QAManagerFactory instance.

InstanceCount property Indicates the number of factory instances.

QAnywhere .NET API Reference

310 Copyright © 2006, iAnywhere Solutions, Inc.

Public fields

Member name Description

InstanceID field Factory ID.

Public properties

Member name Description

LastError property The error code associated with the last excecuted QAManagerFactory
method.

LastErrorMessage property The error text associated with the last executed QAManagerFactory
method.

Public methods

Member name Description

CreateQAManager method Returns a new QAManager instance with the specified properties.

CreateQATransactionalManager
method

Returns a new QATransactionalManager instance with the specified
properties.

InstanceID field

Factory ID.

Prototypes
' Visual Basic
PublicInstanceID As Integer

// C#
public int InstanceID;

Instance property

A singleton QAManagerFactory instance.

Prototypes
' Visual Basic
Public Shared Readonly Property Instance As QAManagerFactory

// C#
public const QAManagerFactory Instance {get;}

Exceptions
♦ QAException class - Thrown if there is a problem creating the manager factory.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 311

InstanceCount property

Indicates the number of factory instances.

Prototypes
' Visual Basic
Public Shared Readonly Property InstanceCount As Long

// C#
public const long InstanceCount {get;}

LastError property

The error code associated with the last excecuted QAManagerFactory method.

Prototypes
' Visual Basic
Public Readonly Property LastError As Integer

// C#
public int LastError {get;}

Return value
The error code.

Remarks
A value of 0 indicates no error. You can retrieve this property after catching a QAException class.

See also
♦ “QAManagerFactory class” on page 310
♦ “QAManagerFactory members” on page 310
♦ “QAException class” on page 269

LastErrorMessage property

The error text associated with the last executed QAManagerFactory method.

Prototypes
' Visual Basic
Public Readonly Property LastErrorMessage As String

// C#
public string LastErrorMessage {get;}

Return value
The error message.

QAnywhere .NET API Reference

312 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
This value is null if the LastError property is 0. You can retrieve this property after catching a QAException
class.

See also
♦ “QAManagerFactory class” on page 310
♦ “QAManagerFactory members” on page 310
♦ “QAException class” on page 269

CreateQAManager method

Returns a new QAManager instance with the specified properties.

Prototypes
' Visual Basic
Public Function CreateQAManager(_
 ByVal iniFile As String _
) As QAManager

// C#
public QAManager CreateQAManager(
 string iniFile
);

Parameters
♦ iniFile A properties file for configuring the QAManager instance.

Return value
A new QAManager instance.

Remarks
If the properties file parameter is null, the QAManager is created using default properties. You can use the
SetProperty method to set QAnywhere manager configuration properties programmatically after you create
the instance.

For a list of QAnywhere manager configuration properties, see “QAnywhere manager configuration
properties” on page 62.

For more information, see “Setting QAnywhere manager configuration properties in a file” on page 62.

Exceptions
♦ QAException class - Thrown if there is a problem creating the manager.

See also
♦ “QAManagerFactory class” on page 310
♦ “QAManagerFactory members” on page 310
♦ “QAManager interface” on page 271

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 313

CreateQATransactionalManager method

Returns a new QATransactionalManager instance with the specified properties.

Prototypes
' Visual Basic
Public Function CreateQATransactionalManager(_
 ByVal iniFile As String _
) As QATransactionalManager

// C#
public QATransactionalManager CreateQATransactionalManager(
 string iniFile
);

Parameters
♦ iniFile A properties file for configuring the QATransactionalManager instance, or null to create the

QATransactionalManager instance with default properties.

Return value
The configured QATransactionalManager.

Remarks
If the properties file parameter is null, the QATransactionalManager is created using default properties. You
can use the SetProperty method to set QAnywhere Manager configuration properties programmatically after
you create the instance.

For a list of QAnywhere Manager configuration properties, see “QAnywhere manager configuration
properties” on page 62.

For more information, see “Setting QAnywhere manager configuration properties in a file” on page 62.

Exceptions
♦ QAException class - Thrown if there is a problem creating the manager.

See also
♦ “QAManagerFactory class” on page 310
♦ “QAManagerFactory members” on page 310
♦ “QATransactionalManager interface” on page 337

QAMessage interface

Provides an interface to set message properties and header fields.

Prototypes
' Visual Basic
Public Interface QAMessage

QAnywhere .NET API Reference

314 Copyright © 2006, iAnywhere Solutions, Inc.

// C#
public interface QAMessage

Remarks
The derived classes QABinaryMessage interface and QATextMessage interface provide specialized methods
to read and write to the message body. You can use QAMessage methods to set predefined or custom message
properties.

For a list of pre-defined property names, see the MessageProperties class.

For more information about setting message properties and header fields, see “Message headers and message
properties” on page 206.

QAMessage members

Public properties

Member name Description

Address property The destination address for the QAMessage instance.

Expiration property Gets the message's expiration value.

InReplyToID property The message id of the message for which this message is a reply.

MessageID property The globally unique message id of the message.

Priority property The priority of the message (ranging from 0 to 9).

Redelivered property Indicates whether the message has been previously received but not
acknowledged.

ReplyToAddress property The reply to address of this message.

Timestamp property The message timestamp.

Public methods

Member name Description

ClearBody method Clears the body of the message.

ClearProperties method Clears all the properties of the message.

GetBooleanProperty method Gets a boolean message property.

GetByteProperty method Gets a byte message property.

GetDoubleProperty method Gets a double message property.

GetFloatProperty method Gets a float message property.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 315

Member name Description

GetIntProperty method Gets an int message property.

GetLongProperty method Gets a long message property.

GetProperty method Gets a message property.

GetPropertyNames method Gets an enumerator over the property names of the message.

GetPropertyType method Returns the property type of the given property.

GetSbyteProperty method Gets a signed byte message property.

GetShortProperty method Gets a short message property.

GetStringProperty method Gets a string message property.

PropertyExists method Indicates whether the given property has been set for this message.

SetBooleanProperty method Sets a boolean property.

SetByteProperty method Sets a byte property.

SetDoubleProperty method Sets a double property.

SetFloatProperty method Sets a float property.

SetIntProperty method Sets an int property.

SetLongProperty method Sets a long property.

SetProperty method Sets a property.

SetSbyteProperty method Sets a signed byte property.

SetShortProperty method Sets a short property.

SetStringProperty method Sets a string property.

Address property

The destination address for the QAMessage instance.

Prototypes
' Visual Basic
Public Property Address As String

// C#
public string Address {get;set;}

QAnywhere .NET API Reference

316 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
When a message is sent, this field is ignored. After completion of a send operation, the field holds the
destination address specified in PutMessage method.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

Expiration property

Gets the message's expiration value.

Prototypes
' Visual Basic
Public Readonly Property Expiration As Date

// C#
public DateTime Expiration {get;}

Remarks
When a message is sent, the Expiration header field is left unassigned. After completion of the send method,
it holds the expiration time of the message.

This is a read-only property because the expiration time of a message is set by adding the time-to-live
argument of QAManagerBase::PutMessageTimeToLive to the current time.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

InReplyToID property

The message id of the message for which this message is a reply.

Prototypes
' Visual Basic
Public Property InReplyToID As String

// C#
public string InReplyToID {get;set;}

Remarks
May be null.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 317

MessageID property

The globally unique message id of the message.

Prototypes
' Visual Basic
Public Readonly Property MessageID As String

// C#
public string MessageID {get;}

Remarks
This property is null until a message is put.

When a message is sent using PutMessage method, the MessageID is null and can be ignored. When the
send method returns, it contains an assigned value.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

Priority property

The priority of the message (ranging from 0 to 9).

Prototypes
' Visual Basic
Public Property Priority As Integer

// C#
public int Priority {get;set;}

Remarks
For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

Redelivered property

Indicates whether the message has been previously received but not acknowledged.

Prototypes
' Visual Basic
Public Readonly Property Redelivered As Boolean

// C#
public bool Redelivered {get;}

QAnywhere .NET API Reference

318 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Redelivered is set by a receiving QAManager when it detects that a message being received was received
before.

For example, an application receives a message using a QAManager interface opened with
AcknowledgementMode enumeration.EXPLICIT_ACKNOWLEDGEMENT, and shuts down without
acknowledging the message. When the application starts again and receives the same message the
Redelivered header will be true.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

ReplyToAddress property

The reply to address of this message.

Prototypes
' Visual Basic
Public Property ReplyToAddress As String

// C#
public string ReplyToAddress {get;set;}

Remarks
May be null.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

Timestamp property

The message timestamp.

Prototypes
' Visual Basic
Public Readonly Property Timestamp As Date

// C#
public DateTime Timestamp {get;}

Remarks
This Timestamp header field contains the time a message was created.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 319

ClearBody method

Clears the body of the message.

Prototypes
' Visual Basic
Public Sub ClearBody()

// C#
public void ClearBody();

ClearProperties method

Clears all the properties of the message.

Prototypes
' Visual Basic
Public Sub ClearProperties()

// C#
public void ClearProperties();

GetBooleanProperty method

Gets a boolean message property.

Prototypes
' Visual Basic
Public Function GetBooleanProperty(_
 ByVal propName As String _
) As Boolean

// C#
public bool GetBooleanProperty(
 string propName
);

Parameters
♦ propName The property name.

Return value
The property value.

Remarks
For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

QAnywhere .NET API Reference

320 Copyright © 2006, iAnywhere Solutions, Inc.

Exceptions
♦ QAException class - Thrown if there is a conversion error getting the property value or if the property

does not exist.

See also
♦ “QAMessage interface” on page 314
♦ “QAMessage members” on page 315
♦ “MessageProperties class” on page 245

GetByteProperty method

Gets a byte message property.

Prototypes
' Visual Basic
Public Function GetByteProperty(_
 ByVal propName As String _
) As Byte

// C#
public byte GetByteProperty(
 string propName
);

Parameters
♦ propName The property name.

Return value
The property value.

Remarks
For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

Exceptions
♦ QAException class - Thrown if there is a conversion error getting the property value or if the property

does not exist.

See also
♦ “QAMessage interface” on page 314
♦ “QAMessage members” on page 315
♦ “MessageProperties class” on page 245

GetDoubleProperty method

Gets a double message property.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 321

Prototypes
' Visual Basic
Public Function GetDoubleProperty(_
 ByVal propName As String _
) As Double

// C#
public double GetDoubleProperty(
 string propName
);

Parameters
♦ propName The property name.

Return value
The property value.

Remarks
For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

Exceptions
♦ QAException class - Thrown if there is a conversion error getting the property value or if the property

does not exist.

See also
♦ “QAMessage interface” on page 314
♦ “QAMessage members” on page 315
♦ “MessageProperties class” on page 245

GetFloatProperty method

Gets a float message property.

Prototypes
' Visual Basic
Public Function GetFloatProperty(_
 ByVal propName As String _
) As Single

// C#
public float GetFloatProperty(
 string propName
);

Parameters
♦ propName The property name.

QAnywhere .NET API Reference

322 Copyright © 2006, iAnywhere Solutions, Inc.

Return value
The property value.

Remarks
For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

Exceptions
♦ QAException class - Thrown if there is a conversion error getting the property value or if the property

does not exist.

See also
♦ “QAMessage interface” on page 314
♦ “QAMessage members” on page 315
♦ “MessageProperties class” on page 245

GetIntProperty method

Gets an int message property.

Prototypes
' Visual Basic
Public Function GetIntProperty(_
 ByVal propName As String _
) As Integer

// C#
public int GetIntProperty(
 string propName
);

Parameters
♦ propName The property name.

Return value
The property value.

Remarks
For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

Exceptions
♦ QAException class - Thrown if there is a conversion error getting the property value or if the property

does not exist.

See also
♦ “QAMessage interface” on page 314

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 323

♦ “QAMessage members” on page 315
♦ “MessageProperties class” on page 245

GetLongProperty method

Gets a long message property.

Prototypes
' Visual Basic
Public Function GetLongProperty(_
 ByVal propName As String _
) As Long

// C#
public long GetLongProperty(
 string propName
);

Parameters
♦ propName The property name.

Return value
The property value.

Remarks
For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

Exceptions
♦ QAException class - Thrown if there is a conversion error getting the property value or if the property

does not exist.

See also
♦ “QAMessage interface” on page 314
♦ “QAMessage members” on page 315
♦ “MessageProperties class” on page 245

GetProperty method

Gets a message property.

Prototypes
' Visual Basic
Public Function GetProperty(_
 ByVal propName As String _
) As Object

QAnywhere .NET API Reference

324 Copyright © 2006, iAnywhere Solutions, Inc.

// C#
public object GetProperty(
 string propName
);

Parameters
♦ propName The property name.

Return value
The property value.

Remarks
The property must be one of the acceptable primitive types, string, or DateTime.

Exceptions
♦ QAException class - Thrown if the property does not exist.

GetPropertyNames method

Gets an enumerator over the property names of the message.

Prototypes
' Visual Basic
Public Function GetPropertyNames() As System.Collections.IEnumerator

// C#
public System.Collections.IEnumerator GetPropertyNames();

Return value
An enumerator over the message property names.

GetPropertyType method

Returns the property type of the given property.

Prototypes
' Visual Basic
Public Function GetPropertyType(_
 ByVal propName As String _
) As PropertyType

// C#
public PropertyType GetPropertyType(
 string propName
);

Parameters
♦ propName The name of the property.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 325

Return value
The property type.

GetSbyteProperty method

Gets a signed byte message property.

Prototypes
' Visual Basic
Public Function GetSbyteProperty(_
 ByVal propName As String _
) As System.SByte

// C#
public System.Sbyte GetSbyteProperty(
 string propName
);

Parameters
♦ propName the property name.

Return value
The property value.

Remarks
For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

Exceptions
♦ QAException class - Thrown if there is a conversion error getting the property value or if the property

does not exist.

See also
♦ “QAMessage interface” on page 314
♦ “QAMessage members” on page 315
♦ “MessageProperties class” on page 245

GetShortProperty method

Gets a short message property.

Prototypes
' Visual Basic
Public Function GetShortProperty(_
 ByVal propName As String _
) As Short

QAnywhere .NET API Reference

326 Copyright © 2006, iAnywhere Solutions, Inc.

// C#
public short GetShortProperty(
 string propName
);

Parameters
♦ propName The property name.

Return value
The property value.

Remarks
For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

Exceptions
♦ QAException class - Thrown if there is a conversion error getting the property value or if the property

does not exist.

See also
♦ “QAMessage interface” on page 314
♦ “QAMessage members” on page 315
♦ “MessageProperties class” on page 245

GetStringProperty method

Gets a string message property.

Prototypes
' Visual Basic
Public Function GetStringProperty(_
 ByVal propName As String _
) As String

// C#
public string GetStringProperty(
 string propName
);

Parameters
♦ propName The property name.

Return value
The property value or null if the property does not exist.

Remarks
For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 327

See also
♦ “QAMessage interface” on page 314
♦ “QAMessage members” on page 315
♦ “MessageProperties class” on page 245

PropertyExists method

Indicates whether the given property has been set for this message.

Prototypes
' Visual Basic
Public Function PropertyExists(_
 ByVal propName As String _
) As Boolean

// C#
public bool PropertyExists(
 string propName
);

Parameters
♦ propName The property name.

Return value
True if the property exists.

SetBooleanProperty method

Sets a boolean property.

Prototypes
' Visual Basic
Public Sub SetBooleanProperty(_
 ByVal propName As String, _
 ByVal val As Boolean _
)

// C#
public void SetBooleanProperty(
 string propName,
 bool val
);

Parameters
♦ propName The property name.

♦ val The property value.

QAnywhere .NET API Reference

328 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See also
♦ “QAMessage interface” on page 314
♦ “QAMessage members” on page 315
♦ “MessageProperties class” on page 245

SetByteProperty method

Sets a byte property.

Prototypes
' Visual Basic
Public Sub SetByteProperty(_
 ByVal propName As String, _
 ByVal val As Byte _
)

// C#
public void SetByteProperty(
 string propName,
 byte val
);

Parameters
♦ propName The property name.

♦ val The property value.

Remarks
For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See also
♦ “QAMessage interface” on page 314
♦ “QAMessage members” on page 315
♦ “MessageProperties class” on page 245

SetDoubleProperty method

Sets a double property.

Prototypes
' Visual Basic
Public Sub SetDoubleProperty(_
 ByVal propName As String, _

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 329

 ByVal val As Double _
)

// C#
public void SetDoubleProperty(
 string propName,
 double val
);

Parameters
♦ propName The property name.

♦ val The property value.

Remarks
For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See also
♦ “QAMessage interface” on page 314
♦ “QAMessage members” on page 315
♦ “MessageProperties class” on page 245

SetFloatProperty method

Sets a float property.

Prototypes
' Visual Basic
Public Sub SetFloatProperty(_
 ByVal propName As String, _
 ByVal val As Single _
)

// C#
public void SetFloatProperty(
 string propName,
 float val
);

Parameters
♦ propName The property name.

♦ val The property value.

Remarks
For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

QAnywhere .NET API Reference

330 Copyright © 2006, iAnywhere Solutions, Inc.

See also
♦ “QAMessage interface” on page 314
♦ “QAMessage members” on page 315
♦ “MessageProperties class” on page 245

SetIntProperty method

Sets an int property.

Prototypes
' Visual Basic
Public Sub SetIntProperty(_
 ByVal propName As String, _
 ByVal val As Integer _
)

// C#
public void SetIntProperty(
 string propName,
 int val
);

Parameters
♦ propName The property name.

♦ val The property value.

Remarks
For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See also
♦ “QAMessage interface” on page 314
♦ “QAMessage members” on page 315
♦ “MessageProperties class” on page 245

SetLongProperty method

Sets a long property.

Prototypes
' Visual Basic
Public Sub SetLongProperty(_
 ByVal propName As String, _
 ByVal val As Long _
)

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 331

// C#
public void SetLongProperty(
 string propName,
 long val
);

Parameters
♦ propName The property name.

♦ val The property value.

Remarks
For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See also
♦ “QAMessage interface” on page 314
♦ “QAMessage members” on page 315
♦ “MessageProperties class” on page 245

SetProperty method

Sets a property.

Prototypes
' Visual Basic
Public Sub SetProperty(_
 ByVal propName As String, _
 ByVal val As Object _
)

// C#
public void SetProperty(
 string propName,
 object val
);

Parameters
♦ propName The property name.

♦ val The property value.

Remarks
The property type must be one of the acceptable primitive types, or String.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See also
♦ “QAMessage interface” on page 314

QAnywhere .NET API Reference

332 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “QAMessage members” on page 315
♦ “MessageProperties class” on page 245

SetSbyteProperty method

Sets a signed byte property.

Prototypes
' Visual Basic
Public Sub SetSbyteProperty(_
 ByVal propName As String, _
 ByVal val As System.SByte _
)

// C#
public void SetSbyteProperty(
 string propName,
 System.Sbyte val
);

Parameters
♦ propName The property name.

♦ val The property value.

Remarks
For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See also
♦ “QAMessage interface” on page 314
♦ “QAMessage members” on page 315
♦ “MessageProperties class” on page 245

SetShortProperty method

Sets a short property.

Prototypes
' Visual Basic
Public Sub SetShortProperty(_
 ByVal propName As String, _
 ByVal val As Short _
)

// C#
public void SetShortProperty(
 string propName,

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 333

 short val
);

Parameters
♦ propName The property name.

♦ val The property value.

Remarks
For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See also
♦ “QAMessage interface” on page 314
♦ “QAMessage members” on page 315
♦ “MessageProperties class” on page 245

SetStringProperty method

Sets a string property.

Prototypes
' Visual Basic
Public Sub SetStringProperty(_
 ByVal propName As String, _
 ByVal val As String _
)

// C#
public void SetStringProperty(
 string propName,
 string val
);

Parameters
♦ propName The property name.

♦ val The property value.

Remarks
For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See also
♦ “QAMessage interface” on page 314
♦ “QAMessage members” on page 315
♦ “MessageProperties class” on page 245

QAnywhere .NET API Reference

334 Copyright © 2006, iAnywhere Solutions, Inc.

QATextMessage interface

QATextMessage inherits from the QAMessage interface class and adds a text message body.
QATextMessage provides methods to read from and write to the text message body.

Prototypes
' Visual Basic
Public Interface QATextMessage

// C#
public interface QATextMessage

Remarks
When the message is first created, the body of the message is in write-only mode. After a message has been
sent, the client that sent it can retain and modify it without affecting the message that has been sent. The
same message object can be sent multiple times.

When a message is received, the provider has called Reset method so that the message body is in read-only
mode and reading of values starts from the beginning of the message body.

See also
♦ “QATextMessage members” on page 335
♦ “QABinaryMessage interface” on page 255

QATextMessage members

Public properties

Member name Description

Text property The message text.

TextLength property The length, in characters, of the message.

Public methods

Member name Description

ReadText method Read unread text into the given buffer.

Reset method Resets the text position of the message to the beginning.

WriteText method Append text to the text of the message.

Text property

The message text.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 335

Prototypes
' Visual Basic
Public Property Text As String

// C#
public string Text {get;set;}

Remarks
If the message exceeds the maximum size specified by the QAManager
MAX_IN_MEMORY_MESSAGE_SIZE, this property is null. In this case, use the ReadText method to
read the text.

For more information about QAManager properties, see “QAnywhere manager configuration
properties” on page 62.

TextLength property

The length, in characters, of the message.

Prototypes
' Visual Basic
Public Readonly Property TextLength As Long

// C#
public long TextLength {get;}

ReadText method

Read unread text into the given buffer.

Prototypes
' Visual Basic
Public Function ReadText(_
 ByVal buf As System.Text.StringBuilder _
) As Integer

// C#
public int ReadText(
 System.Text.string Builder buf
);

Parameters
♦ buf Target buffer for any read text.

Return value
The number of characters read or -1 if there are no more characters to read.

QAnywhere .NET API Reference

336 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Any additional unread text must be read by subsequent calls to this method. Text is read from the beginning
of any unread text.

Reset method

Resets the text position of the message to the beginning.

Prototypes
' Visual Basic
Public Sub Reset()

// C#
public void Reset();

WriteText method

Append text to the text of the message.

Prototypes
' Visual Basic
Public Sub WriteText(_
 ByVal val As String _
)

// C#
public void WriteText(
 string val
);

Parameters
♦ val The text to append.

QATransactionalManager interface

The QATransactionalManager class derives from QAManagerBase interface and manages transactional
QAnywhere messaging operations.

Prototypes
' Visual Basic
Public Interface QATransactionalManager

// C#
public interface QATransactionalManager

Remarks
For a detailed description of derived behavior, see QAManagerBase interface.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 337

The QATransactionalManager can only be used for transactional acknowledgement. Use the Commit
method to commit all PutMessage method and GetMessage method invocations.

For more information, see “Implementing transactional messaging” on page 68.

See also
♦ “QATransactionalManager members” on page 338
♦ “QATransactionalManager interface” on page 337

QATransactionalManager members

Public methods

Member name Description

Commit method Commits the current transaction and begins a new transaction.

Open method Opens a QATransactionalManager instance.

Rollback method Rolls back the current transaction and begins a new transaction.

Commit method

Commits the current transaction and begins a new transaction.

Prototypes
' Visual Basic
Public Sub Commit()

// C#
public void Commit();

Remarks
This method commits all PutMessage method and GetMessage method invocations. Note: The first
transaction begins with the call to Open method.

Exceptions
♦ QAException class - Thrown if there is a problem committing.

See also
♦ “QATransactionalManager interface” on page 337
♦ “QATransactionalManager members” on page 338
♦ “QATransactionalManager interface” on page 337

QAnywhere .NET API Reference

338 Copyright © 2006, iAnywhere Solutions, Inc.

Open method

Opens a QATransactionalManager instance.

Prototypes
' Visual Basic
Public Sub Open()

// C#
public void Open();

Remarks
The Open method must be the first method called after creating a manager.

Exceptions
♦ QAException class - Thrown if there is a problem opening the manager

See also
♦ “QATransactionalManager interface” on page 337
♦ “QATransactionalManager members” on page 338
♦ “QATransactionalManager interface” on page 337

Rollback method

Rolls back the current transaction and begins a new transaction.

Prototypes
' Visual Basic
Public Sub Rollback()

// C#
public void Rollback();

Remarks
This method rolls back all uncommited PutMessage method and GetMessage method invocations.

Exceptions
♦ QAException class - Thrown if there is a problem rolling back

See also
♦ “QATransactionalManager interface” on page 337
♦ “QATransactionalManager members” on page 338
♦ “QATransactionalManager interface” on page 337

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 339

QueueDepthFilter enumeration

Provides queue depth filter values for GetQueueDepth method and GetQueueDepth method.

Prototypes
' Visual Basic
Public Enum QueueDepthFilter

// C#
public enum QueueDepthFilter

Member name

Member name Description

ALL Count both incoming and outgoing messages. System messages and
expired messages are not included in any queue depth counts.

INCOMING Count only incoming messages. An incoming message is defined as
a message whose originator is different than the agent ID of the mes-
sage store.

OUTGOING Count only outgoing messages. An outgoing message is defined as a
message whose originator is the agent ID of the message store, and
whose destination is not the agent ID of the message store.

StatusCodes enumeration

This enumeration defines a set of codes for the status of a message.

Prototypes
' Visual Basic
Public Enum StatusCodes

// C#
public enum StatusCodes

Member name

Member name Description

CANCELLED The message has been cancelled. This code applies to the
MessageProperties.STATUS.

EXPIRED The message has expired because it was not received before its expi-
ration time had passed. This code applies to the
MessageProperties.STATUS.

FINAL The message has acheived a final state. This code applies to the
MessageProperties.STATUS.

QAnywhere .NET API Reference

340 Copyright © 2006, iAnywhere Solutions, Inc.

Member name Description

LOCAL The message is addressed to the local message store and will not be
transmitted to the server. This code applies to the
MessageProperties.TRANSMISSION_STATUS.

PENDING The message has been sent but not received. This code applies to the
MessageProperties.STATUS.

RECEIVED The message has been received and acknowledged by the receiver.
This code applies to the MessageProperties.STATUS.

RECEIVING The message is in the process of being received, or it was received
but not acknowledged. This code applies to the
MessageProperties.STATUS.

TRANSMITTED The message has been transmitted to the server. This code applies to
the MessageProperties.TRANSMISSION_STATUS.

TRANSMITTING The message is in the process of being transmitted to the server. This
code applies to the MessageProperties.TRANSMISSION_STATUS.

UNRECEIVABLE The message has been marked as unreceivable. The message is either
malformed, or there were too many failed attempts to deliver it. This
code applies to the MessageProperties.STATUS.

UNTRANSMITTED The message has not been transmitted to the server. This code applies
to the MessageProperties.TRANSMISSION_STATUS.

iAnywhere.QAnywhere.Client namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 341

iAnywhere.QAnywhere.WS namespace (.NET)
The iAnywhere.QAnywhere.WS namespace contains classes and enumerations for building applications
that handle messaging between QAnywhere and mobile web services.

WSBase class

This is the base class for the main web service proxy class generated by the mobile web service compiler.

Prototypes
' Visual Basic
Public Class WSBase

// C#
public class WSBase

WSBase members

Public constructors

Member name Description

WSBase constructor Constructs a WSBase instance with the properties specified by a con-
figuration property file.

WSBase constructor Constructs a WSBase instance with default properties.

Public methods

Member name Description

ClearRequestProperties method Clears all request properties that have been set for this WSBase.

GetResult method Gets a WSResult object that represents the results of a web service
request.

GetServiceID method Gets the service ID for this instance of WSBase.

SetListener method Sets a listener for the results of a given web service request.

SetListener method Sets a listener for the results of all web service requests made by this
instance of WSBase.

SetProperty method Sets a configuration property for this instance of WSBase.

SetQAManager method Sets the QAManagerBase that is used by this web service client to do
web service requests.

SetRequestProperty method Sets a request property for webservice requests made by this WSBase.

QAnywhere .NET API Reference

342 Copyright © 2006, iAnywhere Solutions, Inc.

Member name Description

SetServiceID method Sets a user-defined ID for this instance of WSBase.

WSBase constructor

Constructs a WSBase instance with the properties specified by a configuration property file.

Prototypes
' Visual Basic
Overloads Public Sub New(_
 ByVal iniFile As String _
)

// C#
public WSBase(
 string iniFile
);

Parameters
♦ iniFile A file containing configuration properties.

Remarks
Valid configuration properties are:

LOG_FILE a file to which to log runtime information.

LOG_LEVEL a value between 0 and 6 that controls the verbosity of information logged, with 6 being the
highest verbosity.

WS_CONNECTOR_ADDRESS the address of the web service connector in the MobiLink server.

The default WS_CONNECTOR_ADDRESS is "ianywhere.connector.webservices\\".

Exceptions
♦ WSException class - Thrown if there is a problem constructing the WSBase.

WSBase constructor

Constructs a WSBase instance with default properties.

Prototypes
' Visual Basic
Overloads Public Sub New()

// C#
public WSBase();

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 343

Exceptions
♦ WSException class - Thrown if there is a problem constructing the WSBase.

ClearRequestProperties method

Clears all request properties that have been set for this WSBase.

Prototypes
' Visual Basic
Public Sub ClearRequestProperties()

// C#
public void ClearRequestProperties();

GetResult method

Gets a WSResult object that represents the results of a web service request.

Prototypes
' Visual Basic
Public Function GetResult(_
 ByVal requestID As String _
) As iAnywhere.QAnywhere.WS.WSResult

// C#
public iAnywhere.QAnywhere.WS.WSResult GetResult(
 string requestID
);

Parameters
♦ requestID The ID of the web service request.

Return value
A WSResult instance representing the results of the web service request.

See also
♦ “WSBase class” on page 342
♦ “WSBase members” on page 342
♦ “WSStatus enumeration” on page 388

GetServiceID method

Gets the service ID for this instance of WSBase.

Prototypes
' Visual Basic
Public Function GetServiceID() As String

QAnywhere .NET API Reference

344 Copyright © 2006, iAnywhere Solutions, Inc.

// C#
public string GetServiceID();

Return value
The service ID.

SetListener method

Sets a listener for the results of a given web service request.

Prototypes
' Visual Basic
Overloads Public Sub SetListener(_
 ByVal requestID As String, _
 ByVal listener As iAnywhere.QAnywhere.WS.WSListener _
)

// C#
public void SetListener(
 string requestID,
 iAnywhere.QAnywhere.WS.WSListener listener
);

Parameters
♦ requestID The ID of the web service request to which to listen for results.

♦ listener The listener object that gets called when the result of the given web service request is available.

Remarks
Listeners are typically used to get results of the asyncXYZ methods of the service.

To remove a listener, call SetListener with null as the listener.

Note: This method replaces the listener set by any previous call to SetListener.

SetListener method

Sets a listener for the results of all web service requests made by this instance of WSBase.

Prototypes
' Visual Basic
Overloads Public Sub SetListener(_
 ByVal listener As iAnywhere.QAnywhere.WS.WSListener _
)

// C#
public void SetListener(
 iAnywhere.QAnywhere.WS.WSListener listener
);

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 345

Parameters
♦ listener The listener object that gets called when the result of a web service request is available.

Remarks
Listeners are typically used to get results of the asyncXYZ methods of the service.

To remove a listener, call SetListener with null as the listener.

Note: This method replaces the listener set by any previous call to SetListener.

SetProperty method

Sets a configuration property for this instance of WSBase.

Prototypes
' Visual Basic
Public Sub SetProperty(_
 ByVal property As String, _
 ByVal val As String _
)

// C#
public void SetProperty(
 string property,
 string val
);

Parameters
♦ property The property name to set.

♦ val The property value.

Remarks
Configuration properties must be set before any asynchronous or synchronous web service request is made.
This method has no effect if it is called after a web service request has been made.

Valid configuration properties are:

LOG_FILE a file to which to log runtime information.

LOG_LEVEL a value between 0 and 6 that controls the verbosity of information logged, with 6 being the
highest verbosity.

WS_CONNECTOR_ADDRESS the address of the web service connector in the MobiLink server. The
default is: "ianywhere.connector.webservices\\".

SetQAManager method

Sets the QAManagerBase that is used by this web service client to do web service requests.

QAnywhere .NET API Reference

346 Copyright © 2006, iAnywhere Solutions, Inc.

Prototypes
' Visual Basic
Public Sub SetQAManager(_
 ByVal mgr As QAManagerBase _
)

// C#
public void SetQAManager(
 QAManagerBase mgr
);

Parameters
♦ mgr The QAManagerBase to use.

Remarks
Note: If you use an EXPLICIT_ACKNOWLEDGEMENT QAManager, you can acknowledge the result of
an asynchronous web service request by calling the acknowledge() method of WSResult. The result of a
synchronous web service request is automatically acknowledged, even in the case of an
EXPLICIT_ACKNOWLEDGEMENT QAManager. If you use an IMPLICIT_ACKNOWLEDGEMENT
QAManager, the result of any web service request is acknowledged automatically.

SetRequestProperty method

Sets a request property for webservice requests made by this WSBase.

Prototypes
' Visual Basic
Public Sub SetRequestProperty(_
 ByVal name As String, _
 ByVal value As Object _
)

// C#
public void SetRequestProperty(
 string name,
 object value
);

Parameters
♦ name The property name to set.

♦ value The property value.

Remarks
A request property is set on each QAMessage that is sent by this WSBase, until the property is cleared. A
request property is cleared by setting it to a null value. The type of the message property is determined by
the class of the value parameter. For example, if value is an instance of Int32, then SetIntProperty is used to
set the property on the QAMessage.

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 347

SetServiceID method

Sets a user-defined ID for this instance of WSBase.

Prototypes
' Visual Basic
Public Sub SetServiceID(_
 ByVal serviceID As String _
)

// C#
public void SetServiceID(
 string serviceID
);

Parameters
♦ serviceID The service ID.

Remarks
The service ID should be set to a value unique to this instance of WSBase. It is used internally to form a
queue name for sending and receiving web service requests. Therefore, the service ID should be persisted
between application sessions, in order to retrieve results of web service requests made in a previous session.

WSException class

This class represents an exception that occurred during processing of a web service request.

Prototypes
' Visual Basic
Public Class WSException
 Inherits Exception

// C#
public class WSException :
 Exception

WSException members

Public static fields (shared)

Member name Description

WS_STATUS_HTTP_ERROR
field

Error code indicating that there was an error in the web service HTTP
request made by the web services connector.

WS_STATUS_HTTP_OK field Error code indicating that the webservice HTTP request by the web
services connector was successful.

QAnywhere .NET API Reference

348 Copyright © 2006, iAnywhere Solutions, Inc.

Member name Description

WS_STATUS_HTTP_RETRIE
S_EXCEEDED field

Error code indicating that the number of HTTP retries was exceeded
the web services connector.

WS_STATUS_SOAP_PARSE_
ERROR field

Error code indicating that there was an error in the web services run-
time or in the webservices connector in parsing a SOAP response or
request.

Public constructors

Member name Description

WSException constructor Constructs a new exception with the specified error message.

WSException constructor Constructs a new exception with the specified error message and error
code.

WSException constructor Constructs a new exception.

Public properties

Member name Description

ErrorCode property The error code associated with this exception.

HelpLink (inherited from Excep-
tion)

Gets or sets a link to the help file associated with this exception.

InnerException (inherited from
Exception)

Gets the System.Exception instance that caused the current exception.

Message (inherited from Excep-
tion)

Gets a message that describes the current exception.

Source (inherited from Excep-
tion)

Gets or sets the name of the application or the object that causes the
error.

StackTrace (inherited from Ex-
ception)

Gets a string representation of the frames on the call stack at the time
the current exception was thrown.

TargetSite (inherited from Ex-
ception)

Gets the method that throws the current exception.

Public methods

Member name Description

GetBaseException (inherited
from Exception)

When overridden in a derived class, returns the System.Exception that
is the root cause of one or more subsequent exceptions.

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 349

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassHelpLinkTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassInnerExceptionTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassMessageTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassSourceTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassStackTraceTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassTargetSiteTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassGetBaseExceptionTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassTopic.asp

Member name Description

GetObjectData (inherited from
Exception)

When overridden in a derived class, sets the
System.Runtime.Serialization.SerializationInfo with information
about the exception.

ToString (inherited from Excep-
tion)

Creates and returns a string representation of the current exception.

WSException constructor

Constructs a new exception with the specified error message.

Prototypes
' Visual Basic
Overloads Public Sub New(_
 ByVal msg As String _
)

// C#
public WSException(
 string msg
);

Parameters
♦ msg The error message.

WSException constructor

Constructs a new exception with the specified error message and error code.

Prototypes
' Visual Basic
Overloads Public Sub New(_
 ByVal msg As String, _
 ByVal errorCode As Integer _
)

// C#
public WSException(
 string msg,
 int errorCode
);

Parameters
♦ msg The error message.

♦ errorCode The error code.

QAnywhere .NET API Reference

350 Copyright © 2006, iAnywhere Solutions, Inc.

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassGetObjectDataTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemRuntimeSerializationSerializationInfoClassTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassToStringTopic.asp

WSException constructor

Constructs a new exception.

Prototypes
' Visual Basic
Overloads Public Sub New(_
 ByVal ex As System.Exception _
)

// C#
public WSException(
 System.Exception ex
);

Parameters
♦ ex The exception.

WS_STATUS_HTTP_ERROR field

Error code indicating that there was an error in the web service HTTP request made by the web services
connector.

Prototypes
' Visual Basic
Public Shared WS_STATUS_HTTP_ERROR As Integer

// C#
public const int WS_STATUS_HTTP_ERROR;

WS_STATUS_HTTP_OK field

Error code indicating that the webservice HTTP request by the web services connector was successful.

Prototypes
' Visual Basic
Public Shared WS_STATUS_HTTP_OK As Integer

// C#
public const int WS_STATUS_HTTP_OK;

WS_STATUS_HTTP_RETRIES_EXCEEDED field

Error code indicating that the number of HTTP retries was exceeded the web services connector.

Prototypes
' Visual Basic
Public Shared WS_STATUS_HTTP_RETRIES_EXCEEDED As Integer

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 351

// C#
public const int WS_STATUS_HTTP_RETRIES_EXCEEDED;

WS_STATUS_SOAP_PARSE_ERROR field

Error code indicating that there was an error in the web services runtime or in the webservices connector in
parsing a SOAP response or request.

Prototypes
' Visual Basic
Public Shared WS_STATUS_SOAP_PARSE_ERROR As Integer

// C#
public const int WS_STATUS_SOAP_PARSE_ERROR;

ErrorCode property

The error code associated with this exception.

Prototypes
' Visual Basic
Public Property ErrorCode As Integer

// C#
public int ErrorCode {get;set;}

WSFaultException class

This class represents a SOAP Fault exception from the web service connector.

Prototypes
' Visual Basic
Public Class WSFaultException
 Inherits WSException

// C#
public class WSFaultException :
 WSException

WSFaultException members

Public constructors

Member name Description

WSFaultException constructor Constructs a new exception with the specified error message.

QAnywhere .NET API Reference

352 Copyright © 2006, iAnywhere Solutions, Inc.

Public properties

Member name Description

ErrorCode property (inherited
from WSException)

The error code associated with this exception.

HelpLink (inherited from Excep-
tion)

Gets or sets a link to the help file associated with this exception.

InnerException (inherited from
Exception)

Gets the System.Exception instance that caused the current exception.

Message (inherited from Excep-
tion)

Gets a message that describes the current exception.

Source (inherited from Excep-
tion)

Gets or sets the name of the application or the object that causes the
error.

StackTrace (inherited from Ex-
ception)

Gets a string representation of the frames on the call stack at the time
the current exception was thrown.

TargetSite (inherited from Ex-
ception)

Gets the method that throws the current exception.

Public methods

Member name Description

GetBaseException (inherited
from Exception)

When overridden in a derived class, returns the System.Exception that
is the root cause of one or more subsequent exceptions.

GetObjectData (inherited from
Exception)

When overridden in a derived class, sets the
System.Runtime.Serialization.SerializationInfo with information
about the exception.

ToString (inherited from Excep-
tion)

Creates and returns a string representation of the current exception.

WSFaultException constructor

Constructs a new exception with the specified error message.

Prototypes
' Visual Basic
Public Sub New(_
 ByVal msg As String _
)

// C#
public WSFaultException(
 string msg
);

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 353

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassHelpLinkTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassInnerExceptionTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassMessageTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassSourceTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassStackTraceTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassTargetSiteTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassGetBaseExceptionTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassGetObjectDataTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemRuntimeSerializationSerializationInfoClassTopic.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfSystemExceptionClassToStringTopic.asp

Parameters
♦ msg The error message.

WSListener interface

This class represents a listener for results of web service requests.

Prototypes
' Visual Basic
Public Interface WSListener

// C#
public interface WSListener

WSListener members

Public methods

Member name Description

OnException method Called when an exception occurs during processing of the result of an
asynchronous web service request.

OnResult method Called with the result of an asynchronous web service request.

OnException method

Called when an exception occurs during processing of the result of an asynchronous web service request.

Prototypes
' Visual Basic
Public Sub OnException(_
 ByVal e As iAnywhere.QAnywhere.WS.WSException, _
 ByVal wsResult As iAnywhere.QAnywhere.WS.WSResult _
)

// C#
public void OnException(
 iAnywhere.QAnywhere.WS.WSException e,
 iAnywhere.QAnywhere.WS.WSResult wsResult
);

Parameters
♦ e The WSException that occurred during processing of the result.

♦ wsResult A WSResult, from which the request ID may be obtained. Values of this WSResult are not
defined.

QAnywhere .NET API Reference

354 Copyright © 2006, iAnywhere Solutions, Inc.

OnResult method

Called with the result of an asynchronous web service request.

Prototypes
' Visual Basic
Public Sub OnResult(_
 ByVal wsResult As iAnywhere.QAnywhere.WS.WSResult _
)

// C#
public void OnResult(
 iAnywhere.QAnywhere.WS.WSResult wsResult
);

Parameters
♦ wsResult The WSResult describing the result of a web service request.

WSResult class

This class represents the results of a web service request.

Prototypes
' Visual Basic
Public Class WSResult

// C#
public class WSResult

Remarks
A WSResult object is obtained in one of three ways:

- It is passed to the WSListener.onResult.

- It is returned by an asyncXYZ method of the service proxy generated by the compiler.

- It is obtained by calling WSBase.getResult with a specific request ID.

WSResult members

Public methods

Member name Description

Acknowledge method Acknowledges that this WSResult has been processed.

GetArrayValue method Gets an array of complex types value from this WSResult.

GetBoolArrayValue method Gets an array of bool values from this WSResult.

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 355

Member name Description

GetBooleanArrayValue method Gets an array of Boolean values from this WSResult.

GetBooleanValue method Gets a Boolean value from this WSResult.

GetBoolValue method Gets a bool value from this WSResult.

GetByteArrayValue method Gets an array of byte values from this WSResult.

GetByteValue method Gets a byte value from this WSResult.

GetCharArrayValue method Gets an array of char values from this WSResult.

GetCharValue method Gets a char value from this WSResult.

GetDecimalArrayValue method Gets an array of decimal values from this WSResult.

GetDecimalValue method Gets a decimal value from this WSResult.

GetDoubleArrayValue method Gets an array of double values from this WSResult.

GetDoubleValue method Gets a double value from this WSResult.

GetErrorMessage method Gets the error message.

GetFloatArrayValue method Gets an array of float values from this WSResult.

GetFloatValue method Gets a float value from this WSResult.

GetInt16ArrayValue method Gets an array of Int16 values from this WSResult.

GetInt16Value method Gets an Int16 value from this WSResult.

GetInt32ArrayValue method Gets an array of Int32 values from this WSResult.

GetInt32Value method Gets an Int32 value from this WSResult.

GetInt64ArrayValue method Gets an array of Int64 values from this WSResult.

GetInt64Value method Gets an Int64 value from this WSResult.

GetIntArrayValue method Gets an array of int values from this WSResult.

GetIntValue method Gets an int value from this WSResult.

GetLongArrayValue method Gets an array of long values from this WSResult.

GetLongValue method Gets a long value from this WSResult.

GetNullableBoolArrayValue
method

Gets an array of bool values from this WSResult.

GetNullableBoolValue method Gets a bool value from this WSResult.

QAnywhere .NET API Reference

356 Copyright © 2006, iAnywhere Solutions, Inc.

Member name Description

GetNullableDoubleArrayValue
method

Gets an array of double values from this WSResult.

GetNullableDoubleValue
method

Gets a double value from this WSResult.

GetNullableFloatArrayValue
method

Gets an array of float values from this WSResult.

GetNullableFloatValue method Gets a float value from this WSResult.

GetNullableIntArrayValue
method

Gets an array of int values from this WSResult.

GetNullableIntValue method Gets an int value from this WSResult.

GetNullableLongArrayValue
method

Gets an array of long values from this WSResult.

GetNullableLongValue method Gets an Int64 value from this WSResult.

GetNullableSByteArrayValue
method

Gets an array of byte values from this WSResult.

GetNullableSByteValue method Gets a byte value from this WSResult.

GetNullableShortArrayValue
method

Gets an array of short values from this WSResult.

GetNullableShortValue method Gets a short value from this WSResult.

GetObjectArrayValue method Gets an array of Object values from this WSResult.

GetObjectValue method Gets an object value from this WSResult.

GetRequestID method Gets the request ID that this WSResult represents.

GetSByteArrayValue method Gets an array of sbyte values from this WSResult.

GetSByteValue method Gets an sbyte value from this WSResult.

GetSByteValue method Gets an sbyte value from this WSResult.

GetShortArrayValue method Gets an array of short values from this WSResult.

GetShortValue method Gets a short value from this WSResult.

GetSingleArrayValue method Gets an array of Single values from this WSResult.

GetSingleValue method Gets a Single value from this WSResult.

GetStatus method Gets the status of this WSResult.

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 357

Member name Description

GetStringArrayValue method Gets an array of string values from this WSResult.

GetStringValue method Gets a string value from this WSResult.

GetUIntArrayValue method Gets an array of unsigned int values from this WSResult.

GetUIntValue method Gets a unsigned int value from this WSResult.

GetULongArrayValue method Gets an array of unsigned long values from this WSResult.

GetULongValue method Gets a unsigned long value from this WSResult.

GetUShortArrayValue method Gets an array of unsigned short values from this WSResult.

GetUShortValue method Gets a unsigned short value from this WSResult.

GetValue method Gets the value of a complex type from this WSResult.

SetLogger method Turns debug on or off.

Acknowledge method

Acknowledges that this WSResult has been processed.

Prototypes
' Visual Basic
Public Sub Acknowledge()

// C#
public void Acknowledge();

Remarks
This method is only useful when an EXPLICIT_ACKNOWLEDGEMENT QAManager is being used.

GetArrayValue method

Gets an array of complex types value from this WSResult.

Prototypes
' Visual Basic
Public Function GetArrayValue(_
 ByVal parentName As String _
) As iAnywhere.QAnywhere.WS.WSSerializable()

// C#
public iAnywhere.QAnywhere.WS.WSSerializable[] GetArrayValue(
 string parentName
);

QAnywhere .NET API Reference

358 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
♦ parentName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetBoolArrayValue method

Gets an array of bool values from this WSResult.

Prototypes
' Visual Basic
Public Function GetBoolArrayValue(_
 ByVal elementName As String _
) As Boolean()

// C#
public bool[] GetBoolArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetBooleanArrayValue method

Gets an array of Boolean values from this WSResult.

Prototypes
' Visual Basic
Public Function GetBooleanArrayValue(_
 ByVal elementName As String _
) As Boolean()

// C#
public bool[] GetBooleanArrayValue(
 string elementName
);

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 359

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetBooleanValue method

Gets a Boolean value from this WSResult.

Prototypes
' Visual Basic
Public Function GetBooleanValue(_
 ByVal childName As String _
) As Boolean

// C#
public bool GetBooleanValue(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetBoolValue method

Gets a bool value from this WSResult.

Prototypes
' Visual Basic
Public Function GetBoolValue(_
 ByVal childName As String _
) As Boolean

// C#
public bool GetBoolValue(
 string childName
);

QAnywhere .NET API Reference

360 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetByteArrayValue method

Gets an array of byte values from this WSResult.

Prototypes
' Visual Basic
Public Function GetByteArrayValue(_
 ByVal elementName As String _
) As Byte()

// C#
public byte[] GetByteArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetByteValue method

Gets a byte value from this WSResult.

Prototypes
' Visual Basic
Public Function GetByteValue(_
 ByVal childName As String _
) As Byte

// C#
public byte GetByteValue(
 string childName
);

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 361

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetCharArrayValue method

Gets an array of char values from this WSResult.

Prototypes
' Visual Basic
Public Function GetCharArrayValue(_
 ByVal elementName As String _
) As Char()

// C#
public char[] GetCharArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetCharValue method

Gets a char value from this WSResult.

Prototypes
' Visual Basic
Public Function GetCharValue(_
 ByVal childName As String _
) As Char

// C#
public char GetCharValue(
 string childName
);

QAnywhere .NET API Reference

362 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetDecimalArrayValue method

Gets an array of decimal values from this WSResult.

Prototypes
' Visual Basic
Public Function GetDecimalArrayValue(_
 ByVal elementName As String _
) As Decimal()

// C#
public decimal[] GetDecimalArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetDecimalValue method

Gets a decimal value from this WSResult.

Prototypes
' Visual Basic
Public Function GetDecimalValue(_
 ByVal childName As String _
) As Decimal

// C#
public decimal GetDecimalValue(
 string childName
);

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 363

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetDoubleArrayValue method

Gets an array of double values from this WSResult.

Prototypes
' Visual Basic
Public Function GetDoubleArrayValue(_
 ByVal elementName As String _
) As Double()

// C#
public double[] GetDoubleArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetDoubleValue method

Gets a double value from this WSResult.

Prototypes
' Visual Basic
Public Function GetDoubleValue(_
 ByVal childName As String _
) As Double

// C#
public double GetDoubleValue(
 string childName
);

QAnywhere .NET API Reference

364 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetErrorMessage method

Gets the error message.

Prototypes
' Visual Basic
Public Function GetErrorMessage() As String

// C#
public string GetErrorMessage();

Return value
The error message.

GetFloatArrayValue method

Gets an array of float values from this WSResult.

Prototypes
' Visual Basic
Public Function GetFloatArrayValue(_
 ByVal elementName As String _
) As Single()

// C#
public float [] GetFloatArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 365

GetFloatValue method

Gets a float value from this WSResult.

Prototypes
' Visual Basic
Public Function GetFloatValue(_
 ByVal childName As String _
) As Single

// C#
public float GetFloatValue(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetInt16ArrayValue method

Gets an array of Int16 values from this WSResult.

Prototypes
' Visual Basic
Public Function GetInt16ArrayValue(_
 ByVal elementName As String _
) As Short()

// C#
public short[] GetInt16ArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

QAnywhere .NET API Reference

366 Copyright © 2006, iAnywhere Solutions, Inc.

GetInt16Value method

Gets an Int16 value from this WSResult.

Prototypes
' Visual Basic
Public Function GetInt16Value(_
 ByVal childName As String _
) As Short

// C#
public short GetInt16Value(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetInt32ArrayValue method

Gets an array of Int32 values from this WSResult.

Prototypes
' Visual Basic
Public Function GetInt32ArrayValue(_
 ByVal elementName As String _
) As Integer()

// C#
public int[] GetInt32ArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 367

GetInt32Value method

Gets an Int32 value from this WSResult.

Prototypes
' Visual Basic
Public Function GetInt32Value(_
 ByVal childName As String _
) As Integer

// C#
public int GetInt32Value(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetInt64ArrayValue method

Gets an array of Int64 values from this WSResult.

Prototypes
' Visual Basic
Public Function GetInt64ArrayValue(_
 ByVal elementName As String _
) As Long()

// C#
public long[] GetInt64ArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

QAnywhere .NET API Reference

368 Copyright © 2006, iAnywhere Solutions, Inc.

GetInt64Value method

Gets an Int64 value from this WSResult.

Prototypes
' Visual Basic
Public Function GetInt64Value(_
 ByVal childName As String _
) As Long

// C#
public long GetInt64Value(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetIntArrayValue method

Gets an array of int values from this WSResult.

Prototypes
' Visual Basic
Public Function GetIntArrayValue(_
 ByVal elementName As String _
) As Integer()

// C#
public int[] GetIntArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 369

GetIntValue method

Gets an int value from this WSResult.

Prototypes
' Visual Basic
Public Function GetIntValue(_
 ByVal childName As String _
) As Integer

// C#
public int GetIntValue(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetLongArrayValue method

Gets an array of long values from this WSResult.

Prototypes
' Visual Basic
Public Function GetLongArrayValue(_
 ByVal elementName As String _
) As Long()

// C#
public long[] GetLongArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

QAnywhere .NET API Reference

370 Copyright © 2006, iAnywhere Solutions, Inc.

GetLongValue method

Gets a long value from this WSResult.

Prototypes
' Visual Basic
Public Function GetLongValue(_
 ByVal childName As String _
) As Long

// C#
public long GetLongValue(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetNullableBoolArrayValue method

Gets an array of bool values from this WSResult.

Prototypes
' Visual Basic
Public Function GetNullableBoolArrayValue(_
 ByVal elementName As String _
) As iAnywhere.QAnywhere.WS.NullableBool()

// C#
public iAnywhere.QAnywhere.WS.NullableBool[] GetNullableBoolArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 371

GetNullableBoolValue method

Gets a bool value from this WSResult.

Prototypes
' Visual Basic
Public Function GetNullableBoolValue(_
 ByVal childName As String _
) As iAnywhere.QAnywhere.WS.NullableBool

// C#
public iAnywhere.QAnywhere.WS.NullableBool GetNullableBoolValue(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetNullableDoubleArrayValue method

Gets an array of double values from this WSResult.

Prototypes
' Visual Basic
Public Function GetNullableDoubleArrayValue(_
 ByVal elementName As String _
) As iAnywhere.QAnywhere.WS.NullableDouble()

// C#
public iAnywhere.QAnywhere.WS.Nullabledouble[] GetNullableDoubleArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

QAnywhere .NET API Reference

372 Copyright © 2006, iAnywhere Solutions, Inc.

GetNullableDoubleValue method

Gets a double value from this WSResult.

Prototypes
' Visual Basic
Public Function GetNullableDoubleValue(_
 ByVal childName As String _
) As iAnywhere.QAnywhere.WS.NullableDouble

// C#
public iAnywhere.QAnywhere.WS.Nullabledouble GetNullableDoubleValue(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetNullableFloatArrayValue method

Gets an array of float values from this WSResult.

Prototypes
' Visual Basic
Public Function GetNullableFloatArrayValue(_
 ByVal elementName As String _
) As iAnywhere.QAnywhere.WS.NullableFloat()

// C#
public iAnywhere.QAnywhere.WS.NullableFloat[] GetNullableFloatArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 373

GetNullableFloatValue method

Gets a float value from this WSResult.

Prototypes
' Visual Basic
Public Function GetNullableFloatValue(_
 ByVal childName As String _
) As iAnywhere.QAnywhere.WS.NullableFloat

// C#
public iAnywhere.QAnywhere.WS.NullableFloat GetNullableFloatValue(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetNullableIntArrayValue method

Gets an array of int values from this WSResult.

Prototypes
' Visual Basic
Public Function GetNullableIntArrayValue(_
 ByVal elementName As String _
) As iAnywhere.QAnywhere.WS.NullableInt()

// C#
public iAnywhere.QAnywhere.WS.NullableInt[] GetNullableIntArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

QAnywhere .NET API Reference

374 Copyright © 2006, iAnywhere Solutions, Inc.

GetNullableIntValue method

Gets an int value from this WSResult.

Prototypes
' Visual Basic
Public Function GetNullableIntValue(_
 ByVal childName As String _
) As iAnywhere.QAnywhere.WS.NullableInt

// C#
public iAnywhere.QAnywhere.WS.NullableInt GetNullableIntValue(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetNullableLongArrayValue method

Gets an array of long values from this WSResult.

Prototypes
' Visual Basic
Public Function GetNullableLongArrayValue(_
 ByVal elementName As String _
) As iAnywhere.QAnywhere.WS.NullableLong()

// C#
public iAnywhere.QAnywhere.WS.NullableLong[] GetNullableLongArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 375

GetNullableLongValue method

Gets an Int64 value from this WSResult.

Prototypes
' Visual Basic
Public Function GetNullableLongValue(_
 ByVal childName As String _
) As iAnywhere.QAnywhere.WS.NullableLong

// C#
public iAnywhere.QAnywhere.WS.NullableLong GetNullableLongValue(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetNullableSByteArrayValue method

Gets an array of byte values from this WSResult.

Prototypes
' Visual Basic
Public Function GetNullableSByteArrayValue(_
 ByVal elementName As String _
) As iAnywhere.QAnywhere.WS.NullableSByte()

// C#
public iAnywhere.QAnywhere.WS.NullableSbyte[] GetNullableSByteArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

QAnywhere .NET API Reference

376 Copyright © 2006, iAnywhere Solutions, Inc.

GetNullableSByteValue method

Gets a byte value from this WSResult.

Prototypes
' Visual Basic
Public Function GetNullableSByteValue(_
 ByVal childName As String _
) As iAnywhere.QAnywhere.WS.NullableSByte

// C#
public iAnywhere.QAnywhere.WS.NullableSbyte GetNullableSByteValue(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetNullableShortArrayValue method

Gets an array of short values from this WSResult.

Prototypes
' Visual Basic
Public Function GetNullableShortArrayValue(_
 ByVal elementName As String _
) As iAnywhere.QAnywhere.WS.NullableShort()

// C#
public iAnywhere.QAnywhere.WS.NullableShort[] GetNullableShortArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 377

GetNullableShortValue method

Gets a short value from this WSResult.

Prototypes
' Visual Basic
Public Function GetNullableShortValue(_
 ByVal childName As String _
) As iAnywhere.QAnywhere.WS.NullableShort

// C#
public iAnywhere.QAnywhere.WS.NullableShort GetNullableShortValue(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetObjectArrayValue method

Gets an array of Object values from this WSResult.

Prototypes
' Visual Basic
Public Function GetObjectArrayValue(_
 ByVal elementName As String _
) As Object()

// C#
public object[] GetObjectArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

QAnywhere .NET API Reference

378 Copyright © 2006, iAnywhere Solutions, Inc.

GetObjectValue method

Gets an object value from this WSResult.

Prototypes
' Visual Basic
Public Function GetObjectValue(_
 ByVal childName As String _
) As Object

// C#
public object GetObjectValue(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetRequestID method

Gets the request ID that this WSResult represents.

Prototypes
' Visual Basic
Public Function GetRequestID() As String

// C#
public string GetRequestID();

Return value
The request ID.

Remarks
This request ID should be persisted between runs of the application if it is desired to obtain a WSResult
corresponding to a web service request in a run of the application different from when the request was made.

GetSByteArrayValue method

Gets an array of sbyte values from this WSResult.

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 379

Prototypes
' Visual Basic
Public Function GetSByteArrayValue(_
 ByVal elementName As String _
) As System.SByte()

// C#
public System.Sbyte[] GetSByteArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetSByteValue method

Gets an sbyte value from this WSResult.

Prototypes
' Visual Basic
Public Function GetSByteValue(_
 ByVal childName As String _
) As System.SByte

// C#
public System.Sbyte GetSByteValue(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetSbyteValue method

Gets an sbyte value from this WSResult.

QAnywhere .NET API Reference

380 Copyright © 2006, iAnywhere Solutions, Inc.

Prototypes
' Visual Basic
Public Function GetSbyteValue(_
 ByVal childName As String _
) As System.SByte

// C#
public System.Sbyte GetSbyteValue(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetShortArrayValue method

Gets an array of short values from this WSResult.

Prototypes
' Visual Basic
Public Function GetShortArrayValue(_
 ByVal elementName As String _
) As Short()

// C#
public short[] GetShortArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetShortValue method

Gets a short value from this WSResult.

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 381

Prototypes
' Visual Basic
Public Function GetShortValue(_
 ByVal childName As String _
) As Short

// C#
public short GetShortValue(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetSingleArrayValue method

Gets an array of Single values from this WSResult.

Prototypes
' Visual Basic
Public Function GetSingleArrayValue(_
 ByVal elementName As String _
) As Single()

// C#
public float [] GetSingleArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetSingleValue method

Gets a Single value from this WSResult.

QAnywhere .NET API Reference

382 Copyright © 2006, iAnywhere Solutions, Inc.

Prototypes
' Visual Basic
Public Function GetSingleValue(_
 ByVal childName As String _
) As Single

// C#
public float GetSingleValue(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetStatus method

Gets the status of this WSResult.

Prototypes
' Visual Basic
Public Function GetStatus() As iAnywhere.QAnywhere.WS.WSStatus

// C#
public iAnywhere.QAnywhere.WS.WSStatus GetStatus();

Return value
The status code.

See also
♦ “WSResult class” on page 355
♦ “WSResult members” on page 355
♦ “WSStatus enumeration” on page 388

GetStringArrayValue method

Gets an array of string values from this WSResult.

Prototypes
' Visual Basic
Public Function GetStringArrayValue(_
 ByVal elementName As String _
) As String()

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 383

// C#
public string [] GetStringArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetStringValue method

Gets a string value from this WSResult.

Prototypes
' Visual Basic
Public Function GetStringValue(_
 ByVal childName As String _
) As String

// C#
public string GetStringValue(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetUIntArrayValue method

Gets an array of unsigned int values from this WSResult.

Prototypes
' Visual Basic
Public Function GetUIntArrayValue(_
 ByVal elementName As String _
) As UInt32()

QAnywhere .NET API Reference

384 Copyright © 2006, iAnywhere Solutions, Inc.

// C#
public uint[] GetUIntArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetUIntValue method

Gets a unsigned int value from this WSResult.

Prototypes
' Visual Basic
Public Function GetUIntValue(_
 ByVal childName As String _
) As UInt32

// C#
public uint GetUIntValue(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetULongArrayValue method

Gets an array of unsigned long values from this WSResult.

Prototypes
' Visual Basic
Public Function GetULongArrayValue(_
 ByVal elementName As String _
) As UInt64()

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 385

// C#
public ulong[] GetULongArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetULongValue method

Gets a unsigned long value from this WSResult.

Prototypes
' Visual Basic
Public Function GetULongValue(_
 ByVal childName As String _
) As UInt64

// C#
public ulong GetULongValue(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetUShortArrayValue method

Gets an array of unsigned short values from this WSResult.

Prototypes
' Visual Basic
Public Function GetUShortArrayValue(_
 ByVal elementName As String _
) As UInt16()

QAnywhere .NET API Reference

386 Copyright © 2006, iAnywhere Solutions, Inc.

// C#
public ushort[] GetUShortArrayValue(
 string elementName
);

Parameters
♦ elementName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetUShortValue method

Gets a unsigned short value from this WSResult.

Prototypes
' Visual Basic
Public Function GetUShortValue(_
 ByVal childName As String _
) As UInt16

// C#
public ushort GetUShortValue(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

GetValue method

Gets the value of a complex type from this WSResult.

Prototypes
' Visual Basic
Public Function GetValue(_
 ByVal childName As String _
) As Object

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 387

// C#
public object GetValue(
 string childName
);

Parameters
♦ childName The element name in the WSDL document of this value.

Return value
The value.

Exceptions
♦ WSException class - Thrown if there is a problem getting the value.

SetLogger method

Turns debug on or off.

Prototypes
' Visual Basic
Public Sub SetLogger(_
 ByVal wsLogger As iAnywhere.QAnywhere.WS.WSLogger _
)

// C#
public void SetLogger(
 iAnywhere.QAnywhere.WS.WSLogger wsLogger
);

WSStatus enumeration

This class defines codes for the status of a web service. request.

Prototypes
' Visual Basic
Public Enum WSStatus

// C#
public enum WSStatus

Member name

Member name Description

STATUS_ERROR There was an error processing the request.

STATUS_QUEUED The request has been queued for delivery to the server.

QAnywhere .NET API Reference

388 Copyright © 2006, iAnywhere Solutions, Inc.

Member name Description

STATUS_RESULT_AVAIL-
ABLE

The result of the request is available.

STATUS_SUCCESS The request was successful.

iAnywhere.QAnywhere.WS namespace (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 389

CHAPTER 13

QAnywhere C++ API Reference

Contents
AcknowledgementMode class ... 392
MessageProperties class .. 394
MessageStoreProperties class .. 401
MessageType class ... 402
QABinaryMessage class ... 404
QAError class .. 418
QAManager class .. 427
QAManagerBase class .. 432
QAManagerFactory class .. 462
QAMessage class .. 466
QAMessageListener class ... 487
QATextMessage class ... 488
QATransactionalManager class .. 492
QueueDepthFilter class ... 496
StatusCodes class ... 498

About this chapter
This chapter describes the QAnywhere C++ API.

Copyright © 2006, iAnywhere Solutions, Inc. 391

AcknowledgementMode class
Synopsis

public AcknowledgementMode

Remarks
Indicates how messages should be acknowledged by QAnywhere client applications.

See Also
QAManager class

QATransactionalManager class

QAManagerBase class

You can determine the mode of a QAManagerBase class instance using the QAManagerBase::Mode
property.

For transactional messaging, use the QATransactionalManager class. In this case, you use the commit
function to acknowledge messages belonging to a transaction.

For more information, see “Receiving messages synchronously” on page 75and “Receiving messages
asynchronously” on page 76.

In implicit acknowledgement mode, messages are acknowledged as soon as they are received by a client
application. In explicit acknowledgement mode, you must call one of the QAManager class
acknowledgement methods. In transactional mode, you must call commit function to acknowledge all
outstanding messages. The server propagates all status changes from client to client.

For more information, see “Initializing a QAnywhere API” on page 54.

The IMPLICIT_ACKNOWLEDGEMENT and EXPLICIT_ACKNOWLEDGEMENT modes are assigned
to a QAManager class instance using the open function. The TRANSACTIONAL mode is implicitly
assigned to QATransactionalManager class instances.

Members
All members of AcknowledgementMode, including all inherited members.

♦ “EXPLICIT_ACKNOWLEDGEMENT variable” on page 392
♦ “IMPLICIT_ACKNOWLEDGEMENT variable” on page 393
♦ “TRANSACTIONAL variable” on page 393

EXPLICIT_ACKNOWLEDGEMENT variable

Synopsis
const qa_short AcknowledgementMode::EXPLICIT_ACKNOWLEDGEMENT

QAnywhere C++ API Reference

392 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Indicates that received messages are acknowledged using one of the QAManager class acknowledge
methods.

IMPLICIT_ACKNOWLEDGEMENT variable

Synopsis
const qa_short AcknowledgementMode::IMPLICIT_ACKNOWLEDGEMENT

Remarks
Indicates that all messages are acknowledged as soon as they are received by a client application.

If you receive messages synchronously, messages are acknowledged as soon as the getMessage function
returns. If you receive messages asynchronously, the message is acknowledged as soon as the event handling
function returns.

TRANSACTIONAL variable

Synopsis
const qa_short AcknowledgementMode::TRANSACTIONAL

Remarks
Indicates that messages are only acknowledged as part of the ongoing transaction.

This mode is automatically assigned to QATransactionalManager class instances.

AcknowledgementMode class

Copyright © 2006, iAnywhere Solutions, Inc. 393

MessageProperties class
Synopsis

public MessageProperties

Remarks
Provides fields storing standard message property names.

The MessageProperties class provides standard message property names. You can pass MessageProperties
fields to QAMessage class methods used to get and set message properties.

For more information, see “Message headers and message properties” on page 206

 QATextMessage * t_msg;

The following example gets the value corresponding to MSG_TYPE variable using the getIntProperty
function. The MessageType class enumeration maps the integer result to an appropriate message type.

 int msg_type;
 t_msg->getIntProperty(MessageProperties::MSG_TYPE, &msg_type)

The following example, evaluates the message type and RAS names using MSG_TYPE variable and
RASNAMES variable respectively.

 void SystemQueueListener::onMessage(QAMessage * msg) {
 QATextMessage * t_msg;
 TCHAR buffer[512];
 int len;
 int msg_type;
 t_msg = msg->castToTextMessage();
 if(t_msg != NULL) {
 t_msg->getIntProperty(MessageProperties::MSG_TYPE, &msg_type);
 if(msg_type == MessageType::NETWORK_STATUS_NOTIFICATION) {
 // get RAS names using MessageProperties::RASNAMES
 len = t_msg->getStringProperty(MessageProperties::RASNAMES,buffer,sizeof
(buffer));
 }
 //...
 }
 }

See Also
QAMessage class

Members
All members of MessageProperties, including all inherited members.

QAnywhere C++ API Reference

394 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “ADAPTER variable” on page 395
♦ “ADAPTERS variable” on page 395
♦ “DELIVERY_COUNT variable” on page 396
♦ “IP variable” on page 396
♦ “MAC variable” on page 397
♦ “MSG_TYPE variable” on page 397
♦ “NETWORK_STATUS variable” on page 397
♦ “ORIGINATOR variable” on page 398
♦ “RAS variable” on page 398
♦ “RASNAMES variable” on page 399
♦ “STATUS variable” on page 399
♦ “STATUS_TIME variable” on page 399
♦ “TRANSMISSION_STATUS variable” on page 400

ADAPTER variable

Synopsis
const qa_string MessageProperties::ADAPTER

Remarks
This property name refers to the currently active network adapter that is being used to connect to the
QAnywhere server.

It is used for system queue messages.

The value of this field is "ias_Network.Adapter".

Pass ADAPTER variable as the first parameter to getStringProperty function to access the associated
message property.

For more information, see “Message properties” on page 209.

See Also
MessageProperties

ADAPTERS variable

Synopsis
const qa_string MessageProperties::ADAPTERS

Remarks
This property name refers to a delimited list of network adapters that can be used to connect to the QAnywhere
server.

It is used for system queue messages.

MessageProperties class

Copyright © 2006, iAnywhere Solutions, Inc. 395

The value of this field is "ias_Adapters".

Pass ADAPTERS variable as the first parameter to getStringProperty function to access the associated
message property.

For more information, see “Message properties” on page 209.

See Also
MessageProperties

DELIVERY_COUNT variable

Synopsis
const qa_string MessageProperties::DELIVERY_COUNT

Remarks
This property name refers to the number of attempts that have been made so far to deliver the message.

The value of this field is "ias_DeliveryCount".

Pass DELIVERY_COUNT variable as the first parameter in setStringProperty function or getStringProperty
function to access the associated message property.

See Also
MessageProperties

IP variable

Synopsis
const qa_string MessageProperties::IP

Remarks
This property name refers to the IP address of the currently active network adapter that is being used to
connect to the QAnywhere server.

It is used for system queue messages.

The value of this field is "ias_Network.IP".

Pass IP variable as the first parameter to getStringProperty function to access the associated message
property.

For more information, see “Message properties” on page 209.

See Also
MessageProperties

QAnywhere C++ API Reference

396 Copyright © 2006, iAnywhere Solutions, Inc.

MAC variable

Synopsis
const qa_string MessageProperties::MAC

Remarks
This property name refers to the MAC address of the currently active network adapter that is being used to
connect to the QAnywhere server.

It is used for system queue messages.

The value of this field is "ias_Network.MAC".

Pass MAC variable as the first parameter to getStringProperty function to access the associated message
property.

For more information, see “Message properties” on page 209.

See Also
MessageProperties

MSG_TYPE variable

Synopsis
const qa_string MessageProperties::MSG_TYPE

Remarks
This property name refers to MessageType class enumeration values associated with a QAnywhere message.

The value of this field is "ias_MessageType". Pass MSG_TYPE variable as the first parameter in
setIntProperty function or getIntProperty function to determine the associated property.

See Also
MessageType class

MessageProperties

NETWORK_STATUS variable

Synopsis
const qa_string MessageProperties::NETWORK_STATUS

Remarks
This property name refers to the state of the network connection.

The value of this field is "ias_NetworkStatus".

MessageProperties class

Copyright © 2006, iAnywhere Solutions, Inc. 397

The value of this property is 1 if the network is accessible and 0 otherwise. The network status is used for
system queue messages (for example, network status changes).

For more information, see “Message properties” on page 209.

Pass NETWORK_STATUS variable as the first parameter in setStringProperty function or
getStringProperty function to access the associated message property.

See Also
MessageProperties

ORIGINATOR variable

Synopsis
const qa_string MessageProperties::ORIGINATOR

Remarks
This property name refers to the message store ID of the originator of the message.

The value of this field is "ias_Originator".

Pass ORIGINATOR variable as the first parameter in setStringProperty function or getStringProperty
function to access the associated message property.

See Also
MessageProperties

RAS variable

Synopsis
const qa_string MessageProperties::RAS

Remarks
This property name refers to the currently active RAS name that is being used to connect to the QAnywhere
server.

It is used for system queue messages.

The value of this field is "ias_Network.RAS".

Pass RAS variable as the first parameter to getStringProperty function to access the associated message
property.

For more information, see “Message properties” on page 209.

See Also
MessageProperties

QAnywhere C++ API Reference

398 Copyright © 2006, iAnywhere Solutions, Inc.

RASNAMES variable

Synopsis
const qa_string MessageProperties::RASNAMES

Remarks
This property name refers to a delimited list of RAS entry names that can be used to connect to the
QAnywhere server.

It is used for system queue messages.

The value of this field is "ias_RASNames".

For more information, see “Message properties” on page 209.

Pass RASNAMES variable as the first parameter in setStringProperty function or getStringProperty
function to access the associated message property.

See Also
MessageProperties

STATUS variable

Synopsis
const qa_string MessageProperties::STATUS

Remarks
This property name refers to the current status of the message.

For a list of values, see the StatusCodes class enumeration. The value of this field is "ias_Status".

Pass STATUS variable as the first parameter in setIntProperty function or getIntProperty function to access
the associated message property.

See Also
StatusCodes class

MessageProperties

STATUS_TIME variable

Synopsis
const qa_string MessageProperties::STATUS_TIME

Remarks
This property name refers to the time at which the message received its current status.

MessageProperties class

Copyright © 2006, iAnywhere Solutions, Inc. 399

It is in units that are natural for the platform. For Windows/PocketPC platforms, the timestamp is the
SYSTEMTIME, converted to a FILETIME, which is copied to a qa_long value. It is a local time. The value
of this field is "ias_StatusTime".

Pass STATUS_TIME variable as the first parameter in getLongProperty function to access the associated
read-only message property.

See Also
MessageProperties

TRANSMISSION_STATUS variable

Synopsis
const qa_string MessageProperties::TRANSMISSION_STATUS

Remarks
This property name refers to the current transmission status of the message.

For a list of values, see the StatusCodes class enumeration. The value of this field is
"ias_TransmissionStatus".

Pass TRANSMISSION_STATUS variable as the first parameter in setIntProperty function or getIntProperty
function to access the associated message property.

See Also
StatusCodes class

MessageProperties

QAnywhere C++ API Reference

400 Copyright © 2006, iAnywhere Solutions, Inc.

MessageStoreProperties class
Synopsis

public MessageStoreProperties

Remarks
The MessageStoreProperties class provides standard message property names.

You can pass MessageProperties class fields to QAManagerBase class methods used to get and set pre-
defined or custom message store properties. For more information, see “Client message store
properties” on page 215.

Members
All members of MessageStoreProperties, including all inherited members.

♦ “MAX_DELIVERY_ATTEMPTS variable” on page 401

MAX_DELIVERY_ATTEMPTS variable

Synopsis
const qa_string MessageStoreProperties::MAX_DELIVERY_ATTEMPTS

Remarks
This property name refers to the maximum number of times that a message can be received, without explicit
acknowledgement, before its status is set to UNRECEIVABLE variable.

The value of this field is "ias_MaxDeliveryAttempts".

See Also
StatusCodes class.

MessageStoreProperties

MessageStoreProperties class

Copyright © 2006, iAnywhere Solutions, Inc. 401

MessageType class
Synopsis

public MessageType

Remarks
Defines constant values for the MSG_TYPE variable message property.

The following example shows the onSystemMessage method which is used to handle QAnywhere system
messages. The message type is compared to NETWORK_STATUS_NOTIFICATION variable.

 void SystemQueueListener::onMessage(QAMessage * msg)
 {
 QATextMessage * t_msg;
 TCHAR buffer[512];
 int len;
 int msg_type;
 t_msg = msg->castToTextMessage();
 if(t_msg != NULL) {
 t_msg->getIntProperty(MessageProperties::MSG_TYPE, &msg_type);
 if(msg_type == MessageType::NETWORK_STATUS_NOTIFICATION) {
 // get network names using MessageProperties::NETWORK
 len = t_msg->getStringProperty(MessageProperties::NETWORK,buffer,sizeof
(buffer));
 }
 //...
 }
 }

Members
All members of MessageType, including all inherited members.

♦ “NETWORK_STATUS_NOTIFICATION variable” on page 402
♦ “PUSH_NOTIFICATION variable” on page 403
♦ “REGULAR variable” on page 403

NETWORK_STATUS_NOTIFICATION variable

Synopsis
const qa_int MessageType::NETWORK_STATUS_NOTIFICATION

Remarks
Identifies a QAnywhere system message used to notify QAnywhere client applications of network status
changes.

QAnywhere C++ API Reference

402 Copyright © 2006, iAnywhere Solutions, Inc.

Network status changes apply to the device receiving the system message. Use ADAPTER variable,
MessageProperties::NETWORK,and NETWORK_STATUS variable fields to identify new network status
information.

For more information, see “Pre-defined message properties” on page 209.

PUSH_NOTIFICATION variable

Synopsis
const qa_int MessageType::PUSH_NOTIFICATION

Remarks
Identifies a QAnywhere system message used to notify QAnywhere client applications of push notifications.

If you use the on-demand qaagent policy, a typical response is to call triggerSendReceive function to receive
messages waiting with the central message server.

For more information, see “Pre-defined message properties” on page 209.

REGULAR variable

Synopsis
const qa_int MessageType::REGULAR

Remarks
If no message type property exists then the message type is assumed to be REGULAR.

This type of message is not treated specially by the message system.

MessageType class

Copyright © 2006, iAnywhere Solutions, Inc. 403

QABinaryMessage class
Synopsis

public QABinaryMessage

Base classes
♦ “QAMessage class” on page 466

Remarks
A QABinaryMessage object is used to send a message containing a stream of uninterpreted bytes.

It inherits from the QAMessage class and adds a bytes message body. QABinaryMessage provides a variety
of functions to read from and write to the bytes message body.

When the message is first created, the body of the message is write-only. After a message has been sent, the
client that sent it can retain and modify it without affecting the message that has been sent. The same message
object can be sent multiple times.

When a message is received, the provider has called reset function so that the message body is in read-only
mode and reading of values starts from the beginning of the message body. If a client attempts to write a
message in read-only mode, a COMMON_MSG_NOT_WRITEABLE_ERROR is set.

The following example uses the QABinaryMessage writeString function to write the string "Q" followed by
the string "Anywhere" to a QABinaryMessage instances message body.

 // create a binary message instance
 QABinaryMessage * binary_message;
 binary_message = qa_manager->createBinaryMessage();
 // set optional message properties ...
 binary_message->setReplyToAddress("my-queue-name");
 // write to the message body
 binary_message->writeString("Q");
 binary_messge->writeString("Anywhere");
 // put the message in the local database, ready for sending
 if(!qa_manager->putMessage("store-id\\queue-name", msg)) {
 handleError();
 }

Note: on the receiving end, the first readString function invocation returns "Q" and the next readString
function invocation returns "Anywhere".

The message is sent by the QAnywhere Agent. For more information, see “Determining when message
transmission should occur on the client” on page 36and “Writing QAnywhere Client
Applications” on page 45.

Members
All members of QABinaryMessage, including all inherited members.

QAnywhere C++ API Reference

404 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “beginEnumPropertyNames function” on page 468
♦ “castToBinaryMessage function” on page 468
♦ “castToTextMessage function” on page 468
♦ “clearProperties function” on page 469
♦ “DEFAULT_PRIORITY variable” on page 467
♦ “DEFAULT_TIME_TO_LIVE variable” on page 467
♦ “endEnumPropertyNames function” on page 469
♦ “getAddress function” on page 469
♦ “getBodyLength function” on page 406
♦ “getBooleanProperty function” on page 470
♦ “getByteProperty function” on page 470
♦ “getDoubleProperty function” on page 471
♦ “getExpiration function” on page 471
♦ “getFloatProperty function” on page 472
♦ “getInReplyToID function” on page 472
♦ “getIntProperty function” on page 473
♦ “getLongProperty function” on page 473
♦ “getMessageID function” on page 474
♦ “getPriority function” on page 474
♦ “getPropertyType function” on page 475
♦ “getRedelivered function” on page 475
♦ “getReplyToAddress function” on page 476
♦ “getShortProperty function” on page 476
♦ “getStringProperty function” on page 477
♦ “getStringProperty function” on page 477
♦ “getTimestamp function” on page 478
♦ “getTimestampAsString function” on page 479
♦ “nextPropertyName function” on page 479
♦ “propertyExists function” on page 480
♦ “readBinary function” on page 406
♦ “readBoolean function” on page 407
♦ “readByte function” on page 407
♦ “readChar function” on page 408
♦ “readDouble function” on page 408
♦ “readFloat function” on page 409
♦ “readInt function” on page 409
♦ “readLong function” on page 410
♦ “readShort function” on page 410
♦ “readString function” on page 411
♦ “reset function” on page 411
♦ “setAddress function” on page 480
♦ “setBooleanProperty function” on page 480
♦ “setByteProperty function” on page 481
♦ “setDoubleProperty function” on page 481
♦ “setFloatProperty function” on page 482
♦ “setInReplyToID function” on page 482
♦ “setIntProperty function” on page 483
♦ “setLongProperty function” on page 483

QABinaryMessage class

Copyright © 2006, iAnywhere Solutions, Inc. 405

♦ “setMessageID function” on page 484
♦ “setPriority function” on page 484
♦ “setRedelivered function” on page 484
♦ “setReplyToAddress function” on page 485
♦ “setShortProperty function” on page 485
♦ “setStringProperty function” on page 486
♦ “setTimestamp function” on page 486
♦ “writeBinary function” on page 412
♦ “writeBoolean function” on page 412
♦ “writeByte function” on page 413
♦ “writeChar function” on page 413
♦ “writeDouble function” on page 414
♦ “writeFloat function” on page 414
♦ “writeInt function” on page 415
♦ “writeLong function” on page 415
♦ “writeShort function” on page 416
♦ “writeString function” on page 416
♦ “~QABinaryMessage function” on page 417

getBodyLength function

Synopsis
virtual qa_long QABinaryMessage::getBodyLength()

Remarks
Returns the size of the message body in bytes.

See Also
QABinaryMessage

readBinary function

Synopsis
virtual qa_int QABinaryMessage::readBinary(
 qa_bytes value,
 qa_int length
)

Parameters
♦ value The buffer into which the data is read.

♦ length The maximum number of bytes to read.

QAnywhere C++ API Reference

406 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Reads a specified number of bytes starting from the unread portion of the QABinaryMessage instance's
message body.

See Also
QABinaryMessage

writeBinary function

Returns
The total number of bytes read into the buffer, or -1 if there is no more data because the end of the stream
has been reached.

readBoolean function

Synopsis
virtual qa_bool QABinaryMessage::readBoolean(
 qa_bool * value
)

Parameters
♦ value The destination of the qa_bool value read from the bytes message stream.

Remarks
Reads a boolean value starting from the unread portion of the QABinaryMessage instance's message body.

See Also
QABinaryMessage

writeBoolean function

Returns
True if and only if the operation succeeded.

readByte function

Synopsis
virtual qa_bool QABinaryMessage::readByte(
 qa_byte * value
)

Parameters
♦ value The destination of the qa_byte value read from the bytes message stream.

QABinaryMessage class

Copyright © 2006, iAnywhere Solutions, Inc. 407

Remarks
Reads a signed 8-bit value starting from the unread portion of the QABinaryMessage instance's message
body.

See Also
QABinaryMessage

writeByte function

Returns
True if and only if the operation succeeded.

readChar function

Synopsis
virtual qa_bool QABinaryMessage::readChar(
 qa_char * value
)

Parameters
♦ value The destination of the qa_char value read from the bytes message stream.

Remarks
Reads a character value starting from the unread portion of the QABinaryMessage instance's message body.

See Also
QABinaryMessage

writeChar function

Returns
The character value read.

readDouble function

Synopsis
virtual qa_bool QABinaryMessage::readDouble(
 qa_double * value
)

Parameters
♦ value The destination of the double value read from the bytes message stream.

QAnywhere C++ API Reference

408 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Reads a double value starting from the unread portion of the QABinaryMessage instance's message body.

See Also
QABinaryMessage

writeDouble function

Returns
True if and only if the operation succeeded.

readFloat function

Synopsis
virtual qa_bool QABinaryMessage::readFloat(
 qa_float * value
)

Parameters
♦ value The destination of the float value read from the bytes message stream.

Remarks
Reads a float value starting from the unread portion of the QABinaryMessage instance's message body.

See Also
QABinaryMessage

writeFloat function

Returns
True if and only if the operation succeeded.

readInt function

Synopsis
virtual qa_bool QABinaryMessage::readInt(
 qa_int * value
)

Parameters
♦ value The destination of the qa_int value read from the bytes message stream.

QABinaryMessage class

Copyright © 2006, iAnywhere Solutions, Inc. 409

Remarks
Reads a signed 32-bit integer value starting from the unread portion of the QABinaryMessage instance's
message body.

See Also
QABinaryMessage

writeInt function

Returns
True if and only if the operation succeeded.

readLong function

Synopsis
virtual qa_bool QABinaryMessage::readLong(
 qa_long * value
)

Parameters
♦ value The destination of the long value read from the bytes message stream.

Remarks
Reads a signed 64-bit integer value starting from the unread portion of the QABinaryMessage instance's
message body.

See Also
QABinaryMessage

writeLong function

Returns
True if and only if the operation succeeded.

readShort function

Synopsis
virtual qa_bool QABinaryMessage::readShort(
 qa_short * value
)

Parameters
♦ value The destination of the qa_short value read from the bytes message stream.

QAnywhere C++ API Reference

410 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Reads a signed 16-bit value starting from the unread portion of the QABinaryMessage instance's message
body.

See Also
QABinaryMessage

writeShort function

Returns
True if and only if the operation succeeded.

readString function

Synopsis
virtual qa_int QABinaryMessage::readString(
 qa_string dest,
 qa_int maxLen
)

Parameters
♦ dest The destination of the qa_string value read from the bytes message stream.

♦ maxLen The maximum number of characters to read, including the null terminator character.

Remarks
Reads a string value starting from the unread portion of the QABinaryMessage instance's message body.

See Also
QABinaryMessage

writeString function

Returns
The total number of non-null qa_chars read into the buffer, -1 if there is no more data or an error occurred,
or -2 if the buffer is too small.

reset function

Synopsis
virtual void QABinaryMessage::reset()

Remarks
Resets a message so that the reading of values starts from the beginning of the message body.

QABinaryMessage class

Copyright © 2006, iAnywhere Solutions, Inc. 411

The Reset method also puts the QABinaryMessage message body in read-only mode.

See Also
QABinaryMessage

writeBinary function

Synopsis
virtual void QABinaryMessage::writeBinary(
 qa_const_bytes value,
 qa_int offset,
 qa_int length
)

Parameters
♦ value The byte array value to write to the message body.

♦ offset The offset within the byte array to begin writing.

♦ length The number of bytes to write.

Remarks
Appends a byte array value to the QABinaryMessage instance's message body.

See Also
QABinaryMessage

readBinary function

writeBoolean function

Synopsis
virtual void QABinaryMessage::writeBoolean(
 qa_bool value
)

Parameters
♦ value The boolean value to write to the message body.

Remarks
Appends a boolean value to the QABinaryMessage instance's message body.

The boolean is represented as a one-byte value. True is represented as 1; false is represented as 0.

QAnywhere C++ API Reference

412 Copyright © 2006, iAnywhere Solutions, Inc.

See Also
QABinaryMessage

readBoolean function

writeByte function

Synopsis
virtual void QABinaryMessage::writeByte(
 qa_byte value
)

Parameters
♦ value The byte array value to write to the message body.

Remarks
Appends a byte value to the QABinaryMessage instance's message body.

The byte is represented as a one-byte value.

See Also
QABinaryMessage

readByte function

writeChar function

Synopsis
virtual void QABinaryMessage::writeChar(
 qa_char value
)

Parameters
♦ value the char value to write to the message body.

Remarks
Appends a char value to the QABinaryMessage instance's message body.

The char parameter is represented as a two-byte value and the high order byte is appended first.

See Also
QABinaryMessage

readChar function

QABinaryMessage class

Copyright © 2006, iAnywhere Solutions, Inc. 413

writeDouble function

Synopsis
virtual void QABinaryMessage::writeDouble(
 qa_double value
)

Parameters
♦ value The double value to write to the message body.

Remarks
Appends a double value to the QABinaryMessage instance's message body.

The double parameter is converted to a representive eight-byte long value. Higher order bytes are appended
first.

See Also
QABinaryMessage

readDouble function

writeFloat function

Synopsis
virtual void QABinaryMessage::writeFloat(
 qa_float value
)

Parameters
♦ value The float value to write to the message body.

Remarks
Appends a float value to the QABinaryMessage instance's message body.

The float parameter is converted to a representative 4-byte integer and the higher order bytes are appended
first.

See Also
QABinaryMessage

readFloat function

QAnywhere C++ API Reference

414 Copyright © 2006, iAnywhere Solutions, Inc.

writeInt function

Synopsis
virtual void QABinaryMessage::writeInt(
 qa_int value
)

Parameters
♦ value the int value to write to the message body.

Remarks
Appends an integer value to the QABinaryMessage instance's message body.

The integer parameter is represented as a four-byte value and higher order bytes are appended first.

See Also
QABinaryMessage

readInt function

writeLong function

Synopsis
virtual void QABinaryMessage::writeLong(
 qa_long value
)

Parameters
♦ value The long value to write to the message body.

Remarks
Appends a long value to the QABinaryMessage instance's message body.

The long parameter is represented as an eight-byte value and higher order bytes are appended first.

See Also
QABinaryMessage

readLong function

QABinaryMessage class

Copyright © 2006, iAnywhere Solutions, Inc. 415

writeShort function

Synopsis
virtual void QABinaryMessage::writeShort(
 qa_short value
)

Parameters
♦ value The short value to write to the message body.

Remarks
Appends a short value to the QABinaryMessage instance's message body.

The short parameter is represented as a two-byte value and the higher order byte is appended first.

See Also
QABinaryMessage

readShort function

writeString function

Synopsis
virtual void QABinaryMessage::writeString(
 qa_const_string value
)

Parameters
♦ value The string value to write to the message body.

Remarks
Appends a string value to the QABinaryMessage instance's message body.

Note: The receving application needs to invoke readString function for each writeString invocation.

Note: The UTF-8 representation of the string can be at most 32767 bytes.

See Also
QABinaryMessage

readString function

QAnywhere C++ API Reference

416 Copyright © 2006, iAnywhere Solutions, Inc.

~QABinaryMessage function

Synopsis
virtual QABinaryMessage::~QABinaryMessage()

Remarks
Virtual destructor.

QABinaryMessage class

Copyright © 2006, iAnywhere Solutions, Inc. 417

QAError class
Synopsis

public QAError

Remarks
This class defines error constants associated with a QAnywhere client application.

A QAError object is used internally by the QAManager class object to keep track of errors associated with
messaging operations. The application programmer should not need to create an instance of this class. The
error constants should be used by the application programmer to interpret error codes returned by
getLastError function

See Also
getLastErrorMsg function

 if (qa_mgr->getLastError() != QAError::QA_NO_ERROR)
 {
 //process error
 }

Members
All members of QAError, including all inherited members.

♦ “COMMON_ALREADY_OPEN_ERROR variable” on page 419
♦ “COMMON_GET_INIT_FILE_ERROR variable” on page 420
♦ “COMMON_GETQUEUEDEPTH_ERROR variable” on page 419
♦ “COMMON_GETQUEUEDEPTH_ERROR_INVALID_ARG variable” on page 419
♦ “COMMON_GETQUEUEDEPTH_ERROR_NO_STORE_ID variable” on page 420
♦ “COMMON_INIT_ERROR variable” on page 420
♦ “COMMON_INIT_THREAD_ERROR variable” on page 420
♦ “COMMON_INVALID_PROPERTY variable” on page 421
♦ “COMMON_MSG_ACKNOWLEDGE_ERROR variable” on page 421
♦ “COMMON_MSG_CANCEL_ERROR variable” on page 421
♦ “COMMON_MSG_CANCEL_ERROR_SENT variable” on page 421
♦ “COMMON_MSG_NOT_WRITEABLE_ERROR variable” on page 422
♦ “COMMON_MSG_RETRIEVE_ERROR variable” on page 422
♦ “COMMON_MSG_STORE_ERROR variable” on page 422
♦ “COMMON_MSG_STORE_NOT_INITIALIZED variable” on page 423
♦ “COMMON_MSG_STORE_TOO_LARGE variable” on page 423
♦ “COMMON_NO_DEST_ERROR variable” on page 423
♦ “COMMON_NO_IMPLEMENTATION variable” on page 424
♦ “COMMON_NOT_OPEN_ERROR variable” on page 423
♦ “COMMON_OPEN_ERROR variable” on page 424
♦ “COMMON_OPEN_LOG_FILE_ERROR variable” on page 424
♦ “COMMON_OPEN_MAXTHREADS_ERROR variable” on page 424
♦ “COMMON_SELECTOR_SYNTAX_ERROR variable” on page 425

QAnywhere C++ API Reference

418 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “COMMON_TERMINATE_ERROR variable” on page 425
♦ “COMMON_UNEXPECTED_EOM_ERROR variable” on page 425
♦ “COMMON_UNREPRESENTABLE_TIMESTAMP variable” on page 425
♦ “QA_NO_ERROR variable” on page 426

COMMON_ALREADY_OPEN_ERROR variable

Synopsis
const qa_int QAError::COMMON_ALREADY_OPEN_ERROR

Remarks
The QAManager class is already open.

See Also
QAError

COMMON_GETQUEUEDEPTH_ERROR variable

Synopsis
const qa_int QAError::COMMON_GETQUEUEDEPTH_ERROR

Remarks
Error getting queue depth.

See Also
QAError

COMMON_GETQUEUEDEPTH_ERROR_INVALID_ARG variable

Synopsis
const qa_int QAError::COMMON_GETQUEUEDEPTH_ERROR_INVALID_ARG

Remarks
Cannot use getQueueDepth function on a given destination when filter is ALL.

See Also
QAError

QAError class

Copyright © 2006, iAnywhere Solutions, Inc. 419

COMMON_GETQUEUEDEPTH_ERROR_NO_STORE_ID variable

Synopsis
const qa_int QAError::COMMON_GETQUEUEDEPTH_ERROR_NO_STORE_ID

Remarks
Cannot use getQueueDepth function when the message store ID has not been set.

See Also
QAError

COMMON_GET_INIT_FILE_ERROR variable

Synopsis
const qa_int QAError::COMMON_GET_INIT_FILE_ERROR

Remarks
Unable to access the client properties file.

See Also
QAError

COMMON_INIT_ERROR variable

Synopsis
const qa_int QAError::COMMON_INIT_ERROR

Remarks
Initialization error.

See Also
QAError

COMMON_INIT_THREAD_ERROR variable

Synopsis
const qa_int QAError::COMMON_INIT_THREAD_ERROR

Remarks
Error initializing the background thread.

QAnywhere C++ API Reference

420 Copyright © 2006, iAnywhere Solutions, Inc.

See Also
QAError

COMMON_INVALID_PROPERTY variable

Synopsis
const qa_int QAError::COMMON_INVALID_PROPERTY

Remarks
There is an invalid property in the client properties file.

See Also
QAError

COMMON_MSG_ACKNOWLEDGE_ERROR variable

Synopsis
const qa_int QAError::COMMON_MSG_ACKNOWLEDGE_ERROR

Remarks
Error acknowledging the message.

See Also
QAError

COMMON_MSG_CANCEL_ERROR variable

Synopsis
const qa_int QAError::COMMON_MSG_CANCEL_ERROR

Remarks
Error cancelling message.

See Also
QAError

COMMON_MSG_CANCEL_ERROR_SENT variable

Synopsis
const qa_int QAError::COMMON_MSG_CANCEL_ERROR_SENT

QAError class

Copyright © 2006, iAnywhere Solutions, Inc. 421

Remarks
Error cancelling message.

Cannot cancel a message that has already been sent.

See Also
QAError

COMMON_MSG_NOT_WRITEABLE_ERROR variable

Synopsis
const qa_int QAError::COMMON_MSG_NOT_WRITEABLE_ERROR

Remarks
You cannot write to a message as it is in read-only mode.

See Also
QAError

COMMON_MSG_RETRIEVE_ERROR variable

Synopsis
const qa_int QAError::COMMON_MSG_RETRIEVE_ERROR

Remarks
Error retrieving a message from the client message store.

See Also
QAError

COMMON_MSG_STORE_ERROR variable

Synopsis
const qa_int QAError::COMMON_MSG_STORE_ERROR

Remarks
Error storing a message in the client message store.

See Also
QAError

QAnywhere C++ API Reference

422 Copyright © 2006, iAnywhere Solutions, Inc.

COMMON_MSG_STORE_NOT_INITIALIZED variable

Synopsis
const qa_int QAError::COMMON_MSG_STORE_NOT_INITIALIZED

Remarks
The message store has not been initialized for messaging.

See Also
QAError

COMMON_MSG_STORE_TOO_LARGE variable

Synopsis
const qa_int QAError::COMMON_MSG_STORE_TOO_LARGE

Remarks
The message store is too large relative to the free disk space on the device.

See Also
QAError

COMMON_NOT_OPEN_ERROR variable

Synopsis
const qa_int QAError::COMMON_NOT_OPEN_ERROR

Remarks
The QAManager class is not open.

See Also
QAError

COMMON_NO_DEST_ERROR variable

Synopsis
const qa_int QAError::COMMON_NO_DEST_ERROR

Remarks
No destination.

QAError class

Copyright © 2006, iAnywhere Solutions, Inc. 423

See Also
QAError

COMMON_NO_IMPLEMENTATION variable

Synopsis
const qa_int QAError::COMMON_NO_IMPLEMENTATION

Remarks
The function is not implemented.

See Also
QAError

COMMON_OPEN_ERROR variable

Synopsis
const qa_int QAError::COMMON_OPEN_ERROR

Remarks
Error opening a connection to the message store.

See Also
QAError

COMMON_OPEN_LOG_FILE_ERROR variable

Synopsis
const qa_int QAError::COMMON_OPEN_LOG_FILE_ERROR

Remarks
Error opening the log file.

See Also
QAError

COMMON_OPEN_MAXTHREADS_ERROR variable

Synopsis
const qa_int QAError::COMMON_OPEN_MAXTHREADS_ERROR

QAnywhere C++ API Reference

424 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Cannot open the QAManager class because the maximum number of concurrent server requests is not high
enough (see database server -gn option).

COMMON_SELECTOR_SYNTAX_ERROR variable

Synopsis
const qa_int QAError::COMMON_SELECTOR_SYNTAX_ERROR

Remarks
The given selector has a syntax error.

See Also
QAError

COMMON_TERMINATE_ERROR variable

Synopsis
const qa_int QAError::COMMON_TERMINATE_ERROR

Remarks
Termination error.

See Also
QAError

COMMON_UNEXPECTED_EOM_ERROR variable

Synopsis
const qa_int QAError::COMMON_UNEXPECTED_EOM_ERROR

Remarks
Unexpected end of message reached.

See Also
QAError

COMMON_UNREPRESENTABLE_TIMESTAMP variable

Synopsis
const qa_int QAError::COMMON_UNREPRESENTABLE_TIMESTAMP

QAError class

Copyright © 2006, iAnywhere Solutions, Inc. 425

Remarks
The timestamp is outside of the acceptable range.

See Also
QAError

QA_NO_ERROR variable

Synopsis
const qa_int QAError::QA_NO_ERROR

Remarks
No error.

See Also
QAError

QAnywhere C++ API Reference

426 Copyright © 2006, iAnywhere Solutions, Inc.

QAManager class
Synopsis

public QAManager

Base classes
♦ “QAManagerBase class” on page 432

Remarks
The QAManager class derives from QAManagerBase class and manages non-transactional QAnywhere
messaging operations.

For a detailed description of derived behavior, see QAManagerBase class.

The QAManager can be configured for implicit or explicit acknowledgement as defined in the
AcknowledgementMode class enumeration. To acknowledge messages as part of a transaction, use
QATransactionalManager class.

Use the QAManagerFactory class to create QAManager and QATransactionalManager class objects.

Members
All members of QAManager, including all inherited members.

♦ “acknowledge function” on page 428
♦ “acknowledgeAll function” on page 429
♦ “acknowledgeUntil function” on page 429
♦ “beginEnumStorePropertyNames function” on page 433
♦ “browseClose function” on page 434
♦ “browseMessages function” on page 434
♦ “browseMessagesByID function” on page 435
♦ “browseMessagesByQueue function” on page 436
♦ “browseMessagesBySelector function” on page 436
♦ “browseNextMessage function” on page 437
♦ “cancelMessage function” on page 438
♦ “close function” on page 438
♦ “createBinaryMessage function” on page 439
♦ “createTextMessage function” on page 439
♦ “deleteMessage function” on page 440
♦ “endEnumStorePropertyNames function” on page 440
♦ “getAllQueueDepth function” on page 440
♦ “getBooleanStoreProperty function” on page 441
♦ “getByteStoreProperty function” on page 442
♦ “getDoubleStoreProperty function” on page 442
♦ “getFloatStoreProperty function” on page 443
♦ “getIntStoreProperty function” on page 443
♦ “getLastError function” on page 444
♦ “getLastErrorMsg function” on page 444

QAManager class

Copyright © 2006, iAnywhere Solutions, Inc. 427

♦ “getLongStoreProperty function” on page 445
♦ “getMessage function” on page 445
♦ “getMessageBySelector function” on page 446
♦ “getMessageBySelectorNoWait function” on page 447
♦ “getMessageBySelectorTimeout function” on page 447
♦ “getMessageNoWait function” on page 448
♦ “getMessageTimeout function” on page 448
♦ “getMode function” on page 449
♦ “getQueueDepth function” on page 450
♦ “getShortStoreProperty function” on page 450
♦ “getStringStoreProperty function” on page 451
♦ “nextStorePropertyName function” on page 451
♦ “open function” on page 430
♦ “putMessage function” on page 452
♦ “putMessageTimeToLive function” on page 453
♦ “recover function” on page 431
♦ “setBooleanStoreProperty function” on page 453
♦ “setByteStoreProperty function” on page 454
♦ “setDoubleStoreProperty function” on page 454
♦ “setFloatStoreProperty function” on page 455
♦ “setIntStoreProperty function” on page 456
♦ “setLongStoreProperty function” on page 456
♦ “setMessageListener function” on page 457
♦ “setMessageListenerBySelector function” on page 457
♦ “setProperty function” on page 458
♦ “setShortStoreProperty function” on page 459
♦ “setStringStoreProperty function” on page 459
♦ “start function” on page 460
♦ “stop function” on page 460
♦ “triggerSendReceive function” on page 461

acknowledge function

Synopsis
virtual qa_bool QAManager::acknowledge(
 QAMessage * msg
)

Parameters
♦ msg The message to acknowledge.

Remarks
Acknowledges that the client application successfully received a QAnywhere message.

QAnywhere C++ API Reference

428 Copyright © 2006, iAnywhere Solutions, Inc.

Note: when a QAMessage class is acknowledged, its STATUS variable property changes to RECEIVED
variable. When a QAMessage class status changes to RECEIVED variable, it can be deleted using the default
delete rule.

For more information about delete rules, see “Message delete rules” on page 239.

See Also
QAManager

acknowledgeAll function

acknowledgeUntil function

Returns
True if and only if the operation succeeded.

acknowledgeAll function

Synopsis
virtual qa_bool QAManager::acknowledgeAll()

Remarks
Acknowledges that the client application successfully received all unacknowledged QAnywhere messages.

Note: when a QAMessage class is acknowledged, its STATUS variable property changes to RECEIVED
variable. When a QAMessage class status changes to RECEIVED variable, it can be deleted using the default
delete rule.

For more information about delete rules, see “Message delete rules” on page 239.

See Also
QAManager

acknowledge function

acknowledgeUntil function

Returns
True if and only if the operation succeeded.

acknowledgeUntil function

Synopsis
virtual qa_bool QAManager::acknowledgeUntil(
 QAMessage * msg
)

QAManager class

Copyright © 2006, iAnywhere Solutions, Inc. 429

Parameters
♦ msg The last message to acknowledge. All earlier unacknowledged messages are also acknowledged.

Remarks
Acknowledges the given QAMessage class instance and all unacknowledged messages received before the
given message.

Note: when a QAMessage class is acknowledged, its STATUS variable property changes to RECEIVED
variable. When a QAMessage class status changes to RECEIVED variable, it can be deleted using the default
delete rule.

For more information about delete rules, see “Message delete rules” on page 239.

See Also
QAManager

acknowledge function

acknowledgeAll function

Returns
True if and only if the operation succeeded.

open function

Synopsis
virtual qa_bool QAManager::open(
 qa_short mode
)

Parameters
♦ mode The acknowledgement mode.

Remarks
Opens the QAManager with the given AcknowledgementMode class value.

The open function must be the first method called after creating a QAManager.

See Also
QAManager

AcknowledgementMode class

Returns
True if and only if the operation succeeded.

QAnywhere C++ API Reference

430 Copyright © 2006, iAnywhere Solutions, Inc.

recover function

Synopsis
virtual qa_bool QAManager::recover()

Remarks
Force all unacknowledged messages into a state of unreceived.

That is, these messages must be received again using getMessage function.

Returns
True if and only if the operation succeeded.

QAManager class

Copyright © 2006, iAnywhere Solutions, Inc. 431

QAManagerBase class
Synopsis

public QAManagerBase

Derived classes
♦ “QAManager class” on page 427
♦ “QATransactionalManager class” on page 492

Remarks
This class acts as a base class for QATransactionalManager class and QAManager class, which manage
transactional and non-transactional messaging, respectively.

Use the start function to allow a QAManagerBase instance to listen for messages. There must be only a
single instance of QAManagerBase per thread in your application. For more information about qaagent
transmission policies, see “Determining when message transmission should occur on the
client” on page 36.

You can use instances of this class to create and manage QAnywhere messages. Use the createBinaryMessage
function and the createTextMessage function to create appropriate QAMessage class instances. QAMessage
class instances provide a variety of methods to set message content and properties. To send QAnywhere
messages, use the putMessage function to place the addressed message in the local message store queue.
The message is transmitted by the QAnywhere Agent based on its transmission policies or when you call
the triggerSendReceive function.

Messages are released from memory when you close a QAManagerBase instance using the close function.
For more information, see “Client message store properties” on page 215and the MessageStoreProperties
class.

You can use getLastError function and QAManagerBase::getLastErrorMessage to return error information
when a QAException occurs. QAManagerBase also provides methods to set and get message store properties.

Members
All members of QAManagerBase, including all inherited members.

♦ “beginEnumStorePropertyNames function” on page 433
♦ “browseClose function” on page 434
♦ “browseMessages function” on page 434
♦ “browseMessagesByID function” on page 435
♦ “browseMessagesByQueue function” on page 436
♦ “browseMessagesBySelector function” on page 436
♦ “browseNextMessage function” on page 437
♦ “cancelMessage function” on page 438
♦ “close function” on page 438
♦ “createBinaryMessage function” on page 439
♦ “createTextMessage function” on page 439
♦ “deleteMessage function” on page 440
♦ “endEnumStorePropertyNames function” on page 440

QAnywhere C++ API Reference

432 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “getAllQueueDepth function” on page 440
♦ “getBooleanStoreProperty function” on page 441
♦ “getByteStoreProperty function” on page 442
♦ “getDoubleStoreProperty function” on page 442
♦ “getFloatStoreProperty function” on page 443
♦ “getIntStoreProperty function” on page 443
♦ “getLastError function” on page 444
♦ “getLastErrorMsg function” on page 444
♦ “getLongStoreProperty function” on page 445
♦ “getMessage function” on page 445
♦ “getMessageBySelector function” on page 446
♦ “getMessageBySelectorNoWait function” on page 447
♦ “getMessageBySelectorTimeout function” on page 447
♦ “getMessageNoWait function” on page 448
♦ “getMessageTimeout function” on page 448
♦ “getMode function” on page 449
♦ “getQueueDepth function” on page 450
♦ “getShortStoreProperty function” on page 450
♦ “getStringStoreProperty function” on page 451
♦ “nextStorePropertyName function” on page 451
♦ “putMessage function” on page 452
♦ “putMessageTimeToLive function” on page 453
♦ “setBooleanStoreProperty function” on page 453
♦ “setByteStoreProperty function” on page 454
♦ “setDoubleStoreProperty function” on page 454
♦ “setFloatStoreProperty function” on page 455
♦ “setIntStoreProperty function” on page 456
♦ “setLongStoreProperty function” on page 456
♦ “setMessageListener function” on page 457
♦ “setMessageListenerBySelector function” on page 457
♦ “setProperty function” on page 458
♦ “setShortStoreProperty function” on page 459
♦ “setStringStoreProperty function” on page 459
♦ “start function” on page 460
♦ “stop function” on page 460
♦ “triggerSendReceive function” on page 461

beginEnumStorePropertyNames function

Synopsis
virtual qa_store_property_enum_handle QAManagerBase::beginEnumStorePropertyNames()

Remarks
Begins an enumeration of message store property names.

QAManagerBase class

Copyright © 2006, iAnywhere Solutions, Inc. 433

The handle returned by this method is supplied to the nextStorePropertyName function. This method and
the nextStorePropertyName function can be used to enumerate the message store property names at the time
this method was called. Message store properties cannot be set between the beginEnumStorePropertyNames
and the endEnumStorePropertyNames function calls.

See Also
QAManagerBase

Returns
A handle that is supplied to nextStorePropertyName function.

browseClose function

Synopsis
virtual void QAManagerBase::browseClose(
 qa_browse_handle handle
)

Parameters
♦ handle A handle returned by one of the begin browse operations.

Remarks
Frees the resources associated with a browse operation.

See Also
QAManagerBase

browseMessages function

Synopsis
virtual qa_browse_handle QAManagerBase::browseMessages()

Remarks
Begins a browse of messages queued in the message store.

The handle returned by this method is supplied to browseNextMessage function. This method and the
browseNextMessage function can be used to enumerate the messages in the message store at the time this
method was called.

The messages are just being browsed, so they cannot be acknowledged. Use getMessage function to receive
messages so they can be acknowledged.

See Also
browseNextMessage function

QAnywhere C++ API Reference

434 Copyright © 2006, iAnywhere Solutions, Inc.

browseMessagesByQueue function

browseMessagesByID function

browseClose function

QAManagerBase

Returns
A handle that is supplied to browseNextMessage function

browseMessagesByID function

Synopsis
virtual qa_browse_handle QAManagerBase::browseMessagesByID(
 qa_const_string msgid
)

Parameters
♦ msgid The message ID.

Remarks
Begins a browse of the message that is queued in the message store, with the given message ID.

The handle returned by this method is supplied to browseNextMessage function. This method and
browseNextMessage function can be used to enumerate the messages in the message store at the time this
method was called.

The messages are just being browsed, so they cannot be acknowledged. Use getMessage function to receive
messages so they can be acknowledged.

See Also
browseNextMessage function

browseMessagesByQueue function

QAManagerBase::BrowseMessages()

browseClose function

QAManagerBase

Returns
A handle that is supplied to browseNextMessage.

QAManagerBase class

Copyright © 2006, iAnywhere Solutions, Inc. 435

browseMessagesByQueue function

Synopsis
virtual qa_browse_handle QAManagerBase::browseMessagesByQueue(
 qa_const_string address
)

Parameters
♦ address The queue in which to browse.

Remarks
Begins a browse of messages queued in the message store for the given queue.

The handle returned by this method is supplied to browseNextMessage function. This method and
browseNextMessage function can be used to enumerate the messages in the message store at the time this
method was called.

The messages are just being browsed, so they cannot be acknowledged. Use getMessage function to receive
messages so they can be acknowledged.

See Also
browseNextMessage function

browseMessagesByID function

QAManagerBase::BrowseMessages()

browseClose function

QAManagerBase

Returns
A handle that is supplied to browseNextMessage.

browseMessagesBySelector function

Synopsis
virtual qa_browse_handle QAManagerBase::browseMessagesBySelector(
 qa_const_string selector
)

Parameters
♦ selector The selector.

Remarks
Begins a browse of messages queued in the message store that satisfy the given selector.

QAnywhere C++ API Reference

436 Copyright © 2006, iAnywhere Solutions, Inc.

The handle returned by this method is supplied to browseNextMessage function. This method and
browseNextMessage function can be used to enumerate the messages in the message store at the time this
method was called.

The messages are just being browsed, so they cannot be acknowledged.

Use getMessage function to receive messages so they can be acknowledged.

See Also
browseNextMessage function

browseMessagesByID function

browseMessagesByQueue function

QAManagerBase::BrowseMessages()

browseClose function

QAManagerBase

Returns
A handle that is supplied to browseNextMessage.

browseNextMessage function

Synopsis
virtual QAMessage * QAManagerBase::browseNextMessage(
 qa_browse_handle handle
)

Parameters
♦ handle A handle returned by one of the begin browse operations.

Remarks
Returns the next message for the given browse operation, returning null if there are no more messages.

To obtain the handle to browsed messages, use browseMessages function or other QAManagerBase methods
which allow you to browse messages by queue or message ID.

See Also
QAManagerBase::BrowseMessages()

browseMessagesByQueue function

browseMessagesByID function

browseClose function

QAManagerBase

QAManagerBase class

Copyright © 2006, iAnywhere Solutions, Inc. 437

Returns
The next message, or qa_null if there are no more messages.

cancelMessage function

Synopsis
virtual qa_bool QAManagerBase::cancelMessage(
 qa_const_string msgid
)

Parameters
♦ msgid The ID of the message to cancel.

Remarks
Cancels the message with the given message ID.

cancelMessage puts a message into a cancelled state before it is transmitted. With the default delete rules of
the QAnywhere Agent, cancelled messages are eventually deleted from the message store. cancelMessage
fails if the message is already in a final state, or if it has been transmitted to the central messaging server.

For more information about delete rules, see “Message delete rules” on page 239.

See Also
QAManagerBase

Returns
True if and only if the operation succeeded.

close function

Synopsis
virtual qa_bool QAManagerBase::close()

Remarks
Closes the connection to the QAnywhere message system and releases any resources used by the
QAManagerBase.

Subsequent calls to close function are ignored. When an instance of QAManagerBase is closed, it cannot be
re-opened; you must create and open a new QAManagerBase instance in this case.

See Also
open function

open function

QAManagerBase

QAnywhere C++ API Reference

438 Copyright © 2006, iAnywhere Solutions, Inc.

Returns
True if and only if the operation succeeded.

createBinaryMessage function

Synopsis
virtual QABinaryMessage * QAManagerBase::createBinaryMessage()

Remarks
Creates a QABinaryMessage class instance.

A QABinaryMessage class instance is used to send a message containing a message body of uninterpreted
bytes.

See Also
QABinaryMessage class

QAManagerBase

Returns
A new QABinaryMessage class instance.

createTextMessage function

Synopsis
virtual QATextMessage * QAManagerBase::createTextMessage()

Remarks
Creates a QATextMessage class instance.

A QATextMessage class object is used to send a message containing a string message body.

See Also
QATextMessage class

QAManagerBase

Returns
A new QATextMessage class instance.

QAManagerBase class

Copyright © 2006, iAnywhere Solutions, Inc. 439

deleteMessage function

Synopsis
virtual void QAManagerBase::deleteMessage(
 QAMessage * msg
)

Parameters
♦ msg The message to delete.

Remarks
Deletes a QAMessage class object.

By default, messages created by QAManagerBase:createTextMessage or createBinaryMessage function are
deleted automatically when the QAManagerBase is closed. This method allows more control over when
messages are deleted.

See Also
QAManagerBase

endEnumStorePropertyNames function

Synopsis
virtual void QAManagerBase::endEnumStorePropertyNames(
 qa_store_property_enum_handle h
)

Parameters
♦ h A handle returned by beginEnumStorePropertyNames.

Remarks
Frees the resources associated with a message store property name enumeration.

See Also
QAManagerBase

getAllQueueDepth function

Synopsis
virtual qa_int QAManagerBase::getAllQueueDepth(
 qa_short filter
)

QAnywhere C++ API Reference

440 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
♦ filter A filter indicating incoming messages, outgoing messages, or all messages.

Remarks
Returns the total depth of all queues, based on a given filter.

The depth of a queue is the number of messages which have not been received (for example, using
getMessage function).

See Also
QAManagerBase

Returns
The number of messages, or -1 if an error occurs.

See Also
QueueDepthFilter class.

getBooleanStoreProperty function

Synopsis
virtual qa_bool QAManagerBase::getBooleanStoreProperty(
 qa_const_string name,
 qa_bool * value
)

Parameters
♦ name The pre-defined or custom property name.

♦ value The destination for the boolean value.

Remarks
Gets a boolean value for a pre-defined or custom message store property.

You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

See Also
QAManagerBase

Returns
True if and only if the operation succeeded.

QAManagerBase class

Copyright © 2006, iAnywhere Solutions, Inc. 441

getByteStoreProperty function

Synopsis
virtual qa_bool QAManagerBase::getByteStoreProperty(
 qa_const_string name,
 qa_byte * value
)

Parameters
♦ name The pre-defined or custom property name.

♦ value The destination for the byte value.

Remarks
Gets a byte value for a pre-defined or custom message store property.

You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

See Also
QAManagerBase

Returns
True if and only if the operation succeeded.

getDoubleStoreProperty function

Synopsis
virtual qa_bool QAManagerBase::getDoubleStoreProperty(
 qa_const_string name,
 qa_double * value
)

Parameters
♦ name The pre-defined or custom property name.

♦ value The destination for the double value.

Remarks
Gets a double value for a pre-defined or custom message store property.

You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

QAnywhere C++ API Reference

442 Copyright © 2006, iAnywhere Solutions, Inc.

See Also
QAManagerBase

Returns
True if and only if the operation succeeded.

getFloatStoreProperty function

Synopsis
virtual qa_bool QAManagerBase::getFloatStoreProperty(
 qa_const_string name,
 qa_float * value
)

Parameters
♦ name The pre-defined or custom property name.

♦ value The destination for the float value.

Remarks
Gets a float value for a pre-defined or custom message store property.

You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

See Also
QAManagerBase

Returns
True if and only if the operation succeeded.

getIntStoreProperty function

Synopsis
virtual qa_bool QAManagerBase::getIntStoreProperty(
 qa_const_string name,
 qa_int * value
)

Parameters
♦ name The pre-defined or custom property name.

♦ value The destination for the int value.

QAManagerBase class

Copyright © 2006, iAnywhere Solutions, Inc. 443

Remarks
Gets an int value for a pre-defined or custom message store property.

You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

See Also
QAManagerBase

Returns
True if and only if the operation succeeded.

getLastError function

Synopsis
virtual qa_int QAManagerBase::getLastError()

Remarks
The error code associated with the last excecuted QAManagerBase method.

0 indicates no error.

For a list of values, see the QAError class.

See Also
getLastErrorMsg function

QAError class

QAManagerBase

Returns
The error code.

getLastErrorMsg function

Synopsis
virtual qa_string QAManagerBase::getLastErrorMsg()

Remarks
The error text associated with the last executed QAManagerBase method.

QAnywhere C++ API Reference

444 Copyright © 2006, iAnywhere Solutions, Inc.

This method returns null if getLastError function returns 0. You can retrieve this property after catching a
QAError class.

See Also
getLastError function

QAError class

QAManagerBase

Returns
The error message.

getLongStoreProperty function

Synopsis
virtual qa_bool QAManagerBase::getLongStoreProperty(
 qa_const_string name,
 qa_long * value
)

Parameters
♦ name The pre-defined or custom property name.

♦ value The destination for the long value.

Remarks
Gets a long value for a pre-defined or custom message store property.

You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

See Also
QAManagerBase

Returns
True if and only if the operation succeeded.

getMessage function

Synopsis
virtual QAMessage * QAManagerBase::getMessage(
 qa_const_string address
)

QAManagerBase class

Copyright © 2006, iAnywhere Solutions, Inc. 445

Parameters
♦ address The destination.

Remarks
Returns the next available QAMessage class sent to the specified address.

The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'or
'queue-name'. If there is no message available, this call blocks indefinitely until a message is available. Use
this method to receive messages synchronously.

For more information about receiving messages asynchronously (using a message event handler), see
“Receiving messages asynchronously” on page 76.

See Also
QAManagerBase

Returns
The next QAMessage class, or null if no message is available.

getMessageBySelector function

Synopsis
virtual QAMessage * QAManagerBase::getMessageBySelector(
 qa_const_string address,
 qa_const_string selector
)

Parameters
♦ address The destination.

♦ selector The selector.

Remarks
Returns the next available QAMessage class sent to the specified address that satisfies the given selector.

The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'or
'queue-name'. If there is no message available, this call blocks indefinitely until a message is available. Use
this method to receive messages synchronously.

For more information about receiving messages asynchronously (using a message event handler), see
“Receiving messages asynchronously” on page 76.

See Also
QAManagerBase

Returns
The next QAMessage class, or null if no message is available.

QAnywhere C++ API Reference

446 Copyright © 2006, iAnywhere Solutions, Inc.

getMessageBySelectorNoWait function

Synopsis
virtual QAMessage * QAManagerBase::getMessageBySelectorNoWait(
 qa_const_string address,
 qa_const_string selector
)

Parameters
♦ address The destination.

♦ selector The selector.

Remarks
Returns the next available QAMessage class sent to the given address that satisfies the given selector.

The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'or
'queue-name'. If no message is available, this method returns immediately. Use this method to receive
messages synchronously. For more information about receiving messages asynchronously (using a message
event handler), see “Receiving messages asynchronously” on page 76.

See Also
QAManagerBase

Returns
the next message, or qa_null if no message is available.

getMessageBySelectorTimeout function

Synopsis
virtual QAMessage * QAManagerBase::getMessageBySelectorTimeout(
 qa_const_string address,
 qa_const_string selector,
 qa_long timeout
)

Parameters
♦ address The destination.

♦ selector The selector.

♦ timeout the maximum time, in milliseconds, to wait

Remarks
Returns the next available QAMessage class sent to the given address that satisfies the given selector.

The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'or
'queue-name'. If no message is available, this method waits for the specified timeout and then returns. Use

QAManagerBase class

Copyright © 2006, iAnywhere Solutions, Inc. 447

this method to receive messages synchronously. For more information about receiving messages
asynchronously (using a message event handler), see “Receiving messages asynchronously” on page 76.

See Also
QAManagerBase

Returns
The next QAMessage class, or null if no message is available.

getMessageNoWait function

Synopsis
virtual QAMessage * QAManagerBase::getMessageNoWait(
 qa_const_string address
)

Parameters
♦ address The destination.

Remarks
Returns the next available QAMessage class sent to the given address.

The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'or
'queue-name'. If no message is available, this method returns immediately. Use this method to receive
messages synchronously.

For more information about receiving messages asynchronously (using a message event handler), see
“Receiving messages asynchronously” on page 76.

See Also
QAManagerBase

Returns
The next message, or qa_null if no message is available.

getMessageTimeout function

Synopsis
virtual QAMessage * QAManagerBase::getMessageTimeout(
 qa_const_string address,
 qa_long timeout
)

Parameters
♦ address The destination

QAnywhere C++ API Reference

448 Copyright © 2006, iAnywhere Solutions, Inc.

♦ timeout The maximum time, in milliseconds, to wait

Remarks
Returns the next available QAMessage class sent to the given address.

The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'or
'queue-name'. If no message is available, this method waits for the specified timeout and then returns. Use
this method to receive messages synchronously.

For more information about receiving messages asynchronously (using a message event handler), see
“Receiving messages asynchronously” on page 76.

See Also
QAManagerBase

Returns
The next QAMessage class, or null if no message is available.

getMode function

Synopsis
virtual qa_short QAManagerBase::getMode()

Remarks
Returns the QAManager class acknowledgement mode for received messages.

For a list of values, see the AcknowledgementMode class.

EXPLICIT_ACKNOWLEDGEMENT variable and IMPLICIT_ACKNOWLEDGEMENT variable apply
to QAManager class instances; TRANSACTIONAL variable is the mode for QATransactionalManager
class instances.

See Also
QAManagerBase

Returns
the acknowledge mode

See Also
AcknowledgementMode class

QAManagerBase class

Copyright © 2006, iAnywhere Solutions, Inc. 449

getQueueDepth function

Synopsis
virtual qa_int QAManagerBase::getQueueDepth(
 qa_const_string address,
 qa_short filter
)

Parameters
♦ address The queue name.

♦ filter a filter indicating incoming messages, outgoing messages, or all messages.

Remarks
Returns the depth of a queue, based on a given filter.

The depth of the queue is the number of messages which have not been received (for example, using
getMessage function).

See Also
QAManagerBase

Returns
The number of messages in the queue, or -1 if an error occurs.

See Also
QueueDepthFilter class

getShortStoreProperty function

Synopsis
virtual qa_bool QAManagerBase::getShortStoreProperty(
 qa_const_string name,
 qa_short * value
)

Parameters
♦ name The pre-defined or custom property name.

♦ value The destination for the short value.

Remarks
Gets a short value for a pre-defined or custom message store property.

You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

QAnywhere C++ API Reference

450 Copyright © 2006, iAnywhere Solutions, Inc.

For more information, see “Client message store properties” on page 215.

See Also
QAManagerBase

Returns
True if and only if the operation succeeded.

getStringStoreProperty function

Synopsis
virtual qa_int QAManagerBase::getStringStoreProperty(
 qa_const_string name,
 qa_string address,
 qa_int maxlen
)

Parameters
♦ name The pre-defined or custom property name.

♦ address The destination for the qa_string value.

♦ maxlen The maximum number of qa_chars of the value to copy, including the null terminator character.

Remarks
Gets a string value for a pre-defined or custom message store property.

You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

See Also
QAManagerBase

Returns
The number of non-null qa_chars actually copied, or -1 if the operation failed.

nextStorePropertyName function

Synopsis
virtual qa_int QAManagerBase::nextStorePropertyName(
 qa_store_property_enum_handle h,
 qa_string buffer,
 qa_int bufferLen
)

QAManagerBase class

Copyright © 2006, iAnywhere Solutions, Inc. 451

Parameters
♦ h A handle returned by beginEnumStorePropertyNames.

♦ buffer The buffer into which to write the property name.

♦ bufferLen The length of the buffer to store the property name. This length must include space for the
null terminator.

Remarks
Returns the message store property name for the given enumeration.

If there are no more property names, returns -1.

See Also
QAManagerBase

Returns
The length of the property name, or -1 if there are no more property names. property names

putMessage function

Synopsis
virtual qa_bool QAManagerBase::putMessage(
 qa_const_string address,
 QAMessage * msg
)

Parameters
♦ address The destination.

♦ msg The message.

Remarks
Puts a message into the queue for the given destination.

See Also
QAManagerBase

Returns
True if and only if the operation succeeded.

QAnywhere C++ API Reference

452 Copyright © 2006, iAnywhere Solutions, Inc.

putMessageTimeToLive function

Synopsis
virtual qa_bool QAManagerBase::putMessageTimeToLive(
 qa_const_string address,
 QAMessage * msg,
 qa_long ttl
)

Parameters
♦ address The destination.

♦ msg The message.

♦ ttl The time-to-live, in milliseconds.

Remarks
Puts a message into the queue for the given destination and a given time-to-live in milliseconds.

See Also
QAManagerBase

Returns
True if and only if the operation succeeded.

setBooleanStoreProperty function

Synopsis
virtual qa_bool QAManagerBase::setBooleanStoreProperty(
 qa_const_string name,
 qa_bool value
)

Parameters
♦ name The pre-defined or custom property name.

♦ value The qa_bool value of the property.

Remarks
Sets a pre-defined or custom message store property to a boolean value.

You can use this method to set pre-defined or user-defined client. store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

QAManagerBase class

Copyright © 2006, iAnywhere Solutions, Inc. 453

See Also
QAManagerBase

Returns
True if and only if the operation succeeded.

setByteStoreProperty function

Synopsis
virtual qa_bool QAManagerBase::setByteStoreProperty(
 qa_const_string name,
 qa_byte value
)

Parameters
♦ name The pre-defined or custom property name.

♦ value The qa_byte value of the property.

Remarks
Sets a pre-defined or custom message store property to a byte value.

You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

See Also
QAManagerBase

Returns
True if and only if the operation succeeded.

setDoubleStoreProperty function

Synopsis
virtual qa_bool QAManagerBase::setDoubleStoreProperty(
 qa_const_string name,
 qa_double value
)

Parameters
♦ name The pre-defined or custom property name.

♦ value The qa_double value of the property.

QAnywhere C++ API Reference

454 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Sets a pre-defined or custom message store property to a double value.

You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

See Also
QAManagerBase

Returns
True if and only if the operation succeeded.

setFloatStoreProperty function

Synopsis
virtual qa_bool QAManagerBase::setFloatStoreProperty(
 qa_const_string name,
 qa_float value
)

Parameters
♦ name The pre-defined or custom property name.

♦ value The qa_float value of the property.

Remarks
Sets a pre-defined or custom message store property to a float value.

You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

See Also
QAManagerBase

Returns
True if and only if the operation succeeded.

QAManagerBase class

Copyright © 2006, iAnywhere Solutions, Inc. 455

setIntStoreProperty function

Synopsis
virtual qa_bool QAManagerBase::setIntStoreProperty(
 qa_const_string name,
 qa_int value
)

Parameters
♦ name The pre-defined or custom property name.

♦ value The qa_int value of the property.

Remarks
Sets a pre-defined or custom message store property to a int value.

You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

See Also
QAManagerBase

Returns
True if and only if the operation succeeded.

setLongStoreProperty function

Synopsis
virtual qa_bool QAManagerBase::setLongStoreProperty(
 qa_const_string name,
 qa_long value
)

Parameters
♦ name The pre-defined or custom property name.

♦ value The qa_long value of the property.

Remarks
Sets a pre-defined or custom message store property to a long value.

You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

QAnywhere C++ API Reference

456 Copyright © 2006, iAnywhere Solutions, Inc.

See Also
QAManagerBase

Returns
True if and only if the operation succeeded.

setMessageListener function

Synopsis
virtual void QAManagerBase::setMessageListener(
 qa_const_string address,
 QAMessageListener * listener
)

Parameters
♦ address The destination address that the listener applies to.

♦ listener The message listener to associate with destination address.

Remarks
Sets a message listener class to recieve QAnywhere messages asynchronously.

The listener is an instance of a class implementing onMessage function, the only method defined in the
QAMessageListener class interface. onMessage function accepts a single QAMessage class parameter.

The setMessageListener address parameter specifies a local queue name used to receive the message. You
can only have one listener assigned to a given queue. If you want to listen for QAnywhere system messages,
including push notifications and network status changes, specify "system" as the queue name. Use this
method to receive message asynchronously.

For more information, see “Receiving messages asynchronously” on page 76and “System
queue” on page 50.

See Also
QAManagerBase

setMessageListenerBySelector function

Synopsis
virtual void QAManagerBase::setMessageListenerBySelector(
 qa_const_string address,
 qa_const_string selector,
 QAMessageListener * listener
)

QAManagerBase class

Copyright © 2006, iAnywhere Solutions, Inc. 457

Parameters
♦ address The destination address that the listener applies to.

♦ selector The selector to be used to filter the messages to be received.

♦ listener The message listener to associate with destination address.

Remarks
Sets a message listener class to recieve QAnywhere messages asynchronously, with a message selector.

The listener is an instance of a class implementing onMessage function, the only method defined in the
QAMessageListener class interface. onMessage function accepts a single QAMessage class parameter.

The setMessageListener address parameter specifies a local queue name used to receive the message. You
can only have one listener assigned to a given queue. The selector parameter specifies a selector to be used
to filter the messages to be received on the given address. If you want to listen for QAnywhere system
messages, including push notifications and network status changes, specify "system" as the queue name.
Use this method to receive message asynchronously.

For more information, see “Receiving messages asynchronously” on page 76and “System
queue” on page 50.

See Also
QAManagerBase

setProperty function

Synopsis
virtual qa_bool QAManagerBase::setProperty(
 qa_const_string name,
 qa_const_string value
)

Parameters
♦ name The pre-defined or custom QAnywhere Manager configuration property name.

♦ value The value of the QAnywhere Manager configuration property.

Remarks
Allows you to set QAnywhere Manager configuration properties programmatically.

You can use this method to override default QAnywhere Manager configuration properties by specifying a
property name and value.

For a list of QAnywhere Manager configuration properties, see “QAnywhere manager configuration
properties” on page 62.

You can also set QAnywhere Manager configuration properties using a properties file and the
createQAManager function.

QAnywhere C++ API Reference

458 Copyright © 2006, iAnywhere Solutions, Inc.

For more information, see “Setting QAnywhere manager configuration properties in a file” on page 62.

Note: you must set required properties before calling open function or open function.

See Also
QAManagerBase

Returns
True if and only if the operation succeeded.

setShortStoreProperty function

Synopsis
virtual qa_bool QAManagerBase::setShortStoreProperty(
 qa_const_string name,
 qa_short value
)

Parameters
♦ name The pre-defined or custom property name.

♦ value The qa_short value of the property.

Remarks
Sets a pre-defined or custom message store property to a short value.

You can use this method to set pre-defined or user-defined client store properties. For a list of pre-defined
properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

See Also
QAManagerBase

Returns
True if and only if the operation succeeded.

setStringStoreProperty function

Synopsis
virtual qa_bool QAManagerBase::setStringStoreProperty(
 qa_const_string name,
 qa_const_string value
)

QAManagerBase class

Copyright © 2006, iAnywhere Solutions, Inc. 459

Parameters
♦ name The pre-defined or custom property name.

♦ value The qa_string value of the property.

Remarks
Sets a pre-defined or custom message store property to a string value.

You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties class.

For more information, see “Client message store properties” on page 215.

See Also
QAManagerBase

Returns
True if and only if the operation succeeded.

start function

Synopsis
virtual qa_bool QAManagerBase::start()

Remarks
Starts the QAManagerBase for receiving incoming messages in message listeners.

The QAManagerBase does not need to be started if there are no message listeners set, ie. if messages are
received with the getMessage methods. It is not recommended to use the getMessage methods as well as
message listeners for receiving messages, one should use one or the other of the asynchronous (message
listener) or synchronous (getMessage) models. Any calls to start beyond the first without an intervening
stop function call are ignored.

See Also
stop function

QAManagerBase

Returns
True if and only if the operation succeeded.

stop function

Synopsis
virtual qa_bool QAManagerBase::stop()

QAnywhere C++ API Reference

460 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Stops the QAManagerBase's reception of incoming messages.

The messages are not lost. They are not received until the manager is started again. Any calls to stop beyond
the first without an intervening start function are ignored.

See Also
start function

QAManagerBase

Returns
True if and only if the operation succeeded.

triggerSendReceive function

Synopsis
virtual qa_bool QAManagerBase::triggerSendReceive()

Remarks
Causes a synchronization with the QAnywhere message server, uploading any messages addressed to other
clients, and downloading any messages addressed to the local client.

QAManagerBase triggerSendReceive results in immediate message synchronization between a QAnywhere
Agent and the central messaging server. A manual TriggerSendReceive call results in immediate message
transmission, independent of the QAnywhere Agent transmission policies. QAnywhere Agent transmission
policies determine how message transmission occurs. For example, message transmission can occur
automatically at regular intervals, when your client receives a push notification, or when you call the
putMessage function to send a message.

For more information, see “Determining when message transmission should occur on the
client” on page 36.

See Also
putMessage function

QAManagerBase

Returns
True if and only if the operation succeeded.

QAManagerBase class

Copyright © 2006, iAnywhere Solutions, Inc. 461

QAManagerFactory class
Synopsis

public QAManagerFactory

Remarks
This class acts as a factory class for creating QATransactionalManager class and QAManager class objects.

You can only have one instance of QAManagerFactory.

Members
All members of QAManagerFactory, including all inherited members.

♦ “createQAManager function” on page 462
♦ “createQATransactionalManager function” on page 463
♦ “deleteQAManager function” on page 463
♦ “deleteQATransactionalManager function” on page 464
♦ “getLastError function” on page 464
♦ “getLastErrorMsg function” on page 464

createQAManager function

Synopsis
virtual QAManager * QAManagerFactory::createQAManager(
 qa_const_string iniFile
)

Parameters
♦ iniFile The path of the properties file.

Remarks
Returns a new QAManager class instance with the specified properties.

If the properties file parameter is null, the QATransactionalManager class is created using default properties.
You can use the setProperty function to set QATransactionalManager class properties programmatically
after you create the instance.

For a list of QAManagerBase class properties, see “QAnywhere manager configuration
properties” on page 62.

See Also
QAManager class

Returns
The QAManager class instance.

QAnywhere C++ API Reference

462 Copyright © 2006, iAnywhere Solutions, Inc.

createQATransactionalManager function

Synopsis
virtual QATransactionalManager * QAManagerFactory::createQATransactionalManager(
 qa_const_string iniFile
)

Parameters
♦ iniFile The path of the properties file.

Remarks
Returns a new QAManager class instance with the specified properties.

If the properties file parameter is null, the QAManager class is created using default properties. You can use
the setProperty function to set QAManager class properties programmatically after you create the instance.

For a list of QAManagerBase class properties, see “QAnywhere manager configuration
properties” on page 62.

See Also
QATransactionalManager class

Returns
The QATransactionalManager class instance.

deleteQAManager function

Synopsis
virtual void QAManagerFactory::deleteQAManager(
 QAManager * mgr
)

Parameters
♦ mgr The “QAManager class” on page 427 instance to destroy.

Remarks
Destroys a QAManager class, freeing its resources.

It is not necessary to use this method, since all created QAManager's are destroyed when
QAnywhereFactory_term() is called. It is provided as a convenience for when it is desirable to free resources
in a timely manner. “Shutting down QAnywhere” on page 88

QAManagerFactory class

Copyright © 2006, iAnywhere Solutions, Inc. 463

deleteQATransactionalManager function

Synopsis
virtual void QAManagerFactory::deleteQATransactionalManager(
 QATransactionalManager * mgr
)

Parameters
♦ mgr The “QATransactionalManager class” on page 492 instance to destroy.

Remarks
Destroys a QATransactionalManager class, freeing its resources.

It is not necessary to use this method, since all created QATransactionalManager's are destroyed when
QAnywhereFactory_term() is called. It is provided as a convenience for when it is desirable to free resources
in a timely manner.

For more information, see “Shutting down QAnywhere” on page 88

getLastError function

Synopsis
virtual qa_int QAManagerFactory::getLastError()

Remarks
The error code associated with the last excecuted QAManagerFactory method.

0 indicates no error.

For a list of values, see the QAError class.

See Also
getLastErrorMsg function

QAError class

Returns
The error code.

getLastErrorMsg function

Synopsis
virtual qa_string QAManagerFactory::getLastErrorMsg()

Remarks
The error text associated with the last executed QAManagerFactory method.

QAnywhere C++ API Reference

464 Copyright © 2006, iAnywhere Solutions, Inc.

This method returns null if getLastError function returns 0. You can retrieve this property after catching a
QAError class.

See Also
getLastError function

QAError class

Returns
The error message.

QAManagerFactory class

Copyright © 2006, iAnywhere Solutions, Inc. 465

QAMessage class
Synopsis

public QAMessage

Derived classes
♦ “QABinaryMessage class” on page 404
♦ “QATextMessage class” on page 488

Remarks
QAMessage provides an interface to set message properties and header fields.

The derived classes QABinaryMessage class and QATextMessage class provide specialized functions to
read and write to the message body. You can use QAMessage functions to set predefined or custom message
properties.

For a list of pre-defined property names, see the MessageProperties class.

For more information about setting message properties and header fields, see “Message headers and message
properties” on page 206.

Members
All members of QAMessage, including all inherited members.

♦ “beginEnumPropertyNames function” on page 468
♦ “castToBinaryMessage function” on page 468
♦ “castToTextMessage function” on page 468
♦ “clearProperties function” on page 469
♦ “DEFAULT_PRIORITY variable” on page 467
♦ “DEFAULT_TIME_TO_LIVE variable” on page 467
♦ “endEnumPropertyNames function” on page 469
♦ “getAddress function” on page 469
♦ “getBooleanProperty function” on page 470
♦ “getByteProperty function” on page 470
♦ “getDoubleProperty function” on page 471
♦ “getExpiration function” on page 471
♦ “getFloatProperty function” on page 472
♦ “getInReplyToID function” on page 472
♦ “getIntProperty function” on page 473
♦ “getLongProperty function” on page 473
♦ “getMessageID function” on page 474
♦ “getPriority function” on page 474
♦ “getPropertyType function” on page 475
♦ “getRedelivered function” on page 475
♦ “getReplyToAddress function” on page 476
♦ “getShortProperty function” on page 476
♦ “getStringProperty function” on page 477

QAnywhere C++ API Reference

466 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “getStringProperty function” on page 477
♦ “getTimestamp function” on page 478
♦ “getTimestampAsString function” on page 479
♦ “nextPropertyName function” on page 479
♦ “propertyExists function” on page 480
♦ “setAddress function” on page 480
♦ “setBooleanProperty function” on page 480
♦ “setByteProperty function” on page 481
♦ “setDoubleProperty function” on page 481
♦ “setFloatProperty function” on page 482
♦ “setInReplyToID function” on page 482
♦ “setIntProperty function” on page 483
♦ “setLongProperty function” on page 483
♦ “setMessageID function” on page 484
♦ “setPriority function” on page 484
♦ “setRedelivered function” on page 484
♦ “setReplyToAddress function” on page 485
♦ “setShortProperty function” on page 485
♦ “setStringProperty function” on page 486
♦ “setTimestamp function” on page 486

DEFAULT_PRIORITY variable

Synopsis
const qa_int QAMessage::DEFAULT_PRIORITY

Remarks
The default message priority.

This value is 4. This is normal priority as values 0-4 are gradations of normal priority and values 5-9 are
gradations of expedited priority.

DEFAULT_TIME_TO_LIVE variable

Synopsis
const qa_long QAMessage::DEFAULT_TIME_TO_LIVE

Remarks
The default message time-to-live value.

This value is 0, which indicates that the message does not expire.

QAMessage class

Copyright © 2006, iAnywhere Solutions, Inc. 467

beginEnumPropertyNames function

Synopsis
virtual qa_property_enum_handle QAMessage::beginEnumPropertyNames()

Remarks
Begins an enumeration of message property names.

The handle returned by this method is supplied to nextPropertyName. This method and nextPropertyName
can be used to enumerate the message property names at the time this method was called. Message properties
cannot be set between beginEnumPropertyNames and endEnumPropertyNames.

Returns
A handle that is supplied to nextPropertyName.

castToBinaryMessage function

Synopsis
virtual QABinaryMessage * QAMessage::castToBinaryMessage()

Remarks
Casts this QAMessage to a QABinaryMessage class.

You can also use the conversion operator to convert this QAMessage to a QABinaryMessage class.

To convert a QAMessage to a QABinaryMessage class using the conversion operator, do the following:

 QAMessage *msg;
 QABinaryMessage *bmsg;
 ...
 bmsg = (QABinaryMessage *)(*msg);

Returns
A pointer to the QABinaryMessage class, or NULL if this message is not an instance of QABinaryMessage
class.

castToTextMessage function

Synopsis
virtual QATextMessage * QAMessage::castToTextMessage()

Remarks
Casts this QAMessage to a QATextMessage class.

You can also use the conversion operator to convert this QAMessage to a QATextMessage class.

QAnywhere C++ API Reference

468 Copyright © 2006, iAnywhere Solutions, Inc.

For example, to convert a QAMessage to a QATextMessage class using the conversion operator, do the
following:

 QAMessage *msg;
 QATextMessage *bmsg;
 ...
 bmsg = (QATextMessage *)(*msg);

Returns
A pointer to the QATextMessage class, or NULL if this message is not an instance of QATextMessage
class.

clearProperties function

Synopsis
virtual void QAMessage::clearProperties()

Remarks
Clears a message's properties.

Note: The message's header fields and body are not cleared.

endEnumPropertyNames function

Synopsis
virtual void QAMessage::endEnumPropertyNames(
 qa_property_enum_handle h
)

Parameters
♦ h A handle returned by beginEnumPropertyNames.

Remarks
Frees the resources associated with a message property name enumeration.

getAddress function

Synopsis
virtual qa_const_string QAMessage::getAddress()

Remarks
Gets the destination address for the QAMessage instance.

When a message is sent, this field is ignored. After completion of the send method, the field holds the
destination address specified in putMessage function.

QAMessage class

Copyright © 2006, iAnywhere Solutions, Inc. 469

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

Returns
The destination address.

getBooleanProperty function

Synopsis
virtual qa_bool QAMessage::getBooleanProperty(
 qa_const_string name,
 qa_bool * value
)

Parameters
♦ name The name of the property to get.

♦ value The destination for the qa_bool value.

Remarks
Gets the value of the qa_bool property with the specified name.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See Also
MessageProperties class

Returns
True if and only if the operation succeeded.

getByteProperty function

Synopsis
virtual qa_bool QAMessage::getByteProperty(
 qa_const_string name,
 qa_byte * value
)

Parameters
♦ name The name of the property to get.

♦ value The destination for the qa_byte value.

Remarks
Gets the value of the qa_byte property with the specified name.

QAnywhere C++ API Reference

470 Copyright © 2006, iAnywhere Solutions, Inc.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See Also
MessageProperties class

Returns
True if and only if the operation succeeded.

getDoubleProperty function

Synopsis
virtual qa_bool QAMessage::getDoubleProperty(
 qa_const_string name,
 qa_double * value
)

Parameters
♦ name The name of the property to get.

♦ value The destination for the qa_double value.

Remarks
Gets the value of the qa_double property with the specified name.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See Also
MessageProperties class

Returns
True if and only if the operation succeeded.

getExpiration function

Synopsis
virtual qa_long QAMessage::getExpiration()

Remarks
Gets the message's expiration time.

When a message is sent, the Expiration header field is left unassigned. After the send method completes, the
Expiration header holds the expiration time of the message.

QAMessage class

Copyright © 2006, iAnywhere Solutions, Inc. 471

This property is read-only because the expiration time of a message is set by adding the time-to-live argument
of QAManagerBase::PutMessageTimeToLive to the current time.

The expiration time is in units that are natural for the platform. For Windows/PocketPC platforms, expiration
is a SYSTEMTIME, converted to a FILETIME, which is copied to an qa_long value.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

Returns
The expiration time.

See Also
getTimestamp function

getFloatProperty function

Synopsis
virtual qa_bool QAMessage::getFloatProperty(
 qa_const_string name,
 qa_float * value
)

Parameters
♦ name The name of the property to get.

♦ value The destination for the qa_float value.

Remarks
Gets the value of the qa_float property with the specified name.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See Also
MessageProperties class

Returns
True if and only if the operation succeeded.

getInReplyToID function

Synopsis
virtual qa_const_string QAMessage::getInReplyToID()

QAnywhere C++ API Reference

472 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Gets the ID of the message that this message is in reply to.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

Returns
The In-Reply-To ID.

getIntProperty function

Synopsis
virtual qa_bool QAMessage::getIntProperty(
 qa_const_string name,
 qa_int * value
)

Parameters
♦ name The name of the property to get.

♦ value The destination for the qa_int value.

Remarks
Gets the value of the qa_int property with the specified name.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See Also
MessageProperties class

Returns
True if and only if the operation succeeded.

getLongProperty function

Synopsis
virtual qa_bool QAMessage::getLongProperty(
 qa_const_string name,
 qa_long * value
)

Parameters
♦ name The name of the property to get.

♦ value The destination for the qa_long value.

QAMessage class

Copyright © 2006, iAnywhere Solutions, Inc. 473

Remarks
Gets the value of the qa_long property with the specified name.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See Also
MessageProperties class

Returns
True if and only if the operation succeeded.

getMessageID function

Synopsis
virtual qa_const_string QAMessage::getMessageID()

Remarks
Gets the message ID.

The MessageID header field contains a value that uniquely identifies each message sent by the QAnywhere
client.

When a message is sent using putMessage function, the MessageID header is null and can be ignored. When
the send method returns, it contains an assigned value.

A MessageID is a qa_string value that should function as a unique key for identifying messages in a historical
repository.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

Returns
The message ID.

getPriority function

Synopsis
virtual qa_int QAMessage::getPriority()

Remarks
Gets the message priority level.

The QAnywhere client API defines ten levels of priority value, with 0 as the lowest priority and 9 as the
highest. Clients should consider priorities 0-4 as gradations of normal priority and priorities 5-9 as gradations
of expedited priority.

QAnywhere C++ API Reference

474 Copyright © 2006, iAnywhere Solutions, Inc.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

Returns
The message priority.

getPropertyType function

Synopsis
virtual qa_short QAMessage::getPropertyType(
 qa_const_string name
)

Parameters
♦ name The name of the property.

Remarks
Returns the type of a property with the given name.

One of PROPERTY_TYPE_BOOLEAN, PROPERTY_TYPE_BYTE, PROPERTY_TYPE_SHORT,
PROPERTY_TYPE_INT, PROPERTY_TYPE_LONG, PROPERTY_TYPE_FLOAT,
PROPERTY_TYPE_DOUBLE, PROPERTY_TYPE_STRING, PROPERTY_TYPE_UNKNOWN.

Returns
The type of the property.

getRedelivered function

Synopsis
virtual qa_bool QAMessage::getRedelivered()

Remarks
Indicates whether the message has been previously received but not acknowledged.

The Redelivered header is set by a receiving QAManager class when it detects that a message being received
was received before.

For example, an application receives a message using a QAManager class opened with
EXPLICIT_ACKNOWLEDGEMENT variable, and shuts down without acknowledging the message. When
the application starts again and receives the same message the Redelivered header is true.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

QAMessage class

Copyright © 2006, iAnywhere Solutions, Inc. 475

Returns
True if and only if the message was redelivered.

getReplyToAddress function

Synopsis
virtual qa_const_string QAMessage::getReplyToAddress()

Remarks
Gets the address to which a reply to this message should be sent.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

Returns
The reply-to address.

getShortProperty function

Synopsis
virtual qa_bool QAMessage::getShortProperty(
 qa_const_string name,
 qa_short * value
)

Parameters
♦ name The name of the property to get.

♦ value The destination for the qa_short value.

Remarks
Gets the value of the qa_short property with the specified name.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See Also
MessageProperties class

Returns
True if and only if the operation succeeded.

QAnywhere C++ API Reference

476 Copyright © 2006, iAnywhere Solutions, Inc.

getStringProperty function

Synopsis
virtual qa_int QAMessage::getStringProperty(
 qa_const_string name,
 qa_string dest,
 qa_int maxlen
)

Parameters
♦ name The name of the property to get.

♦ dest The destination for the qa_string value.

♦ maxlen The maximum number of qa_chars of the value to copy. This value includes the null terminator
qa_char.

Remarks
Gets the value of the qa_string property with the specified name.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See Also
MessageProperties class

Returns
The number of non-null qa_chars actually copied, or -1 if the operation failed.

getStringProperty function

Synopsis
virtual qa_int QAMessage::getStringProperty(
 qa_const_string name,
 qa_int offset,
 qa_string dest,
 qa_int maxlen
)

Parameters
♦ name The name of the property to get.

♦ offset The starting offset into the property value from which to copy.

♦ dest The destination for the qa_string value.

♦ maxlen The maximum number of qa_chars of the value to copy. This value includes the null terminator
qa_char.

QAMessage class

Copyright © 2006, iAnywhere Solutions, Inc. 477

Remarks
Gets the value of the qa_string property (starting at offset) with the specified name.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See Also
MessageProperties class

Returns
The number of non-null qa_chars actually copied, or -1 if the operation failed.

getTimestamp function

Synopsis
virtual qa_long QAMessage::getTimestamp()

Remarks
Gets the message timestamp.

This Timestamp header field contains the time a message was created. It is a coordinated universal time
(UTC). It is not the time the message was actually transmitted, because the actual send may occur later due
to transactions or other client-side queuing of messages. It is in units that are natural for the platform. For
Windows/PocketPC platforms, the timestamp is a SYSTEMTIME, converted to a FILETIME, which is
copied to a qa_long value.

To convert a timestamp ts to SYSTEMTIME for displaying to a user, run the following code:

 SYSTEMTIME stime;
 FILETIME ftime;
 ULARGE_INTEGER time;
 time.QuadPart = ts;
 memcpy(&ftime, &time, sizeof(FILETIME));
 FileTimeToSystemTime(&ftime, &stime);

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

Returns
The message timestamp.

QAnywhere C++ API Reference

478 Copyright © 2006, iAnywhere Solutions, Inc.

getTimestampAsString function

Synopsis
virtual qa_int QAMessage::getTimestampAsString(
 qa_string buffer,
 qa_int bufferLen
)

Parameters
♦ buffer The buffer for the formatted timestamp.

♦ bufferLen The size of the buffer.

Remarks
Gets the message timestamp as a formatted string.

The format is: "dow, MMM dd, yyyy hh:mm:ss.nnn GMT".

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

Returns
The number of non-null qa_chars written to the buffer.

nextPropertyName function

Synopsis
virtual qa_int QAMessage::nextPropertyName(
 qa_property_enum_handle h,
 qa_string buffer,
 qa_int bufferLen
)

Parameters
♦ h A handle returned by beginEnumPropertyNames.

♦ buffer The buffer into which to write the property name.

♦ bufferLen The length of the buffer to store the property name. This length must include space for the
null terminator

Remarks
Returns the message property name for the given enumeration, returning -1 if there are no more property
names.

Returns
The length of the property name, or -1 if there are no more property names.

QAMessage class

Copyright © 2006, iAnywhere Solutions, Inc. 479

propertyExists function

Synopsis
virtual qa_bool QAMessage::propertyExists(
 qa_const_string name
)

Parameters
♦ name The name of the property.

Remarks
Indicates whether a property value exists.

Returns
True if and only if the property exists.

setAddress function

Synopsis
virtual void QAMessage::setAddress(
 qa_const_string destination
)

Parameters
♦ destination The destination address.

Remarks
Sets the destination address for this message.

This method can be used to change the value for a message that has been received.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

setBooleanProperty function

Synopsis
virtual void QAMessage::setBooleanProperty(
 qa_const_string name,
 qa_bool value
)

Parameters
♦ name the name of the property to set.

QAnywhere C++ API Reference

480 Copyright © 2006, iAnywhere Solutions, Inc.

♦ value the qa_bool value of the property.

Remarks
Sets the qa_bool property with the specified name to the specified value.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See Also
MessageProperties class

setByteProperty function

Synopsis
virtual void QAMessage::setByteProperty(
 qa_const_string name,
 qa_byte value
)

Parameters
♦ name The name of the property to set.

♦ value The qa_byte value of the property.

Remarks
Sets a qa_byte property with the specified name to the specified value.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See Also
MessageProperties class

setDoubleProperty function

Synopsis
virtual void QAMessage::setDoubleProperty(
 qa_const_string name,
 qa_double value
)

Parameters
♦ name The name of the property to set.

♦ value The qa_double value of the property.

QAMessage class

Copyright © 2006, iAnywhere Solutions, Inc. 481

Remarks
Sets the qa_double property with the specified name to the specified value.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See Also
MessageProperties class.

setFloatProperty function

Synopsis
virtual void QAMessage::setFloatProperty(
 qa_const_string name,
 qa_float value
)

Parameters
♦ name The name of the property to set.

♦ value The qa_float value of the property.

Remarks
Sets the qa_float property with the specified name to the specified value.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See Also
MessageProperties class.

setInReplyToID function

Synopsis
virtual void QAMessage::setInReplyToID(
 qa_const_string id
)

Parameters
♦ id The In-Reply-To ID.

Remarks
Sets the In-Reply-To ID for the message.

QAnywhere C++ API Reference

482 Copyright © 2006, iAnywhere Solutions, Inc.

A client can use the InReplyToID header field to link one message with another. A typical use is to link a
response message with its request message.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

setIntProperty function

Synopsis
virtual void QAMessage::setIntProperty(
 qa_const_string name,
 qa_int value
)

Parameters
♦ name The name of the property to set.

♦ value The qa_int value of the property.

Remarks
Sets the qa_int property with the specified name to the specified value.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See Also
MessageProperties class.

setLongProperty function

Synopsis
virtual void QAMessage::setLongProperty(
 qa_const_string name,
 qa_long value
)

Parameters
♦ name The name of the property to set.

♦ value The qa_long value of the property.

Remarks
Sets the qa_long property with the specified name to the specified value.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

QAMessage class

Copyright © 2006, iAnywhere Solutions, Inc. 483

See Also
MessageProperties class.

setMessageID function

Synopsis
virtual void QAMessage::setMessageID(
 qa_const_string id
)

Parameters
♦ id The message ID.

Remarks
Sets the message ID.

This method can be used to change the value for a message that has been received.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

setPriority function

Synopsis
virtual void QAMessage::setPriority(
 qa_int priority
)

Parameters
♦ priority The message priority.

Remarks
Sets the priority level for this message.

This method can be used to change the value for a message that has been received.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

setRedelivered function

Synopsis
virtual void QAMessage::setRedelivered(
 qa_bool redelivered
)

QAnywhere C++ API Reference

484 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
♦ redelivered The redelivered indication.

Remarks
Sets an indication of whether this message was redelivered.

This method can be used to change the value for a message that has been received.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

setReplyToAddress function

Synopsis
virtual void QAMessage::setReplyToAddress(
 qa_const_string replyTo
)

Parameters
♦ replyTo The reply-to address.

Remarks
Sets the address to which a reply to this message should be sent.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

setShortProperty function

Synopsis
virtual void QAMessage::setShortProperty(
 qa_const_string name,
 qa_short value
)

Parameters
♦ name The name of the property to set.

♦ value The qa_short value of the property.

Remarks
Sets e qa_short property with the specified name to the specified value.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

QAMessage class

Copyright © 2006, iAnywhere Solutions, Inc. 485

See Also
MessageProperties class.

setStringProperty function

Synopsis
virtual void QAMessage::setStringProperty(
 qa_const_string name,
 qa_const_string value
)

Parameters
♦ name The name of the property to set.

♦ value The qa_string value of the property.

Remarks
Sets a qa_string property with the specified name to the specified value.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See Also
MessageProperties class.

setTimestamp function

Synopsis
virtual void QAMessage::setTimestamp(
 qa_long timestamp
)

Parameters
♦ timestamp The message timestamp, a coordinated universal time (UTC).

Remarks
Sets the message timestamp.

This method can be used to change the value for a message that has been received.

For more information about getting and setting message headers and properties, see “Message headers and
message properties” on page 206.

See Also
getTimestamp function

QAnywhere C++ API Reference

486 Copyright © 2006, iAnywhere Solutions, Inc.

QAMessageListener class
Synopsis

public QAMessageListener

Remarks
A QAMessageListener object is used to receive asynchronously delivered messages.

Members
All members of QAMessageListener, including all inherited members.

♦ “onMessage function” on page 487
♦ “~QAMessageListener function” on page 487

onMessage function

Synopsis
virtual void QAMessageListener::onMessage(
 QAMessage * message
)

Parameters
♦ message the message passed to the listener

Remarks
Passes a message to the listener.

~QAMessageListener function

Synopsis
virtual QAMessageListener::~QAMessageListener()

Remarks
Virtual destructor.

QAMessageListener class

Copyright © 2006, iAnywhere Solutions, Inc. 487

QATextMessage class
Synopsis

public QATextMessage

Base classes
♦ “QAMessage class” on page 466

Remarks
QATextMessage inherits from the QAMessage class and adds a text message body.

QATextMessage provides methods to read from and write to the text message body.

When the message is first created, the body of the message is in write-only mode. After a message has been
sent, the client that sent it can retain and modify it without affecting the message that has been sent. The
same message object can be sent multiple times.

When a message is received, the provider has called reset function so that the message body is in read-only
mode and reading of values starts from the beginning of the message body. If a client attempts to write a
message in read-only mode, a COMMON_MSG_NOT_WRITEABLE_ERROR is set.

See Also
QABinaryMessage class

Members
All members of QATextMessage, including all inherited members.

♦ “beginEnumPropertyNames function” on page 468
♦ “castToBinaryMessage function” on page 468
♦ “castToTextMessage function” on page 468
♦ “clearProperties function” on page 469
♦ “DEFAULT_PRIORITY variable” on page 467
♦ “DEFAULT_TIME_TO_LIVE variable” on page 467
♦ “endEnumPropertyNames function” on page 469
♦ “getAddress function” on page 469
♦ “getBooleanProperty function” on page 470
♦ “getByteProperty function” on page 470
♦ “getDoubleProperty function” on page 471
♦ “getExpiration function” on page 471
♦ “getFloatProperty function” on page 472
♦ “getInReplyToID function” on page 472
♦ “getIntProperty function” on page 473
♦ “getLongProperty function” on page 473
♦ “getMessageID function” on page 474
♦ “getPriority function” on page 474
♦ “getPropertyType function” on page 475
♦ “getRedelivered function” on page 475

QAnywhere C++ API Reference

488 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “getReplyToAddress function” on page 476
♦ “getShortProperty function” on page 476
♦ “getStringProperty function” on page 477
♦ “getStringProperty function” on page 477
♦ “getText function” on page 489
♦ “getTextLength function” on page 490
♦ “getTimestamp function” on page 478
♦ “getTimestampAsString function” on page 479
♦ “nextPropertyName function” on page 479
♦ “propertyExists function” on page 480
♦ “readText function” on page 490
♦ “reset function” on page 490
♦ “setAddress function” on page 480
♦ “setBooleanProperty function” on page 480
♦ “setByteProperty function” on page 481
♦ “setDoubleProperty function” on page 481
♦ “setFloatProperty function” on page 482
♦ “setInReplyToID function” on page 482
♦ “setIntProperty function” on page 483
♦ “setLongProperty function” on page 483
♦ “setMessageID function” on page 484
♦ “setPriority function” on page 484
♦ “setRedelivered function” on page 484
♦ “setReplyToAddress function” on page 485
♦ “setShortProperty function” on page 485
♦ “setStringProperty function” on page 486
♦ “setText function” on page 491
♦ “setTimestamp function” on page 486
♦ “writeText function” on page 491
♦ “~QATextMessage function” on page 491

getText function

Synopsis
virtual qa_string QATextMessage::getText()

Remarks
Gets the string containing this message's data.

The default value is null.

If the message exceeds the maximum size specified by the QAManager class
MAX_IN_MEMORY_MESSAGE_SIZE property, this function returns null. In this case, use the readText
function to read the text.

For more information about QAManager class properties, see “QAnywhere manager configuration
properties” on page 62.

QATextMessage class

Copyright © 2006, iAnywhere Solutions, Inc. 489

Returns
the string containing the message's data.

getTextLength function

Synopsis
virtual qa_long QATextMessage::getTextLength()

Remarks
Returns the text length.

Note: If the text length is non-zero and getText function returns qa_null then the text does not fit in memory,
and must be read in pieces using the readText.

readText function

Synopsis
virtual qa_int QATextMessage::readText(
 qa_string string,
 qa_int length
)

Parameters
♦ string The destination for the text.

♦ length The maximum number of qa_chars to read into the destination. buffer, including the null
termination character.

Remarks
Reads the requested length of text from the current text position into a buffer.

Returns
The actual number of non-null qa_chars read, or -1 if the entire text stream has been read.

reset function

Synopsis
virtual void QATextMessage::reset()

Remarks
Repositions the current text position to the beginning.

QAnywhere C++ API Reference

490 Copyright © 2006, iAnywhere Solutions, Inc.

setText function

Synopsis
virtual void QATextMessage::setText(
 qa_const_string string
)

Parameters
♦ string A string containing the message data to set.

Remarks
Sets the string containing this message's data.

writeText function

Synopsis
virtual void QATextMessage::writeText(
 qa_const_string string,
 qa_int offset,
 qa_int length
)

Parameters
♦ string The source text to concatenate.

♦ offset The offset into the source text at which to start reading.

♦ length The number of qa_chars of the source text to read.

Remarks
Concatenates text to the current text.

~QATextMessage function

Synopsis
virtual QATextMessage::~QATextMessage()

Remarks
Virtual destructor.

QATextMessage class

Copyright © 2006, iAnywhere Solutions, Inc. 491

QATransactionalManager class
Synopsis

public QATransactionalManager

Base classes
♦ “QAManagerBase class” on page 432

Remarks
This class is the manager for transactional messaging.

The QATransactionalManager class derives from QAManagerBase class and manages transactional
QAnywhere messaging operations.

For a detailed description of derived behavior, see QAManagerBase class.

The QATransactionalManager can only be used for transactional acknowledgement. Use the commit
function to commit all putMessage function and getMessage function invocations.

For more information, see “Implementing transactional messaging” on page 68

See Also
QATransactionalManager.

Members
All members of QATransactionalManager, including all inherited members.

♦ “beginEnumStorePropertyNames function” on page 433
♦ “browseClose function” on page 434
♦ “browseMessages function” on page 434
♦ “browseMessagesByID function” on page 435
♦ “browseMessagesByQueue function” on page 436
♦ “browseMessagesBySelector function” on page 436
♦ “browseNextMessage function” on page 437
♦ “cancelMessage function” on page 438
♦ “close function” on page 438
♦ “commit function” on page 493
♦ “createBinaryMessage function” on page 439
♦ “createTextMessage function” on page 439
♦ “deleteMessage function” on page 440
♦ “endEnumStorePropertyNames function” on page 440
♦ “getAllQueueDepth function” on page 440
♦ “getBooleanStoreProperty function” on page 441
♦ “getByteStoreProperty function” on page 442
♦ “getDoubleStoreProperty function” on page 442
♦ “getFloatStoreProperty function” on page 443
♦ “getIntStoreProperty function” on page 443

QAnywhere C++ API Reference

492 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “getLastError function” on page 444
♦ “getLastErrorMsg function” on page 444
♦ “getLongStoreProperty function” on page 445
♦ “getMessage function” on page 445
♦ “getMessageBySelector function” on page 446
♦ “getMessageBySelectorNoWait function” on page 447
♦ “getMessageBySelectorTimeout function” on page 447
♦ “getMessageNoWait function” on page 448
♦ “getMessageTimeout function” on page 448
♦ “getMode function” on page 449
♦ “getQueueDepth function” on page 450
♦ “getShortStoreProperty function” on page 450
♦ “getStringStoreProperty function” on page 451
♦ “nextStorePropertyName function” on page 451
♦ “open function” on page 494
♦ “putMessage function” on page 452
♦ “putMessageTimeToLive function” on page 453
♦ “rollback function” on page 494
♦ “setBooleanStoreProperty function” on page 453
♦ “setByteStoreProperty function” on page 454
♦ “setDoubleStoreProperty function” on page 454
♦ “setFloatStoreProperty function” on page 455
♦ “setIntStoreProperty function” on page 456
♦ “setLongStoreProperty function” on page 456
♦ “setMessageListener function” on page 457
♦ “setMessageListenerBySelector function” on page 457
♦ “setProperty function” on page 458
♦ “setShortStoreProperty function” on page 459
♦ “setStringStoreProperty function” on page 459
♦ “start function” on page 460
♦ “stop function” on page 460
♦ “triggerSendReceive function” on page 461
♦ “~QATransactionalManager function” on page 494

commit function

Synopsis
virtual qa_bool QATransactionalManager::commit()

Remarks
Commits the current transaction and begins a new transaction.

This method commits all putMessage function and getMessage function invocations.

Note: The first transaction begins with the call to open function.

QATransactionalManager class

Copyright © 2006, iAnywhere Solutions, Inc. 493

See Also
QATransactionalManager

Returns
True if and only if the commit operation was successful.

open function

Synopsis
virtual qa_bool QATransactionalManager::open()

Remarks
Opens a QATransactionalManager intance.

The open method must be the first method called after creating a manager.

See Also
QATransactionalManager

Returns
True if and only if the operation was successful.

rollback function

Synopsis
virtual qa_bool QATransactionalManager::rollback()

Remarks
Rolls back the current transaction and begins a new transaction.

This method rolls back all uncommited putMessage function and getMessage function invocations.

See Also
QATransactionalManager

Returns
True if and only if the open operation was successful.

~QATransactionalManager function

Synopsis
virtual QATransactionalManager::~QATransactionalManager()

QAnywhere C++ API Reference

494 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Virtual destructor.

QATransactionalManager class

Copyright © 2006, iAnywhere Solutions, Inc. 495

QueueDepthFilter class
Synopsis

public QueueDepthFilter

Remarks
QueueDepthFilter values for Queue depth APIs of QAManagerBase class.

Members
All members of QueueDepthFilter, including all inherited members.

♦ “ALL variable” on page 496
♦ “INCOMING variable” on page 496
♦ “OUTGOING variable” on page 496

ALL variable

Synopsis
const qa_short QueueDepthFilter::ALL

Remarks
Count both incoming and outgoing messages.

System messages and expired messages are not included in any queue depth counts.

INCOMING variable

Synopsis
const qa_short QueueDepthFilter::INCOMING

Remarks
Count only incoming messages.

An incoming message is defined as a message whose originator is different than the agent ID of the message
store.

OUTGOING variable

Synopsis
const qa_short QueueDepthFilter::OUTGOING

QAnywhere C++ API Reference

496 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Count only outgoing messages.

An outgoing message is defined as a message whose originator is the agent ID of the message store, and
whose destination is not the agent ID of the message store.

QueueDepthFilter class

Copyright © 2006, iAnywhere Solutions, Inc. 497

StatusCodes class
Synopsis

public StatusCodes

Remarks
This interface defines a set of codes for the status of a message.

Members
All members of StatusCodes, including all inherited members.

♦ “CANCELLED variable” on page 498
♦ “EXPIRED variable” on page 498
♦ “FINAL variable” on page 499
♦ “LOCAL variable” on page 499
♦ “PENDING variable” on page 499
♦ “RECEIVED variable” on page 499
♦ “RECEIVING variable” on page 500
♦ “TRANSMITTED variable” on page 500
♦ “TRANSMITTING variable” on page 500
♦ “UNRECEIVABLE variable” on page 500
♦ “UNTRANSMITTED variable” on page 501

CANCELLED variable

Synopsis
const qa_int StatusCodes::CANCELLED

Remarks
The message has been cancelled.

This code has value 40. This code applies to the MEssageProperties::STATUS.

EXPIRED variable

Synopsis
const qa_int StatusCodes::EXPIRED

Remarks
The message has expired, i.e.

the message was not received before its expiration time passed. This code has value 30. This code applies
to the MEssageProperties::STATUS.

QAnywhere C++ API Reference

498 Copyright © 2006, iAnywhere Solutions, Inc.

FINAL variable

Synopsis
const qa_int StatusCodes::FINAL

Remarks
The message has acheived a final state.

This code has value 20. This code applies to the MEssageProperties::STATUS.

LOCAL variable

Synopsis
const qa_int StatusCodes::LOCAL

Remarks
The message is addressed to the local message store and will not be transmitted to the server.

This code has value 2. This code applies to the MEssageProperties::TRANSMISSION_STATUS.

PENDING variable

Synopsis
const qa_int StatusCodes::PENDING

Remarks
The message has been sent but not received.

This code has value 1. This code applies to the MEssageProperties::STATUS.

RECEIVED variable

Synopsis
const qa_int StatusCodes::RECEIVED

Remarks
The message has been received and acknowledged by the receiver.

This code has value 60. This code applies to the MEssageProperties::STATUS.

StatusCodes class

Copyright © 2006, iAnywhere Solutions, Inc. 499

RECEIVING variable

Synopsis
const qa_int StatusCodes::RECEIVING

Remarks
The message is in the process of being received, or it was received but not acknowledged.

This code has value 10. This code applies to the MEssageProperties::STATUS.

TRANSMITTED variable

Synopsis
const qa_int StatusCodes::TRANSMITTED

Remarks
The message has been transmitted to the server.

This code has value 1. This code applies to the MEssageProperties::TRANSMISSION_STATUS.

TRANSMITTING variable

Synopsis
const qa_int StatusCodes::TRANSMITTING

Remarks
The message is in the process of being transmitted to the server.

This code has value 3. This code applies to the MEssageProperties::TRANSMISSION_STATUS.

UNRECEIVABLE variable

Synopsis
const qa_int StatusCodes::UNRECEIVABLE

Remarks
The message has been marked as unreceivable.

The message is either malformed, or there were too many failed attempts to deliver it. This code has value
50. This code applies to the MEssageProperties::STATUS.

QAnywhere C++ API Reference

500 Copyright © 2006, iAnywhere Solutions, Inc.

UNTRANSMITTED variable

Synopsis
const qa_int StatusCodes::UNTRANSMITTED

Remarks
The message has not been transmitted to the server.

This code has value 0. This code applies to the MEssageProperties::TRANSMISSION_STATUS.

StatusCodes class

Copyright © 2006, iAnywhere Solutions, Inc. 501

CHAPTER 14

QAnywhere Java API Reference

Contents
ianywhere.qanywhere.client package .. 504
ianywhere.qanywhere.ws package .. 602

About this chapter
This chapter describes the QAnywhere Java API.

Copyright © 2006, iAnywhere Solutions, Inc. 503

ianywhere.qanywhere.client package

Interface AcknowledgementMode

Synopsis
public ianywhere.qanywhere.client.AcknowledgementMode

Remarks
Indicates how messages should be acknowledged by QAnywhere client applications.

The implicit and explicit acknowledgement modes are assigned to a Interface QAManager instance using
the open method.

With implicit acknowledgement, messages are acknowledged as soon as they are received by a client
application. With explicit acknowledgement, you must call one of the Interface QAManager
acknowledgement methods. The server propagates all status changes from client to client.

See Also
Interface QAManager

Interface QATransactionalManager

Interface QAManagerBase

Members
All members of ianywhere.qanywhere.client.AcknowledgementMode, including all inherited members.

♦ “EXPLICIT_ACKNOWLEDGEMENT variable” on page 504
♦ “IMPLICIT_ACKNOWLEDGEMENT variable” on page 505
♦ “TRANSACTIONAL variable” on page 505

EXPLICIT_ACKNOWLEDGEMENT variable

Synopsis
final short ianywhere.qanywhere.client.AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT

Remarks
Indicates that received messages are acknowledged using one of the Interface QAManager acknowledge
methods.

See Also
Interface QAManager

QAnywhere Java API Reference

504 Copyright © 2006, iAnywhere Solutions, Inc.

IMPLICIT_ACKNOWLEDGEMENT variable

Synopsis
final short ianywhere.qanywhere.client.AcknowledgementMode.IMPLICIT_ACKNOWLEDGEMENT

Remarks
Indicates that all messages are acknowledged as soon as they are received by a client application.

If you receive messages synchronously, messages are acknowledged as soon as the getMessage method
returns. If you receive messages asynchronously, the message is acknowledged as soon as the event handling
function returns.

TRANSACTIONAL variable

Synopsis
final short ianywhere.qanywhere.client.AcknowledgementMode.TRANSACTIONAL

Remarks
This mode indicates that messages are only acknowledged as part of the on going transaction.

This mode is automatically assigned to Interface QATransactionalManager instances.

See Also
Interface QATransactionalManager

Interface MessageProperties

Synopsis
public ianywhere.qanywhere.client.MessageProperties

Remarks
Provides fields storing standard message property names.

The Interface MessageProperties class provides standard message property names. You can pass Interface
MessageProperties fields to Interface QAMessage methods used to get and set message properties.

For example, assume you have the following Interface QAMessage instance: QAMessage msg =
mgr.createTextMessage();
The following example gets the value corresponding to MSG_TYPE variable using the getIntProperty
method. The Interface MessageType enumeration maps the integer result to an appropriate message type.

int msg_type = t_msg.getIntProperty(MessageProperties.MSG_TYPE);
The following example shows the onSystemMessage(QAMessage) method, which is used to handle
QAnywhere system messages.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 505

 private void onSystemMessage(QAMessage msg) {
 QATextMessage t_msg;
 int msg_type;
 String network_adapters;
 String network_names;
 String network_info;
 t_msg = (QATextMessage)msg;
 if(t_msg != null) {
 // Evaluate the message type.
 msg_type = (MessageType)t_msg.getIntProperty
(MessageProperties.MSG_TYPE);
 if(msg_type == MessageType.NETWORK_STATUS_NOTIFICATION) {
 // Handle network status notification.
 network_info = "";
 network_adapters = t_msg.getStringProperty
(MessageProperties.ADAPTERS);
 if(network_adapters != null && network_adapters.length > 0) {
 network_info += network_adapters;
 }
 network_names = t_msg.getStringProperty
(MessageProperties.RASNAMES);
 //...
 }
 }
 }

Members
All members of ianywhere.qanywhere.client.MessageProperties, including all inherited members.

♦ “ADAPTER variable” on page 506
♦ “ADAPTERS variable” on page 507
♦ “DELIVERY_COUNT variable” on page 507
♦ “IP variable” on page 507
♦ “MAC variable” on page 508
♦ “MSG_TYPE variable” on page 508
♦ “NETWORK_STATUS variable” on page 508
♦ “ORIGINATOR variable” on page 509
♦ “RAS variable” on page 509
♦ “RASNAMES variable” on page 509
♦ “STATUS variable” on page 510
♦ “STATUS_TIME variable” on page 510
♦ “TRANSMISSION_STATUS variable” on page 510

ADAPTER variable

Synopsis
final String ianywhere.qanywhere.client.MessageProperties.ADAPTER

Remarks
For "system" queue messages, the network adapter that is being used to connect to the QAnywhere server.

QAnywhere Java API Reference

506 Copyright © 2006, iAnywhere Solutions, Inc.

The value of this field is "ias_Network.Adapter".

You can pass ADAPTER variable in the getStringProperty method to access the associated property. This
property is read-only.

See Also
Interface MessageProperties

ADAPTERS variable

Synopsis
final String ianywhere.qanywhere.client.MessageProperties.ADAPTERS

Remarks
This property name refers to a delimited list of network adapters that can be used to connect to the QAnywhere
server.

It is used for system queue messages.

You can pass ADAPTERS variable in the getStringProperty method to access the associated property. This
property is read-only.

See Also
Interface MessageProperties

DELIVERY_COUNT variable

Synopsis
final String ianywhere.qanywhere.client.MessageProperties.DELIVERY_COUNT

Remarks
This property name refers to the number of attempts that have been made so far to deliver the message.

IP variable

Synopsis
final String ianywhere.qanywhere.client.MessageProperties.IP

Remarks
For "system" queue messages, the IP address of the network adapter that is being used to connect to the
QAnywhere server.

The value of this field is "ias_Network.IP".

You can pass IP variable in the getStringProperty method to access the associated property. This property
is read-only.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 507

See Also
Interface MessageProperties

MAC variable

Synopsis
final String ianywhere.qanywhere.client.MessageProperties.MAC

Remarks
For "system" queue messages, the MAC address of the network adapter that is being used to connect to the
QAnywhere server.

The value of this field is "ias_Network.MAC".

You can pass MAC variable in the getStringProperty method to access the associated property. This property
is read-only.

See Also
Interface MessageProperties

MSG_TYPE variable

Synopsis
final String ianywhere.qanywhere.client.MessageProperties.MSG_TYPE

Remarks
This property name refers to Interface MessageType enumeration values associated with a QAnywhere
message.

The value of this field is "ias_MessageType".

You can pass MSG_TYPE variable in the getIntProperty method to access the associated property. This
property is read-only.

See Also
Interface MessageProperties

NETWORK_STATUS variable

Synopsis
final String ianywhere.qanywhere.client.MessageProperties.NETWORK_STATUS

Remarks
This property name refers to the state of the network connection.

QAnywhere Java API Reference

508 Copyright © 2006, iAnywhere Solutions, Inc.

The value is 1 if the network is accessible and 0 otherwise. The network status is used for system queue
messages (for example, network status changes).

You can pass NETWORK_STATUS variable in the getIntProperty method to access the associated property.
This property is read-only.

See Also
Interface MessageProperties

ORIGINATOR variable

Synopsis
final String ianywhere.qanywhere.client.MessageProperties.ORIGINATOR

Remarks
This property name refers to the message store ID of the originator of the message.

RAS variable

Synopsis
final String ianywhere.qanywhere.client.MessageProperties.RAS

Remarks
For "system" queue messages, the RAS entry name that is being used to connect to the QAnywhere server.

The value of this field is "ias_Network.RAS".

You can pass RAS variable in the getStringProperty method to access the associated property. This property
is read-only.

See Also
Interface MessageProperties

RASNAMES variable

Synopsis
final String ianywhere.qanywhere.client.MessageProperties.RASNAMES

Remarks
For "system" queue messages, a delimited list of RAS entry names that can be used to connect to the
QAnywhere server.

The value of this field is "ias_RASNames".

You can pass RASNAMES variable in the getStringProperty method to access the associated property. This
property is read-only.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 509

See Also
Interface MessageProperties

STATUS variable

Synopsis
final String ianywhere.qanywhere.client.MessageProperties.STATUS

Remarks
This property name refers to the current status of the message.

See Also
Interface StatusCodes

STATUS_TIME variable

Synopsis
final String ianywhere.qanywhere.client.MessageProperties.STATUS_TIME

Remarks
This property name refers to the time at which the message assumed its current status.

If you pass MessageProperties.StatusTime to the getProperty method, it returns a java.util.Date instance.

TRANSMISSION_STATUS variable

Synopsis
final String ianywhere.qanywhere.client.MessageProperties.TRANSMISSION_STATUS

Remarks
This property name refers to the current transmission status of the message.

See Also
Interface StatusCodes

Interface MessageStoreProperties

Synopsis
public ianywhere.qanywhere.client.MessageStoreProperties

Remarks
This class defines constant values for useful message store property names.

QAnywhere Java API Reference

510 Copyright © 2006, iAnywhere Solutions, Inc.

The Interface MessageStoreProperties class provides standard message property names. You can pass
Interface MessageProperties fields to Interface QAManagerBase methods used to get and set pre-defined or
custom message store properties.

Members
All members of ianywhere.qanywhere.client.MessageStoreProperties, including all inherited members.

♦ “MAX_DELIVERY_ATTEMPTS variable” on page 511

MAX_DELIVERY_ATTEMPTS variable

Synopsis
final String ianywhere.qanywhere.client.MessageStoreProperties.MAX_DELIVERY_ATTEMPTS

Remarks
This property name refers to the maximum number of times that a message can be received without being
acknowledged before its status is set to UNRECEIVABLE variable.

Interface MessageType

Synopsis
public ianywhere.qanywhere.client.MessageType

Remarks
Defines constant values for the MSG_TYPE variable message property.

The following example shows the onSystemMessage(QAMessage) method, which is used to handle
QAnywhere system messages. The message type is compared to NETWORK_STATUS_NOTIFICATION
variable.

 private void onSystemMessage(QAMessage msg)
 {
 QATextMessage t_msg;
 int msg_type;
 String network_adapters;
 String network_names;
 String network_info;

 t_msg = (QATextMessage)msg;
 if(t_msg != null)
 {
 // Evaluate message type.
 msg_type = t_msg.getIntProperty(MessageProperties.MSG_TYPE);
 if(msg_type == MessageType.NETWORK_STATUS_NOTIFICATION)
 {
 // Handle network status notification.

 }
 }
 }

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 511

Members
All members of ianywhere.qanywhere.client.MessageType, including all inherited members.

♦ “NETWORK_STATUS_NOTIFICATION variable” on page 512
♦ “PUSH_NOTIFICATION variable” on page 512
♦ “REGULAR variable” on page 512

NETWORK_STATUS_NOTIFICATION variable

Synopsis
final int ianywhere.qanywhere.client.MessageType.NETWORK_STATUS_NOTIFICATION

Remarks
Identifies a QAnywhere system message used to notify QAnywhere client applications of network status
changes.

Network status changes apply to the device receiving the system message. Use the ADAPTER variable,
MessageProperties.NETWORK,and NETWORK_STATUS variable fields to identify new network status
information.

PUSH_NOTIFICATION variable

Synopsis
final int ianywhere.qanywhere.client.MessageType.PUSH_NOTIFICATION

Remarks
Identifies a QAnywhere system message used to notify QAnywhere client applications of push notifications.

If you use the on-demand QAnywhere Agent policy, a typical response is to call the triggerSendReceive
method to receive messages waiting with the central message server.

REGULAR variable

Synopsis
final int ianywhere.qanywhere.client.MessageType.REGULAR

Remarks
If no message type property exists, the message type is assumed to be REGULAR.

This type of message is not treated specially by the message system.

QAnywhere Java API Reference

512 Copyright © 2006, iAnywhere Solutions, Inc.

Interface PropertyType

Synopsis
public ianywhere.qanywhere.client.PropertyType

Remarks
Interface QAMessage property type enumeration, corresponding naturally to the Java types.

Members
All members of ianywhere.qanywhere.client.PropertyType, including all inherited members.

♦ “PROPERTY_TYPE_BOOLEAN variable” on page 513
♦ “PROPERTY_TYPE_BYTE variable” on page 513
♦ “PROPERTY_TYPE_DOUBLE variable” on page 513
♦ “PROPERTY_TYPE_FLOAT variable” on page 514
♦ “PROPERTY_TYPE_INT variable” on page 514
♦ “PROPERTY_TYPE_LONG variable” on page 514
♦ “PROPERTY_TYPE_SHORT variable” on page 514
♦ “PROPERTY_TYPE_STRING variable” on page 514
♦ “PROPERTY_TYPE_UNKNOWN variable” on page 514

PROPERTY_TYPE_BOOLEAN variable

Synopsis
final short ianywhere.qanywhere.client.PropertyType.PROPERTY_TYPE_BOOLEAN

Remarks
Indicates a boolean property.

PROPERTY_TYPE_BYTE variable

Synopsis
final short ianywhere.qanywhere.client.PropertyType.PROPERTY_TYPE_BYTE

Remarks
Indicates a signed byte property.

PROPERTY_TYPE_DOUBLE variable

Synopsis
final short ianywhere.qanywhere.client.PropertyType.PROPERTY_TYPE_DOUBLE

Remarks
Indicates a double property.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 513

PROPERTY_TYPE_FLOAT variable

Synopsis
final short ianywhere.qanywhere.client.PropertyType.PROPERTY_TYPE_FLOAT

Remarks
Indicates a float property.

PROPERTY_TYPE_INT variable

Synopsis
final short ianywhere.qanywhere.client.PropertyType.PROPERTY_TYPE_INT

Remarks
Indicates an int property.

PROPERTY_TYPE_LONG variable

Synopsis
final short ianywhere.qanywhere.client.PropertyType.PROPERTY_TYPE_LONG

Remarks
Indicates an long property.

PROPERTY_TYPE_SHORT variable

Synopsis
final short ianywhere.qanywhere.client.PropertyType.PROPERTY_TYPE_SHORT

Remarks
Indicates a short property.

PROPERTY_TYPE_STRING variable

Synopsis
final short ianywhere.qanywhere.client.PropertyType.PROPERTY_TYPE_STRING

Remarks
Indicates a String property.

PROPERTY_TYPE_UNKNOWN variable

Synopsis
final short ianywhere.qanywhere.client.PropertyType.PROPERTY_TYPE_UNKNOWN

QAnywhere Java API Reference

514 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Indicates an unknown property type, usually because the property is unknown.

Interface QABinaryMessage

Synopsis
public ianywhere.qanywhere.client.QABinaryMessage

Base classes
♦ “Interface QAMessage” on page 570

Remarks
A Interface QABinaryMessage object is used to send a message containing a stream of uninterpreted bytes.

Interface QABinaryMessage inherits from the Interface QAMessage class and adds a bytes message body.
Interface QABinaryMessage provides a variety of functions to read from and write to the bytes message
body.

When the message is first created, the body of the message is in write-only mode. After a message has been
sent, the client that sent it can retain and modify it without affecting the message that has been sent. The
same message object can be sent multiple times.

When a message is received, the provider has called reset method so that the message body is in read-only
mode and reading of values starts from the beginning of the message body.

The following example uses the writeString method to write the string "Q" followed by the string "Anywhere"
to a Interface QABinaryMessage instance's message body.

 // Create a binary message instance.
 QABinaryMessage binary_message;
 binary_message = qa_manager.createBinaryMessage();

 // Set optional message properties.
 binary_message.setReplyToAddress("my-queue-name");

 // Write to the message body.
 binary_message.writeString("Q");
 binary_messge.writeString("Anywhere");

 // Put the message in the local database, ready for sending.
 try {
 qa_manager.putMessage("store-id\\queue-name", binary_message);
 }
 catch (QAException e) {
 handleError();
 }

Note: On the receiving end, the first readString method invocation returns "Q" and the next readString
method invocation returns "Anywhere".

The message is sent by the QAnywhere Agent.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 515

Members
All members of ianywhere.qanywhere.client.QABinaryMessage, including all inherited members.

♦ “clearProperties method” on page 572
♦ “DEFAULT_PRIORITY variable” on page 572
♦ “DEFAULT_TIME_TO_LIVE variable” on page 572
♦ “getAddress method” on page 572
♦ “getBodyLength method” on page 517
♦ “getBooleanProperty method” on page 573
♦ “getByteProperty method” on page 573
♦ “getDoubleProperty method” on page 574
♦ “getExpiration method” on page 574
♦ “getFloatProperty method” on page 575
♦ “getInReplyToID method” on page 575
♦ “getIntProperty method” on page 576
♦ “getLongProperty method” on page 576
♦ “getMessageID method” on page 577
♦ “getPriority method” on page 577
♦ “getProperty method” on page 578
♦ “getPropertyNames method” on page 578
♦ “getPropertyType method” on page 578
♦ “getRedelivered method” on page 579
♦ “getReplyToAddress method” on page 579
♦ “getShortProperty method” on page 580
♦ “getStringProperty method” on page 580
♦ “getTimestamp method” on page 581
♦ “propertyExists method” on page 581
♦ “readBinary method” on page 517
♦ “readBinary method” on page 518
♦ “readBoolean method” on page 519
♦ “readByte method” on page 519
♦ “readChar method” on page 520
♦ “readDouble method” on page 520
♦ “readFloat method” on page 521
♦ “readInt method” on page 521
♦ “readLong method” on page 522
♦ “readShort method” on page 522
♦ “readString method” on page 523
♦ “reset method” on page 523
♦ “setAddress method” on page 582
♦ “setBooleanProperty method” on page 582
♦ “setByteProperty method” on page 583
♦ “setDoubleProperty method” on page 583
♦ “setFloatProperty method” on page 584
♦ “setInReplyToID method” on page 584
♦ “setIntProperty method” on page 585
♦ “setLongProperty method” on page 585

QAnywhere Java API Reference

516 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “setPriority method” on page 586
♦ “setProperty method” on page 586
♦ “setReplyToAddress method” on page 587
♦ “setShortProperty method” on page 587
♦ “setStringProperty method” on page 588
♦ “writeBinary method” on page 523
♦ “writeBinary method” on page 524
♦ “writeBinary method” on page 524
♦ “writeBoolean method” on page 525
♦ “writeByte method” on page 526
♦ “writeChar method” on page 526
♦ “writeDouble method” on page 527
♦ “writeFloat method” on page 527
♦ “writeInt method” on page 528
♦ “writeLong method” on page 528
♦ “writeShort method” on page 529
♦ “writeString method” on page 529

getBodyLength method

Synopsis
long ianywhere.qanywhere.client.QABinaryMessage.getBodyLength()
throws QAException

Throws
♦ Thrown if there is a problem retrieving the size of the message body.

Remarks
Returns the size of the message body in bytes.

See Also
Interface QABinaryMessage

Returns
The size of the message body in bytes.

readBinary method

Synopsis
int ianywhere.qanywhere.client.QABinaryMessage.readBinary(
 byte[] dest
)
throws QAException

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 517

Parameters
♦ dest The byte array to hold the read bytes.

Throws
♦ Thrown if there was a conversion error reading the value or if there is no more input.

Remarks
Reads a specified number of bytes starting from the unread portion of a Interface QABinaryMessage instance
body.

See Also
Interface QABinaryMessage

writeBinary method

Returns
The number of bytes read from the message body.

readBinary method

Synopsis
int ianywhere.qanywhere.client.QABinaryMessage.readBinary(
 byte[] dest,
 int length
)
throws QAException

Parameters
♦ dest The byte array to hold the read bytes.

♦ length The maximum number of bytes to read.

Throws
♦ Thrown if there was a conversion error reading the value or if there is no more input.

Remarks
Reads a specified number of bytes starting from the unread portion of a Interface QABinaryMessage instance
body.

See Also
Interface QABinaryMessage

writeBinary method

QAnywhere Java API Reference

518 Copyright © 2006, iAnywhere Solutions, Inc.

Returns
The number of bytes read from the message body.

readBoolean method

Synopsis
boolean ianywhere.qanywhere.client.QABinaryMessage.readBoolean()
throws QAException

Throws
♦ Thrown if there was a conversion error reading the value or if there is no more input.

Remarks
Reads a boolean value starting from the unread portion of the Interface QABinaryMessage instance's message
body.

See Also
Interface QABinaryMessage

writeBoolean method

Returns
The boolean value read from the message body.

readByte method

Synopsis
byte ianywhere.qanywhere.client.QABinaryMessage.readByte()
throws QAException

Throws
♦ Thrown if there was a conversion error reading the value or if there is no more input.

Remarks
Reads a signed byte value starting from the unread portion of a Interface QABinaryMessage message body.

See Also
Interface QABinaryMessage

writeByte method

Returns
The signed byte value read from the message body.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 519

readChar method

Synopsis
char ianywhere.qanywhere.client.QABinaryMessage.readChar()
throws QAException

Throws
♦ Thrown if there was a conversion error reading the value or if there is no more input.

Remarks
Reads a char value starting from the unread portion of a Interface QABinaryMessage message body.

See Also
Interface QABinaryMessage

writeChar method

Returns
The character value read from the message body.

readDouble method

Synopsis
double ianywhere.qanywhere.client.QABinaryMessage.readDouble()
throws QAException

Throws
♦ Thrown if there was a conversion error reading the value or if there is no more input.

Remarks
Reads a double value starting from the unread portion of a Interface QABinaryMessage message body.

See Also
Interface QABinaryMessage

writeDouble method

Returns
The double value read from the message body.

QAnywhere Java API Reference

520 Copyright © 2006, iAnywhere Solutions, Inc.

readFloat method

Synopsis
float ianywhere.qanywhere.client.QABinaryMessage.readFloat()
throws QAException

Throws
♦ Thrown if there was a conversion error reading the value or if there is no more input.

Remarks
Reads a float value starting from the unread portion of a Interface QABinaryMessage message body.

See Also
Interface QABinaryMessage

writeFloat method

Returns
The float value read from the message body.

readInt method

Synopsis
int ianywhere.qanywhere.client.QABinaryMessage.readInt()
throws QAException

Throws
♦ Thrown if there was a conversion error reading the value or if there is no more input.

Remarks
Reads an integer value starting from the unread portion of a Interface QABinaryMessage message body.

See Also
Interface QABinaryMessage

writeInt method

Returns
The int value read from the message body.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 521

readLong method

Synopsis
long ianywhere.qanywhere.client.QABinaryMessage.readLong()
throws QAException

Throws
♦ Thrown if there was a conversion error reading the value or if there is no more input.

Remarks
Reads a long value starting from the unread portion of a Interface QABinaryMessage message body.

See Also
Interface QABinaryMessage

writeLong method

Returns
The long value read from the message body.

readShort method

Synopsis
short ianywhere.qanywhere.client.QABinaryMessage.readShort()
throws QAException

Throws
♦ Thrown if there was a conversion error reading the value or if there is no more input.

Remarks
Reads a short value starting from the unread portion of a Interface QABinaryMessage message body.

See Also
Interface QABinaryMessage

writeShort method

Returns
The short value read from the message body.

QAnywhere Java API Reference

522 Copyright © 2006, iAnywhere Solutions, Inc.

readString method

Synopsis
String ianywhere.qanywhere.client.QABinaryMessage.readString()
throws QAException

Throws
♦ Thrown if there was a conversion error reading the value or if there is no more input.

Remarks
Reads a string value starting from the unread portion of a Interface QABinaryMessage message body.

See Also
Interface QABinaryMessage

writeString method

Returns
The string value read from the message body.

reset method

Synopsis
void ianywhere.qanywhere.client.QABinaryMessage.reset()
throws QAException

Throws
♦ Thrown if there is a problem resetting the message.

Remarks
Resets a message so that the reading of values starts from the beginning of the message body.

The reset method also puts the Interface QABinaryMessage message body in read-only mode.

See Also
Interface QABinaryMessage

writeBinary method

Synopsis
void ianywhere.qanywhere.client.QABinaryMessage.writeBinary(
 byte[] val
)
throws QAException

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 523

Parameters
♦ val The byte array value to write to the message body.

Throws
♦ Thrown if there is a problem appending the byte array to the message body.

Remarks
Appends a byte array value to the Interface QABinaryMessage instance's message body.

See Also
Interface QABinaryMessage

readBinary method

writeBinary method

Synopsis
void ianywhere.qanywhere.client.QABinaryMessage.writeBinary(
 byte[] val,
 int len
)
throws QAException

Parameters
♦ val The byte array value to write to the message body.

♦ len The number of bytes to write.

Throws
♦ Thrown if there is a problem appending the byte array to the message body.

Remarks
Appends a byte array value to the Interface QABinaryMessage instance's message body.

See Also
Interface QABinaryMessage

readBinary method

writeBinary method

Synopsis
void ianywhere.qanywhere.client.QABinaryMessage.writeBinary(
 byte[] val,

QAnywhere Java API Reference

524 Copyright © 2006, iAnywhere Solutions, Inc.

 int offset,
 int len
)
throws QAException

Parameters
♦ val The byte array value to write to the message body.

♦ offset The offset within the byte array to begin writing.

♦ len The number of bytes to write.

Throws
♦ Thrown if there is a problem appending the byte array to the message body.

Remarks
Appends a byte array value to the Interface QABinaryMessage instance's message body.

See Also
Interface QABinaryMessage

readBinary method

writeBoolean method

Synopsis
void ianywhere.qanywhere.client.QABinaryMessage.writeBoolean(
 boolean val
)
throws QAException

Parameters
♦ val The boolean value to write to the message body.

Throws
♦ Thrown if there is a problem appending the boolean value to the message body.

Remarks
Appends a boolean value to the Interface QABinaryMessage instance's message body.

The boolean is represented as a one byte value. True is represented as 1; false is represented as 0.

See Also
Interface QABinaryMessage

readBoolean method

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 525

writeByte method

Synopsis
void ianywhere.qanywhere.client.QABinaryMessage.writeByte(
 byte val
)
throws QAException

Parameters
♦ val The signed byte value to write to the message body.

Throws
♦ Thrown if there is a problem appending the signed byte value to the message body.

Remarks
Appends a signed byte value to the Interface QABinaryMessage instance's message body.

The signed byte is represented as a one byte value.

See Also
Interface QABinaryMessage

readByte method

writeChar method

Synopsis
void ianywhere.qanywhere.client.QABinaryMessage.writeChar(
 char val
)
throws QAException

Parameters
♦ val The char value to write to the message body.

Throws
♦ Thrown if there is a problem appending the char value to the message body.

Remarks
Appends a char value to the Interface QABinaryMessage instance's message body.

The char is represented as a two byte value and the high order byte is appended first.

See Also
Interface QABinaryMessage

readChar method

QAnywhere Java API Reference

526 Copyright © 2006, iAnywhere Solutions, Inc.

writeDouble method

Synopsis
void ianywhere.qanywhere.client.QABinaryMessage.writeDouble(
 double val
)
throws QAException

Parameters
♦ val the double value to write to the message body.

Throws
♦ Thrown if there is a problem appending the double value to the message body.

Remarks
Appends a double value to the Interface QABinaryMessage instance's message body.

The double is converted to a representative 8-byte long and higher order bytes are appended first.

See Also
Interface QABinaryMessage

readDouble method

writeFloat method

Synopsis
void ianywhere.qanywhere.client.QABinaryMessage.writeFloat(
 float val
)
throws QAException

Parameters
♦ val The float value to write to the message body.

Throws
♦ Thrown if there is a problem appending the float value to the message body.

Remarks
Appends a float value to the Interface QABinaryMessage instance's message body.

The float is converted to a representative 4-byte integer and the higher order bytes are appended first.

See Also
Interface QABinaryMessage

readFloat method

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 527

writeInt method

Synopsis
void ianywhere.qanywhere.client.QABinaryMessage.writeInt(
 int val
)
throws QAException

Parameters
♦ val The int value to write to the message body.

Throws
♦ Thrown if there is a problem appending the integer value to the message body.

Remarks
Appends an integer value to the Interface QABinaryMessage instance's message body.

The integer parameter is represented as a 4 byte value and higher order bytes are appended first.

See Also
Interface QABinaryMessage

readInt method

writeLong method

Synopsis
void ianywhere.qanywhere.client.QABinaryMessage.writeLong(
 long val
)
throws QAException

Parameters
♦ val The long value to write to the message body.

Throws
♦ Thrown if there is a problem appending the long value to the message body.

Remarks
Appends a long value to the Interface QABinaryMessage instance's message body.

The long parameter is represented using 8-bytes value and higher order bytes are appended first.

See Also
Interface QABinaryMessage

readLong method

QAnywhere Java API Reference

528 Copyright © 2006, iAnywhere Solutions, Inc.

writeShort method

Synopsis
void ianywhere.qanywhere.client.QABinaryMessage.writeShort(
 short val
)
throws QAException

Parameters
♦ val The short value to write to the message body.

Throws
♦ Thrown if there is a problem appending the short value to the message body.

Remarks
Appends a short value to the Interface QABinaryMessage instance's message body.

The short parameter is represented as a two byte value and the higher order byte is appended first.

See Also
Interface QABinaryMessage

readShort method

writeString method

Synopsis
void ianywhere.qanywhere.client.QABinaryMessage.writeString(
 String val
)
throws QAException

Parameters
♦ val The string value to write to the message body.

Throws
♦ Thrown if there is a problem appending the string value to the message body.

Remarks
Appends a string value to the Interface QABinaryMessage instance's message body.

Note: The receiving application needs to invoke readString method for each WriteString invocation. Note:
The UTF-8 representation of the string to be written can be at most 32767 bytes.

See Also
Interface QABinaryMessage

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 529

readString method

Class QAException

Synopsis
public ianywhere.qanywhere.client.QAException

Remarks
Encapsulates QAnywhere client application exceptions.

You can use the Class QAException class to catch QAnywhere exceptions.

 try
 {
 _qaManager = QAManagerFactory.getInstance().CreateQAManager();
 _qaManager.open(AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);
 _qaManager.start();
 }
 catch(QAException e)
 {
 // Handle exception.
 System.err.println("Error code: " + e.getErrorCode());
 System.err.println("Error message: " + e.getMessage());
 }
 }

Members
All members of ianywhere.qanywhere.client.QAException, including all inherited members.

♦ “COMMON_ALREADY_OPEN_ERROR variable” on page 531
♦ “COMMON_GET_INIT_FILE_ERROR variable” on page 532
♦ “COMMON_GETQUEUEDEPTH_ERROR variable” on page 531
♦ “COMMON_GETQUEUEDEPTH_ERROR_INVALID_ARG variable” on page 531
♦ “COMMON_GETQUEUEDEPTH_ERROR_NO_STORE_ID variable” on page 531
♦ “COMMON_INIT_ERROR variable” on page 532
♦ “COMMON_INIT_THREAD_ERROR variable” on page 532
♦ “COMMON_INVALID_PROPERTY variable” on page 532
♦ “COMMON_MSG_ACKNOWLEDGE_ERROR variable” on page 532
♦ “COMMON_MSG_CANCEL_ERROR variable” on page 532
♦ “COMMON_MSG_CANCEL_ERROR_SENT variable” on page 533
♦ “COMMON_MSG_NOT_WRITEABLE_ERROR variable” on page 533
♦ “COMMON_MSG_RETRIEVE_ERROR variable” on page 533
♦ “COMMON_MSG_STORE_ERROR variable” on page 533
♦ “COMMON_MSG_STORE_NOT_INITIALIZED variable” on page 533
♦ “COMMON_MSG_STORE_TOO_LARGE variable” on page 534
♦ “COMMON_NO_DEST_ERROR variable” on page 534
♦ “COMMON_NO_IMPLEMENTATION variable” on page 534
♦ “COMMON_NOT_OPEN_ERROR variable” on page 534

QAnywhere Java API Reference

530 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “COMMON_OPEN_ERROR variable” on page 534
♦ “COMMON_OPEN_LOG_FILE_ERROR variable” on page 534
♦ “COMMON_SELECTOR_SYNTAX_ERROR variable” on page 535
♦ “COMMON_TERMINATE_ERROR variable” on page 535
♦ “COMMON_UNEXPECTED_EOM_ERROR variable” on page 535
♦ “COMMON_UNREPRESENTABLE_TIMESTAMP variable” on page 535
♦ “getErrorCode method” on page 536
♦ “QA_NO_ERROR variable” on page 536
♦ “QAException method” on page 535

COMMON_ALREADY_OPEN_ERROR variable

Synopsis
final int ianywhere.qanywhere.client.QAException.COMMON_ALREADY_OPEN_ERROR

Remarks
The Interface QAManager is already open.

COMMON_GETQUEUEDEPTH_ERROR variable

Synopsis
final int ianywhere.qanywhere.client.QAException.COMMON_GETQUEUEDEPTH_ERROR

Remarks
Error getting the queue depth.

COMMON_GETQUEUEDEPTH_ERROR_INVALID_ARG variable

Synopsis
final int
ianywhere.qanywhere.client.QAException.COMMON_GETQUEUEDEPTH_ERROR_INVALID_ARG

Remarks
Cannot use getQueueDepth method on a given destination when filter is ALL.

COMMON_GETQUEUEDEPTH_ERROR_NO_STORE_ID variable

Synopsis
final int
ianywhere.qanywhere.client.QAException.COMMON_GETQUEUEDEPTH_ERROR_NO_STORE_ID

Remarks
Cannot use getQueueDepth method when the message store ID has not been set.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 531

COMMON_GET_INIT_FILE_ERROR variable

Synopsis
final int ianywhere.qanywhere.client.QAException.COMMON_GET_INIT_FILE_ERROR

Remarks
Unable to access the client properties file.

COMMON_INIT_ERROR variable

Synopsis
final int ianywhere.qanywhere.client.QAException.COMMON_INIT_ERROR

Remarks
Initialization error.

COMMON_INIT_THREAD_ERROR variable

Synopsis
final int ianywhere.qanywhere.client.QAException.COMMON_INIT_THREAD_ERROR

Remarks
Error initializing the background thread.

COMMON_INVALID_PROPERTY variable

Synopsis
final int ianywhere.qanywhere.client.QAException.COMMON_INVALID_PROPERTY

Remarks
There is an invalid property in the client properties file.

COMMON_MSG_ACKNOWLEDGE_ERROR variable

Synopsis
final int ianywhere.qanywhere.client.QAException.COMMON_MSG_ACKNOWLEDGE_ERROR

Remarks
Error acknowledging the message.

COMMON_MSG_CANCEL_ERROR variable

Synopsis
final int ianywhere.qanywhere.client.QAException.COMMON_MSG_CANCEL_ERROR

QAnywhere Java API Reference

532 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Error cancelling message.

COMMON_MSG_CANCEL_ERROR_SENT variable

Synopsis
final int ianywhere.qanywhere.client.QAException.COMMON_MSG_CANCEL_ERROR_SENT

Remarks
Error cancelling message.

Cannot cancel a message that has already been sent.

COMMON_MSG_NOT_WRITEABLE_ERROR variable

Synopsis
final int ianywhere.qanywhere.client.QAException.COMMON_MSG_NOT_WRITEABLE_ERROR

Remarks
You cannot write to a message that is in read-only mode.

COMMON_MSG_RETRIEVE_ERROR variable

Synopsis
final int ianywhere.qanywhere.client.QAException.COMMON_MSG_RETRIEVE_ERROR

Remarks
Error retrieving a message from the client message store.

COMMON_MSG_STORE_ERROR variable

Synopsis
final int ianywhere.qanywhere.client.QAException.COMMON_MSG_STORE_ERROR

Remarks
Error storing a message in the client message store.

COMMON_MSG_STORE_NOT_INITIALIZED variable

Synopsis
final int ianywhere.qanywhere.client.QAException.COMMON_MSG_STORE_NOT_INITIALIZED

Remarks
The message store has not been initialized for messaging.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 533

COMMON_MSG_STORE_TOO_LARGE variable

Synopsis
final int ianywhere.qanywhere.client.QAException.COMMON_MSG_STORE_TOO_LARGE

Remarks
The message store is too large relative to the free disk space on the device.

COMMON_NOT_OPEN_ERROR variable

Synopsis
final int ianywhere.qanywhere.client.QAException.COMMON_NOT_OPEN_ERROR

Remarks
The Interface QAManager is not open.

COMMON_NO_DEST_ERROR variable

Synopsis
final int ianywhere.qanywhere.client.QAException.COMMON_NO_DEST_ERROR

Remarks
No destination.

COMMON_NO_IMPLEMENTATION variable

Synopsis
final int ianywhere.qanywhere.client.QAException.COMMON_NO_IMPLEMENTATION

Remarks
The method is not implemented.

COMMON_OPEN_ERROR variable

Synopsis
final int ianywhere.qanywhere.client.QAException.COMMON_OPEN_ERROR

Remarks
Error opening a connection to the message store.

COMMON_OPEN_LOG_FILE_ERROR variable

Synopsis
final int ianywhere.qanywhere.client.QAException.COMMON_OPEN_LOG_FILE_ERROR

QAnywhere Java API Reference

534 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Error opening the log file.

COMMON_SELECTOR_SYNTAX_ERROR variable

Synopsis
final int ianywhere.qanywhere.client.QAException.COMMON_SELECTOR_SYNTAX_ERROR

Remarks
The given selector has a syntax error.

COMMON_TERMINATE_ERROR variable

Synopsis
final int ianywhere.qanywhere.client.QAException.COMMON_TERMINATE_ERROR

Remarks
Termination error.

COMMON_UNEXPECTED_EOM_ERROR variable

Synopsis
final int ianywhere.qanywhere.client.QAException.COMMON_UNEXPECTED_EOM_ERROR

Remarks
Unexpected end of message reached.

COMMON_UNREPRESENTABLE_TIMESTAMP variable

Synopsis
final int ianywhere.qanywhere.client.QAException.COMMON_UNREPRESENTABLE_TIMESTAMP

Remarks
The timestamp is outside of the acceptable range.

QAException method

Synopsis
 ianywhere.qanywhere.client.QAException.QAException(
 String message,
 int errorCode
)

Parameters
♦ message The text description of the exception.

♦ errorCode The error code.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 535

Remarks
Creates a Class QAException instance with the provided error code and error message text.

QA_NO_ERROR variable

Synopsis
final int ianywhere.qanywhere.client.QAException.QA_NO_ERROR

Remarks
No error.

getErrorCode method

Synopsis
int ianywhere.qanywhere.client.QAException.getErrorCode()

Remarks
Returns the error code of the last exception.

Returns
The error code of the last exception.

Interface QAManager

Synopsis
public ianywhere.qanywhere.client.QAManager

Base classes
♦ “Interface QAManagerBase” on page 540

Remarks
Interface QAManager derives from Interface QAManagerBase.

It manages non-transactional QAnywhere messaging operations.

For a detailed description of derived behavior, see Interface QAManagerBase.

The Interface QAManager instance can be configured for implicit or explicit acknowledgement, as defined
in the Interface AcknowledgementMode class. To acknowledge messages as part of a transaction, use
Interface QATransactionalManager.

Use the Class QAManagerFactory class to create Interface QAManager and Interface
QATransactionalManager objects.

Members
All members of ianywhere.qanywhere.client.QAManager, including all inherited members.

QAnywhere Java API Reference

536 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “acknowledge method” on page 538
♦ “acknowledgeAll method” on page 538
♦ “acknowledgeUntil method” on page 539
♦ “browseMessages method” on page 542
♦ “browseMessagesByID method” on page 542
♦ “browseMessagesByQueue method” on page 543
♦ “browseMessagesBySelector method” on page 544
♦ “cancelMessage method” on page 544
♦ “close method” on page 545
♦ “createBinaryMessage method” on page 545
♦ “createTextMessage method” on page 546
♦ “getBooleanStoreProperty method” on page 546
♦ “getByteStoreProperty method” on page 547
♦ “getDoubleStoreProperty method” on page 547
♦ “getFloatStoreProperty method” on page 548
♦ “getIntStoreProperty method” on page 548
♦ “getLongStoreProperty method” on page 549
♦ “getMessage method” on page 550
♦ “getMessageBySelector method” on page 550
♦ “getMessageBySelectorNoWait method” on page 551
♦ “getMessageBySelectorTimeout method” on page 551
♦ “getMessageListener method” on page 552
♦ “getMessageNoWait method” on page 552
♦ “getMessageTimeout method” on page 553
♦ “getMode method” on page 554
♦ “getQueueDepth method” on page 554
♦ “getQueueDepth method” on page 555
♦ “getShortStoreProperty method” on page 555
♦ “getStoreProperty method” on page 556
♦ “getStorePropertyNames method” on page 556
♦ “getStringStoreProperty method” on page 557
♦ “open method” on page 539
♦ “putMessage method” on page 557
♦ “putMessageTimeToLive method” on page 558
♦ “recover method” on page 540
♦ “setBooleanStoreProperty method” on page 559
♦ “setByteStoreProperty method” on page 559
♦ “setDoubleStoreProperty method” on page 560
♦ “setFloatStoreProperty method” on page 560
♦ “setIntStoreProperty method” on page 561
♦ “setLongStoreProperty method” on page 561
♦ “setMessageListener method” on page 562
♦ “setMessageListenerBySelector method” on page 563
♦ “setShortStoreProperty method” on page 563
♦ “setStoreProperty method” on page 564
♦ “setStringStoreProperty method” on page 564
♦ “start method” on page 565
♦ “stop method” on page 565

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 537

♦ “triggerSendReceive method” on page 566

acknowledge method

Synopsis
void ianywhere.qanywhere.client.QAManager.acknowledge(
 QAMessage msg
)
throws QAException

Parameters
♦ msg The message to acknowledge.

Throws
♦ Thrown if there is a problem acknowledging the message.

Remarks
Acknowledges that the client application successfully received a QAnywhere message.

Note: When a Interface QAMessage is acknowledged, its status property changes to RECEIVED variable.
It can then be deleted using the default delete rule.

See Also
Interface QAManager

acknowledgeUntil method

acknowledgeAll method

acknowledgeAll method

Synopsis
void ianywhere.qanywhere.client.QAManager.acknowledgeAll()
throws QAException

Throws
♦ Thrown if there is a problem acknowledging the messages.

Remarks
Acknowledges that the client application successfully received QAnywhere messages.

All unacknowledged messages are acknowledged.

Note: When a Interface QAMessage is acknowledged, its status property changes to RECEIVED variable.
It can then be deleted using the default delete rule.

QAnywhere Java API Reference

538 Copyright © 2006, iAnywhere Solutions, Inc.

See Also
Interface QAManager

acknowledge method

acknowledgeUntil method

acknowledgeUntil method

Synopsis
void ianywhere.qanywhere.client.QAManager.acknowledgeUntil(
 QAMessage msg
)
throws QAException

Parameters
♦ msg The last message to acknowledge. All earlier unacknowledged messages are also acknowledged.

Throws
♦ Thrown if there is a problem acknowledging the messages.

Remarks
Acknowledges the given Interface QAMessage instance and all unacknowledged messages received before
the given message.

Note: When a Interface QAMessage is acknowledged, its status property changes to RECEIVED variable.
It can then be deleted using the default delete rule.

See Also
Interface QAManager

acknowledge method

acknowledgeAll method

open method

Synopsis
void ianywhere.qanywhere.client.QAManager.open(
 short mode
)
throws QAException

Parameters
♦ mode The acknowledgement mode, one of “EXPLICIT_ACKNOWLEDGEMENT

variable” on page 504 or “IMPLICIT_ACKNOWLEDGEMENT variable” on page 505.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 539

Throws
♦ Thrown if there is a problem opening the “Interface QAManager” on page 536 instance.

Remarks
Opens the Interface QAManager with the given Interface AcknowledgementMode value.

The open method must be the first method called after creating a Interface QAManager.

See Also
Interface AcknowledgementMode

Interface QAManager

recover method

Synopsis
void ianywhere.qanywhere.client.QAManager.recover()
throws QAException

Throws
♦ Thrown if there is a problem recovering.

Remarks
Forces all unacknowledged messages into a state of unreceived.

These messages must be received again using getMessage method.

See Also
Interface QAManager

Interface QAManagerBase

Synopsis
public ianywhere.qanywhere.client.QAManagerBase

Derived classes
♦ “Interface QAManager” on page 536
♦ “Interface QATransactionalManager” on page 594

Remarks
This class acts as a base class for Interface QATransactionalManager and Interface QAManager, which
manage transactional and non-transactional messaging, respectively.

QAnywhere Java API Reference

540 Copyright © 2006, iAnywhere Solutions, Inc.

Use the start method to allow a Interface QAManagerBase instance to listen for messages. An instance of
Interface QAManagerBase must be used only on the thread that created it.

You can use instances of this class to create and manage QAnywhere messages. Use the createBinaryMessage
method and createTextMessage method to create appropriate Interface QAMessage instances. Interface
QAMessage instances provide a variety of methods to set message content and properties. To send
QAnywhere messages, use the putMessage method to place the addressed message in the local message
store queue. The message is transmitted by the QAnywhere Agent based on its transmission policies or when
you call triggerSendReceive method.

Interface QAManagerBase also provides methods to set and get message store properties.

Members
All members of ianywhere.qanywhere.client.QAManagerBase, including all inherited members.

♦ “browseMessages method” on page 542
♦ “browseMessagesByID method” on page 542
♦ “browseMessagesByQueue method” on page 543
♦ “browseMessagesBySelector method” on page 544
♦ “cancelMessage method” on page 544
♦ “close method” on page 545
♦ “createBinaryMessage method” on page 545
♦ “createTextMessage method” on page 546
♦ “getBooleanStoreProperty method” on page 546
♦ “getByteStoreProperty method” on page 547
♦ “getDoubleStoreProperty method” on page 547
♦ “getFloatStoreProperty method” on page 548
♦ “getIntStoreProperty method” on page 548
♦ “getLongStoreProperty method” on page 549
♦ “getMessage method” on page 550
♦ “getMessageBySelector method” on page 550
♦ “getMessageBySelectorNoWait method” on page 551
♦ “getMessageBySelectorTimeout method” on page 551
♦ “getMessageListener method” on page 552
♦ “getMessageNoWait method” on page 552
♦ “getMessageTimeout method” on page 553
♦ “getMode method” on page 554
♦ “getQueueDepth method” on page 554
♦ “getQueueDepth method” on page 555
♦ “getShortStoreProperty method” on page 555
♦ “getStoreProperty method” on page 556
♦ “getStorePropertyNames method” on page 556
♦ “getStringStoreProperty method” on page 557
♦ “putMessage method” on page 557
♦ “putMessageTimeToLive method” on page 558
♦ “setBooleanStoreProperty method” on page 559
♦ “setByteStoreProperty method” on page 559
♦ “setDoubleStoreProperty method” on page 560

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 541

♦ “setFloatStoreProperty method” on page 560
♦ “setIntStoreProperty method” on page 561
♦ “setLongStoreProperty method” on page 561
♦ “setMessageListener method” on page 562
♦ “setMessageListenerBySelector method” on page 563
♦ “setShortStoreProperty method” on page 563
♦ “setStoreProperty method” on page 564
♦ “setStringStoreProperty method” on page 564
♦ “start method” on page 565
♦ “stop method” on page 565
♦ “triggerSendReceive method” on page 566

browseMessages method

Synopsis
java.util.Enumeration ianywhere.qanywhere.client.QAManagerBase.browseMessages()
throws QAException

Throws
♦ Thrown if there is a problem browsing the messages.

Remarks
Browses all available messages in the message store.

The messages are just being browsed, so they cannot be acknowledged.

Use getMessage method to receive messages so that they can be acknowledged.

See Also
browseMessagesByQueue method

browseMessagesByID method

Returns
An enumerator over the available messages.

browseMessagesByID method

Synopsis
java.util.Enumeration ianywhere.qanywhere.client.QAManagerBase.browseMessagesByID(
 String id
)
throws QAException

Parameters
♦ id The message ID of the message.

QAnywhere Java API Reference

542 Copyright © 2006, iAnywhere Solutions, Inc.

Throws
♦ Thrown if there is a problem browsing the messages.

Remarks
Browse the message with the given message ID.

The message is just being browsed, so it cannot be acknowledged. Use getMessage method to receive
messages so that they can be acknowledged.

See Also
browseMessagesByQueue method

browseMessages method

Returns
An enumerator containing 0 or 1 messages.

browseMessagesByQueue method

Synopsis
java.util.Enumeration ianywhere.qanywhere.client.QAManagerBase.browseMessagesByQueue(
 String address
)
throws QAException

Parameters
♦ address The address of the messages.

Throws
♦ Thrown if there is a problem browsing the messages.

Remarks
Browses the available messages waiting that have been sent to the given address.

The messages are just being browsed, so they cannot be acknowledged.

Use getMessage method to receive messages so they can be acknowledged.

See Also
browseMessagesByID method

browseMessages method

Returns
An enumerator over the available messages.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 543

browseMessagesBySelector method

Synopsis
java.util.Enumeration ianywhere.qanywhere.client.QAManagerBase.browseMessagesBySelector(
 String selector
)
throws QAException

Parameters
♦ selector The selector.

Throws
♦ Thrown if there is a problem browsing the messages.

Remarks
Browse messages queued in the message store that satisfy the given selector.

The message is just being browsed, so it cannot be acknowledged. Use getMessage method to receive
messages so that they can be acknowledged.

See Also
browseMessagesByQueue method

browseMessages method

browseMessagesByID method

Returns
An enumerator over the available messages.

cancelMessage method

Synopsis
boolean ianywhere.qanywhere.client.QAManagerBase.cancelMessage(
 String id
)
throws QAException

Parameters
♦ id The message ID of the message to cancel.

Throws
♦ Thrown if there is a problem cancelling the message.

Remarks
Cancels the message with the given message ID.

QAnywhere Java API Reference

544 Copyright © 2006, iAnywhere Solutions, Inc.

Puts a message into a cancelled state before it is transmitted.

With the default delete rules of the QAnywhere Agent, cancelled messages are eventually deleted from the
message store.

Fails if the message is already in a final state, or if the message has been transmitted to the central messaging
server.

close method

Synopsis
void ianywhere.qanywhere.client.QAManagerBase.close()
throws QAException

Throws
♦ Thrown if there is a problem closing the “Interface QAManagerBase” on page 540 instance.

Remarks
Closes the connection to the QAnywhere message system and releases any resources used by the Interface
QAManagerBase.

Additional calls to close method following the first are ignored. Any subsequent calls to a Interface
QAManagerBase method, other than close method, result in a Class QAException. You must create and
open a new Interface QAManagerBase instance in this case.

createBinaryMessage method

Synopsis
QABinaryMessage ianywhere.qanywhere.client.QAManagerBase.createBinaryMessage()
throws QAException

Throws
♦ Thrown if there is a problem creating the message.

Remarks
Creates a Interface QABinaryMessage object.

A Interface QABinaryMessage object is used to send a message containing a message body of uninterpreted
bytes.

See Also
Interface QABinaryMessage

Returns
A new Interface QABinaryMessage instance.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 545

createTextMessage method

Synopsis
QATextMessage ianywhere.qanywhere.client.QAManagerBase.createTextMessage()
throws QAException

Throws
♦ Thrown if there is a problem creating the message.

Remarks
Creates a Interface QATextMessage object.

A Interface QATextMessage object is used to send a message containing a string message body.

See Also
Interface QATextMessage

Returns
A new Interface QATextMessage instance.

getBooleanStoreProperty method

Synopsis
boolean ianywhere.qanywhere.client.QAManagerBase.getBooleanStoreProperty(
 String name
)
throws QAException

Parameters
♦ name The pre-defined or custom property name.

Throws
♦ Thrown if there is a conversion error getting the property value or if the property does not exist.

Remarks
Gets a boolean value for a pre-defined or custom message store property.

You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see Interface MessageStoreProperties.

See Also
Interface MessageStoreProperties

Returns
The boolean property value.

QAnywhere Java API Reference

546 Copyright © 2006, iAnywhere Solutions, Inc.

getByteStoreProperty method

Synopsis
byte ianywhere.qanywhere.client.QAManagerBase.getByteStoreProperty(
 String name
)
throws QAException

Parameters
♦ name The pre-defined or custom property name.

Throws
♦ Thrown if there is a conversion error getting the property value or if the property does not exist.

Remarks
Gets a signed byte value for a pre-defined or custom message store property.

You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see Interface MessageStoreProperties.

See Also
Interface MessageStoreProperties

Returns
The signed byte property value.

getDoubleStoreProperty method

Synopsis
double ianywhere.qanywhere.client.QAManagerBase.getDoubleStoreProperty(
 String name
)
throws QAException

Parameters
♦ name the pre-defined or custom property name.

Throws
♦ Thrown if there is a conversion error getting the property value or if the property does not exist.

Remarks
Gets a double value for a pre-defined or custom message store property.

You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see Interface MessageStoreProperties.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 547

See Also
Interface MessageStoreProperties

Returns
The double property value.

getFloatStoreProperty method

Synopsis
float ianywhere.qanywhere.client.QAManagerBase.getFloatStoreProperty(
 String name
)
throws QAException

Parameters
♦ name The pre-defined or custom property name.

Throws
♦ Thrown if there is a conversion error getting the property value or if the property does not exist.

Remarks
Gets a float value for a pre-defined or custom message store property.

You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see Interface MessageStoreProperties.

See Also
Interface MessageStoreProperties

Returns
The float property value.

getIntStoreProperty method

Synopsis
int ianywhere.qanywhere.client.QAManagerBase.getIntStoreProperty(
 String name
)
throws QAException

Parameters
♦ name The pre-defined or custom property name.

QAnywhere Java API Reference

548 Copyright © 2006, iAnywhere Solutions, Inc.

Throws
♦ Thrown if there is a conversion error getting the property value or if the property does not exist.

Remarks
Gets a int value for a pre-defined or custom message store property.

You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see Interface MessageStoreProperties.

See Also
Interface MessageStoreProperties

Returns
The integer property value.

getLongStoreProperty method

Synopsis
long ianywhere.qanywhere.client.QAManagerBase.getLongStoreProperty(
 String name
)
throws QAException

Parameters
♦ name The pre-defined or custom property name.

Throws
♦ Thrown if there is a conversion error getting the property value or if the property does not exist.

Remarks
Gets a long value for a pre-defined or custom message store property.

You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see Interface MessageStoreProperties.

See Also
Interface MessageStoreProperties

Returns
The long property value.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 549

getMessage method

Synopsis
QAMessage ianywhere.qanywhere.client.QAManagerBase.getMessage(
 String address
)
throws QAException

Parameters
♦ address This address specifies the queue name used by the QAnywhere client to receive messages.

Throws
♦ Thrown if there is a problem getting the message.

Remarks
Returns the next available Interface QAMessage sent to the specified address.

The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'. If there is no message available, this call blocks indefinitely until a message is available.
Use this method to receive messages synchronously.

Returns
The next Interface QAMessage, or null if no message is available.

getMessageBySelector method

Synopsis
QAMessage ianywhere.qanywhere.client.QAManagerBase.getMessageBySelector(
 String address,
 String selector
)
throws QAException

Parameters
♦ address This address specifies the queue name used by the QAnywhere client to receive messages.

♦ selector The selector.

Throws
♦ Thrown if there is a problem getting the message.

Remarks
Returns the next available Interface QAMessage sent to the specified address that satisfies the given selector.

The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'. If there is no message available, this call blocks indefinitely until a message is available.

QAnywhere Java API Reference

550 Copyright © 2006, iAnywhere Solutions, Inc.

Use this method to receive messages synchronously.

Returns
The next Interface QAMessage, or null if no message is available.

getMessageBySelectorNoWait method

Synopsis
QAMessage ianywhere.qanywhere.client.QAManagerBase.getMessageBySelectorNoWait(
 String address,
 String selector
)
throws QAException

Parameters
♦ address This address specifies the queue name used by the QAnywhere client to receive messages.

♦ selector The selector.

Throws
♦ Thrown if there is a problem getting the message.

Remarks
Returns the next available Interface QAMessage sent to the given address that satisfies the given selector.

The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'. If no message is available, this method returns immediately.

Use this method to receive messages synchronously.

Returns
The next available message or null there is no available message.

getMessageBySelectorTimeout method

Synopsis
QAMessage ianywhere.qanywhere.client.QAManagerBase.getMessageBySelectorTimeout(
 String address,
 String selector,
 long timeout
)
throws QAException

Parameters
♦ address This address specifies the queue name used by the QAnywhere client to receive messages.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 551

♦ selector The selector.

♦ timeout The time to wait, in milliseconds, for a message to become available.

Throws
♦ Thrown if there is a problem getting the message.

Remarks
Returns the next available Interface QAMessage sent to the given address that satisfies the given selector.

The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'. If no message is available, this method waits for the specified timeout and then returns.

Use this method to receive messages synchronously.

Returns
The next Interface QAMessage, or null if no message is available.

getMessageListener method

Synopsis
QAMessageListener ianywhere.qanywhere.client.QAManagerBase.getMessageListener(
 String address
)
throws QAException

Parameters
♦ address A local queue name used to receive messages, or system.

Throws
♦ Thrown if there is a problem getting the listener.

Remarks
Returns the Interface QAMessageListener associated with the specified queue.

If there is no Interface QAMessageListener associated with the specified queue, returns null.

Returns
The listener.

getMessageNoWait method

Synopsis
QAMessage ianywhere.qanywhere.client.QAManagerBase.getMessageNoWait(
 String address

QAnywhere Java API Reference

552 Copyright © 2006, iAnywhere Solutions, Inc.

)
throws QAException

Parameters
♦ address This address specifies the queue name used by the QAnywhere client to receive messages.

Throws
♦ Thrown if there is a problem getting the message.

Remarks
Returns the next available Interface QAMessage sent to the given address.

The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'. If no message is available, this method returns immediately.

Use this method to receive messages synchronously.

Returns
The next available message or null there is no available message.

getMessageTimeout method

Synopsis
QAMessage ianywhere.qanywhere.client.QAManagerBase.getMessageTimeout(
 String address,
 long timeout
)
throws QAException

Parameters
♦ address This address specifies the queue name used by the QAnywhere client to receive messages.

♦ timeout The time to wait, in milliseconds, for a message to become available.

Throws
♦ Thrown if there is a problem getting the message.

Remarks
Returns the next available Interface QAMessage sent to the given address.

The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'. If no message is available, this method waits for the specified timeout and then returns.
Use this method to receive messages synchronously.

Returns
the next Interface QAMessage, or null if no message is available.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 553

getMode method

Synopsis
short ianywhere.qanywhere.client.QAManagerBase.getMode()
throws QAException

Throws
♦ Thrown if there is a problem retrieving the “Interface QAManager” on page 536 acknowledgement mode

Remarks
Returns the Interface QAManager acknowledgement mode for received messages.

For a list of return values, see Interface AcknowledgementMode.

EXPLICIT_ACKNOWLEDGEMENT variable and IMPLICIT_ACKNOWLEDGEMENT variable apply
to Interface QAManager instances. TRANSACTIONAL variable is the mode for Interface
QATransactionalManager instances.

Returns
The Interface QAManager acknowledgement mode for received messages.

getQueueDepth method

Synopsis
int ianywhere.qanywhere.client.QAManagerBase.getQueueDepth(
 short filter
)
throws QAException

Parameters
♦ filter A filter indicating incoming messages, outgoing messages, or all messages.

Throws
♦ Thrown if there was an error.

Remarks
Returns the total depth of all queues, based on a given filter.

The depth of the queue is the number of messages that have not been received (for example, using the
getMessage method).

See Interface QueueDepthFilter for a list of possible filter values.

Returns
The number of messages in all queues for the given filter.

QAnywhere Java API Reference

554 Copyright © 2006, iAnywhere Solutions, Inc.

getQueueDepth method

Synopsis
int ianywhere.qanywhere.client.QAManagerBase.getQueueDepth(
 String queue,
 short filter
)
throws QAException

Parameters
♦ queue A filter indicating incoming messages, outgoing messages, or all messages.

♦ filter The queue name.

Throws
♦ Thrown if there was an error.

Remarks
Returns the depth of a queue, based on a given filter.

The depth of the queue is the number of messages that have not been received (for example, using the
getMessage method).

See Interface QueueDepthFilter for a list of possible filter values.

Returns
the number of messages.

getShortStoreProperty method

Synopsis
short ianywhere.qanywhere.client.QAManagerBase.getShortStoreProperty(
 String name
)
throws QAException

Parameters
♦ name The pre-defined or custom property name.

Throws
♦ Thrown if there is a conversion error getting the property value or if the property does not exist.

Remarks
Gets a short value for a pre-defined or custom message store property.

You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see Interface MessageStoreProperties.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 555

See Also
Interface MessageStoreProperties

Returns
The short property value.

getStoreProperty method

Synopsis
Object ianywhere.qanywhere.client.QAManagerBase.getStoreProperty(
 String name
)
throws QAException

Parameters
♦ name The pre-defined or custom property name.

Throws
♦ Thrown if there is a conversion error getting the property value or if the property does not exist.

Remarks
Gets an Object representing a message store property.

You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see Interface MessageStoreProperties.

See Also
Interface MessageStoreProperties

Returns
The property value.

getStorePropertyNames method

Synopsis
java.util.Enumeration ianywhere.qanywhere.client.QAManagerBase.getStorePropertyNames()
throws QAException

Throws
♦ Thrown if there is a problem retrieving the enumerator.

Remarks
Gets an enumerator over the message store property names.

QAnywhere Java API Reference

556 Copyright © 2006, iAnywhere Solutions, Inc.

Returns
An enumerator over the message store property names.

getStringStoreProperty method

Synopsis
String ianywhere.qanywhere.client.QAManagerBase.getStringStoreProperty(
 String name
)
throws QAException

Parameters
♦ name The pre-defined or custom property name.

Throws
♦ Thrown if there is a problem retrieving the string value.

Remarks
Gets a string value for a pre-defined or custom message store property.

You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see Interface MessageStoreProperties.

See Also
Interface MessageStoreProperties

Returns
The string property value or null if the property does not exist.

putMessage method

Synopsis
void ianywhere.qanywhere.client.QAManagerBase.putMessage(
 String address,
 QAMessage msg
)
throws QAException

Parameters
♦ address The address of the message specifying the destination queue name.

♦ msg The message to put in the local message store for transmission.

Throws
♦ Thrown if there is a problem putting the message.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 557

Remarks
Prepares a message to send to another QAnywhere client.

This method inserts a message and a destination address into your local message store. The time of message
transmission depends on QAnywhere Agent transmission policies.

The address takes the form 'id\queue-name', where 'id' is the destination message store id and 'queue-name'
identifies a queue that is used by the destination QAnywhere client to listen for or receive messages.

See Also
putMessageTimeToLive method

putMessageTimeToLive method

Synopsis
void ianywhere.qanywhere.client.QAManagerBase.putMessageTimeToLive(
 String address,
 QAMessage msg,
 long ttl
)
throws QAException

Parameters
♦ address The address of the message specifying the destination queue name.

♦ msg The message to put.

♦ ttl The delay, in milliseconds, before the message expires if it has not been delivered. A value of 0
indicates the message does not expire.

Throws
♦ Thrown if there is a problem putting the message.

Remarks
Prepares a message to send to another QAnywhere client.

This method inserts a message and a destination address into your local message store. The time of message
transmission depends on QAnywhere Agent transmission policies. However, if the next message
transmission time exceeds the given time-to-live value, the message expires.

The address takes the form 'id\queue-name', where 'id' is the destination message store id and 'queue-name'
identifies a queue that is used by the destination QAnywhere client to listen for or receive messages.

QAnywhere Java API Reference

558 Copyright © 2006, iAnywhere Solutions, Inc.

setBooleanStoreProperty method

Synopsis
void ianywhere.qanywhere.client.QAManagerBase.setBooleanStoreProperty(
 String name,
 boolean value
)
throws QAException

Parameters
♦ name The pre-defined or custom property name.

♦ value The boolean property value.

Throws
♦ Thrown if there is a problem setting the message store property.

Remarks
Sets a pre-defined or custom message store property to a boolean value.

You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see Interface MessageStoreProperties.

See Also
Interface MessageStoreProperties

setByteStoreProperty method

Synopsis
void ianywhere.qanywhere.client.QAManagerBase.setByteStoreProperty(
 String name,
 byte value
)
throws QAException

Parameters
♦ name The pre-defined or custom property name.

♦ value The sbyte property value.

Throws
♦ Thrown if there is a problem setting the message store property.

Remarks
Sets a pre-defined or custom message store property to a sbyte value.

You can use this method to set pre-defined or user-defined client store properties.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 559

For a list of pre-defined properties, see Interface MessageStoreProperties.

See Also
Interface MessageStoreProperties

setDoubleStoreProperty method

Synopsis
void ianywhere.qanywhere.client.QAManagerBase.setDoubleStoreProperty(
 String name,
 double value
)
throws QAException

Parameters
♦ name The pre-defined or custom property name.

♦ value The double property value.

Throws
♦ Thrown if there is a problem setting the message store property.

Remarks
Sets a pre-defined or custom message store property to a double value.

You can use this method to set pre-defined or user-defined client. store properties.

For a list of pre-defined properties, see Interface MessageStoreProperties.

See Also
Interface MessageStoreProperties

setFloatStoreProperty method

Synopsis
void ianywhere.qanywhere.client.QAManagerBase.setFloatStoreProperty(
 String name,
 float value
)
throws QAException

Parameters
♦ name The pre-defined or custom property name.

♦ value The float property value.

QAnywhere Java API Reference

560 Copyright © 2006, iAnywhere Solutions, Inc.

Throws
♦ Thrown if there is a problem setting the message store property.

Remarks
Sets a pre-defined or custom message store property to a float value.

You can use this method to set pre-defined or user-defined client store properties. For a list of pre-defined
properties, see Interface MessageStoreProperties.

See Also
Interface MessageStoreProperties

setIntStoreProperty method

Synopsis
void ianywhere.qanywhere.client.QAManagerBase.setIntStoreProperty(
 String name,
 int value
)
throws QAException

Parameters
♦ name The pre-defined or custom property name.

♦ value The int property value.

Throws
♦ Thrown if there is a problem setting the message store property.

Remarks
Sets a pre-defined or custom message store property to a int value.

You can use this method to set pre-defined or user-defined client store properties. For a list of pre-defined
properties, see Interface MessageStoreProperties.

See Also
Interface MessageStoreProperties

setLongStoreProperty method

Synopsis
void ianywhere.qanywhere.client.QAManagerBase.setLongStoreProperty(
 String name,
 long value

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 561

)
throws QAException

Parameters
♦ name The pre-defined or custom property name.

♦ value The long property value.

Throws
♦ Thrown if there is a problem setting the message store property.

Remarks
Sets a pre-defined or custom message store property to a long value.

You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see Interface MessageStoreProperties.

See Also
Interface MessageStoreProperties

setMessageListener method

Synopsis
void ianywhere.qanywhere.client.QAManagerBase.setMessageListener(
 String address,
 QAMessageListener listener
)
throws QAException

Parameters
♦ address The address of a local queue name used to receive messages, or system to listen for

QAnywhere system messages.

♦ listener The listener.

Throws
♦ Thrown if there is a problem registering the “Interface QAMessageListener” on page 588 object, such

as because there is already a listener object assigned to the given queue.

Remarks
Registers a Interface QAMessageListener object to receive QAnywhere messages asynchronously.

The address parameter specifies a local queue name used to receive the message. You can only have one
listener object assigned to a given queue. If you want to listen for QAnywhere system messages, including
push notifications and network status changes, specify "system" as the queue name.

Use this method to receive messages asynchronously.

QAnywhere Java API Reference

562 Copyright © 2006, iAnywhere Solutions, Inc.

setMessageListenerBySelector method

Synopsis
void ianywhere.qanywhere.client.QAManagerBase.setMessageListenerBySelector(
 String address,
 String selector,
 QAMessageListener listener
)
throws QAException

Parameters
♦ address The address of a local queue name used to receive messages, or system to listen for

QAnywhere system messages.

♦ selector The selector to be used to filter the messages to be received.

♦ listener The listener.

Throws
♦ Thrown if there is a problem registering the “Interface QAMessageListener” on page 588 object, such

as because there is already a listener object assigned to the given queue.

Remarks
Registers a Interface QAMessageListener object to receive QAnywhere messages asynchronously, with a
message selector.

The address parameter specifies a local queue name used to receive the message. You can only have one
listener object assigned to a given queue. The selector parameter specifies a selector to be used to filter the
messages to be received on the given address. If you want to listen for QAnywhere system messages,
including push notifications and network status changes, specify "system" as the queue name.

Use this method to receive messages asynchronously.

setShortStoreProperty method

Synopsis
void ianywhere.qanywhere.client.QAManagerBase.setShortStoreProperty(
 String name,
 short value
)
throws QAException

Parameters
♦ name The pre-defined or custom property name.

♦ value The short property value.

Throws
♦ Thrown if there is a problem setting the message store property.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 563

Remarks
Sets a pre-defined or custom message store property to a short value.

You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see Interface MessageStoreProperties.

See Also
Interface MessageStoreProperties

setStoreProperty method

Synopsis
void ianywhere.qanywhere.client.QAManagerBase.setStoreProperty(
 String name,
 Object value
)
throws QAException

Parameters
♦ name The pre-defined or custom property name.

♦ value The property value.

Throws
♦ Thrown if there is a problem setting the message store property to the value.

Remarks
Sets a pre-defined or custom message store property to a System.Object value.

The property type must correspond to one of the acceptable primitive types, or String. You can use this
method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see Interface MessageStoreProperties.

See Also
Interface MessageStoreProperties

setStringStoreProperty method

Synopsis
void ianywhere.qanywhere.client.QAManagerBase.setStringStoreProperty(
 String name,
 String value
)
throws QAException

QAnywhere Java API Reference

564 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
♦ name The pre-defined or custom property name.

♦ value The String property value.

Throws
♦ Thrown if there is a problem setting the message store property to a string value.

Remarks
Sets a pre-defined or custom message store property to a String value.

You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see Interface MessageStoreProperties.

See Also
Interface MessageStoreProperties

start method

Synopsis
void ianywhere.qanywhere.client.QAManagerBase.start()
throws QAException

Throws
♦ Thrown if there is a problem starting the “Interface QAManagerBase” on page 540 instance.

Remarks
Starts the Interface QAManagerBase for receiving incoming messages.

Any calls to this method beyond the first without an intervening stop method call are ignored.

See Also
stop method

stop method

Synopsis
void ianywhere.qanywhere.client.QAManagerBase.stop()
throws QAException

Throws
♦ Thrown if there is a problem stopping the “Interface QAManagerBase” on page 540 instance.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 565

Remarks
Halts the QAManagerBase's reception of incoming messages.

The messages are not lost. They just are not received until the manager is started again. Any calls to stop
method beyond the first without an intervening start method call are ignored.

See Also
start method

triggerSendReceive method

Synopsis
void ianywhere.qanywhere.client.QAManagerBase.triggerSendReceive()
throws QAException

Throws
♦ Thrown if there is a problem triggering the send/receive.

Remarks
Causes a synchronization with the QAnywhere message server, uploading any messages addressed to other
clients, and downloading any messages addressed to the local client.

A call to this method results in immediate message synchronization between a QAnywhere Agent and the
central messaging server. A manual triggerSendReceive method call results in immediate message
transmission, independent of the QAnywhere Agent transmission policies.

QAnywhere Agent transmission policies determine how message transmission occurs. For example, message
transmission can occur automatically at regular intervals, when your client receives a push notification, or
when you call the putMessage method to send a message.

See Also
putMessage method

Class QAManagerFactory

Synopsis
public ianywhere.qanywhere.client.QAManagerFactory

Remarks
This class acts as a factory class for creating Interface QATransactionalManager and Interface
QAManager objects.

You can only have one instance of Class QAManagerFactory.

QAnywhere Java API Reference

566 Copyright © 2006, iAnywhere Solutions, Inc.

Members
All members of ianywhere.qanywhere.client.QAManagerFactory, including all inherited members.

♦ “createQAManager method” on page 567
♦ “createQAManager method” on page 567
♦ “createQAManager method” on page 568
♦ “createQATransactionalManager method” on page 568
♦ “createQATransactionalManager method” on page 569
♦ “createQATransactionalManager method” on page 570
♦ “getInstance method” on page 570

createQAManager method

Synopsis
abstract QAManager ianywhere.qanywhere.client.QAManagerFactory.createQAManager(
 String iniFile
)
throws QAException

Parameters
♦ iniFile A properties file for configuring the “Interface QAManager” on page 536 instance, or null to

create the “Interface QAManager” on page 536 instance using default properties.

Throws
♦ Thrown if there is a problem creating the manager.

Remarks
Returns a new Interface QAManager instance with the specified properties.

If the iniFile parameter is null, the Interface QAManager is created using default properties. You can use
the Interface QAManagerBase set property methods to set Interface QAManager properties
programmatically after you create the instance.

See Also
Interface QAManager

Returns
A new Interface QAManager instance.

createQAManager method

Synopsis
abstract QAManager ianywhere.qanywhere.client.QAManagerFactory.createQAManager(
 java.util.Hashtable properties

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 567

)
throws QAException

Parameters
♦ properties A hashtable for configuring the “Interface QAManager” on page 536 instance.

Throws
♦ Thrown if there is a problem creating the manager.

Remarks
Returns a new Interface QAManager instance with the specified properties as a Hashtable.

See Also
Interface QAManager

Returns
A new Interface QAManager instance.

createQAManager method

Synopsis
abstract QAManager ianywhere.qanywhere.client.QAManagerFactory.createQAManager()
throws QAException

Throws
♦ Thrown if there is a problem creating the manager.

Remarks
Returns a new Interface QAManager instance with default properties.

See Also
Interface QAManager

Returns
A new Interface QAManager instance.

createQATransactionalManager method

Synopsis
abstract QATransactionalManager
ianywhere.qanywhere.client.QAManagerFactory.createQATransactionalManager(
 String iniFile

QAnywhere Java API Reference

568 Copyright © 2006, iAnywhere Solutions, Inc.

)
throws QAException

Parameters
♦ iniFile A properties file for configuring the “Interface QATransactionalManager” on page 594

instance.

Throws
♦ Thrown if there is a problem creating the manager.

Remarks
Returns a new Interface QATransactionalManager instance with the specified properties.

If the iniFile parameter is null, the Interface QATransactionalManager is created using default properties.
You can use the Interface QAManagerBase set property methods to set Interface
QATransactionalManager properties programmatically after you create the instance.

See Also
Interface QATransactionalManager

Returns
The configured Interface QATransactionalManager.

createQATransactionalManager method

Synopsis
abstract QATransactionalManager
ianywhere.qanywhere.client.QAManagerFactory.createQATransactionalManager(
 java.util.Hashtable properties
)
throws QAException

Parameters
♦ properties A hashtable for configuring the “Interface QATransactionalManager” on page 594

instance.

Throws
♦ Thrown if there is a problem creating the manager.

Remarks
Returns a new Interface QAManager instance with the specified properties.

See Also
Interface QATransactionalManager

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 569

Returns
The configured Interface QATransactionalManager.

createQATransactionalManager method

Synopsis
abstract QATransactionalManager
ianywhere.qanywhere.client.QAManagerFactory.createQATransactionalManager()
throws QAException

Throws
♦ Thrown if there is a problem creating the manager.

Remarks
Returns a new Interface QAManager instance with default properties.

See Also
Interface QATransactionalManager

Returns
A new Interface QATransactionalManager.

getInstance method

Synopsis
QAManagerFactory ianywhere.qanywhere.client.QAManagerFactory.getInstance()
throws QAException

Throws
♦ Thrown if there is a problem creating the manager factory.

Remarks
Returns the singleton Class QAManagerFactory instance.

Returns
The singleton Class QAManagerFactory instance

Interface QAMessage

Synopsis
public ianywhere.qanywhere.client.QAMessage

QAnywhere Java API Reference

570 Copyright © 2006, iAnywhere Solutions, Inc.

Derived classes
♦ “Interface QABinaryMessage” on page 515
♦ “Interface QATextMessage” on page 589

Remarks
Interface QAMessage provides an interface to set message properties and header fields.

The derived classes Interface QABinaryMessage and Interface QATextMessage provide specialized
functions to read and write to the message body. You can use Interface QAMessage functions to set
predefined or custom message properties. For a list of pre-defined property names, see the Interface
MessageProperties.

Members
All members of ianywhere.qanywhere.client.QAMessage, including all inherited members.

♦ “clearProperties method” on page 572
♦ “DEFAULT_PRIORITY variable” on page 572
♦ “DEFAULT_TIME_TO_LIVE variable” on page 572
♦ “getAddress method” on page 572
♦ “getBooleanProperty method” on page 573
♦ “getByteProperty method” on page 573
♦ “getDoubleProperty method” on page 574
♦ “getExpiration method” on page 574
♦ “getFloatProperty method” on page 575
♦ “getInReplyToID method” on page 575
♦ “getIntProperty method” on page 576
♦ “getLongProperty method” on page 576
♦ “getMessageID method” on page 577
♦ “getPriority method” on page 577
♦ “getProperty method” on page 578
♦ “getPropertyNames method” on page 578
♦ “getPropertyType method” on page 578
♦ “getRedelivered method” on page 579
♦ “getReplyToAddress method” on page 579
♦ “getShortProperty method” on page 580
♦ “getStringProperty method” on page 580
♦ “getTimestamp method” on page 581
♦ “propertyExists method” on page 581
♦ “setAddress method” on page 582
♦ “setBooleanProperty method” on page 582
♦ “setByteProperty method” on page 583
♦ “setDoubleProperty method” on page 583
♦ “setFloatProperty method” on page 584
♦ “setInReplyToID method” on page 584
♦ “setIntProperty method” on page 585
♦ “setLongProperty method” on page 585
♦ “setPriority method” on page 586

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 571

♦ “setProperty method” on page 586
♦ “setReplyToAddress method” on page 587
♦ “setShortProperty method” on page 587
♦ “setStringProperty method” on page 588

DEFAULT_PRIORITY variable

Synopsis
final int ianywhere.qanywhere.client.QAMessage.DEFAULT_PRIORITY

Remarks
The default message priority.

DEFAULT_TIME_TO_LIVE variable

Synopsis
final long ianywhere.qanywhere.client.QAMessage.DEFAULT_TIME_TO_LIVE

Remarks
The default time-to-live value.

clearProperties method

Synopsis
void ianywhere.qanywhere.client.QAMessage.clearProperties()
throws QAException

Throws
♦ Thrown if there is a problem clearing the message properties.

Remarks
Clear all the properties of the message.

getAddress method

Synopsis
String ianywhere.qanywhere.client.QAMessage.getAddress()
throws QAException

Throws
♦ Thrown if there is a problem retrieving the destination address.

Remarks
Returns the destination address for the Interface QAMessage instance.

QAnywhere Java API Reference

572 Copyright © 2006, iAnywhere Solutions, Inc.

When a message is sent, this field is ignored. After completion of a send operation, the field holds the
destination address specified in putMessage method.

Returns
The destination address for the Interface QAMessage instance.

getBooleanProperty method

Synopsis
boolean ianywhere.qanywhere.client.QAMessage.getBooleanProperty(
 String name
)
throws QAException

Parameters
♦ name The property name.

Throws
♦ Thrown if there is a conversion error getting the property value or if the property does not exist.

Remarks
Gets a boolean message property.

Returns
The property value.

See Also
Interface MessageProperties

getByteProperty method

Synopsis
byte ianywhere.qanywhere.client.QAMessage.getByteProperty(
 String name
)
throws QAException

Parameters
♦ name The property name.

Throws
♦ Thrown if there is a conversion error getting the property value or if the property does not exist.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 573

Remarks
Gets a signed byte message property.

Returns
The property value.

See Also
Interface MessageProperties

getDoubleProperty method

Synopsis
double ianywhere.qanywhere.client.QAMessage.getDoubleProperty(
 String name
)
throws QAException

Parameters
♦ name The property name.

Throws
♦ Thrown if there is a conversion error getting the property value or if the property does not exist.

Remarks
Gets a double message property.

Returns
The property value.

See Also
Interface MessageProperties

getExpiration method

Synopsis
java.util.Date ianywhere.qanywhere.client.QAMessage.getExpiration()
throws QAException

Throws
♦ Thrown if there is a problem getting the expiration.

Remarks
Returns the message's expiration value, or null if the message does not expire or has not yet been sent.

QAnywhere Java API Reference

574 Copyright © 2006, iAnywhere Solutions, Inc.

When a message is sent, the expiration is left unassigned. After the send operation completes, it holds the
expiration time of the message.

This is a read-only property because the expiration time of a message is set by adding the time-to-live
argument of putMessageTimeToLive method to the current time.

Returns
The message's expiration value, or null if the message does not expire or has not yet been sent.

getFloatProperty method

Synopsis
float ianywhere.qanywhere.client.QAMessage.getFloatProperty(
 String name
)
throws QAException

Parameters
♦ name The property name.

Throws
♦ Thrown if there is a conversion error getting the property value or if the property does not exist.

Remarks
Gets a float message property.

Returns
The property value.

See Also
Interface MessageProperties

getInReplyToID method

Synopsis
String ianywhere.qanywhere.client.QAMessage.getInReplyToID()
throws QAException

Throws
♦ Thrown if there is a problem getting the message ID of the message to which this message is a reply.

Remarks
Returns the message ID of the message to which this message is a reply.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 575

Returns
The message ID of the message to which this message is a reply, or null if this message is not a reply.

getIntProperty method

Synopsis
int ianywhere.qanywhere.client.QAMessage.getIntProperty(
 String name
)
throws QAException

Parameters
♦ name The property name.

Throws
♦ Thrown if there is a conversion error getting the property value or if the property does not exist.

Remarks
Gets an int message property.

Returns
The property value.

See Also
Interface MessageProperties

getLongProperty method

Synopsis
long ianywhere.qanywhere.client.QAMessage.getLongProperty(
 String name
)
throws QAException

Parameters
♦ name The property name.

Throws
♦ Thrown if there is a conversion error getting the property value or if the property does not exist.

Remarks
Gets a long message property.

QAnywhere Java API Reference

576 Copyright © 2006, iAnywhere Solutions, Inc.

Returns
The property value.

See Also
Interface MessageProperties

getMessageID method

Synopsis
String ianywhere.qanywhere.client.QAMessage.getMessageID()
throws QAException

Throws
♦ Thrown if there is a problem getting the message ID.

Remarks
Returns the globally unique message ID of the message.

This property is null until a message is put.

When a message is sent using putMessage method the message ID is null and can be ignored. When the send
method returns, it contains an assigned value.

Returns
The message ID of the message, or null if the message has not yet been put.

getPriority method

Synopsis
int ianywhere.qanywhere.client.QAMessage.getPriority()
throws QAException

Throws
♦ Thrown if there is a problem getting the message priority.

Remarks
Returns the priority of the message (ranging from 0 to 9).

Returns
The priority of the message.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 577

getProperty method

Synopsis
Object ianywhere.qanywhere.client.QAMessage.getProperty(
 String name
)
throws QAException

Parameters
♦ name The property name.

Throws
♦ Thrown if there is a conversion error getting the property value.

Remarks
Gets a message property.

Returns
The property value, or null if the property does not exist.

getPropertyNames method

Synopsis
java.util.Enumeration ianywhere.qanywhere.client.QAMessage.getPropertyNames()
throws QAException

Throws
♦ Thrown if there is a problem getting the enumerator over the property names of the message.

Remarks
Gets an enumerator over the property names of the message.

Returns
An enumerator over the message property names.

getPropertyType method

Synopsis
short ianywhere.qanywhere.client.QAMessage.getPropertyType(
 String name
)
throws QAException

QAnywhere Java API Reference

578 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
♦ name The property name.

Throws
♦ Thrown if there is a problem retrieving the property type.

Remarks
Returns the property type of the given property.

See Also
Interface PropertyType

Returns
The property type.

getRedelivered method

Synopsis
boolean ianywhere.qanywhere.client.QAMessage.getRedelivered()
throws QAException

Throws
♦ Thrown if there is a problem retrieving the redelivered status.

Remarks
Indicates whether the message has been previously received but not acknowledged.

Redelivered is set by a receiving Interface QAManager when it detects that a message being received was
received before. For example, an application receives a message using a Interface QAManager opened with
EXPLICIT_ACKNOWLEDGEMENT variable, and shuts down without acknowledging the message. When
the application starts again and receives the same message, the message will be marked as redelivered.

Returns
True if the message has been previously received but not acknowledged.

getReplyToAddress method

Synopsis
String ianywhere.qanywhere.client.QAMessage.getReplyToAddress()
throws QAException

Throws
♦ Thrown if there is a problem retrieving the reply-to address.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 579

Remarks
Returns the reply-to address of this message.

Returns
The reply-to address of this message, or null if it does not exist.

getShortProperty method

Synopsis
short ianywhere.qanywhere.client.QAMessage.getShortProperty(
 String name
)
throws QAException

Parameters
♦ name the property name.

Throws
♦ Thrown if there is a conversion error getting the property value or if the property does not exist.

Remarks
Gets a short message property.

Returns
The property value.

See Also
Interface MessageProperties

getStringProperty method

Synopsis
String ianywhere.qanywhere.client.QAMessage.getStringProperty(
 String name
)
throws QAException

Parameters
♦ name The property name.

Throws
♦ Thrown if there is a problem retrieving the message property.

QAnywhere Java API Reference

580 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Gets a String message property.

Returns
The property value, or null if the property does not exist.

See Also
Interface MessageProperties

getTimestamp method

Synopsis
java.util.Date ianywhere.qanywhere.client.QAMessage.getTimestamp()
throws QAException

Throws
♦ Thrown if there is a problem retrieving the message timestamp.

Remarks
Returns the message timestamp, which is the time the message was created.

Returns
The message timestamp.

propertyExists method

Synopsis
boolean ianywhere.qanywhere.client.QAMessage.propertyExists(
 String name
)
throws QAException

Parameters
♦ name The property name

Throws
♦ Thrown if there is a problem checking if the property has been set.

Remarks
Indicates whether the given property has been set for this message.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 581

Returns
True if the property exists.

setAddress method

Synopsis
void ianywhere.qanywhere.client.QAMessage.setAddress(
 String dest
)
throws QAException

Parameters
♦ dest The destination address.

Throws
♦ Thrown if there is a problem setting the message destination address.

Remarks
Sets the message destination address.

setBooleanProperty method

Synopsis
void ianywhere.qanywhere.client.QAMessage.setBooleanProperty(
 String name,
 boolean value
)
throws QAException

Parameters
♦ name The property name.

♦ value The property value.

Throws
♦ Thrown if there is a problem setting the property.

Remarks
Sets a boolean property.

See Also
Interface MessageProperties

QAnywhere Java API Reference

582 Copyright © 2006, iAnywhere Solutions, Inc.

setByteProperty method

Synopsis
void ianywhere.qanywhere.client.QAMessage.setByteProperty(
 String name,
 byte value
)
throws QAException

Parameters
♦ name The property name.

♦ value The property value.

Throws
♦ Thrown if there is a problem setting the property.

Remarks
Sets a signed byte property.

See Also
Interface MessageProperties

setDoubleProperty method

Synopsis
void ianywhere.qanywhere.client.QAMessage.setDoubleProperty(
 String name,
 double value
)
throws QAException

Parameters
♦ name The property name.

♦ value The property value.

Throws
♦ Thrown if there is a problem setting the property.

Remarks
Sets a double property.

See Also
Interface MessageProperties

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 583

setFloatProperty method

Synopsis
void ianywhere.qanywhere.client.QAMessage.setFloatProperty(
 String name,
 float value
)
throws QAException

Parameters
♦ name The property name.

♦ value The property value.

Throws
♦ Thrown if there is a problem setting the property.

Remarks
Sets a float property.

See Also
Interface MessageProperties

setInReplyToID method

Synopsis
void ianywhere.qanywhere.client.QAMessage.setInReplyToID(
 String id
)
throws QAException

Parameters
♦ id The ID of the message this message is in reply to.

Throws
♦ Thrown if there is a problem setting the in reply to ID.

Remarks
Sets the in reply to ID, which identifies the message this message is a reply to.

QAnywhere Java API Reference

584 Copyright © 2006, iAnywhere Solutions, Inc.

setIntProperty method

Synopsis
void ianywhere.qanywhere.client.QAMessage.setIntProperty(
 String name,
 int value
)
throws QAException

Parameters
♦ name The property name.

♦ value The property value.

Throws
♦ Thrown if there is a problem setting the property.

Remarks
Sets an int property.

See Also
Interface MessageProperties

setLongProperty method

Synopsis
void ianywhere.qanywhere.client.QAMessage.setLongProperty(
 String name,
 long value
)
throws QAException

Parameters
♦ name The property name.

♦ value The property value.

Throws
♦ Thrown if there is a problem setting the property.

Remarks
Sets a long property.

See Also
Interface MessageProperties

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 585

setPriority method

Synopsis
void ianywhere.qanywhere.client.QAMessage.setPriority(
 int priority
)
throws QAException

Parameters
♦ priority The priority of the message.

Throws
♦ Thrown if there is a problem setting the priority.

Remarks
Sets the priority of the message (ranging from 0 to 9).

setProperty method

Synopsis
void ianywhere.qanywhere.client.QAMessage.setProperty(
 String name,
 Object value
)
throws QAException

Parameters
♦ name The property name.

♦ value The property value.

Throws
♦ Thrown if there is a problem setting the property.

Remarks
Sets a property.

The property type must correspond to one of the acceptable primitive types, or String.

See Also
Interface MessageProperties

QAnywhere Java API Reference

586 Copyright © 2006, iAnywhere Solutions, Inc.

setReplyToAddress method

Synopsis
void ianywhere.qanywhere.client.QAMessage.setReplyToAddress(
 String address
)
throws QAException

Parameters
♦ address The reply-to address.

Throws
♦ Thrown if there is a problem setting the reply-to address.

Remarks
Sets the reply-to address.

setShortProperty method

Synopsis
void ianywhere.qanywhere.client.QAMessage.setShortProperty(
 String name,
 short value
)
throws QAException

Parameters
♦ name The property name.

♦ value The property value.

Throws
♦ Thrown if there is a problem setting the property.

Remarks
Sets a short property.

See Also
Interface MessageProperties

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 587

setStringProperty method

Synopsis
void ianywhere.qanywhere.client.QAMessage.setStringProperty(
 String name,
 String value
)
throws QAException

Parameters
♦ name The property name.

♦ value The property value.

Throws
♦ Thrown if there is a problem setting the property.

Remarks
Sets a string property.

See Also
Interface MessageProperties

Interface QAMessageListener

Synopsis
public ianywhere.qanywhere.client.QAMessageListener

Remarks
To listen for messages, implement this interface and register your implementation by calling
QAMangerBase.setMessageListener(String,QAMessageListener).

Members
All members of ianywhere.qanywhere.client.QAMessageListener, including all inherited members.

♦ “onException method” on page 588
♦ “onMessage method” on page 589

onException method

Synopsis
void ianywhere.qanywhere.client.QAMessageListener.onException(
 QAException exception,
 QAMessage message
)

QAnywhere Java API Reference

588 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
♦ exception The exception that occurred.

♦ message If the exception occurred after the message was passed to “onMessage
method” on page 589, the message that was processed. Otherwise, null.

Remarks
This method is called whenever an exception occurs while listening for messages.

Note that this method cannot be used to automatically close the Interface QAManagerBase instance, as the
close method blocks until all message listeners are finished processing.

onMessage method

Synopsis
void ianywhere.qanywhere.client.QAMessageListener.onMessage(
 QAMessage message
)

Parameters
♦ message The message that was received.

Remarks
This method is called whenever a message is received.

Interface QATextMessage

Synopsis
public ianywhere.qanywhere.client.QATextMessage

Base classes
♦ “Interface QAMessage” on page 570

Remarks
Interface QATextMessage inherits from the Interface QAMessage class and adds a text message body, and
methods to read from and write to the text message body.

When the message is first created, the body of the message is in write-only mode. After a message has been
sent, the client that sent it can retain and modify it without affecting the message that has been sent. The
same message object can be sent multiple times.

When a message is received, the provider has called reset method so that the message body is in read-only
mode and reading values starts from the beginning of the message body.

Members
All members of ianywhere.qanywhere.client.QATextMessage, including all inherited members.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 589

♦ “clearProperties method” on page 572
♦ “DEFAULT_PRIORITY variable” on page 572
♦ “DEFAULT_TIME_TO_LIVE variable” on page 572
♦ “getAddress method” on page 572
♦ “getBooleanProperty method” on page 573
♦ “getByteProperty method” on page 573
♦ “getDoubleProperty method” on page 574
♦ “getExpiration method” on page 574
♦ “getFloatProperty method” on page 575
♦ “getInReplyToID method” on page 575
♦ “getIntProperty method” on page 576
♦ “getLongProperty method” on page 576
♦ “getMessageID method” on page 577
♦ “getPriority method” on page 577
♦ “getProperty method” on page 578
♦ “getPropertyNames method” on page 578
♦ “getPropertyType method” on page 578
♦ “getRedelivered method” on page 579
♦ “getReplyToAddress method” on page 579
♦ “getShortProperty method” on page 580
♦ “getStringProperty method” on page 580
♦ “getText method” on page 591
♦ “getTextLength method” on page 591
♦ “getTimestamp method” on page 581
♦ “propertyExists method” on page 581
♦ “readText method” on page 591
♦ “reset method” on page 592
♦ “setAddress method” on page 582
♦ “setBooleanProperty method” on page 582
♦ “setByteProperty method” on page 583
♦ “setDoubleProperty method” on page 583
♦ “setFloatProperty method” on page 584
♦ “setInReplyToID method” on page 584
♦ “setIntProperty method” on page 585
♦ “setLongProperty method” on page 585
♦ “setPriority method” on page 586
♦ “setProperty method” on page 586
♦ “setReplyToAddress method” on page 587
♦ “setShortProperty method” on page 587
♦ “setStringProperty method” on page 588
♦ “setText method” on page 592
♦ “writeText method” on page 593
♦ “writeText method” on page 593
♦ “writeText method” on page 593

QAnywhere Java API Reference

590 Copyright © 2006, iAnywhere Solutions, Inc.

getText method

Synopsis
String ianywhere.qanywhere.client.QATextMessage.getText()
throws QAException

Throws
♦ Thrown if there is a problem retrieving the message text.

Remarks
Returns the message text.

If the message text exceeds the maximum size specified by the Interface QAManager
MAX_IN_MEMORY_MESSAGE_SIZE property, this method returns null. In this case, use the readText
method to read the text.

Returns
The message text, or null .

getTextLength method

Synopsis
long ianywhere.qanywhere.client.QATextMessage.getTextLength()
throws QAException

Throws
♦ Thrown if there is a problem retrieving the length of the message.

Remarks
Returns the length, in characters, of the message.

Returns
The length in characters of the message.

readText method

Synopsis
String ianywhere.qanywhere.client.QATextMessage.readText(
 int maxLength
)
throws QAException

Parameters
♦ maxLength The maximum number of characters to read.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 591

Throws
♦ Thrown if there is a problem retrieving the unread text.

Remarks
Returns unread text from the message.

Any additional unread text must be read by subsequent calls to this method. Text is read from the beginning
of any unread text.

Returns
The text.

reset method

Synopsis
void ianywhere.qanywhere.client.QATextMessage.reset()
throws QAException

Throws
♦ Thrown if there is a problem resetting the text position of the message.

Remarks
Resets the text position of the message to the beginning.

setText method

Synopsis
void ianywhere.qanywhere.client.QATextMessage.setText(
 String value
)
throws QAException

Parameters
♦ value The text to write to the message body.

Throws
♦ Thrown if there is a problem overwriting the message text.

Remarks
Overwrites the message text.

QAnywhere Java API Reference

592 Copyright © 2006, iAnywhere Solutions, Inc.

writeText method

Synopsis
void ianywhere.qanywhere.client.QATextMessage.writeText(
 String value
)
throws QAException

Parameters
♦ value The text to append.

Throws
♦ Thrown if there is a problem appending the message text.

Remarks
Appends text to the text of the message.

writeText method

Synopsis
void ianywhere.qanywhere.client.QATextMessage.writeText(
 String value,
 int length
)
throws QAException

Parameters
♦ value The text to append.

♦ length The number of characters of text to append.

Throws
♦ Thrown if there is a problem appending the message text.

Remarks
Appends text to the text of the message.

writeText method

Synopsis
void ianywhere.qanywhere.client.QATextMessage.writeText(
 String value,
 int offset,
 int length

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 593

)
throws QAException

Parameters
♦ value The text to append.

♦ offset The offset into value of the text to append.

♦ length The number of characters of text to append.

Throws
♦ Thrown if there is a problem appending the message text.

Remarks
Appends text to the text of the message.

Interface QATransactionalManager

Synopsis
public ianywhere.qanywhere.client.QATransactionalManager

Base classes
♦ “Interface QAManagerBase” on page 540

Remarks
The Interface QATransactionalManager class derives from Interface QAManagerBase and manages
transactional QAnywhere messaging operations.

For a detailed description of derived behavior, see Interface QAManagerBase.

Interface QATransactionalManager instances can only be used for transactional acknowledgement. Use the
commit method to commit all putMessage method and getMessage method invocations.

Members
All members of ianywhere.qanywhere.client.QATransactionalManager, including all inherited members.

♦ “browseMessages method” on page 542
♦ “browseMessagesByID method” on page 542
♦ “browseMessagesByQueue method” on page 543
♦ “browseMessagesBySelector method” on page 544
♦ “cancelMessage method” on page 544
♦ “close method” on page 545
♦ “commit method” on page 595
♦ “createBinaryMessage method” on page 545
♦ “createTextMessage method” on page 546
♦ “getBooleanStoreProperty method” on page 546

QAnywhere Java API Reference

594 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “getByteStoreProperty method” on page 547
♦ “getDoubleStoreProperty method” on page 547
♦ “getFloatStoreProperty method” on page 548
♦ “getIntStoreProperty method” on page 548
♦ “getLongStoreProperty method” on page 549
♦ “getMessage method” on page 550
♦ “getMessageBySelector method” on page 550
♦ “getMessageBySelectorNoWait method” on page 551
♦ “getMessageBySelectorTimeout method” on page 551
♦ “getMessageListener method” on page 552
♦ “getMessageNoWait method” on page 552
♦ “getMessageTimeout method” on page 553
♦ “getMode method” on page 554
♦ “getQueueDepth method” on page 554
♦ “getQueueDepth method” on page 555
♦ “getShortStoreProperty method” on page 555
♦ “getStoreProperty method” on page 556
♦ “getStorePropertyNames method” on page 556
♦ “getStringStoreProperty method” on page 557
♦ “open method” on page 596
♦ “putMessage method” on page 557
♦ “putMessageTimeToLive method” on page 558
♦ “rollback method” on page 596
♦ “setBooleanStoreProperty method” on page 559
♦ “setByteStoreProperty method” on page 559
♦ “setDoubleStoreProperty method” on page 560
♦ “setFloatStoreProperty method” on page 560
♦ “setIntStoreProperty method” on page 561
♦ “setLongStoreProperty method” on page 561
♦ “setMessageListener method” on page 562
♦ “setMessageListenerBySelector method” on page 563
♦ “setShortStoreProperty method” on page 563
♦ “setStoreProperty method” on page 564
♦ “setStringStoreProperty method” on page 564
♦ “start method” on page 565
♦ “stop method” on page 565
♦ “triggerSendReceive method” on page 566

commit method

Synopsis
void ianywhere.qanywhere.client.QATransactionalManager.commit()
throws QAException

Throws
♦ Thrown if there is a problem committing.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 595

Remarks
Commits the current transaction and begins a new transaction.

This method commits all putMessage method and getMessage method invocations.

Note: The first transaction begins with the call to open method.

open method

Synopsis
void ianywhere.qanywhere.client.QATransactionalManager.open()
throws QAException

Throws
♦ Thrown if there is a problem opening the manager.

Remarks
Opens a Interface QATransactionalManager instance.

This method must be the first method called after creating a manager.

See Also
Interface QATransactionalManager

rollback method

Synopsis
void ianywhere.qanywhere.client.QATransactionalManager.rollback()
throws QAException

Throws
♦ Thrown if there is a problem rolling back.

Remarks
Rolls back the current transaction and begins a new transaction.

This method rolls back all uncommited putMessage method and getMessage method invocations.

See Also
Interface QATransactionalManager

QAnywhere Java API Reference

596 Copyright © 2006, iAnywhere Solutions, Inc.

Interface QueueDepthFilter

Synopsis
public ianywhere.qanywhere.client.QueueDepthFilter

Remarks
Provides queue depth filter values for getQueueDepth method and getQueueDepth method.

Members
All members of ianywhere.qanywhere.client.QueueDepthFilter, including all inherited members.

♦ “ALL variable” on page 597
♦ “INCOMING variable” on page 597
♦ “OUTGOING variable” on page 597

ALL variable

Synopsis
final short ianywhere.qanywhere.client.QueueDepthFilter.ALL

Remarks
This filter specifies both incoming and outgoing messages.

System messages and expired messages are not included in any queue depth counts.

INCOMING variable

Synopsis
final short ianywhere.qanywhere.client.QueueDepthFilter.INCOMING

Remarks
This filter specifies only incoming messages.

An incoming message is defined as a message whose originator is different than the agent ID of the message
store.

OUTGOING variable

Synopsis
final short ianywhere.qanywhere.client.QueueDepthFilter.OUTGOING

Remarks
This filter specifies only outgoing messages.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 597

An outgoing message is defined as a message whose originator is the agent ID of the message store, and
whose destination is not the agent ID of the message store.

Interface StatusCodes

Synopsis
public ianywhere.qanywhere.client.StatusCodes

Remarks
This interface defines a set of codes for the status of a message.

Members
All members of ianywhere.qanywhere.client.StatusCodes, including all inherited members.

♦ “CANCELLED variable” on page 598
♦ “EXPIRED variable” on page 598
♦ “FINAL variable” on page 599
♦ “LOCAL variable” on page 599
♦ “PENDING variable” on page 599
♦ “RECEIVED variable” on page 599
♦ “RECEIVING variable” on page 600
♦ “TRANSMITTED variable” on page 600
♦ “TRANSMITTING variable” on page 600
♦ “UNRECEIVABLE variable” on page 600
♦ “UNTRANSMITTED variable” on page 601

CANCELLED variable

Synopsis
final int ianywhere.qanywhere.client.StatusCodes.CANCELLED

Remarks
The message has been cancelled.

This code applies to the STATUS variable.

EXPIRED variable

Synopsis
final int ianywhere.qanywhere.client.StatusCodes.EXPIRED

Remarks
The message has expired; the message was not received before its expiration time had passed.

QAnywhere Java API Reference

598 Copyright © 2006, iAnywhere Solutions, Inc.

This code applies to the STATUS variable.

FINAL variable

Synopsis
final int ianywhere.qanywhere.client.StatusCodes.FINAL

Remarks
The message has achieved a final state.

This code applies to the STATUS variable.

LOCAL variable

Synopsis
final int ianywhere.qanywhere.client.StatusCodes.LOCAL

Remarks
The message is addressed to the local message store and will not be transmitted to the server.

This code applies to the TRANSMISSION_STATUS variable.

PENDING variable

Synopsis
final int ianywhere.qanywhere.client.StatusCodes.PENDING

Remarks
The message has been sent but not received.

This code applies to the STATUS variable.

RECEIVED variable

Synopsis
final int ianywhere.qanywhere.client.StatusCodes.RECEIVED

Remarks
The message has been received and acknowledged by the receiver.

This code applies to the STATUS variable.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 599

RECEIVING variable

Synopsis
final int ianywhere.qanywhere.client.StatusCodes.RECEIVING

Remarks
The message is in the process of being received, or it was received but not acknowledged.

This code applies to the STATUS variable.

TRANSMITTED variable

Synopsis
final int ianywhere.qanywhere.client.StatusCodes.TRANSMITTED

Remarks
The message has been transmitted to the server.

This code applies to the TRANSMISSION_STATUS variable.

TRANSMITTING variable

Synopsis
final int ianywhere.qanywhere.client.StatusCodes.TRANSMITTING

Remarks
The message is in the process of being transmitted to the server.

This code applies to the TRANSMISSION_STATUS variable.

UNRECEIVABLE variable

Synopsis
final int ianywhere.qanywhere.client.StatusCodes.UNRECEIVABLE

Remarks
The message has been marked as unreceivable.

The message is either malformed, or there were too many failed attempts to deliver it. This code applies to
the STATUS variable.

QAnywhere Java API Reference

600 Copyright © 2006, iAnywhere Solutions, Inc.

UNTRANSMITTED variable

Synopsis
final int ianywhere.qanywhere.client.StatusCodes.UNTRANSMITTED

Remarks
The message has not been transmitted to the server.

This code applies to the TRANSMISSION_STATUS variable.

ianywhere.qanywhere.client package

Copyright © 2006, iAnywhere Solutions, Inc. 601

ianywhere.qanywhere.ws package

Class WSBase

Synopsis
public ianywhere.qanywhere.ws.WSBase

Remarks
This is the base class for the main web service proxy class generated by the mobile web service compiler.

Members
All members of ianywhere.qanywhere.ws.WSBase, including all inherited members.

♦ “clearRequestProperties method” on page 603
♦ “getResult method” on page 603
♦ “getServiceID method” on page 604
♦ “setListener method” on page 604
♦ “setListener method” on page 604
♦ “setProperty method” on page 605
♦ “setQAManager method” on page 605
♦ “setRequestProperty method” on page 606
♦ “setServiceID method” on page 606
♦ “WSBase method” on page 602
♦ “WSBase method” on page 603

WSBase method

Synopsis
 ianywhere.qanywhere.ws.WSBase.WSBase(
 String iniFile
)
throws WSException

Parameters
♦ iniFile A file containing configuration properties.

Throws
♦ Thrown if there is a problem constructing the “Class WSBase” on page 602.

Remarks
Constructor with configuration property file.

Valid configuration properties are:

LOG_FILE a file to which to log runtime information.

QAnywhere Java API Reference

602 Copyright © 2006, iAnywhere Solutions, Inc.

LOG_LEVEL a value between 0 and 6 that controls the verbosity of information logged, with 6 being the
highest verbosity.

WS_CONNECTOR_ADDRESS the address of the web service connector in the MobiLink server. The default
WS_CONNECTOR_ADDRESS is "ianywhere.connector.webservices\\".

WSBase method

Synopsis
 ianywhere.qanywhere.ws.WSBase.WSBase()
throws WSException

Throws
♦ Thrown if there is a problem constructing the “Class WSBase” on page 602.

Remarks
Constructor.

clearRequestProperties method

Synopsis
void ianywhere.qanywhere.ws.WSBase.clearRequestProperties()

Remarks
Clears all request properties that have been set for this Class WSBase.

getResult method

Synopsis
WSResult ianywhere.qanywhere.ws.WSBase.getResult(
 String requestID
)

Parameters
♦ requestID The ID of the web service request.

Remarks
Gets a Class WSResult object that represents the results of a web service request.

Returns
A Class WSResult instance representing the results of the web service request.

See Also
Class WSStatus

ianywhere.qanywhere.ws package

Copyright © 2006, iAnywhere Solutions, Inc. 603

getServiceID method

Synopsis
String ianywhere.qanywhere.ws.WSBase.getServiceID()

Remarks
Gets the service ID for this instance of Class WSBase.

Returns
The service ID.

setListener method

Synopsis
void ianywhere.qanywhere.ws.WSBase.setListener(
 String requestID,
 WSListener listener
)

Parameters
♦ requestID The ID of the web service request to which to listen for results.

♦ listener The listener object that gets called when the result of the given web service request is available.

Remarks
Sets a listener for the results of a given web service request.

Listeners are typically used to get results of the asyncXYZ methods of the service.

To remove a listener, call setListener with null as the listener.

Note: This method replaces the listener set by any previous call to setListener.

setListener method

Synopsis
void ianywhere.qanywhere.ws.WSBase.setListener(
 WSListener listener
)

Parameters
♦ listener The listener object that gets called when the result of a web service request is available.

Remarks
Sets a listener for the results of all web service requests made by this instance of Class WSBase.

QAnywhere Java API Reference

604 Copyright © 2006, iAnywhere Solutions, Inc.

Listeners are typically used to get results of the asyncXYZ methods of the service.

To remove a listener, call setListener with null as the listener.

Note: This method replaces the listener set by any previous call to setListener.

setProperty method

Synopsis
void ianywhere.qanywhere.ws.WSBase.setProperty(
 String property,
 String val
)

Parameters
♦ property The property name to set.

♦ val The property value.

Remarks
Sets a configuration property for this instance of Class WSBase.

Configuration properties must be set before any asynchronous or synchronous web service request is made;
after which this method has no effect.

Valid configuration properties are:

LOG_FILE a file to which to log runtime information.

LOG_LEVEL a value between 0 and 6 that controls the verbosity of information logged, with 6 being the
highest verbosity.

WS_CONNECTOR_ADDRESS the address of the web service connector in the MobiLink server. The default
is: "ianywhere.connector.webservices\\".

setQAManager method

Synopsis
void ianywhere.qanywhere.ws.WSBase.setQAManager(
 QAManagerBase mgr
)

Parameters
♦ mgr The QAManagerBase to use.

Remarks
Sets the QAManagerBase that is used by this web service client to do web service requests.

ianywhere.qanywhere.ws package

Copyright © 2006, iAnywhere Solutions, Inc. 605

Note: If you use an EXPLICIT_ACKNOWLEDGEMENT QAManager, you can acknowledge the result of
an asynchronous web service request by calling the acknowledge() method of Class WSResult. The result
of a synchronous web service request is automatically acknowledged, even in the case of an
EXPLICIT_ACKNOWLEDGEMENT QAManager. If you use an IMPLICIT_ACKNOWLEDGEMENT
QAManager, the result of any web service request is acknowledged automatically.

setRequestProperty method

Synopsis
void ianywhere.qanywhere.ws.WSBase.setRequestProperty(
 String name,
 Object value
)

Parameters
♦ name The property name to set.

♦ value The property value.

Remarks
Sets a request property for webservice requests made by this Class WSBase.

A request property is set on each QAMessage that is sent by this Class WSBase, until the property is cleared.
A request property is cleared by setting it to a null value. The type of the message property is determined
by the class of the value parameter. For example, if value is an instance of Integer, then setIntProperty is
used to set the property on the QAMessage.

setServiceID method

Synopsis
void ianywhere.qanywhere.ws.WSBase.setServiceID(
 String serviceID
)

Parameters
♦ serviceID The service ID.

Remarks
Sets a user-defined ID for this instance of Class WSBase.

The service ID should be set to a value unique to this instance of Class WSBase. It is used internally to form
a queue name for sending and receiving web service requests. Therefore, the service ID should be persisted
between application sessions, in order to retrieve results of web service requests made in a previous session.

QAnywhere Java API Reference

606 Copyright © 2006, iAnywhere Solutions, Inc.

Class WSException

Synopsis
public ianywhere.qanywhere.ws.WSException

Derived classes
♦ “Class WSFaultException” on page 608

Remarks
This class represents an exception that occurred during processing of a web service request.

Members
All members of ianywhere.qanywhere.ws.WSException, including all inherited members.

♦ “getErrorCode method” on page 608
♦ “WSException method” on page 607
♦ “WSException method” on page 607
♦ “WSException method” on page 608

WSException method

Synopsis
 ianywhere.qanywhere.ws.WSException.WSException(
 String msg
)

Parameters
♦ msg The error message.

Remarks
Constructs a new exception with the specified error message.

WSException method

Synopsis
 ianywhere.qanywhere.ws.WSException.WSException(
 String msg,
 int errorCode
)

Parameters
♦ msg The error message.

♦ errorCode The error code.

ianywhere.qanywhere.ws package

Copyright © 2006, iAnywhere Solutions, Inc. 607

Remarks
Constructs a new exception with the specified error message and error code.

WSException method

Synopsis
 ianywhere.qanywhere.ws.WSException.WSException(
 Exception exception
)

Parameters
♦ exception The exception.

Remarks
Constructs a new exception.

getErrorCode method

Synopsis
int ianywhere.qanywhere.ws.WSException.getErrorCode()

Remarks
Gets the error code associated with this exception.

Returns
The error code associated with this exception.

Class WSFaultException

Synopsis
public ianywhere.qanywhere.ws.WSFaultException

Base classes
♦ “Class WSException” on page 607

Remarks
This class represents a SOAP Fault exception from the web service connector.

Members
All members of ianywhere.qanywhere.ws.WSFaultException, including all inherited members.

♦ “getErrorCode method” on page 608
♦ “WSException method” on page 607
♦ “WSException method” on page 607
♦ “WSException method” on page 608

QAnywhere Java API Reference

608 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “WSFaultException method” on page 609

WSFaultException method

Synopsis
 ianywhere.qanywhere.ws.WSFaultException.WSFaultException(
 String msg
)

Parameters
♦ msg The error message.

Remarks
Constructs a new exception with the specified error message.

Interface WSListener

Synopsis
public ianywhere.qanywhere.ws.WSListener

Remarks
This class represents a listener for results of web service requests.

Members
All members of ianywhere.qanywhere.ws.WSListener, including all inherited members.

♦ “onException method” on page 609
♦ “onResult method” on page 610

onException method

Synopsis
void ianywhere.qanywhere.ws.WSListener.onException(
 WSException e,
 WSResult wsResult
)

Parameters
♦ e The “Class WSException” on page 607 that occurred during processing of the result.

♦ wsResult A “Class WSResult” on page 610, from which the request ID may be obtained. Values
of this “Class WSResult” on page 610 are not defined.

Remarks
Called when an exception occurs during processing of the result of an asynchronous web service request.

ianywhere.qanywhere.ws package

Copyright © 2006, iAnywhere Solutions, Inc. 609

onResult method

Synopsis
void ianywhere.qanywhere.ws.WSListener.onResult(
 WSResult wsResult
)

Parameters
♦ wsResult The “Class WSResult” on page 610 describing the result of a web service request.

Remarks
Called with the result of an asynchronous web service request.

Class WSResult

Synopsis
public ianywhere.qanywhere.ws.WSResult

Remarks
This class represents the results of a web service request.

♦ It is passed to the onResult method.

♦ It is returned by an asyncXYZ method of the service proxy generated by the compiler.

♦ It is obtained by calling getResult method with a specific request ID.

A Class WSResult object is obtained in one of three ways:

Members
All members of ianywhere.qanywhere.ws.WSResult, including all inherited members.

♦ “acknowledge method” on page 611
♦ “getArrayValue method” on page 612
♦ “getBigDecimalArrayValue method” on page 612
♦ “getBigDecimalValue method” on page 613
♦ “getBigIntegerArrayValue method” on page 613
♦ “getBigIntegerValue method” on page 614
♦ “getBooleanArrayValue method” on page 614
♦ “getBooleanValue method” on page 615
♦ “getByteArrayValue method” on page 615
♦ “getByteValue method” on page 616
♦ “getCharacterArrayValue method” on page 616
♦ “getCharacterValue method” on page 617
♦ “getDoubleArrayValue method” on page 617
♦ “getDoubleValue method” on page 618
♦ “getErrorMessage method” on page 618
♦ “getFloatArrayValue method” on page 618

QAnywhere Java API Reference

610 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “getFloatValue method” on page 619
♦ “getIntegerArrayValue method” on page 619
♦ “getIntegerValue method” on page 620
♦ “getLongArrayValue method” on page 620
♦ “getLongValue method” on page 621
♦ “getObjectArrayValue method” on page 621
♦ “getObjectValue method” on page 622
♦ “getPrimitiveBooleanArrayValue method” on page 622
♦ “getPrimitiveBooleanValue method” on page 623
♦ “getPrimitiveByteArrayValue method” on page 623
♦ “getPrimitiveByteValue method” on page 624
♦ “getPrimitiveCharArrayValue method” on page 624
♦ “getPrimitiveCharValue method” on page 625
♦ “getPrimitiveDoubleArrayValue method” on page 625
♦ “getPrimitiveDoubleValue method” on page 626
♦ “getPrimitiveFloatArrayValue method” on page 626
♦ “getPrimitiveFloatValue method” on page 627
♦ “getPrimitiveIntArrayValue method” on page 627
♦ “getPrimitiveIntValue method” on page 628
♦ “getPrimitiveLongArrayValue method” on page 628
♦ “getPrimitiveLongValue method” on page 629
♦ “getPrimitiveShortArrayValue method” on page 629
♦ “getPrimitiveShortValue method” on page 630
♦ “getRequestID method” on page 630
♦ “getShortArrayValue method” on page 630
♦ “getShortValue method” on page 631
♦ “getStatus method” on page 631
♦ “getStringArrayValue method” on page 632
♦ “getStringValue method” on page 632
♦ “getValue method” on page 633

acknowledge method

Synopsis
void ianywhere.qanywhere.ws.WSResult.acknowledge()

Remarks
Acknowledges that this Class WSResult has been processed.

This method is only useful when an EXPLICIT_ACKNOWLEDGEMENT QAManager is being used.

ianywhere.qanywhere.ws package

Copyright © 2006, iAnywhere Solutions, Inc. 611

getArrayValue method

Synopsis
WSSerializable[] ianywhere.qanywhere.ws.WSResult.getArrayValue(
 String parentName
)
throws WSException

Parameters
♦ parentName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets an array of complex types value from this Class WSResult.

Returns
The value.

getBigDecimalArrayValue method

Synopsis
BigDecimal[] ianywhere.qanywhere.ws.WSResult.getBigDecimalArrayValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a BigDecimal array value from this Class WSResult.

Returns
The value.

QAnywhere Java API Reference

612 Copyright © 2006, iAnywhere Solutions, Inc.

getBigDecimalValue method

Synopsis
BigDecimal ianywhere.qanywhere.ws.WSResult.getBigDecimalValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a BigDecimal value from this Class WSResult.

Returns
The value.

getBigIntegerArrayValue method

Synopsis
BigInteger[] ianywhere.qanywhere.ws.WSResult.getBigIntegerArrayValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a BigInteger array value from this Class WSResult.

Returns
The value.

ianywhere.qanywhere.ws package

Copyright © 2006, iAnywhere Solutions, Inc. 613

getBigIntegerValue method

Synopsis
BigInteger ianywhere.qanywhere.ws.WSResult.getBigIntegerValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a BigInteger value from this Class WSResult.

Returns
The value.

getBooleanArrayValue method

Synopsis
Boolean[] ianywhere.qanywhere.ws.WSResult.getBooleanArrayValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a java.lang.Boolean array value from this Class WSResult.

Returns
The value.

QAnywhere Java API Reference

614 Copyright © 2006, iAnywhere Solutions, Inc.

getBooleanValue method

Synopsis
Boolean ianywhere.qanywhere.ws.WSResult.getBooleanValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a java.lang.Boolean value from this Class WSResult.

Returns
The value.

getByteArrayValue method

Synopsis
Byte[] ianywhere.qanywhere.ws.WSResult.getByteArrayValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a java.lang.Byte array value from this Class WSResult.

Returns
The value.

ianywhere.qanywhere.ws package

Copyright © 2006, iAnywhere Solutions, Inc. 615

getByteValue method

Synopsis
Byte ianywhere.qanywhere.ws.WSResult.getByteValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a java.lang.Byte value from this Class WSResult.

Returns
The value.

getCharacterArrayValue method

Synopsis
Character[] ianywhere.qanywhere.ws.WSResult.getCharacterArrayValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a java.lang.Character array value from this Class WSResult.

Returns
The value.

QAnywhere Java API Reference

616 Copyright © 2006, iAnywhere Solutions, Inc.

getCharacterValue method

Synopsis
Character ianywhere.qanywhere.ws.WSResult.getCharacterValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a java.lang.Character value from this Class WSResult.

Returns
The value.

getDoubleArrayValue method

Synopsis
Double[] ianywhere.qanywhere.ws.WSResult.getDoubleArrayValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a java.lang.Double array value from this Class WSResult.

Returns
The value.

ianywhere.qanywhere.ws package

Copyright © 2006, iAnywhere Solutions, Inc. 617

getDoubleValue method

Synopsis
Double ianywhere.qanywhere.ws.WSResult.getDoubleValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a java.lang.Double value from this Class WSResult.

Returns
The value.

getErrorMessage method

Synopsis
String ianywhere.qanywhere.ws.WSResult.getErrorMessage()

Remarks
Gets the error message.

Returns
The error message.

getFloatArrayValue method

Synopsis
Float[] ianywhere.qanywhere.ws.WSResult.getFloatArrayValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

QAnywhere Java API Reference

618 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
Gets a java.lang.Float array value from this Class WSResult.

Returns
The value.

getFloatValue method

Synopsis
Float ianywhere.qanywhere.ws.WSResult.getFloatValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a java.lang.Float value from this Class WSResult.

Returns
The value.

getIntegerArrayValue method

Synopsis
Integer[] ianywhere.qanywhere.ws.WSResult.getIntegerArrayValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a java.lang.Integer array value from this Class WSResult.

ianywhere.qanywhere.ws package

Copyright © 2006, iAnywhere Solutions, Inc. 619

Returns
The value.

getIntegerValue method

Synopsis
Integer ianywhere.qanywhere.ws.WSResult.getIntegerValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a java.lang.Integer value from this Class WSResult.

Returns
The value.

getLongArrayValue method

Synopsis
Long[] ianywhere.qanywhere.ws.WSResult.getLongArrayValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a java.lang.Long array value from this Class WSResult.

Returns
The value.

QAnywhere Java API Reference

620 Copyright © 2006, iAnywhere Solutions, Inc.

getLongValue method

Synopsis
Long ianywhere.qanywhere.ws.WSResult.getLongValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a java.lang.Long value from this Class WSResult.

Returns
The value.

getObjectArrayValue method

Synopsis
Object[] ianywhere.qanywhere.ws.WSResult.getObjectArrayValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets an array of complex types value from this Class WSResult.

Returns
The value.

ianywhere.qanywhere.ws package

Copyright © 2006, iAnywhere Solutions, Inc. 621

getObjectValue method

Synopsis
Object ianywhere.qanywhere.ws.WSResult.getObjectValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets value of a complex type from this Class WSResult.

Returns
The value.

getPrimitiveBooleanArrayValue method

Synopsis
boolean[] ianywhere.qanywhere.ws.WSResult.getPrimitiveBooleanArrayValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a boolean array value from this Class WSResult.

Returns
The value.

QAnywhere Java API Reference

622 Copyright © 2006, iAnywhere Solutions, Inc.

getPrimitiveBooleanValue method

Synopsis
boolean ianywhere.qanywhere.ws.WSResult.getPrimitiveBooleanValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a boolean value from this Class WSResult.

Returns
The value.

getPrimitiveByteArrayValue method

Synopsis
byte[] ianywhere.qanywhere.ws.WSResult.getPrimitiveByteArrayValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a byte array value from this Class WSResult.

Returns
The value.

ianywhere.qanywhere.ws package

Copyright © 2006, iAnywhere Solutions, Inc. 623

getPrimitiveByteValue method

Synopsis
byte ianywhere.qanywhere.ws.WSResult.getPrimitiveByteValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a byte value from this Class WSResult.

Returns
The value.

getPrimitiveCharArrayValue method

Synopsis
char[] ianywhere.qanywhere.ws.WSResult.getPrimitiveCharArrayValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a char array value from this Class WSResult.

Returns
The value.

QAnywhere Java API Reference

624 Copyright © 2006, iAnywhere Solutions, Inc.

getPrimitiveCharValue method

Synopsis
char ianywhere.qanywhere.ws.WSResult.getPrimitiveCharValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a char value from this Class WSResult.

Returns
The value.

getPrimitiveDoubleArrayValue method

Synopsis
double[] ianywhere.qanywhere.ws.WSResult.getPrimitiveDoubleArrayValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a double array value from this Class WSResult.

Returns
The value.

ianywhere.qanywhere.ws package

Copyright © 2006, iAnywhere Solutions, Inc. 625

getPrimitiveDoubleValue method

Synopsis
double ianywhere.qanywhere.ws.WSResult.getPrimitiveDoubleValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a double value from this Class WSResult.

Returns
The value.

getPrimitiveFloatArrayValue method

Synopsis
float[] ianywhere.qanywhere.ws.WSResult.getPrimitiveFloatArrayValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a float array value from this Class WSResult.

Returns
The value.

QAnywhere Java API Reference

626 Copyright © 2006, iAnywhere Solutions, Inc.

getPrimitiveFloatValue method

Synopsis
float ianywhere.qanywhere.ws.WSResult.getPrimitiveFloatValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a float value from this Class WSResult.

Returns
The value.

getPrimitiveIntArrayValue method

Synopsis
int[] ianywhere.qanywhere.ws.WSResult.getPrimitiveIntArrayValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets an int array value from this Class WSResult.

Returns
The value.

ianywhere.qanywhere.ws package

Copyright © 2006, iAnywhere Solutions, Inc. 627

getPrimitiveIntValue method

Synopsis
int ianywhere.qanywhere.ws.WSResult.getPrimitiveIntValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets an int value from this Class WSResult.

Returns
The value.

getPrimitiveLongArrayValue method

Synopsis
long[] ianywhere.qanywhere.ws.WSResult.getPrimitiveLongArrayValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a long array value from this Class WSResult.

Returns
The value.

QAnywhere Java API Reference

628 Copyright © 2006, iAnywhere Solutions, Inc.

getPrimitiveLongValue method

Synopsis
long ianywhere.qanywhere.ws.WSResult.getPrimitiveLongValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a long value from this Class WSResult.

Returns
The value.

getPrimitiveShortArrayValue method

Synopsis
short[] ianywhere.qanywhere.ws.WSResult.getPrimitiveShortArrayValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a short array value from this Class WSResult.

Returns
The value.

ianywhere.qanywhere.ws package

Copyright © 2006, iAnywhere Solutions, Inc. 629

getPrimitiveShortValue method

Synopsis
short ianywhere.qanywhere.ws.WSResult.getPrimitiveShortValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a short value from this Class WSResult.

Returns
The value.

getRequestID method

Synopsis
String ianywhere.qanywhere.ws.WSResult.getRequestID()

Remarks
Gets the request ID that this Class WSResult represents.

This request ID should be persisted between runs of the application if it is desired to obtain a Class
WSResult corresponding to a web service request in a run of the application different from when the request
was made.

Returns
The request ID.

getShortArrayValue method

Synopsis
Short[] ianywhere.qanywhere.ws.WSResult.getShortArrayValue(
 String elementName
)
throws WSException

QAnywhere Java API Reference

630 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a java.lang.Short array value from this Class WSResult.

Returns
The value.

getShortValue method

Synopsis
Short ianywhere.qanywhere.ws.WSResult.getShortValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a java.lang.Short value from this Class WSResult.

Returns
The value.

getStatus method

Synopsis
int ianywhere.qanywhere.ws.WSResult.getStatus()

Remarks
Gets the status of this Class WSResult.

Returns
The status code.

ianywhere.qanywhere.ws package

Copyright © 2006, iAnywhere Solutions, Inc. 631

See Also
Class WSStatus

getStringArrayValue method

Synopsis
String[] ianywhere.qanywhere.ws.WSResult.getStringArrayValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a String array value from this Class WSResult.

Returns
The value.

getStringValue method

Synopsis
String ianywhere.qanywhere.ws.WSResult.getStringValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets a String value from this Class WSResult.

Returns
The value.

QAnywhere Java API Reference

632 Copyright © 2006, iAnywhere Solutions, Inc.

getValue method

Synopsis
Object ianywhere.qanywhere.ws.WSResult.getValue(
 String elementName
)
throws WSException

Parameters
♦ elementName The element name in the WSDL document of this value.

Throws
♦ Thrown if there is a problem getting the value.

Remarks
Gets the value of a complex type from this Class WSResult.

Returns
The value.

Class WSStatus

Synopsis
public ianywhere.qanywhere.ws.WSStatus

Remarks
This class defines codes for the status of a web service request.

Members
All members of ianywhere.qanywhere.ws.WSStatus, including all inherited members.

♦ “STATUS_ERROR variable” on page 633
♦ “STATUS_QUEUED variable” on page 634
♦ “STATUS_RESULT_AVAILABLE variable” on page 634
♦ “STATUS_SUCCESS variable” on page 634

STATUS_ERROR variable

Synopsis
final int ianywhere.qanywhere.ws.WSStatus.STATUS_ERROR

Remarks
There was an error processing the request.

ianywhere.qanywhere.ws package

Copyright © 2006, iAnywhere Solutions, Inc. 633

STATUS_QUEUED variable

Synopsis
final int ianywhere.qanywhere.ws.WSStatus.STATUS_QUEUED

Remarks
The request has been queued for delivery to the server.

STATUS_RESULT_AVAILABLE variable

Synopsis
final int ianywhere.qanywhere.ws.WSStatus.STATUS_RESULT_AVAILABLE

Remarks
The result of the request is available.

STATUS_SUCCESS variable

Synopsis
final int ianywhere.qanywhere.ws.WSStatus.STATUS_SUCCESS

Remarks
The request was successful.

QAnywhere Java API Reference

634 Copyright © 2006, iAnywhere Solutions, Inc.

CHAPTER 15

QAnywhere SQL API Reference

Contents
Message properties, headers, and content ... 636
Message store properties .. 664
Message management .. 666

About this chapter
This chapter describes the QAnywhere SQL API.

QAnywhere SQL is a collection of stored procedures that implement a messaging API in SQL.

Copyright © 2006, iAnywhere Solutions, Inc. 635

Message properties, headers, and content
This section documents QAnywhere SQL stored procedures that help you set message headers, message
content, and message properties.

Message headers
You can use the following stored procedures to get and set message header information.

F For more information about message headers, see “Message headers” on page 206.

ml_qa_getaddress

Description
Returns the QAnywhere address of the message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

Return value
The QAnywhere message address as VARCHAR(128). QAnywhere message addresses take the form id
\queue-name.

You can read this header after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
♦ “QAnywhere message addresses” on page 50
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666

Example
In the following example, a message is received and its address is output to the database console:

begin
 declare @msgid varchar(128);
 declare @addr varchar(128);
 set @msgid = ml_qa_getmessage('myaddress');
 set @addr = ml_qa_getaddress(@msgid);
 message 'message to address ' || @addr || ' received';
 commit;
end

QAnywhere SQL API Reference

636 Copyright © 2006, iAnywhere Solutions, Inc.

ml_qa_getexpiration

Description
Returns the expiration time of the message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

Return value
The expiration time as TIMESTAMP. Returns NULL if there is no expiration.

Remarks
After completion of ml_qa_putmessage, a message expires if it is not received by the intended recipient in
the specified time. The message may then be deleted using default QAnywhere delete rules.

You can read this header after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
♦ “Message delete rules” on page 239
♦ “Sending QAnywhere messages” on page 66
♦ “ml_qa_setexpiration” on page 642
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666

Example
In the following example, a message is received and the message expiration is output to the database console:

begin
 declare @msgid varchar(128);
 declare @expires timestamp;
 set @msgid = ml_qa_getmessage('myaddress');
 set @expires = ml_qa_getexpiration(@msgid);
 message 'message would have expired at ' || @expires || ' if it had not
been received';
 commit;
end

ml_qa_getinreplytoid

Description
Returns the in-reply-to ID for the message.

Message properties, headers, and content

Copyright © 2006, iAnywhere Solutions, Inc. 637

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

Return value
The in-reply-to ID as VARCHAR(128).

Remarks
A client can use the InReplyToID header field to link one message with another. A typical use is to link a
response message with its request message.

The in-reply-to ID is the ID of the message that this message is replying to.

You can read this header after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
♦ “ml_qa_setinreplytoid” on page 643
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666

Example
In the following example, a message is received and the in-reply-to-id of the message is output to the database
console:

begin
 declare @msgid varchar(128);
 declare @inreplytoid varchar(128);
 set @msgid = ml_qa_getmessage('myaddress');
 set @inreplytoid = ml_qa_getinreplytoid(@msgid);
 message 'message is likely a reply to the message with id ' ||
@inreplytoid;
 commit;
end

ml_qa_getpriority

Description
Returns the priority level of the message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

QAnywhere SQL API Reference

638 Copyright © 2006, iAnywhere Solutions, Inc.

Return value
The priority level as INTEGER.

Remarks
The QAnywhere API defines ten levels of priority value, with 0 as the lowest priority and 9 as the highest.
Clients should consider priorities 0-4 as gradations of normal priority and priorities 5-9 as gradations of
expedited priority.

You can read this header after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
♦ “ml_qa_setpriority” on page 644
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666

Example
In the following example, a message is received and the priority of the message is output to the database
console:

begin
 declare @msgid varchar(128);
 declare @priority integer;
 set @msgid = ml_qa_getmessage('myaddress');
 set @priority = ml_qa_getpriority(@msgid);
 message 'a message with priority ' || @priority || ' has been received';
 commit;
end

ml_qa_getredelivered

Description
Returns a value indicating whether this message has previously been received but not acknowledged.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

Return value
The redelivered value as BIT. A value of 1 indicates that the message is being redelivered; 0 indicates that
it is not being redelivered.

Remarks
A message may be redelivered if it was previously received but not acknowledged. For example, the message
was received but the application receiving the message did not complete processing the message content

Message properties, headers, and content

Copyright © 2006, iAnywhere Solutions, Inc. 639

before it crashed. In these cases, QAnywhere marks the message as redelivered to alert the receiver that the
message might be partly processed.

For example, assume that the receipt of a message occurs in three steps:

1. An application using a non-transactional QAnywhere manager receives the message.

2. The application writes the message content and message ID to a database table called T1, and commits
the change.

3. The application acknowledges the message.

If the application fails between steps 1 and 2 or between steps 2 and 3, the message is redelivered when the
application restarts.

If the failure occurs between steps 1 and 2, you should process the redelivered message by running steps 2
and 3. If the failure occurs between steps 2 and 3, then the message is already processed and you only need
to acknowledge it.

To determine what happened when the application fails, you can have the application call
ml_qa_getredelivered to check if the message has been previously redelivered. Only messages that are
redelivered need to be looked up in table T1. This is more efficient than having the application access the
received message's message ID to check whether the message is in the table T1, because application failures
are rare.

You can read this header after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666

Example
In the following example, a message is received; if the message was previously delivered but not received,
the message ID is output to the database console:

begin
 declare @msgid varchar(128);
 declare @redelivered bit;
 set @msgid = ml_qa_getmessage('myaddress');
 set @redelivered = ml_qa_getredelivered(@msgid);
 if @redelivered = 1 then
 message 'message with message ID ' || @msgid || ' has been
redelivered';
 end if;
 commit;
end

ml_qa_getreplytoaddress

Description
Returns the address to which a reply to this message should be sent.

QAnywhere SQL API Reference

640 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

Return value
The reply address as VARCHAR(128).

Remarks
You can read this header after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
♦ “ml_qa_setreplytoaddress” on page 645
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666

Example
In the following example, if the received message has a reply-to address, then a message is sent to the reply-
to-address with the content 'message received':

begin
 declare @msgid varchar(128);
 declare @rmsgid varchar(128);
 declare @replytoaddr varchar(128);
 set @msgid = ml_qa_getmessage('myaddress');
 set @replytoaddr = ml_qa_getreplytoaddress(@msgid);
 if @replytoaddr is not null then
 set @rmsgid = ml_qa_createmessage();
 call ml_qa_settextcontent(@rmsgid, 'message received');
 call ml_qa_putmessage(@rmsgid, @replytoaddr);
 end if;
 commit;
end

ml_qa_gettimestamp

Description
Returns the creation time of the message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

Message properties, headers, and content

Copyright © 2006, iAnywhere Solutions, Inc. 641

Return value
The message creation time as TIMESTAMP.

Remarks
The Timestamp header field contains the time a message was created. It is a coordinated universal time
(UTC). It is not the time the message was actually transmitted, because the actual send may occur later due
to transactions or other client-side queuing of messages.

You can read this header after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666

Example
In the following example, a message is received and the creation time of the message is output to the database
console:

begin
 declare @msgid varchar(128);
 declare @ts timestamp;
 set @msgid = ml_qa_getmessage('myaddress');
 set @ts = ml_qa_gettimestamp(@msgid);
 message 'message received with create time: ' || @ts ;
 commit;
end

ml_qa_setexpiration

Description
Sets the expiration time for a message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Expiration TIMESTAMP

Remarks
You can read this header after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
♦ “ml_qa_getexpiration” on page 637
♦ “ml_qa_createmessage” on page 666

QAnywhere SQL API Reference

642 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “ml_qa_getmessage” on page 666

Example
In the following example, a message is created so that if it is not delivered within the next 3 days it expires:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setexpiration(@msgid, dateadd(day, 3, current timestamp));
 call ml_qa_settextcontent(@msgid, 'time-limited offer');
 call ml_qa_putmessage(@msgid, 'someclient\someaddress');
 commit;
end

ml_qa_setinreplytoid

Description
Sets the in-reply-to ID of this message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 in-reply-to ID VARCHAR(128)

Remarks
An in-reply-to ID is similar to the in-reply-to IDs that are used by email systems to track replies.

Typically you set the in-reply-to ID to be the message ID of the message to which this message is replying,
if any.

A client can use the InReplyToID header field to link one message with another. A typical use is to link a
response message with its request message.

You cannot alter this header after the message has been sent.

See also
♦ “ml_qa_getinreplytoid” on page 637
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666

Example
In the following example, when a message is received that contains a reply-to-address, a reply message is
created and sent containing the message ID in the in-reply-to-id:

begin
 declare @msgid varchar(128);
 declare @rmsgid varchar(128);

Message properties, headers, and content

Copyright © 2006, iAnywhere Solutions, Inc. 643

 declare @replyaddr varchar(128);
 set @msgid = ml_qa_getmessage('myaddress');
 set @replyaddr = ml_qa_getreplyaddress(@msgid);
 if @replyaddr is not null then
 set @rmsgid = ml_qa_createmessage();
 call ml_qa_settextcontent(@rmsgid, 'message received');
 call ml_qa_setinreplytoid(@rmsgid, @msgid);
 call ml_qa_putmessage(@rmsgid, @replyaddr);
 end if;
 commit;
end

ml_qa_setpriority

Description
Sets the priority of a message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Priority INTEGER

Remarks
The QAnywhere API defines ten levels of priority value, with 0 as the lowest priority and 9 as the highest.
Clients should consider priorities 0-4 as gradations of normal priority and priorities 5-9 as gradations of
expedited priority.

You cannot alter this header after the message has been sent.

See also
♦ “ml_qa_getpriority” on page 638
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666

Example
The following example sends a high priority message:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setpriority(@msgid, 9);
 call ml_qa_settextcontent(@msgid, 'priority content');
 call ml_qa_putmessage(@msgid, 'someclient\someaddress');
 commit;
end

QAnywhere SQL API Reference

644 Copyright © 2006, iAnywhere Solutions, Inc.

ml_qa_setreplytoaddress

Description
Sets the reply-to address of the message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Reply address VARCHAR(128)

Remarks
You cannot alter this header after the message has been sent.

See also
♦ “ml_qa_getreplytoaddress” on page 640
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666

Example
In the following example, a reply-to-address is added to a message. The recipient of the message can then
use that reply-to-address to create a reply.

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setreplytoaddress(@msgid, 'myaddress');
 call ml_qa_settextcontent(@msgid, 'some content');
 call ml_qa_putmessage(@msgid, 'someclient\someaddress');
 commit;
end

Message properties
You can use the following stored procedures to get and set your custom message properties, or to get pre-
defined message properties.

F For more information about message properties, see “Message properties” on page 209.

ml_qa_getbooleanproperty

Description
Returns the specified message property as a SQL BIT data type.

Message properties, headers, and content

Copyright © 2006, iAnywhere Solutions, Inc. 645

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

Return value
The property value as BIT.

Remarks
If the message property value is out of range, then a SQL error with SQLSTATE 22003 occurs.

You can read this property after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
♦ “ml_qa_setbooleanproperty” on page 653
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666
♦ “Custom message properties” on page 211

Example
In the following example, a message is received and the value of the boolean property mybooleanproperty
is output to the database console:

begin
 declare @msgid varchar(128);
 declare @prop bit;
 set @msgid = ml_qa_getmessage('myaddress');
 set @prop = ml_qa_getbooleanproperty(@msgid, 'mybooleanproperty');
 message 'message property mybooleanproperty is set to ' || @prop;
 commit;
end

ml_qa_getbyteproperty

Description
Returns the specified message property as a SQL TINYINT data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

QAnywhere SQL API Reference

646 Copyright © 2006, iAnywhere Solutions, Inc.

Return value
The property value as TINYINT.

Remarks
If the message property value is out of range, then a SQL error with SQLSTATE 22003 occurs.

You can read this property after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
♦ “ml_qa_setbyteproperty” on page 654
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666
♦ “Custom message properties” on page 211

Example
In the following example, a message is received and the value of byte property mybyteproperty is output to
the database console:

begin
 declare @msgid varchar(128);
 declare @prop tinyint;
 set @msgid = ml_qa_getmessage('myaddress');
 set @prop = ml_qa_getbyteproperty(@msgid, 'mybyteproperty');
 message 'message property mybyteproperty is set to ' || @prop;
 commit;
end

ml_qa_getdoubleproperty

Description
Returns the specified message property as a SQL DOUBLE data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

Return value
The property value as DOUBLE.

Remarks
If the message property value is out of range, then a SQL error with SQLSTATE 22003 occurs.

Message properties, headers, and content

Copyright © 2006, iAnywhere Solutions, Inc. 647

You can read this property after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
♦ “ml_qa_setdoubleproperty” on page 655
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666
♦ “Custom message properties” on page 211

Example
In the following example, a message is received and the value of double property mydoubleproperty is output
to the database console:

begin
 declare @msgid varchar(128);
 declare @prop double;
 set @msgid = ml_qa_getmessage('myaddress');
 set @prop = ml_qa_getdoubleproperty(@msgid, 'mydoubleproperty');
 message 'message property mydoubleproperty is set to ' || @prop;
 commit;
end

ml_qa_getfloatproperty

Description
Returns the specified message property as a SQL FLOAT data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

Return value
The property value as FLOAT.

Remarks
If the message property value is out of range, then a SQL error with SQLSTATE 22003 occurs.

You can read this property after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
♦ “ml_qa_setfloatproperty” on page 655
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666

QAnywhere SQL API Reference

648 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “Custom message properties” on page 211

Example
In the following example, a message is received and the value of float property myfloatproperty is output to
the database console:

begin
 declare @msgid varchar(128);
 declare @prop float;
 set @msgid = ml_qa_getmessage('myaddress');
 set @prop = ml_qa_getfloatproperty(@msgid, 'myfloatproperty');
 message 'message property myfloatproperty is set to ' || @prop;
 commit;
end

ml_qa_getintproperty

Description
Returns the specified message property as a SQL INTEGER data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

Return value
The property value as INTEGER.

Remarks
If the message property value is out of range, then a SQL error with SQLSTATE 22003 occurs.

You can read this property after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
♦ “ml_qa_setintproperty” on page 656
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666
♦ “Custom message properties” on page 211

Example
In the following example, a message is received and the value of integer property myintproperty is output
to the database console:

begin

Message properties, headers, and content

Copyright © 2006, iAnywhere Solutions, Inc. 649

 declare @msgid varchar(128);
 declare @prop integer;
 set @msgid = ml_qa_getmessage('myaddress');
 set @prop = ml_qa_getintproperty(@msgid, 'myintproperty');
 message 'message property myintproperty is set to ' || @prop;
 commit;
end

ml_qa_getlongproperty

Description
Returns the specified message property as a SQL BIGINT data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

Return value
The property value as BIGINT.

Remarks
If the message property value is out of range, then a SQL error with SQLSTATE 22003 occurs.

You can read this property after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
♦ “ml_qa_setlongproperty” on page 657
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666
♦ “Custom message properties” on page 211

ml_qa_getpropertynames

Description
Retrieves the property names of the specified message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

QAnywhere SQL API Reference

650 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
This stored procedure opens a result set over the property names of the specified message. The message ID
parameter must be that of a message that has been received.

The result set is a single VARCHAR(128) column, where each row contains the name of a message property.
QAnywhere reserved property names (those with the prefix "ias_" or "QA") are not returned.

You can read this property after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666
♦ “Custom message properties” on page 211

Example
The following example declares a cursor over the result set of property names for a message that has the
message ID msgid. It then gets a message that has the address someAddress; opens a cursor to access the
property names of the message; and finally fetches the next property name.

begin
 declare prop_name_cursor cursor for
 call ml_qa_getpropertynames(@msgid);
 declare @msgid varchar(128);
 declare @name varchar(128);
 set @msgid = ml_qa_getmessage('someAddress');
 open prop_name_cursor;
 lp: loop
 fetch next prop_name_cursor into name;
 if sqlcode <> 0 then leave lp end if;
 ...
 end loop;
 close prop_name_cursor;
end

ml_qa_getshortproperty

Description
Returns the specified message property as a SQL SMALLINT data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

Message properties, headers, and content

Copyright © 2006, iAnywhere Solutions, Inc. 651

Return value
The property value as SMALLINT.

Remarks
If the message property value is out of range, then a SQL error with SQLSTATE 22003 occurs.

You can read this property after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
♦ “ml_qa_setshortproperty” on page 658
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666
♦ “Custom message properties” on page 211

Example
In the following example, a message is received and the value of the short property myshortproperty is output
to the database console:

begin
 declare @msgid varchar(128);
 declare @prop smallint;
 set @msgid = ml_qa_getmessage('myaddress');
 set @prop = ml_qa_getshortproperty(@msgid, 'myshortproperty');
 message 'message property myshortproperty is set to ' || @prop;
 commit;
end

ml_qa_getstringproperty

Description
Returns the specified message property as a SQL LONG VARCHAR data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

Return value
The property value as LONG VARCHAR.

Remarks
If the message property value is out of range, then a SQL error with SQLSTATE 22003 occurs.

QAnywhere SQL API Reference

652 Copyright © 2006, iAnywhere Solutions, Inc.

You can read this property after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
♦ “ml_qa_setstringproperty” on page 658
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666
♦ “Custom message properties” on page 211

Example
In the following example, a message is received and the value of the string property mystringproperty is
output to the database console:

begin
 declare @msgid varchar(128);
 declare @prop long varchar;
 set @msgid = ml_qa_getmessage('myaddress');
 set @prop = ml_qa_getstringproperty(@msgid, 'mystringproperty');
 message 'message property mystringproperty is set to ' || @prop;
 commit;
end

ml_qa_setbooleanproperty

Description
Sets the specified message property from a SQL BIT data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

3 Property value BIT

Remarks
You cannot alter this property after the message has been sent.

See also
♦ “ml_qa_getbooleanproperty” on page 645
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666
♦ “Custom message properties” on page 211

Message properties, headers, and content

Copyright © 2006, iAnywhere Solutions, Inc. 653

Example
In the following example, a message is created, the boolean properties mybooleanproperty1 and
mybooleanproperty2 are set, and the message is sent to the address someclient\someaddress:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setbooleanproperty(@msgid, 'mybooleanproperty1', 0);
 call ml_qa_setbooleanproperty(@msgid, 'mybooleanproperty2', 1);
 call ml_qa_putmessage(@msgid, 'someclient\someaddress');
 commit;
end

ml_qa_setbyteproperty

Description
Sets the specified message property from a SQL TINYINT data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

3 Property value TINYINT

Remarks
You cannot alter this property after the message has been sent.

See also
♦ “ml_qa_getbyteproperty” on page 646
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666
♦ “Custom message properties” on page 211

Example
In the following example, a message is created, the byte properties mybyteproperty1 and mybyteproperty2
are set, and the message is sent to the address someclient\someaddress:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setbyteproperty(@msgid, 'mybyteproperty1', 0);
 call ml_qa_setbyteproperty(@msgid, 'mybyteproperty2', 255);
 call ml_qa_putmessage(@msgid, 'someclient\someaddress');
 commit;
end

QAnywhere SQL API Reference

654 Copyright © 2006, iAnywhere Solutions, Inc.

ml_qa_setdoubleproperty

Description
Sets the specified message property from a SQL DOUBLE data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

3 Property value DOUBLE

Remarks
You cannot alter this property after the message has been sent.

See also
♦ “ml_qa_getdoubleproperty” on page 647
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666
♦ “Custom message properties” on page 211

Example
In the following example, a message is created, the double properties mydoubleproperty1 and
mydoubleproperty2 are set, and the message is sent to the address someclient\someaddress:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setdoubleproperty(@msgid, 'mydoubleproperty1', -12.34e-56);
 call ml_qa_setdoubleproperty(@msgid, 'mydoubleproperty2', 12.34e56);
 call ml_qa_putmessage(@msgid, 'someclient\someaddress');
 commit;
end

ml_qa_setfloatproperty

Description
Sets the specified message property from a SQL FLOAT data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

Message properties, headers, and content

Copyright © 2006, iAnywhere Solutions, Inc. 655

Item Description Remarks

2 Property name VARCHAR(128)

3 Property value FLOAT

Remarks
You cannot alter this property after the message has been sent.

See also
♦ “ml_qa_getfloatproperty” on page 648
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666
♦ “Custom message properties” on page 211

Example
In the following example, a message is created, the float properties myfloatproperty1 and myfloatproperty2
are set, and the message is sent to the address someclient\someaddress:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setfloatproperty(@msgid, 'myfloatproperty1', -1.3e-5);
 call ml_qa_setfloatproperty(@msgid, 'myfloatproperty2', 1.3e5);
 call ml_qa_putmessage(@msgid, 'someclient\someaddress');
 commit;
end

ml_qa_setintproperty

Description
Sets the specified message property from a SQL INTEGER data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

3 Property value INTEGER

Remarks
You cannot alter this property after the message has been sent.

See also
♦ “ml_qa_getintproperty” on page 649

QAnywhere SQL API Reference

656 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666
♦ “Custom message properties” on page 211

Example
In the following example, a message is created, the integer properties myintproperty1 and myintproperty2
are set, and the message is sent to the address someclient\someaddress:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setintproperty(@msgid, 'myintproperty1', -1234567890);
 call ml_qa_setintproperty(@msgid, 'myintproperty2', 1234567890);
 call ml_qa_putmessage(@msgid, 'someclient\someaddress');
 commit;
end

ml_qa_setlongproperty

Description
Sets the specified message property from a SQL BIGINT data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

3 Property value BIGINT

Remarks
You cannot alter this property after the message has been sent.

See also
♦ “ml_qa_getlongproperty” on page 650
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666
♦ “Custom message properties” on page 211

Example
In the following example, a message is created, the long properties mylongproperty1 and mylongproperty2
are set, and the message is sent to the address someclient\someaddress:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setlongproperty(@msgid, 'mylongproperty1',
-12345678900987654321);

Message properties, headers, and content

Copyright © 2006, iAnywhere Solutions, Inc. 657

 call ml_qa_setlongproperty(@msgid, 'mylongproperty2',
12345678900987654321);
 call ml_qa_putmessage(@msgid, 'someclient\someaddress');
 commit;
end

ml_qa_setshortproperty

Description
Sets the specified message property from a SQL SMALLINT data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

3 Property value SMALLINT

Remarks
You cannot alter this property after the message has been sent.

See also
♦ “ml_qa_getshortproperty” on page 651
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666
♦ “Custom message properties” on page 211

Example
In the following example, a message is created, the short properties myshortproperty1 and myshortproperty2
are set, and the message is sent to the address someclient\someaddress:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setshortproperty(@msgid, 'myshortproperty1', -12345);
 call ml_qa_setshortproperty(@msgid, 'myshortproperty2', 12345);
 call ml_qa_putmessage(@msgid, 'someclient\someaddress');
 commit;
end

ml_qa_setstringproperty

Description
Sets the specified message property from a SQL LONG VARCHAR data type.

QAnywhere SQL API Reference

658 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

3 Property value LONG VARCHAR

Remarks
You cannot alter this property after the message has been sent.

See also
♦ “ml_qa_getstringproperty” on page 652
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666
♦ “Custom message properties” on page 211

Example
In the following example, a message is created, the string properties mystringproperty1 and
mystringproperty2 are set, and the message is sent to the address someclient\someaddress:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setstringproperty(@msgid, 'mystringproperty1', 'c:\\temp');
 call ml_qa_setstringproperty(@msgid, 'mystringproperty2', 'first line
\nsecond line');
 call ml_qa_putmessage(@msgid, 'someclient\someaddress');
 commit;
end

Message content
You can use the following stored procedures to get and set message content.

ml_qa_getbinarycontent

Description
Returns the message content of a binary message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

Message properties, headers, and content

Copyright © 2006, iAnywhere Solutions, Inc. 659

Return value
The message content as LONG BINARY.

If the message has text content rather than binary content, this stored procedure returns NULL.

You can read this content after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
♦ “ml_qa_setbinarycontent” on page 662
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666
♦ “ml_qa_getcontentclass” on page 660

Example
In the following example, a message's encrypted content is decrypted and output to the database console:

begin
 declare @msgid varchar(128);
 declare @content long binary;
 declare @plaintext long varchar;
 set @msgid = ml_qa_getmessage('myaddress');
 set @content = ml_qa_getbinarycontent(@msgid);
 set @plaintext = decrypt(@content, 'mykey');
 message 'message content decrypted: ' || @plaintext;
 commit;
end

ml_qa_getcontentclass

Description
Returns the message type (text or binary).

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

Return value
The content class as INTEGER.

The return value can be:

♦ 1 indicates that the message content is binary and should be read using the stored procedure
ml_qa_getbinarycontent.

♦ 2 indicates that the message content is text and should be read using the stored procedure
ml_qa_gettextcontent.

QAnywhere SQL API Reference

660 Copyright © 2006, iAnywhere Solutions, Inc.

Remarks
You can read this content after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666
♦ “ml_qa_getbinarycontent” on page 659
♦ “ml_qa_gettextcontent” on page 661

Example
In the following example, a message is received and the content is output to the database console:

begin
 declare @msgid varchar(128);
 declare @contentclass integer;
 set @msgid = ml_qa_getmessage('myaddress');
 set @contentclass = ml_qa_getcontentclass(@msgid);
 if @contentclass = 1 then
 message 'message binary is ' || ml_qa_getbinarycontent(@msgid);
 elseif @contentclass = 2 then
 message 'message text is ' || ml_qa_gettextcontent(@msgid);
 end if;
 commit;
end

ml_qa_gettextcontent

Description
Returns the message content of a text message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

Return value
The text content as LONG VARCHAR.

If the message has binary content rather than text content, this stored procedure returns NULL.

Remarks
You can read this content after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
♦ “ml_qa_settextcontent” on page 663
♦ “ml_qa_createmessage” on page 666

Message properties, headers, and content

Copyright © 2006, iAnywhere Solutions, Inc. 661

♦ “ml_qa_getmessage” on page 666
♦ “ml_qa_getcontentclass” on page 660

Example
In the following example, the content of a message is output to the database console:

begin
 declare @msgid varchar(128);
 declare @content long binary;
 set @msgid = ml_qa_getmessage('myaddress');
 set @content = ml_qa_gettextcontent(@msgid);
 message 'message content: ' || @content ;
 commit;
end

ml_qa_setbinarycontent

Description
Sets the binary content of the message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Content LONG BINARY

Remarks
You cannot alter this content after the message has been sent.

See also
♦ “ml_qa_getbinarycontent” on page 659
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666

Example
In the following example, a message is created with encrypted content and sent:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setbinarycontent(@msgid, encrypt('my secret message',
'mykey'));
 call ml_qa_putmessage(@msgid, 'someclient\someaddress');
 commit;
end

QAnywhere SQL API Reference

662 Copyright © 2006, iAnywhere Solutions, Inc.

ml_qa_settextcontent

Description
Sets the text content of the message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Content LONG VARCHAR

Remarks
You cannot alter this content after the message has been sent.

See also
♦ “ml_qa_gettextcontent” on page 661
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666

Example
In the following example, a message is created and then set with the given content:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_settextcontent(@msgid, 'my simple message');
 call ml_qa_putmessage(@msgid, 'someclient\someaddress');
 commit;
end

Message properties, headers, and content

Copyright © 2006, iAnywhere Solutions, Inc. 663

Message store properties
You can use the following stored procedures to get and set properties for client message stores.

For more information about message store properties, see “Client message store properties” on page 215.

ml_qa_getstoreproperty

Description
Returns a client message store property.

Parameters

Item Description Remarks

1 Property name VARCHAR(128)

Return value
The property value as LONG VARCHAR.

Remarks
Client message store properties are readable from every connection to this client message store.

See also
♦ “ml_qa_setstoreproperty” on page 664

Example
The following example gets the current synchronization policy of this message store and outputs it to the
database console:

begin
 declare @policy varchar(128);
 set @policy = ml_qa_getstoreproperty('policy');
 message 'the current policy for synchronizing this message store is ' ||
@policy;
end

ml_qa_setstoreproperty

Description
Sets a client message store property.

Parameters

Item Description Remarks

1 Property name VARCHAR(128)

QAnywhere SQL API Reference

664 Copyright © 2006, iAnywhere Solutions, Inc.

Item Description Remarks

2 Property value SMALLINT

Remarks
Client message store properties are readable from every connection to this client message store. The values
are synchronized up to the server, as well, where they can be used in transmission rules.

See also
♦ “ml_qa_getstoreproperty” on page 664

Example
The following example sets the synchronization policy to automatic for the message store:

begin
 call ml_qa_setstoreproperty('policy', 'automatic');
 commit;
end

Message store properties

Copyright © 2006, iAnywhere Solutions, Inc. 665

Message management
You can use the following stored procedures to manage your QAnywhere client transactions.

ml_qa_createmessage

Description
Returns the message ID of a new message.

Return value
The message ID of the new message.

Remarks
Use this stored procedure to create a message. Once created, you can associate content, properties, and
headers with this message and then send the message.

You can associate content, properties, and headers using any of the QAnywhere stored procedures starting
with ml_qa_set. For example, use ml_qa_setbinarycontent or ml_qa_settextcontent to create a binary or text
message.

See also
♦ “Message headers” on page 636
♦ “Message properties” on page 645
♦ “Message content” on page 659

Example
The following example creates a message, sets the message content, and sends the message to the address
someclient\someaddress:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_settextcontent(@msgid, 'some content');
 call ml_qa_putmessage(@msgid, 'someclient\someaddress');
 commit;
end

ml_qa_getmessage

Description
Returns the message ID of the next message that is queued for the given address, blocking until one is queued.

QAnywhere SQL API Reference

666 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters

Item Description Remarks

1 Address VARCHAR(128)

Return value
The message ID as VARCHAR(128).

Returns NULL if there is no queued message for this address.

Remarks
Use this stored procedure to check synchronously whether there is a message waiting for the specified
QAnywhere message address. If you want a SQL procedure to be called asynchronously as soon as a message
is available for a specified QAnywhere address, use the Listener.

This stored procedure blocks until a message is queued.

F For information about avoiding blocking, see “ml_qa_getmessagenowait” on page 668 or
“ml_qa_getmessagetimeout” on page 669.

The message corresponding to the returned message ID is not considered to be received until the current
transaction is committed. Once the receive is committed, the message cannot be received again by this or
any other QAnywhere API. Similarly, a rollback of the current transaction means that the message is not
received, so subsequent calls to ml_qa_getmessage may return the same message ID.

The properties and content of the received message can be read by the various ml_qa_get stored procedures
until a commit or rollback is executed on the current transaction. Once a commit or rollback is executed on
the current transaction, the message data is no longer readable. Before committing, you should store any
data you need from the message as tabular data or in SQL variables.

See also
♦ “ml_qa_getmessagenowait” on page 668
♦ “ml_qa_getmessagetimeout” on page 669
♦ “Message headers” on page 636
♦ “Message properties” on page 645
♦ “Message content” on page 659

Example
The following example displays the content of all messages sent to the address myaddress:

begin
 declare @msgid varchar(128);
 loop
 set @msgid = ml_qa_getmessage('myaddress');
 message 'a message with content ' || ml_qa_gettextcontent(@msgid)
|| ' has been received';
 commit;
 end loop;
end

Message management

Copyright © 2006, iAnywhere Solutions, Inc. 667

ml_qa_getmessagenowait

Description
Returns the message ID of the next message that is currently queued for the given address.

Parameters

Item Description Remarks

1 Address VARCHAR(128)

Return value
The message ID as VARCHAR(128).

Returns the message ID of the next message that is queued for the given address. Returns NULL if there is
no queued message for this address.

Remarks
Use this stored procedure to check synchronously whether there is a message waiting for the specified
QAnywhere message address. If you want a SQL procedure to be called asynchronously as soon as a message
is available for a specified QAnywhere address, use the Listener.

F For information on blocking until a message is available, see “ml_qa_getmessage” on page 666 and
“ml_qa_getmessagetimeout” on page 669.

The message corresponding to the returned message is not considered to be received until the current
transaction is committed. Once the receive is committed, the message cannot be received again by this or
any other QAnywhere API. Similarly, a rollback of the current transaction means that the message is not
received, so subsequent calls to ml_qa_getmessage may return the same message ID.

The properties and content of the received message can be read by the various ml_qa_get stored procedures
until a commit or rollback is executed on the current transaction. Once a commit or rollback is executed on
the current transaction, the message data is no longer readable. Before committing, you should store any
data you need from the message as tabular data or in SQL variables.

See also
♦ “QAnywhere message addresses” on page 50
♦ “Listeners” [MobiLink - Server-Initiated Synchronization]
♦ “ml_qa_getmessagetimeout” on page 669
♦ “Message headers” on page 636
♦ “Message properties” on page 645
♦ “Message content” on page 659

Example
The following example displays the content of all messages that are queued at the address myaddress until
all such messages are read (it is generally more efficient to commit after the last message has been read,
rather than after each message is read):

QAnywhere SQL API Reference

668 Copyright © 2006, iAnywhere Solutions, Inc.

begin
 declare @msgid varchar(128);
 loop
 set @msgid = ml_qa_getmessagenowait('myaddress');
 if @msgid is null then leave end if;
 message 'a message with content ' || ml_qa_gettextcontent(@msgid)
|| ' has been received';
 end loop;
 commit;
end

ml_qa_getmessagetimeout

Description
Waits for the specified timeout period to return the message ID of the next message that is queued for the
given address.

Parameters

Item Description Remarks

1 Address VARCHAR(128)

2 Timeout in milliseconds INTEGER

Return value
The message ID as VARCHAR(128).

Returns NULL if there is no queued message for this address within the timeout period.

Remarks
Use this stored procedure to check synchronously whether there is a message waiting for the specified
QAnywhere message address. If you want a SQL procedure to be called asynchronously as soon as a message
is available for a specified QAnywhere address, use the Listener.

The message corresponding to the returned message is not considered to be received until the current
transaction is committed. Once the receive is committed, the message cannot be received again by this or
any other QAnywhere API. Similarly, a rollback of the current transaction means that the message is not
received, so subsequent calls to ml_qa_getmessage may return the same message ID.

The properties and content of the received message can be read by the various ml_qa_get stored procedures
until a commit or rollback is executed on the current transaction. Once a commit or rollback is executed on
the current transaction, the message data is no longer readable. Before committing, you should store any
data you need from the message as tabular data or in SQL variables.

See also
♦ “ml_qa_getmessage” on page 666
♦ “ml_qa_getmessagenowait” on page 668

Message management

Copyright © 2006, iAnywhere Solutions, Inc. 669

Example
The following example outputs the content of all messages sent to the address myaddress to the database
console, and updates the database console every 10 seconds if no message has been received:

begin
 declare @msgid varchar(128);
 loop
 set @msgid = ml_qa_getmessagetimeout('myaddress', 10000);
 if @msgid is null then
 message 'waiting for a message...';
 else
 message 'a message with content ' || ml_qa_gettextcontent(@msgid)
|| ' has been received';
 commit;
 end if;
 end loop;
end

ml_qa_grant_messaging_permissions

Description
Grants permission to other users to use QAnywhere stored procedures.

Parameters

Item Description Remarks

1 Database user ID VARCHAR(128)

Remarks
Only users with DBA privilege automatically have permission to execute the QAnywhere stored procedures.
Other users must be granted permission by having a user with DBA privileges run this stored procedure.

This procedure adds the user to a group called ml_qa_message_group and gives them execute permissions
on all QAnywhere stored procedures.

Example
For example, to grant messaging permissions to a user with the database ID user1, execute the following
SQL code:

call dbo.ml_qa_grant_messaging_permissions('user1')

ml_qa_listener_queue

Description
Create a stored procedure named ml_qa_listener_queue (where queue is the name of a message queue) to
receive messages asynchronously.

QAnywhere SQL API Reference

670 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from the
QAnywhere Listener.

Remarks

Note
This procedure is different from all the other QAnywhere stored procedures in that the stored procedure is
not provided. If you create a stored procedure named ml_qa_listener_queue, where queue is a message
queue, then it is used by QAnywhere.

Although messages can be received synchronously on a connection, it is often convenient to receive messages
asynchronously. You can create a stored procedure that is called when a message has been queued on a
particular address. The name of this procedure must be ml_qa_listener_queue, where queue is the message
queue. When this procedure exists, the procedure is called whenever a message is queued on the given
address.

This procedure is called from a separate connection. As long as a SQL error does not occur while this
procedure is executing, the message is automatically acknowledged and committed.

Do not commit or rollback within this procedure.

The queue name is part of the QAnywhere address. For more information, see “QAnywhere message
addresses” on page 50.

See also
♦ “Receiving messages asynchronously” on page 76
♦ “Receiving messages synchronously” on page 75
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666

Example
The following example creates a procedure that is called whenever a message is queued on the address named
executesql. In this example, the procedure assumes that the content of the message is a SQL statement that
it can execute against the current database.

CREATE PROCEDURE ml_qa_listener_executesql(IN @msgid VARCHAR(128))
begin
 DECLARE @execstr LONG VARCHAR;
 SET @execstr = ml_qa_gettextcontent(@msgid);
 EXECUTE IMMEDIATE @execstr;
end

Message management

Copyright © 2006, iAnywhere Solutions, Inc. 671

ml_qa_putmessage

Description
Sends a message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Address VARCHAR(128)

Remarks
The message ID you specify must have been previously created using ml_qa_createmessage. Only content,
properties and headers associated with the message ID before the call to ml_qa_putmessage are sent with
the message. Any added after the ml_qa_putmessage are ignored.

A commit is required before the message is actually queued for sending.

See also
♦ “ml_qa_createmessage” on page 666
♦ “ml_qa_getmessage” on page 666

Example
In the following example, a message is created with the content 'a simple message' and sent to the address
someclient\someaddress:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_settextcontent(@msgid, 'a simple message');
 call ml_qa_putmessage(@msgid, 'someclient\someaddress');
 commit;
end

ml_qa_triggersendreceive

Description
Triggers a synchronization of messages with the MobiLink server.

Remarks
Normally, message synchronization is handled by the QAnywhere Agent. However, if the synchronization
policy is ondemand, then it is the application's responsibility to trigger the synchronization of messages.
You can do so using this stored procedure. The trigger does not take effect until the current transaction is
committed.

QAnywhere SQL API Reference

672 Copyright © 2006, iAnywhere Solutions, Inc.

Example
In the following example, a message is sent and the transmission of the message is immediately initiated:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_settextcontent(@msgid, 'my simple message');
 call ml_qa_putmessage(@msgid, 'someclient\someaddress');
 call ml_qa_triggersendreceive();
 commit;
end

Message management

Copyright © 2006, iAnywhere Solutions, Inc. 673

Index
Symbols
-c option

QAnywhere Agent [qaagent], 148
-fd option

QAnywhere Agent [qaagent], 150
-fr option

QAnywhere Agent [qaagent], 151
-id option

QAnywhere Agent [qaagent], 152
-iu option

QAnywhere Agent [qaagent], 153
-lp option

QAnywhere Agent [qaagent], 154
-mn option

QAnywhere Agent [qaagent], 155
-mp option

QAnywhere Agent [qaagent], 156
-mu option

QAnywhere Agent [qaagent], 157
-o option

QAnywhere Agent [qaagent], 158
-on option

QAnywhere Agent [qaagent], 159
-os option

QAnywhere Agent [qaagent], 160
-ot option

QAnywhere Agent [qaagent], 161
-pc option

QAnywhere Agent [qaagent], 162
-policy option

QAnywhere Agent [qaagent], 163
-push option

QAnywhere Agent [qaagent], 165
-q option

QAnywhere Agent [qaagent], 167
-qi option

QAnywhere Agent [qaagent], 168
-si option

QAnywhere Agent [qaagent], 169
-su option

QAnywhere Agent [qaagent], 170
-sur option

QAnywhere Agent [qaagent], 171
-v option

QAnywhere Agent [qaagent], 172
-x option

QAnywhere Agent [qaagent], 173
@data option

QAnywhere Agent [qaagent], 147
~QABinaryMessage function

QAnywhere C++ API, 417
~QAMessageListener function

QAnywhere C++ API, 487
~QATextMessage function

QAnywhere C++ API, 491
~QATransactionalManager function

QAnywhere C++ API, 494

A
acknowledge function

QAnywhere C++ API, 428
QAnywhere Java API Reference, 538, 611

Acknowledge method (.NET)
iAnywhere.QAnywhere.Client namespace, 272
iAnywhere.QAnywhere.WS namespace, 358

acknowledgeAll function
QAnywhere C++ API, 429
QAnywhere Java API Reference, 538

AcknowledgeAll method (.NET)
iAnywhere.QAnywhere.Client namespace, 273

acknowledgement modes
QAManager class (.NET), 56
QAManager class (.NET) for web services, 187
QAManager class (C++), 57
QAManager class (Java), 58
QAManager class (Java) for web services, 189
QAnywhere SQL API, 59

AcknowledgementMode class
QAnywhere C++ API, 392

AcknowledgementMode enumeration (.NET)
iAnywhere.QAnywhere.Client namespace, 244

acknowledgeUntil function
QAnywhere C++ API, 429
QAnywhere Java API Reference, 539

AcknowledgeUntil method (.NET)
iAnywhere.QAnywhere.Client namespace, 273

ADAPTER field (.NET)
iAnywhere.QAnywhere.Client namespace, 246

ADAPTER variable
QAnywhere C++ API, 395
QAnywhere Java API Reference, 506

Copyright © 2006, iAnywhere Solutions, Inc. 675

adapters
QAnywhere message property, 52

ADAPTERS field (.NET)
iAnywhere.QAnywhere.Client namespace, 247

ADAPTERS variable
QAnywhere C++ API, 395
QAnywhere Java API Reference, 507

adding client user names
QAnywhere, 31

Address message header
QAnywhere message headers, 206

Address property (.NET)
iAnywhere.QAnywhere.Client namespace, 316

addresses
QAnywhere, 50
QAnywhere JMS connector, 50
setting in QAnywhere messages (.NET), 66
setting in QAnywhere messages (C++), 67
setting in QAnywhere messages (Java), 67

addressing JMS messages meant for QAnywhere
about, 139

addressing QAnywhere messages meant for JMS
about, 137

addressing QAnywhere messages meant for web
services

about, 195
administering

QAnywhere server message store, 91
ALL variable

QAnywhere C++ API, 496
QAnywhere Java API Reference, 597

APIs
QAnywhere .NET API, 243
QAnywhere C++ API, 391
QAnywhere Java API, 503
QAnywhere SQL API, 635

application-to-application messaging, vii
(see also messaging)
QAnywhere, 4

architecture
QAnywhere, 7

asynchronous message receipt
QAnywhere, 76

asynchronous web service requests
mobile web services, 192

authentication
QAnywhere, 179

automatic policy

QAnywhere Agent, 164

B
beginEnumPropertyNames function

QAnywhere C++ API, 468
beginEnumStorePropertyNames function

QAnywhere C++ API, 433
BodyLength property (.NET)

iAnywhere.QAnywhere.Client namespace, 257
browseClose function

QAnywhere C++ API, 434
browseMessages function

QAnywhere C++ API, 434
QAnywhere Java API Reference, 542

BrowseMessages method (.NET)
iAnywhere.QAnywhere.Client namespace, 280

browseMessagesByID function
QAnywhere C++ API, 435
QAnywhere Java API Reference, 542

BrowseMessagesByID method (.NET)
iAnywhere.QAnywhere.Client namespace, 281

browseMessagesByQueue function
QAnywhere C++ API, 436
QAnywhere Java API Reference, 543

BrowseMessagesByQueue method (.NET)
iAnywhere.QAnywhere.Client namespace, 282

browseMessagesBySelector function
QAnywhere C++ API, 436
QAnywhere Java API Reference, 544

BrowseMessagesBySelector method (.NET)
iAnywhere.QAnywhere.Client namespace, 282

browseNextMessage function
QAnywhere C++ API, 437

browsing
QAnywhere messages, 81

browsing messages
QAnywhere, 81

C
CANCELLED variable

QAnywhere C++ API, 498
QAnywhere Java API Reference, 598

cancelling messages
about QAnywhere, 73
QAnywhere (.NET), 73
QAnywhere (C++), 73
QAnywhere (Java), 73

Index

676 Copyright © 2006, iAnywhere Solutions, Inc.

cancelMessage function
QAnywhere C++ API, 438
QAnywhere Java API Reference, 544

CancelMessage method (.NET)
iAnywhere.QAnywhere.Client namespace, 283

CancelMessageRequest tag
QAnywhere server managment requests, 101

castToBinaryMessage function
QAnywhere C++ API, 468

castToTextMessage function
QAnywhere C++ API, 468

ClearBody method (.NET)
iAnywhere.QAnywhere.Client namespace, 320

clearProperties function
QAnywhere C++ API, 469
QAnywhere Java API Reference, 572

ClearProperties method (.NET)
iAnywhere.QAnywhere.Client namespace, 320

clearRequestProperties function
QAnywhere Java API Reference, 603

ClearRequestProperties method (.NET)
iAnywhere.QAnywhere.WS namespace, 344

client message store properties
managing QAnywhere, 219
QAnywhere attributes, 217

client message stores
creating the IDs, 33
custom message store properties, 216
encrypting QAnywhere, 177
initializing with -si option, 169
pre-defined message store properties, 215
QAnywhere architecture, 8
QAnywhere properties, 215
QAnywhere security, 176
setting up in QAnywhere, 33

client transmission rules
delete rules, 239

client user namess
adding QAnywhere to the server message store, 31

ClientStatusRequest tag
QAnywhere server managment requests, 107

close function
QAnywhere C++ API, 438
QAnywhere Java API Reference, 545

Close method (.NET)
iAnywhere.QAnywhere.Client namespace, 284

CloseConnector tag
QAnywhere server managment requests, 106

commit function
QAnywhere C++ API, 493
QAnywhere Java API Reference, 595

Commit method (.NET)
iAnywhere.QAnywhere.Client namespace, 338

COMMON_ALREADY_OPEN_ERROR variable
QAnywhere C++ API, 419
QAnywhere Java API Reference, 531

COMMON_GET_INIT_FILE_ERROR variable
QAnywhere C++ API, 420
QAnywhere Java API Reference, 532

COMMON_GETQUEUEDEPTH_ERROR variable
QAnywhere C++ API, 419
QAnywhere Java API Reference, 531

COMMON_GETQUEUEDEPTH_ERROR_INVALI
D_ARG variable

QAnywhere C++ API, 419
QAnywhere Java API Reference, 531

COMMON_GETQUEUEDEPTH_ERROR_NO_STO
RE_ID variable

QAnywhere C++ API, 420
QAnywhere Java API Reference, 531

COMMON_INIT_ERROR variable
QAnywhere C++ API, 420
QAnywhere Java API Reference, 532

COMMON_INIT_THREAD_ERROR variable
QAnywhere C++ API, 420
QAnywhere Java API Reference, 532

COMMON_INVALID_PROPERTY variable
QAnywhere C++ API, 421
QAnywhere Java API Reference, 532

COMMON_MSG_ACKNOWLEDGE_ERROR
variable

QAnywhere C++ API, 421
QAnywhere Java API Reference, 532

COMMON_MSG_CANCEL_ERROR variable
QAnywhere C++ API, 421
QAnywhere Java API Reference, 532

COMMON_MSG_CANCEL_ERROR_SENT
variable

QAnywhere C++ API, 421
QAnywhere Java API Reference, 533

COMMON_MSG_NOT_WRITEABLE_ERROR
variable

QAnywhere C++ API, 422
QAnywhere Java API Reference, 533

COMMON_MSG_RETRIEVE_ERROR variable
QAnywhere C++ API, 422

Copyright © 2006, iAnywhere Solutions, Inc. 677

QAnywhere Java API Reference, 533
COMMON_MSG_STORE_ERROR variable

QAnywhere C++ API, 422
QAnywhere Java API Reference, 533

COMMON_MSG_STORE_NOT_INITIALIZED
variable

QAnywhere C++ API, 423
QAnywhere Java API Reference, 533

COMMON_MSG_STORE_TOO_LARGE variable
QAnywhere C++ API, 423
QAnywhere Java API Reference, 534

COMMON_NO_DEST_ERROR variable
QAnywhere C++ API, 423
QAnywhere Java API Reference, 534

COMMON_NO_IMPLEMENTATION variable
QAnywhere C++ API, 424
QAnywhere Java API Reference, 534

COMMON_NOT_OPEN_ERROR variable
QAnywhere C++ API, 423
QAnywhere Java API Reference, 534

COMMON_OPEN_ERROR variable
QAnywhere C++ API, 424
QAnywhere Java API Reference, 534

COMMON_OPEN_LOG_FILE_ERROR variable
QAnywhere C++ API, 424
QAnywhere Java API Reference, 534

COMMON_OPEN_MAXTHREADS_ERROR
variable

QAnywhere C++ API, 424
COMMON_SELECTOR_SYNTAX_ERROR
variable

QAnywhere C++ API, 425
QAnywhere Java API Reference, 535

COMMON_TERMINATE_ERROR variable
QAnywhere C++ API, 425
QAnywhere Java API Reference, 535

COMMON_UNEXPECTED_EOM_ERROR variable
QAnywhere C++ API, 425
QAnywhere Java API Reference, 535

COMMON_UNREPRESENTABLE_TIMESTAMP
variable

QAnywhere C++ API, 425
QAnywhere Java API Reference, 535

communication streams
encrypting QAnywhere, 178

compiling and running mobile web service applications
about, 191

compression

QAnywhere JMS connector, 133
QAnywhere web service connector, 197

COMPRESSION_LEVEL property
QAnywhere manager configuration properties, 62

condition syntax
QAnywhere, 228

condition tag
QAnywhere server management requests, 94

conditions
QAnywhere schedule syntax, 228

configuring
QAnywhere JMS connector properties, 132
QAnywhere web service connector properties, 196

configuring multiple connectors
QAnywhere, 136

CONNECT_PARAMS property
QAnywhere manager configuration properties, 62

connecting
QAnywhere, 148

connectors
configuring multiple QAnywhere JMS, 136
QAnywhere addresses for JMS, 50
QAnywhere closing, 106
QAnywhere JMS connector properties, 132
QAnywhere mobile web service, 195
QAnywhere opening, 106
QAnywhere web service connector properties, 196

conventions
documentation, x
file names in documentation, xii

createBinaryMessage function
QAnywhere C++ API, 439
QAnywhere Java API Reference, 545

CreateBinaryMessage method (.NET)
iAnywhere.QAnywhere.Client namespace, 284

createQAManager function
QAnywhere C++ API, 462
QAnywhere Java API Reference, 567, 568

CreateQAManager method (.NET)
iAnywhere.QAnywhere.Client namespace, 313

createQATransactionalManager function
QAnywhere C++ API, 463
QAnywhere Java API Reference, 568, 569, 570

CreateQATransactionalManager method (.NET)
iAnywhere.QAnywhere.Client namespace, 314

createTextMessage function
QAnywhere C++ API, 439
QAnywhere Java API Reference, 546

Index

678 Copyright © 2006, iAnywhere Solutions, Inc.

CreateTextMessage method
QAManager class, 66

createTextMessage method
QAManager class, 66

CreateTextMessage method (.NET)
iAnywhere.QAnywhere.Client namespace, 285

creating
QAnywhere messages with ml_qa_createmessage,
666
QAnywhere server message store, 30

creating a secure client message store
QAnywhere, 176

creating client message store IDs
QAnywhere, 33

custom message properties
QAnywhere, 211

custom message requests
QAnywhere server management requests, 95

custom message store properties
QAnywhere, 216

custom message store property attributes
QAnywhere, 217

customRule tag
QAnywhere server management requests, 95

D
DATEADD function

QAnywhere SQL syntax, 230
DATEPART function

QAnywhere SQL syntax, 230
DATETIME function

QAnywhere SQL syntax, 230
dbeng10

QAnywhere Agent and, 36
dblsn

QAnywhere Agent and, 36
dbmlsync utility

QAnywhere Agent and, 36
DEFAULT_PRIORITY variable

QAnywhere C++ API, 467
QAnywhere Java API Reference, 572

DEFAULT_TIME_TO_LIVE variable
QAnywhere C++ API, 467
QAnywhere Java API Reference, 572

delete rules
QAnywhere, 239

deleteMessage function

QAnywhere C++ API, 440
deleteQAManager function

QAnywhere C++ API, 463
deleteQATransactionalManager function

QAnywhere C++ API, 464
deleting

QAnywhere messages, 239
delivery condition syntax

QAnywhere, 228
DELIVERY_COUNT field (.NET)

iAnywhere.QAnywhere.Client namespace, 247
DELIVERY_COUNT variable

QAnywhere C++ API, 396
QAnywhere Java API Reference, 507

destination aliases
QAnywhere, 50
QAnywhere creating server management requests,
117

documentation
conventions, x
SQL Anywhere, viii

DTD
QAnywhere server management request, 95

E
EAServer

QAnywhere and, 11
encrypting

QAnywhere client message stores, 177
QAnywhere communication stream, 178

encrypting the client message store
QAnywhere, 177

encrypting the communication stream
QAnywhere, 178

endEnumPropertyNames function
QAnywhere C++ API, 469

endEnumStorePropertyNames function
QAnywhere C++ API, 440

ErrorCode property (.NET)
iAnywhere.QAnywhere.Client namespace, 271
iAnywhere.QAnywhere.WS namespace, 352

Expiration message header
QAnywhere message headers, 206

Expiration property (.NET)
iAnywhere.QAnywhere.Client namespace, 317

EXPIRED variable
QAnywhere C++ API, 498

Copyright © 2006, iAnywhere Solutions, Inc. 679

QAnywhere Java API Reference, 598
EXPLICIT_ACKNOWLEDGEMENT variable

QAnywhere C++ API, 392
QAnywhere Java API Reference, 504

F
failover

QAnywhere, 42
QAnywhere Agent -fd option, 150
QAnywhere Agent -fr option, 151

feedback
documentation, xv
providing, xv

FINAL variable
QAnywhere C++ API, 499
QAnywhere Java API Reference, 599

functions
QAnywhere rules, 230
QAnywhere stored procedures, 59

G
getAddress function

QAnywhere C++ API, 469
QAnywhere Java API Reference, 572

getAllQueueDepth function
QAnywhere C++ API, 440

getArrayValue function
QAnywhere Java API Reference, 612

GetArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 358

getBigDecimalArrayValue function
QAnywhere Java API Reference, 612

getBigDecimalValue function
QAnywhere Java API Reference, 613

getBigIntegerArrayValue function
QAnywhere Java API Reference, 613

getBigIntegerValue function
QAnywhere Java API Reference, 614

getBodyLength function
QAnywhere C++ API, 406
QAnywhere Java API Reference, 517

GetBoolArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 359

getBooleanArrayValue function
QAnywhere Java API Reference, 614

GetBooleanArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 359

getBooleanProperty function
QAnywhere C++ API, 470
QAnywhere Java API Reference, 573

GetBooleanProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 320

getBooleanStoreProperty function
QAnywhere C++ API, 441
QAnywhere Java API Reference, 546

GetBooleanStoreProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 285

getBooleanValue function
QAnywhere Java API Reference, 615

GetBooleanValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 360

GetBoolValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 360

getByteArrayValue function
QAnywhere Java API Reference, 615

GetByteArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 361

getByteProperty function
QAnywhere C++ API, 470
QAnywhere Java API Reference, 573

GetByteProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 321

getByteStoreProperty function
QAnywhere C++ API, 442
QAnywhere Java API Reference, 547

getByteValue function
QAnywhere Java API Reference, 616

GetByteValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 361

getCharacterArrayValue function
QAnywhere Java API Reference, 616

getCharacterValue function
QAnywhere Java API Reference, 617

GetCharArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 362

GetCharValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 362

GetDecimalArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 363

GetDecimalValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 363

getDoubleArrayValue function
QAnywhere Java API Reference, 617

GetDoubleArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 364

Index

680 Copyright © 2006, iAnywhere Solutions, Inc.

getDoubleProperty function
QAnywhere C++ API, 471
QAnywhere Java API Reference, 574

GetDoubleProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 321

getDoubleStoreProperty function
QAnywhere C++ API, 442
QAnywhere Java API Reference, 547

GetDoubleStoreProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 286

getDoubleValue function
QAnywhere Java API Reference, 618

GetDoubleValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 364

getErrorCode function
QAnywhere Java API Reference, 536, 608

getErrorMessage function
QAnywhere Java API Reference, 618

GetErrorMessage method (.NET)
iAnywhere.QAnywhere.WS namespace, 365

getExpiration function
QAnywhere C++ API, 471
QAnywhere Java API Reference, 574

getFloatArrayValue function
QAnywhere Java API Reference, 618

GetFloatArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 365

getFloatProperty function
QAnywhere C++ API, 472
QAnywhere Java API Reference, 575

GetFloatProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 322

getFloatStoreProperty function
QAnywhere C++ API, 443
QAnywhere Java API Reference, 548

GetFloatStoreProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 287

getFloatValue function
QAnywhere Java API Reference, 619

GetFloatValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 366

getInReplyToID function
QAnywhere C++ API, 472
QAnywhere Java API Reference, 575

getInstance function
QAnywhere Java API Reference, 570

GetInt16ArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 366

GetInt16Value method (.NET)
iAnywhere.QAnywhere.WS namespace, 367

GetInt32ArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 367

GetInt32Value method (.NET)
iAnywhere.QAnywhere.WS namespace, 368

GetInt64ArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 368

GetInt64Value method (.NET)
iAnywhere.QAnywhere.WS namespace, 369

GetIntArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 369

getIntegerArrayValue function
QAnywhere Java API Reference, 619

getIntegerValue function
QAnywhere Java API Reference, 620

getIntProperty function
QAnywhere C++ API, 473
QAnywhere Java API Reference, 576

GetIntProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 323

getIntStoreProperty function
QAnywhere C++ API, 443
QAnywhere Java API Reference, 548

GetIntStoreProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 288

GetIntValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 370

getLastError function
QAnywhere C++ API, 444, 464

getLastErrorMsg function
QAnywhere C++ API, 444, 464

getLongArrayValue function
QAnywhere Java API Reference, 620

GetLongArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 370

getLongProperty function
QAnywhere C++ API, 473
QAnywhere Java API Reference, 576

GetLongProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 324

getLongStoreProperty function
QAnywhere C++ API, 445
QAnywhere Java API Reference, 549

GetLongStoreProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 288

getLongValue function
QAnywhere Java API Reference, 621

Copyright © 2006, iAnywhere Solutions, Inc. 681

GetLongValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 371

getMessage function
QAnywhere C++ API, 445
QAnywhere Java API Reference, 550

GetMessage method (.NET)
iAnywhere.QAnywhere.Client namespace, 289

getMessageBySelector function
QAnywhere C++ API, 446
QAnywhere Java API Reference, 550

GetMessageBySelector method (.NET)
iAnywhere.QAnywhere.Client namespace, 290

getMessageBySelectorNoWait function
QAnywhere C++ API, 447
QAnywhere Java API Reference, 551

GetMessageBySelectorNoWait method (.NET)
iAnywhere.QAnywhere.Client namespace, 291

getMessageBySelectorTimeout function
QAnywhere C++ API, 447
QAnywhere Java API Reference, 551

GetMessageBySelectorTimeout method (.NET)
iAnywhere.QAnywhere.Client namespace, 291

getMessageID function
QAnywhere C++ API, 474
QAnywhere Java API Reference, 577

getMessageListener function
QAnywhere Java API Reference, 552

getMessageNoWait function
QAnywhere C++ API, 448
QAnywhere Java API Reference, 552

GetMessageNoWait method (.NET)
iAnywhere.QAnywhere.Client namespace, 292

getMessageTimeout function
QAnywhere C++ API, 448
QAnywhere Java API Reference, 553

GetMessageTimeout method (.NET)
iAnywhere.QAnywhere.Client namespace, 293

getMode function
QAnywhere C++ API, 449
QAnywhere Java API Reference, 554

GetNullableBoolArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 371

GetNullableBoolValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 372

GetNullableDoubleArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 372

GetNullableDoubleValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 373

GetNullableFloatArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 373

GetNullableFloatValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 374

GetNullableIntArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 374

GetNullableIntValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 375

GetNullableLongArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 375

GetNullableLongValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 376

GetNullableSByteArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 376

GetNullableSByteValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 377

GetNullableShortArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 377

GetNullableShortValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 378

getObjectArrayValue function
QAnywhere Java API Reference, 621

GetObjectArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 378

getObjectValue function
QAnywhere Java API Reference, 622

GetObjectValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 379

getPrimitiveBooleanArrayValue function
QAnywhere Java API Reference, 622

getPrimitiveBooleanValue function
QAnywhere Java API Reference, 623

getPrimitiveByteArrayValue function
QAnywhere Java API Reference, 623

getPrimitiveByteValue function
QAnywhere Java API Reference, 624

getPrimitiveCharArrayValue function
QAnywhere Java API Reference, 624

getPrimitiveCharValue function
QAnywhere Java API Reference, 625

getPrimitiveDoubleArrayValue function
QAnywhere Java API Reference, 625

getPrimitiveDoubleValue function
QAnywhere Java API Reference, 626

getPrimitiveFloatArrayValue function
QAnywhere Java API Reference, 626

getPrimitiveFloatValue function
QAnywhere Java API Reference, 627

Index

682 Copyright © 2006, iAnywhere Solutions, Inc.

getPrimitiveIntArrayValue function
QAnywhere Java API Reference, 627

getPrimitiveIntValue function
QAnywhere Java API Reference, 628

getPrimitiveLongArrayValue function
QAnywhere Java API Reference, 628

getPrimitiveLongValue function
QAnywhere Java API Reference, 629

getPrimitiveShortArrayValue function
QAnywhere Java API Reference, 629

getPrimitiveShortValue function
QAnywhere Java API Reference, 630

getPriority function
QAnywhere C++ API, 474
QAnywhere Java API Reference, 577

getProperty function
QAnywhere Java API Reference, 578

GetProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 324

getPropertyNames function
QAnywhere Java API Reference, 578

GetPropertyNames method (.NET)
iAnywhere.QAnywhere.Client namespace, 325

getPropertyType function
QAnywhere C++ API, 475
QAnywhere Java API Reference, 578

GetPropertyType method (.NET)
iAnywhere.QAnywhere.Client namespace, 325

getQueueDepth function
QAnywhere C++ API, 450
QAnywhere Java API Reference, 554, 555

GetQueueDepth method (.NET)
iAnywhere.QAnywhere.Client namespace, 294

getRedelivered function
QAnywhere C++ API, 475
QAnywhere Java API Reference, 579

getReplyToAddress function
QAnywhere C++ API, 476
QAnywhere Java API Reference, 579

getRequestID function
QAnywhere Java API Reference, 630

GetRequestID method (.NET)
iAnywhere.QAnywhere.WS namespace, 379

getResult function
QAnywhere Java API Reference, 603

GetResult method (.NET)
iAnywhere.QAnywhere.WS namespace, 344

GetSByteArrayValue method (.NET)

iAnywhere.QAnywhere.WS namespace, 379
GetSbyteProperty method (.NET)

iAnywhere.QAnywhere.Client namespace, 326
GetSbyteStoreProperty method (.NET)

iAnywhere.QAnywhere.Client namespace, 295
GetSByteValue method (.NET)

iAnywhere.QAnywhere.WS namespace, 380
GetSbyteValue method (.NET)

iAnywhere.QAnywhere.WS namespace, 380
getServiceID function

QAnywhere Java API Reference, 604
GetServiceID method (.NET)

iAnywhere.QAnywhere.WS namespace, 344
getShortArrayValue function

QAnywhere Java API Reference, 630
GetShortArrayValue method (.NET)

iAnywhere.QAnywhere.WS namespace, 381
getShortProperty function

QAnywhere C++ API, 476
QAnywhere Java API Reference, 580

GetShortProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 326

getShortStoreProperty function
QAnywhere C++ API, 450
QAnywhere Java API Reference, 555

GetShortStoreProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 296

getShortValue function
QAnywhere Java API Reference, 631

GetShortValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 381

GetSingleArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 382

GetSingleValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 382

getStatus function
QAnywhere Java API Reference, 631

GetStatus method (.NET)
iAnywhere.QAnywhere.WS namespace, 383

getStoreProperty function
QAnywhere Java API Reference, 556

GetStoreProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 296

getStorePropertyNames function
QAnywhere Java API Reference, 556

GetStorePropertyNames method (.NET)
iAnywhere.QAnywhere.Client namespace, 297

getStringArrayValue function

Copyright © 2006, iAnywhere Solutions, Inc. 683

QAnywhere Java API Reference, 632
GetStringArrayValue method (.NET)

iAnywhere.QAnywhere.WS namespace, 383
getStringProperty function

QAnywhere C++ API, 477
QAnywhere Java API Reference, 580

GetStringProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 327

getStringStoreProperty function
QAnywhere C++ API, 451
QAnywhere Java API Reference, 557

GetStringStoreProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 298

getStringValue function
QAnywhere Java API Reference, 632

GetStringValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 384

getText function
QAnywhere C++ API, 489
QAnywhere Java API Reference, 591

getTextLength function
QAnywhere C++ API, 490
QAnywhere Java API Reference, 591

getTimestamp function
QAnywhere C++ API, 478
QAnywhere Java API Reference, 581

getTimestampAsString function
QAnywhere C++ API, 479

getting started
QAnywhere, 14

GetUIntArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 384

GetUIntValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 385

GetULongArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 385

GetULongValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 386

GetUShortArrayValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 386

GetUShortValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 387

getValue function
QAnywhere Java API Reference, 633

GetValue method (.NET)
iAnywhere.QAnywhere.WS namespace, 387

H
handling errors

QAnywhere, 85
handling push notifications and network status changes

QAnywhere, 51
handling QAnywhere exceptions

about, 85
headers

QAnywhere message headers, 206

I
ianywhere.connector.address property

QAnywhere JMS connector, 132
QAnywhere web service connector, 196

ianywhere.connector.compressionLevel property
QAnywhere JMS connector, 133
QAnywhere web service connector, 197

ianywhere.connector.id property
QAnywhere JMS connector (deprecated), 132
QAnywhere web service connector (deprecated),
196

ianywhere.connector.incoming.retry.max property
QAnywhere JMS connector, 132

ianywhere.connector.jms.deadMessageDestination
property

QAnywhere JMS connector, 133
ianywhere.connector.logLevel property

QAnywhere JMS connector, 133
QAnywhere web service connector, 197

ianywhere.connector.NativeConnection property
QAnywhere JMS connector, 132
QAnywhere web service connector, 196

ianywhere.connector.outgoing.deadMessageAddress
property

QAnywhere JMS connector, 132
ianywhere.connector.outgoing.retry.max property

QAnywhere JMS connector, 133
QAnywhere web service connector, 197

ianywhere.connector.runtimeError.retry.max property
QAnywhere JMS connector, 133

ianywhere.connector.startupType property
QAnywhere JMS connector, 133
QAnywhere web service connector, 197

ianywhere.qa.server.autoRulesEvaluationPeriod
property

QAnywhere properties, 222
ianywhere.qa.server.compressionLevel property

Index

684 Copyright © 2006, iAnywhere Solutions, Inc.

QAnywhere properties, 222
ianywhere.qa.server.connectorPropertiesFile property

QAnywhere properties, 222
ianywhere.qa.server.disableNotifications property

QAnywhere properties, 222
ianywhere.qa.server.id property

QAnywhere properties, 222
ianywhere.qa.server.logLevel property

QAnywhere properties, 222
ianywhere.qa.server.password.e property

QAnywhere properties, 223
ianywhere.qa.server.rules property

QAnywhere transmission rules, 116
ianywhere.qa.server.scheduleDateFormat property

QAnywhere properties, 223
ianywhere.qa.server.scheduleTimeFormat property

QAnywhere properties, 223
ianywhere.qa.server.transmissionRulesFile property

QAnywhere properties, 223
iAnywhere.QAnywhere.Client namespace

iAnywhere.QAnywhere.Client namespace, 243
iAnywhere.QAnywhere.Client namespace (.NET)

iAnywhere.QAnywhere.Client namespace, 244
ianywhere.qanywhere.client.AcknowledgementMode
interface

QAnywhere Java API Reference, 504
ianywhere.qanywhere.client.MessageProperties
interface

QAnywhere Java API Reference, 505
ianywhere.qanywhere.client.MessageStoreProperties
interface

QAnywhere Java API Reference, 510
ianywhere.qanywhere.client.MessageType interface

QAnywhere Java API Reference, 511
ianywhere.qanywhere.client.PropertyType interface

QAnywhere Java API Reference, 513
ianywhere.qanywhere.client.QABinaryMessage
interface

QAnywhere Java API Reference, 515
ianywhere.qanywhere.client.QAException class

QAnywhere Java API Reference, 530
ianywhere.qanywhere.client.QAManager interface

QAnywhere Java API Reference, 536
ianywhere.qanywhere.client.QAManagerBase
interface

QAnywhere Java API Reference, 540
ianywhere.qanywhere.client.QAManagerFactory class

QAnywhere Java API Reference, 566

ianywhere.qanywhere.client.QAMessage interface
QAnywhere Java API Reference, 570

ianywhere.qanywhere.client.QAMessageListener
interface

QAnywhere Java API Reference, 588
ianywhere.qanywhere.client.QATextMessage
interface

QAnywhere Java API Reference, 589
ianywhere.qanywhere.client.QATransactionalManage
r interface

QAnywhere Java API Reference, 594
ianywhere.qanywhere.client.QueueDepthFilter
interface

QAnywhere Java API Reference, 597
ianywhere.qanywhere.client.StatusCodes interface

QAnywhere Java API Reference, 598
iAnywhere.QAnywhere.WS namespace (.NET)

iAnywhere.QAnywhere.WS namespace, 342
ianywhere.qanywhere.ws.WSBase class

QAnywhere Java API Reference, 602
ianywhere.qanywhere.ws.WSException class

QAnywhere Java API Reference, 607
ianywhere.qanywhere.ws.WSFaultException class

QAnywhere Java API Reference, 608
ianywhere.qanywhere.ws.WSListener interface

QAnywhere Java API Reference, 609
ianywhere.qanywhere.ws.WSResult class

QAnywhere Java API Reference, 610
ianywhere.qanywhere.ws.WSStatus class

QAnywhere Java API Reference, 633
ianywhere.server.defaultRules client

QAnywhere transmission rules, 236
ias_Adapters

QAnywhere message store property, 215
QAnywhere network status notifications, 52
QAnywhere pre-defined message property, 209

ias_Address
QAnywhere transmission rule variable, 231

ias_ContentSize
QAnywhere transmission rule variable, 231

ias_ContentType
QAnywhere transmission rule variable, 231

ias_CurrentDate
QAnywhere transmission rule variable, 232

ias_CurrentTime
QAnywhere transmission rule variable, 232

ias_DeliveryCount
QAnywhere pre-defined message property, 209

Copyright © 2006, iAnywhere Solutions, Inc. 685

ias_Expires
QAnywhere transmission rule variable, 231

ias_ExpireState
QAnywhere transmission rule variable, 231

ias_FinalState
QAnywhere transmission rule variable, 231

ias_MaxDeliveryAttempts
QAnywhere message store property, 215
QAnywhere transmission rule variable, 232

ias_MaxUploadSize
QAnywhere message store property, 215

ias_MessageType
QAnywhere pre-defined message property, 209

ias_Network
QAnywhere message store property, 216
QAnywhere pre-defined message property, 209
QAnywhere property, 218
QAnywhere transmission rule variable, 232

ias_Network.Adapter
QAnywhere message store property, 215
QAnywhere transmission rule variable, 232

ias_Network.IP
QAnywhere message store property, 215
QAnywhere transmission rule variable, 232

ias_Network.MAC
QAnywhere message store property, 216
QAnywhere transmission rule variable, 232

ias_Network.RAS
QAnywhere message store property, 215
QAnywhere transmission rule variable, 232

ias_NetworkStatus
QAnywhere network status notifications, 53
QAnywhere pre-defined message property, 210

ias_Originator
QAnywhere pre-defined message property, 210
QAnywhere transmission rule variable, 231

ias_PendingState
QAnywhere transmission rule variable, 231

ias_Priority
QAnywhere transmission rule variable, 231

ias_RASNames
QAnywhere network status notifications, 53

ias_Received
QAnywhere transmission rule variable, 231

ias_Status
QAnywhere pre-defined message property, 210

ias_StatusTime
QAnywhere pre-defined message property, 210

ias_StoreID
QAnywhere message store property, 216

ias_StoreInitialized
QAnywhere message store property, 216

ias_StoreVersion
QAnywhere message store property, 216

icons
used in manuals, xii

IDs
understanding QAnywhere addresses, 50

implementing transactional messaging
about, 68

IMPLICIT_ACKNOWLEDGEMENT variable
QAnywhere C++ API, 393
QAnywhere Java API Reference, 505

INCOMING variable
QAnywhere C++ API, 496
QAnywhere Java API Reference, 597

initializing
QAnywhere client message stores, 169

initializing a QAnywhere API
about, 54

InReplyToID message header
QAnywhere message headers, 206

InReplyToID property (.NET)
iAnywhere.QAnywhere.Client namespace, 317

install-dir
documentation usage, xii

Instance property (.NET)
iAnywhere.QAnywhere.Client namespace, 311

InstanceCount property (.NET)
iAnywhere.QAnywhere.Client namespace, 312

InstanceID field (.NET)
iAnywhere.QAnywhere.Client namespace, 311

introducing mobile web services
about, 182

introduction to QAnywhere, 3
IP field (.NET)

iAnywhere.QAnywhere.Client namespace, 248
IP variable

QAnywhere C++ API, 396
QAnywhere Java API Reference, 507

J
JMS

running MobiLink with messaging and a JMS
connector, 127

Index

686 Copyright © 2006, iAnywhere Solutions, Inc.

JMS connector properties
configuring, 132

JMS connectors
QAnywhere, 127
QAnywhere addresses, 50
QAnywhere architecture, 11
tutorial, 141

JMS properties
mapping JMS messages on to QAnywhere
messages, 140

JMS providers
QAnywhere architecture, 11

L
LastError property (.NET)

iAnywhere.QAnywhere.Client namespace, 278,
312

LastErrorMessage property (.NET)
iAnywhere.QAnywhere.Client namespace, 279,
312

LENGTH function
QAnywhere SQL syntax, 230

Listener utility
architecture, 10
QAnywhere Agent and, 36

LOCAL variable
QAnywhere C++ API, 499
QAnywhere Java API Reference, 599

LOG_FILE property
QAnywhere manager configuration properties, 62

M
MAC field (.NET)

iAnywhere.QAnywhere.Client namespace, 248
MAC variable

QAnywhere C++ API, 397
QAnywhere Java API Reference, 508

making web service requests
mobile web services, 192

manage client message store passwords
QAnywhere, 176

managing client message store properties
QAnywhere, 219

managing client message store properties in your
application

about, 220
managing message properties

QAnywhere, 211
mapping JMS messages on to QAnywhere messages

about, 139
mapping QAnywhere messages on to JMS messages

about, 138
MAX_DELIVERY_ATTEMPTS field (.NET)

iAnywhere.QAnywhere.Client namespace, 254
MAX_DELIVERY_ATTEMPTS variable

QAnywhere C++ API, 401
QAnywhere Java API Reference, 511

MAX_IN_MEMORY_MESSAGE_SIZE property
QAnywhere manager configuration properties, 62

message addresses
QAnywhere, 50

message details requests
QAnywhere about, 120

message headers
about QAnywhere, 206

message listeners
QAnywhere, 77

message properties
about QAnywhere, 209
managing for QAnywhere, 211

message selectors
QAnywhere, 81

message store IDs
QAnywhere message store property, 216

message store properties
about QAnywhere client, 215
about QAnywhere server, 222
managing QAnywhere client, 219
QAnywhere custom client, 216
QAnywhere pre-defined, 215

message stores
encrypting QAnywhere client message stores, 177
QAnywhere client architecture, 8
QAnywhere client properties, 215
QAnywhere server architecture, 8

message transmission
QAnywhere, 234

message transmission rules
about, 234

message types
QAnywhere, 209

MessageDetailsRequest tag
QAnywhere server managment requests, 120

MessageID message header
QAnywhere message headers, 206

Copyright © 2006, iAnywhere Solutions, Inc. 687

MessageID property (.NET)
iAnywhere.QAnywhere.Client namespace, 318

MessageListener class
QAnywhere (.NET), 77
QAnywhere (Hava), 78
QAnywhere system messages, 51

MessageListener delegate (.NET)
iAnywhere.QAnywhere.Client namespace, 245

MessageProperties class
QAnywhere C++ API, 394

MessageProperties class (.NET)
iAnywhere.QAnywhere.Client namespace, 245

messages
sending QAnywhere, 66

messages stores
creating QAnywhere client message stores, 33
creating the QAnywhere server message store, 30

MessageStoreProperties class
QAnywhere C++ API, 401

MessageStoreProperties class (.NET)
iAnywhere.QAnywhere.Client namespace, 253

MessageStoreProperties constructor (.NET)
iAnywhere.QAnywhere.Client namespace, 253

MessageType class
QAnywhere C++ API, 402

MessageType enumeration (.NET)
iAnywhere.QAnywhere.Client namespace, 254

messaging, vii
(see also QAnywhere)
application-to-application, 4
QAnywhere addresses, 50
QAnywhere features, 5
QAnywhere quick start, 14

messaging systems
JMS integration with QAnywhere, 127

messaging with external messaging systems
QAnywhere architecture, 11

messaging with push notifications
QAnywhere architecture, 9

ml_qa_createmessage
QAnywhere stored procedure, 666

ml_qa_getaddress
QAnywhere stored procedure, 636

ml_qa_getbinarycontent
QAnywhere stored procedure, 659

ml_qa_getbooleanproperty
QAnywhere stored procedure, 645

ml_qa_getbyteproperty

QAnywhere stored procedure, 646
ml_qa_getcontentclass

QAnywhere stored procedure, 660
ml_qa_getdoubleproperty

QAnywhere stored procedure, 647
ml_qa_getexpiration

QAnywhere stored procedure, 637
ml_qa_getfloatproperty

QAnywhere stored procedure, 648
ml_qa_getinreplytoid

QAnywhere stored procedure, 637
ml_qa_getintproperty

QAnywhere stored procedure, 649
ml_qa_getlongproperty

QAnywhere stored procedure, 650
ml_qa_getmessage

QAnywhere stored procedure, 666
ml_qa_getmessagenowait

QAnywhere stored procedure, 668
ml_qa_getmessagetimeout

QAnywhere stored procedure, 669
ml_qa_getpriority

QAnywhere stored procedure, 638
ml_qa_getpropertynames

QAnywhere stored procedure, 650
ml_qa_getredelivered

QAnywhere stored procedure, 639
ml_qa_getreplytoaddress

QAnywhere stored procedure, 640
ml_qa_getshortproperty

QAnywhere stored procedure, 651
ml_qa_getstoreproperty

QAnywhere stored procedure, 664
ml_qa_getstringproperty

QAnywhere stored procedure, 652
ml_qa_gettextcontent

QAnywhere stored procedure, 661
ml_qa_gettimestamp

QAnywhere stored procedure, 641
ml_qa_grant_messaging_permissions

QAnywhere stored procedure, 670
ml_qa_listener_<queue>

QAnywhere stored procedure, 670
ml_qa_listener_queue stored procedure

QAnywhere SQL, 670
ml_qa_putmessage

QAnywhere stored procedure, 672
ml_qa_setbinarycontent

Index

688 Copyright © 2006, iAnywhere Solutions, Inc.

QAnywhere stored procedure, 662
ml_qa_setbooleanproperty

QAnywhere stored procedure, 653
ml_qa_setbyteproperty

QAnywhere stored procedure, 654
ml_qa_setdoubleproperty

QAnywhere stored procedure, 655
ml_qa_setexpiration

QAnywhere stored procedure, 642
ml_qa_setfloatproperty

QAnywhere stored procedure, 655
ml_qa_setinreplytoid

QAnywhere stored procedure, 643
ml_qa_setintproperty

QAnywhere stored procedure, 656
ml_qa_setlongproperty

QAnywhere stored procedure, 657
ml_qa_setpriority

QAnywhere stored procedure, 644
ml_qa_setreplytoaddress

QAnywhere stored procedure, 645
ml_qa_setshortproperty

QAnywhere stored procedure, 658
ml_qa_setstoreproperty

QAnywhere stored procedure, 664
ml_qa_setstringproperty

QAnywhere stored procedure, 658
ml_qa_settextcontent

QAnywhere stored procedure, 663
ml_qa_triggersendreceive

QAnywhere stored procedure, 672
mobile web service connectors

QAnywhere, 195
mobile web service example

about, 198
mobile web services

about QAnywhere, 181
MobiLink server

QAnywhere, 31
MobiLink user names

adding QAnywhere to the server message store, 31
MobiLink with messaging

QAnywhere setup, 29
QAnywhere tutorial, 17
simple messaging architecture, 8
starting, 31

Mode property (.NET)
iAnywhere.QAnywhere.Client namespace, 279

monitoring connectors
QAnywhere server managment requests, 107

monitoring network availability
QAnywhere system queue messages, 52

MSG_TYPE field (.NET)
iAnywhere.QAnywhere.Client namespace, 249

MSG_TYPE variable
QAnywhere C++ API, 397
QAnywhere Java API Reference, 508

multiple instances of the service binding class
mobile web services, 190

N
network availability

QAnywhere custom message store properties, 217
QAnywhere system queue messages, 52

network property attributes
QAnywhere client, 217

network status
handling changes in QAnywhere, 51
QAnywhere message property, 53

network status notifications message type
QAnywhere system queue, 52

NETWORK_STATUS field (.NET)
iAnywhere.QAnywhere.Client namespace, 249

NETWORK_STATUS variable
QAnywhere C++ API, 397
QAnywhere Java API Reference, 508

network_status_notification
QAnywhere ias_MessageType, 209

NETWORK_STATUS_NOTIFICATION message
type

QAnywhere system queue, 52
NETWORK_STATUS_NOTIFICATION variable

QAnywhere C++ API, 402
QAnywhere Java API Reference, 512

newsgroups
technical support, xv

nextPropertyName function
QAnywhere C++ API, 479

nextStorePropertyName function
QAnywhere C++ API, 451

notifications
handling in QAnywhere, 51
QAnywhere, 165
QAnywhere introduction to, 41

Copyright © 2006, iAnywhere Solutions, Inc. 689

O
ondemand policy

QAnywhere Agent, 163
onException function

QAnywhere Java API Reference, 588, 609
OnException method (.NET)

iAnywhere.QAnywhere.WS namespace, 354
onMessage function

QAnywhere C++ API, 487
QAnywhere Java API Reference, 589

onMessage method
QAManager class (C++), 77

onResult function
QAnywhere Java API Reference, 610

OnResult method (.NET)
iAnywhere.QAnywhere.WS namespace, 355

open function
QAnywhere C++ API, 430, 494
QAnywhere Java API Reference, 539, 596

Open method (.NET)
iAnywhere.QAnywhere.Client namespace, 274,
339

OpenConnector tag
QAnywhere server managment requests, 106

ORIGINATOR field (.NET)
iAnywhere.QAnywhere.Client namespace, 250

ORIGINATOR variable
QAnywhere C++ API, 398
QAnywhere Java API Reference, 509

OUTGOING variable
QAnywhere C++ API, 496
QAnywhere Java API Reference, 597

P
password authentication with MobiLink

QAnywhere applications, 179
PENDING variable

QAnywhere C++ API, 499
QAnywhere Java API Reference, 599

persistence
QAnywhere messages, 239

plug-ins
QAnywhere, 13

policies
QAnywhere, 36
QAnywhere architecture, 9
QAnywhere tutorial, 21

pre-defined message properties
QAnywhere, 209

pre-defined message store properties
QAnywhere, 215

Priority message header
QAnywhere message headers, 206

Priority property (.NET)
iAnywhere.QAnywhere.Client namespace, 318

programming interfaces
QAnywhere, 46

prop tag
QAnywhere server managment requests, 114

properties
QAnywhere client message store properties, 215
QAnywhere manager configuration, 62
QAnywhere message properties, 209
QAnywhere server message store properties, 222

PROPERTY_TYPE_BOOLEAN variable
QAnywhere Java API Reference, 513

PROPERTY_TYPE_BYTE variable
QAnywhere Java API Reference, 513

PROPERTY_TYPE_DOUBLE variable
QAnywhere Java API Reference, 513

PROPERTY_TYPE_FLOAT variable
QAnywhere Java API Reference, 514

PROPERTY_TYPE_INT variable
QAnywhere Java API Reference, 514

PROPERTY_TYPE_LONG variable
QAnywhere Java API Reference, 514

PROPERTY_TYPE_SHORT variable
QAnywhere Java API Reference, 514

PROPERTY_TYPE_STRING variable
QAnywhere Java API Reference, 514

PROPERTY_TYPE_UNKNOWN variable
QAnywhere Java API Reference, 514

propertyExists function
QAnywhere C++ API, 480
QAnywhere Java API Reference, 581

PropertyExists method (.NET)
iAnywhere.QAnywhere.Client namespace, 328

PropertyType enumeration (.NET)
iAnywhere.QAnywhere.Client namespace, 254

push notifications
handling in QAnywhere, 51
QAnywhere -push option, 165
QAnywhere introduction to, 41

push_notification
QAnywhere ias_MessageType, 209

Index

690 Copyright © 2006, iAnywhere Solutions, Inc.

PUSH_NOTIFICATION message type
QAnywhere system queue, 53

PUSH_NOTIFICATION variable
QAnywhere C++ API, 403
QAnywhere Java API Reference, 512

putMessage function
QAnywhere C++ API, 452
QAnywhere Java API Reference, 557

PutMessage method (.NET)
iAnywhere.QAnywhere.Client namespace, 298

putMessageTimeToLive function
QAnywhere C++ API, 453
QAnywhere Java API Reference, 558

PutMessageTimeToLive method (.NET)
iAnywhere.QAnywhere.Client namespace, 299

Q
qa.hpp

QAnywhere header file, 56
QA_NO_ERROR variable

QAnywhere C++ API, 426
QAnywhere Java API Reference, 536

qaagent syntax
about, 145

qaagent utility
about, 35
starting on Windows CE, 35
stopping, 36
syntax, 145

QABinaryMessage class
instantiating (.NET), 66
instantiating (C++), 66
QAnywhere C++ API, 404

QABinaryMessage interface (.NET)
iAnywhere.QAnywhere.Client namespace, 255

QAError class
QAnywhere C++ API, 418

QAException class (.NET)
iAnywhere.QAnywhere.Client namespace, 269

QAException constructor (.NET)
iAnywhere.QAnywhere.Client namespace, 270

QAException function
QAnywhere Java API Reference, 535

QAManager
.NET application setup, 54
C++ application setup, 56
configuration properties, 62

Java application setup, 58
multi-threaded, 61

QAManager class
acknowledgement modes (.NET), 56
acknowledgement modes (.NET) for web services,
187
acknowledgement modes (C++), 57
acknowledgement modes (Java), 58
acknowledgement modes (Java) for web services,
189
initializing (.NET), 56
initializing (.NET) for web services, 187
initializing (C++), 57
initializing (Java), 58
initializing (Java) for web services, 189
instantiating (.Java), 58
instantiating (.Java) for web services, 188
instantiating (.NET), 55
instantiating (.NET) for web services, 186
instantiating (C++), 56
QAnywhere C++ API, 427

QAManager interface (.NET)
iAnywhere.QAnywhere.Client namespace, 271

QAManager properties (see QAnywhere Manager
configuration properties)

properties file, 55, 186
QAManagerBase class

QAnywhere C++ API, 432
QAManagerBase interface (.NET)

iAnywhere.QAnywhere.Client namespace, 275
QAManagerFactory class

implementing transactional messaging (Java), 71
initializing (.Java), 58
initializing (.Java) for web services, 188
initializing (.NET), 55
initializing (.NET) for web services, 186
initializing (C++), 56
initializing for transactional messaging (.NET), 68
QAnywhere C++ API, 462

QAManagerFactory class (.NET)
iAnywhere.QAnywhere.Client namespace, 310

QAMessage class
managing QAnywhere message properties, 211
QAnywhere C++ API, 466

QAMessage interface (.NET)
iAnywhere.QAnywhere.Client namespace, 314

QAMessageListener class
QAnywhere C++ API, 487

Copyright © 2006, iAnywhere Solutions, Inc. 691

QAnywhere
about, 3
addresses, 50
architecture, 7
connecting to the client message store, 148
delete rules, 239
deploying applications, 89
failover, 42
features, 5
mobile web services, 181
programming interfaces, 46
quick start, 14
receiving notifications, 76
security, 175
setting up client-side components, 33
setting up server-side components, 30
transmission rules, 234
transmission rules variables, 231
tutorial, 15
using JMS connectors, 127

QAnywhere .NET API
initializing, 54
initializing mobile web services, 185
introduction, 46

QAnywhere administration
about, 91

QAnywhere Agent
about, 35
simple messaging architecture, 8
syntax, 145

QAnywhere architecture
about, 7

QAnywhere C++ API
initializing, 56
introduction, 46

QAnywhere client
shutting down, 88

QAnywhere client applications
writing, 45

QAnywhere clients
introduction, 8

QAnywhere delete rules
about, 239

QAnywhere header file
qa.hpp, 56

QAnywhere Java API
initializing, 58
initializing mobile web services, 188

introduction, 47
QAnywhere manager configuration properties

about, 62
COMPRESSION_LEVEL, 62
CONNECT_PARAMS, 62
LOG_FILE, 62
MAX_IN_MEMORY_MESSAGE_SIZE, 62
properties file, 57
RECEIVER_INTERVAL, 62
setting, 62

QAnywhere Manager properties (see QAnywhere
Manager configuration properties)
QAnywhere message properties

about, 209
QAnywhere namespace

including, 55
including for web services, 186

QAnywhere Notifier
architecture, 10

QAnywhere package
including, 58
including for web services, 188

QAnywhere plug-in
Sybase Central, 13

QAnywhere properties
mapping QAnywhere messages on to JMS
messages, 139

QAnywhere SQL
about, 59

QAnywhere SQL API
about, 59
initializing, 59
introduction, 47
reference, 635

QAnywhere SQL API reference
about, 635

QAnywhere stored procedures
about, 59
ml_qa_createmessage, 666
ml_qa_getaddress, 636
ml_qa_getbinarycontent, 659
ml_qa_getbooleanproperty, 645
ml_qa_getbyteproperty, 646
ml_qa_getcontentclass, 660
ml_qa_getdoubleproperty, 647
ml_qa_getexpiration, 637
ml_qa_getfloatproperty, 648
ml_qa_getinreplytoid, 637

Index

692 Copyright © 2006, iAnywhere Solutions, Inc.

ml_qa_getintproperty, 649
ml_qa_getlongproperty, 650
ml_qa_getmessage, 666
ml_qa_getmessagenowait, 668
ml_qa_getmessagetimeout, 669
ml_qa_getpriority, 638
ml_qa_getpropertynames, 650
ml_qa_getredelivered, 639
ml_qa_getreplytoaddress, 640
ml_qa_getshortproperty, 651
ml_qa_getstoreproperty, 664
ml_qa_getstringproperty, 652
ml_qa_gettextcontent, 661
ml_qa_gettimestamp, 641
ml_qa_grant_messaging_permissions, 670
ml_qa_listener_queue, 670
ml_qa_putmessage, 672
ml_qa_setbinarycontent, 662
ml_qa_setbooleanproperty, 653
ml_qa_setbyteproperty, 654
ml_qa_setdoubleproperty, 655
ml_qa_setexpiration, 642
ml_qa_setfloatproperty, 655
ml_qa_setinreplytoid, 643
ml_qa_setintproperty, 656
ml_qa_setlongproperty, 657
ml_qa_setpriority, 644
ml_qa_setreplytoaddress, 645
ml_qa_setshortproperty, 658
ml_qa_setstoreproperty, 664
ml_qa_setstringproperty, 658
ml_qa_settextcontent, 663
ml_qa_triggersendreceive, 672

QAnywhere transmission and delete rules
about, 225

QAnywhere transmission rules
about, 234

QAnywhere WSDL compiler
about, 184
running, 184

qastop utility
use with qaagent -qi (quiet mode), 168

QATextMessage class
instantiating (.NET), 66
instantiating (C++), 66
QAnywhere C++ API, 488

QATextMessage interface (.NET)
iAnywhere.QAnywhere.Client namespace, 335

QATransactionalManager class
implementing transactional messaging (C++), 70
implementing transactional messaging (Java), 71
initializing (.NET), 69
instantiating (Java), 71
instantiating for transactional messaging (.NET),
68
QAnywhere C++ API, 492

QATransactionalManager interface (.NET)
iAnywhere.QAnywhere.Client namespace, 337

QueueDepthFilter class
QAnywhere C++ API, 496

QueueDepthFilter enumeration (.NET)
iAnywhere.QAnywhere.Client namespace, 340

queues
understanding QAnywhere addresses, 50

quick start
mobile web services, 182
QAnywhere, 14

quiet mode
QAnywhere Agent [qaagent] -q, 167
QAnywhere Agent [qaagent] -qi, 168

R
RAS field (.NET)

iAnywhere.QAnywhere.Client namespace, 250
RAS variable

QAnywhere C++ API, 398
QAnywhere Java API Reference, 509

RASNames
QAnywhere message property, 53

RASNAMES field (.NET)
iAnywhere.QAnywhere.Client namespace, 251

RASNAMES variable
QAnywhere C++ API, 399
QAnywhere Java API Reference, 509

readBinary function
QAnywhere C++ API, 406
QAnywhere Java API Reference, 517, 518

ReadBinary method (.NET)
iAnywhere.QAnywhere.Client namespace, 258

readBoolean function
QAnywhere C++ API, 407
QAnywhere Java API Reference, 519

ReadBoolean method (.NET)
iAnywhere.QAnywhere.Client namespace, 258

readByte function

Copyright © 2006, iAnywhere Solutions, Inc. 693

QAnywhere C++ API, 407
QAnywhere Java API Reference, 519

readChar function
QAnywhere C++ API, 408
QAnywhere Java API Reference, 520

ReadChar method (.NET)
iAnywhere.QAnywhere.Client namespace, 259

readDouble function
QAnywhere C++ API, 408
QAnywhere Java API Reference, 520

ReadDouble method (.NET)
iAnywhere.QAnywhere.Client namespace, 259

readFloat function
QAnywhere C++ API, 409
QAnywhere Java API Reference, 521

ReadFloat method (.NET)
iAnywhere.QAnywhere.Client namespace, 260

reading
QAnywhere large messages, 80

reading very large messages
about, 80

readInt function
QAnywhere C++ API, 409
QAnywhere Java API Reference, 521

ReadInt method (.NET)
iAnywhere.QAnywhere.Client namespace, 260

readLong function
QAnywhere C++ API, 410
QAnywhere Java API Reference, 522

ReadLong method (.NET)
iAnywhere.QAnywhere.Client namespace, 261

ReadSbyte method (.NET)
iAnywhere.QAnywhere.Client namespace, 261

readShort function
QAnywhere C++ API, 410
QAnywhere Java API Reference, 522

ReadShort method (.NET)
iAnywhere.QAnywhere.Client namespace, 262

readString function
QAnywhere C++ API, 411
QAnywhere Java API Reference, 523

ReadString method (.NET)
iAnywhere.QAnywhere.Client namespace, 262

readText function
QAnywhere C++ API, 490
QAnywhere Java API Reference, 591

ReadText method (.NET)
iAnywhere.QAnywhere.Client namespace, 336

RECEIVED variable
QAnywhere C++ API, 499
QAnywhere Java API Reference, 599

receiving messages
about QAnywhere, 75
asynchronously, 76
synchronously, 75

receiving messages asynchronously
QAnywhere, 76

receiving messages synchronously
QAnywhere, 75

RECEIVING variable
QAnywhere C++ API, 500
QAnywhere Java API Reference, 600

recover function
QAnywhere C++ API, 431
QAnywhere Java API Reference, 540

Recover method (.NET)
iAnywhere.QAnywhere.Client namespace, 275

Redelivered message header
QAnywhere message headers, 206

Redelivered property (.NET)
iAnywhere.QAnywhere.Client namespace, 318

regular
QAnywhere ias_MessageType, 209

REGULAR variable
QAnywhere C++ API, 403
QAnywhere Java API Reference, 512

ReplyToAddress message header
QAnywhere message headers, 206

ReplyToAddress property (.NET)
iAnywhere.QAnywhere.Client namespace, 319

request tag
QAnywhere server management requests, 94

reset function
QAnywhere C++ API, 411, 490
QAnywhere Java API Reference, 523, 592

Reset method (.NET)
iAnywhere.QAnywhere.Client namespace, 263,
337

RestartRules tag
QAnywhere server managment requests, 101

rollback function
QAnywhere C++ API, 494
QAnywhere Java API Reference, 596

Rollback method (.NET)
iAnywhere.QAnywhere.Client namespace, 339

rule functions

Index

694 Copyright © 2006, iAnywhere Solutions, Inc.

QAnywhere, 230
rule syntax

QAnywhere transmission rules, 226
rule variables

QAnywhere transmission rules, 231
rules, vii

(see also transmission rules)
rules file

QAnywhere Agent -policy option, 164
QAnywhere client transmission rules, 234
QAnywhere server transmission rules, 235

running MobiLink with messaging and a JMS connector
QAnywhere, 131

running MobiLink with simple messaging
QAnywhere, 31

running the QAnywhere Agent
about, 35

running the QAnywhere WSDL compiler
about, 184

runtime libraries
QAnywhere mobile web services, 191

S
samples-dir

documentation usage, xii
scenario for messaging with external messaging
systems

QAnywhere, 11
scenario for messaging with push notifications

QAnywhere, 9
schedule syntax

QAnywhere transmission rules, 226
schedule tag

QAnywhere server management requests, 98
scheduled policy

QAnywhere agent, 163
schedules

QAnywhere transmission rules, 226
scheduling

QAnywhere server management requests, 98
scheduling server management requests

QAnywhere, 98
security

QAnywhere, 175
sending messages

implementing QAnywhere transactional messaging
(.NET), 69, 72

implementing QAnywhere transactional messaging
(C++), 70
QAnywhere, 66

sending QAnywhere messages
about, 66

server management request DTD
QAnywhere, 95

server management requests
about QAnywhere, 92
addressing QAnywhere, 92
authenticating QAnywhere, 93
formatting QAnywhere, 93
QAnywhere, 91

server message store
setting properties with server management request,
114
setting properties with Sybase Central, 223

server message stores
administering QAnywhere, 101
QAnywhere architecture, 8
QAnywhere client properties, 222
QAnywhere properties, 222
setting up in QAnywhere, 30

server properties
QAnywhere setting with server management
request, 114
QAnywhere setting with Sybase Central, 223

setAddress function
QAnywhere C++ API, 480
QAnywhere Java API Reference, 582

setBooleanProperty function
QAnywhere C++ API, 480
QAnywhere Java API Reference, 582

SetBooleanProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 328

setBooleanStoreProperty function
QAnywhere C++ API, 453
QAnywhere Java API Reference, 559

SetBooleanStoreProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 300

setByteProperty function
QAnywhere C++ API, 481
QAnywhere Java API Reference, 583

SetByteProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 329

setByteStoreProperty function
QAnywhere C++ API, 454
QAnywhere Java API Reference, 559

Copyright © 2006, iAnywhere Solutions, Inc. 695

setDoubleProperty function
QAnywhere C++ API, 481
QAnywhere Java API Reference, 583

SetDoubleProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 329

setDoubleStoreProperty function
QAnywhere C++ API, 454
QAnywhere Java API Reference, 560

SetDoubleStoreProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 301

setFloatProperty function
QAnywhere C++ API, 482
QAnywhere Java API Reference, 584

SetFloatProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 330

setFloatStoreProperty function
QAnywhere C++ API, 455
QAnywhere Java API Reference, 560

SetFloatStoreProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 301

setInReplyToID function
QAnywhere C++ API, 482
QAnywhere Java API Reference, 584

setIntProperty function
QAnywhere C++ API, 483
QAnywhere Java API Reference, 585

SetIntProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 331

setIntStoreProperty function
QAnywhere C++ API, 456
QAnywhere Java API Reference, 561

SetIntStoreProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 302

setListener function
QAnywhere Java API Reference, 604

SetListener method (.NET)
iAnywhere.QAnywhere.WS namespace, 345

SetLogger method (.NET)
iAnywhere.QAnywhere.WS namespace, 388

setLongProperty function
QAnywhere C++ API, 483
QAnywhere Java API Reference, 585

SetLongProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 331

setLongStoreProperty function
QAnywhere C++ API, 456
QAnywhere Java API Reference, 561

SetLongStoreProperty method (.NET)

iAnywhere.QAnywhere.Client namespace, 303
setMessageID function

QAnywhere C++ API, 484
setMessageListener function

QAnywhere C++ API, 457
QAnywhere Java API Reference, 562

SetMessageListener method (.NET)
iAnywhere.QAnywhere.Client namespace, 303

setMessageListenerBySelector function
QAnywhere C++ API, 457
QAnywhere Java API Reference, 563

SetMessageListenerBySelector method (.NET)
iAnywhere.QAnywhere.Client namespace, 304

setPriority function
QAnywhere C++ API, 484
QAnywhere Java API Reference, 586

setProperty function
QAnywhere C++ API, 458
QAnywhere Java API Reference, 586, 605

SetProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 305,
332
iAnywhere.QAnywhere.WS namespace, 346

SetProperty tag
QAnywhere server managment requests, 114

setQAManager function
QAnywhere Java API Reference, 605

SetQAManager method (.NET)
iAnywhere.QAnywhere.WS namespace, 346

setRedelivered function
QAnywhere C++ API, 484

setReplyToAddress function
QAnywhere C++ API, 485
QAnywhere Java API Reference, 587

setRequestProperty function
QAnywhere Java API Reference, 606

SetRequestProperty method (.NET)
iAnywhere.QAnywhere.WS namespace, 347

SetSbyteProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 333

SetSbyteStoreProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 306

setServiceID function
QAnywhere Java API Reference, 606

SetServiceID method (.NET)
iAnywhere.QAnywhere.WS namespace, 348

setShortProperty function
QAnywhere C++ API, 485

Index

696 Copyright © 2006, iAnywhere Solutions, Inc.

QAnywhere Java API Reference, 587
SetShortProperty method (.NET)

iAnywhere.QAnywhere.Client namespace, 333
setShortStoreProperty function

QAnywhere C++ API, 459
QAnywhere Java API Reference, 563

SetShortStoreProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 306

setStoreProperty function
QAnywhere Java API Reference, 564

SetStoreProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 307

setStringProperty function
QAnywhere C++ API, 486
QAnywhere Java API Reference, 588

SetStringProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 334

setStringStoreProperty function
QAnywhere C++ API, 459
QAnywhere Java API Reference, 564

SetStringStoreProperty method (.NET)
iAnywhere.QAnywhere.Client namespace, 308

setText function
QAnywhere C++ API, 491
QAnywhere Java API Reference, 592

setTimestamp function
QAnywhere C++ API, 486

setting message headers and properties
QAnywhere, 206

setting properties in a file
QAManager, 62

setting properties programmatically
QAManager, 64

setting QAnywhere manager configuration properties
about, 62

setting QAnywhere manager configuration properties
in a file

about, 62
setting QAnywhere manager configuration properties
programmatically

about, 64
setting up

QAnywhere, 14
setting up .NET mobile web service applications

about, 185
setting up client-side components

QAnywhere, 33
setting up failover

QAnywhere, 42
setting up Java mobile web service applications

about, 188
setting up mobile web services

about, 182
setting up QAnywhere messaging

about, 29
setting up server-side components

QAnywhere, 30
setting up the client message store

QAnywhere, 33
setting up the server message store

QAnywhere, 30
setting up web service connectors

mobile web services, 195
shutting down

mobile web services, 191
QAnywhere, 88

shutting down mobile web services
about, 191

shutting down QAnywhere
about, 88

simple messaging
QAnywhere architecture, 7

simple messaging scenario
QAnywhere, 7

SQL Anywhere
documentation, viii

SQL stored procedures
QAnywhere, 59

start function
QAnywhere C++ API, 460
QAnywhere Java API Reference, 565

Start method (.NET)
iAnywhere.QAnywhere.Client namespace, 308

starting the MobiLink server for JMS integration
QAnywhere, 131

starting the MobiLink server for QAnywhere messaging
about, 31

STATUS field (.NET)
iAnywhere.QAnywhere.Client namespace, 251

STATUS variable
QAnywhere C++ API, 399
QAnywhere Java API Reference, 510

STATUS_ERROR variable
QAnywhere Java API Reference, 633

STATUS_QUEUED variable
QAnywhere Java API Reference, 634

Copyright © 2006, iAnywhere Solutions, Inc. 697

STATUS_RESULT_AVAILABLE variable
QAnywhere Java API Reference, 634

STATUS_SUCCESS variable
QAnywhere Java API Reference, 634

STATUS_TIME field (.NET)
iAnywhere.QAnywhere.Client namespace, 252

STATUS_TIME variable
QAnywhere C++ API, 399
QAnywhere Java API Reference, 510

StatusCodes class
QAnywhere C++ API, 498

StatusCodes enumeration (.NET)
iAnywhere.QAnywhere.Client namespace, 340

stop function
QAnywhere C++ API, 460
QAnywhere Java API Reference, 565

Stop method (.NET)
iAnywhere.QAnywhere.Client namespace, 309

stopping
QAnywhere, 88

stored procedures
ml_qa_createmessage, 666
ml_qa_getaddress, 636
ml_qa_getbinarycontent, 659
ml_qa_getbooleanproperty, 645
ml_qa_getbyteproperty, 646
ml_qa_getcontentclass, 660
ml_qa_getdoubleproperty, 647
ml_qa_getexpiration, 637
ml_qa_getfloatproperty, 648
ml_qa_getinreplytoid, 637
ml_qa_getintproperty, 649
ml_qa_getlongproperty, 650
ml_qa_getmessage, 666
ml_qa_getmessagenowait, 668
ml_qa_getmessagetimeout, 669
ml_qa_getpriority, 638
ml_qa_getpropertynames, 650
ml_qa_getredelivered, 639
ml_qa_getreplytoaddress, 640
ml_qa_getshortproperty, 651
ml_qa_getstoreproperty, 664
ml_qa_getstringproperty, 652
ml_qa_gettextcontent, 661
ml_qa_gettimestamp, 641
ml_qa_grant_messaging_permissions, 670
ml_qa_listener_queue, 670
ml_qa_putmessage, 672

ml_qa_setbinarycontent, 662
ml_qa_setbooleanproperty, 653
ml_qa_setbyteproperty, 654
ml_qa_setdoubleproperty, 655
ml_qa_setexpiration, 642
ml_qa_setfloatproperty, 655
ml_qa_setinreplytoid, 643
ml_qa_setintproperty, 656
ml_qa_setlongproperty, 657
ml_qa_setpriority, 644
ml_qa_setreplytoaddress, 645
ml_qa_setshortproperty, 658
ml_qa_setstoreproperty, 664
ml_qa_setstringproperty, 658
ml_qa_settextcontent, 663
ml_qa_triggersendreceive, 672
QAnywhere, 59

SUBSTRING function
QAnywhere SQL syntax, 230

support
newsgroups, xv

synchronous message receipt
QAnywhere, 75

synchronous web service requests
mobile web services, 192

system messages
QAnywhere, 51

system queue
about QAnywhere, 51

system queue messages
QAnywhere, 51

T
technical support

newsgroups, xv
TestMessage application

QAnywhere tutorial, 15
source code, 23

Text property (.NET)
iAnywhere.QAnywhere.Client namespace, 335

TextLength property (.NET)
iAnywhere.QAnywhere.Client namespace, 336

Timestamp message header
QAnywhere message headers, 206

Timestamp property (.NET)
iAnywhere.QAnywhere.Client namespace, 319

transactional messaging

Index

698 Copyright © 2006, iAnywhere Solutions, Inc.

QAnywhere, 68
TRANSACTIONAL variable

QAnywhere C++ API, 393
QAnywhere Java API Reference, 505

transactions
QAnywhere messages, 68

transmission rule functions
QAnywhere, 230

transmission rule variables
QAnywhere, 231

transmission rules
about QAnywhere client, 234
about QAnywhere server, 235
default rules, 236
delete rules, 239
message store properties, 218
QAnywhere, 234
QAnywhere refreshing, 101
QAnywhere rule syntax, 226
specifying using client management requests, 116
specifying using transmission rules files, 236
variables, 231

TRANSMISSION_STATUS field (.NET)
iAnywhere.QAnywhere.Client namespace, 252

TRANSMISSION_STATUS variable
QAnywhere C++ API, 400
QAnywhere Java API Reference, 510

TRANSMITTED variable
QAnywhere C++ API, 500
QAnywhere Java API Reference, 600

TRANSMITTING variable
QAnywhere C++ API, 500
QAnywhere Java API Reference, 600

triggerSendReceive function
QAnywhere C++ API, 461
QAnywhere Java API Reference, 566

TriggerSendReceive method (.NET)
iAnywhere.QAnywhere.Client namespace, 309

tutorials
mobile web services, 198
QAnywhere, 15
QAnywhere JMS connector, 141

types of message
QAnywhere, 209

U
understanding QAnywhere addresses

about, 50
UNRECEIVABLE variable

QAnywhere C++ API, 500
QAnywhere Java API Reference, 600

UNTRANSMITTED variable
QAnywhere C++ API, 501
QAnywhere Java API Reference, 601

upgrading
QAnywhere [qaagent] -su option, 170
QAnywhere [qaagent] -sur option, 171

using JMS connectors
QAnywhere, 127

using push notifications
QAnywhere, 41

V
variables

QAnywhere transmission rules, 231

W
web service connector properties

configuring, 196
web service connectors

QAnywhere, 195
web services

about QAnywhere, 181
WebLogic

QAnywhere and, 11
webservice.http.authName property

mobile web services connector, 197
webservice.http.password.e property

mobile web services connector, 197
webservice.http.proxy.authName property

mobile web services connector, 197
webservice.http.proxy.host property

mobile web services connector, 197
webservice.http.proxy.password.e property

mobile web service connector, 197
webservice.http.proxy.port property

mobile web services connector, 197
webservice.url property

mobile web services connector, 195
what QAnywhere does, 5
writeBinary function

QAnywhere C++ API, 412
QAnywhere Java API Reference, 523, 524

WriteBinary method (.NET)

Copyright © 2006, iAnywhere Solutions, Inc. 699

iAnywhere.QAnywhere.Client namespace, 263
writeBoolean function

QAnywhere C++ API, 412
QAnywhere Java API Reference, 525

WriteBoolean method (.NET)
iAnywhere.QAnywhere.Client namespace, 264

writeByte function
QAnywhere C++ API, 413
QAnywhere Java API Reference, 526

writeChar function
QAnywhere C++ API, 413
QAnywhere Java API Reference, 526

WriteChar method (.NET)
iAnywhere.QAnywhere.Client namespace, 264

writeDouble function
QAnywhere C++ API, 414
QAnywhere Java API Reference, 527

WriteDouble method (.NET)
iAnywhere.QAnywhere.Client namespace, 265

writeFloat function
QAnywhere C++ API, 414
QAnywhere Java API Reference, 527

WriteFloat method (.NET)
iAnywhere.QAnywhere.Client namespace, 265

writeInt function
QAnywhere C++ API, 415
QAnywhere Java API Reference, 528

WriteInt method (.NET)
iAnywhere.QAnywhere.Client namespace, 266

writeLong function
QAnywhere C++ API, 415
QAnywhere Java API Reference, 528

WriteLong method (.NET)
iAnywhere.QAnywhere.Client namespace, 266

WriteSbyte method (.NET)
iAnywhere.QAnywhere.Client namespace, 267

writeShort function
QAnywhere C++ API, 416
QAnywhere Java API Reference, 529

WriteShort method (.NET)
iAnywhere.QAnywhere.Client namespace, 267

writeString function
QAnywhere C++ API, 416
QAnywhere Java API Reference, 529

WriteString method (.NET)
iAnywhere.QAnywhere.Client namespace, 268

writeText function
QAnywhere C++ API, 491

QAnywhere Java API Reference, 593
WriteText method (.NET)

iAnywhere.QAnywhere.Client namespace, 337
writing mobile web service applications

about, 185
writing QAnywhere client applications

about, 45
writing secure messaging applications

QAnywhere, 175
WS_STATUS_HTTP_ERROR field (.NET)

iAnywhere.QAnywhere.WS namespace, 351
WS_STATUS_HTTP_OK field (.NET)

iAnywhere.QAnywhere.WS namespace, 351
WS_STATUS_HTTP_RETRIES_EXCEEDED field
(.NET)

iAnywhere.QAnywhere.WS namespace, 351
WS_STATUS_SOAP_PARSE_ERROR field (.NET)

iAnywhere.QAnywhere.WS namespace, 352
WSBase class (.NET)

iAnywhere.QAnywhere.WS namespace, 342
WSBase constructor (.NET)

iAnywhere.QAnywhere.WS namespace, 343
WSBase function

QAnywhere Java API Reference, 602, 603
WSDL compiler

QAnywhere, 184
WSException class (.NET)

iAnywhere.QAnywhere.WS namespace, 348
WSException constructor (.NET)

iAnywhere.QAnywhere.WS namespace, 350, 351
WSException function

QAnywhere Java API Reference, 607, 608
WSFaultException class (.NET)

iAnywhere.QAnywhere.WS namespace, 352
WSFaultException constructor (.NET)

iAnywhere.QAnywhere.WS namespace, 353
WSFaultException function

QAnywhere Java API Reference, 609
WSListener interface (.NET)

iAnywhere.QAnywhere.WS namespace, 354
WSResult class (.NET)

iAnywhere.QAnywhere.WS namespace, 355
WSStatus enumeration (.NET)

iAnywhere.QAnywhere.WS namespace, 388

X
xjms.jndi.authName property

Index

700 Copyright © 2006, iAnywhere Solutions, Inc.

QAnywhere JMS connector, 133
xjms.jndi.factory property

QAnywhere JMS connector, 134
xjms.jndi.password.e property

QAnywhere JMS connector, 134
xjms.jndi.url property

QAnywhere JMS connector, 134
xjms.password.e property

QAnywhere JMS connector, 134
xjms.queueConnectionAuthName property

QAnywhere JMS connector, 134
xjms.queueConnectionPassword.e property

QAnywhere JMS connector, 134
xjms.queueFactory property

QAnywhere JMS connector, 134
xjms.receiveDestination property

QAnywhere JMS connector, 134
xjms.topicConnectionAuthName property

QAnywhere JMS connector, 134
xjms.topicConnectionPassword.e property

QAnywhere JMS connector, 134
xjms.topicFactory property

QAnywhere JMS connector, 134

Copyright © 2006, iAnywhere Solutions, Inc. 701

	QAnywhere™
	Contents
	About This Manual
	SQL Anywhere documentation
	Documentation conventions
	Finding out more and providing feedback

	Part I. Creating QAnywhere Applications
	Introduction to QAnywhere
	QAnywhere application-to-application messaging
	What QAnywhere does
	QAnywhere architecture
	Simple messaging scenario
	Scenario for messaging with push notifications
	Scenario for messaging with external messaging systems

	QAnywhere message delivery
	QAnywhere plug-in
	Quick start

	Tutorial: Exploring TestMessage
	About the tutorial
	Lesson 1: Start MobiLink with messaging
	Lesson 2: Run the TestMessage application
	Lesson 3: Send a message
	Lesson 4: Explore the TestMessage client source code
	Tutorial cleanup

	Setting Up QAnywhere Messaging
	Setting up server-side components
	Setting up the server message store
	Starting the MobiLink server for QAnywhere messaging
	Registering client user names
	Setting properties for clients on the server

	Setting up client-side components
	Setting up the client message store
	Running the QAnywhere Agent
	Determining when message transmission should occur on the client

	Using push notifications
	Setting up a failover mechanism

	Writing QAnywhere Client Applications
	Introduction to the QAnywhere interfaces
	Overview of writing a client application
	QAnywhere message addresses
	Destination aliases
	Creating destination aliases using Sybase Central

	System queue
	Network status notifications
	Notifications of push notification

	Initializing a QAnywhere API
	Setting up .NET applications
	Setting up C++ applications
	Setting up Java applications
	Setting up SQL applications

	Multi-threaded QAManager
	QAnywhere manager configuration properties
	Setting QAnywhere manager configuration properties in a file
	Setting QAnywhere manager configuration properties programmatically

	Sending QAnywhere messages
	Implementing transactional messaging
	Implementing transactional messaging for .NET clients
	Implementing transactional messaging for C++ clients
	Implementing transactional messaging for Java clients

	Cancelling QAnywhere messages
	Receiving QAnywhere messages
	Receiving messages synchronously
	Receiving messages asynchronously
	Receiving messages using a selector

	Reading very large messages
	Browsing QAnywhere messages
	Browse all messages
	Browsing messages in a queue
	Browsing a message by ID
	Browsing messages using a selector

	Handling QAnywhere exceptions
	Shutting down QAnywhere
	Deploying QAnywhere applications

	Server management requests
	About server management requests
	Writing server management requests
	Custom message requests
	Server management request DTD
	Scheduling server management requests

	Administering the server message store with server management requests
	Refreshing client transmission rules
	Cancelling messages
	Deleting messages

	Administering connectors
	Creating and configuring connectors
	Modifying connectors
	Deleting connectors
	Opening connectors
	Closing connectors
	Monitoring connectors
	Client status reports
	Monitoring connectors

	Setting server properties with a server management request
	Specifying transmission rules with a server management request
	Creating destination aliases using server management requests
	Adding and removing members in a destination alias

	Monitoring QAnywhere
	Message details requests

	Monitoring QAnywhere clients
	Monitoring properties

	JMS Connectors
	Introduction
	Setting up JMS connectors
	Starting the MobiLink server for JMS integration
	JMS connector properties
	Configuring multiple connectors
	Addressing QAnywhere messages meant for JMS
	Mapping QAnywhere messages on to JMS messages
	QAnywhere properties
	Addressing JMS messages meant for QAnywhere
	Mapping JMS messages on to QAnywhere messages
	JMS properties

	Tutorial: Using JMS connectors
	Lesson 1: Start a JMS connector
	Lesson 2: Send a message from a JMS client to a QAnywhere client
	Tutorial cleanup

	QAnywhere Agent
	qaagent syntax
	@data option
	-c option
	-fd option
	-fr option
	-id option
	-iu option
	-lp option
	-mn option
	-mp option
	-mu option
	-o option
	-on option
	-os option
	-ot option
	-pc option
	-policy option
	-push option
	-q option
	-qi option
	-si option
	-su option
	-sur option
	-v option
	-x option

	Writing Secure Messaging Applications
	Creating a secure client message store
	Manage client message store passwords
	Encrypting the client message store

	Encrypting the communication stream
	Using password authentication with MobiLink

	Mobile Web Services
	Introducing mobile web services
	Setting up mobile web services

	Running the QAnywhere WSDL compiler
	Writing mobile web service applications
	Setting up .NET mobile web service applications
	Setting up Java mobile web service applications
	Multiple instances of the service binding class

	Compiling and running mobile web service applications
	Shutting down mobile web services

	Making web service requests
	Synchronous web service requests
	Asynchronous web service requests

	Setting up web service connectors
	Web service connector properties

	Mobile web service example

	QAnywhere Properties
	Message headers and message properties
	Message headers
	Message properties
	Pre-defined message properties
	Custom message properties
	Managing message properties

	Client message store properties
	Pre-defined client message store properties
	Custom client message store properties
	Using custom client message store property attributes

	Enumerating client message store properties
	Managing client message store properties
	Managing client message store properties in your application

	Server properties
	Setting server properties with Sybase Central

	QAnywhere Transmission and Delete Rules
	Rule syntax
	Schedule syntax
	Condition syntax
	Rule functions

	Rule variables
	Variables defined by the rule engine
	Status constants defined by the rule engine

	Message transmission rules
	Client transmission rules
	Server transmission rules
	Specifying server transmission rules using Sybase Central
	Specifying server transmission rules with a transmission rules file (deprecated)

	Message delete rules

	Part II. QAnywhere API Reference
	QAnywhere .NET API Reference
	iAnywhere.QAnywhere.Client namespace (.NET)
	AcknowledgementMode enumeration
	MessageListener delegate
	MessageProperties class
	MessageProperties members
	ADAPTER field
	ADAPTERS field
	DELIVERY_COUNT field
	IP field
	MAC field
	MSG_TYPE field
	NETWORK_STATUS field
	ORIGINATOR field
	RAS field
	RASNAMES field
	STATUS field
	STATUS_TIME field
	TRANSMISSION_STATUS field

	MessageStoreProperties class
	MessageStoreProperties members
	MessageStoreProperties constructor
	MAX_DELIVERY_ATTEMPTS field

	MessageType enumeration
	PropertyType enumeration
	QABinaryMessage interface
	QABinaryMessage members
	BodyLength property
	ReadBinary method
	ReadBoolean method
	ReadChar method
	ReadDouble method
	ReadFloat method
	ReadInt method
	ReadLong method
	ReadSbyte method
	ReadShort method
	ReadString method
	Reset method
	WriteBinary method
	WriteBoolean method
	WriteChar method
	WriteDouble method
	WriteFloat method
	WriteInt method
	WriteLong method
	WriteSbyte method
	WriteShort method
	WriteString method

	QAException class
	QAException members
	QAException constructor
	QAException constructor
	ErrorCode property

	QAManager interface
	QAManager members
	Acknowledge method
	AcknowledgeAll method
	AcknowledgeUntil method
	Open method
	Recover method

	QAManagerBase interface
	QAManagerBase members
	LastError property
	LastErrorMessage property
	Mode property
	BrowseMessages method
	BrowseMessages method
	BrowseMessagesByID method
	BrowseMessagesByQueue method
	BrowseMessagesBySelector method
	CancelMessage method
	Close method
	CreateBinaryMessage method
	CreateTextMessage method
	GetBooleanStoreProperty method
	GetDoubleStoreProperty method
	GetFloatStoreProperty method
	GetIntStoreProperty method
	GetLongStoreProperty method
	GetMessage method
	GetMessageBySelector method
	GetMessageBySelectorNoWait method
	GetMessageBySelectorTimeout method
	GetMessageNoWait method
	GetMessageTimeout method
	GetQueueDepth method
	GetQueueDepth method
	GetSbyteStoreProperty method
	GetShortStoreProperty method
	GetStoreProperty method
	GetStorePropertyNames method
	GetStringStoreProperty method
	PutMessage method
	PutMessageTimeToLive method
	SetBooleanStoreProperty method
	SetDoubleStoreProperty method
	SetFloatStoreProperty method
	SetIntStoreProperty method
	SetLongStoreProperty method
	SetMessageListener method
	SetMessageListenerBySelector method
	SetProperty method
	SetSbyteStoreProperty method
	SetShortStoreProperty method
	SetStoreProperty method
	SetStringStoreProperty method
	Start method
	Stop method
	TriggerSendReceive method

	QAManagerFactory class
	QAManagerFactory members
	InstanceID field
	Instance property
	InstanceCount property
	LastError property
	LastErrorMessage property
	CreateQAManager method
	CreateQATransactionalManager method

	QAMessage interface
	QAMessage members
	Address property
	Expiration property
	InReplyToID property
	MessageID property
	Priority property
	Redelivered property
	ReplyToAddress property
	Timestamp property
	ClearBody method
	ClearProperties method
	GetBooleanProperty method
	GetByteProperty method
	GetDoubleProperty method
	GetFloatProperty method
	GetIntProperty method
	GetLongProperty method
	GetProperty method
	GetPropertyNames method
	GetPropertyType method
	GetSbyteProperty method
	GetShortProperty method
	GetStringProperty method
	PropertyExists method
	SetBooleanProperty method
	SetByteProperty method
	SetDoubleProperty method
	SetFloatProperty method
	SetIntProperty method
	SetLongProperty method
	SetProperty method
	SetSbyteProperty method
	SetShortProperty method
	SetStringProperty method

	QATextMessage interface
	QATextMessage members
	Text property
	TextLength property
	ReadText method
	Reset method
	WriteText method

	QATransactionalManager interface
	QATransactionalManager members
	Commit method
	Open method
	Rollback method

	QueueDepthFilter enumeration
	StatusCodes enumeration

	iAnywhere.QAnywhere.WS namespace (.NET)
	WSBase class
	WSBase members
	WSBase constructor
	WSBase constructor
	ClearRequestProperties method
	GetResult method
	GetServiceID method
	SetListener method
	SetListener method
	SetProperty method
	SetQAManager method
	SetRequestProperty method
	SetServiceID method

	WSException class
	WSException members
	WSException constructor
	WSException constructor
	WSException constructor
	WS_STATUS_HTTP_ERROR field
	WS_STATUS_HTTP_OK field
	WS_STATUS_HTTP_RETRIES_EXCEEDED field
	WS_STATUS_SOAP_PARSE_ERROR field
	ErrorCode property

	WSFaultException class
	WSFaultException members
	WSFaultException constructor

	WSListener interface
	WSListener members
	OnException method
	OnResult method

	WSResult class
	WSResult members
	Acknowledge method
	GetArrayValue method
	GetBoolArrayValue method
	GetBooleanArrayValue method
	GetBooleanValue method
	GetBoolValue method
	GetByteArrayValue method
	GetByteValue method
	GetCharArrayValue method
	GetCharValue method
	GetDecimalArrayValue method
	GetDecimalValue method
	GetDoubleArrayValue method
	GetDoubleValue method
	GetErrorMessage method
	GetFloatArrayValue method
	GetFloatValue method
	GetInt16ArrayValue method
	GetInt16Value method
	GetInt32ArrayValue method
	GetInt32Value method
	GetInt64ArrayValue method
	GetInt64Value method
	GetIntArrayValue method
	GetIntValue method
	GetLongArrayValue method
	GetLongValue method
	GetNullableBoolArrayValue method
	GetNullableBoolValue method
	GetNullableDoubleArrayValue method
	GetNullableDoubleValue method
	GetNullableFloatArrayValue method
	GetNullableFloatValue method
	GetNullableIntArrayValue method
	GetNullableIntValue method
	GetNullableLongArrayValue method
	GetNullableLongValue method
	GetNullableSByteArrayValue method
	GetNullableSByteValue method
	GetNullableShortArrayValue method
	GetNullableShortValue method
	GetObjectArrayValue method
	GetObjectValue method
	GetRequestID method
	GetSByteArrayValue method
	GetSByteValue method
	GetSbyteValue method
	GetShortArrayValue method
	GetShortValue method
	GetSingleArrayValue method
	GetSingleValue method
	GetStatus method
	GetStringArrayValue method
	GetStringValue method
	GetUIntArrayValue method
	GetUIntValue method
	GetULongArrayValue method
	GetULongValue method
	GetUShortArrayValue method
	GetUShortValue method
	GetValue method
	SetLogger method

	WSStatus enumeration

	QAnywhere C++ API Reference
	AcknowledgementMode class
	EXPLICIT_ACKNOWLEDGEMENT variable
	IMPLICIT_ACKNOWLEDGEMENT variable
	TRANSACTIONAL variable

	MessageProperties class
	ADAPTER variable
	ADAPTERS variable
	DELIVERY_COUNT variable
	IP variable
	MAC variable
	MSG_TYPE variable
	NETWORK_STATUS variable
	ORIGINATOR variable
	RAS variable
	RASNAMES variable
	STATUS variable
	STATUS_TIME variable
	TRANSMISSION_STATUS variable

	MessageStoreProperties class
	MAX_DELIVERY_ATTEMPTS variable

	MessageType class
	NETWORK_STATUS_NOTIFICATION variable
	PUSH_NOTIFICATION variable
	REGULAR variable

	QABinaryMessage class
	getBodyLength function
	readBinary function
	readBoolean function
	readByte function
	readChar function
	readDouble function
	readFloat function
	readInt function
	readLong function
	readShort function
	readString function
	reset function
	writeBinary function
	writeBoolean function
	writeByte function
	writeChar function
	writeDouble function
	writeFloat function
	writeInt function
	writeLong function
	writeShort function
	writeString function
	~QABinaryMessage function

	QAError class
	COMMON_ALREADY_OPEN_ERROR variable
	COMMON_GETQUEUEDEPTH_ERROR variable
	COMMON_GETQUEUEDEPTH_ERROR_INVALID_ARG variable
	COMMON_GETQUEUEDEPTH_ERROR_NO_STORE_ID variable
	COMMON_GET_INIT_FILE_ERROR variable
	COMMON_INIT_ERROR variable
	COMMON_INIT_THREAD_ERROR variable
	COMMON_INVALID_PROPERTY variable
	COMMON_MSG_ACKNOWLEDGE_ERROR variable
	COMMON_MSG_CANCEL_ERROR variable
	COMMON_MSG_CANCEL_ERROR_SENT variable
	COMMON_MSG_NOT_WRITEABLE_ERROR variable
	COMMON_MSG_RETRIEVE_ERROR variable
	COMMON_MSG_STORE_ERROR variable
	COMMON_MSG_STORE_NOT_INITIALIZED variable
	COMMON_MSG_STORE_TOO_LARGE variable
	COMMON_NOT_OPEN_ERROR variable
	COMMON_NO_DEST_ERROR variable
	COMMON_NO_IMPLEMENTATION variable
	COMMON_OPEN_ERROR variable
	COMMON_OPEN_LOG_FILE_ERROR variable
	COMMON_OPEN_MAXTHREADS_ERROR variable
	COMMON_SELECTOR_SYNTAX_ERROR variable
	COMMON_TERMINATE_ERROR variable
	COMMON_UNEXPECTED_EOM_ERROR variable
	COMMON_UNREPRESENTABLE_TIMESTAMP variable
	QA_NO_ERROR variable

	QAManager class
	acknowledge function
	acknowledgeAll function
	acknowledgeUntil function
	open function
	recover function

	QAManagerBase class
	beginEnumStorePropertyNames function
	browseClose function
	browseMessages function
	browseMessagesByID function
	browseMessagesByQueue function
	browseMessagesBySelector function
	browseNextMessage function
	cancelMessage function
	close function
	createBinaryMessage function
	createTextMessage function
	deleteMessage function
	endEnumStorePropertyNames function
	getAllQueueDepth function
	getBooleanStoreProperty function
	getByteStoreProperty function
	getDoubleStoreProperty function
	getFloatStoreProperty function
	getIntStoreProperty function
	getLastError function
	getLastErrorMsg function
	getLongStoreProperty function
	getMessage function
	getMessageBySelector function
	getMessageBySelectorNoWait function
	getMessageBySelectorTimeout function
	getMessageNoWait function
	getMessageTimeout function
	getMode function
	getQueueDepth function
	getShortStoreProperty function
	getStringStoreProperty function
	nextStorePropertyName function
	putMessage function
	putMessageTimeToLive function
	setBooleanStoreProperty function
	setByteStoreProperty function
	setDoubleStoreProperty function
	setFloatStoreProperty function
	setIntStoreProperty function
	setLongStoreProperty function
	setMessageListener function
	setMessageListenerBySelector function
	setProperty function
	setShortStoreProperty function
	setStringStoreProperty function
	start function
	stop function
	triggerSendReceive function

	QAManagerFactory class
	createQAManager function
	createQATransactionalManager function
	deleteQAManager function
	deleteQATransactionalManager function
	getLastError function
	getLastErrorMsg function

	QAMessage class
	DEFAULT_PRIORITY variable
	DEFAULT_TIME_TO_LIVE variable
	beginEnumPropertyNames function
	castToBinaryMessage function
	castToTextMessage function
	clearProperties function
	endEnumPropertyNames function
	getAddress function
	getBooleanProperty function
	getByteProperty function
	getDoubleProperty function
	getExpiration function
	getFloatProperty function
	getInReplyToID function
	getIntProperty function
	getLongProperty function
	getMessageID function
	getPriority function
	getPropertyType function
	getRedelivered function
	getReplyToAddress function
	getShortProperty function
	getStringProperty function
	getStringProperty function
	getTimestamp function
	getTimestampAsString function
	nextPropertyName function
	propertyExists function
	setAddress function
	setBooleanProperty function
	setByteProperty function
	setDoubleProperty function
	setFloatProperty function
	setInReplyToID function
	setIntProperty function
	setLongProperty function
	setMessageID function
	setPriority function
	setRedelivered function
	setReplyToAddress function
	setShortProperty function
	setStringProperty function
	setTimestamp function

	QAMessageListener class
	onMessage function
	~QAMessageListener function

	QATextMessage class
	getText function
	getTextLength function
	readText function
	reset function
	setText function
	writeText function
	~QATextMessage function

	QATransactionalManager class
	commit function
	open function
	rollback function
	~QATransactionalManager function

	QueueDepthFilter class
	ALL variable
	INCOMING variable
	OUTGOING variable

	StatusCodes class
	CANCELLED variable
	EXPIRED variable
	FINAL variable
	LOCAL variable
	PENDING variable
	RECEIVED variable
	RECEIVING variable
	TRANSMITTED variable
	TRANSMITTING variable
	UNRECEIVABLE variable
	UNTRANSMITTED variable

	QAnywhere Java API Reference
	ianywhere.qanywhere.client package
	Interface AcknowledgementMode
	EXPLICIT_ACKNOWLEDGEMENT variable
	IMPLICIT_ACKNOWLEDGEMENT variable
	TRANSACTIONAL variable

	Interface MessageProperties
	ADAPTER variable
	ADAPTERS variable
	DELIVERY_COUNT variable
	IP variable
	MAC variable
	MSG_TYPE variable
	NETWORK_STATUS variable
	ORIGINATOR variable
	RAS variable
	RASNAMES variable
	STATUS variable
	STATUS_TIME variable
	TRANSMISSION_STATUS variable

	Interface MessageStoreProperties
	MAX_DELIVERY_ATTEMPTS variable

	Interface MessageType
	NETWORK_STATUS_NOTIFICATION variable
	PUSH_NOTIFICATION variable
	REGULAR variable

	Interface PropertyType
	PROPERTY_TYPE_BOOLEAN variable
	PROPERTY_TYPE_BYTE variable
	PROPERTY_TYPE_DOUBLE variable
	PROPERTY_TYPE_FLOAT variable
	PROPERTY_TYPE_INT variable
	PROPERTY_TYPE_LONG variable
	PROPERTY_TYPE_SHORT variable
	PROPERTY_TYPE_STRING variable
	PROPERTY_TYPE_UNKNOWN variable

	Interface QABinaryMessage
	getBodyLength method
	readBinary method
	readBinary method
	readBoolean method
	readByte method
	readChar method
	readDouble method
	readFloat method
	readInt method
	readLong method
	readShort method
	readString method
	reset method
	writeBinary method
	writeBinary method
	writeBinary method
	writeBoolean method
	writeByte method
	writeChar method
	writeDouble method
	writeFloat method
	writeInt method
	writeLong method
	writeShort method
	writeString method

	Class QAException
	COMMON_ALREADY_OPEN_ERROR variable
	COMMON_GETQUEUEDEPTH_ERROR variable
	COMMON_GETQUEUEDEPTH_ERROR_INVALID_ARG variable
	COMMON_GETQUEUEDEPTH_ERROR_NO_STORE_ID variable
	COMMON_GET_INIT_FILE_ERROR variable
	COMMON_INIT_ERROR variable
	COMMON_INIT_THREAD_ERROR variable
	COMMON_INVALID_PROPERTY variable
	COMMON_MSG_ACKNOWLEDGE_ERROR variable
	COMMON_MSG_CANCEL_ERROR variable
	COMMON_MSG_CANCEL_ERROR_SENT variable
	COMMON_MSG_NOT_WRITEABLE_ERROR variable
	COMMON_MSG_RETRIEVE_ERROR variable
	COMMON_MSG_STORE_ERROR variable
	COMMON_MSG_STORE_NOT_INITIALIZED variable
	COMMON_MSG_STORE_TOO_LARGE variable
	COMMON_NOT_OPEN_ERROR variable
	COMMON_NO_DEST_ERROR variable
	COMMON_NO_IMPLEMENTATION variable
	COMMON_OPEN_ERROR variable
	COMMON_OPEN_LOG_FILE_ERROR variable
	COMMON_SELECTOR_SYNTAX_ERROR variable
	COMMON_TERMINATE_ERROR variable
	COMMON_UNEXPECTED_EOM_ERROR variable
	COMMON_UNREPRESENTABLE_TIMESTAMP variable
	QAException method
	QA_NO_ERROR variable
	getErrorCode method

	Interface QAManager
	acknowledge method
	acknowledgeAll method
	acknowledgeUntil method
	open method
	recover method

	Interface QAManagerBase
	browseMessages method
	browseMessagesByID method
	browseMessagesByQueue method
	browseMessagesBySelector method
	cancelMessage method
	close method
	createBinaryMessage method
	createTextMessage method
	getBooleanStoreProperty method
	getByteStoreProperty method
	getDoubleStoreProperty method
	getFloatStoreProperty method
	getIntStoreProperty method
	getLongStoreProperty method
	getMessage method
	getMessageBySelector method
	getMessageBySelectorNoWait method
	getMessageBySelectorTimeout method
	getMessageListener method
	getMessageNoWait method
	getMessageTimeout method
	getMode method
	getQueueDepth method
	getQueueDepth method
	getShortStoreProperty method
	getStoreProperty method
	getStorePropertyNames method
	getStringStoreProperty method
	putMessage method
	putMessageTimeToLive method
	setBooleanStoreProperty method
	setByteStoreProperty method
	setDoubleStoreProperty method
	setFloatStoreProperty method
	setIntStoreProperty method
	setLongStoreProperty method
	setMessageListener method
	setMessageListenerBySelector method
	setShortStoreProperty method
	setStoreProperty method
	setStringStoreProperty method
	start method
	stop method
	triggerSendReceive method

	Class QAManagerFactory
	createQAManager method
	createQAManager method
	createQAManager method
	createQATransactionalManager method
	createQATransactionalManager method
	createQATransactionalManager method
	getInstance method

	Interface QAMessage
	DEFAULT_PRIORITY variable
	DEFAULT_TIME_TO_LIVE variable
	clearProperties method
	getAddress method
	getBooleanProperty method
	getByteProperty method
	getDoubleProperty method
	getExpiration method
	getFloatProperty method
	getInReplyToID method
	getIntProperty method
	getLongProperty method
	getMessageID method
	getPriority method
	getProperty method
	getPropertyNames method
	getPropertyType method
	getRedelivered method
	getReplyToAddress method
	getShortProperty method
	getStringProperty method
	getTimestamp method
	propertyExists method
	setAddress method
	setBooleanProperty method
	setByteProperty method
	setDoubleProperty method
	setFloatProperty method
	setInReplyToID method
	setIntProperty method
	setLongProperty method
	setPriority method
	setProperty method
	setReplyToAddress method
	setShortProperty method
	setStringProperty method

	Interface QAMessageListener
	onException method
	onMessage method

	Interface QATextMessage
	getText method
	getTextLength method
	readText method
	reset method
	setText method
	writeText method
	writeText method
	writeText method

	Interface QATransactionalManager
	commit method
	open method
	rollback method

	Interface QueueDepthFilter
	ALL variable
	INCOMING variable
	OUTGOING variable

	Interface StatusCodes
	CANCELLED variable
	EXPIRED variable
	FINAL variable
	LOCAL variable
	PENDING variable
	RECEIVED variable
	RECEIVING variable
	TRANSMITTED variable
	TRANSMITTING variable
	UNRECEIVABLE variable
	UNTRANSMITTED variable

	ianywhere.qanywhere.ws package
	Class WSBase
	WSBase method
	WSBase method
	clearRequestProperties method
	getResult method
	getServiceID method
	setListener method
	setListener method
	setProperty method
	setQAManager method
	setRequestProperty method
	setServiceID method

	Class WSException
	WSException method
	WSException method
	WSException method
	getErrorCode method

	Class WSFaultException
	WSFaultException method

	Interface WSListener
	onException method
	onResult method

	Class WSResult
	acknowledge method
	getArrayValue method
	getBigDecimalArrayValue method
	getBigDecimalValue method
	getBigIntegerArrayValue method
	getBigIntegerValue method
	getBooleanArrayValue method
	getBooleanValue method
	getByteArrayValue method
	getByteValue method
	getCharacterArrayValue method
	getCharacterValue method
	getDoubleArrayValue method
	getDoubleValue method
	getErrorMessage method
	getFloatArrayValue method
	getFloatValue method
	getIntegerArrayValue method
	getIntegerValue method
	getLongArrayValue method
	getLongValue method
	getObjectArrayValue method
	getObjectValue method
	getPrimitiveBooleanArrayValue method
	getPrimitiveBooleanValue method
	getPrimitiveByteArrayValue method
	getPrimitiveByteValue method
	getPrimitiveCharArrayValue method
	getPrimitiveCharValue method
	getPrimitiveDoubleArrayValue method
	getPrimitiveDoubleValue method
	getPrimitiveFloatArrayValue method
	getPrimitiveFloatValue method
	getPrimitiveIntArrayValue method
	getPrimitiveIntValue method
	getPrimitiveLongArrayValue method
	getPrimitiveLongValue method
	getPrimitiveShortArrayValue method
	getPrimitiveShortValue method
	getRequestID method
	getShortArrayValue method
	getShortValue method
	getStatus method
	getStringArrayValue method
	getStringValue method
	getValue method

	Class WSStatus
	STATUS_ERROR variable
	STATUS_QUEUED variable
	STATUS_RESULT_AVAILABLE variable
	STATUS_SUCCESS variable

	QAnywhere SQL API Reference
	Message properties, headers, and content
	Message headers
	ml_qa_getaddress
	ml_qa_getexpiration
	ml_qa_getinreplytoid
	ml_qa_getpriority
	ml_qa_getredelivered
	ml_qa_getreplytoaddress
	ml_qa_gettimestamp
	ml_qa_setexpiration
	ml_qa_setinreplytoid
	ml_qa_setpriority
	ml_qa_setreplytoaddress

	Message properties
	ml_qa_getbooleanproperty
	ml_qa_getbyteproperty
	ml_qa_getdoubleproperty
	ml_qa_getfloatproperty
	ml_qa_getintproperty
	ml_qa_getlongproperty
	ml_qa_getpropertynames
	ml_qa_getshortproperty
	ml_qa_getstringproperty
	ml_qa_setbooleanproperty
	ml_qa_setbyteproperty
	ml_qa_setdoubleproperty
	ml_qa_setfloatproperty
	ml_qa_setintproperty
	ml_qa_setlongproperty
	ml_qa_setshortproperty
	ml_qa_setstringproperty

	Message content
	ml_qa_getbinarycontent
	ml_qa_getcontentclass
	ml_qa_gettextcontent
	ml_qa_setbinarycontent
	ml_qa_settextcontent

	Message store properties
	ml_qa_getstoreproperty
	ml_qa_setstoreproperty

	Message management
	ml_qa_createmessage
	ml_qa_getmessage
	ml_qa_getmessagenowait
	ml_qa_getmessagetimeout
	ml_qa_grant_messaging_permissions
	ml_qa_listener_queue
	ml_qa_putmessage
	ml_qa_triggersendreceive

	Index

