
UltraLite®
Database Management and Reference

Published: October 2006

Copyright and trademarks
Copyright © 2006 iAnywhere Solutions, Inc. Portions copyright © 2006 Sybase, Inc. All rights reserved.

iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

iAnywhere grants you permission to use this document for your own informational, educational, and other non-commercial purposes; provided
that (1) you include this and all other copyright and proprietary notices in the document in all copies; (2) you do not attempt to "pass-off" the
document as your own; and (3) you do not modify the document. You may not publish or distribute the document or any portion thereof without
the express prior written consent of iAnywhere.

This document is not a commitment on the part of iAnywhere to do or refrain from any activity, and iAnywhere may change the content of
this document at its sole discretion without notice. Except as otherwise provided in a written agreement between you and iAnywhere, this
document is provided “as is”, and iAnywhere assumes no liability for its use or any inaccuracies it may contain.

iAnywhere®, Sybase®, and the marks listed at http://www.ianywhere.com/trademarks are trademarks of Sybase, Inc. or its subsidiaries. ®
indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.ianywhere.com/trademarks

Contents

About This Manual ... vii

SQL Anywhere documentation ... viii
Documentation conventions ... xi
Finding out more and providing feedback .. xv

I. Introducing UltraLite ... 1

Introducing UltraLite ... 3
Introducing the UltraLite database management system 4
Comparing UltraLite and SQL Anywhere ... 5
UltraLite-specific decisions you need to make ... 10
Understanding database management fundamentals for UltraLite 15

II. Using UltraLite Databases ... 21

Creating and Configuring UltraLite Databases ... 23
Creating UltraLite databases ... 24
Choosing creation-time database properties ... 30
Configuring post-creation database options .. 40

Connecting to an UltraLite Database ... 43
Introducing UltraLite database connections ... 44
Opening connections with connection strings .. 47
Storing parameters with the ULSQLCONNECT environment variable 53

Working with UltraLite Databases ... 55
Working with UltraLite tables and columns .. 56
Working with UltraLite indexes .. 65
Working with UltraLite publications .. 72
Working with UltraLite users .. 76
Viewing UltraLite database settings ... 78

Exploring the CustDB Samples for UltraLite .. 79
Introducing CustDB .. 80
Finding CustDB sample files .. 81
Lesson 1: Logging in and populating the UltraLite remote 83

Copyright © 2006, iAnywhere Solutions, Inc. iii

Lesson 2: Using the CustDB client application .. 84
Lesson 3: Synchronizing with the CustDB consolidated database 86
Lesson 4: Browsing MobiLink synchronization scripts ... 88
What's next? .. 90

III. UltraLite Database Reference .. 91

UltraLite Database Settings Reference ... 93
case property ... 94
checksum_level property ... 95
date_format property ... 97
date_order property ... 100
fips property ... 102
global_id option .. 104
max_hash_size property .. 106
ml_remote_id option .. 108
nearest_century property ... 109
obfuscate property ... 110
page_size property .. 112
precision property .. 114
scale property .. 116
time_format property .. 118
timestamp_format property .. 120
timestamp_increment property .. 123
utf8_encoding property .. 125

UltraLite Connection String Parameters Reference ... 127
CACHE_SIZE connection parameter .. 128
CON connection parameter ... 130
DBF connection parameter .. 131
CE_FILE connection parameter .. 133
NT_FILE connection parameter ... 135
PALM_FILE connection parameter .. 137
PALM_DB connection parameter .. 139
SYMBIAN_FILE connection parameter ... 140
DBN connection parameter ... 142
DBKEY connection parameter ... 143

UltraLite® - Database Management and Reference

iv Copyright © 2006, iAnywhere Solutions, Inc.

PALM_ALLOW_BACKUP connection parameter .. 145
PWD connection parameter ... 146
RESERVE_SIZE connection parameter .. 148
START connection parameter ... 149
UID connection parameter ... 150

UltraLite Utilities Reference .. 153
Introduction to UltraLite utilities .. 154
Interactive SQL utility (dbisql) .. 155
SQL Preprocessor for UltraLite utility (sqlpp) .. 158
UltraLite AppForge Registry utility (ulafreg) ... 161
UltraLite HotSync Conduit Installation utility for Palm OS (ulcond10) 163
UltraLite Create Database utility (ulcreate) .. 165
UltraLite Engine utility (uleng10) .. 168
UltraLite Information utility (ulinfo) ... 169
UltraLite Initialize Database utility (ulinit) ... 172
UltraLite Load XML to Database utility (ulload) ... 174
UltraLite Engine Stop utility (ulstop) ... 177
UltraLite Synchronization utility (ulsync) .. 178
UltraLite Unload Database to XML utility (ulunload) .. 180
UltraLite Unload Old Database utility (ulunloadold) ... 183
UltraLite Data Management utility for Palm OS (ULDBUtil) 185
Supported extended options .. 186
Supported exit codes ... 189

UltraLite System Table Reference ... 191
UltraLite system tables .. 192

IV. UltraLite SQL Reference ... 199

UltraLite SQL Elements Reference .. 201
Keywords in UltraLite ... 202
Identifiers in UltraLite ... 203
Strings in UltraLite ... 204
Comments in UltraLite ... 205
Numbers in UltraLite .. 206
The NULL value in UltraLite ... 207
Special values in UltraLite ... 208

UltraLite® - Database Management and Reference

Copyright © 2006, iAnywhere Solutions, Inc. v

Dates and times in UltraLite ... 211
Data types in UltraLite ... 212
Expressions in UltraLite ... 215
Operators in UltraLite ... 228
Variables in UltraLite .. 231
Query access plans in UltraLite ... 232

UltraLite SQL Function Reference .. 235
Function types ... 236
Alphabetical list of functions .. 241

UltraLite SQL Statement Reference ... 319
UltraLite SQL statements overview ... 320
ALTER TABLE statement .. 322
ALTER PUBLICATION statement ... 326
COMMIT statement ... 327
CREATE INDEX statement ... 328
CREATE PUBLICATION statement .. 330
CREATE TABLE statement ... 331
DELETE statement .. 336
DROP INDEX statement .. 337
DROP PUBLICATION statement ... 338
DROP TABLE statement ... 339
INSERT statement ... 340
ROLLBACK statement ... 341
SELECT statement .. 342
START SYNCHRONIZATION DELETE statement ... 347
STOP SYNCHRONIZATION DELETE statement ... 348
TRUNCATE TABLE statement .. 349
UNION operation ... 351
UPDATE statement ... 352

Index .. 353

UltraLite® - Database Management and Reference

vi Copyright © 2006, iAnywhere Solutions, Inc.

About This Manual
Subject

This manual introduces the UltraLite database system for small devices.

Audience
This manual is intended for all developers who want to take advantage of the performance, resource
efficiency, robustness, and security of an UltraLite relational database for data storage and synchronization
for embedded or mobile devices.

Copyright © 2006, iAnywhere Solutions, Inc. vii

SQL Anywhere documentation
This book is part of the SQL Anywhere documentation set. This section describes the books in the
documentation set and how you can use them.

The SQL Anywhere documentation
The complete SQL Anywhere documentation is available in two forms: an online form that combines all
books, and as separate PDF files for each book. Both forms of the documentation contain identical
information and consist of the following books:

♦ SQL Anywhere 10 - Introduction This book introduces SQL Anywhere 10—a comprehensive
package that provides data management and data exchange, enabling the rapid development of database-
powered applications for server, desktop, mobile, and remote office environments.

♦ SQL Anywhere 10 - Changes and Upgrading This book describes new features in SQL Anywhere
10 and in previous versions of the software.

♦ SQL Anywhere Server - Database Administration This book covers material related to running,
managing, and configuring SQL Anywhere databases. It describes database connections, the database
server, database files, security, backup procedures, security, and replication with Replication Server, as
well as administration utilities and options.

♦ SQL Anywhere Server - SQL Usage This book describes how to design and create databases; how
to import, export, and modify data; how to retrieve data; and how to build stored procedures and triggers.

♦ SQL Anywhere Server - SQL Reference This book provides a complete reference for the SQL
language used by SQL Anywhere. It also describes the SQL Anywhere system views and procedures.

♦ SQL Anywhere Server - Programming This book describes how to build and deploy database
applications using the C, C++, and Java programming languages, as well as Visual Studio .NET. Users
of tools such as Visual Basic and PowerBuilder can use the programming interfaces provided by those
tools.

♦ SQL Anywhere 10 - Error Messages This book provides a complete listing of SQL Anywhere error
messages together with diagnostic information.

♦ MobiLink - Getting Started This manual introduces MobiLink, a session-based relational-database
synchronization system. MobiLink technology allows two-way replication and is well suited to mobile
computing environments.

♦ MobiLink - Server Administration This manual describes how to set up and administer MobiLink
applications.

♦ MobiLink - Client Administration This manual describes how to set up, configure, and synchronize
MobiLink clients. MobiLink clients can be SQL Anywhere or UltraLite databases.

♦ MobiLink - Server-Initiated Synchronization This manual describes MobiLink server-initiated
synchronization, a feature of MobiLink that allows you to initiate synchronization or other remote actions
from the consolidated database.

About This Manual

viii Copyright © 2006, iAnywhere Solutions, Inc.

♦ QAnywhere This manual describes QAnywhere, which defines a messaging platform for mobile and
wireless clients as well as traditional desktop and laptop clients.

♦ SQL Remote This book describes the SQL Remote data replication system for mobile computing,
which enables sharing of data between a SQL Anywhere consolidated database and many SQL Anywhere
remote databases using an indirect link such as email or file transfer.

♦ SQL Anywhere 10 - Context-Sensitive Help This manual provides context-sensitive help for the
Connect dialog, the Query Editor, the MobiLink Monitor, the SQL Anywhere Console utility, the Index
Consultant, and Interactive SQL.

♦ UltraLite - Database Management and Reference This manual introduces the UltraLite database
system for small devices.

♦ UltraLite - AppForge Programming This manual describes UltraLite for AppForge. With UltraLite
for AppForge you can develop and deploy database applications to handheld, mobile, or embedded
devices, running Palm OS, Symbian OS, or Windows CE.

♦ UltraLite - .NET Programming This manual describes UltraLite.NET. With UltraLite.NET you can
develop and deploy database applications to computers, or handheld, mobile, or embedded devices.

♦ UltraLite - M-Business Anywhere Programming This manual describes UltraLite for M-Business
Anywhere. With UltraLite for M-Business Anywhere you can develop and deploy web-based database
applications to handheld, mobile, or embedded devices, running Palm OS, Windows CE, or Windows XP.

♦ UltraLite - C and C++ Programming This manual describes UltraLite C and C++ programming
interfaces. With UltraLite you can develop and deploy database applications to handheld, mobile, or
embedded devices.

Documentation formats
SQL Anywhere provides documentation in the following formats:

♦ Online documentation The online documentation contains the complete SQL Anywhere
documentation, including the books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product, and is the most complete and
up-to-date source of documentation.

To access the online documentation on Windows operating systems, choose Start ► Programs ► SQL
Anywhere 10 ► Online Books. You can navigate the online documentation using the HTML Help table
of contents, index, and search facility in the left pane, as well as using the links and menus in the right
pane.

To access the online documentation on Unix operating systems, see the HTML documentation under
your SQL Anywhere installation or on your installation CD.

♦ PDF files The complete set of SQL Anywhere books is provided as a set of Adobe Portable Document
Format (pdf) files, viewable with Adobe Reader.

On Windows, the PDF books are accessible from the online books via the PDF link at the top of each
page, or from the Windows Start menu (Start ► Programs ► SQL Anywhere 10 ► Online Books - PDF
Format).

SQL Anywhere documentation

Copyright © 2006, iAnywhere Solutions, Inc. ix

On Unix, the PDF books are accessible on your installation CD.

About This Manual

x Copyright © 2006, iAnywhere Solutions, Inc.

Documentation conventions
This section lists the typographic and graphical conventions used in this documentation.

Syntax conventions
The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in uppercase, like the words ALTER TABLE in the following
example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers or expressions are shown like
the words owner and table-name in the following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of the list followed by an ellipsis
(three dots), like column-constraint in the following example:

ADD column-definition [column-constraint, …]

One or more list elements are allowed. In this example, if more than one is specified, they must be
separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that the savepoint-name is optional. The square brackets should not be
typed.

♦ Options When none or only one of a list of items can be chosen, vertical bars separate the items and
the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the alternatives are enclosed in curly
braces and a bar is used to separate the options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The brackets and braces should not
be typed.

Documentation conventions

Copyright © 2006, iAnywhere Solutions, Inc. xi

File name conventions

The documentation generally adopts Windows conventions when describing operating-system dependent
tasks and features such as paths and file names. In most cases, there is a simple transformation to the syntax
used on other operating systems.

♦ Directories and path names The documentation typically lists directory paths using Windows
conventions, including colons for drives and backslashes as a directory separator. For example,

MobiLink\redirector

On Unix, Linux, and Mac OS X, you should use forward slashes instead. For example,

MobiLink/redirector
♦ Executable files The documentation shows executable file names using Windows conventions, with

the suffix .exe. On Unix, Linux, and Mac OS X, executable file names have no suffix. On NetWare,
executable file names use the suffix .nlm.

For example, on Windows, the network database server is dbsrv10.exe. On Unix, Linux, and Mac OS
X, it is dbsrv10. On NetWare, it is dbsrv10.nlm.

♦ install-dir The installation process allows you to choose where to install SQL Anywhere, and the
documentation refers to this location using the convention install-dir.

After installation is complete, the environment variable SQLANY10 specifies the location of the
installation directory containing the SQL Anywhere components (install-dir). SQLANYSH10 specifies
the location of the directory containing components shared by SQL Anywhere with other Sybase
applications.

For more information on the default location of install-dir, by operating system, see “File Locations and
Installation Settings” [SQL Anywhere Server - Database Administration].

♦ samples-dir The installation process allows you to choose where to install the samples that are
included with SQL Anywhere, and the documentation refers to this location using the convention
samples-dir.

After installation is complete, the environment variable SQLANYSAMP10 specifies the location of the
directory containing the samples (samples-dir). From the Windows Start menu, choosing
Programs ► SQL Anywhere 10 ► Sample Applications and Projects opens a Windows Explorer window
in this directory.

For more information on the default location of samples-dir, by operating system, see “The samples
directory” [SQL Anywhere Server - Database Administration].

♦ Environment variables The documentation refers to setting environment variables. On Windows,
environment variables are referred to using the syntax %envvar%. On Unix, Linux, and Mac OS X,
environment variables are referred to using the syntax $envvar or ${envvar}.

About This Manual

xii Copyright © 2006, iAnywhere Solutions, Inc.

Unix, Linux, and Mac OS X environment variables are stored in shell and login startup files, such
as .cshrc or .tcshrc.

Graphic icons
The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as SQL Anywhere.

♦ An UltraLite application.

♦ A database. In some high-level diagrams, the icon may be used to represent both the database and the
database server that manages it.

♦ Replication or synchronization middleware. These assist in sharing data among databases. Examples are
the MobiLink server and the SQL Remote Message Agent.

♦ A Sybase Replication Server

Documentation conventions

Copyright © 2006, iAnywhere Solutions, Inc. xiii

♦ A programming interface.

Interface

About This Manual

xiv Copyright © 2006, iAnywhere Solutions, Inc.

Finding out more and providing feedback
Finding out more

Additional information and resources, including a code exchange, are available at the iAnywhere Developer
Network at http://www.ianywhere.com/developer/.

If you have questions or need help, you can post messages to the iAnywhere Solutions newsgroups listed
below.

When you write to one of these newsgroups, always provide detailed information about your problem,
including the build number of your version of SQL Anywhere. You can find this information by entering
dbeng10 -v at a command prompt.

The newsgroups are located on the forums.sybase.com news server. The newsgroups include the following:

♦ sybase.public.sqlanywhere.general

♦ sybase.public.sqlanywhere.linux

♦ sybase.public.sqlanywhere.mobilink

♦ sybase.public.sqlanywhere.product_futures_discussion

♦ sybase.public.sqlanywhere.replication

♦ sybase.public.sqlanywhere.ultralite

♦ ianywhere.public.sqlanywhere.qanywhere

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information, or ideas on its newsgroups, nor is
iAnywhere Solutions obliged to provide anything other than a systems operator to monitor the service and
ensure its operation and availability.
iAnywhere Solutions Technical Advisors as well as other staff assist on the newsgroup service when they
have time available. They offer their help on a volunteer basis and may not be available on a regular basis
to provide solutions and information. Their ability to help is based on their workload.

Feedback
We would like to receive your opinions, suggestions, and feedback on this documentation.

You can email comments and suggestions to the SQL Anywhere documentation team at
iasdoc@ianywhere.com. Although we do not reply to emails sent to that address, we read all suggestions
with interest.

In addition, you can provide feedback on the documentation and the software through the newsgroups listed
above.

Finding out more and providing feedback

Copyright © 2006, iAnywhere Solutions, Inc. xv

http://www.ianywhere.com/developer/
news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
mailto:iasdoc@ianywhere.com

Part I. Introducing UltraLite

This part introduces the UltraLite relational database system for small devices. It describes general features of the
UltraLite database, and summarizes some of the internal mechanisms UltraLite uses to manage data and

transactions.

CHAPTER 1

Introducing UltraLite

Contents
Introducing the UltraLite database management system .. 4
Comparing UltraLite and SQL Anywhere .. 5
UltraLite-specific decisions you need to make .. 10
Understanding database management fundamentals for UltraLite 15

About this chapter
This chapter introduces you to the UltraLite database management system. Use this chapter to choose whether
or not you can use UltraLite address your business needs, and how to choose the appropriate development
API to help you achieve your goals—particularly in a multi-platform deployment scenario.

Copyright © 2006, iAnywhere Solutions, Inc. 3

Introducing the UltraLite database management system
UltraLite is a relational database similar to SQL Anywhere—but much smaller in scale. UltraLite is a mobile
database with true platform independence, and is designed to create custom solutions for small-footprint
devices such as cell phones, personal organizers, and embedded devices.

The UltraLite database is the foundation of the UltraLite solution. Beyond just a database, however, UltraLite
provides you with a complete database management system:

♦ A development layer UltraLite supports various programming interfaces that keep you from getting
locked into one deployment platform, development tool, or set of IT infrastructure products. For
information about which API you should choose, see “Choosing your programming
interface” on page 12.

To help you maintain your UltraLite project, UltraLite completes its development support with a
comprehensive set of administration tools that you can run either from a command line or from graphical
administration tools like UltraLite wizards in Sybase Central or Interactive SQL.

♦ A data management layer You can connect to an UltraLite database, either with an in-process
library (also called a runtime), or a separate process called an engine. Both processes control connection
and data access requests. They also include a built-in bi-directional synchronization framework that links
field and mobile workers with enterprise back-end systems. For information about which process you
should choose, see “Choosing a data management component” on page 11.

The data, management, and development layers are represented in the following figure.

UltraLite
runtime or

engine

Application development tools

Development
layer

UltraLite
programming
interfaces

Data
management

layer

Data layer

Introducing UltraLite

4 Copyright © 2006, iAnywhere Solutions, Inc.

Comparing UltraLite and SQL Anywhere
Certain features or metrics may help you determine which database type is best suited to your deployments.

The footprint of an UltraLite database and application are very small—typically in the 400 KB range for the
C/C++ version, compared to the approximately 6 MB footprint required by a SQL Anywhere database server
and synchronization client. Therefore, while UltraLite does not support some of the features included with
the SQL Anywhere (for example, triggers and stored procedures), many of the basic features of a relational
database are included.

Contrasting SQL Anywhere features with UltraLite
If you are unsure which database you require, compare supported features of SQL Anywhere and UltraLite.
By comparing feature sets, you can better evaluate the suitability of each database.

Feature required SQL
Any-
where

UltraLite Considerations

Transaction logs X UltraLite does not use an external transaction log.
Instead, it employs a unique transaction process-
ing mechanism. See “Transaction processing, re-
covery, and backup” on page 19.

Note: If you decide to deploy SQL Anywhere on
a small footprint device, remember to manage
transaction logs carefully, as transaction logs
grow quickly.

Transaction processing, ref-
erential integrity, and multi-
table joins

X X

Triggers, stored procedures,
and views

X

External stored procedures
(callable external DLLs)

X

Built-in referential and entity
integrity, including cascad-
ing updates and deletes

X Limited Declarative referential integrity, where deletes
and updates are cascaded, is a feature that is not
supported in UltraLite databases—except during
synchronization when deletes are cascaded for
this purpose. See “Avoiding synchronization is-
sues with foreign key cycles” [MobiLink - Client
Administration] and “Table Order synchroniza-
tion parameter” [MobiLink - Client Administra-
tion].

Dynamic, multiple database
support

X X

Multi-threaded application
support

X X

Comparing UltraLite and SQL Anywhere

Copyright © 2006, iAnywhere Solutions, Inc. 5

Feature required SQL
Any-
where

UltraLite Considerations

Row-level locking X X

XML unload and load utili-
ties

X UltraLite uses separate administration tools to
accomplish XML load and unloads. It is not built
into the runtime. See “UltraLite Load XML to
Database utility (ulload)” on page 174 and “Ul-
traLite Unload Database to XML utility (ulun-
load)” on page 180.

XML export and import util-
ities

X SQL Anywhere uses SQL statements to export/
import data to XML. You can also use dbunload
to export your data. See “Importing and Export-
ing Data” [SQL Anywhere Server - SQL Usage].

SQLX functionality X

SQL functions X Limited Not all SQL functions are available for use in
UltraLite applications. Using an unsupported
function gives a Feature not available
in UltraLite error. For a complete list of
supported functions, see “UltraLite SQL Func-
tion Reference SQL Functions” on page 235.

SQL statements X Limited The scope of SQL statements are limited in Ul-
traLite. For a complete list of supported state-
ments, see “UltraLite SQL Statement Refer-
ence” on page 319.

Integrated HTTP server X

Strong encryption for
database files and network
communications

X X

Event scheduling and han-
dling

X

High-performance, self-tun-
ing, cost-based query opti-
mizer

X UltraLite has a query optimizer, but it is not as
extensive as that of SQL Anywhere. Therefore,
the UltraLite optimizer may not provide as high
performance as the SQL Anywhere optimizer on
complex queries. However if you are running
simple queries, UltraLite can run faster. See
“Query access plans in UltraLite” on page 232.

Choice of several thread-safe
APIs

X X UltraLite gives application developers a uniquely
flexible architecture that will allow for the cre-
ation of applications for changing and/or varied
deployment environments. See “Choosing your
programming interface” on page 12.

Introducing UltraLite

6 Copyright © 2006, iAnywhere Solutions, Inc.

Feature required SQL
Any-
where

UltraLite Considerations

Cursor support X X

Dynamic cache sizing with
an advanced cache manage-
ment system

X Cache sizing is static in UltraLite. Nonetheless,
UltraLite allows you to set the cache size when
the database is started, which gives you the abil-
ity to scale cache size accordingly. See
“CACHE_SIZE connection
parameter” on page 128.

Database recovery after sys-
tem or application failure

X X

Binary Large Object
(BLOB) support

X X UltraLite cannot index or compare BLOBs.

Windows Performance
Monitor integration

X

Online table and index de-
fragmentation

X

Online backup X

Small footprint, which can
be as small as 500 KB

X Small footprint devices tend to have relatively
slow processors. UltraLite employs algorithms
and data structures that are targeted for these de-
vices, so UltraLite continues to provide high
performance and low memory use.

Runs on smart phones X

Direct device connections to
a Windows CE device from
the desktop.

X SQL Anywhere databases need a server before
allowing desktop connections to the database that
you deploy on a Windows CE device. On Ultra-
Lite, you simply need to prefix the connection
string with WCE:\. See “Windows
CE” on page 51.

High-performance updates
and retrievals through use of
indexes

X X UltraLite uses a mechanism to determine
whether each table is searched using an index or
by scanning the rows directly.

Additionally, you can hash indexes to speed up
data retrieval. See “Index performance consider-
ations” on page 33.

Synchronizing to Oracle,
DB2, Sybase Adaptive Serv-
er Enterprise, or SQL Any-
where

X X

Comparing UltraLite and SQL Anywhere

Copyright © 2006, iAnywhere Solutions, Inc. 7

Feature required SQL
Any-
where

UltraLite Considerations

Built-in synchronization X Unlike SQL Anywhere deployments, UltraLite
does not require a client agent to facilitate syn-
chronization. Synchronization is built into the
UltraLite runtime to minimize the components
you need to deploy. See “UltraLite Clients” [Mo-
biLink - Client Administration].

In-process runtime support
in UltraLite APIs

X

Computed columns X

Declared temporary tables/
Global temporary tables

X

System functions X UltraLite does not support SQL Anywhere sys-
tem functions, including property functions. You
cannot include them as part of your UltraLite ap-
plication.

Timestamp columns X X SQL Anywhere Transact-SQL timestamp
columns are created with the DEFAULT
TIMESTAMP default.

UltraLite timestamp columns are created with the
DEFAULT CURRENT TIMESTAMP default.
Therefore, UltraLite does not automatically up-
date the timestamp when the row is updated.

User-based permission
scheme to determine object-
based ownership and access

X UltraLite is primarily designed for single user
databases in which an authorization system is not
needed. However, you can include up to four user
IDs and passwords, which are used for authenti-
cation purposes only. These users have access to
all database objects. See “The role of user au-
thentication” on page 45.

UltraLite size and number limitations

In most cases, the memory, CPU, and storage required by most mobile devices and embedded systems impose
stricter limits that typically make UltraLite the preferred database option. The following table lists the
absolute database size and object limitations imposed by UltraLite data structures.

F To compare UltraLite limitations with SQL Anywhere limitations, see “Size and number
limitations” [SQL Anywhere Server - Database Administration].

Statistic Maximum for UltraLite

Number of connections per database Up to 14.

Introducing UltraLite

8 Copyright © 2006, iAnywhere Solutions, Inc.

Statistic Maximum for UltraLite

File-based persistent store (database size) 2 GB file or OS limit on file size.

Palm Computing Platform database size 128 MB (primary storage).

2 GB (expansion card file system).

Rows per table Up to 16 million.

Row ID size 3 bytes.

Rows per database Limited by persistent store.

Table size Limited only by database size.

Tables per database Limited only by database size.

Columns per table Row size is limited by page size, so the practical limit on the
number of columns per table is derived from this size. Typ-
ically, this will be much less than 4000.

Indexes per table Limited only by database size.

Tables referenced per transaction No limit.

Stored procedure length Not applicable.

Stored procedures per database Not applicable.

Triggers per database Not applicable.

Nesting Not applicable.

Number of publications 32 publications.

Page size Up to 16 KB.

Row size The length of each stored row must be less than the page size.
Character strings are stored without padding when they are
shorter than the column size.

This excludes columns declared as long binary and long var-
char as these are stored separately.

Long binary/long varchar size Limited only by database size.

Prepared statement size The size of a prepared statement, which cannot exceed 64
KB.

The size includes the declared size of each new row refer-
enced by the sql query result set as well as table rows at their
declared size.

Comparing UltraLite and SQL Anywhere

Copyright © 2006, iAnywhere Solutions, Inc. 9

UltraLite-specific decisions you need to make
If you decide to implement an UltraLite solution, you need to think about:

♦ How flexible or scalable do you require your deployment to be? See “Planning for
scalability” on page 10.

♦ How many applications need to connect to the UltraLite database? The number of concurrent connections
affects whether you need the UltraLite in-process runtime or the UltraLite engine. See “Choosing a data
management component” on page 11 to understand how they differ.

♦ On which platforms will the database run on? Because file formats have been consolidated, you may be
able to create a database that runs on multiple platforms. See “Choosing an UltraLite deployment
environment” on page 12 and “Understanding database management fundamentals for
UltraLite” on page 15.

Tip
If you need to create a file format that suits multiple platforms, use the Create Database wizard in Sybase
Central to help you determine whether or not this is possible.

♦ What platform(s) do you want to support? This can affect which APIs are available to program your
application. See “Choosing your programming interface” on page 12.

Planning for scalability

If you require the compact size of an UltraLite database, but don't want to sacrifice full database functionality,
implement an UltraLite solution on devices with limited resources and then synchronize to a consolidated
database using MobiLink synchronization technology.

UltraLite developers can synchronize the data in UltraLite databases with a central consolidated database
like SQL Anywhere. This consolidated database may be a desktop database for personal applications, or a
multi-user database for shared enterprise data. This mixture allows you to scale your solution as need arises.

Supported network protocols
Review the following table to determine which platforms support any given synchronization streams/
network protocols.

Network protocol Windows
desktop (32-
bit)

Embed-
ded Win-
dows XP

Windows
CE

Palm
OS

Symbian OS

TCP/IP synchronization X X X X X

HTTP synchronization X X X X X

HTTPS synchronization X X X X

Introducing UltraLite

10 Copyright © 2006, iAnywhere Solutions, Inc.

Network protocol Windows
desktop (32-
bit)

Embed-
ded Win-
dows XP

Windows
CE

Palm
OS

Symbian OS

Transport-layer security
(TLS) over HTTP or TCP/
IP synchronization

X X X1 X

HotSync synchronization X

ActiveSync synchroniza-
tion (3.5 and later)

X2

1 Pocket PC required.
2 For UltraLite.NET only. Not available for Smartphone 2002.

See also
♦ “UltraLite Clients” [MobiLink - Client Administration]
♦ “Network protocol options for UltraLite synchronization streams” [MobiLink - Client Administration]
♦ “Introducing MobiLink Synchronization” [MobiLink - Getting Started]
♦ “UltraLite Synchronization utility (ulsync)” on page 178

Choosing a data management component

UltraLite allows you to build a small-footprint relational database solution, without requiring the additional
overhead of setting up a separate database server. Instead, UltraLite programming interfaces use one of two
library types:

♦ UltraLite in-process runtime library (ulrt*.*) In UltraLite, the runtime and the application are
part of the same process, which makes the database specific to the application. For all platforms, the
runtime manages UltraLite databases as well as built-in synchronization operations. The UltraLite runtime
can manage a maximum of four databases at any one time, and is based on a single code base irrespective
of the platform used.

♦ UltraLite database engine client library (ulrtc*.*) For Windows desktop and Windows CE
platforms, a separate executable exists that provides access to the database from multiple applications.
This executable is supported for the following APIs: UltraLite C/C++, UltraLite for AppForge, UltraLite
for M-Business Anywhere, and UltraLite.NET.

Each application must use a client library when using the UltraLite engine. This client library allows each
application to communicate with the UltraLite engine. The UltraLite engine requires more system
resources than the UltraLite runtime and may yield lower performance.

F For a comparison of UltraLite with SQL Anywhere databases, see “Comparing UltraLite and SQL
Anywhere” on page 5.

See also
♦ UltraLite for AppForge: UltraLite - AppForge Programming [UltraLite - AppForge Programming]

UltraLite-specific decisions you need to make

Copyright © 2006, iAnywhere Solutions, Inc. 11

♦ UltraLite.NET: UltraLite - .NET Programming [UltraLite - .NET Programming]
♦ UltraLite C/C++ and embedded SQL: UltraLite - C and C++ Programming [UltraLite - C and C++

Programming]
♦ UltraLite for M-Business Anywhere: UltraLite - M-Business Anywhere Programming [UltraLite - M-

Business Anywhere Programming]

Choosing an UltraLite deployment environment

You can deploy UltraLite to various platforms, however, certain tools are only available to certain platforms.

F For a list of supported libraries, see “Choosing your programming interface” on page 12.

Component Windows
desktop (32-
bit)

Embed-
ded Win-
dows XP

Windows
CE

Palm
OS

Symbian OS

UltraLite database admin-
istration tools (utilities and
wizards)

X X

Embedded SQL prepro-
cessor (sqlpp)

X X

UltraLite engine X X 1

Custom UltraLite client
applications

X X X X X

1 Because Palm OS exclusively runs one application at a time, the engine is not required on this platform.

Choosing your programming interface

All UltraLite APIs expose core database functionality through a variety of APIs. Some of the following APIs
integrate with the development environment to simplify programming tasks.

♦ C/C++ interface
♦ Embedded SQL for C/C++
♦ UltraLite.NET
♦ AppForge Crossfire for C# or VB.NET
♦ M-Business Anywhere for JavaScript

UltraLite APIs offer different data access libraries including a simple table-based data access interface and
dynamic SQL for more complex queries. By combining these benefits, UltraLite gives application developers
a flexible architecture that will allow for the creation of applications for varied deployment environments.

Introducing UltraLite

12 Copyright © 2006, iAnywhere Solutions, Inc.

Note
Pocket Builder is not supported in this version of UltraLite. Sybase PocketBuilder is not included with SQL
Anywhere. Contact Sybase for details (http://www.sybase.com/products/developmentintegration/
pocketbuilder).

See also
♦ UltraLite for AppForge: UltraLite - AppForge Programming [UltraLite - AppForge Programming]
♦ UltraLite.NET: UltraLite - .NET Programming [UltraLite - .NET Programming]
♦ UltraLite C/C++ and embedded SQL: UltraLite - C and C++ Programming [UltraLite - C and C++

Programming]
♦ UltraLite for M-Business Anywhere: UltraLite - M-Business Anywhere Programming [UltraLite - M-

Business Anywhere Programming]

♦ To choose your programming interface

1. Choose your target platform(s). UltraLite supports Palm OS, Windows CE, Windows XP/embedded
Windows XP, and Symbian OS.

2. For each platform you need to support, determine if the API supports that platform. Different APIs
support different platforms. If you are doing cross-platform development, choose an API that supports
more than one intended target.

The correlation of step 1 and 2 is captured in the a table that follows. Use this support matrix to help
you quickly identify your development options.

Deployment
targets

UltraLite App-
Forge Crossfire
for MobileVB or
C#1

UltraLite for C/
C++ and em-
bedded SQL

UltraLite.NET2 UltraLite for M-Busi-
ness Anywhere3

Palm OS version 4 + version 4 + N/A version 5.0 +

Windows CE CE 3.0 + On CE 3.0 + CE 3.0 +,
with .NET com-
pact framework
1.0.3705

CE 5.0
with .NET com-
pact framework
2.0

version 3.0 + for
Pocket PC

Embedded Win-
dows XP

N/A Supported .NET compact
framework
1.0.5000

N/A

Symbian OS version 7.0/8.0 version 7.0/8.0 N/A N/A

1 Development for AppForge MobileVB as an extension to Microsoft Visual Basic or to Microsoft Visual Studio.NET.

2 Development as an extension to Microsoft Visual Studio.NET. The driver supports ADO.NET versions 1.0 and 2.0.

UltraLite-specific decisions you need to make

Copyright © 2006, iAnywhere Solutions, Inc. 13

http://www.sybase.com/products/developmentintegration/pocketbuilder
http://www.sybase.com/products/developmentintegration/pocketbuilder

3 For browser-based deployments of UltraLite programming in JavaScript.

3. Consider the effects of the following, and then finalize your selection accordingly:

SQL Anywhere compatibility If database compatibility with SQL Anywhere is a concern, consider
the following:

♦ SQL Anywhere embedded SQL support provides a common programming interface for UltraLite
and SQL Anywhere databases.

♦ ADO.NET provides common programming models that are shared between UltraLite components
and SQL Anywhere.

Maintaining a common interface may be particularly useful on platforms such as Windows CE, where
both databases are available. If you need to move from UltraLite to the more powerful and full-featured
SQL Anywhere database, using embedded SQL or ADO.NET makes migrating your application easier.

Tip
Even though a common interface exists, it is still good practice to create an abstract data-access layer
when writing your application.

Simplified deployments If simplifying your UltraLite deployment is an issue, consider
programming with the M-Business Anywhere API. Your end-users can download both the UltraLite
application and the database concurrently.

Application size and performance If creating a small application footprint is a concern, you should
program your application with the C/C++ API. These applications typically yield the best performance
and still maintain a small application file size because they do not interact with any software—other
than the device platform.

Introducing UltraLite

14 Copyright © 2006, iAnywhere Solutions, Inc.

Understanding database management fundamentals for
UltraLite

This section describes file and data management features of both in-process runtime and the engine, so that
you can understand what impact these features have on application development.

The UltraLite database file

A device's file management requirements dictate how an UltraLite database is stored and what database
name conventions must be adhered to. While most platforms use traditional file-based storage, others, like
the Palm OS record-based store, require that the database be saved differently. However, for the sake of
simplicity, the UltraLite database is typically referred to as a file. Depending on platform restrictions, you
may be able to create your device on the desktop, and then deploy the same file to one or more platforms.

F For more information about file name conventions used by different platforms when creating UltraLite
database names, see “Specifying file paths in a connection parameter” on page 50.

The UltraLite database schema

The logical framework of the database is known as a schema. In UltraLite, the schema is maintained as a
catalog of system tables that hold the metadata for the UltraLite database. Metadata stored in the system
tables include:

♦ Index definitions. See “sysindex system table” on page 194 and “sysixcol system table” on page 195.

♦ Table definitions. See “systable system table” on page 192.

♦ Column definitions. See “syscolumn system table” on page 193.

♦ Publication definitions. See “syspublication system table” on page 196 and “sysarticle system
table” on page 196.

♦ User names and passwords. See “sysuldata system table” on page 197.

Impact of schema changes in UltraLite

You can change the schema of a database with Data Definition Language (DDL) statements. A schema
change can take a considerable amount of time; for example, changing the type of a column means that all
rows in the associated table must be updated. Therefore, DDL statements only successfully execute when
there aren't any:

♦ Uncommitted transactions.

♦ Other active uses of the schema (for example, synchronization, prepared but unreleased statements,
executing database operations).

Understanding database management fundamentals for UltraLite

Copyright © 2006, iAnywhere Solutions, Inc. 15

If either of these conditions is true, the DDL statement fails. When the DDL statement is executing, any
other attempt to use the database will be blocked until the DDL statements completes the schema change.

F For a list of DDL statements supported by UltraLite, see “Statement categories” on page 320.

The temporary file

In addition to the database file, UltraLite creates and maintains a temporary file during database operation.
You do not need to work with or maintain the file in any way.

Temporary files are only used by UltraLite and are maintained in the same file path (if one exists) as the
UltraLite database itself. The temporary file has the same file name as the database you have created, but
with the following difference:

♦ For file-based platforms The tilde is included in the extension of the file (that is, .~db). For example,
if you run the CustDB.udb sample database, you'll notice the temporary file called CustDB.~db is
maintained in the same folder as this file.

♦ For record-based platforms The tilde is appended to the end of the name of the file. For example,
if CustDB.udb existed as a record-based file for Palm OS, the temporary file for it would be maintained
as CustDB.udb~.

This temporary file holds information used by UltraLite during query processing. In particular, it holds
temporary tables that store intermediate results for queries that involve ORDER BY or GROUP BY clauses.

Tip
You can safely delete the temporary file without loss of data—as long as UltraLite is not running. It does
not contain information that may be required across sessions.

UltraLite data and state management

UltraLite maintains state information that includes:

♦ Synchronization progress counts, to ensure that synchronization occurs successfully.

♦ Row state, to maintain data integrity by tracking how data has changed between synchronizations.

♦ Indexing, to access the row data efficiently.

♦ Transactions, to determine when and how data gets committed. In UltraLite, a transaction is processed
in its entirety or not at all.

♦ Recovery and backup information, to protect data against operating system crashes, and end-user actions
such as removing storage cards or device resets while UltraLite is running.

See also
♦ “The UltraLite database schema” on page 15

Introducing UltraLite

16 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “Built-in synchronization features for UltraLite” [MobiLink - Client Administration]

Understanding concurrency in UltraLite

UltraLite databases may receive multiple concurrent requests. To design applications that handle concurrent
requests properly, you should understand how UltraLite manages concurrency in the database.

It is helpful to separate several concepts when thinking about concurrent database access. These concepts
are ordered from high-level to low-level:

♦ Applications The UltraLite engine can respond to requests from multiple separate applications. Other
versions of the UltraLite runtime permit only a single application to connect to a database at a time.

F For more information, see “Choosing a data management component” on page 11.

♦ Threads UltraLite supports multi-threaded applications. A single application may be written to use
multiple threads, each of which may connect to the database.

♦ Connections Even a single-threaded application can open multiple connections to a database. In any
case, individual connections can employ only a single thread.

♦ Transactions Each connection can have a single transaction in progress at any one time. Transactions
can consist of a single request or multiple requests. Data modifications made during a transaction are not
permanent in the database until the transaction is committed. Either all data modifications made in a
transaction are committed, or all are rolled back.

♦ Requests A transaction consists of one or more requests. A request may be a query that reads data,
or an insert, update, or delete that modifies data, or a synchronization.

♦ The current row When an application is working with the result set of a query, UltraLite maintains
a pointer to the current row within the result set. In some interfaces, this current row is tracked explicitly
using a cursor (a pointer to a position in a result set). In others, the application uses methods on a result
set object or table object to identify and change the current row. Such methods use a cursor in the
application's code.

Multiple databases

The UltraLite runtime can manage a maximum of four databases at any one time. A single UltraLite
application can open multiple connections to separate databases. No concurrency issues arise from such
applications, as the data in each database is independent.

Locking

When a transaction changes a row, UltraLite locks that row until the transaction is committed or rolled back.
The lock prevents other transactions from changing the row, although they can still read the row. An attempt
to change a locked row sets error SQLCODE SQLE_LOCKED, while an attempt to change a deleted row
sets the error SQLE_NOTFOUND. Your applications should check the SQLCODE value after attempting
to modify data.

Understanding database management fundamentals for UltraLite

Copyright © 2006, iAnywhere Solutions, Inc. 17

Re-reading rows

UltraLite operates at an isolation level of 0. Consequently, your applications may experience dirty reads—
that is, they may access rows in the database that are not committed and consequently may still get rolled
back by another transaction.

For example, consider two connections, A and B, each with their own transaction.

As connection A works with the result set of a query, UltraLite fetches a copy of the current row into a
buffer. If A modifies the current row, it changes the copy in the buffer. The copy in the buffer is written back
into the database when connection A calls an Update method or closes the result set. At that time, a write
lock is placed on the row to prevent other transactions from modifying it. The change to the database is not
permanent until connection A commits the transaction.

Reading or fetching a row does not lock the row. If connection A fetches but does not modify a row,
connection B can still modify the row.

If connection B does modify the current row, the row becomes locked. In this case, connection A cannot
modify the current row. If connection A fetches the current row again, and the row has been deleted,
connection A gets the next row in the result set. If the row has been modified, connection A gets the latest
copy of the row. If the columns of the index used by connection A have been modified, connection A sees
the change as a delete followed by an insert, and so gets the next row in the result set.

Synchronization

Synchronization behaves as a separate connection. During the upload phase, UltraLite applications can
access UltraLite databases in a read-only fashion. During the download phase, read-write access is permitted,
but if an application changes a row that the download then attempts to change, the download will fail and
roll back. You can disable access to data during synchronization by setting the Disable Concurrency
synchronization parameter.

Tip
If synchronization fails, UltraLite supports resumable downloads on all platforms. See “Handling failed
downloads” [MobiLink - Server Administration].

F For more information, see “UltraLite Clients” [MobiLink - Client Administration] and “Disable
Concurrency synchronization parameter” [MobiLink - Client Administration].

How UltraLite tracks row states

Maintaining row state information is a powerful part of the UltraLite feature set. Without this built-in
functionality, you would have to implement logic to keep track of the current position in open tables. Tracking
the state of tables and rows is particularly important for data synchronization.

Each row in an UltraLite database has a one-byte marker to keep track of the state of the row. The row states
are used to control transaction processing, recovery, and synchronization. Different actions produce different
results with commits and rollbacks:

Introducing UltraLite

18 Copyright © 2006, iAnywhere Solutions, Inc.

♦ When a delete is issued The state of each affected row is changed to reflect the fact that it was
deleted. Rolling back a delete is as simple as restoring the original state of the row.

♦ When a delete is committed The affected rows are not always removed from memory. If the row
has never been synchronized, then it is removed. If the row has been synchronized, then it is not removed
until the next synchronization confirms the delete with the consolidated database. After the next
synchronization, the row is removed from memory.

♦ When a row is updated A new version of the row is created. The states of the old and new rows are
set so the old row is no longer visible and the new row is visible. When an update is synchronized, both
the old and new versions of the row are needed to allow conflict detection and resolution.

All old row versions are deleted after synchronization. If a row is updated many times between
synchronizations, only the oldest version of the row and the most recent version of the row are kept.

Transaction processing, recovery, and backup

UltraLite provides transaction processing. A transaction is a logical set of operations that are executed
atomically; that is, either all operations in the transaction are stored in the database or none are. If a transaction
is committed, all operations are stored in the database; if a transaction is rolled back, none are.

Some transactions consist of a single operation. Many programming interfaces use an autocommit setting
to commit a transaction after each operation. If you are using one of these interfaces, you must set autocommit
to off to exploit multi-operation transactions. The way of turning autocommit off depends on the
programming interface you are using; in most interfaces it is a property of the connection object.

Recovery from system failure

If an application using an UltraLite database stops running unexpectedly, the UltraLite database
automatically recovers to a consistent state when the application is restarted. All transactions committed
prior to the unexpected failure are present in the UltraLite database. All transactions not committed at the
time of the failure are rolled back.

UltraLite does not use a transaction log to perform recovery. Instead, UltraLite uses the state byte for every
row to determine the fate of a row when recovering. When a row is inserted, updated, or deleted in an
UltraLite database, the state of the row is modified to reflect the operation and the connection that performed
the operations. When a transaction is committed, the states of all rows affected by the transaction are modified
to reflect the commit. If an unexpected failure occurs during a commit, the entire transaction is rolled back
on recovery.

F For information about state bytes, see “How UltraLite tracks row states” on page 18.

Backups
UltraLite provides protection against system failures, but not against media failures. The best way of making
a backup of an UltraLite application is to synchronize with a consolidated database. To restore an UltraLite
database, start with an empty database and populate it from the consolidated database through
synchronization.

Understanding database management fundamentals for UltraLite

Copyright © 2006, iAnywhere Solutions, Inc. 19

However, you can also just copy the database file to a desktop computer as a manual backup mechanism in
smaller UltraLite deployments.

Indexes in UltraLite databases

UltraLite supports the notion of database indexes. Indexes can greatly improve the performance of searches
on the indexed column(s). However, indexes take up space within the database file and slow down insert,
update and delete operations.

When UltraLite optimizes a SQL query, it checks to see if indexes exist that can help return the results more
efficiently.

You can index single or multiple column types—with the exception of LONG VARCHAR and LONG
BINARY columns. Every table in an UltraLite database must have at least one index: the primary key.

Tip
You can use the UltraLite table API to iterate over the rows of an index in a predictable order.

See also
♦ “Working with UltraLite indexes” on page 65
♦ “Index performance considerations” on page 33
♦ “max_hash_size property” on page 106
♦ “Database page size considerations” on page 36
♦ “page_size property” on page 112

Introducing UltraLite

20 Copyright © 2006, iAnywhere Solutions, Inc.

Part II. Using UltraLite Databases

This part describes how to create and maintain UltraLite databases.

CHAPTER 2

Creating and Configuring UltraLite Databases

Contents
Creating UltraLite databases ... 24
Choosing creation-time database properties ... 30
Configuring post-creation database options .. 40

About this chapter
This chapter describes how to create and configure UltraLite databases. It discusses the methods of creation
you can use and lists the considerations for the database properties and options you can set.

Copyright © 2006, iAnywhere Solutions, Inc. 23

Creating UltraLite databases
Irrespective of the database creation method you employ, you must always configure the database properties
that control and/or define characteristics of the database when you create a database. You do not need to
configure any database properties if you are comfortable with the defaults values. However, once the database
has been created, you cannot re-configure these values. If you need to change any database property, you
must re-create the database.

You can categorize database creation methods into two categories:

♦ Desktop creation methods with UltraLite administration tools designed for this purpose. This chapter
will primarily focus on these methods.

♦ On-device creation methods with UltraLite APIs. On-device creation methods are primarily described
in each API specific UltraLite programming guide. These methods are briefly described here for reasons
of completeness only.

Once the database is created, you can connect to it and build the tables and other database objects you need.

Sharing a database among multiple platforms
Within the configuration differences imposed by different operating systems, you might be able to copy the
database from one device to another. If you are unsure of property compatibility among multiple platforms,
you should create a database in Sybase Central with the Create Database wizard for UltraLite. This wizard
handles the file compatibility logic for you, which prevents you from creating a file that is not supported on
your combination of deployment devices.

See also
♦ “Choosing creation-time database properties” on page 30
♦ “The UltraLite database file” on page 15
♦ “UltraLite Connection String Parameters Reference” on page 127
♦ “Viewing UltraLite database settings” on page 78
♦ “Working with UltraLite Databases” on page 55

Desktop creation

The UltraLite Create Database wizard Choose this method if you need help navigating the available
database creation properties. This wizard simplifies your choices by restricting what you can configure based
on the target platform(s) you select. Once the database is created, it displays the command line syntax that
you can then record and subsequently use with the ulcreate utility. See “Creating an UltraLite database from
Sybase Central” on page 25.

The MobiLink Create Synchronization Model wizard Choose this method, if:

♦ You are creating a complex synchronization system with multiple remote UltraLite databases and a
centralized consolidated database.

♦ You need to use reference database other than a SQL Anywhere database.

Creating and Configuring UltraLite Databases

24 Copyright © 2006, iAnywhere Solutions, Inc.

See “Creating an UltraLite database from a MobiLink synchronization model” on page 26.

The command line Choose any of the following utilities:

♦ Use the ulcreate utility if you are very familiar with database creation properties and want a fast alternative
to creating a new, but empty, UltraLite database. This option is particularly useful for creating databases
in batch operations. See “Creating an UltraLite database from the command prompt” on page 25.

♦ Use the ulinit utility if you want to create a new, but empty, UltraLite database sourced from a SQL
Anywhere reference database schema. See “Creating an UltraLite database from a SQL Anywhere
reference database” on page 26.

♦ Use the ulload utility if you have an XML file that will serve as the source point for the schema and/or
data of your new UltraLite database. See “Creating an UltraLite database from XML” on page 28.

Creating an UltraLite database from Sybase Central

You can create a database in Sybase Central using the UltraLite Create Database wizard.

♦ To create a new UltraLite database (Sybase Central)

1. Start Sybase Central by choosing Start ► Programs ► SQL Anywhere 10 ► Sybase Central.

2. Create an UltraLite database by choosing Tools ► UltraLite ► Create Database.

The Create Database wizard appears.

3. Follow the instructions in the wizard.

See also
♦ “Creating an UltraLite database from the command prompt” on page 25
♦ “Creating an UltraLite database from a SQL Anywhere reference database” on page 26
♦ “Creating an UltraLite database from XML” on page 28
♦ “Choosing creation-time database properties” on page 30
♦ “Upgrading UltraLite” [SQL Anywhere 10 - Changes and Upgrading]

Creating an UltraLite database from the command prompt

You can create a database from a command prompt with the ulcreate utility. With this utility, you can include
utility options to specify different properties for the database.

♦ To create a new UltraLite database (command prompt)

1. Open a command prompt.

2. Run the ulcreate utility, including any necessary parameters.

For example, to create a case-sensitive UTF-8 database called test.udb, such that it overwrites a database
if it already exists, run the command with the following syntax:

Creating UltraLite databases

Copyright © 2006, iAnywhere Solutions, Inc. 25

ulcreate -c "DBF=test.udb" -o "case=respect;utf_encoding=1" -y

Notice that supplying a database file in a connection string is simply an alternative to specifying the
database file after the other command prompt options. For example:

ulcreate -o "case=respect;utf_encoding=1" -y test.udb

See also
♦ “Creating an UltraLite database from Sybase Central” on page 25
♦ “Creating an UltraLite database from a SQL Anywhere reference database” on page 26
♦ “Creating an UltraLite database from XML” on page 28
♦ “UltraLite Create Database utility (ulcreate)” on page 165
♦ “Choosing creation-time database properties” on page 30
♦ “Upgrading UltraLite” [SQL Anywhere 10 - Changes and Upgrading]

Creating an UltraLite database from a MobiLink synchronization model

MobiLink includes a modeling system that allows you to create a remote client with schema definitions and
table maps created with the Create Synchronization Model wizard. This wizard creates a file that contains
the information about the synchronization model (remote and consolidated databases).

Once you have created your model, you can work in Model mode in Sybase Central and customize your
synchronization model before you deploy it.

When the model is ready, you can then deploy it to generate the scripts and tables required for your UltraLite
remote.

See “Creating and configuring a model” [MobiLink - Getting Started].

Creating an UltraLite database from a SQL Anywhere reference database

A reference database is a SQL Anywhere database that serves as a template for the UltraLite database you
want to create. Your UltraLite database is a subset of the columns, tables, and indexes in this reference
database. You select these objects as part of a publication in the reference database.

In previous versions of UltraLite, a reference database was required by some modes of development. Now,
unless you are using the SQL Anywhere database as a consolidated database to collect and manage data
from multiple remote databases, there is no clear development advantage to using this method—unless you
want to first model your data with an architecture tool like Sybase's PowerDesigner Physical Data Model.

You can initialize an UltraLite database with the ulinit utility for UltraLite. With this utility, you can include
utility options to specify different properties for the database.

♦ To initialize/extract a new UltraLite database from a reference database (command
prompt)

1. Create a new SQL Anywhere database.

Creating and Configuring UltraLite Databases

26 Copyright © 2006, iAnywhere Solutions, Inc.

You can either create a new one with the dbinit utility or use Sybase Central. You can also create a
SQL Anywhere database from non-SQL Anywhere databases, by migrating data from these third-party
files.

Set database properties with UltraLite usage in mind
The UltraLite database is generated with the same property settings as those in the reference database.
By setting these options in the reference database, you also control the behavior of your UltraLite
database. These options include:

♦ Date format

♦ Date order

♦ Nearest century

♦ Precision

♦ Scale

♦ Time format

♦ Timestamp format

2. Prepare the reference database by adding objects required by the UltraLite database.

♦ Tables and keys Add the tables and remember to set primary keys as they are required by
UltraLite. If you need to, you can also assign foreign key relationships that you need within your
UltraLite application. You can use any convenient tool, such as Sybase Central or Sybase
PowerDesigner Physical Data Model, or another database design tool.

♦ Indexes
If your UltraLite applications frequently retrieve information in a particular order, consider adding
an index to your reference database specifically for this purpose. An index can improve performance
dramatically, particularly on slow devices. Note that primary keys are automatically indexed, but
other columns are not.

♦ Publications If you want to synchronize different tables at different times, you can do so using
multiple UltraLite specific publications to define table subsets and set synchronization priority with
them.

For information on multiple MobiLink server synchronization options, see “Publications in
UltraLite” [MobiLink - Client Administration].

3. Run the ulinit utility, including any necessary options.

For example, to initialize an UltraLite database called customer.udb with tables contained in two distinct
publications, enter the following command line at a command prompt. Specifically, Pub1 may contain
a small subset of tables for priority synchronization, while Pub2 could contain the bulk of the data.

ulinit -a DBF=MySource.db
-c DBF=customer.udb -n Pub1 -n Pub2

Creating UltraLite databases

Copyright © 2006, iAnywhere Solutions, Inc. 27

See also
♦ “Creating an UltraLite database from Sybase Central” on page 25
♦ “Creating an UltraLite database from the command prompt” on page 25
♦ “Creating an UltraLite database from XML” on page 28
♦ “UltraLite Initialize Database utility (ulinit)” on page 172
♦ “Choosing creation-time database properties” on page 30
♦ “Upgrading UltraLite” [SQL Anywhere 10 - Changes and Upgrading]

Creating an UltraLite database from XML

You can use XML as an intermediate format for managing your UltraLite database, provided that the format
follows the requirements for UltraLite usage. You can use XML as follows:

♦ Load data into a new database with a different set of database properties/options.

♦ Upgrade the schema from a database created by a previous version of UltraLite.

♦ Create a text version of your UltraLite database that you can check into a version control system.

UltraLite cannot use an arbitrary XML file. The <install-dir>\win32 directory contains a usm.xsd file. Use
this file to review the XML format.

♦ To create an UltraLite database from an XML file

1. Save the XML file to a directory of your choosing. You can either:

♦ Export/unload a database to an XML file. If you are unloading a SQL Anywhere database, use any
of the supported export methods. See “Exporting relational data as XML” [SQL Anywhere Server
- SQL Usage].

♦ Take XML output from another source—that source could be another relational database or even
a Web site where transactions are recorded to a file. However, always ensure that the format of the
XML meets the UltraLite requirements.

2. Open a command prompt.

3. Run the ulload utility, including any necessary parameters.

For example, to create a new UltraLite database in the file sample.udb from the table formats and data
in sample.xml:

ulload -c DBF=sample.udb sample.xml

See also
♦ “Creating an UltraLite database from Sybase Central” on page 25
♦ “Creating an UltraLite database from the command prompt” on page 25
♦ “Creating an UltraLite database from a SQL Anywhere reference database” on page 26
♦ “Upgrading UltraLite” [SQL Anywhere 10 - Changes and Upgrading]
♦ “UltraLite Load XML to Database utility (ulload)” on page 174
♦ “Choosing creation-time database properties” on page 30

Creating and Configuring UltraLite Databases

28 Copyright © 2006, iAnywhere Solutions, Inc.

On-device creation

You can program your application to create a new UltraLite database if one cannot be detected at connection
time. The application can then use SQL to create tables, indexes, foreign keys, and so on. Populating the
database is then simply a question synchronizing with a consolidated database.

Considerations
This option is not as ideal as other available database creation options: by adding all the additional database
creation and SQL code, your application size can grow considerably. Nonetheless, this option can simplify
deployment because you only need to deploy the application to the device. Additionally, in some pre-
production development cycles, you may want to delete and reconstruct the database on your device for
testing purposes.

See also
♦ “Desktop creation” on page 24
♦ UltraLite for C/C++: “CreateDatabase function” [UltraLite - C and C++ Programming]
♦ UltraLite.NET: “CreateDatabase method” [UltraLite - .NET Programming]
♦ UltraLite for AppForge: “CreateDatabase method” [UltraLite - AppForge Programming]
♦ UltraLite for M-Business Anywhere: “Method createDatabase” [UltraLite - M-Business Anywhere

Programming]

Creating UltraLite databases

Copyright © 2006, iAnywhere Solutions, Inc. 29

Choosing creation-time database properties
UltraLite database creation properties, written to the database via all administration tools or even the
CreateDatabase function, are recorded as name=value pairs. UltraLite stores these properties in system
tables, which means that users and/or applications can access them in the same way. See “sysuldata system
table” on page 197.

Accessing properties
You cannot change properties after you have created a database. However, you can view them in Sybase
Central. See “Viewing UltraLite database settings” on page 78.

You can also access them programmatically from the UltraLite application. Typically, applications should
not access the data in these tables directly. Instead, your applications should call the GetDatabaseProperty
function appropriate to the API.

For API specific details, see:

♦ UltraLite C/C++: “GetDatabaseProperty function” [UltraLite - C and C++ Programming]
♦ MobileVB: “GetDatabaseProperty method” [UltraLite - AppForge Programming]
♦ UltraLite.NET: “GetDatabaseProperty method” [UltraLite - .NET Programming]
♦ M-Business: “Method getDatabaseProperty” [UltraLite - M-Business Anywhere Programming]

In addition to these properties, you can further configure other aspects of your database with either database
options or connection parameters.

F For database options you can set at any time, see “Configuring post-creation database
options” on page 40. For parameters you configure at connection time, see “Connecting to an UltraLite
Database” on page 43 and “UltraLite Connection String Parameters Reference” on page 127.

Property list Description

case Sets the case-sensitivity of string comparisons in the UltraLite database. See
“Case sensitivity considerations” on page 33 and “case
property” on page 94.

checksum_level Sets the level of checksum validation in the database. See “Verifying page in-
tegrity with checksums” on page 37 and “checksum_level
property” on page 95.

date_format Sets the default string format in which dates are retrieved from the database. See
“Date considerations” on page 34 and “date_format property” on page 97.

date_order Controls the interpretation of date ordering of months, days, and years. See “Date
considerations” on page 34 and “date_order property” on page 100.

fips Controls AES FIPS compliant data encryption using a Certicom certified cryp-
tographic algorithm. See “Security considerations” on page 38 and “fips prop-
erty” on page 102.

Creating and Configuring UltraLite Databases

30 Copyright © 2006, iAnywhere Solutions, Inc.

Property list Description

max_hash_size Set the maximum number of bytes that are used to hash the UltraLite indexes.
See “Index performance considerations” on page 33 and “max_hash_size prop-
erty” on page 106.

nearest_century Controls the interpretation of two-digit years in string-to-date conversions. See
“Nearest century conversion considerations” on page 35 and “nearest_century
property” on page 109.

obfuscate Controls whether or not to obfuscate data in the database. Obfuscation is a form
of simple encryption. See “Security considerations” on page 38 and “obfuscate
property” on page 110.

page_size Defines the database page size. See “Database page size
considerations” on page 36 and “page_size property” on page 112.

precision Specifies the maximum number of digits in the result of any decimal arithmetic.
See “Decimal point position considerations” on page 36 and “precision prop-
erty” on page 114.

scale Specifies the minimum number of digits after the decimal point when an arith-
metic result is truncated to the maximum precision. See “Decimal point position
considerations” on page 36 and “scale property” on page 116.

time_format Sets the format for times retrieved from the database. See “Time considera-
tions” on page 34 and “time_format property” on page 118.

timestamp_format Determines how the timestamp is formatted in UltraLite. See “Timestamp con-
siderations” on page 35 and “timestamp_format property” on page 120.

timestamp_incre-
ment

Determines how the timestamp is truncated in UltraLite. See “Timestamp con-
siderations” on page 35 and “timestamp_increment property” on page 123.

utf8_encoding Encodes data using the UTF-8 format, 8-bit multibyte encoding for Unicode. See
“Character considerations” on page 31 and “utf8_encoding
property” on page 125.

Character considerations

The results of comparisons on strings, and the sort order of strings, in part depends on the character set,
collation, and encoding properties of the database.

You cannot change the collation of the database once UltraLite writes the file. To change the collation that
an existing database uses, do the following: unload the database, create a new database using the appropriate
collation, and then reload the database. You may need to convert the data to match the new collation.

Choosing the correct character set, collation, and encoding properties for your database is primarily
determined by:

♦ The sort order you require. Generally speaking, you should choose the collation that best sorts the
characters you intend to store in your database.

Choosing creation-time database properties

Copyright © 2006, iAnywhere Solutions, Inc. 31

♦ The platform of your device. Requirements among supported devices can vary, and some require that
you UTF-8 encode your characters. If you need to support multiple devices, you need to determine
whether a database can be shared.

♦ If you are synchronizing data, which languages and character sets are supported by the consolidated
database. You must ensure that the character sets used in the UltraLite database and the consolidated
database are compatible. Otherwise, data could be lost or become altered in unexpected ways if characters
in one database's character set do not exist in the other's character set. If you have deployed UltraLite in
a multilingual environment, you should also UTF-8 encode your UltraLite database.

When you synchronize, the MobiLink server converts characters as follows:

1. The UltraLite database characters are converted to Unicode.

2. The Unicode characters are converted into the consolidated database's character set.

See also
♦ “Platform requirements for character set encoding” on page 32
♦ “utf8_encoding property” on page 125
♦ “Overview of character sets, encodings, and collations” [SQL Anywhere Server - Database

Administration]
♦ “UltraLite Connection String Parameters Reference” on page 127
♦ “Character Set Considerations” [MobiLink - Server Administration]
♦ “Case sensitivity considerations” on page 33
♦ “Security considerations” on page 38

Platform requirements for character set encoding

Each platform has specific character set and encoding requirements.

Palm OS

Never use UTF-8 encoding; Palm does not support Unicode characters. Always choose a collation which
matches the code page of your intended device.

Symbian OS

Always use UTF-8 encoding. This is the natural character set of the device. Symbian does not support the
MBCS character sets.

Windows desktop and Windows CE

When using a UTF-8 encoded database on Windows, you should pass wide characters to the database. If
you use UTF-8 encoding on these platforms, UltraLite expects that non-wide string parameters are UTF-8
encoded, which is not a natural character set to use on Windows. The exception is for connection strings,
where string parameters are expected to be in the active code page. However, by using wide characters, you
can avoid this complication.

Creating and Configuring UltraLite Databases

32 Copyright © 2006, iAnywhere Solutions, Inc.

See also
♦ “utf8_encoding property” on page 125
♦ “Overview of character sets, encodings, and collations” [SQL Anywhere Server - Database

Administration]
♦ “UltraLite Connection String Parameters Reference” on page 127
♦ “Character Set Considerations” [MobiLink - Server Administration]
♦ “Case sensitivity considerations” on page 33
♦ “Security considerations” on page 38

Index performance considerations

A hash is an optional part of an index entry that is stored in the index page. The hash transforms the actual
row values for the indexed columns into a numerical equivalent (a key), while still preserving ordering for
that index. The size of the key, and consequently how much of the actual value UltraLite hashes, is determined
by the hash size you set.

UltraLite databases automatically use a default maximum hash size of 4 bytes. You can change this default
to another size, or change it to 0 to disable index hashing. You can override this database default hash size
when you create a new index.

How a hash improves performance
A row ID allows UltraLite to locate the row for the actual data in the table. A row ID is always part of an
index entry. If you set the hash size to 0 (that is, disable index hashing), then the index entry only contains
this row ID. For all other hash sizes, the hash key—which can contain all or part of the transformed data in
that row—is stored along with the row ID in the index page. Consequently you can improve query
performance on these indexed columns, because UltraLite may not always need to find, load, and unpack
data, before it can compare actual row values.

How you determine this database default hash size requires that you evaluate the tradeoff between query
efficiency and database size: the higher the maximum hash value, the larger the database size grows.

See also
♦ “Working with UltraLite indexes” on page 65
♦ “Index performance considerations” on page 33
♦ “max_hash_size property” on page 106
♦ “Database page size considerations” on page 36

Case sensitivity considerations

The results of comparisons on strings, and the sort order of strings, in part depends on the case sensitivity
of the database. Case sensitivity in UltraLite databases affects:

♦ Data The case sensitivity of the data is reflected in indexes and in string comparisons. By default,
comparisons are always case insensitive. For example, UltraLite compares short sleeve t and Short
Sleeve T equally.

Choosing creation-time database properties

Copyright © 2006, iAnywhere Solutions, Inc. 33

♦ Identifiers Identifiers include table names, column names, and so on. Identifiers, including user IDs,
are always case insensitive, regardless of the database case sensitivity. For example, UltraLite always
compares UID=DBA and UID=dba equally.

♦ Passwords Passwords are always case sensitive in UltraLite databases. For example, UltraLite does
not compare PWD=sql and PWD=sQl equally.

There are some collations where particular care is required when assuming case insensitivity of identifiers.
In particular, Turkish collations have a case-conversion behavior that can cause unexpected and subtle errors.
The most common error is that a system object containing a letter I or i is not found.

See also
♦ “Character considerations” on page 31
♦ “case property” on page 94

Date considerations

Values whose data types are DATE are represented in a format set by the date_format property. Date values
can, however, also be represented by strings. Before it can be retrieved, a date value must be assigned to a
string variable.

Date parts you can use

UltraLite builds a date from date parts. Date parts can include the year, the month, the day of the month,
the day of the week, the day of the year, the hour, the minute, the second (and parts thereof).

Use the date_order property to arrange these date parts in a specific order.

ISO (that is, YYYY-MM-DD) is the default date format and order. For example, "7th of January 2006" in
this international format is written: 2006-01-07. If you do not want to use the default ISO date format and
order, you must specify a different format and order for these date parts.

See also
♦ “date_order property” on page 100
♦ “date_format property” on page 97
♦ “Timestamp considerations” on page 35

Time considerations

UltraLite writes times from time parts you set with the time_format property. Time parts can include hours,
minutes, seconds (and milliseconds).

Time values can, however, also be represented by strings. Before it can be retrieved, a time value must be
assigned to a string variable.

If you are not using the default ISO format (that is, HH:MM:SS), you must specify the format of these time
parts.

Creating and Configuring UltraLite Databases

34 Copyright © 2006, iAnywhere Solutions, Inc.

ISO (that is, HH:MM:SS) is the default time format. For example, "midnight" in this international format is
written: 00:00:00. If you do not want to use the default ISO time format, you must specify a different format
and order for these time parts.

See also
♦ “time_format property” on page 118
♦ “Timestamp considerations” on page 35

Timestamp considerations

UltraLite creates a timestamp from date and time parts that you set with the date_format and time_format
properties. Together, date and time total seven parts (that is, year, month, day, hour, minute, second, and
millisecond).

Timestamp values can, however, also be represented by strings. Before it can be retrieved, a timestamp value
must be assigned to a string variable.

Typically timestamp columns ensure data integrity is maintained when synchronizing with a consolidated
database. Time stamps help identify when concurrent data updates have occurred among multiple remote
databases by tracking the last time that each user synchronized.

Tip
Ensure that the consolidated database and the UltraLite remote maintain timestamps and timestamp
increments to the same resolution. By setting the these properties to match that of the consolidated database,
you can help to avoid spurious inequalities.

See also
♦ “Date considerations” on page 34
♦ “Time considerations” on page 34
♦ “timestamp_increment property” on page 123
♦ “timestamp_format property” on page 120
♦ “Timestamp-based downloads” [MobiLink - Server Administration]
♦ “Understanding concurrency in UltraLite” on page 17

Nearest century conversion considerations

UltraLite automatically converts a string into a date when a date value is expected, even if the year is
represented in the string by only two digits. In the case of a two-digit date, you need to set the appropriate
rollover value.

Choosing an appropriate rollover value typically is determined by:

♦ The use of two-digit dates Otherwise, nearest century conversion isn't applicable. Two-digit years
less than the nearest_century value you set are converted to 20yy, while years greater than or equal to the
value are converted to 19yy.

Choosing creation-time database properties

Copyright © 2006, iAnywhere Solutions, Inc. 35

However, you should always store four-digit dates to avoid issues with incorrect conversions and keep
dates unambiguous. See “Using unambiguous dates and times” [SQL Anywhere Server - SQL
Reference].

♦ Consolidated database compatibility For example, the historical SQL Anywhere behavior is to
add 1900 to the year. Adaptive Server Enterprise behavior is to use the nearest century, so for any year
where value yy is less than 50, the year is set to 20yy.

♦ What the date represents: past event or future event Birth years are typically those that would
require a lower rollover value since they occur in the past. So for any year where yy is less than 20, the
year should be set to 20yy. However, if the date is used as an expiry date, then having a higher value would
be a logical choice, since the date is occurring in the future.

If this option is not set, the default setting of 50 is assumed. Thus, two-digit year strings are understood to
refer to years between 1950 and 2049.

See also
♦ “nearest_century property” on page 109
♦ “Ambiguous string to date conversions” [SQL Anywhere Server - SQL Reference]

Decimal point position considerations

The position of the decimal point is determined by the precision and the scale of the number: precision is
the total number of digits to the left and right of the decimal point; scale is the minimum number of digits
after the decimal point when an arithmetic result is truncated to the maximum precision.

Choosing an appropriate decimal point position is typically determined by:

♦ The type of arithmetic procedures you perform Multiplication, division, addition, subtraction,
and aggregate functions can all have results that exceed the maximum precision.

For example, when a DECIMAL(8,2) is multiplied with a DECIMAL(9,2), the result could require a
DECIMAL(17,4). If precision is 15, only 15 digits are kept in the result. If scale is 4, the result is a
DECIMAL(15,4). If scale is 2, the result is a DECIMAL(15,2). In both cases, there is a possibility of
overflow error.

♦ The relationship between scale and precision values The scale sets the number of digits in
the fractional part of the number, and cannot be negative or greater than the precision.

See also
♦ “precision property” on page 114
♦ “scale property” on page 116

Database page size considerations

The unit of storage within a database is known as a page, and all database input and output operations are
always carried out a page at a time. UltraLite allocates a page to hold either:

Creating and Configuring UltraLite Databases

36 Copyright © 2006, iAnywhere Solutions, Inc.

♦ Table rows (user or system tables)

♦ Index information

♦ MobiLink server synchronization information

If you are encrypting your database, UltraLite encrypts the data at the page level.

Choosing an optimal page size
UltraLite databases are stored in pages, and all I/O operations are carried out a page at a time. For most
applications, the UltraLite default page size of 4 KB is appropriate.

However, you can choose another size if your database deployment requires it. Just remember that the page
size you choose can affect the performance or size of the database. The typical rule of thumb is that larger
databases usually benefit from a larger page size, because smaller pages hold less information and may force
less efficient use of space—particularly if you insert rows that are slightly more than half a page in size:

♦ Number of rows The larger the database, the more row that can be stored on each page. Because a
row (excluding BLOBs) must fit on a page, the page size determines how large the largest row can be.
In general, smaller page sizes are likely to benefit operations that retrieve a relatively small number of
rows from random locations. By contrast, larger pages tend to benefit queries that perform sequential
table scans. In this situation, reading one page into memory to obtain the values of one row may have
the side effect of loading the contents of the next few rows into memory.

♦ Cache size Large page sizes require larger cache sizes, because fewer large pages can fit into the same
space. Should you choose a larger page size, such as 8 KB, you may want to increase the size of the
cache when you connect to the database.

For example, 1 MB of memory can hold 1000 pages that are each 1 KB in size, but only 250 pages that
are 4 KB in size. How many pages is enough depends entirely on your database and the nature of the
queries your application performs. You can conduct performance tests with various cache sizes. If your
cache cannot hold enough pages, performance suffers as UltraLite begins swapping frequently-used
pages to disk. See “CACHE_SIZE connection parameter” on page 128.

♦ Index entries Page size also affects indexes. The larger the database page, the more index entries it
can hold. See “Working with UltraLite indexes” on page 65.

However, there are instances when a smaller page size is in order. For example, small page sizes allow
UltraLite to run with fewer resources because it can store more pages in a cache of the same size. Small
pages are particularly useful if your database must run on small devices with limited memory. They can also
help in situations when you use your database primarily to retrieve small pieces of information from random
locations.

Verifying page integrity with checksums

You can check the validity of the pages stored to disk, flash, or memory by setting the checksum_level
database property. Depending on the level you choose, UltraLite calculates then records a checksum for
each database page, before it writes the page to storage. See “checksum_level property” on page 95.

If the calculated checksum does not match the stored checksum for a page read from storage, the page has
been modified or became corrupted during the storage/retrieval of the page. If a checksum verification fails,

Choosing creation-time database properties

Copyright © 2006, iAnywhere Solutions, Inc. 37

UltraLite stops the database and reports fatal error. This error cannot be corrected; you must re-create your
UltraLite database and report the database failure to iAnywhere.

See also
♦ “Indexes in UltraLite databases” on page 20
♦ “page_size property” on page 112
♦ “Connecting to an UltraLite Database” on page 43

Security considerations

By default, UltraLite databases are unencrypted on disk. Text and binary columns are plainly readable within
the database when using a viewing tool such as a hex editor. If you need to encrypt data for greater security,
consider the options listed below.

♦ Obfuscation This option provides protection against casual attempts to access data in the database.
It does not provide as much security as strong encryption. Obfuscation has minimal performance impact.
You set obfuscation with the obfuscate property. End users do not need to supply a corresponding
connection parameter.

For details on how to use the obfuscate property, see “obfuscate property” on page 110.

♦ AES 128-bit strong encryption UltraLite databases can be strongly encrypted using the AES 128-
bit algorithm, which is the same algorithm used to encrypt SQL Anywhere databases. Use of strong
encryption provides security against skilled and determined attempts to gain access to the data, but has
a significant performance impact. You set encryption in the wizards by selecting the Encrypt Database
option and then selecting AES Strong Encryption. Using a creation utility, you set the key with the key
connection parameter. This same parameter is used by end users when connecting to the database after
it has been created. See “DBKEY connection parameter” on page 143.

♦ AES FIPS 140-2 compliant encryption UltraLite provides encryption libraries compliant with the
FIPS 140-2 US and Canadian government standard (using a Certicom certified cryptographic module).
Only choose this option if you are a government agency that requires this strength of encryption. You
set FIPS compliant encryption with the FIPS property. End users need to then supply the required key
in the corresponding connection parameter.

For more information, see “fips property” on page 102 and “DBKEY connection
parameter” on page 143.

Tip
The MobiLink server's synchronization streams can use public/private keys to encrypt streamed data. For
ease of deployment, you can embed these certificates in the UltraLite database when you create it. For details,
see “Configuring MobiLink clients to use transport-layer security” [SQL Anywhere Server - Database
Administration].

Creating and Configuring UltraLite Databases

38 Copyright © 2006, iAnywhere Solutions, Inc.

Notes
Both the FIPS and AES database encryption types use 128-bit AES. This means that if you use the same
encryption key, the database is encrypted the same way irrespective of the standard you choose.

Caution
You can change the encryption key after the database has been created, but only under extreme caution. See
any of the following:

♦ UltraLite for C++: “ChangeEncryptionKey function” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “ChangeEncryptionKey method” [UltraLite - AppForge Programming]
♦ UltraLite.NET: “ChangeEncryptionKey method” [UltraLite - .NET Programming]
♦ UltraLite for M-Business Anywhere: “Method changeEncryptionKey” [UltraLite - M-Business

Anywhere Programming]

This operation is costly and is non-recoverable: if your operation terminates mid-course, you will lose your
database entirely.
Additionally, if you lose or forget the encryption key for a strongly encrypted database, there is no way to
access the data in it—even with the assistance of technical support. The database must be discarded and you
must create a new database.

See also
♦ “fips property” on page 102
♦ “obfuscate property” on page 110
♦ “DBKEY connection parameter” on page 143
♦ UltraLite for AppForge: “Encryption and obfuscation” [UltraLite - AppForge Programming]
♦ UltraLite.NET: “Encryption and obfuscation” [UltraLite - .NET Programming]
♦ UltraLite for C++: “Encrypting data” [UltraLite - C and C++ Programming]
♦ UltraLite for M-Business Anywhere: “Database encryption and obfuscation” [UltraLite - M-Business

Anywhere Programming]

Choosing creation-time database properties

Copyright © 2006, iAnywhere Solutions, Inc. 39

Configuring post-creation database options
There are two database options you can set in UltraLite databases, both of which identify the database during
MobiLink server synchronization.

Remote ID considerations for MobiLink server synchronization

The remote ID is a unique identifier employed by an UltraLite remote that is used for MobiLink
synchronization. The MobiLink remote ID is initially set to NULL and the MobiLink server sets it to a GUID
during a database's first synchronization (or if you reset the remote ID to NULL again). However, the remote
ID can be any string that has meaning to you, provided that the string remains unique among all remote
MobiLink clients. The uniqueness requirement is always enforced.

You use the remote ID to store the synchronization progress for the MobiLink user name. By including a
unique remote ID, user names are no longer required to be unique. The user name can now be a true user
name that is used to identify a client for authentication.

The remote ID becomes particularly useful when you have multiple MobiLink users synchronizing the same
UltraLite client database. In this case, your synchronization scripts should reference the remote ID and not
just the user name.

♦ To set/reset a remote ID in Sybase Central

1. In the Folders view, right-click the UltraLite database you have connected to, and choose Options from
the popup menu.

The Database Options dialog appears.

2. Select the ml_remote_id table entry.

3. In the Value field, type the new value for the ID.

4. Click Set Now to save your changes.

5. Click Close.

See also
♦ “Introducing UltraLite as a MobiLink client” [MobiLink - Client Administration]
♦ “Remote IDs” [MobiLink - Client Administration]
♦ “UltraLite user authentication” [MobiLink - Client Administration]
♦ “User Name synchronization parameter” [MobiLink - Client Administration] and “Password

synchronization parameter” [MobiLink - Client Administration]
♦ “ml_remote_id option” on page 108

Global database ID considerations

The global ID sets a starting value for GLOBAL AUTOINCREMENT columns in order to maintain primary
key uniqueness when synchronizing with the MobiLink server. If a row is added to a table and does not have

Creating and Configuring UltraLite Databases

40 Copyright © 2006, iAnywhere Solutions, Inc.

a value set already, UltraLite generates a value for the column by combining the global_database_id value
and the partition size. For more details, see “Using global autoincrement” [MobiLink - Server
Administration].

♦ To set/reset a global database ID in Sybase Central

1. In the Folders view, right-click the UltraLite database you have connected to, and choose Options from
the popup menu.

The Database Options dialog appears.

2. Select the global_database_id table entry.

3. In the Value field, type the new value for the ID.

4. Click Set Now to save your changes.

5. Click Close.

See also
♦ “global_id option” on page 104

Configuring post-creation database options

Copyright © 2006, iAnywhere Solutions, Inc. 41

CHAPTER 3

Connecting to an UltraLite Database

Contents
Introducing UltraLite database connections .. 44
Opening connections with connection strings ... 47
Storing parameters with the ULSQLCONNECT environment variable 53

About this chapter
This chapter describes how UltraLite administration tools and UltraLite applications connect to UltraLite
databases. It introduces various connection methods you can employ such as connection strings or the
ULSQLCONNECT parameter.

Copyright © 2006, iAnywhere Solutions, Inc. 43

Introducing UltraLite database connections
Any application that uses a database must establish a connection to that database before any transactions
can occur. An application can be an UltraLite command line utility, a connection dialog from either Sybase
Central tool or Interactive SQL, or your own custom application.

By connecting to an UltraLite database, you form a channel through which all activity from the application
takes place. Each connection attempt creates a database specific SQL transaction.

List of UltraLite database connection parameters

Some of the connection parameters you configure overlap with properties you define at creation time. At
creation time, you typically are defining the property required. At connection time, you must supply the
value that was configured at creation time. It is important that you understand the differences and
commonalities of these shared settings so you know what is expected and when.

Parameter name Description

CACHE_SIZE Defines the size of the database cache. See “CACHE_SIZE connection
parameter” on page 128.

CON Specifies a name of the current connection. See “CON connection pa-
rameter” on page 130.

DBF, and CE_FILE,
PALM_FILE, NT_FILE, or
SYMBIAN_FILE

At creation-time these parameters set the location of the database. For
subsequent connections, they tell UltraLite where to find the file.

You can use DBF if you are creating a single-platform application or
are connecting to an UltraLite administration tool. Use the other plat-
form-specific versions if you are programming an UltraLite client that
connects to different platform-specific databases.

See:

♦ “DBF connection parameter” on page 131
♦ “CE_FILE connection parameter” on page 133
♦ “PALM_FILE connection parameter” on page 137
♦ “NT_FILE connection parameter” on page 135
♦ “SYMBIAN_FILE connection parameter” on page 140

PALM_DB AppForge development only. Sets the correct UltraLite creator ID so
that creator ID is used, rather than the AppForge creator ID. Use this
with the PALM_FILE parameter. See “PALM_DB connection param-
eter” on page 139

DBN Identifies a running database by name rather than file name. See “DBN
connection parameter” on page 142.

DBKEY At creation-time, this parameter sets the encryption key to use. For
subsequent connections, names and then passes the same encryption
key for the database. If the incorrect key is named, the connection fails.
See “DBKEY connection parameter” on page 143.

Connecting to an UltraLite Database

44 Copyright © 2006, iAnywhere Solutions, Inc.

Parameter name Description

PALM_ALLOW_BACKUP Controls backup behavior over HotSync on Palm devices. See
“PALM_ALLOW_BACKUP connection parameter” on page 145 .

PWD At creation-time, sets the initial password for a user. For subsequent
connections, supplies the password for the user ID. See “PWD con-
nection parameter” on page 146.

RESERVE_SIZE Pre-allocates the file system space required for your UltraLite database
without actually inserting any data. See “RESERVE_SIZE connection
parameter” on page 148.

START Specifies the location of the UltraLite engine executable and then starts
it. See “START connection parameter” on page 149.

UID At creation-time, sets the initial user ID. For subsequent connections,
identifies a user to the database. The user ID must be one of up to four
user IDs stored in the UltraLite database. See “UID connection pa-
rameter” on page 150.

See also
♦ “Interpreting user ID and password combinations” on page 46
♦ “page_size property” on page 112

The role of user authentication

In UltraLite, you cannot disable authentication. A successful connection requires that a user be authenticated.
Unlike SQL Anywhere, UltraLite database users are created and managed solely for the purposes of
authentication—and not for the purposes of object ownership. Once a user authenticates and connects to the
database, the user has unrestricted access to everything in that database—including schema data.

You can only add or modify UltraLite users from an existing connection. Therefore, any changes to your
UltraLite user-base can only occur after you have connected with a valid UID and PWD.

If this is your first time connecting, the UID and PWD required are the same values set when you first created
the database. If you did not set an initial user, then you must authenticate with the defaults of UID=DBA and
PWD=sql.

Bypassing authentication

While you may not be able to disable authentication, you can bypass it simply by using UltraLite defaults
both when you create and connect to the database.

By not supplying both the UID and the PWD parameters—irrespective of the connection method you use
—UltraLite will then always assumes the defaults of UID=DBA and PWD=sql.

♦ To bypass authentication in UltraLite

1. Do not set a UID and PWD parameters when you create a database.

Introducing UltraLite database connections

Copyright © 2006, iAnywhere Solutions, Inc. 45

2. Do not delete or modify the default user in your UltraLite database.

3. Do not set a UID and PWD parameters when you connect to the database you have created.

See also
♦ “Considerations and limitations” on page 76
♦ “Working with UltraLite users” on page 76
♦ “Interpreting user ID and password combinations” on page 46

Interpreting user ID and password combinations

UltraLite allows you to set one, none, or both of the UID and PWD parameters—except when a partial
definition prevents a user from being identified by UltraLite. The table below tells you how UltraLite
interprets incomplete user definitions.

If you create a database with... It has this impact...

No user ID and password. UltraLite creates a default user with a UID of DBA and PWD of sql.
You do not need to supply these parameter upon future connection
attempts.

The user ID parameter only.

Examples:

♦ UID=JaneD

♦ UID=JaneD;PWD=

♦ UID=JaneD;PWD=""

UltraLite creates a default user with a UID of JaneD and an empty
PWD. When connecting, you must always supply the UID parameter.
The PWD parameter is not required.

The password parameter only.

Examples:

♦ PWD=3saBys

♦ UID=;PWD=3saBys

♦ UID="";PWD=3saBys

UltraLite generates an error. UltraLite cannot set a password without
a user ID.

See also
♦ “The role of user authentication” on page 45
♦ “Considerations and limitations” on page 76
♦ “Working with UltraLite users” on page 76

Connecting to an UltraLite Database

46 Copyright © 2006, iAnywhere Solutions, Inc.

Opening connections with connection strings
A connection string is an assembled set of parameters that is passed from an application to the runtime, so
that a connection can be defined and ultimately established.

There are three steps that take place before a connection to a database is opened:

1. The parameter definition phase You must define the connection via any combination of supported
parameters. Some connection parameters are always required to open a connection. Others are used to
adjust database features for a single connection.

How these parameters are supplied can vary depending on whether you are connecting from an UltraLite
administration tool, or an UltraLite application. See “Supplying UltraLite connection
parameters” on page 47 for details.

2. The string assembly phase Either you or the application assembles the supplied parameters into
a string. Connection strings contain a list of parameters defined as keyword=value pairs in a semi-colon
delimited list. For example, a connection string fragment that supplies a file name, user ID, and password
is written as follows:

DBF=myULdb.udb;UID=JDoe;PWD=token

See “Assembling parameters into connection strings” on page 49 for details.

3. The transmittal phase When the connection string has been assembled, it is passed to the database
via an UltraLite API to the UltraLite runtime for processing. If the connection attempt is validated, the
connection is granted. Connection failures can occur if:

♦ The database file supplied does not exist.

♦ Authentication was unsuccessful.

Supplying UltraLite connection parameters

How connection information is collected depends on how systematic or automated you require the input to
be. The more systematic the input, the more reliable the connection information is.

Connection details can be collected via different methods, depending on whether or not you are connecting
from a custom UltraLite application, or any of the SQL Anywhere administration tools for UltraLite (that
is, Interactive SQL, UltraLite command line utilities, and UltraLite wizards in Sybase Central).

Opening connections with connection strings

Copyright © 2006, iAnywhere Solutions, Inc. 47

Method Administra-
tion tools

Custom applications

Prompt the end user at connection time: when you require a user
to authenticate as one of the four supported database users. The
UltraLite graphical administration tools use a connection object.

Where possible, use either the ULConnectionParms or Connec-
tionParms object. It provides easier checking and a more sys-
tematic interface than using a connection string that is an
argument for the Open method.

For details, see any of the following:

♦ UltraLite for AppForge: “Authenticating users” [UltraLite
- AppForge Programming]

♦ UltraLite.NET: “Authenticating users” [UltraLite - .NET
Programming]

♦ UltraLite C/C++ : “Authenticating users” [UltraLite - C and
C++ Programming]

♦ UltraLite for M-Business Anywhere: “Authenticating
users” [UltraLite - M-Business Anywhere Programming]

♦ UltraLite for embedded SQL: “Authenticating users” [Ul-
traLite - C and C++ Programming]

X X

Use a connection string:if user authentication is not required
because the deployment is to a single-user device, or it is too
awkward to prompt a user each time they start the application.
The UltraLite command line utilities typically use a connection
string if a connection to a database is required. You can also
program your UltraLite application to read the values from a
stored file, or hard code it into your application.

For details, see any of the following:

♦ UltraLite for AppForge: “Connecting to an UltraLite
database” [UltraLite - AppForge Programming]

♦ UltraLite.NET: “Connecting to a database” [UltraLite
- .NET Programming]

♦ UltraLite C/C++ : “Connecting to a database” [UltraLite -
C and C++ Programming]

♦ UltraLite for M-Business Anywhere: “Connecting to an Ul-
traLite database” [UltraLite - M-Business Anywhere Pro-
gramming]

♦ UltraLite for embedded SQL: “Connecting to a
database” [UltraLite - C and C++ Programming]

X1 X3

Connecting to an UltraLite Database

48 Copyright © 2006, iAnywhere Solutions, Inc.

Method Administra-
tion tools

Custom applications

Use the ULSQLCONNECT environment variable:if you want
to store connection parameters you use repeatedly, so you don't
need to repeatedly provide them while your UltraLite database
is under development on the desktop. Values you supply as a
parameter in ULSQLCONNECT become defaults for the Ul-
traLite desktop tools.

All UltraLite desktop administration tools check the ULSQL-
CONNECT values for any missing parameters not supplied in
a connection string, following parameter precedence rules. To
override these values, simply supply the alternate value in the
connection string.

For details on precedence is evaluated in UltraLite, see “Prece-
dence of parameters for UltraLite administration
tools” on page 49. For details on how to set the ULSQLCON-
NECT environment variable, see “Storing parameters with the
ULSQLCONNECT environment variable” on page 53.

X2 N/A

1 Typically user-supplied.

2 For desktop administration tools only.

3 Typically hard-coded or stored in a file.

Assembling parameters into connection strings

An assembly of connection parameters supplied in any application's connection code (be it an administration
tool or a custom UltraLite application) is called a connection string. In some cases, applications parse the
fields of a ConnectionParms object into a string. In others however, you type a connection string on a single
line with the parameter names and values separated by semicolons:

parameter1=value1;parameter2=value2

The UltraLite runtime ensures the parameters are assembled into a connection string before establishing a
connection with it. For example, if you use the ulload utility, the following connection string is used to load
new XML data into an existing database. You cannot connect to the named database file until you supply
this string:

ulload -c "DBF=sample.udb;UID=DBA;PWD=sql" sample.xml

Notes
UltraLite does not ignore unrecognized connection string parameters. Instead, it generates an error for
unrecognized connection parameters.

Precedence of parameters for UltraLite administration tools

All of the UltraLite administration tools follow a specific order of parameter precedence:

Opening connections with connection strings

Copyright © 2006, iAnywhere Solutions, Inc. 49

♦ If specified, CE_FILE, NT_FILE, SYMBIAN_FILE, and PALM_FILE parameters always take
precedence over DBF.

♦ If you use two DBF parameters concurrently, the last one specified takes precedence.

♦ If you supply duplicate parameters in a connection string, the last one supplied is used. All others are
ignored.

♦ Parameters in the connection string take precedence over those supplied in ULSQLCONNECT or a
connection object.

♦ ULSQLCONNECT environment variable is then checked to supply parameters that are not supplied in
the connection string.

♦ If no value for both UID and PWD is supplied in either the connection string or ULSQLCONNECT, the
defaults of UID=DBA and PWD=sql are assumed.

Limitations
Any leading spaces and/or trailing spaces in connection string parameter values are ignored. All connection
string parameters cannot include leading single quotes ('), leading double quotes ("), or semi-colons (;).

See also
♦ “Storing parameters with the ULSQLCONNECT environment variable” on page 53

Specifying file paths in a connection parameter

The physical storage of your device determines whether or not the database is saved as a file, and what
naming conventions you must follow when identifying your database with one of the supported connection
parameters (that is, DBF, CE_FILE, NT_FILE, PALM_FILE, or SYMBIAN_FILE).

The DBF parameter is most appropriate when targeting a single deployment platform or when using UltraLite
desktop administration tools. For example, utility usage examples in this book will most often use the DBF
parameter:

ulload -c DBF=sample.udb sample.xml

Windows CE Tip
You can use the UltraLite administration tools to administer databases already deployed to an attached
device. For details, see “Windows CE” on page 51.

Otherwise, if you are writing a cross-platform application, you should use the platform-specific (CE_FILE,
NT_FILE, PALM_FILE, or SYMBIAN_FILE) file parameters to construct a universal connection string.
For example, if you are developing an AppForge component for Windows CE and Palm OS, your connection
string might look as follows:

Connection = DatabaseMgr.OpenConnection("UID=JDoe;PWD=ULdb;
CE_FILE=\database\MyCEDB.udb;PALM_FILE=MyPalmDB")

Connecting to an UltraLite Database

50 Copyright © 2006, iAnywhere Solutions, Inc.

Windows desktop

Windows desktops do not have much in the way of file name restrictions. Desktops allow either absolute or
relative paths.

Windows CE

Windows CE devices require that all paths be absolute.

You can administer a CE file on either the desktop or on the attached device. To identify a file on a CE
device, ensure you prefix the absolute path with wce:\. For example, using the unload utility:

ulunload -c DBF=wce:\UltraLite\myULdb.udb c:\out\ce.xml

In this example, UltraLite unloads the database from the CE device to the ce.xml file in the Windows desktop
folder of c:\out.

Windows CE and backups
It should be noted that if you are using the Unload Database and Upgrade Database wizards to administer a
database on the attached CE device, UltraLite cannot back up the database before the unload or action occurs.
You must perform this action manually before running these wizards.

Palm OS

Palm OS does not necessarily use the concept of file paths. Therefore, how you define it depends on the
store type (that is, record-based, or VFS).

File-based stores (VFS) For databases on a VFS volume, define the file with the following syntax:

vfs: [volume-label: | volume-ordinal:] filename

You can set the volume-label as INTERNAL for the built-in drive, or CARD for either an expansion card or
the label name of the volume. There is no default string for the volume-label.

Alternatively, you can set the volume-ordinal to identify the volume. Since the enumeration of mounted
volumes can vary, ensure you set the correct ordinal volume for your chosen internal or external volume.
The default value is 0 (which is the first volume enumerated by the platform).

For the filename, always specify the absolute file path, following the file and path naming convention of
Palm OS. If directories specified in the path do not already exist, they are created.

Record-based data stores For record-based data stores, database names must follow all conventions
for Palm OS database names (for example, database names cannot exceed the 32 character limit and cannot
contain a path).

Also ensure you use the appropriate value for DBF or PALM_FILE according to the database's location.

♦ Use the .PDB extension with DBF when you store a Palm OS database anywhere other than on the device
itself (for example, with ulload).

Opening connections with connection strings

Copyright © 2006, iAnywhere Solutions, Inc. 51

♦ Once you move the file to the device, the .PDB extension is dropped by the HotSync conduit. For
example, if the database you created on the desktop is named CustDB.pdb, then when you deploy it to
the device, the filename changes to CustDB.

Symbian OS
On Symbian, paths must be absolute. Otherwise, Symbian OS assumes the file is in the device's root directory.

The database is stored in the file system, similar to that used by Windows desktop and Windows CE devices.
For example Symbian phones may use the C:\ drive for phone memory, and perhaps the D:\ or E:\ drive for
flash cards. Phone RAM may use the Z:\ drive. Letter designations can vary among the models used.

See also
♦ “DBF connection parameter” on page 131
♦ “NT_FILE connection parameter” on page 135
♦ “CE_FILE connection parameter” on page 133
♦ “PALM_FILE connection parameter” on page 137
♦ “SYMBIAN_FILE connection parameter” on page 140

Connecting to an UltraLite Database

52 Copyright © 2006, iAnywhere Solutions, Inc.

Storing parameters with the ULSQLCONNECT
environment variable

The ULSQLCONNECT environment variable is optional, and is not set by the installation program.
ULSQLCONNECT contains a list of parameters defined as keyword=value pairs in a semi-colon delimited
list.

Use ULSQLCONNECT to avoid having to repeatedly supply the same connection parameters during
development to UltraLite administration tools. You cannot use ULSQLCONNECT for custom applications.

F For a list of supported connection parameters in UltraLite, see “Supplying UltraLite connection
parameters” on page 47.

Caution
Do not use the pound character (#) as an alternative to the equal sign; the pound character is ignored in
UltraLite. All platforms supported by UltraLite allow you to use = inside an environment variable setting.

♦ To set ULSQLCONNECT for UltraLite desktop tools

1. At the command prompt, enter the following:

set ULSQLCONNECT="parameter=value; …"

2. If an administration tool requires any additional parameter or if you need to override default values set
with this environment variable, ensure you set these values. User-supplied values always take
precedence over this variable. See “Precedence of parameters for UltraLite administration
tools” on page 49 for details.

Example
To use ULSQLCONNECT to connect to a file named c:\database\myfile.udb connecting as a user called
demo and a password of test, set the following variable in your environment:

set ULSQLCONNECT="DBF=c:\database\myfile.udb;UID=demo;PWD=test"

By setting this environment variable, you no longer need to use the -c connection option for these defaults
values—unless you need to override these values.

For example, if you were using ulload to add additional information to your database from an extra.xml file,
you would simply run the command as follows:

ulload -a extra.xml

See also
♦ “Precedence of parameters for UltraLite administration tools” on page 49

Storing parameters with the ULSQLCONNECT environment variable

Copyright © 2006, iAnywhere Solutions, Inc. 53

CHAPTER 4

Working with UltraLite Databases

Contents
Working with UltraLite tables and columns .. 56
Working with UltraLite indexes .. 65
Working with UltraLite publications .. 72
Working with UltraLite users .. 76
Viewing UltraLite database settings .. 78

About this chapter
This chapter describes the mechanics of creating, altering, and deleting database objects such as users, tables,
indexes, and publications.

Copyright © 2006, iAnywhere Solutions, Inc. 55

Working with UltraLite tables and columns
Tables are used to store data and define the relationships for data in them. Tables consist of rows and columns.
Each column carries a particular kind of information, such as a phone number or a name, while each row
specifies a particular entry.

When you first create an UltraLite database, the only tables you will see are the system tables. System tables
hold the UltraLite schema. You can hide or show these tables from Sybase Central as needed.

You can then add new tables as required by your application. You can also browse data in those tables, and
copy and paste data among existing tables or even open databases.

See also
♦ “Database tables” [SQL Anywhere 10 - Introduction]
♦ “Designing Your Database” [SQL Anywhere Server - SQL Usage]
♦ “UltraLite system tables” on page 192

Creating UltraLite tables

You can create new tables to hold your relational data, either with SQL statements in Interactive SQL or
with Sybase Central.

In UltraLite, you can only create base tables, which you declare in order to hold persistent data. The table
and its data continue to exist until you explicitly delete the data or drop the table. UltraLite does not support
global temporary or declared temporary tables.

Note
Tables in UltraLite applications must include a primary key. Primary keys are also required during MobiLink
synchronization, to associate rows in the UltraLite database with rows in the consolidated database.

Sybase Central

In Sybase Central, you can perform these tasks while working with a selected database.

♦ To create an UltraLite table (Sybase Central)

1. Connect to the UltraLite database.

2. While browsing the database contents, open the Tables folder.

3. From the File menu, choose New ► Table.

The Table Creation wizard appears.

4. In the Table Creation wizard, enter a name for the new table.

5. Click Finish.

Working with UltraLite Databases

56 Copyright © 2006, iAnywhere Solutions, Inc.

6. On the Columns tab in the right pane, add columns to the table.

7. Choose File ► Save Table when finished.

Interactive SQL

In Interactive SQL, you can declare columns while creating a new table.

♦ To create an UltraLite table (Interactive SQL)

1. Connect to the UltraLite database.

2. Execute a CREATE TABLE statement.

Example The following statement creates a new table to describe the various skills and professional
aptitudes of employees within a company. The table has columns to hold an identifying number, a name,
and a type (for example, technical or administrative) for each skill.

CREATE TABLE Skills (
 SkillID INTEGER PRIMARY KEY,
 SkillName CHAR(20) NOT NULL,
 SkillType CHAR(20) NOT NULL
)

See also
♦ “CREATE TABLE statement” on page 331
♦ “Adding a column to an UltraLite table” on page 58

Using allsync and nosync suffixes

You can append either _allsync or _nosync to a table name to control data restriction for synchronization.
You can use these suffixes as an alternative to using publications to control data restrictions. To control data
priority, define one or more publications.

♦ If you create a table with a name ending in _allsync, all rows of that table are synchronized at each
synchronization—even if they have not changed since the last synchronization.

Tip
You can store user-specific or client-specific data in allsync tables. If you upload the data in the table to
a temporary table in the consolidated database on synchronization, you can use the data to control
synchronization by your other scripts without having to maintain that data in the consolidated database.

♦ If you create a table with a name ending in _nosync, all rows of that table are excluded from
synchronization. You can use these tables for persistent data that is not required in the consolidated
database's table.

Working with UltraLite tables and columns

Copyright © 2006, iAnywhere Solutions, Inc. 57

Example
In the CustDB.udb sample database, you can see one table was declared a nosync table because the table
name is defined as ULIdentifyEmployee_nosync. Therefore, no matter how data changes in this table, it is
never synchronized with MobiLink and information will not appear in the CustDB.db consolidated database.

See also
♦ “Working with UltraLite publications” on page 72
♦ “Designing synchronization in UltraLite” [MobiLink - Client Administration]
♦ “Nosync tables in UltraLite” [MobiLink - Client Administration]
♦ “Allsync tables in UltraLite” [MobiLink - Client Administration]
♦ “Exploring the CustDB Samples for UltraLite” on page 79

Adding a column to an UltraLite table

You can add a new column easily if the table is empty. However, if the table already holds data, you can
only add a column if the column definition includes a default value or allows NULL values.

You can use either Sybase Central or directly execute a SQL statement (for exmaple, Interactive SQL) to
perform this task.

Sybase Central

In Sybase Central, you can perform these tasks while working with a selected table.

♦ To add a new column to an UltraLite table (Sybase Central)

1. Connect to the UltraLite database.

2. Open the Tables folder.

3. In the Columns tab, right-click the background and select New ► Column.

4. Set all new attributes for the column. You must declare a name, a data type, constraints, whether or not
the table allows null values, and so on.

5. Choose File ► Save Table when finished.

Interactive SQL
In Interactive SQL, you can only declare columns while creating or altering a table.

♦ To add columns to a new UltraLite table (Interactive SQL)

1. Connect to the UltraLite database.

2. Execute a CREATE TABLE statement or ALTER TABLE, ensuring that you define columns by
declaring the name, and other attributes accordingly.

Working with UltraLite Databases

58 Copyright © 2006, iAnywhere Solutions, Inc.

Examples The following example creates a table for a library database to hold information on
borrowed books. The default value for date_borrowed indicates that the book is borrowed on the day
the entry is made. The date_returned column is NULL until the book is returned.

CREATE TABLE borrowed_book (
 loaner_name CHAR(100) PRIMARY KEY,
 date_borrowed DATE NOT NULL DEFAULT CURRENT DATE,
 date_returned DATE,
 book CHAR(20)
)

The following example modifies the customer table to now include a column for addresses that can
hold up to 50 characters:

ALTER TABLE customer
ADD address CHAR(50)

See also
♦ “Choosing column names” [SQL Anywhere Server - SQL Usage]
♦ “Data types in UltraLite” on page 212
♦ “Choosing data types for columns” [SQL Anywhere Server - SQL Usage]
♦ “CREATE TABLE statement” on page 331
♦ “ALTER TABLE statement” on page 322

Altering UltraLite column definitions

You can change the structure of column definitions for a table by altering various column attributes, or even
deleting columns entirely. The modified column definition must suit the requirements of any data already
stored in the column. For example, you cannot alter a column to disallow NULL if the column already has
a NULL entry.

You can use either Sybase Central or Interactive SQL to perform this task.

Sybase Central

In Sybase Central, you can perform these tasks while working with a selected table.

♦ To alter an existing UltraLite column (Sybase Central)

1. Connect to the UltraLite database.

2. While browsing the database contents, open the Tables folder.

3. In the Columns tab, make the necessary attribute changes.

4. Choose File ► Save Table when finished.

Interactive SQL

In Interactive SQL, you can perform these tasks with the ALTER TABLE statement.

Working with UltraLite tables and columns

Copyright © 2006, iAnywhere Solutions, Inc. 59

♦ To alter an existing UltraLite column (Interactive SQL)

1. Connect to the UltraLite database.

2. Execute an ALTER TABLE statement.

Make changes carefully
The following examples show how to change the structure of the database. In all these cases, the
statement is immediately committed. So, once you make the change, any item referring to this table
may no longer work.

Examples The following statement shortens the SkillDescription column from a maximum of 254
characters to a maximum of 80:

ALTER TABLE Skills
MODIFY SkillDescription CHAR(80)

The following statement deletes the Classification column:

ALTER TABLE Skills
DROP Classification

The following statement changes the name of the entire table:

ALTER TABLE Skills
RENAME Qualification

See also
♦ “Choosing column names” [SQL Anywhere Server - SQL Usage]
♦ “Data types in UltraLite” on page 212
♦ “Choosing data types for columns” [SQL Anywhere Server - SQL Usage]
♦ “ALTER TABLE statement” on page 322

Dropping UltraLite tables

Dropping a table means that you are deleting it from the database. You can drop any table provided that the
table:

♦ Is not being used as an article in a publication.

♦ Does not have any columns that are referenced by another table's foreign key.

In these cases, you must change the publication or delete the foreign key before you can successfully delete
the table.

You can use either Sybase Central or Interactive SQL to perform this task.

Sybase Central

In Sybase Central, you can perform these tasks while working with a selected table.

Working with UltraLite Databases

60 Copyright © 2006, iAnywhere Solutions, Inc.

♦ To delete an UltraLite table (Sybase Central)

1. Connect to the UltraLite database.

2. While browsing the database contents, open the Tables folder for that database.

3. Select the table and then choose Edit ► Delete.

Interactive SQL

In Interactive SQL, deleting a table is also called dropping it. You can drop a table by executing a DROP
TABLE statement.

♦ To delete an UltraLite table (Interactive SQL)

1. Connect to the UltraLite database.

2. Execute a DROP TABLE statement.

Examples The following DROP TABLE command deletes all the records in the Skills table and then
removes the definition of the Skills table from the database:

DROP TABLE Skills

Like the CREATE statement, the DROP statement automatically executes a COMMIT statement before
and after dropping the table. This makes all changes to the database since the last COMMIT or
ROLLBACK permanent. The DROP statement also drops all indexes on the table.

See also
♦ “DROP TABLE statement” on page 339

Browsing the information in UltraLite tables

You can use Sybase Central or Interactive SQL to browse the data held within the tables of an UltraLite
database. Tables can be user tables or system tables. You can filter tables by showing and hiding system
tables from your current view of the database. Because UltraLite doesn't have a notion of ownership, all
users can browse all tables.

Sybase Central

In Sybase Central, you can perform these tasks while working with a selected database.

♦ To browse UltraLite table (Sybase Central)

1. Connect to the UltraLite database.

2. If system tables are hidden and you want to browse the data in one or more tables, right-click the
background of the Contents pane and choose Show System Objects.

3. To display tables, click Tables.

Working with UltraLite tables and columns

Copyright © 2006, iAnywhere Solutions, Inc. 61

4. To browse the data of a Table, double-click a table name.

5. Click the Data tab in the right pane.

♦ To filter UltraLite system tables (Sybase Central)

1. Connect to the UltraLite database.

2. While browsing the database contents, right-click the database name you are connected to and click
either Hide System Objects or Show System Objects.

Interactive SQL

In Interactive SQL, you can perform these tasks with the SELECT statement.

♦ To browse UltraLite user tables (Interactive SQL)

1. Connect to a database.

2. Execute a SELECT statement, specifying the user table you want to browse.

♦ To browse UltraLite system tables (Interactive SQL)

1. Connect to a database.

2. Execute a SELECT statement, by the system table you want to browse.

Example For example, to display the contents of the table systable on the Results tab in the Results
pane in Interactive SQL, execute the following command:

SELECT *
FROM SYSTABLE

See also
♦ “UltraLite System Table Reference” on page 191

Copying and pasting data to/from UltraLite databases

With Sybase Central, you have different copying and pasting as well as dragging and dropping options for
tables or columns. This allows you to share or move objects among one or more databases. By copying and
pasting or dragging and dropping you can share data as described by the table that follows.

Target Result

Another UltraLite/SQL Anywhere database. A new object is created, and the original object's code is
copied to the new object.

The same UltraLite database. A copy of the object is created; you must rename the new
object.

Working with UltraLite Databases

62 Copyright © 2006, iAnywhere Solutions, Inc.

Note
You can copy data from a database opened in MobiLink and paste it into an UltraLite database. However,
you cannot paste UltraLite data into a database opened in MobiLink.

Sybase Central

In Sybase Central, when you copy any of the objects from the list that follows, the SQL for the object is
copied to the clipboard so it can be pasted into other applications, such as Interactive SQL or a text editor.
For example, if you copy an index in Sybase Central and paste it into a text editor, the CREATE INDEX
statement for that index appears.

♦ Articles

♦ Columns

♦ Foreign keys

♦ Indexes

♦ Publications

♦ Tables

♦ Unique constraints

Interactive SQL

With Interactive SQL, you can also copy data from a result set into a another objects.

♦ Use the SELECT statement results into a named object.

♦ Use the INSERT statement to insert a row or selection of rows from elsewhere in the database into a
table.

See also
♦ “Copying database objects in the SQL Anywhere plug-in” [SQL Anywhere Server - Database

Administration]
♦ “INSERT statement” on page 340
♦ “SELECT statement” on page 342

Viewing entity-relationship diagrams from the UltraLite plug-in

When you are connected to a database from the UltraLite plug-in, you can view an entity-relationship diagram
of the tables in the database. When you have the database selected, click the ER Diagram tab in the right
pane to see the diagram.

Working with UltraLite tables and columns

Copyright © 2006, iAnywhere Solutions, Inc. 63

When you rearrange objects in the diagram, the changes persist between Sybase Central sessions. Double-
clicking a table takes you to the column definitions for that table.

See also
♦ “Database design concepts” [SQL Anywhere Server - SQL Usage]
♦ “Entity-relationship diagrams” [SQL Anywhere Server - SQL Usage]

Working with UltraLite Databases

64 Copyright © 2006, iAnywhere Solutions, Inc.

Working with UltraLite indexes
An index provides an ordering (either ascending or descending) of a table's rows based on the values in one
or more columns. When UltraLite optimizes a query, it scans existing indexes to see if one exists for the
table(s) named in the query. If it can help UltraLite return rows more quickly, the index is used. If you are
using the UltraLite Table API in your application, you can specify an index that helps determine the order
in which rows are traversed.

Tip
Indexes can improve the performance of a query—especially for large tables. To see whether or not a query
is using a particular index, you can check the query access plan with Interactive SQL.
Alternatively, your UltraLite applications can include PreparedStatement objects which have a method to
return plans.

About composite indexes
Multi-column indexes are sometimes called composite indexes. Additional columns in an index can allow
you to narrow down your search, but having a two-column index is not the same as having two separate
indexes. For example, the following statement creates a two-column composite index:

CREATE INDEX name
ON Employees (Surname, GivenName)

A composite index is useful if the first column alone does not provide high selectivity. For example, a
composite index on Surname and GivenName is useful when many employees have the same surname. A
composite index on EmployeeID and Surname would not be useful because each employee has a unique ID,
so the column Surname does not provide any additional selectivity.

See also
♦ “Query access plans in UltraLite” on page 232
♦ “Composite indexes” [SQL Anywhere Server - SQL Usage]
♦ UltraLite for AppForge: “Working with data using the table API” [UltraLite - AppForge

Programming].
♦ UltraLite for AppForge: “ULPreparedStatement class” [UltraLite - AppForge Programming].
♦ UltraLite.NET: “Accessing and manipulating data with the Table API” [UltraLite - .NET

Programming].
♦ UltraLite.NET: “Prepare method” [UltraLite - .NET Programming].
♦ UltraLite for C++: “Accessing data with the Table API” [UltraLite - C and C++ Programming].
♦ UltraLite for C++: “UltraLite_PreparedStatement class” [UltraLite - C and C++ Programming].
♦ UltraLite for M-Business Anywhere: “Working with data using the table API” [UltraLite - M-Business

Anywhere Programming].
♦ UltraLite for M-Business Anywhere: “Class PreparedStatement” [UltraLite - M-Business Anywhere

Programming].

When to use an index

Use an index when:

Working with UltraLite indexes

Copyright © 2006, iAnywhere Solutions, Inc. 65

♦ You want UltraLite to maintain referential integrity An index also affords UltraLite a means of
enforcing a uniqueness constraint on the rows in a table. You do not need to add an index for data that is
very similar.

♦ The performance of a particular query is important to your application If an index improves
performance of a query and the performance of that query is important to your application and is used
frequently, then you want to maintain that index. Unless the table in question is extremely small, indexes
can improve search performance dramatically and are typically recommended whenever you search data
frequently.

♦ You have complicated queries More complicated queries, (for example, those with JOIN, GROUP
BY, and ORDER BY clauses), can yield substantial improvements when an index is used—though it may
be harder to determine the degree to which performance has been enhanced. Therefore, test your queries
both with and without indexes, to see which yields better performance.

♦ The size of an UltraLite table is large The average time to find a row increases with the size of
the table. Therefore, to increase searchability in a very large table, consider using an index. This is because
an index allows UltraLite to find rows quickly—but only for columns that are indexed. Otherwise,
UltraLite must search every row in the table to see if the row matches the search condition, which can be
time consuming in a large table.

♦ The UltraLite client application is not performing a large amount of insert, update, or
delete operations Because UltraLite maintains indexes along with the data itself, an index in this
context will have an adverse effect on the performance of database operations. For this reason, you should
restrict the use of indexes to data that will be queried regularly as described in the point above. Perhaps
simply maintaining UltraLite default indexes (indexes for primary keys and for unique constraints) may
be sufficient.

♦ Use indexes on columns involved in WHERE clauses and/or ORDER BY clause. These
indexes can speed the evaluation of these clauses. In particular, an index helps optimize a multi-column
ORDER BY clause—but only when the placement of columns in the index and ORDER BY clauses are
exactly the same.

Choosing an index type

UltraLite supports different types of indexes: unique keys, unique indexes and non-unique indexes. What
differentiates one from the others is what is allowed in that index.

Index characteristic Unique
keys

Unique in-
dexes

Non-unique
indexes

Allows duplicate index entries for rows that have the same
values in indexed columns.

no no yes

Allows null values in index columns. no yes yes

Working with UltraLite Databases

66 Copyright © 2006, iAnywhere Solutions, Inc.

Notes
You can create foreign keys to unique keys, but not to unique indexes.
Also, manually creating an index on a key column is not necessary and generally not recommended. UltraLite
creates and maintains indexes for unique keys automatically.

See also
♦ “Adding UltraLite indexes” on page 67

Adding UltraLite indexes

You can use either Sybase Central or Interactive SQL to perform this task.

Note
UltraLite does not detect duplicate or redundant indexes. As indexes must be maintained with the data in
your database, add your indexes carefully.

Sybase Central
In Sybase Central, you can perform these tasks while working with a selected database.

♦ To create a new index for a given UltraLite table (Sybase Central)

1. Connect to the UltraLite database.

2. While browsing the database contents, open the Indexes folder.

3. From the File menu, choose New ► Index.

The Index Creation wizard appears.

4. Name the index and select the table from the list. Click Next.

5. Follow the instructions in the wizard.

New indexes appear in the Indexes folder.

Interactive SQL
In Interactive SQL, you can perform these tasks with the CREATE INDEX statement.

♦ To create a new index for a given UltraLite table (Interactive SQL)

1. Connect to an UltraLite database.

2. Execute a CREATE INDEX statement. See “CREATE INDEX statement” on page 328.

This creates an index with the default maximum hash size you have configured. To create an index that
overrides the default, ensure you use the WITH MAX HASH SIZE value clause to set a new value for
this index instance.

Working with UltraLite indexes

Copyright © 2006, iAnywhere Solutions, Inc. 67

Examples To speed up a search on employee surnames in a database that tracks employee
information, and tune the performance of queries against this index, you could create an index called
EmployeeNames and increase the hash size to 20 bytes with the following statement:

CREATE INDEX EmployeeNames
ON Employees (Surname, GivenName)
WITH MAX HASH SIZE 20

See also
♦ “CREATE INDEX statement” on page 328

Dropping an index

Dropping an index deletes it from the database.

You can use either Sybase Central or Interactive SQL to perform this task.

Sybase Central
In Sybase Central, you can perform these tasks while working with a selected database.

♦ To drop an UltraLite index (Sybase Central)

1. Connect to the UltraLite database.

2. While browsing the database contents, open the Indexes folder.

3. Select the desired index and then choose Edit ► Delete.

Interactive SQL
In Interactive SQL, deleting a table is also called dropping it. You can perform these tasks with the DROP
INDEX statement.

♦ To drop an UltraLite index (Interactive SQL)

1. Connect to a database.

2. Execute a DROP INDEX statement.

Example The following statement removes the EmployeeNames index from the database:

DROP INDEX EmployeeNames

See also
♦ “DROP INDEX statement” on page 337

Working with UltraLite Databases

68 Copyright © 2006, iAnywhere Solutions, Inc.

Tuning performance with index hashing

You can tune the performance of your queries by choosing a specific size for the hash. The hash appends a
suffix or key to the original index entry. The key provides an index optimization, because it aims to avoid
the expensive operation of finding, loading, and then unpacking the rows to determine the indexed value.

How the hash key enhances query performance
A row ID allows UltraLite to locate the row for the actual data in the table. A row ID is always part of a
hashed index entry. If you set the hash size to 0 (that is, disable index hashing), then the index entry only
contains this row ID. For all other hash sizes, the hash key—which can contain all or part of the transformed
data in that row—is stored along with the row ID in the index page. Consequently you can improve query
performance on these indexed columns, because UltraLite may not always need to find, load, and unpack
data, before it can compare values from the row.

For example, if you had a table named PRODUCT_LIST, you may write a query to return all rows that hold
the value of Apples in this table.

SELECT *
FROM PRODUCT_LIST
WHERE Items = 'Apples'

If the index for the Items column only contains row IDs, UltraLite uses that row ID to find and unpack the
data, before it can compare that value with Apples. However, if you hashed your index so that it included
the first four bytes with the row ID, the index entry might appear as rID(75) Blue. In this case UltraLite does
not locate, unpack, nor compare the actual row value; UltraLite already knows that this row does not satisfy
the WHERE clause in the example, without having to locate, unpack and compare the row value of
"blueberries".

On the other hand, another index entry might appear as rID(32)Appl. In this case, UltraLite does need to
locate, unpack, and compare the value of "Apple pie", before it can determine that this row also does not
satisfy the WHERE clause.

See also
♦ “Choosing an optimal hash size” on page 69
♦ “Indexes in UltraLite databases” on page 20
♦ “Adding UltraLite indexes” on page 67

Choosing an optimal hash size

The UltraLite default maximum hash size of 4 bytes was carefully chosen to suit most deployments. You
can increase the size to include more data with the row ID; however, you will increase the size of the index
and consequently the size of the database as a result.

When choosing a hash size, consider the data type, the row data, and the database size as described in the
following sections. Because you need to consider all three conditions, choosing an optimal hash size can be
a very complex task. Especially when you consider the fact that a bigger hash size does not always translate
into improved database performance due to increased storage requirements—and how different operating
systems handle those increases.

Working with UltraLite indexes

Copyright © 2006, iAnywhere Solutions, Inc. 69

The only way to determine if you have chosen an optimal hash size, is to run performance tests against your
UltraLite client application on the target device. You need to observe how various hash sizes affect the
application and query performance in addition to the changes in database size itself.

The data type
Different data types require a different maximum hash size. If you want to hash the entire value in a column,
note the maximum required by each data type in the table that follows. However, you may not need to hash
the entire value, depending on the requirements of your implementation.

Data type Bytes used to hash the entire value

FLOAT, DOUBLE, and RE-
AL

not hashed

BIT and TINYINT 1

SMALL INT and SHORT 2

INTEGER, LONG and DATE 4

DATETIME, TIME, TIMES-
TAMP, and BIG

8

CHAR and VARCHAR To hash the entire string, the maximum hash size in bytes must match
the declared size of the column. In a UTF-8 encoded database, always
multiply the declared size by a factor of 2 but only to the allowed max-
imum of 32 bytes.

For example, if you declare a column VARCHAR(10) in a non-UTF-8
encoded database, the required size is 10 bytes. However, if you declare
the same column in a UTF-8 encoded database, the size used to hash the
entire string is 20 bytes.

BINARY The maximum hash size in bytes must match the declared size of the
column.

For example, if you declare a column BINARY(30), the required size is
30 bytes.

UUID 16

For example, if you set a maximum hash size of 6 bytes, and if you had a two-column composite index that
you declared as INTEGER and BINARY (20) respectively, then based on the data type size requirements,
the following occurs:

♦ The entire value of the row in the INTEGER column is hashed and stored in the index. Only 4 bytes are
required to hash integer data types.

♦ Only the first 2 bytes of the BINARY column is hashed and stored in the index, because this is the first
4 bytes are used by the INTEGER column. If 6 bytes do not hash an appropriate amount of the BINARY
column, increase the maximum hash size, so more of the BINARY column is hashed.

Working with UltraLite Databases

70 Copyright © 2006, iAnywhere Solutions, Inc.

The row data
The row values of the data being stored in the database also influence the effectiveness of a hashed index.

For example, if you have a common prefix shared among entries of a given column, you may render the
hash ineffective if you choose a size that only hashes prefixes. In this case you need to choose a size that
hashes the unique values as well as the common prefixes—or even choose to not hash the index.

The database size
Each page has some fixed overhead, but the majority of the page space is used by the actual index entries.
Therefore, an index hash uses some of the database page space that might otherwise be used to store more
entries. The fewer entries that can fit on the page, the larger the database becomes. Use a smaller maximum
hash size if you require a compact database.

For example, depending on whether you require a small database or improved index performance, you could
make arguments for either a larger or a smaller hash size. Consider the tables listed in the table that follows.

Table Page Size Hash Size Number of Entries Pages required

Table A 4 KB 0 1200 3 pages

Table B 4 KB 32 bytes 116 3 pages

Table C 4 KB 32 bytes 1200 entries 11 pages

See also
♦ “Indexes in UltraLite databases” on page 20
♦ “Adding UltraLite indexes” on page 67
♦ “Data types in UltraLite” on page 212

Setting the hash size

You can set hash size in two ways:

♦ To store a database default for the maximum size, you can set a database property called max_hash_size
when you create your database. If you do not want to hash indexes by default, set this value to 0.
Otherwise, you can change it to any value up to 32 bytes, or keep the UltraLite default of 4 bytes.

♦ If you want to override the default set with this parameter, you can set a specific hash size when you
create a new index. You can do this in two ways:

♦ In Sybase Central, set the Maximum Hash Size property when creating a new index.

♦ With SQL, use the WITH MAX HASH SIZE clause in either the CREATE TABLE or CREATE
INDEX statement.

See also
♦ “CREATE TABLE statement” on page 331
♦ “CREATE INDEX statement” on page 328
♦ “max_hash_size property” on page 106

Working with UltraLite indexes

Copyright © 2006, iAnywhere Solutions, Inc. 71

Working with UltraLite publications
A publication is a database object that identifies a subset of UltraLite data you want to synchronize with the
MobiLink server at one time. If you wish to synchronize all tables and all rows of those tables in your
UltraLite database, do not create any publications.

A publication consists of a set of articles. Each article may be an entire table, or may be selected rows from
a table. You can define this set of rows with a WHERE clause (except with HotSync on Palm OS).

Each database can have multiple publications, depending on the synchronization logic you require. For
example, you may want to create a publication for high-priority data. The user can synchronize this data
over high-speed wireless networks. Because wireless networks can have usage costs associated with them,
you would want to limit these usage fees to those that are business-critical only. All other less time-sensitive
data could be synchronized from a cradle at a later time.

You create publications using Sybase Central or with the CREATE PUBLICATION statement. In Sybase
Central, all publications and articles appear in the Publications folder.

Usage notes
♦ UltraLite publications do not support the definition of column subsets, nor the SUBSCRIBE BY clause.

If columns in an UltraLite table do not exactly match tables in a SQL Anywhere consolidated database,
use MobiLink scripts to resolve those differences.

♦ The publication determines which columns are selected, but it does not determine the order in which
they are sent. Columns are always sent in the order in which they were defined in the CREATE TABLE
statement.

♦ You do not need to set a table synchronization order in a publication. If table order is important for your
deployment, you can set the table order when you synchronize the UltraLite database by setting the Table
Order synchronization parameter.

♦ Because object ownership is not supported in UltraLite, any user can delete a publication.

See also
♦ “Table order in UltraLite” [MobiLink - Client Administration]
♦ “Publishing data” [MobiLink - Client Administration]
♦ “Designing synchronization in UltraLite” [MobiLink - Client Administration]
♦ “Introduction to synchronization scripts” [MobiLink - Server Administration]

Publishing whole UltraLite tables

The simplest publication you can make consists of a single article, which consists of all rows and columns
of a table.

You can use either Sybase Central or Interactive SQL to perform this task.

Sybase Central
In Sybase Central, you can perform this task while working with the connected database.

Working with UltraLite Databases

72 Copyright © 2006, iAnywhere Solutions, Inc.

♦ To publish one or more whole UltraLite tables (Sybase Central)

1. Connect to the UltraLite database.

2. While browsing the database contents, open the Publications folder.

3. Create the publication.

Choose File ► New ► Publication. The Create Publication wizard appears.

4. Enter a name for the new publication, and click Next.

5. On the Tables tab, select a table from the list of Available Tables. Click Add. The table appears in the
list of Selected Tables on the right.

6. Optionally, you may add additional tables. The order of the tables is not important.

7. Click Finish.

Interactive SQL
In Interactive SQL, you can perform this task with the CREATE PUBLICATION statement.

♦ To publish one or more whole UltraLite tables (Interactive SQL)

1. Connect to the UltraLite database.

2. Execute a CREATE PUBLICATION statement that specifies the name of the new publication and the
table you want to publish.

Example The following statement creates a publication that publishes the whole customer table:

CREATE PUBLICATION pub_customer (
 TABLE customer
)

See also
♦ “CREATE PUBLICATION statement” on page 330
♦ “UltraLite Clients” [MobiLink - Client Administration]

Publishing a subset of rows from an UltraLite table

You can create a publication that contains specific rows of a table from Sybase Central, or by specifying a
WHERE clause in the CREATE PUBLICATION statement (except with HotSync on Palm OS). Both
techniques rely on the WHERE clause to limit the rows to be uploaded to those that have changed and that
satisfy a search condition in the WHERE clause.

You can use either Sybase Central or Interactive SQL to perform this task.

Tip
To upload all changed rows, do not specify a WHERE clause.

Working with UltraLite publications

Copyright © 2006, iAnywhere Solutions, Inc. 73

What you cannot use in a WHERE clause
The search condition in the WHERE clause can only reference columns that are included in the article. In
addition, you cannot use any of the following in the WHERE clause:

♦ subqueries

♦ variables

♦ non-deterministic functions

These conditions are not enforced but breaking them can lead to unexpected results. Any errors relating to
the WHERE clause are generated at runtime, and not when the publication is defined.

Sybase Central

In Sybase Central, you can perform this task while working with the connected database.

♦ To publish only some rows in an UltraLite table (Sybase Central)

1. Connect to the UltraLite database.

2. While browsing the database contents, open the Publications folder.

3. Create a new publication.

Choose File ► New ► Publication. The Create Publication wizard appears.

4. Enter a name for the new publication. Click Next.

5. On the Tables tab, select a table from the list of Available Tables. Click Add. The table is added to the
list of Selected Tables on the right.

6. On the WHERE Clauses tab, select the table and enter the search condition in the lower box. Optionally,
you can use the Insert dialog to assist you in formatting the search condition.

7. Click Finish.

Interactive SQL
In Interactive SQL, you can perform this task with the CREATE PUBLICATION statement.

♦ To create a publication in UltraLite using a WHERE clause (Interactive SQL)

1. Connect to the UltraLite database.

2. Execute a CREATE PUBLICATION statement that includes the tables you want to include in the
publication and a WHERE condition.

Example The following example creates a single-article publication that includes all sales order
information for sales rep number 856:

CREATE PUBLICATION pub_orders_samuel_singer
 (TABLE SalesOrders
 WHERE SalesRepresentative = 856)

Working with UltraLite Databases

74 Copyright © 2006, iAnywhere Solutions, Inc.

See also
♦ “CREATE PUBLICATION statement” on page 330
♦ “UltraLite Clients” [MobiLink - Client Administration]

Dropping a publication for UltraLite

You can drop a publication using either Sybase Central or Interactive SQL.

Sybase Central
In Sybase Central, you can perform this task while working with the connected database.

♦ To drop a publication (Sybase Central)

1. Connect to the UltraLite database.

2. While browsing the database contents, open the Publications folder.

3. Right-click the desired publications and choose Delete from the popup menu.

Interactive SQL

In Interactive SQL, deleting a publication is also called dropping it. You can perform this task with the DROP
PUBLICATION statement.

♦ To drop a publication (Interactive SQL)

1. Connect to the UltraLite database.

2. Execute a DROP PUBLICATION statement.

Example The following statement drops the publication named pub_orders:

DROP PUBLICATION pub_orders

See also
♦ “DROP PUBLICATION statement” on page 338
♦ “UltraLite Clients” [MobiLink - Client Administration]

Working with UltraLite publications

Copyright © 2006, iAnywhere Solutions, Inc. 75

Working with UltraLite users
Because user IDs and passwords are encrypted in the UltraLite database, you can only view the list of defined
users in Sybase Central.

Considerations and limitations
When creating unique user IDs, bear the following limitations in mind:

♦ UltraLite user IDs are separate from MobiLink user names and from other SQL Anywhere user IDs.

♦ UltraLite supports up to four unique users.

♦ Both the user ID and password values have a limit of 31 characters.

♦ Passwords are always case sensitive and user IDs are always case insensitive. You can change a password
anytime from Sybase Central.

♦ Any leading or trailing spaces the user ID are ignored. The user ID cannot include leading single quotes
('), leading double quotes ("), or semi-colons(;).

♦ As a precaution, UltraLite hashes the password before saving it. Therefore, you can only modify the
password in Sybase Central.

♦ You cannot change a user ID once it is created. Instead, you must delete the user ID in question and then
add a new one.

Adding a new UltraLite user

UltraLite does not support the creation of users with Interactive SQL. However, you can add users by:

♦ Using Sybase Central to add users to the User folder. See the procedure below for details.

♦ Using the GrantConnectTo function on the Connection object to add new users from an UltraLite
application.

♦ To create a new UltraLite user (Sybase Central)

1. Connect to the UltraLite database.

2. While browsing the database contents, open the Users folder.

3. From the File menu, choose New ► User.

The User Creation wizard appears.

4. Follow the instructions in the wizard. Ensure you understand how UltraLite interprets different user ID
and password combinations. See “Interpreting user ID and password combinations” on page 46 for
details.

Working with UltraLite Databases

76 Copyright © 2006, iAnywhere Solutions, Inc.

See also
♦ UltraLite for AppForge: “Authenticating users” [UltraLite - AppForge Programming]
♦ UltraLite.NET: “Authenticating users” [UltraLite - .NET Programming]
♦ UltraLite C/C++ : “Authenticating users” [UltraLite - C and C++ Programming]
♦ UltraLite for M-Business Anywhere: “Authenticating users” [UltraLite - M-Business Anywhere

Programming]
♦ UltraLite for embedded SQL: “Authenticating users” [UltraLite - C and C++ Programming]

Deleting an existing UltraLite user

UltraLite does not support the deletion of users with Interactive SQL. However, you can delete users by:

♦ Using Sybase Central to delete users from the User folder. See the procedure below for details.

♦ Using the RevokeConnectFrom function on the Connection object to remove users from an UltraLite
application.

♦ To delete an existing UltraLite user (Sybase Central)

1. Connect to the UltraLite database.

2. While browsing the database, click Users.

3. Right-click the user in the Users pane and click Delete.

See also
♦ UltraLite for AppForge: “Authenticating users” [UltraLite - AppForge Programming]
♦ UltraLite.NET: “Authenticating users” [UltraLite - .NET Programming]
♦ UltraLite C/C++ : “Authenticating users” [UltraLite - C and C++ Programming]
♦ UltraLite for M-Business Anywhere: “Authenticating users” [UltraLite - M-Business Anywhere

Programming]
♦ UltraLite for embedded SQL: “Authenticating users” [UltraLite - C and C++ Programming]

Working with UltraLite users

Copyright © 2006, iAnywhere Solutions, Inc. 77

Viewing UltraLite database settings
You can only view configured database properties in Sybase Central. You cannot change them after the
database is created. You can, however, change database options (that is, global_ID and ml_remote_ID) at
any time.

♦ To browse UltraLite database properties (Sybase Central)

1. Connect to the database.

2. While browsing connected databases, right-click a database and select Properties.

The Database Properties dialog appears.

3. Select the Extended Information tab.

Database properties are listed alphabetically by the property name. To sort database properties by the
value, click the Value column.

Note
You cannot modify UltraLite database properties after you have created the database. If you need to
change a property, you need to create a new database and then load the data into it.

4. If you think database properties have changed since you started browsing them, click Refresh.

♦ To browse or modify UltraLite database options (Sybase Central)

1. Connect to the database.

2. While browsing connected databases, right-click a database and select Options.

The Database Options dialog box appears.

3. If you want to set or reset an option, type a new value in the Value field.

4. Click either Set Now or Reset Now to commit the change.

See also
♦ “Creating UltraLite databases” on page 24
♦ “UltraLite Database Settings Reference” on page 93

Working with UltraLite Databases

78 Copyright © 2006, iAnywhere Solutions, Inc.

CHAPTER 5

Exploring the CustDB Samples for UltraLite

Contents
Introducing CustDB ... 80
Finding CustDB sample files ... 81
Lesson 1: Logging in and populating the UltraLite remote .. 83
Lesson 2: Using the CustDB client application .. 84
Lesson 3: Synchronizing with the CustDB consolidated database 86
Lesson 4: Browsing MobiLink synchronization scripts .. 88
What's next? .. 90

About this chapter
CustDB (Customer Database) helps you learn about various aspects of UltraLite as part of a multi-tiered
database management solution that includes MobiLink synchronization with a SQL Anywhere consolidated
database. The desktop-based tutorials in this chapter use CustDB examples to demonstrate features and
behaviors of UltraLite.

Copyright © 2006, iAnywhere Solutions, Inc. 79

Introducing CustDB
What is CustDB?

CustDB is used as the example for tutorials in MobiLink and UltraLite development guides to help users of
the software explore features in a guided and instructional manner. CustDB is a simple example of point-
of-sale customer management solution that consists of the following:

♦ A consolidated SQL Anywhere database. This data is pre-populated with sales-status data.

♦ A remote UltraLite database. This database is initially empty.

♦ An UltraLite client application.

♦ A MobiLink server synchronization sample with synchronization scripts already created for you.

While different versions of the application code exists for each supported programming interface and
platform, subsequent tutorials reference the compiled version of the application for Windows desktops only.
It is important to remember that each version implements UltraLite features with some variation to conform
to the conventions of each platform.

What does it do?
CustDB allows sales personnel to track and monitor transactions and then pool information from two types
of users:

♦ Sales personnel that authenticate with user IDs 51, 52, and 53.

♦ Mobile managers that authenticate with user ID 50.

Information gathered by these different users can be synchronized with the consolidated database.

F For more information on the CustDB usage scenario, see “Scenario” [MobiLink - Getting Started]. For
more details on the users in the CustDB sample and the types of actions they can perform, see “Users in the
CustDB sample” [MobiLink - Getting Started].

Goals of UltraLite CustDB tutorials
After following each lessons you will know how to:

♦ Run the MobiLink server to carry out data synchronization between the consolidated database and the
UltraLite remote.

♦ Use Sybase Central to browse the data in the UltraLite remote.

♦ Manage UltraLite databases with UltraLite command line utilities.

See also
♦ “Finding CustDB sample files” on page 81
♦ “Tables in the CustDB databases” [MobiLink - Getting Started]

Exploring the CustDB Samples for UltraLite

80 Copyright © 2006, iAnywhere Solutions, Inc.

Finding CustDB sample files
The SQL Anywhere installer automatically installs CustDB when it installs the software. The following table
lists the location of these files, as well as describes them.

Description SQL Anywhere installation

SQL Anywhere CustDB database: The con-
solidated database. During installation, an
ODBC data source named SQL Anywhere 10
CustDB is created for this database.

F For information on the schema of this file,
see “Exploring the CustDB Sample for Mo-
biLink” [MobiLink - Getting Started].

The CustDB installation depends on whether you want
to use the existing sample or recreate a new file:

♦ For the existing sample: samples-dir\UltraLite\Cust-
DB\custdb.db

♦ Erases changes that were synchronized into the con-
solidated CustDB.db file, so you have a clean version
to work with: samples-dir\UltraLite\CustDB
\newdb.bat

The UltraLite CustDB database: The remote
version of the consolidated database that con-
tains only a subset of the information, depend-
ing on which user synchronizes the database.

The file name and location can vary depending on the
platfom, programming language, or even device.

♦ For AppForge: samples-dir\UltraLiteforAppForge\.
You can find a CrossFire or MobileVB specific file
version for the device you require. In most cases, the
file name is ul_CustDB.udb. However, if you move
the Palm version of this file to the desktop, it be-
comes ul_CustDB.udb.pdb.

♦ For UltraLite.NET: samples-dir\UltraLite.NET
\CustDB\Common\

♦ For all other platforms and APIs: samples-dir\Ultra-
Lite\CustDB\custdb.udb

RDBMS-specific build scripts: The SQL
scripts that rebuild a CustDB consolidated
database for any one of the supported
RDBMSs.

F For more details on how to set up a con-
solidated database, see “Setting up the CustDB
consolidated database” [MobiLink - Getting
Started].

In the samples-dir\MobiLink\CustDB directory, you can
find the following files:

♦ For SQL Anywhere: custdb.sql

♦ For Adaptive Server Enterprise: custase.sql

♦ For Microsoft SQL Server: custmss.sql

♦ For Oracle: custora.sql

♦ For IBM DB2: custdb2.sql

Finding CustDB sample files

Copyright © 2006, iAnywhere Solutions, Inc. 81

Description SQL Anywhere installation

UltraLite CustDB client applications: The
end-user tools that provide a user-friendly in-
terface to the UltraLite remote database. There
is a sample client installed for each supported
API.

Each client application also contains a
readme.html file that outlines important infor-
mation you need to know about using that
client sample.

The location varies depending on your development en-
vironment. Choose one of:

♦ For Windows desktop: install-dir\ultralite\CustDB
\win32\386\.

♦ For C/C++: Generic files are located in the samples-
dir\UltraLite\Custdb\ directory. Files specific to
CodeWarrior for the Palm Computing Platform are
in the following locations: samples-dir\UltraLite
\CustDB\cwcommon\ and samples-dir\UltraLite
\CustDB\cw\directories.

♦ For embedded SQL: samples-dir\UltraLite\CustDB
\EVC\ and samples-dir\UltraLite\CustDB\EVC40\
depending on your version of embedded Visual C+
+.

♦ For MobileVB: samples-dir\UltraLiteForAppForge
\CF_CustDB or samples-dir\UltraLiteForAppForge
\MVB_CustDB

♦ For .NET:samples-dir\UltraLite.NET\CustDB

♦ For M-Business Anywhere: samples-dir\UltraLite-
ForMBusinessAnywhere\CustDB

SQL synchronization logic: The SQL state-
ments needed to query and modify information
from the UltraLite database and the calls re-
quired to start synchronization with the con-
solidated database.

samples-dir\UltraLite\CustDB\custdb.sqc

Exploring the CustDB Samples for UltraLite

82 Copyright © 2006, iAnywhere Solutions, Inc.

Lesson 1: Logging in and populating the UltraLite remote
The following procedure starts the sample UltraLite client application, the sample MobiLink server, and
populates the UltraLite remote database by synchronizing the UltraLite CustDB sample remote database to
obtain an initial set of data from SQL Anywhere consolidated database. In this walkthrough the sample
application is running on the same desktop computer as the MobiLink server. However, you can also deploy
a client application to the device and achieve the same result.

The data you download depends on the user ID you enter when you start the application. By default, user
ID 50 is used to log into UltraLite.

♦ To start and synchronize the sample application

1. Launch the MobiLink server sample.

At a command prompt enter:

mlsrv10 -c "DSN=SQL Anywhere 10 CustDB" -zu+ -vcrs

Or, from the Start menu, choose Programs ► SQL Anywhere 10 ► MobiLink ► MobiLink Server
Sample.

If the server starts, a console window appears displaying messages on the MobiLink server's status.

2. Launch the UltraLite client sample application.

From the Start menu, choose Programs ► SQL Anywhere 10 ► UltraLite ► Windows Sample
Application.

3. Enter an employee ID.

Type 50 then press Enter.

After you enter the employee ID, the application synchronizes. The MobiLink server console window
displays messages showing the synchronization taking place.

The default synchronization script determines which subset of customers, products, and orders is
downloaded to the application when user 50 logs in. In this case, only orders that have not yet been
approved are downloaded.

4. Confirm that the application contains data.

A company name and a sample order should appear in the application window.

Lesson 1: Logging in and populating the UltraLite remote

Copyright © 2006, iAnywhere Solutions, Inc. 83

Lesson 2: Using the CustDB client application
Both the consolidated and remote databases contain a table named ULOrder. While the consolidated database
holds all orders (approved and those pending approval), the UltraLite remote only displays a subset of
columns according to the user that has authenticated.

Columns in the table are displayed as fields in the client application. When you add an order, you must
populate the Customer, Product, Quantity, Price, and Discount fields. You can also append other details such
as Status or Notes. The timestamp column is used to identify whether or not the row needs to be synchronized.

See also
♦ “Tables in the CustDB databases” [MobiLink - Getting Started]

Browsing orders
Browsing orders is accomplished in a similar method for each version of the UltraLite client application.

By browsing an order, you are scrolling through the data in your local UltraLite database. Because customers
are sorted alphabetically, you can easily scroll through the list and locate a customer by name.

♦ To browse orders

1. To scroll down the list of customers, click Next.

2. To scroll up through the list of customers, click Previous.

Adding an order
Adding an order is carried out in a similar way in each version of the UltraLite client application.

By adding an order, you have modified the data in your local UltraLite database. This data is not shared with
the consolidated database until you synchronize.

♦ To add an order

1. Create a new order.

Choose Order ► New.

The Add New Order dialog appears.

2. Choose a customer from the list downloaded from the consolidated database.

From the Customer dropdown list choose Basements R Us. This customer does not have any current
orders.

3. Choose a product from the list downloaded from the consolidated database.

From the Product dropdown list choose Screwmaster Drill. The price of this item is automatically
entered in the Price field.

Exploring the CustDB Samples for UltraLite

84 Copyright © 2006, iAnywhere Solutions, Inc.

4. Enter the quantity and discount.

Type 20 in the Quantity field and type 5 (percent) in the Discount field.

5. Press Enter to add this order to the remote database as a row in the ULOrder table.

Changing the status of an order
Because you have authenticated your identity as user ID 50, you are a manager that can perform all the same
tasks as a sales person, but you have the added ability to accept or reject orders. By accepting or rejecting
an order, you are changing the status of it as well as adding additional note for the sales person to review.
However, the data in the consolidated database is unchanged until you synchronize.

♦ To approve, deny, and delete orders

1. Approve the order for Apple Street Builders.

a. Click Previous to locate this customer.

b. Click Approve to approve the order.

c. In the Approve Order dialog, choose Good work! from the Note dropdown list.

d. Press Enter.

The order appears with a status of Approved.

2. Deny the order for Art's Renovations.

a. Go to the next order in the list, which is from Art's Renovations.

b. Click Deny to deny this order.

c. In the Deny Order dialog, choose Discount is too high from the Note dropdown list.

d. Press Enter.

The order appears with a status of Denied.

3. Delete the order for Awnings R Us.

a. Go to the next order in the list, which is from Awnings R Us.

b. Delete this order by choosing Order ► Delete.

You are asked to confirm the deletion. Click Yes.

The order is marked as deleted. However, the current data remains in the UltraLite remote until
you synchronize changes to the consolidated database.

Lesson 2: Using the CustDB client application

Copyright © 2006, iAnywhere Solutions, Inc. 85

Lesson 3: Synchronizing with the CustDB consolidated
database

For synchronization to take place, the MobiLink server must be running. If you have shut down your
MobiLink server, restart it as described in “Lesson 1: Logging in and populating the UltraLite
remote” on page 83.

The synchronization process for the sample application removes approved orders from your database.

♦ To synchronize the UltraLite remote

1. Choose File ► Synchronize to synchronize your data.

2. Confirm that synchronization took place.

♦ At the remote database, you can confirm all required transactions occurred by checking that the
approved order for Apple Street Builders is now deleted. Do this by browsing the orders to confirm
the absence of this entry.

♦ At the consolidated database, you can also confirm all required actions occurred by checking data
in the consolidated database.

Confirming the synchronization at the consolidated database
You use Interactive SQL or Sybase Central to connect to the consolidated database and confirm that your
changes were synchronized.

♦ To confirm the synchronization (Interactive SQL)

1. Connect to the consolidated database from Interactive SQL.

a. Choose Start ► Programs ► SQL Anywhere 10 ► SQL Anywhere ► Interactive SQL.

The Interactive SQL Connect dialog appears.

b. Select ODBC Data Source Name and choose SQL Anywhere 10 CustDB from the dropdown list.

2. Confirm the status change of the approved and denied orders.

To confirm that the approval and denial have been synchronized, issue the following statement.

SELECT order_id, status
FROM ULOrder
WHERE status IS NOT NULL

The results show that order 5100 is approved, and 5101 is denied.

3. Confirm that the deleted order has been removed.

The deleted order has an order_id of 5102. The following query returns no rows, demonstrating that
the order has been removed from the system.

Exploring the CustDB Samples for UltraLite

86 Copyright © 2006, iAnywhere Solutions, Inc.

SELECT *
FROM ULOrder
WHERE order_id = 5102

♦ To confirm the synchronization (Sybase Central)

1. Launch Sybase Central.

Choose Programs ► Sybase ► SQL Anywhere 10 ► Sybase Central.

2. Connect to the consolidated CustDB database.

a. Choose Connections ► Connect with SQL Anywhere 10.

The Connect dialog appears.

b. Select ODBC Data Source Name and choose SQL Anywhere 10 CustDB from the dropdown list.

3. Browse to the ULOrder table and confirm your modifications:

a. Double-click Tables to display all tables.

b. Double-click the ULOrder table.

c. Click the Data tab and check that:

♦ Check that order 5100 is approved, and 5101 is denied.

♦ Check that order 5102 has been deleted.

Lesson 3: Synchronizing with the CustDB consolidated database

Copyright © 2006, iAnywhere Solutions, Inc. 87

Lesson 4: Browsing MobiLink synchronization scripts
The synchronization logic for CustDB is held in the consolidated database as MobiLink synchronization
scripts. Synchronization logic allows you to determine how much of the consolidated database you need to
download and/or upload. You can download complete tables or partial tables (with either row or column
subsets) using such techniques as timestamp-based synchronization or snapshot synchronization.

F For information on how synchronization has been implemented in CustDB, see “Synchronization
design” [MobiLink - Getting Started].

See also
♦ “Writing Synchronization Scripts” [MobiLink - Server Administration]
♦ “Introducing UltraLite as a MobiLink client” [MobiLink - Client Administration]

Browsing the synchronization scripts

In addition to the tables, users, and publications, you can also use Sybase Central to browse the
synchronization scripts that are stored in the consolidated database. Sybase Central is the primary tool for
adding these scripts to the database.

The custdb.sql file adds each synchronization script to the consolidated database by calling
ml_add_connection_script or ml_add_table_script. Connection scripts control high level events that are not
associated with a particular table. Use these events to perform global tasks that are required during every
synchronization. Table scripts allow actions at specific events relating to the synchronization of a specific
table, such as the start or end of uploading rows, resolving conflicts, or selecting rows to download.

F For more information on synchronization logic used in CustDB, see “Synchronization logic source
code” [MobiLink - Getting Started].

See also
♦ “Connection scripts” [MobiLink - Server Administration]
♦ “Table scripts” [MobiLink - Server Administration]

♦ To browse the synchronization scripts

1. Start Sybase Central.

Choose Programs ► SQL Anywhere 10 ► Sybase Central.

2. Connect to the consolidated CustDB database.

a. Choose Connections ► Connect with MobiLink 10.

The Connect dialog appears.

b. Select ODBC Data Source Name and choose SQL Anywhere 10 CustDB.

Click OK.

Exploring the CustDB Samples for UltraLite

88 Copyright © 2006, iAnywhere Solutions, Inc.

3. Open the Connection Scripts folder.

The right pane lists a set of synchronization scripts and a set of events with which these scripts are
associated. As the MobiLink server carries out the synchronization process, it triggers a sequence of
events. Any synchronization script associated with an event is run at that time. By writing
synchronization scripts and assigning them to the synchronization events, you can control the actions
that are carried out during synchronization.

4. Open the Synchronized Tables folder, and open the ULCustomer table folder.

The right pane lists a set of scripts that are specific to this table, and their corresponding events. These
scripts control the way that data in the ULCustomer table is synchronized with the remote databases.

Lesson 4: Browsing MobiLink synchronization scripts

Copyright © 2006, iAnywhere Solutions, Inc. 89

What's next?
In addition to the CustDB application, tutorials are provided for each of the supported interfaces. For more
information, see the following sections:

♦ UltraLite C++ “Tutorial: Build an Application Using the C++ API” [UltraLite - C and C++
Programming].

♦ UltraLite embedded SQL “Tutorial: Build an Application Using Embedded SQL” [UltraLite - C
and C++ Programming].

♦ UltraLite for AppForge “Tutorial: A Sample Application for AppForge MobileVB” [UltraLite -
AppForge Programming].

♦ UltraLite.NET “Tutorial: Build an UltraLite.NET Application” [UltraLite - .NET Programming].

♦ UltraLite for M-Business Anywhere “UltraLite for M-Business Anywhere Quick Start” [UltraLite
- M-Business Anywhere Programming]

Exploring the CustDB Samples for UltraLite

90 Copyright © 2006, iAnywhere Solutions, Inc.

Part III. UltraLite Database Reference

This part provides a reference for UltraLite database properties, options, connection parameters, and utilities.

CHAPTER 6

UltraLite Database Settings Reference

Contents
case property ... 94
checksum_level property ... 95
date_format property ... 97
date_order property ... 100
fips property ... 102
global_id option ... 104
max_hash_size property ... 106
ml_remote_id option .. 108
nearest_century property ... 109
obfuscate property ... 110
page_size property .. 112
precision property .. 114
scale property .. 116
time_format property ... 118
timestamp_format property .. 120
timestamp_increment property .. 123
utf8_encoding property .. 125

About this chapter
Properties are used to describe settings you require for your UltraLite database—whether it's a creation-time
database property or a post-creation database option. This chapter includes an alphabetical list of all settings
you can use to configure your UltraLite database.

Copyright © 2006, iAnywhere Solutions, Inc. 93

case property
Description

Sets the case sensitivity of string comparisons in the UltraLite database.

Set by
UltraLite employs different methods for setting this property:

Context Implemented by

From the command
line Use any utility that
creates a database.

Use the following property syntax:

- o case=value

From Sybase
Central Use any wizard
that creates a database.

On the New Database Collation and Character Set page, select the Use Case-
sensitive String Comparisons option.

From a client applica-
tion Use the create
database method.

Set this property as one of the creation parameters for an API's create database
method on the database manager class.

Allowed values
Ignore, Respect

Default
Ignore

Usage
You cannot change the case of an existing database. Instead, you must create a new database.

The case sensitivity of the data is reflected in tables, indexes, and so on. By default, UltraLite databases
perform case-insensitive comparisons, although data is always held in the case in which you enter it.
Passwords are always case sensitive, regardless of the case sensitivity of the database.

See also
♦ “Case sensitivity considerations” on page 33
♦ “UltraLite Create Database utility (ulcreate)” on page 165
♦ “UltraLite Initialize Database utility (ulinit)” on page 172
♦ “UltraLite Load XML to Database utility (ulload)” on page 174
♦ UltraLite for C/C++ and embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++

Programming]
♦ UltraLite for C++ only: “CreateDatabase function” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “ULDatabaseManager class” [UltraLite - AppForge Programming]
♦ UltraLite.NET: “ULDatabaseManager members” [UltraLite - .NET Programming]
♦ UltraLite for M-Business Anywhere: “Method createDatabase” [UltraLite - M-Business Anywhere

Programming]

UltraLite Database Settings Reference

94 Copyright © 2006, iAnywhere Solutions, Inc.

checksum_level property
Description

Sets the level of checksum validation in the database.

Set by
UltraLite employs different methods for setting this property:

Context Implemented by

From the command
line Use any utility that
creates a database.

Use the following property syntax:

- o checksum=value

From Sybase
Central Use any wizard
that creates a database.

On the New Database Storage Settings page, select the Checksum Level for
Database Pages option .

From a client applica-
tion Use the create
database method.

Set this property as one of the creation parameters for an API's create database
method on the database manager class.

Allowed values
You can set three levels of checksum validation:

Value Definition

0 Do not add checksums to database pages.

1 Add checksums to important database pages (for example indexes and synchronization
status pages), but not row pages.

2 Add checksums to all database pages.

Default
0

Usage
Checksums are used to detect offline corruption, which can help reduce the chances of other data being
corrupted as the result of a bad critical page. If a checksum validation fails, when the database loads a page,
UltraLite stops the database and reports a fatal error. This error cannot be corrected; you must re-create your
UltraLite database and report the database failure to iAnywhere Solutions.

If you unload and reload an UltraLite database with checksums enabled, the checksum level is preserved
and restored.

See also
♦ “Verifying page integrity with checksums” on page 37
♦ “Database page size considerations” on page 36

checksum_level property

Copyright © 2006, iAnywhere Solutions, Inc. 95

♦ “Supported exit codes” on page 189
♦ “UltraLite Create Database utility (ulcreate)” on page 165
♦ “UltraLite Initialize Database utility (ulinit)” on page 172
♦ “UltraLite Load XML to Database utility (ulload)” on page 174
♦ UltraLite for C/C++ and Embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++

Programming]
♦ UltraLite for C++ only: “CreateDatabase function” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “ULDatabaseManager class” [UltraLite - AppForge Programming]
♦ UltraLite.NET: “ULDatabaseManager members” [UltraLite - .NET Programming]
♦ UltraLite for M-Business Anywhere: “Method createDatabase” [UltraLite - M-Business Anywhere

Programming]

UltraLite Database Settings Reference

96 Copyright © 2006, iAnywhere Solutions, Inc.

date_format property
Description

Sets the default string format in which dates are retrieved from the database.

Set by
UltraLite employs different methods for setting this property:

Context Implemented by

From the command
line Use any utility that
creates a database.

Use the following property syntax:

- o date_format=value

From Sybase
Central Use any wizard
that creates a database.

On the New Database Options page, set the Date Format option .

From a client applica-
tion Use the create
database method.

Set this property as one of the creation parameters for an API's create database
method on the database manager class.

Allowed date part values
A string using any of the following symbols:

Symbol Description

yy Two digit year.

yyyy Four digit year.

mm Two digit month, or two digit minutes if following a colon (as in hh:mm).

mmm[m…] Character short form for months—as many characters as there are "m"s. An
uppercase M causes the output to be made uppercase.

d Single digit day of week, (0 = Sunday, 6 = Saturday).

dd Two digit day of month. A leading zero is not required.

ddd[d…] Character short form for day of the week. An uppercase D causes the output to
be made uppercase.

hh Two digit hours. A leading zero is not required.

nn Two digit minutes. A leading zero is not required.

ss[.ss..] Seconds and parts of a second.

aa Use 12 hour clock. Indicate times before noon with AM.

date_format property

Copyright © 2006, iAnywhere Solutions, Inc. 97

Symbol Description

pp Use 12 hour clock. Indicate times after noon with PM.

jjj Day of the year, from 1 to 366.

Default
YYYY-MM-DD, which corresponds to ISO date format specifications.

Usage

You cannot change the date format of an existing database. Instead, you must create a new database.

Allowed values are constructed from the symbols listed in the table above. Each symbol is substituted with
the appropriate data for the date that is being formatted.

For the character short forms, the number of letters specified is counted, and then the A.M. or P.M. indicator
(which could be localized) is truncated, if necessary, to the number of bytes corresponding to the number of
characters specified.

Controlling output case For symbols that represent character data (such as mmm), you can control the
case of the output as follows:

♦ Type the symbol in uppercase to have the format appear in uppercase. For example, MMM produces
JAN.

♦ Type the symbol in lowercase to have the format appear in lowercase. For example, mmm produces jan.

♦ Type the symbol in mixed case to have UltraLite choose the appropriate case for the language that is
being used. For example, in English, typing Mmm produces May, while in French it produces mai.

Controlling zero-padding For symbols that represent numeric data, you can control zero-padding with
the case of the symbols:

♦ Type the symbol in same-case (such as MM or mm) to allow zero padding. For example, yyyy/mm/dd
could produce 2002/01/01.

♦ Type the symbol in mixed case (such as Mm) to suppress zero padding. For example, yyyy/Mm/Dd could
produce 2002/1/1.

Example
The following table illustrates usage options date_format settings, together with the output from a SELECT
CURRENT DATE statement, executed on Thursday May 21, 2001.

date_format syntax used Result returned

yyyy/mm/dd/ddd 2001/05/21/thu

jjj 141

mmm yyyy may 2001

UltraLite Database Settings Reference

98 Copyright © 2006, iAnywhere Solutions, Inc.

date_format syntax used Result returned

mm-yyyy 05-2001

See also
♦ “UltraLite Create Database utility (ulcreate)” on page 165
♦ “UltraLite Initialize Database utility (ulinit)” on page 172
♦ “UltraLite Load XML to Database utility (ulload)” on page 174
♦ “Date considerations” on page 34
♦ UltraLite for C/C++ and Embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++

Programming]
♦ UltraLite for C++ only: “CreateDatabase function” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “ULDatabaseManager class” [UltraLite - AppForge Programming]
♦ UltraLite.NET: “ULDatabaseManager members” [UltraLite - .NET Programming]
♦ UltraLite for M-Business Anywhere: “Method createDatabase” [UltraLite - M-Business Anywhere

Programming]

date_format property

Copyright © 2006, iAnywhere Solutions, Inc. 99

date_order property
Description

Controls the interpretation for the order of months, days, and year date parts.

Set by
UltraLite employs different methods for setting this property:

Context Implemented by

From the command
line Use any utility that
creates a database.

Use the following property syntax:

- o date_order=value

From Sybase
Central Use any wizard
that creates a database.

On the New Database Options page, set the Date Order option .

From a client applica-
tion Use the create
database method.

Set this property as one of the creation parameters for an API's create database
method on the database manager class.

Allowed values
MDY, YMD, DMY

Default
YMD, which corresponds to ISO date format specifications.

Usage
You cannot change the date order of an existing database. Instead, you must create a new database.

Example
Different values determine what the date of 10/11/12 is translated as:

Synatx used Translation

MDY Oct 11 1912

YMD Nov 12 1910

DMY Nov 10 1912

See also
♦ “Date considerations” on page 34
♦ “date_format property” on page 97
♦ “UltraLite Create Database utility (ulcreate)” on page 165
♦ “UltraLite Initialize Database utility (ulinit)” on page 172
♦ “UltraLite Load XML to Database utility (ulload)” on page 174

UltraLite Database Settings Reference

100 Copyright © 2006, iAnywhere Solutions, Inc.

♦ UltraLite for C/C++ and Embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++
Programming]

♦ UltraLite for C++ only: “CreateDatabase function” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “ULDatabaseManager class” [UltraLite - AppForge Programming]
♦ UltraLite.NET: “ULDatabaseManager members” [UltraLite - .NET Programming]
♦ UltraLite for M-Business Anywhere: “Method createDatabase” [UltraLite - M-Business Anywhere

Programming]

date_order property

Copyright © 2006, iAnywhere Solutions, Inc. 101

fips property
Description

Controls AES FIPS compliant data encryption, by using a Certicom certified cryptographic algorithm.

Set by
UltraLite employs different methods for setting this property:

Context Implemented by

From the command
line Use any utility that
creates a database.

Use the following property syntax:

-o fips=boolean

Remember to include the KEY connection parameter in ulcreate's connection
string. This sets the encryption key used for FIPS encryption.

From Sybase
Central Use any wizard
that creates a database.

On the New Database Storage Settings page, choose to encrypt the database
with strong encryption by selecting the AES FIPS algorithm option. Re-
member to also set and confirm the encryption key.

From a client applica-
tion Use the create
database method.

♦ On Palm OS, use the ULEnableFipsStrongEncryption method.

♦ On all other platforms, set this property as one of the creation parameters
for an API's create database method on the database manager class.

Allowed values
All boolean values are supported. For example, true/false, yes/no, 1/0, and so on.

Default
0 (databases are not encrypted)

Usage

You cannot change the encryption setting for an existing database. Instead, you must create a new database.

Once you configure the key used for FIPS encryption, users connecting to this database must supply the key
each time they connect.

Deploying FIPS
To deploy a FIPS-enabled application, include all appropriate libraries for your platform (for example,
ulfips.dll). On Windows CE, you also need to run setup.exe from the install-dir\ce\arm\fips directory.

See also
♦ “Strong encryption” [SQL Anywhere Server - Database Administration]
♦ “Security considerations” on page 38
♦ “DBKEY connection parameter” on page 143
♦ “UltraLite Create Database utility (ulcreate)” on page 165
♦ “UltraLite Initialize Database utility (ulinit)” on page 172
♦ “UltraLite Load XML to Database utility (ulload)” on page 174

UltraLite Database Settings Reference

102 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “Saving, retrieving, and clearing encryption keys on Palm OS” [UltraLite - C and C++ Programming]
♦ UltraLite for C/C++ and Embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++

Programming]
♦ UltraLite for C++ only: “CreateDatabase function” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “ULDatabaseManager class” [UltraLite - AppForge Programming]
♦ UltraLite.NET: “ULDatabaseManager members” [UltraLite - .NET Programming]
♦ UltraLite for M-Business Anywhere: “Method createDatabase” [UltraLite - M-Business Anywhere

Programming]

fips property

Copyright © 2006, iAnywhere Solutions, Inc. 103

global_id option
Description

Sets the database identification number.

Set by
UltraLite employs different methods for setting this property:

Context Implemented by

From the command
line Use the ulinfo util-
ity.

Use the following property syntax:

-g ID

From Sybase
Central Use the
Database Options dialog
by right-clicking the
database name and choos-
ing Options.

Select the global_database_ID option and type a new string in the Value field
below the options table.

From a client applica-
tion Use the set
database ID method.

The method of setting this identification number varies according to the pro-
gramming interface you are using.

Allowed values
The global database identifier in each deployed UltraLite application must be set to a unique, non-negative
integer before default values can be assigned. These identification numbers uniquely identify the databases.

Default
The range of default values for a particular global autoincrement column is pn + 1 to p(n + 1), where p is
the partition size of the column and n is the global database identification number.

Usage
When deploying an application, you must assign a different identification number to each database for
synchronization with the MobiLink server.

You can change the global ID of an existing database at any time. You do not need to create a new database.

Example
To autoincrement UltraLite database columns from 3001 to 4000, set the global ID to 3.

See also
♦ “Global database ID considerations” on page 40
♦ “UltraLite Information utility (ulinfo)” on page 169
♦ “Using GLOBAL AUTOINCREMENT in UltraLite” [MobiLink - Client Administration]
♦ UltraLite for C/C++: “SetDatabaseID function” [UltraLite - C and C++ Programming]
♦ UltraLite for Embedded SQL: “ULSetDatabaseID function” [UltraLite - C and C++ Programming]

UltraLite Database Settings Reference

104 Copyright © 2006, iAnywhere Solutions, Inc.

♦ UltraLite for AppForge: “Properties” [UltraLite - AppForge Programming]
♦ UltraLite.NET: “DatabaseID property” [UltraLite - .NET Programming]
♦ UltraLite for M-Business Anywhere: “Method setDatabaseID” [UltraLite - M-Business Anywhere

Programming]

global_id option

Copyright © 2006, iAnywhere Solutions, Inc. 105

max_hash_size property
Description

Sets the maximum default index hash size in bytes. UltraLite only uses as many bytes as required for the
data type(s) of the column(s), up to this maximum.

Set by
UltraLite employs different methods for setting this property:

Context Implemented by

From the command
line Use any utility that
creates a database.

Use the following property syntax:

-o max_hash_size=value

From Sybase
Central Use any wizard
that creates a database.

On the New Database Storage Settings page, select the Maximum Hash Size
for Indexes option .

From a client applica-
tion Use the create
database method.

Set this property as one of the creation parameters for an API's create database
method on the database manager class.

Allowed values
0 to 32 bytes

Default
4 bytes

Usage
The default hash size is only used if you do not set a size when you create the index.

If you set the default hash size to 0, the does not hash row values.

You cannot change the hash size for an index after the index has been created. You can, however, override
the default when you create a new index with the UltraLite Create Index wizard in Sybase Central, or with
the WITH MAX SIZE clause in a CREATE INDEX or a CREATE TABLE statement.

If you declare your columns as DOUBLE, FLOAT, or REAL data types, no hashing is used. The hash size
is always ignored.

See also
♦ “Index performance considerations” on page 33
♦ “Indexes in UltraLite databases” on page 20
♦ “Working with UltraLite indexes” on page 65
♦ “Choosing an optimal hash size” on page 69
♦ “CREATE INDEX statement” on page 328
♦ “CREATE TABLE statement” on page 331
♦ “UltraLite Create Database utility (ulcreate)” on page 165

UltraLite Database Settings Reference

106 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “UltraLite Initialize Database utility (ulinit)” on page 172
♦ “UltraLite Load XML to Database utility (ulload)” on page 174
♦ UltraLite for C/C++ and Embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++

Programming]
♦ UltraLite for C++ only: “CreateDatabase function” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “ULDatabaseManager class” [UltraLite - AppForge Programming]
♦ UltraLite.NET: “ULDatabaseManager members” [UltraLite - .NET Programming]
♦ UltraLite for M-Business Anywhere: “Method createDatabase” [UltraLite - M-Business Anywhere

Programming]

max_hash_size property

Copyright © 2006, iAnywhere Solutions, Inc. 107

ml_remote_id option
Description

A unique identifier in UltraLite that is used for MobiLink synchronization.

Set by
UltraLite employs different methods for setting this property:

Context Implemented by

From the command
line Use the ulinfo util-
ity.

Use the following property syntax:

-r ID

From Sybase
Central Use the
Database Options dialog.

Select the ml_remote_ID option and type a new string in the Value field
below the options table.

From a client applica-
tion Use the set
database option method.

The method of setting this identification value varies according to the pro-
gramming interface you are using.

Allowed values
Any value that uniquely identifies the database for MobiLink synchronization.

Default
Null (no remote ID)

Usage
Each remote database must be represented by a single user ID in the consolidated database. This user ID
must be granted REMOTE permissions to identify their user ID and address as a subscriber to publications.

If ml_remote_id is NULL, the MobiLink server automatically assigns a unique value on the first
synchronization.

See also
♦ “Remote ID considerations for MobiLink server synchronization” on page 40
♦ “Granting REMOTE permissions” [SQL Remote]
♦ “UltraLite Information utility (ulinfo)” on page 169
♦ UltraLite for C/C++:“SetDatabaseOption function” [UltraLite - C and C++ Programming]
♦ UltraLite for Embedded SQL: “ULSetDatabaseOptionString function” [UltraLite - C and C++

Programming]
♦ UltraLite for AppForge: “SetDatabaseOption method” [UltraLite - AppForge Programming]
♦ UltraLite.NET: “SetDatabaseOption method” [UltraLite - .NET Programming]

UltraLite Database Settings Reference

108 Copyright © 2006, iAnywhere Solutions, Inc.

nearest_century property
Description

Controls the interpretation of two-digit years in string-to-date conversions. It is used when converting from
strings to dates or timestamps.

Set by
UltraLite employs different methods for setting this property:

Context Implemented by

From the command
line Use any utility that
creates a database.

Use the following property syntax:

- o nearest_century=value

From Sybase
Central Use any wizard
that creates a database.

On the New Database Options page, set the Nearest Century option .

From a client applica-
tion Use the create
database method.

Set this property as one of the creation parameters for an API's create database
method on the database manager class.

Allowed values
Integer, between 0 and 100 inclusive

Default
50

Usage
You cannot change the nearest century of an existing database. Instead, you must create a new database.

The nearest_century setting is a numeric value that acts as a rollover point. Two digit years less than the
value are converted to 20yy, while years greater than or equal to the value are converted to 19yy.

See also
♦ “Nearest century conversion considerations” on page 35
♦ “UltraLite Create Database utility (ulcreate)” on page 165
♦ “UltraLite Initialize Database utility (ulinit)” on page 172
♦ “UltraLite Load XML to Database utility (ulload)” on page 174
♦ UltraLite for C/C++ and Embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++

Programming]
♦ UltraLite for C++ only: “CreateDatabase function” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “ULDatabaseManager class” [UltraLite - AppForge Programming]
♦ UltraLite.NET: “ULDatabaseManager members” [UltraLite - .NET Programming]
♦ UltraLite for M-Business Anywhere: “Method createDatabase” [UltraLite - M-Business Anywhere

Programming]

nearest_century property

Copyright © 2006, iAnywhere Solutions, Inc. 109

obfuscate property
Description

Controls obfuscation of data in the database. Obfuscation is a form of simple encryption.

Set by
UltraLite employs different methods for setting this property:

Context Implemented by

From the command
line Use any utility that
creates a database.

Use the following property syntax:

-o obfuscate=boolean

From Sybase
Central Use any wizard
that creates a database.

On the New Database Storage Settings page, choose to encrypt the database
by selecting the Use Simple Encryption (Obfuscation) option.

From a client applica-
tion Use the create
database method.

Set this property as one of the creation parameters for an API's create database
method on the database manager class.

Values
All boolean values are supported. For example, true/false, yes/no, 1/0, and so on.

Default
0 (databases are not obfuscated)

Usage
Simple encryption is equivalent to obfuscation and makes it more difficult for someone using a disk utility
to look at the file to decipher the data in your database. Simple encryption does not require a key to encrypt
the database.

To render the database inaccessible without the correct encryption key requires that you set the database to
strong encryption.

See also
♦ “Simple encryption” [SQL Anywhere Server - Database Administration]
♦ “Security considerations” on page 38
♦ “DBKEY connection parameter” on page 143
♦ “UltraLite Create Database utility (ulcreate)” on page 165
♦ “UltraLite Initialize Database utility (ulinit)” on page 172
♦ “UltraLite Load XML to Database utility (ulload)” on page 174
♦ UltraLite for C/C++ and Embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++

Programming]
♦ UltraLite for C++ only: “CreateDatabase function” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “ULDatabaseManager class” [UltraLite - AppForge Programming]
♦ UltraLite.NET: “ULDatabaseManager members” [UltraLite - .NET Programming]

UltraLite Database Settings Reference

110 Copyright © 2006, iAnywhere Solutions, Inc.

♦ UltraLite for M-Business Anywhere: “Method createDatabase” [UltraLite - M-Business Anywhere
Programming]

obfuscate property

Copyright © 2006, iAnywhere Solutions, Inc. 111

page_size property
Description

Defines the database page size.

Set by
UltraLite employs different methods for setting this property:

Context Implemented by

From the command
line Use any utility that
creates a database.

Use the following property syntax:

-o page_size=value

From Sybase
Central Use any wizard
that creates a database.

On the New Database Storage Settings page, select the appropriate byte value
that corresponds to the allowed value list below.

From a client applica-
tion Use the create
database method.

Set this property as one of the creation parameters for an API's create database
method on the database manager class.

Allowed values
1 K, 2 K, 4 K, 8 K, and 16 K

Default
4 K

Usage
You cannot change the page size of an existing database. Instead, you must create a new database.

Use k or K to denote kilobyte units. If you use any value other than the allowed values listed, the size is
changed to the next larger size. If you do not specify a unit, bytes are assumed.

Example
To set the page size of the database to 8 KBs, you can configure this value as follows:

page_size=8k

or

page_size=8192

See also
♦ “Database page size considerations” on page 36
♦ “CACHE_SIZE connection parameter” on page 128
♦ “RESERVE_SIZE connection parameter” on page 148
♦ “UltraLite Create Database utility (ulcreate)” on page 165
♦ “UltraLite Initialize Database utility (ulinit)” on page 172

UltraLite Database Settings Reference

112 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “UltraLite Load XML to Database utility (ulload)” on page 174
♦ UltraLite for C/C++ and Embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++

Programming]
♦ UltraLite for C++ only: “CreateDatabase function” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “ULDatabaseManager class” [UltraLite - AppForge Programming]
♦ UltraLite.NET: “ULDatabaseManager members” [UltraLite - .NET Programming]
♦ UltraLite for M-Business Anywhere: “Method createDatabase” [UltraLite - M-Business Anywhere

Programming]

page_size property

Copyright © 2006, iAnywhere Solutions, Inc. 113

precision property
Description

Specifies the maximum number of digits in decimal point arithmetic results.

Set by
UltraLite employs different methods for setting this property:

Context Implemented by

From the command
line Use any utility that
creates a database.

Use the following property syntax:

-o precision=value

From Sybase
Central Use any wizard
that creates a database.

On the New Database Options page, set the Precision option .

From a client applica-
tion Use the create
database method.

Set this property as one of the creation parameters for an API's create database
method on the database manager class.

Allowed values
Integer, between 1 and 127, inclusive

Default
30

Usage
The precision is the total number of digits to the left and right of the decimal point. Use this property with
the scale property to specify the minimum number of digits after the decimal point when an arithmetic result
is truncated to the maximum precision.

Multiplication, division, addition, subtraction, and aggregate functions can all have results that exceed the
maximum precision. For example, when a DECIMAL(8,2) is multiplied with a DECIMAL(9,2), the result
could require a DECIMAL(17,4). If precision is 15, only 15 digits are kept in the result. If scale is 4, the
result is DECIMAL(15,4). If scale is 2, the result is DECIMAL(15,2). In both cases, there is a possibility of
overflow.

You cannot change the precision of an existing database. Instead, you must create a new database.

See also
♦ “Decimal point position considerations” on page 36
♦ “scale property” on page 116
♦ “UltraLite Create Database utility (ulcreate)” on page 165
♦ “UltraLite Initialize Database utility (ulinit)” on page 172
♦ “UltraLite Load XML to Database utility (ulload)” on page 174

UltraLite Database Settings Reference

114 Copyright © 2006, iAnywhere Solutions, Inc.

♦ UltraLite for C/C++ and Embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++
Programming]

♦ UltraLite for C++ only: “CreateDatabase function” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “ULDatabaseManager class” [UltraLite - AppForge Programming]
♦ UltraLite.NET: “ULDatabaseManager members” [UltraLite - .NET Programming]
♦ UltraLite for M-Business Anywhere: “Method createDatabase” [UltraLite - M-Business Anywhere

Programming]

precision property

Copyright © 2006, iAnywhere Solutions, Inc. 115

scale property
Description

Specifies the minimum number of digits after the decimal point when an arithmetic result is truncated to the
maximum precision.

Set by
UltraLite employs different methods for setting this property:

Context Implemented by

From the command
line Use any utility that
creates a database.

Use the following property syntax:

- o scale=value

From Sybase
Central Use any wizard
that creates a database.

On the New Database Options page, set the Scale option.

From a client applica-
tion Use the create
database method.

Set this property as one of the creation parameters for an API's create database
method on the database manager class.

Allowed values
Integer, between 0 and 127, inclusive, and less than the value specified for the precision database option

Default
6

Usage
You cannot change the scale of an existing database. Instead, you must create a new database.

The scale property specifies the minimum number of digits after the decimal point. Multiplication, division,
addition, subtraction, and aggregate functions can all have results that exceed the maximum scale.

Use this property with the precision property, which is also used to determine the entire length of arithmetic
results.

Example
When a DECIMAL(8,2) is multiplied with a DECIMAL(9,2), the result could require a DECIMAL(17,4).
If precision is 15, only 15 digits are kept in the result. If scale is 4, the result is DECIMAL(15,4). If scale is
2, the result is a DECIMAL(15,2). In both cases, there is a possibility of overflow.

See also
♦ “Decimal point position considerations” on page 36
♦ “precision property” on page 114
♦ “UltraLite Create Database utility (ulcreate)” on page 165
♦ “UltraLite Initialize Database utility (ulinit)” on page 172

UltraLite Database Settings Reference

116 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “UltraLite Load XML to Database utility (ulload)” on page 174
♦ UltraLite for C/C++ and Embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++

Programming]
♦ UltraLite for C++ only: “CreateDatabase function” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “ULDatabaseManager class” [UltraLite - AppForge Programming]
♦ UltraLite.NET: “ULDatabaseManager members” [UltraLite - .NET Programming]
♦ UltraLite for M-Business Anywhere: “Method createDatabase” [UltraLite - M-Business Anywhere

Programming]

scale property

Copyright © 2006, iAnywhere Solutions, Inc. 117

time_format property
Description

Sets the format for times retrieved from the database.

Set by
UltraLite employs different methods for setting this property:

Context Implemented by

From the command
line Use any utility that
creates a database.

Use the following property syntax:

-o time_format=value

From Sybase
Central Use any wizard
that creates a database.

On the New Database Options page, set the Time Format option.

From a client applica-
tion Use the create
database method.

Set this property as one of the creation parameters for an API's create database
method on the database manager class.

Allowed values
A string using any of the following symbols:

Symbol Description

hh Two digit hours (24 hour clock).

nn Two digit minutes.

mm Two digit minutes if following a colon (as in hh:mm).

ss[.s…] Two digit seconds plus optional fraction.

Default
HH:NN:SS.SSS

Usage
You cannot change the time format of an existing database. Instead, you must create a new database.

Each symbol is substituted with the appropriate data for the time that is being formatted.

Controlling zero-padding You can control zero-padding with the case of the symbols:

♦ Type the symbol in same-case (such as HH or hh) to allow zero padding. For example, HH:NN:SS could
produce 01:01:01.

♦ Type the symbol in mixed case (such as Hh or hH) to suppress zero padding. For example, Hh:Nn:Ss
could produce 1:1:1.

UltraLite Database Settings Reference

118 Copyright © 2006, iAnywhere Solutions, Inc.

Example
If a transaction was executed at 3:30 PM and you used the default time_format syntax of HH:NN:SS.SSS,
the result would be:

15:30:55.0

See also
♦ “Time considerations” on page 34
♦ “UltraLite Create Database utility (ulcreate)” on page 165
♦ “UltraLite Initialize Database utility (ulinit)” on page 172
♦ “UltraLite Load XML to Database utility (ulload)” on page 174
♦ UltraLite for C/C++ and Embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++

Programming]
♦ UltraLite for C++ only: “CreateDatabase function” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “ULDatabaseManager class” [UltraLite - AppForge Programming]
♦ UltraLite.NET: “ULDatabaseManager members” [UltraLite - .NET Programming]
♦ UltraLite for M-Business Anywhere: “Method createDatabase” [UltraLite - M-Business Anywhere

Programming]

time_format property

Copyright © 2006, iAnywhere Solutions, Inc. 119

timestamp_format property
Description

Sets the format for timestamps that are retrieved from the database.

Set by
UltraLite employs different methods for setting this property:

Context Implemented by

From the command
line Use any utility that
creates a database.

Use the following property syntax:

-o timestamp_format=value

From Sybase
Central Use any wizard
that creates a database.

On the New Database Options page, set the Timestamp Format option .

From a client applica-
tion Use the create
database method.

Set this property as one of the creation parameters for an API's create database
method on the database manager class.

Allowed values
A string using any of the following symbols:

Symbol Description

yy Two digit year.

yyyy Four digit year.

mm Two digit month, or two digit minutes if following a colon (as in hh:mm).

mmm[m…] Character short form for months—as many characters as there are "m"s. An
uppercase M causes the output to be made uppercase.

d Single digit day of week, (0 = Sunday, 6 = Saturday).

dd Two digit day of month. A leading zero is not required.

ddd[d…] Character short form for day of the week. An uppercase D causes the output to
be made uppercase.

hh Two digit hours. A leading zero is not required.

nn Two digit minutes. A leading zero is not required.

ss[.ss..] Seconds and parts of a second.

aa Use 12 hour clock. Indicate times before noon with AM.

UltraLite Database Settings Reference

120 Copyright © 2006, iAnywhere Solutions, Inc.

Symbol Description

pp Use 12 hour clock. Indicate times after noon with PM.

jjj Day of the year, from 1 to 366.

Default
YYYY-MM-DD HH:NN:SS.SSS

Usage
You cannot change the timestamp format of an existing database. Instead, you must create a new database.

Allowed values are constructed from the symbols listed in the table above. Each symbol is substituted with
the appropriate data for the date that is being formatted.

For the character short forms, the number of letters specified is counted, and then the A.M. or P.M. indicator
(which could be localized) is truncated, if necessary, to the number of bytes corresponding to the number of
characters specified.

Controlling output case For symbols that represent character data (such as mmm), you can control the
case of the output as follows:

♦ Type the symbol in all uppercase to have the format appear in all uppercase. For example, MMM produces
JAN.

♦ Type the symbol in all lowercase to have the format appear in all lowercase. For example, mmm produces
jan.

♦ Type the symbol in mixed case to have UltraLite choose the appropriate case for the language that is
being used. For example, in English, typing Mmm produces May, while in French it produces mai.

Controlling zero-padding For symbols that represent numeric data, you can control zero-padding with
the case of the symbols:

♦ Type the symbol in same-case (such as MM or mm) to allow zero padding. For example, yyyy/mm/dd
could produce 2002/01/01.

♦ Type the symbol in mixed case (such as Mm) to suppress zero padding. For example, yyyy/Mm/Dd could
produce 2002/1/1.

Example
If a transaction was executed on Friday May 12, 2006 at 3:30 PM and you used the default timestamp_format
syntax of YYYY-MM-DD HH:NN:SS.SSS, the result would be:

2006-05-12 15:30:55.0

See also
♦ “Timestamp considerations” on page 35
♦ “UltraLite Create Database utility (ulcreate)” on page 165
♦ “UltraLite Initialize Database utility (ulinit)” on page 172

timestamp_format property

Copyright © 2006, iAnywhere Solutions, Inc. 121

♦ “UltraLite Load XML to Database utility (ulload)” on page 174
♦ UltraLite for C/C++ and Embedded SQL:“ULCreateDatabase function” [UltraLite - C and C++

Programming]
♦ UltraLite for C++ only: “CreateDatabase function” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “ULDatabaseManager class” [UltraLite - AppForge Programming]
♦ UltraLite.NET: “ULDatabaseManager members” [UltraLite - .NET Programming]
♦ UltraLite for M-Business Anywhere: “Method createDatabase” [UltraLite - M-Business Anywhere

Programming]

UltraLite Database Settings Reference

122 Copyright © 2006, iAnywhere Solutions, Inc.

timestamp_increment property
Description

Limits the resolution of timestamp values. As timestamps are inserted into the database, UltraLite truncates
them to match this increment. This value is useful when a DEFAULT TIMESTAMP column is being used
as a primary key or row identifier.

Set by
UltraLite employs different methods for setting this property:

Context Implemented by

From the command
line Use any utility that
creates a database.

Use the following property syntax:

-o timestamp_increment=value

From Sybase
Central Use any wizard
that creates a database.

On the New Database Options page, set the Timestamp Increment option.

From a client applica-
tion Use the create
database method.

Set this property as one of the creation parameters for an API's create database
method on the database manager class.

Allowed values
1 to 60,000,000,000 microseconds

Default
1 microsecond

Usage

You cannot change the timestamp increment of an existing database. Instead, you must create a new database.

Example
To store a value such as '2000/12/05 10:50:53:700', set this property to 100000. This value will truncate the
timestamp after the first decimal place in the seconds component.

See also
♦ “Timestamp considerations” on page 35
♦ “UltraLite Create Database utility (ulcreate)” on page 165
♦ “UltraLite Initialize Database utility (ulinit)” on page 172
♦ “UltraLite Load XML to Database utility (ulload)” on page 174
♦ UltraLite for C/C++ and Embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++

Programming]
♦ UltraLite for C++ only: “CreateDatabase function” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “ULDatabaseManager class” [UltraLite - AppForge Programming]
♦ UltraLite.NET: “ULDatabaseManager members” [UltraLite - .NET Programming]

timestamp_increment property

Copyright © 2006, iAnywhere Solutions, Inc. 123

♦ UltraLite for M-Business Anywhere: “Method createDatabase” [UltraLite - M-Business Anywhere
Programming]

UltraLite Database Settings Reference

124 Copyright © 2006, iAnywhere Solutions, Inc.

utf8_encoding property
Description

Encodes data using the UTF-8 format, 8-bit multibyte encoding for Unicode.

Set by
UltraLite employs different methods for setting this property:

Context Implemented by

From the command
line Use any utility that
creates a database.

Use the following property syntax:

-o utf8_encoding=boolean

From Sybase
Central Use any wizard
that creates a database.

On the New Database Options page, set the UTF-8 option .

From a client applica-
tion Use the create
database method.

Set this property as one of the creation parameters for an API's create database
method on the database manager class.

Allowed values
All boolean values are supported. For example, true/false, yes/no, 1/0, and so on.

Default
0, or databases are not UTF-8 encoded.

Usage
UTF-8 characters are represented by one to four bytes. For other multibyte collations, one or two bytes are
used. For all provided multibyte collations, characters comprising two or more bytes are considered to be
alphabetic. This means that you can use these characters in identifiers without requiring double quotes.

By encoding your database in UTF-8, UltraLite uses the UTF8BIN collation to sort characters. The UTF8BIN
character set is not specific to any particular native language; no specific code page is associated with this
character set. Consequently, you can synchronize data from multiple native languages to the same
consolidated database. If you try synchronizing UTF-8 encoded characters into a consolidated table that does
not support Unicode, a user error is reported.

See also
♦ “Platform requirements for character set encoding” on page 32
♦ “Character considerations” on page 31
♦ “UltraLite Create Database utility (ulcreate)” on page 165
♦ “UltraLite Initialize Database utility (ulinit)” on page 172
♦ “UltraLite Load XML to Database utility (ulload)” on page 174
♦ UltraLite for C/C++ and Embedded SQL: “ULCreateDatabase function” [UltraLite - C and C++

Programming]
♦ UltraLite for C++ only: “CreateDatabase function” [UltraLite - C and C++ Programming]

utf8_encoding property

Copyright © 2006, iAnywhere Solutions, Inc. 125

♦ UltraLite for AppForge: “ULDatabaseManager class” [UltraLite - AppForge Programming]
♦ UltraLite.NET: “ULDatabaseManager members” [UltraLite - .NET Programming]
♦ UltraLite for M-Business Anywhere: “Method createDatabase” [UltraLite - M-Business Anywhere

Programming]

UltraLite Database Settings Reference

126 Copyright © 2006, iAnywhere Solutions, Inc.

CHAPTER 7

UltraLite Connection String Parameters
Reference

Contents
CACHE_SIZE connection parameter .. 128
CON connection parameter ... 130
DBF connection parameter .. 131
CE_FILE connection parameter .. 133
NT_FILE connection parameter .. 135
PALM_FILE connection parameter ... 137
PALM_DB connection parameter .. 139
SYMBIAN_FILE connection parameter ... 140
DBN connection parameter ... 142
DBKEY connection parameter ... 143
PALM_ALLOW_BACKUP connection parameter .. 145
PWD connection parameter .. 146
RESERVE_SIZE connection parameter .. 148
START connection parameter ... 149
UID connection parameter ... 150

About this chapter
Connection parameters are keywords used in connection strings to open and describe connections with your
UltraLite database. This chapter includes an alphabetical list of all of the supported connection keywords
for UltraLite database connection strings.

Copyright © 2006, iAnywhere Solutions, Inc. 127

CACHE_SIZE connection parameter
Description

Defines the size of the database cache.

Syntax
CACHE_SIZE=number{ k | m | g }

Default
Varies according to the platform you are connecting to:

♦ The Windows desktop default is 512 KB.

♦ The Windows CE default is 256 KB.

♦ The Symbian OS default is 128 KB.

♦ The Palm OS default is determined by the amount of memory available to the device, and the type of
memory used (file-based or record-based).

Usage
If the cache size is not specified, or you set the size to 0, the default size is used. The default cache size is
conservative. If your testing shows the need for better performance, you should increase the cache size.

You can specify the size in units of bytes. Use the suffix k or K to indicate units of kilobytes, the suffix m
or M to indicate megabytes, and the suffix g or G to indicate gigabytes. If you do not specify a unit, bytes
are assumed by default.

If you exceed the maximum cache size, it is automatically replaced with your platform's upper cache size
limit. For example, on Symbian OS, the maximum cache size is 2 MB. Increasing the cache size beyond the
size of the database, however, does not provide any performance improvement.

A large cache size can interfere with the number of other applications you can use.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes('), leading double quotes ("), or semi-colons(;).

Example
The following connection string fragment sets the cache size to 128 KB.

"CACHE_SIZE=128k"

See also
♦ “Opening connections with connection strings” on page 47
♦ “page_size property” on page 112
♦ “RESERVE_SIZE connection parameter” on page 148
♦ UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
♦ UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]

UltraLite Connection String Parameters Reference

128 Copyright © 2006, iAnywhere Solutions, Inc.

♦ UltraLite for AppForge: “Connecting to an UltraLite database” [UltraLite - AppForge Programming]
♦ UltraLite for AppForge: “OpenConnection method” [UltraLite - AppForge Programming]
♦ UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
♦ UltraLite for M-Business Anywhere: “Method openConnection” [UltraLite - M-Business Anywhere

Programming]
♦ UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
♦ UltraLite.NET: “Open method” [UltraLite - .NET Programming]

CACHE_SIZE connection parameter

Copyright © 2006, iAnywhere Solutions, Inc. 129

CON connection parameter
Applies to

Applications that require concurrent connections to the database.

Description
Names a connection, to make switching to it easier in multi-connection applications.

Syntax
CON=name

Default
No connection name.

Usage
The CON parameter is global to the application.

Do not use this parameter unless you are going to establish and switch between two or more concurrent
connections.

The connection name is not the same as the database name.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes('), leading double quotes ("), or semi-colons(;).

Example
The following connection string fragment sets the first connection name to MyFirstCon.

"CON=MyFirstCon"

See also
♦ “Opening connections with connection strings” on page 47
♦ “DBN connection parameter” on page 142
♦ UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
♦ UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “Connecting to an UltraLite database” [UltraLite - AppForge Programming]
♦ UltraLite for AppForge: “OpenConnection method” [UltraLite - AppForge Programming]
♦ UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
♦ UltraLite for M-Business Anywhere: “Method openConnection” [UltraLite - M-Business Anywhere

Programming]
♦ UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
♦ UltraLite.NET: “Open method” [UltraLite - .NET Programming]

UltraLite Connection String Parameters Reference

130 Copyright © 2006, iAnywhere Solutions, Inc.

DBF connection parameter
Applies to

Typically used when targeting a single platform or using UltraLite administration tools.

Description
These parameters perform two different functions:

♦ When creating a database, this parameter names the new database file.

♦ When opening a connection, this parameter indicates which database file you want to load and connect
to.

Alternate
If you are connecting to multiple databases on different devices from a single connection string, you can use
the following parameters to name platform-specific alternates:

♦ CE_FILE
♦ PALM_FILE
♦ NT_FILE
♦ SYMBIAN_FILE

Syntax
DBF=ul-db

Default
Depends on the platform:

♦ On desktop platforms If you do not specify an NT_FILE or DBF value, UltraLite sets the file name
to \UltraLiteDB\ulstore.udb.

♦ On Windows CE If you do not specify a CE_FILE or DBF value, UltraLite sets the file name to
\UltraLiteDB\ulstore.udb.

♦ On Palm OS If you do not specify a PALM_FILE or DBF value, UltraLite sets the file name to
ulstore.udb.

♦ On Symbian OS If you do not specify a SYMBIAN_FILE or DBF value, UltraLite sets the file name
to ulstore.udb.

Recommendation
Always explicitly specify the parameter; do not rely on default behavior.

Usage
If specified, the platform-specific parameters take precedence over DBF.

Because they are aliases, if DBF is used concurrently, the last one specified takes precedence.

DBF connection parameter

Copyright © 2006, iAnywhere Solutions, Inc. 131

The value of DBF must meet the file name requirements for the platform in question.

If you are deploying to a Windows CE device, UltraLite utilities and wizards can administer an UltraLite
database on an attached CE device. To identify a file on a CE device, ensure specify the required absolute
path and use the wce:\ prefix as illustrated by the Windows CE example below.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes('), leading double quotes ("), or semi-colons(;).

Examples
To connect to the database, MyULdb.udb, installed in the desktop directory c:\mydb, use the following
connection string:

"DBF=c:\mydb\MyULdb.udb"

To connect to the same database that is deployed to the Ultralite folder of the attached Windows CE device,
use the following connection string:

"DBF=wce:\UltraLite\MyULdb.udb"

See also
♦ “Opening connections with connection strings” on page 47
♦ “Specifying file paths in a connection parameter” on page 50
♦ “Precedence of parameters for UltraLite administration tools” on page 49
♦ “DBN connection parameter” on page 142
♦ “CE_FILE connection parameter” on page 133
♦ “PALM_FILE connection parameter” on page 137
♦ “NT_FILE connection parameter” on page 135
♦ “SYMBIAN_FILE connection parameter” on page 140
♦ UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
♦ UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “Connecting to an UltraLite database” [UltraLite - AppForge Programming]
♦ UltraLite for AppForge: “OpenConnection method” [UltraLite - AppForge Programming]
♦ UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
♦ UltraLite for M-Business Anywhere: “Method openConnection” [UltraLite - M-Business Anywhere

Programming]
♦ UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
♦ UltraLite.NET: “Open method” [UltraLite - .NET Programming]

UltraLite Connection String Parameters Reference

132 Copyright © 2006, iAnywhere Solutions, Inc.

CE_FILE connection parameter
Applies to

An UltraLite client application that connects to a Windows CE device in addition to another platform using
the same connection string.

Alternate
If you are connecting from an UltraLite administration tool, or your connection object only connects to a
Windows CE database, use DBF.

Description
This parameter performs two different functions:

♦ When creating a database, this parameter names the new database file.

♦ When opening a connection to an existing database, this parameter identifies the database.

Syntax
CE_FILE=path\ce-db

Default
The default depends on what you set:

♦ If you do not set a value for this connection parameter, then the value for the DBF parameter, if one has
been set, is used.

♦ If you do not set a value for this parameter or the DBF parameter, then the default value is \UltraLiteDB
\ulstore.udb.

Recommendation
Always explicitly specify the parameter; do not rely on the default behavior.

Usage
This parameter takes precedence over the DBF parameter.

The value of CE_FILE must meet the file name requirements for Windows CE.

If you include an absolute path to the database, then all directories must exist before setting the path to this
file. UltraLite does not create them automatically.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes('), leading double quotes ("), or semi-colons(;).

Example
The following example creates a new connection and identifies different database files for the desktop and
Windows CE platforms:

CE_FILE connection parameter

Copyright © 2006, iAnywhere Solutions, Inc. 133

Set Connection = DatabaseMgr.OpenConnection("DBF=d:\Dbfile.udb;CE_FILE=\myapp
\MyDB.udb")

See also
♦ “Opening connections with connection strings” on page 47
♦ “Specifying file paths in a connection parameter” on page 50
♦ “Precedence of parameters for UltraLite administration tools” on page 49
♦ “DBF connection parameter” on page 131
♦ UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
♦ UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “Connecting to an UltraLite database” [UltraLite - AppForge Programming]
♦ UltraLite for AppForge: “OpenConnection method” [UltraLite - AppForge Programming]
♦ UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
♦ UltraLite for M-Business Anywhere: “Method openConnection” [UltraLite - M-Business Anywhere

Programming]
♦ UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
♦ UltraLite.NET: “Open method” [UltraLite - .NET Programming]

UltraLite Connection String Parameters Reference

134 Copyright © 2006, iAnywhere Solutions, Inc.

NT_FILE connection parameter
Applies to

An UltraLite client application that connects to a desktop database in addition to another platform using the
same connection string.

Alternate
If you are connecting from an UltraLite administration tool, or your connection object only connects to a
desktop database, use DBF.

Description
This parameter performs two different functions:

♦ When creating a database, this parameter names the new database file.

♦ When opening a connection to an existing database, the parameter identifies the database.

Syntax
NT_FILE=path\nt-db

Default
The default depends on what you set:

♦ If you do not set a value for this connection parameter, then the value for the DBF parameter, if one has
been set, is used.

♦ If you do not set a value for this parameter or DBF, then the default value is \UltraLiteDB\ulstore.udb.

Recommendation
Always explicitly specify the parameter; do not rely on default behavior.

Usage
This parameter takes precedence over the DBF parameter.

The value of NT_FILE must meet the file name requirements for Windows desktop platforms.

The path can be absolute or relative. If you include a directory as part of the file name, then all directories
must exist before setting the path to this file. UltraLite does not create them automatically.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes('), leading double quotes ("), or semi-colons(;).

Example
The following example creates a new connection and identifies different database files for the desktop, Palm
OS, and Windows CE platforms:

NT_FILE connection parameter

Copyright © 2006, iAnywhere Solutions, Inc. 135

Connection = DatabaseMgr.OpenConnection("UID=JDoe;PWD=ULdb;
NT_FILE=c:\test\MyTestDB.udb;CE_FILE=\database
\MyCEDB.udb;PALM_FILE=MyPalmDB_MyCreatorID")

See also
♦ “Opening connections with connection strings” on page 47
♦ “Specifying file paths in a connection parameter” on page 50
♦ “Precedence of parameters for UltraLite administration tools” on page 49
♦ “DBF connection parameter” on page 131
♦ UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
♦ UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “Connecting to an UltraLite database” [UltraLite - AppForge Programming]
♦ UltraLite for AppForge: “OpenConnection method” [UltraLite - AppForge Programming]
♦ UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
♦ UltraLite for M-Business Anywhere: “Method openConnection” [UltraLite - M-Business Anywhere

Programming]
♦ UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
♦ UltraLite.NET: “Open method” [UltraLite - .NET Programming]

UltraLite Connection String Parameters Reference

136 Copyright © 2006, iAnywhere Solutions, Inc.

PALM_FILE connection parameter
Applies to

An UltraLite client application that connects to a Palm device in addition to another platform using the same
connection string.

Alternate
If you are connecting from an UltraLite administration tool, or your connection object only connects to a
Palm OS database, use DBF.

Description
This parameter performs two different functions:

♦ When creating a database, this parameter names the new database file.

♦ When opening a connection to an existing database, this parameter identifies the database.

Syntax 1: record based stores
PALM_FILE=name

Syntax 2: file-based stores
PALM_FILE=vfs: [volume-label: | volume-ordinal:] filename

Default
The default depends on what you set:

♦ If you do not set a value for this connection parameter, then the value for the DBF parameter, if one has
been set, is used.

♦ If you do not set a value for this parameter or the DBF parameter, then the default value is ulstore.udb.

Recommendation
Always explicitly specify the parameter; do not rely on default behavior.

Usage
Do not use this parameter with desktop administration utilities; use the DBF parameter instead while working
with Palm databases.

The value of PALM_FILE must meet the file name requirements for Palm OS platforms.

If you are developing on AppForge, you also need to use the PALM_DB parameter.

This parameter takes precedence over the DBF parameter.

On file-based stores, always specify the absolute file path. If directories are specified in the full path name,
they are created if they do not already exist.

PALM_FILE connection parameter

Copyright © 2006, iAnywhere Solutions, Inc. 137

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes('), leading double quotes ("), or semi-colons(;).

Example
The following example creates a new connection and identifies different database files for the desktop, Palm
OS, and Windows CE platforms:

Connection = DatabaseMgr.OpenConnection("UID=JDoe;PWD=ULdb;
NT_FILE=c:\test\MyTestDB.udb;CE_FILE=\database
\MyCEDB.udb;PALM_FILE=MyPalmDB_MyCreatorID")

See also
♦ “Opening connections with connection strings” on page 47
♦ “Specifying file paths in a connection parameter” on page 50
♦ “Precedence of parameters for UltraLite administration tools” on page 49
♦ “Registering the Palm creator ID” [UltraLite - C and C++ Programming]
♦ “PALM_DB connection parameter” on page 139
♦ “DBF connection parameter” on page 131
♦ UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
♦ UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “Connecting to an UltraLite database” [UltraLite - AppForge Programming]
♦ UltraLite for AppForge: “OpenConnection method” [UltraLite - AppForge Programming]
♦ UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
♦ UltraLite for M-Business Anywhere: “Method openConnection” [UltraLite - M-Business Anywhere

Programming]
♦ UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
♦ UltraLite.NET: “Open method” [UltraLite - .NET Programming]

UltraLite Connection String Parameters Reference

138 Copyright © 2006, iAnywhere Solutions, Inc.

PALM_DB connection parameter
Applies to

Used with the PALM_FILE connection parameter when developing an UltraLite client application for Palm
OS in AppForge.

Description
Set the correct UltraLite creator ID so that creator ID is used, rather than the AppForge creator ID.

Syntax
PALM_DB=creator-ID

Default
The AppForge creator ID.

Usage
The creator ID is a four character string. If you want to use a different creator ID than the AppForge creator
ID, you must change the default value.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes('), leading double quotes ("), or semi-colons(;).

Example
The following example creates a new connection and identifies different database files for the desktop, Palm
OS, and Windows CE platforms:

Set Connection = DatabaseMgr.OpenConnection("file_name=d:\MyDB.udb;
PALM_FILE=MyPOSdb;PALM_DB=Syb3;CE_FILE=\myapp\MyCEdb.udb")

See also
♦ “Opening connections with connection strings” on page 47
♦ “PALM_FILE connection parameter” on page 137
♦ PalmSource creator ID page
♦ UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
♦ UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “Connecting to an UltraLite database” [UltraLite - AppForge Programming]
♦ UltraLite for AppForge: “OpenConnection method” [UltraLite - AppForge Programming]
♦ UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
♦ UltraLite for M-Business Anywhere: “Method openConnection” [UltraLite - M-Business Anywhere

Programming]
♦ UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
♦ UltraLite.NET: “Open method” [UltraLite - .NET Programming]

PALM_DB connection parameter

Copyright © 2006, iAnywhere Solutions, Inc. 139

http://www.palmos.com/creatoriddown.html

SYMBIAN_FILE connection parameter
Applies to

An UltraLite client application that connects to a Symbian device in addition to another platform using the
same connection string.

Alternate
If you are connecting from an UltraLite administration tool, or your connection object only connects to a
Symbian OS database, use DBF.

Description
This parameter performs two different functions:

♦ When creating a database, this parameter names the new database file.

♦ When opening a connection to an existing database, the parameter identifies the database.

Syntax
SYMBIAN_FILE=symbian-db

Default
The default depends on what you set:

♦ If you do not set a value for this connection parameter, then the value for the DBF parameter, if one has
been set, is used.

♦ If you do not set a value for this parameter nor the DBF parameter, then the default value is
ulstore.udb.

Recommendation
Always explicitly specify the parameter; do not rely on default behavior.

Usage
This parameter takes precedence over the DBF parameter.

The value of SYMBIAN_FILE must meet the file name requirements for Symbian OS platforms.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes('), leading double quotes ("), or semi-colons(;).

Example
The following example creates a new connection and identifies different database files for the desktop,
Symbian OS, and Windows CE platforms:

Connection = DatabaseMgr.OpenConnection("UID=JDoe;PWD=ULdb;
NT_FILE=c:\test
\MyTestDB.udb;CE_FILE=MyCEdb.udb;SYMBIAN_FILE=MySymbianDB.udb")

UltraLite Connection String Parameters Reference

140 Copyright © 2006, iAnywhere Solutions, Inc.

See also
♦ “Opening connections with connection strings” on page 47
♦ “Specifying file paths in a connection parameter” on page 50
♦ “Precedence of parameters for UltraLite administration tools” on page 49
♦ “DBF connection parameter” on page 131
♦ UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
♦ UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “Connecting to an UltraLite database” [UltraLite - AppForge Programming]
♦ UltraLite for AppForge: “OpenConnection method” [UltraLite - AppForge Programming]
♦ UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
♦ UltraLite for M-Business Anywhere: “Method openConnection” [UltraLite - M-Business Anywhere

Programming]
♦ UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
♦ UltraLite.NET: “Open method” [UltraLite - .NET Programming]

SYMBIAN_FILE connection parameter

Copyright © 2006, iAnywhere Solutions, Inc. 141

DBN connection parameter
Applies to

Connections to a database that has already been opened.

Description
For applications that connect to more than one database, use this parameter to distinguish the databases by
name.

Syntax
DBN=db-name

Default
Depends on the platform in question:

♦ On Palm OS The default value is the creator ID.

♦ On all other platforms The default value is derived from the file name value by removing the path
and extension, if they exist. Cannot exceed 16 characters in length.

Usage
UltraLite only sets the database name after the database has been opened. Client applications can then connect
to this database via its name instead of its file.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes('), leading double quotes ("), or semi-colons(;).

Example
Use the following parameters to successfully connect to the running UltraLite database named Kitchener:

DBN=Kitchener;DBF=cities.udb

See also
♦ “Opening connections with connection strings” on page 47
♦ “DBF connection parameter” on page 131
♦ UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
♦ UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “Connecting to an UltraLite database” [UltraLite - AppForge Programming]
♦ UltraLite for AppForge: “OpenConnection method” [UltraLite - AppForge Programming]
♦ UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
♦ UltraLite for M-Business Anywhere: “Method openConnection” [UltraLite - M-Business Anywhere

Programming]
♦ UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
♦ UltraLite.NET: “Open method” [UltraLite - .NET Programming]

UltraLite Connection String Parameters Reference

142 Copyright © 2006, iAnywhere Solutions, Inc.

DBKEY connection parameter
Applies to

For applications connecting to encrypted databases.

Description
Performs two different functions:

♦ When creating a database, this parameter provides an encryption key for the database.

♦ When opening a connection to an existing database, this parameter provides the same encryption key
for the database. If the key provided is incorrect, the connection fails.

Syntax
DBKEY=string

Default
No key is provided.

Usage
If a database is created using an encryption key, the database file is strongly encrypted using either the FIPS
or the AES 128-bit algorithm. The latter is the same algorithm used to encrypt SQL Anywhere databases.
By using strong encryption, you have increased security against skilled and determined attempts to gain
access to the data; however, the use of strong encryption has a significant performance impact.

On Palm OS, applications are automatically shut down by the system whenever a user switches to a different
application. However, you can program your UltraLite client to circumvent the need to re-enter the key each
time a user switches back to the application again.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes('), leading double quotes ("), or semi-colons(;).

See also
♦ UltraLite for C/C++: “Saving, retrieving, and clearing encryption keys on Palm OS” [UltraLite - C and

C++ Programming]
♦ “Opening connections with connection strings” on page 47
♦ “Security considerations” on page 38
♦ “obfuscate property” on page 110
♦ UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
♦ UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “Connecting to an UltraLite database” [UltraLite - AppForge Programming]
♦ UltraLite for AppForge: “OpenConnection method” [UltraLite - AppForge Programming]
♦ UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]

DBKEY connection parameter

Copyright © 2006, iAnywhere Solutions, Inc. 143

♦ UltraLite for M-Business Anywhere: “Method openConnection” [UltraLite - M-Business Anywhere
Programming]

♦ UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
♦ UltraLite.NET: “Open method” [UltraLite - .NET Programming]

UltraLite Connection String Parameters Reference

144 Copyright © 2006, iAnywhere Solutions, Inc.

PALM_ALLOW_BACKUP connection parameter
Applies to

Desktop backup using the UltraLite HotSync conduit for Palm OS devices.

Description
Controls backup behavior over HotSync, which is disabled in UltraLite by default.

Syntax
PALM_ALLOW_BACKUP={ yes | no }

Usage
On Palm, you can back up the database to desktop using HotSync. In most UltraLite client applications, data
is backed up by synchronization, so there is no need to use informal backups to the desktop. This is why the
UltraLite runtime disables Palm's backup behavior. However, if your deployment explicitly requires that
HotSync back up the UltraLite database to the desktop while it is also being synchronized, use this parameter
to override the UltraLite default.

Once you have enabled backups for HotSync, you do not need to configure backups in ULDBUtil. Backups
will occur with each synchronization attempt until you disable it.

See also
♦ “Opening connections with connection strings” on page 47
♦ “UltraLite Data Management utility for Palm OS (ULDBUtil)” on page 185
♦ UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
♦ UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “Connecting to an UltraLite database” [UltraLite - AppForge Programming]
♦ UltraLite for AppForge: “OpenConnection method” [UltraLite - AppForge Programming]
♦ UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
♦ UltraLite for M-Business Anywhere: “Method openConnection” [UltraLite - M-Business Anywhere

Programming]
♦ UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
♦ UltraLite.NET: “Open method” [UltraLite - .NET Programming]

PALM_ALLOW_BACKUP connection parameter

Copyright © 2006, iAnywhere Solutions, Inc. 145

PWD connection parameter
Description

Defines the password for a user ID that is used for authentication.

Syntax
PWD=password_string

Default
If you do not set both the UID and PWD, UltraLite opens connections with UID=DBA and PWD=sql.

Usage
You can set passwords to NULL or an empty string, but they cannot exceed the maximum length of 31
characters.

Every user of a database has a password. UltraLite supports up to four user ID/password combinations.

This connection parameter is not encrypted. However, UltraLite hashes the password before saving it.
Therefore, you can only modify a password from Sybase Central.

Examples
The following connection string fragment supplies the user ID DBA and password sql.

"UID=DBA;PWD=sql"

The following connection string fragment supplies the user ID DBA and an empty password.

"UID=DBA;PWD=''"

See also
♦ “Opening connections with connection strings” on page 47
♦ “The role of user authentication” on page 45
♦ “Interpreting user ID and password combinations” on page 46
♦ “UID connection parameter” on page 150
♦ UltraLite for C/C++: “Authenticating users” [UltraLite - C and C++ Programming]
♦ UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
♦ UltraLite for embedded SQL: “Authenticating users” [UltraLite - C and C++ Programming]
♦ UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “Authenticating users” [UltraLite - AppForge Programming]
♦ UltraLite for AppForge: “Connecting to an UltraLite database” [UltraLite - AppForge Programming]
♦ UltraLite for AppForge: “OpenConnection method” [UltraLite - AppForge Programming]
♦ UltraLite for M-Business Anywhere: “Authenticating users” [UltraLite - M-Business Anywhere

Programming]
♦ UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
♦ UltraLite for M-Business Anywhere: “Method openConnection” [UltraLite - M-Business Anywhere

Programming]

UltraLite Connection String Parameters Reference

146 Copyright © 2006, iAnywhere Solutions, Inc.

♦ UltraLite.NET: “Authenticating users” [UltraLite - .NET Programming]
♦ UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
♦ UltraLite.NET: “Open method” [UltraLite - .NET Programming]

PWD connection parameter

Copyright © 2006, iAnywhere Solutions, Inc. 147

RESERVE_SIZE connection parameter
Description

Allows you to pre-allocate the file system space required for your UltraLite database, without actually
inserting any data.

Syntax
RESERVE_SIZE= number{ k | m | g }

Default
0, or no reserve size needed.

Usage
The value you supply can be any value from 0 to your maximum database size. Specify the size in units of
bytes, by using the suffix k or K to indicate units of kilobytes, the suffix m or M to indicate megabytes, and
the suffix g or G to indicate gigabytes. If you do not specify a unite, bytes are assumed by default.

If the RESERVE_SIZE value is smaller than the database size, UltraLite ignores the parameter.

Reserving file system space can improve performance slightly and also prevent out-of-storage memory
failures because the database is never truncated. The database only grows when required as the application
updates the database. The RESERVE_SIZE parameter reserves space by growing the database to the given
reserve size on creation or startup. Therefore, you should consider both the metadata overhead and row
packing required—in addition to the database raw data—before deriving the required reserve size. You
should then run the database with test data and observe the database size.

Example
The following connection string fragment sets the reserve size to 128 KB so the system reserves that much
for the database upon startup.

"RESERVE_SIZE=128K"

See also
♦ “Opening connections with connection strings” on page 47
♦ “CACHE_SIZE connection parameter” on page 128
♦ “page_size property” on page 112
♦ UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
♦ UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “Connecting to an UltraLite database” [UltraLite - AppForge Programming]
♦ UltraLite for AppForge: “OpenConnection method” [UltraLite - AppForge Programming]
♦ UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
♦ UltraLite for M-Business Anywhere: “Method openConnection” [UltraLite - M-Business Anywhere

Programming]
♦ UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
♦ UltraLite.NET: “Open method” [UltraLite - .NET Programming]

UltraLite Connection String Parameters Reference

148 Copyright © 2006, iAnywhere Solutions, Inc.

START connection parameter
Applies to

UltraLite engine client applications.

Description
Specifies the location of the UltraLite engine executable and then starts it.

Syntax
START=path\uleng10.exe

Default
No startline for the UltraLite engine is used.

Usage
Only supply a StartLine (START) connection parameter if you are connecting to an engine that is not
currently running.

See also
♦ “UltraLite Engine utility (uleng10)” on page 168
♦ “Choosing a data management component” on page 11
♦ UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
♦ UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “Connecting to an UltraLite database” [UltraLite - AppForge Programming]
♦ UltraLite for AppForge: “OpenConnection method” [UltraLite - AppForge Programming]
♦ UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business

Anywhere Programming]
♦ UltraLite for M-Business Anywhere: “Method openConnection” [UltraLite - M-Business Anywhere

Programming]
♦ UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
♦ UltraLite.NET: “Open method” [UltraLite - .NET Programming]

START connection parameter

Copyright © 2006, iAnywhere Solutions, Inc. 149

UID connection parameter
Description

The user ID with which you connect to the database. The value must be an authenticated user for the database.

Syntax
UID=id_name

Default
If you do not set both the UID and PWD, UltraLite opens connections with UID=DBA and PWD=sql.

Usage
You cannot set the UID to NULL or an empty string. Nor can the user ID exceed a maximum length of 31
characters.

Every user of a database has a user ID. UltraLite supports up to four user ID/password combinations.

UltraLite user IDs are separate from MobiLink user names and from other SQL Anywhere user IDs.

You cannot change a user ID once it is created. Instead, you must delete the user ID in question and then
add a new one.

The user ID is case insensitive.

Any leading or trailing spaces in parameter values are ignored. This connection parameter's value cannot
include leading single quotes('), leading double quotes ("), or semi-colons(;).

Example
The following connection string fragment supplies the user ID DBA and password sql for a database called
c:\MyOrders.udb:

"UID=DBA;PWD=sql"

See also
♦ “Opening connections with connection strings” on page 47
♦ “The role of user authentication” on page 45
♦ “Interpreting user ID and password combinations” on page 46
♦ UltraLite for C/C++: “Authenticating users” [UltraLite - C and C++ Programming]
♦ UltraLite for C/C++: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for C/C++: “OpenConnection function” [UltraLite - C and C++ Programming]
♦ UltraLite for embedded SQL: “Authenticating users” [UltraLite - C and C++ Programming]
♦ UltraLite for embedded SQL: “Connecting to a database” [UltraLite - C and C++ Programming]
♦ UltraLite for AppForge: “Authenticating users” [UltraLite - AppForge Programming]
♦ UltraLite for AppForge: “Connecting to an UltraLite database” [UltraLite - AppForge Programming]
♦ UltraLite for AppForge: “OpenConnection method” [UltraLite - AppForge Programming]
♦ UltraLite for M-Business Anywhere: “Authenticating users” [UltraLite - M-Business Anywhere

Programming]

UltraLite Connection String Parameters Reference

150 Copyright © 2006, iAnywhere Solutions, Inc.

♦ UltraLite for M-Business Anywhere: “Connecting to an UltraLite database” [UltraLite - M-Business
Anywhere Programming]

♦ UltraLite for M-Business Anywhere: “Method openConnection” [UltraLite - M-Business Anywhere
Programming]

♦ UltraLite.NET: “Authenticating users” [UltraLite - .NET Programming]
♦ UltraLite.NET: “Connecting to a database” [UltraLite - .NET Programming]
♦ UltraLite.NET: “Open method” [UltraLite - .NET Programming]

UID connection parameter

Copyright © 2006, iAnywhere Solutions, Inc. 151

CHAPTER 8

UltraLite Utilities Reference

Contents
Introduction to UltraLite utilities ... 154
Interactive SQL utility (dbisql) .. 155
SQL Preprocessor for UltraLite utility (sqlpp) .. 158
UltraLite AppForge Registry utility (ulafreg) ... 161
UltraLite HotSync Conduit Installation utility for Palm OS (ulcond10) 163
UltraLite Create Database utility (ulcreate) .. 165
UltraLite Engine utility (uleng10) .. 168
UltraLite Information utility (ulinfo) ... 169
UltraLite Initialize Database utility (ulinit) ... 172
UltraLite Load XML to Database utility (ulload) ... 174
UltraLite Engine Stop utility (ulstop) .. 177
UltraLite Synchronization utility (ulsync) .. 178
UltraLite Unload Database to XML utility (ulunload) .. 180
UltraLite Unload Old Database utility (ulunloadold) ... 183
UltraLite Data Management utility for Palm OS (ULDBUtil) 185
Supported extended options .. 186
Supported exit codes ... 189

About this chapter
This chapter provides reference information about UltraLite utility programs.

Copyright © 2006, iAnywhere Solutions, Inc. 153

Introduction to UltraLite utilities
UltraLite includes a set of utilities that are designed to perform basic database administration activities from
a command prompt. Many of these utilities share a similar functionality to those used by SQL Anywhere
utilities. However, the way options are used can vary. Always refer to the UltraLite reference documentation
for the UltraLite implementation of these options.

Note
Options for the utilities documented in this chapter are case sensitive, unless otherwise noted. Type options
exactly as they are displayed.

UltraLite Utilities Reference

154 Copyright © 2006, iAnywhere Solutions, Inc.

Interactive SQL utility (dbisql)
Applies to

Both SQL Anywhere and UltraLite databases. If you connected to an UltraLite database however, certain
menu items that are SQL Anywhere-specific are not displayed in the interface. For example, Tools ► Lookup
Procedure Name, or Tools ► Index Consultant.

Description
Executes SQL commands or runs command files provided. The syntax described below is specific to
UltraLite usage.

For syntax specific to SQL Anywhere usage, see “The Interactive SQL utility” [SQL Anywhere Server -
Database Administration].

Syntax
dbisql -c "connection-string" [options] [dbisql-command | command-file]

Option Description

@data Read options from the specified environment variable or configuration
file. If both exist with the same name, the environment variable is used.

If you want to protect passwords or other information in the configuration
file, you can use the File Hiding utility to obfuscate the contents of the
configuration file.

-c "connection-string" Required. Connect to the database as identified in the DBF or file_name
parameter of your connection-string. If you do not specify both a user ID
and a password, the default UID of DBA and PWD of sql are assumed.

-codepage number Specify a codepage to use when reading or writing files. The default code
page is the default code page for the platform you are running on.

-d delimiter Specify a command delimiter. Quotation marks around the delimiter are
optional, but are required when the command shell itself interprets the
delimiter in some special way.

Command delimiters are used for all connections in that Interactive SQL
session, regardless of the setting stored in the database.

-d1 Echo all statements explicitly executed by the user to the Command win-
dow (STDOUT). This can provide useful feedback for debugging SQL
scripts, or when Interactive SQL is processing a long SQL script.

-f filename Open (but do not run) the file called filename. Enclose the file name in
quotation marks if the file name contains a space.

If the file does not exist, or if it is really a directory instead of a file,
Interactive SQL prints an error message to the console and then quits. If
the file name does not include a full drive and path specification, it is
assumed to be relative to the current directory.

Interactive SQL utility (dbisql)

Copyright © 2006, iAnywhere Solutions, Inc. 155

Option Description

-nogui Run in command-prompt mode. If you specify either dbisql-command or
command-file, then -nogui is assumed.

-onerror behavior Control what happens if an error is encountered while reading data from
the specified command file. Define one of the following supported be-
havior values:

♦ Stop Interactive SQL stops executing statements.

♦ Prompt Interactive SQL prompts the user to see if the user wants
to continue.

♦ Continue The error is ignored and Interactive SQL continues exe-
cuting statements.

♦ Exit Interactive SQL terminates.

♦ Notify_Continue The error is reporting, and the user is prompted
to press Enter or click OK to continue.

♦ Notify_Stop The error is reported, and the user is prompted to press
Enter or click OK to stop executing statements.

♦ Notify_Exit The error is reported and the user is prompted to press
Enter or click OK to terminate Interactive SQL.

-q Set the utility to run in quiet mode. Suppress informational banners, ver-
sion numbers, and status messages. Error messages are still displayed,
however.

-x Scan commands but do not execute them. This is useful for checking long
command files for syntax errors.

-ul Connect to UltraLite databases by default.

By default, Interactive SQL assumes that you are connecting to SQL
Anywhere databases. When you specify the -ul option, the default be-
comes UltraLite connections. Regardless of the type of database set as the
default, you can connect to either SQL Anywhere or UltraLite databases
by choosing the database type from the dropdown list on the Connect
dialog.

dbisql-command|command-
file

Execute the SQL command provided, or those specified in the command-
file name.

Alternatively, if you do not specify a dbisql-command or command-file,
Interactive SQL enters interactive mode, where you can type a command
into a command window.

Usage
Interactive SQL allows you to type SQL commands or run command files. It also provides feedback about
the number of rows affected, the time required for each command, the execution plan of queries, and any
error messages.

UltraLite Utilities Reference

156 Copyright © 2006, iAnywhere Solutions, Inc.

About code pages In UltraLite, collations include a code page plus a sort order. Therefore, code page
numbers correspond to the number displayed as part of the UltraLite collation name. To see a list of supported
collations (and its corresponding codepage), run ulcreate -l at a command prompt.

For example, on an English Windows XP computer, windowed programs use the 1252 (ANSI) code page.
If you want Interactive SQL to read files created using the 297 (IBM France) code page, specify the following
option: -codepage 297.

About exit codes Exit codes are 0 (success) or non-zero (failure). Non-zero exit codes are set only when
you run Interactive SQL in batch mode (with a command line that contains a SQL statement or the name of
a script file).

In no GUI mode, Interactive SQL sets the program exit code to indicate success or failure. On Windows
operating systems, the environment variable ERRORLEVEL is set to the program exit code.

Example
The following command, entered at a command prompt, runs the command file mycom.sql against the
CustDB.udb database for UltraLite, using the default user ID DBA and the password sql. If there is an error
in the command file, the process terminates.

dbisql -ul -c DBF=CustDB.udb -onerror exit mycom.sql

See also
♦ “Using configuration files” [SQL Anywhere Server - Database Administration]
♦ “File Hiding utility (dbfhide)” [SQL Anywhere Server - Database Administration]
♦ “UltraLite Connection String Parameters Reference” on page 127
♦ “UltraLite Create Database utility (ulcreate)” on page 165
♦ “Supported exit codes” on page 189

Interactive SQL utility (dbisql)

Copyright © 2006, iAnywhere Solutions, Inc. 157

SQL Preprocessor for UltraLite utility (sqlpp)
Applies to

Embedded SQL only for both SQL Anywhere and UltraLite.

Description
Preprocesses a C/C++ program that contains embedded SQL (ESQL), so that code required for that program
can be generated before you run the compiler. The syntax described below is specific to UltraLite usage.

F For syntax specific to SQL Anywhere usage, see “SQL preprocessor” [SQL Anywhere Server -
Programming].

Syntax
sqlpp [options] esql-filename [output-filename]

Option Description

-d Generate code that reduces data space size, but increases code size.
Data structures are reused and initialized at execution time before use.

-e level Flag non-conforming SQL syntax as a error. The parameters for level
include:

♦ e flag syntax that is not entry-level SQL/92 syntax

♦ I flag syntax that is not intermediate-level SQL/92 syntax

♦ f flag syntax that is not full SQL/92 syntax

♦ t flag non-standard host variable types

♦ u flag features not supported by UltraLite

♦ w allow all supported syntax

-h Set the maximum output line length before lines in the output .c file
are split into multiple lines. Backslash characters are added to the end
of split lines, so that a C compiler can parse the split lines as one con-
tinuous line. The default value is no maximum line length (that is,
output lines are not split by default).

-k Notify the preprocessor that the program to be compiled includes a user
declaration of SQLCODE.

-n Generate line number information in the C file by using #line di-
rectives in the appropriate places in the generated code.

Use this option to the report source errors and to debug source on line
numbers in the esql-filename file, rather than in the output-filename
file.

-o Not applicable to UltraLite.

UltraLite Utilities Reference

158 Copyright © 2006, iAnywhere Solutions, Inc.

Option Description

-q Set the utility to run in quiet mode. Suppress informational banners,
version numbers, and status messages. Error messages are still dis-
played, however.

-r Not applicable to UltraLite.

-s string-length Set the maximum size string that the preprocessor will put into the C
file. Strings longer than this value are initialized using a list of char-
acters ('a','b','c', and so on). Most C compilers have a limit on the size
of string literal they can handle. This option is used to set that upper
limit. The default value is 500.

-u Required for UltraLite. Generate output specifically required for Ul-
traLite databases.

–w level Flag non-conforming SQL syntax as a warning. The parameters for
level include:

♦ e flag syntax that is not entry-level SQL/92 syntax

♦ I flag syntax that is not intermediate-level SQL/92 syntax

♦ f flag syntax that is not full-SQL/92 syntax

♦ t flag non-standard host variable types

♦ u flag features not supported by UltraLite

♦ w allow all supported syntax

-x Change multibyte strings to escape sequences, so that they can be
passed through a compiler.

-z collation-sequence Specify the collation sequence.

Usage
About output files This preprocessor translates the SQL statements in the input-file into C/C++. It writes
the result to the output-filename. The normal extension for source files containing embedded SQL is sqc.
The default output-filename is the esql-filename base name with an extension of c. However, if the esql-
filename already has the .c extension, the default output extension is .cc.

About collations The collation sequence is used to help the preprocessor understand the characters used
in the source code of the program, for example, in identifying alphabetic characters suitable for use in
identifiers. In UltraLite, collations include a code page plus a sort order. If you do not specify -z , the
preprocessor attempts to determine a reasonable collation to use based on the operating system.

To see a list of supported collations (and its corresponding codepage), run ulcreate -l at a command prompt.

Example
The following command preprocess the srcfile.sqc embedded SQL file in quiet mode for an UltraLite
application.

sqlpp -u -q MyEsqlFile.sqc

SQL Preprocessor for UltraLite utility (sqlpp)

Copyright © 2006, iAnywhere Solutions, Inc. 159

See also
♦ “SQL Anywhere Embedded SQL” [SQL Anywhere Server - Programming]
♦ “Character considerations” on page 31

UltraLite Utilities Reference

160 Copyright © 2006, iAnywhere Solutions, Inc.

UltraLite AppForge Registry utility (ulafreg)
Applies to

AppForge development environments only.

Description
Registers either the UltraLite runtime or the UltraLite Engine client, so that the development environment
contains a reference to the appropriate UltraLite namespace. You can also unregister these *.DLL files with
this utility.

Syntax
ulafreg [options]

Option Description

-d Display the location of the currently installed version of AppForge.

-q Set the utility to run in quiet mode. Suppress informational banners, version
numbers, and status messages. Error messages are still displayed, however.

-r [directory] Register the UltraLite runtime *.DLL in named directory (for example,
ulmvb10.dll). Only one application can reference this file.

If you do not set directory, the default SQL Anywhere installation location
is assumed (that is, install-dir\ultralite\UltraLiteForAppForge\win32\).

-rc [directory] Register the UltraLite Engine client component *.DLL in named directory
(for example, ulmvc10.dll). Multiple applications can reference the same
registered engine client *.DLL file.

If you do not set directory, the default SQL Anywhere installation location
is assumed (that is, install-dir\ultralite\UltraLiteForAppForge\win32\).

-u Unregister the UltraLite AppForge component. The 10.0 UltraLite for App-
Forge component replaces previous versions of UltraLite for MobileVB.
You cannot use more then one version of the component on the same ma-
chine. Therefore you must unregister these previous version before regis-
tering an UltraLite for Appforge 10.0 component.

Usage
The behavior of this utility is forward compatible.

If you are unsure whether or not you need to run the utility, follow the procedure described below.

♦ To determine if you need to add UltraLite to your environment

1. Do one of the following:

♦ Check that a new project includes a reference to an UltraLite-specific namespace.

UltraLite AppForge Registry utility (ulafreg)

Copyright © 2006, iAnywhere Solutions, Inc. 161

♦ Check if the correct connection class (for example, ULConnectionParms) appears in the AppForge
list of available classes.

2. If it does not, close AppForge.

3. Run the ulafreg utility with the appropriate options.

4. Restart AppForge.

See also
♦ “UltraLite Engine utility (uleng10)” on page 168
♦ For MobileVB: “Adding UltraLite to the MobileVB design environment” [UltraLite - AppForge

Programming]
♦ For Crossfire: “Adding UltraLite to the Crossfire design environment” [UltraLite - AppForge

Programming]

UltraLite Utilities Reference

162 Copyright © 2006, iAnywhere Solutions, Inc.

UltraLite HotSync Conduit Installation utility for Palm OS
(ulcond10)
Applies to

Palm OS databases that synchronize with HotSync Manager via the desktop.

Description
Installs and registers each database with the conduit so the conduit can manage HotSync synchronization
operations for each database. You can also use this utility to uninstall the conduit.

Syntax
ulcond10 -c "connection-string" [options] creator-ID

Option Description

creator-ID Required. Set the creator ID of the application that uses the conduit. If
a conduit already exists for the specified creator ID, it is replaced by
the new conduit.

-a Append additional database connection strings to the connection string
configured with the -c option. Use this to register more than one
database with the conduit.

-c "connection-string" Required. Connect to the Palm database on the device as identified by
the DBF parameter of your connection-string. The connection string
you define registers the deployed Palm database with the conduit, and
the connection parameters are stored as part of the conduit's configu-
ration information.

If you do not specify both a user ID and a password, the default UID
of DBA and PWD of sql are assumed.

-d filename Set the name of the plug-in .dll file.

The utility creates a registry key (Software\Sybase\SQL Anywhere\ver-
sion\Conduit\creator-ID) with a value named PluginDLL. The value for
PluginDLL is the filename you set.

Supply an empty string (-d"") to clear an existing file name from the
registry.

-n name Set the name displayed by the HotSync manager. The default value is
Conduit.

Do not use this option with the -u option.

-q Set the utility to run in quiet mode. Suppress informational banners and
version numbers.

-QQ Set the utility to run in ultra-quiet mode. Suppress informational ban-
ners, version numbers, and status/error messages.

UltraLite HotSync Conduit Installation utility for Palm OS (ulcond10)

Copyright © 2006, iAnywhere Solutions, Inc. 163

Option Description

-u Uninstall the conduit for the creator ID. If you do not specify -u, a
conduit is installed.

-x sync-parms Set a list of semicolon-separated keyword=value pairs for the synchro-
nization parameters you require. The keywords are case insensitive.
See “Extended synchronization parameters” on page 187.

Supply an empty string (-x "") to clear any existing parameters.

Usage
HotSync Manager must be installed on your computer for the HotSync Conduit Installer to run.

HotSync records when each synchronization took place and whether each installed conduit worked as
expected. The HotSync log file is in the subdirectory User of your Palm desktop installation directory.

Examples
The following command installs a conduit for the application with creator ID Syb2, named CustDB. These
are the settings for the CustDB sample application:

ulcond10 -c "DBF=custdb.udb;UID=DBA;PWD=sql" -n CustDB Syb2

The following command uninstalls the conduit for the same CustDB sample application:

ulcond10 -u Syb2

See also
♦ “UltraLite Connection String Parameters Reference” on page 127
♦ “UltraLite Data Management utility for Palm OS (ULDBUtil)” on page 185
♦ “Deploying the UltraLite HotSync conduit to the end-user's desktop” [MobiLink - Client

Administration]
♦ “Network protocol options for UltraLite synchronization streams” [MobiLink - Client Administration]
♦ “Using HotSync on Palm OS” [MobiLink - Client Administration]
♦ “Registering the Palm creator ID” [UltraLite - C and C++ Programming]

UltraLite Utilities Reference

164 Copyright © 2006, iAnywhere Solutions, Inc.

UltraLite Create Database utility (ulcreate)
Applies to

All UltraLite databases.

Description
Creates an UltraLite database with the properties you define.

Syntax
ulcreate -c "connection-string" [options] new-database-file

Option Description

-c "connection-string" Required. Create the database as identified in the DBF or file_name pa-
rameter of your connection-string.

If you do not specify both a user ID and a password, the default UID of
DBA and PWD of sql are assumed.

If you do not provide file name as a parameter in the connection string,
ulcreate checks the end of the command for the file you specified as
new-database-file.

-g global-ID Set the initial database ID to the INTEGER value you assign. This initial
value is used with a partition size for new rows that have global autoin-
crement columns. When deploying an application, you must assign a
different range of identification numbers to each database for synchro-
nization with the MobiLink server.

-o [extended-options] Set extended UltraLite database creation options. See “Extended cre-
ation-time options” on page 186.

-l List the available collation sequences and exit.

-ol List the available extended database creation options and exit. See
“Extended creation-time options” on page 186.

-p creator-ID Required for Palm OS. Create the database with the specified four char-
acter creator-ID of the UltraLite client application.

-q Run in quiet mode—do not print messages.

-t file Specify the file containing the public trusted root certificate. This cer-
tificate is required for server authentication.

-v Print verbose messages.

-y Overwrite the database file if it exists.

-z collation-sequence Specify the label of the collation to be used.

UltraLite Create Database utility (ulcreate)

Copyright © 2006, iAnywhere Solutions, Inc. 165

Option Description

new-database-file Create a file with the specified name. Only use this standalone filename
if you are not setting a connection string to set initial database parameters
like a user ID (UID) or a password (PWD). Ensure the standalone file-
name you set is appropriate for your platform.

Usage
If you do not set any database properties, ulcreate creates a case insensitive, non-Unicode database with a
collation sequence that depends on the current locale.

Case sensitivity Database passwords are always case sensitive, regardless of the case-sensitivity of the
database. Database case sensitivity depends on whether you use the case=respect extended option setting.

About collations The collation sequence is used for all string comparisons in the database. In UltraLite,
collations include a code page plus a sort order. If you do not specify -z , ulcreate attempts to determine a
reasonable collation to use based on the current locale of the desktop.

To see a list of supported collations (and its corresponding codepage), run ulcreate -l at the command prompt.

UTF-8 encoding Determining whether or not to use the UTF-8 encoding depends on the operating system
of your device.

Palm OS databases Palm databases written to the desktop must be identified with the .pdb extension.
However, once you deploy the database to the device, the extension is dropped. For more details on file
name formats, see “Palm OS” on page 51.

Errors This utility returns error codes. Any value other than 0 means that the operation failed.

Example
Create an UltraLite database called test.udb as a case-insensitive, non-Unicode database with a collation
sequence that depends on the current locale:

ulcreate test.udb

Create a case sensitive database called test.udb so that the database is created with ISO-compatible date
formatting and ordering, by executing the following command:

ulcreate -c DBF=test.udb -o case=respect -o date_format=YYYY-MM-DD -o
date_order=YMD

Create an encrypted database called test.udb with the afvc_1835 encryption key:

ulcreate -c "DBF=test.udb;DBKEY=afvc_1835"

See also
♦ “Creating and Configuring UltraLite Databases” on page 23
♦ “Specifying file paths in a connection parameter” on page 50
♦ “UltraLite Connection String Parameters Reference” on page 127
♦ “Supported exit codes” on page 189
♦ “Supported and alternate collations” [SQL Anywhere Server - Database Administration]
♦ “Registering the Palm creator ID” [UltraLite - C and C++ Programming]

UltraLite Utilities Reference

166 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “case property” on page 94
♦ “Platform requirements for character set encoding” on page 32

UltraLite Create Database utility (ulcreate)

Copyright © 2006, iAnywhere Solutions, Inc. 167

UltraLite Engine utility (uleng10)
Applies to

Windows XP and Windows CE.

Description
Manages UltraLite databases. Use the UltraLite engine to manage concurrent database connections from
multiple UltraLite client applications.

To start the UltraLite engine from a client application, use the START connection parameter.

Usage
There are no options for the UltraLite engine.

The UltraLite engine does not display a console window on startup.

See also
♦ “Choosing a data management component” on page 11
♦ “UltraLite Engine Stop utility (ulstop)” on page 177
♦ “START connection parameter” on page 149

UltraLite Utilities Reference

168 Copyright © 2006, iAnywhere Solutions, Inc.

UltraLite Information utility (ulinfo)
Description

This utility performs the following functions:

♦ Displays information about an UltraLite database.

♦ Changes or clears the global_id or ml_remote_id database options.

Syntax
ulinfo -c "connection-string" [options]

Option Description

-c "connection-string" Required. Connect to the database as identified in the DBF or
file_name parameter of your connection-string. If you do not specify
both a user ID and a password, the default UID of DBA and PWD of
sql are assumed.

-g ID Set the initial global database ID to the value you assign. This value is
used by the database for all new rows that have global autoincrement
columns. The database uses this base value to autoincrement IDs as-
sociated with each additional row and/or column.

When deploying an application, you must assign a different identifi-
cation number to each database for synchronization with the MobiLink
server.

-or Open the database in read-only mode. UltraLite makes a copy of the
original file, which you can then use to test your scripts without altering
the database. Changes to the copied file are discarded upon completion.

If you are connecting directly from the desktop to a database already
deployed to a CE device, this option is not supported.

-q Run in quiet mode—do not print messages.

-r ID Set the initial ml_remote_id to the value you assign. By default, new
UltraLite databases set the MobiLink remote ID to NULL. You can
keep this default if you choose: both UltraLite and dbmlsync automat-
ically set the MobiLink remote ID to a unique user ID (UUID) at the
start of synchronization.

-rc Clear the existing remote database ID and set the MobiLink remote ID
to NULL.

-v Print verbose messages. Display current database properties in addi-
tion to the database internals for the named database.

Usage
Warning messages generated when opening an UltraLite database are always displayed unless you use the
-q option.

UltraLite Information utility (ulinfo)

Copyright © 2006, iAnywhere Solutions, Inc. 169

Example
Show basic database internals for a file named sample.udb that has already been synchronized:

ulinfo -c DBF=sample.udb

SQL Anywhere UltraLite Database Attribute Utility Version 10.0.0.xxxx Database
name: cv_dbattr Disk file 'run\script\cv_dbattr.udb'
Collation: 1252LATIN1
Number of Users: 1
 1. User: 'DBA'
Page size: 4096
Remote ID: JohnD
Global database ID: 1000
Global autoincrement usage: 0%
Number of tables: 3
Number of columns: 7
Number of publications: 3
Number of tables that will always be uploaded: 0
Number of tables that are never synchronized: 0
Number of primary Keys: 3
Number of foreign Keys: 0
Number of indexes: 0 Last synchronization completed successfully
Download occurred: 2005-12-07 15:01:28.615000
Upload OK
Upload rows not ignored
Partial download retained for subsequent sync
Actual MobiLink Authentication value: 1000
Authentication valid
Synchronization by publication number:
 1. Publication cv_sync
 Mask: 0x01
 Number of rows in next upload: 0
 Last download: 1900-01-01 00:00:00.000
 2. Publication cv_syncPub2
 Mask: 0x02
 Number of rows in next upload: 0
 Last download: 1900-01-01 00:00:00.000
 3. Publication cv_syncPub3
 Mask: 0x04
 Number of rows in next upload: 0
 Last download: 1900-01-01 00:00:00.000

Show database internals for a file named CustDB.udb and display database properties by enabling verbose
messaging:

ulinfo -c DBF=CustDB.udb -v

SQL Anywhere UltraLite Database Attribute Utility Version 10.0.0.xxxx
Database information
Database name: custdb
Disk file 'C:\Documents and Settings\All Users\Shared Documents\SQL Anywhere
10\Samples\UltraLite\CustDB\custdb.udb'
Collation: 1252LATIN1
Number of Users: 1
 1. User: 'DBA'
Page size: 4096
Default index maximum hash size: 8
Checksum level: 0
MobiLink Remote ID: not set
Global database ID: not set
Encryption: None
Character encoding set: 1252LATIN1

UltraLite Utilities Reference

170 Copyright © 2006, iAnywhere Solutions, Inc.

Case sensitive: OFF
Date format: YYYY-MM-DD
Date order: YMD
Nearest century: 50
Numeric precision: 30
Numeric scale: 6
Time format: HH:NN:SS.SSS
Timestamp format: YYYY-MM-DD HH:NN:SS.SSS
Timestamp increment: 1
Number of tables: 6
Number of columns: 16
Number of publications: 1
Number of tables that will always be uploaded: 0
Number of tables that are never synchronized: 1
Number of primary Keys: 6
Number of foreign Keys: 2
Number of indexes: 3
This database has not yet been synchronized.
Synchronization by publication number:
 1. Publication test
 Mask: 0x01
 Number of rows in next upload: 0
 Last download: 1900-01-01 00:00:00.000
Done.

Clear the ml_remote_id for a file called sample.udb:

ulinfo -c DBF=sample.udb -rc

See also
♦ “UltraLite Connection String Parameters Reference” on page 127
♦ “global_id option” on page 104
♦ “Global database ID considerations” on page 40
♦ “ml_remote_id option” on page 108
♦ “Remote ID considerations for MobiLink server synchronization” on page 40

UltraLite Information utility (ulinfo)

Copyright © 2006, iAnywhere Solutions, Inc. 171

UltraLite Initialize Database utility (ulinit)
Description

Creates an UltraLite remote database from an existing SQL Anywhere consolidated database.

Syntax
ulinit -a "SAconnection-string" -c "ULconnection-string" -n pubname [options]

Option Description

-a "SAconnection-string" Required. Connect to the SQL Anywhere database specified in the
SAconnection-string. If you do not specify both a user ID and a pass-
word, the default UID of DBA and PWD of sql are assumed.

-c "ULconnection-string" Required. Connect to the database as identified in the DBF or
file_name parameter of your connection-string. If you do not specify
both a user ID and a password, the default UID of DBA and PWD of
sql are assumed.

-n pubname Required. Add tables to the UltraLite database schema.

pubname specifies a publication in the reference database. Tables in
the publication are added to the UltraLite database. The tables must
already exist in the reference database; ulinit does not create them for
you.

Specify the option multiple times to add tables from multiple publica-
tions to the UltraLite database. To add all tables in the reference
database to the UltraLite database, specify -n*.

-o [extended-options] Set the UltraLite extended database creation options. See “Extended
creation-time options” on page 186.

-p creator-ID Required for Palm OS. Create the database with the specified four
character creator-ID of the UltraLite client application.

-q Run in quiet mode—do not print messages.

-s pubname Use the named publication from the reference database to set synchro-
nization behavior. Supply more than one -s option to name more than
one synchronization publication.

If -s is not supplied, the UltraLite remote has no named publications.
To synchronize with all publications in the reference database, type -
s*.

F For more information on how to create publications for MobiLink
synchronization, see “Publications in UltraLite” [MobiLink - Client
Administration].

-t file Specify the file containing the trusted root certificate. This certificate
is required for server authentication.

-w Do not display warnings.

UltraLite Utilities Reference

172 Copyright © 2006, iAnywhere Solutions, Inc.

Usage
The SQL Anywhere reference database acts as the source for synchronization scripts, database configuration
(for example, the collation sequence used), and table definitions for the UltraLite database file.

Alternate database creation methods If you want to create an UltraLite database without using a SQL
Anywhere reference database, try one of the following methods:

♦ If you want to initialize an UltraLite database from an RDBMS other than SQL Anywhere, use the Create
Synchronization Model wizard in Sybase Central. When you run the wizard, you are prompted to connect
to a consolidated database to obtain schema information.

♦ If you want to create an empty UltraLite database that you can configure independent of any kind of
reference database, use the ulcreate utility or the Create Database wizard for UltraLite.

UTF-8 encoding UltraLite typically uses the collation sequence defined in the reference database.
However, you can still choose to use UTF-8 to encode the database, if your device requires encoded
characters by setting the utf8_encoding property as part of your extended-options list.

However, there are cases where the ulinit utility restricts the collation sequences to those supported by
UltraLite. To see a list of supported collations (and its corresponding codepage), run ulcreate -l at a command
prompt. If your collation sequence is not supported by UltraLite, you should change it to one that is.

Palm OS databases Palm databases written to the desktop can be identified with the .pdb extension.
However, once you deploy this file to the device, the extension is dropped. For more details on file name
formats, see “Palm OS” on page 51.

Examples
Create a file called customer.udb that contains the tables defined in TestPublication. For example:

ulinit -a "DSN=dbdsn;UID=JimmyB;PWD=secret" -c DBF=customer.udb -n
TestPublication

Create a file called customer.udb that contains two distinct publications. Specifically, Pub1 may contain a
small subset of data for priority synchronization, while Pub2 could contain the bulk of the data. For example:

ulinit -a "DSN=dbdsn;UID=JimmyB;PWD=secret" -c DBF=customer.udb -n Pub1 -n
Pub2 -s Pub1 -s Pub2

Create a file called customer.udb for Palm OS using a registered creator ID. For example:

ulinit -a "DSN=dbdsn;UID=JimmyB;PWd=secret" -c DBF=customer.udb.pdb -n
TutCustomersPub
-p creator-id

See also
♦ “Creating and configuring a model” [MobiLink - Getting Started]
♦ “Create Synchronization Model wizard” [MobiLink - Getting Started]
♦ “UltraLite Create Database utility (ulcreate)” on page 165
♦ “UltraLite Connection String Parameters Reference” on page 127

UltraLite Initialize Database utility (ulinit)

Copyright © 2006, iAnywhere Solutions, Inc. 173

UltraLite Load XML to Database utility (ulload)
Description

This utility performs the following functions:

♦ Creates a new database by loading data from an XML file.

♦ Loads data into an existing database.

Syntax
ulload -c "connection-string" [options] xml-file

Option Description

-a Append data and schema definitions into an existing database.

If you are appending data into a pre-existing record-based database for Palm
OS (that is, one with a .pdb extension), do not use the -p option.

-c "connection-string" Required. Connect to the database as identified in the DBF or file_name pa-
rameter of your connection-string. If you do not specify both a user ID and a
password, the default UID of DBA and PWD of sql are assumed.

-d Load data only, ignoring any schema data in the XML file input.

-f directory Set the XML file directory to an external path.

-g ID Set the initial database ID to the INTEGER value you assign. This value is
used by the database for all new rows that have global autoincrement columns.
The database uses this base value to autoincrement IDs associated with each
additional row and/or column.

When deploying an application, you must assign a different identification
number to each database for synchronization with the MobiLink server.

-i Include inserted rows in the next upload synchronization. By default, rows
inserted by this utility are not uploaded during synchronization.

-n Load schema data only, ignoring any data in the XML file input.

-o [extended-options] Set the UltraLite extended database creation options. See “Extended creation-
time options” on page 186.

-ol List the available extended database creation options and exit. See “Extended
creation-time options” on page 186.

UltraLite Utilities Reference

174 Copyright © 2006, iAnywhere Solutions, Inc.

Option Description

-onerror behavior Control what happens if an error is encountered while reading data from the
XML file. Define one of the following supported behavior values:

♦ continue The error is ignored and ulload continues to load XML.

♦ prompt ulload prompts you to see if you want to continue.

♦ quit ulload stops loading the XML and terminates with an error. This is
the default behavior if none is specified.

♦ exit ulload exits.

-or Open database in read-only mode. UltraLite makes a copy of the original file,
and then use the copy to test your scripts without altering the database.
Changes to the copied file are discarded upon completion.

If you are connecting directly from the desktop to a database already deployed
to a CE device, this option is not supported.

-p creator-ID Required for Palm OS only when you are creating a new database from the
loaded file. Create the database with the specified four character creator-ID of
the UltraLite client application.

If you are appending data into a pre-existing record-based database for Palm
OS (that is, one with a .pdb extension), do not use this option with the -a option.

-q Run in quiet mode—do not print messages.

-s file Log the SQL statements used to load the database into the specified file.

-t file Specify the file containing the trusted root certificate. This certificate is re-
quired for server authentication.

-v Print verbose messages.

-y Overwrite xml-file without confirmation.

xml-file Specify the name of the XML file from which data is loaded.

Usage
The ulload utility creates the UltraLite database file, if the named file does not already exist.

Setting an option or specifying a certificate on the command line overrides any settings in the xml-file that
is processed by ulload.

This utility returns error codes. Any value other than 0 means that the operation failed.

Palm OS databases Palm databases written to the desktop can be identified with the .pdb extension.
However, once you deploy the file to the device, the extension is dropped. For more details on file name
formats, see “Palm OS” on page 51.

Example
Create a new UltraLite database file, sample.udb, and load it with data in sample.xml:

UltraLite Load XML to Database utility (ulload)

Copyright © 2006, iAnywhere Solutions, Inc. 175

ulload -c DBF=sample.udb sample.xml

Load the data from sample.xml into the existing database sample.udb, and if an error occurs, prompt for
action:

ulload -d -c DBF=sample.udb -onerror prompt sample.xml

Load XML from a file named test_data.xml into the copy UltraLite makes of the database named
sample.udb. Discard those changes upon completion. This allows you to check for errors in the XML data
and correct them. When data loads successfully, you can run the command without the -or option to keep
the XML updates.

ulload -or -c DBF=sample.udb -a test_data.xml

See also
♦ “Registering the Palm creator ID” [UltraLite - C and C++ Programming]
♦ “UltraLite Connection String Parameters Reference” on page 127
♦ “UltraLite Unload Database to XML utility (ulunload)” on page 180
♦ “Supported exit codes” on page 189
♦ “global_id option” on page 104
♦ “Global database ID considerations” on page 40

UltraLite Utilities Reference

176 Copyright © 2006, iAnywhere Solutions, Inc.

UltraLite Engine Stop utility (ulstop)
Applies to

Windows XP and Windows CE.

Description
Stops the UltraLite engine.

Syntax
ulstop

Usage
There are no options for this utility.

See also
♦ “Choosing a data management component” on page 11
♦ “UltraLite Engine utility (uleng10)” on page 168

UltraLite Engine Stop utility (ulstop)

Copyright © 2006, iAnywhere Solutions, Inc. 177

UltraLite Synchronization utility (ulsync)
Description

Synchronizes an UltraLite database with a MobiLink server. It is a tool for testing synchronization during
application development.

Syntax
ulsync -c "connection-string" [options]

Option Description

-a authenticate-parame-
ters

Set any values required by your MobiLink server authenticate_parame-
ters script. These may be a user name and password, for example. You can
repeat this option to a maximum of 20 times, if required.

-c "connection-string" Required. Connect to the database as identified in the DBF or file_name
parameter of your connection-string. If you do not specify both a user ID
and a password, the default UID of DBA and PWD of sql are assumed.

-e sync-parms Set a single extended synchronization option. You can set multiple extended
synchronization options with multiple -e options. The keywords are case
insensitive. Note that you must always set Username and Version. For ex-
ample:

-e Username=MyName -e Version=MyNum

See “Extended synchronization parameters” on page 187.

-k stream-type Specify the synchronization stream, which can be encrypted or unencrypted.
The stream-type must be one of tcpip, tls, http, or https. The default stream
is tcpip.

For Palm OS, you must store the RSA certificate in the UltraLite database
when it is created. For all other systems, you can specify the certificate file
either with the -x trusted certificate=path option, or as an unnamed file with
a certificate lookup mechanism that is part of the encryption code.

-n Do not carry out synchronization. Use this option with -r to see previous
synchronization results.

-or Synchronize the database in read-only mode. UltraLite makes a copy of the
original file, and then use the copy to test your scripts without altering the
database. Changes to the copied file are discarded upon completion.

If you are connecting directly from the desktop to a database already de-
ployed to a CE device, the parameter is not supported.

-r Display last synchronization results.

-q Run in quiet mode—do not print messages.

-v Display synchronization progress messages.

UltraLite Utilities Reference

178 Copyright © 2006, iAnywhere Solutions, Inc.

Option Description

-x netopt-string A semicolon-separated list of synchronization network protocol options (al-
so known as stream parameters) and their respective values. See “Network
protocol options for UltraLite synchronization streams” [MobiLink - Client
Administration].

The default value is host=localhost.

Usage
Do not confuse the sync-parms option (which sets synchronization parameters) with the -x network protocol
options option (which sets synchronization stream parameters).

This utility returns error codes. Any value other than 0 means that the operation failed.

Example
The following command synchronizes a database file named myuldb.udb. The MobiLink user name is
remoteA.

ulsync -c DBF=myuldb.udb -k http -e "Username=remoteA;Version=2"

The following command uploads changes for a database file namedmyuldb.udb over HTTPS with the c:
\certs\rsa.crt certificate. The MobiLink user name is remoteB.

ulsync -c DBF=myuldb.udb -k https -x trusted_certificate=c:\certs\rsa.crt
-e "Username=remoteB;Version=2;UploadOnly=ON"

The following command displays the last synchronization results for a database file named synced.udb.

ulsync -n -r -c dbf=synced.udb

The previous synchronization results are listed as follows:

 SQL Anywhere UltraLite Database Synchronize Utility Version 10.0
 Results of last synchronization:
 Succeeded
 Download timestamp: 2006-07-25 16:39:36.708000
 Upload OK
 No ignored rows
 Partial download retained
 Authentication value: 1000 (0x3e8)

See also
♦ “UltraLite Connection String Parameters Reference” on page 127
♦ “UltraLite Clients” [MobiLink - Client Administration]
♦ “Supported exit codes” on page 189
♦ “MobiLink file transfer utility [mlfiletransfer]” [MobiLink - Client Administration]

UltraLite Synchronization utility (ulsync)

Copyright © 2006, iAnywhere Solutions, Inc. 179

UltraLite Unload Database to XML utility (ulunload)
Applies to

All UltraLite databases.

Description
Unloads any of the following, depending on the options used:

♦ An entire UltraLite database to XML.

♦ All or part of UltraLite data only to XML.

♦ An UltraLite schema only to XML.

♦ An UltraLite schema only as SQL statements.

Syntax
ulunload -c "connection-string" [options] output-file

Option Description

-b max-size Set the maximum size of column data to be stored in the XML file. The
default is 10 K. To store all data in the XML file (that is, to have no maxi-
mum size), use -b -1.

-c "connection-string" Required. Connect to the database as identified in the DBF or file_name
parameter of your connection-string. If you do not specify both a user ID
and a password, the default UID of DBA and PWD of sql are assumed.

-d Unload data only, ignoring any schema information in the database.

Do not use this option if you intend to reload the XML file into a new
database using the ulload utility.

-e table,... Exclude data in the named table. You can name multiple tables in a comma-
separated list. For example:

-e mydbtable1,mydbtable5

-f directory Set the directory to store data larger than the maximum size specified by -
b. The default is the same directory as the XML file.

-n Unload schema only, ignoring any data in the database.

-or Open the database in read-only mode. UltraLite makes a copy of the original
file, which you can then use to test your scripts without altering the database.
Changes to the copied file are discarded upon completion.

If you are connecting directly from the desktop to a database already de-
ployed to a CE device, the parameter is not supported.

-q Run in quiet mode. Do not print messages.

UltraLite Utilities Reference

180 Copyright © 2006, iAnywhere Solutions, Inc.

Option Description

-s Unload schema only as SQL Anywhere-compatible SQL statements; ignore
any data in the database.

-t table,... Unload data in the named table only. You can name multiple tables in a
comma separated list. For example:

-t mydbtable2,mydbtable6

-v Print verbose messages.

-x owner Output tables so they are owned by a specific user ID. You can use this
option with the -s option.

-y Overwrite output-file without confirmation.

output-file Required. Set the name of the file that the database is unloaded into. If you
use the -s option, database is unloaded as SQL statements. Otherwise, the
database is unloaded as XML.

Usage
By default, ulunload outputs XML that describes the schema and data in the database. You can use the output
for archival purposes, or to keep the UltraLite database portable across all releases.

Preservation Unloading a database does not preserve:

♦ Synchronization state, stored synchronization counts, and row deletions. Ensure you synchronize the
database before unloading it.

♦ UltraLite user entries.

To confirm what database options or properties have been preserved, run ulinfo after you have reloaded your
database with the ulload utility.

Column data overflows If column data exceeds the maximum size you specified with -b, the overflow
is saved to a *.bin file in either the same directory as the XML file, or in the directory specified by -f. The
file follows this naming convention:

tablename-columname-rownumber.bin

Assigning table ownership The -x option allows you to assign ownership to UltraLite tables. You only
need to assign an owner to a table if you intend to use the resulting SQL statements for creating or modifying
a SQL Anywhere database. Do not use this option if you are using the resulting SQL to create or modify an
UltraLite database.

Errors This utility returns error codes. Any value other than 0 means that the operation failed.

Example
Unload the sample.udb database into the sample.xml file.

ulunload -c DBF=sample.udb sample.xml

Unload the data from the sample.udb database into the sample.xml file. Overwrite the database if it exists.

UltraLite Unload Database to XML utility (ulunload)

Copyright © 2006, iAnywhere Solutions, Inc. 181

ulunload -c DBF=sample.udb -d -y sample.xml

See also
♦ “UltraLite Connection String Parameters Reference” on page 127
♦ “Supported exit codes” on page 189
♦ “UltraLite Load XML to Database utility (ulload)” on page 174
♦ “UltraLite Information utility (ulinfo)” on page 169

UltraLite Utilities Reference

182 Copyright © 2006, iAnywhere Solutions, Inc.

UltraLite Unload Old Database utility (ulunloadold)
Applies to

UltraLite versions 8.0.2 to 9.0.x.

Description
Unloads previous versions of UltraLite databases and/or schema files (*.usm) into an XML file.

Syntax
ulunloadold -c "connection-string" [options] xml-file

Option Description

-b max-size Set the maximum size of column data to be stored in the XML file. The
default is 10 K. To store all data in the XML file (that is, to have no maxi-
mum size), use -b -1.

-c "connection-string" Required. Connect to the database as identified in the DBF or file_name
parameter of your connection-string. If you do not specify both a user ID
and a password, the default UID of DBA and PWD of sql are assumed.

-f directory Set the directory to store data larger than the maximum size specified by -
b. The default is the same directory as the XML file.

-q Run in quiet mode. Do not print messages.

-v Print verbose messages.

-y Overwrite xml-file without confirmation.

xml-file Set the name of the XML file that data will be unloaded into.

Usage
Do not unload UltraLite version 10 databases with this utility. Use the ulunload utility instead. To create an
UltraLite 10 version of the database, load the xml-file with ulload.

Preservation Unloading a database does not preserve:

♦ Synchronization state, stored synchronization counts, and row deletions. Ensure you synchronize the
database before unloading it.

♦ UltraLite user entries.

To confirm what database options or properties have been preserved, run ulinfo after you have reloaded your
database with the ulload utility.

Column data overflows If column data exceeds the maximum size you specified with -b, the overflow
is saved to a *.bin file in either the same directory as the XML file, or in the directory specified by -f. The
file follows this naming convention:

tablename-columname-rownumber.bin

UltraLite Unload Old Database utility (ulunloadold)

Copyright © 2006, iAnywhere Solutions, Inc. 183

Errors This utility returns error codes. Any value other than 0 means that the operation failed.

Example
Upgrading an UltraLite 8.0.x schema file named dbschema8.usm into an UltraLite version 10 database named
db.udb requires these two commands:

ulunloadold -c SCHEMA_FILE=dbschema8.usm dbschema.xml
ulload -c DBF=db.udb dbschema.xml

Upgrading an UltraLite version 9.0.x database for Palm OS named palm9db.pdb to an UltraLite version 10
database named palm10db.pdb requires these two commands:

ulunloadold -c DBF=palm9db.pdb dbdata.xml
ulload -c DBF=palm10db.pdb -p Syb dbdata.xml

See also
♦ “UltraLite Connection String Parameters Reference” on page 127
♦ “UltraLite Load XML to Database utility (ulload)” on page 174
♦ “UltraLite Unload Database to XML utility (ulunload)” on page 180
♦ “UltraLite Information utility (ulinfo)” on page 169

UltraLite Utilities Reference

184 Copyright © 2006, iAnywhere Solutions, Inc.

UltraLite Data Management utility for Palm OS (ULDBUtil)
Applies to

Palm OS databases managed from the device.

Description
Once you install ULDBUtil on the device, you can use this utility to perform the following functions:

♦ Delete the database from the device when the device is shared among different users. Deleting the file
allows you to save space or to maintain privacy. You can then reinstall the database or even have the
database create a new unpopulated database.

♦ Back up the database upon next synchronization. Use this feature to perform an initial synchronization,
and then back up the database. This allows you to deploy the database to other devices, so they do not
need to perform an initial synchronization.

Usage
This utility is installed as the following file:

install-dir\UltraLite\Palm\68k\ULDBUtil.prc

♦ To delete UltraLite application data from a Palm OS device

1. Switch to ULDBUtil.

2. If your device has expansion cards, pick the media (that is, internal/external volume or record-based)
from which the application database file is to be deleted.

3. From the list of UltraLite version 10 applications and databases, select an application.

4. Tap Delete on the Palm device to remove the data.

♦ To back up the database from a Palm OS device to a desktop

1. Switch to ULDBUtil.

2. Select the Backup option so HotSync knows to back up the database on the next synchronization attempt.
You need to select this option for each subsequent back up you need.

Tip
If you want to enable automatic backups and thereby avoid the need to select this option each time you
synchronize, use the PALM_ALLOW_BACKUP parameter.

See also
♦ “UltraLite HotSync Conduit Installation utility for Palm OS (ulcond10)” on page 163
♦ “PALM_ALLOW_BACKUP connection parameter” on page 145

UltraLite Data Management utility for Palm OS (ULDBUtil)

Copyright © 2006, iAnywhere Solutions, Inc. 185

Supported extended options
You can specify parameters for the UltraLite command line utilities. There are two types of parameters:

♦ Database creation options.

♦ Synchronization options.

See also
♦ “Extended creation-time options” on page 186
♦ “Extended synchronization parameters” on page 187

Extended creation-time options

The extended options supported for database creation utilities like ulcreate, ulinit, and ulload are the same
creation-time properties you can set when configuring any new database. You can define extended database
creation-time options in one of two ways:

♦ Prepend each extended option with -o For example, if you want to create a database with ulcreate
so that the database is created with case sensitivity enabled and uses ISO-compatible date formatting and
ordering, run the command as follows:

ulcreate -o case=respect -o date_format=YYYY-MM-DD
 -o date_order=YMD

♦ Assemble options into a creation-string An assembly of creation parameters is called a creation-
string. You type a creation-string on a single line with the parameter names and values separated by
semicolons:

parameter1=value1;parameter2=value2

The UltraLite runtime ensures the creation-time parameters are assembled into a creation-string before
creating a database with it. For example, if you use the ulcreate utility, the following connection string is
used to create a new database with case sensitivity enabled and that uses ISO-compatible date formatting
and ordering:

ulcreate - o "case=respect;date_format=YYYY-MM-DD;
date_order=YMD"

You must always configure database creation properties at creation time. You cannot alter these properties
once the file has been written.

Property list Description

case Sets the case-sensitivity of string comparisons in the UltraLite database. See
“Case sensitivity considerations” on page 33 and “case property” on page 94.

checksum_level Sets the level of checksum validation in the database. See “Verifying page in-
tegrity with checksums” on page 37 and “checksum_level
property” on page 95.

UltraLite Utilities Reference

186 Copyright © 2006, iAnywhere Solutions, Inc.

Property list Description

date_format Sets the default string format in which dates are retrieved from the database. See
“Date considerations” on page 34 and “date_format property” on page 97.

date_order Controls the interpretation of date ordering of months, days, and years. See “Date
considerations” on page 34 and “date_order property” on page 100.

fips Controls AES FIPS compliant data encryption, by using a Certicom certified
cryptographic algorithm. FIPs encoding is a form of strong encryption. See
“Security considerations” on page 38 and “fips property” on page 102.

max_hash_size Sets the default index hash size in bytes. See “Index performance considera-
tions” on page 33 and “max_hash_size property” on page 106.

nearest_century Controls the interpretation of two-digit years in string-to-date conversions. See
“Nearest century conversion considerations” on page 35 and “nearest_century
property” on page 109.

obfuscate Controls whether or not to obfuscate data in the database. Obfuscation is a form
of simple encryption. See “Security considerations” on page 38 and “obfuscate
property” on page 110.

page_size Defines the database page size. See “Database page size
considerations” on page 36 and “page_size property” on page 112.

precision Specifies the maximum number of digits in decimal point arithmetic results. See
“Decimal point position considerations” on page 36 and “precision proper-
ty” on page 114.

scale Specifies the minimum number of digits after the decimal point when an arith-
metic result is truncated to the maximum precision. See “Decimal point position
considerations” on page 36 and “scale property” on page 116.

time_format Sets the format for times retrieved from the database. See “Time considera-
tions” on page 34 and “time_format property” on page 118.

timestamp_format Sets the format for timestamps retrieved from the database. See “Timestamp
considerations” on page 35 and “timestamp_format property” on page 120.

timestamp_incre-
ment

Determines how the timestamp is truncated in UltraLite. See “Timestamp con-
siderations” on page 35 and “timestamp_increment property” on page 123.

utf8_encoding Encodes data using the UTF-8 format, 8-bit multibyte encoding for Unicode. See
“Character considerations” on page 31 and “utf8_encoding
property” on page 125.

F For more information, see “Choosing creation-time database properties” on page 30.

Extended synchronization parameters

You specify extended synchronization parameters with the ulsync utility on the command line after you have
defined all other command line options you want to use. You can define multiple parameters by using

Supported extended options

Copyright © 2006, iAnywhere Solutions, Inc. 187

multiple -e options. You cannot build a semi-colon delimited keyword string. The keywords are case
insensitive.

Option name Description

DownloadOnly (boolean) Specifies that synchronization should be download-only. See “Down-
load Only synchronization parameter” [MobiLink - Client Administra-
tion].

Newpassword (string) Specifies a new password. See “New Password synchronization param-
eter” [MobiLink - Client Administration].

Password (string) Specifies a password for the MobiLink client whose subscriptions are
being synchronized. See “Password synchronization parameter” [Mo-
biLink - Client Administration].

Ping (boolean) Confirms communications between the UltraLite client and the Mo-
biLink server. See “Ping synchronization parameter” [MobiLink - Client
Administration].

Publication (string) Specifies the names publications to be synchronized. See “Publication
synchronization parameter” [MobiLink - Client Administration].

PublicationMask (integer) Names a set of publications for which the last download time is re-
trieved. The set is supplied as a mask. See “PublicationMask synchro-
nization parameter” [MobiLink - Client Administration].

SendColumnNames (boolean) Used to directly handle rows. See “Send Column Names synchroniza-
tion parameter” [MobiLink - Client Administration].

SendDownloadACK Specifies that a download acknowledgment should be sent from the
client to the server. See “Send Download Acknowledgment synchro-
nization parameter” [MobiLink - Client Administration].

TableOrder (string) Sets the table order required for priority synchronization, if the default
table ordering (based on foreign keys) is not suitable for your deploy-
ment. See“Table Order synchronization parameter” [MobiLink - Client
Administration].

UploadOnly (boolean) Specifies that synchronization should be upload-only. See “Upload On-
ly synchronization parameter” [MobiLink - Client Administration].

Username (string) Required. Defines the consolidated database user. See “User Name syn-
chronization parameter” [MobiLink - Client Administration].

Version (string) Required. Defines the consolidated database version. See “Version syn-
chronization parameter” [MobiLink - Client Administration].

UltraLite Utilities Reference

188 Copyright © 2006, iAnywhere Solutions, Inc.

Supported exit codes
The ulcreate, ulload, ulsync, and ulunload utilities return exit codes to indicate whether or not the operation
a utility attempted to complete was successful or not. 0 indicates a successful synchronization. Any other
value indicates that the synchronization failed.

Exit
code

Status Description

0 EXIT_OKAY Operation successful.

1 EXIT_FAIL Operation failure.

3 EXIT_FILE_ERROR Database cannot be found.

4 EXIT_OUT_OF_MEMORY Exhausted all of the device's dynamic memory.

6 EXIT_COMMUNICATIONS
_FAIL

Communications error generated while talking to the Ul-
traLite engine.

9 EXIT_UNABLE_TO_CON-
NECT

Invalid UID or PWD provided, therefore cannot connect
to the database.

12 EXIT_BAD_ENCRYPT_KE
Y

Missing or invalid encryption key.

13 EXIT_DB_VER_NEWER Detected that the database version is incompatible. The
database must be upgraded to a newer version.

255 EXIT_USAGE Invalid command line options.

Supported exit codes

Copyright © 2006, iAnywhere Solutions, Inc. 189

CHAPTER 9

UltraLite System Table Reference

Contents
UltraLite system tables .. 192

About this chapter
This chapter lists the system tables used by UltraLite. This catalogue of tables act as the schema by describing
the metadata that define the structure of your UltraLite database.

Copyright © 2006, iAnywhere Solutions, Inc. 191

UltraLite system tables
The schema of every UltraLite database is described in a number of system tables. Because UltraLite does
not support table ownership, system tables are available to any of the four UltraLite user IDs.

The contents of these tables can be changed only by UltraLite itself. Therefore, UPDATE, DELETE, and
INSERT commands cannot be used to modify the contents of these tables. Further, the structure of these
tables cannot be changed using the ALTER TABLE and DROP commands.

You can browse the contents of these tables via Sybase Central.

♦ To hide or show system objects (Sybase Central)

1. Connect to the database.

2. Browse the objects of the database.

3. Right-click the contents pane and choose Hide/Show System Objects.

4. Click the Tables folder and browse the available tables.

systable system table

Description
Each row in the systable system table describes one table in the database.

Columns

Column name Description Type Data con-
straint

Integrity
constraints

column_count The number of columns in the table. UN-
SIGNED
INT

NOT
NULL

index_count The number of indexes in the table. UN-
SIGNED
INT

NOT
NULL

indexcol_count The total number of columns in all indexes
in the table.

UN-
SIGNED
INT

NOT
NULL

map_handle Used internally only. UN-
SIGNED
INT

NOT
NULL

table_name The name of the table. VAR-
CHAR
(128)

NOT
NULL

UltraLite System Table Reference

192 Copyright © 2006, iAnywhere Solutions, Inc.

Column name Description Type Data con-
straint

Integrity
constraints

object_id A unique identifier for that table. UN-
SIGNED
INT

NOT
NULL

Primary
key.

sync_type Used for MobiLink synchronization. Can
be one of either no_sync for no synchro-
nization, all_sync to synchronize every
row, or normal_sync for synchronize
changed rows only.

VAR-
CHAR
(128)

NOT
NULL

table_name The name of the table. VAR-
CHAR
(128)

NOT
NULL

table_type One of either sys for system tables or us-
er for regular tables.

TINYINT NOT
NULL

tpd_handle Internal user only. UN-
SIGNED
INT

NOT
NULL

syscolumn system table

Description
Each row in the syscolumn system table describes one column.

Columns

Column name Description Type Data con-
straint

Integrity
con-
straints

column_name A unique identifier of the column. VARCHAR
(128)

NOT
NULL

default The default value for this column. For ex-
ample, autoincrement.

VARCHAR
(128)

domain The column domain, which is an enumer-
ated value indicating the domain of the
column.

UNSIGNED
INT

NOT
NULL

domain_info Used with a variable sized domain. SMALLINT NOT
NULL

nulls Determines if the column allows nulls de-
fault.

CHAR(1) NOT
NULL

UltraLite system tables

Copyright © 2006, iAnywhere Solutions, Inc. 193

Column name Description Type Data con-
straint

Integrity
con-
straints

object_id A unique identifier for that column. UNSIGNED
INT

NOT
NULL

Primary
key.

table_id The identifier of the table to which the
column belongs.

UNSIGNED
INT

NOT
NULL

Primary
key.

Foreign
key refer-
ences
object_id
in sys-
table.

sysindex system table

Description
Each row in the sysindex system table describes one index in the database.

Columns

Column name Description Type Data con-
straint

Integrity
constraints

check_on_commit Indicates when referential
integrity is checked to en-
sure there is a matching
primary row for every for-
eign key. It is only re-
quired if type is foreign.

UNSIGNED INT

index_name A unique identifier for the
index.

UNSIGNED INT NOT NULL Primary key.

Foreign key
references
sysindex.

ixcol_count The number of columns in
the index.

UNSIGNED INT NOT NULL

nullable Only required if type is
foreign. Indicates if nulls
are allowed.

BIT

object_id A unique identifier for an
index.

UNSIGNED INT NOT NULL

primary_index_id Only required if type is
foreign. Lists the identifi-
er of the primary index.

UNSIGNED INT

UltraLite System Table Reference

194 Copyright © 2006, iAnywhere Solutions, Inc.

Column name Description Type Data con-
straint

Integrity
constraints

primary_table_id Only required if type is
foreign. Lists the identifi-
er of the primary table.

UNSIGNED INT

root_handle For internal use only. UNSIGNED INT NOT NULL

table_id A unique identifier for the
table to which the index
applies.

UNSIGNED INT NOT NULL Foreign key
references
systable.

type The type of index. Can be
one of:

♦ primary
♦ foreign
♦ key
♦ unique
♦ index

SMALLINT (10) NOT NULL

hash_size Stores the hash size used
for index hashing.

SHORT

See also
♦ “sysixcol system table” on page 195

sysixcol system table

Description
Each row in the sysixcol system table describes one column of an index listed in sysindex.

Columns

Column name Description Type Data con-
straint

Integrity
con-
straints

column_id A unique identifier for the column
being indexed.

UNSIGNED
INT

NOT
NULL

Foreign
key refer-
ences
syscolumn.

index_id A unique identifier for the index that
this index-column belongs to.

UNSIGNED
INT

NOT
NULL

Primary
key.

Foreign
key refer-
ences
sysindex.

UltraLite system tables

Copyright © 2006, iAnywhere Solutions, Inc. 195

Column name Description Type Data con-
straint

Integrity
con-
straints

order Indicates whether the column in the
index is kept in ascending (A) or de-
scending(D) order.

CHAR(1) NOT
NULL

sequence The order of the column in the index. SMALLINT NOT
NULL

Primary
key.

table_id A unique identifier for the table to
which the index applies.

UNSIGNED
INT

NOT
NULL

Primary
key.

See also
♦ “sysindex system table” on page 194

syspublication system table

Description
Each row in the syspublication system table describes a publication.

Columns

Column name Description Type Data con-
straint

Integrity con-
straints

download_times-
tamp

The time of the last download. UNSIGNED
INT

NOT
NULL

last_sync Used to keep track of upload
progress.

UNSIGNED
BIGINT

NOT
NULL

publication_id A unique identifier for the pub-
lication.

UNSIGNED
INT

NOT
NULL

Primary key.

publication_name The name of the publication. CHAR(128) NOT
NULL

See also
♦ “sysarticle system table” on page 196

sysarticle system table

Description
Each row in the sysarticle system table describes a table that belongs to a publication.

UltraLite System Table Reference

196 Copyright © 2006, iAnywhere Solutions, Inc.

Columns

Column name Description Type Data con-
straint

Integrity con-
straints

publication _id An identifier for the publica-
tion that this article belongs to.

UNSIGNED
INT

NOT NULL Primary key.

Foreign key ref-
erences syspubli-
cation.

table_id The identifier of the table that
belongs to the publication.

UNSIGNED
INT

NOT NULL Primary key.

Foreign key ref-
erences object_id
in systable.

where_expr An optional predicate to filter
rows.

TINY INT

See also
♦ “syspublication system table” on page 196

sysuldata system table

Description
Each row in the sysuldata system table names value pairs of options and properties. For a list of available
database options and properties, see “UltraLite Database Settings Reference” on page 93.

Columns

Column name Description Type Data con-
straint

Integrity
con-
straints

long_setting A BLOB for long values. LONGBINARY

name The name of the property. VARCHAR(128) NOT NULL Primary
key.

setting The value of the property. VARCHAR(128)

type One of either sys for internals,
opt for options or prop for prop-
erties

VARCHAR(128) NOT NULL Primary
key.

UltraLite system tables

Copyright © 2006, iAnywhere Solutions, Inc. 197

Part IV. UltraLite SQL Reference

This part provides a reference for UltraLite SQL. UltraLite SQL is a unique subset of the SQL supported by SQL
Anywhere databases.

CHAPTER 10

UltraLite SQL Elements Reference

Contents
Keywords in UltraLite ... 202
Identifiers in UltraLite ... 203
Strings in UltraLite ... 204
Comments in UltraLite ... 205
Numbers in UltraLite .. 206
The NULL value in UltraLite .. 207
Special values in UltraLite ... 208
Dates and times in UltraLite .. 211
Data types in UltraLite ... 212
Expressions in UltraLite ... 215
Operators in UltraLite .. 228
Variables in UltraLite ... 231
Query access plans in UltraLite ... 232

About this chapter
This chapter provides a complete reference for the SQL language elements used by UltraLite.

Copyright © 2006, iAnywhere Solutions, Inc. 201

Keywords in UltraLite
Each SQL statement contains one or more keywords. SQL is case insensitive to keywords, but throughout
these manuals, keywords are indicated in upper case. Some keywords cannot be used as identifiers without
surrounding them in double quotes. These are called reserved words.

F For more information on reserved words, see “Reserved words” [SQL Anywhere Server - SQL
Reference]. Note that UltraLite only supports a subset of those described. However, to be safe, always assume
that all the words documented for SQL Anywhere apply as UltraLite reserved words as well.

UltraLite SQL Elements Reference

202 Copyright © 2006, iAnywhere Solutions, Inc.

Identifiers in UltraLite
Identifiers are names of objects in the database, such as user IDs, tables, and columns. UltraLite supports
the same rules for identifiers as SQL Anywhere.

Note
Tables in UltraLite do not support the concept of an owner. As a convenience for existing SQL and for SQL
that is programmatically generated, UltraLite still allows the syntax owner.table-name. However, the owner
is not checked.

F For more information on identifiers, see “Identifiers” [SQL Anywhere Server - SQL Reference].

Identifiers in UltraLite

Copyright © 2006, iAnywhere Solutions, Inc. 203

Strings in UltraLite
Strings are used to hold character data in the database. UltraLite supports the same rules for strings as SQL
Anywhere. The results of comparisons on strings, and the sort order of strings, depends on the case sensitivity
of the database, the character set, and the collation sequence. These properties are set when the database is
created.

See also
♦ “Strings” [SQL Anywhere Server - SQL Reference]
♦ “Character considerations” on page 31

UltraLite SQL Elements Reference

204 Copyright © 2006, iAnywhere Solutions, Inc.

Comments in UltraLite
Comments are used to attach explanatory text to SQL statements or statement blocks. The UltraLite runtime
does not execute comments.

The following comment indicators are available in UltraLite.

♦ -- (Double hyphen) The database server ignores any remaining characters on the line. This is the
SQL/2003 comment indicator.

♦ // (Double slash) The double slash has the same meaning as the double hyphen.

♦ /* … */ (Slash-asterisk) Any characters between the two comment markers are ignored. The two
comment markers may be on the same or different lines. Comments indicated in this style can be nested.
This style of commenting is also called C-style comments.

Note
The percent sign (%) is not supported in UltraLite as a way to add comments to a SQL block.

Examples
♦ The following example illustrates the use of double-dash comments:

CREATE TABLE borrowed_book (
 loaner_name CHAR(100) PRIMARY KEY,
 date_borrowed DATE NOT NULL DEFAULT CURRENT DATE,
 date_returned DATE,
 book CHAR(20)
 FOREIGN KEY book REFERENCES library_books (isbn),
)
--This creates a table for a library database to hold information on
borrowed books.
--The default value for date_borrowed indicates that the book is borrowed
on the day the entry is made.
--The date_returned column is NULL until the book is returned.

♦ The following example illustrates the use of C-style comments:

CREATE TABLE borrowed_book (
 loaner_name CHAR(100) PRIMARY KEY,
 date_borrowed DATE NOT NULL DEFAULT CURRENT DATE,
 date_returned DATE,
 book CHAR(20)
 FOREIGN KEY book REFERENCES library_books (isbn),
)
/* This creates a table for a library database to hold information on
borrowed books.
The default value for date_borrowed indicates that the book is borrowed on
the day the entry is made.
The date_returned column is NULL until the book is returned. */

Comments in UltraLite

Copyright © 2006, iAnywhere Solutions, Inc. 205

Numbers in UltraLite
Numbers are used to hold numerical data in the database. A number can:

♦ be any sequence of digits
♦ be appended with decimal parts
♦ include an optional negative sign (-) or a plus sign (+)
♦ be followed by an e and then a numerical exponent value

For example, all numbers shown below are supported by UltraLite:

42

-4.038

.001

3.4e10

1e-10

UltraLite SQL Elements Reference

206 Copyright © 2006, iAnywhere Solutions, Inc.

The NULL value in UltraLite
As with SQL Anywhere, NULL is a special value that is different from any valid value for any data type.
However, the NULL value is a legal value in any data type. NULL is used to represent unknown (no value)
or inapplicable information.

F For more information about NULL values, see “NULL value” [SQL Anywhere Server - SQL
Reference].

The NULL value in UltraLite

Copyright © 2006, iAnywhere Solutions, Inc. 207

Special values in UltraLite
You can use special values in expressions, and as column defaults when you create tables.

CURRENT DATE special value

Description
CURRENT DATE returns the current year, month, and day.

Data type
DATE

Usage
The returned date is based on a reading of the system clock when the SQL statement is executed by the
UltraLite runtime. If you use CURRENT DATE with any of the following, all values are based on separate
clock readings:

♦ CURRENT DATE multiple times within the same statement

♦ CURRENT DATE with CURRENT TIME or CURRENT TIMESTAMP within a single statement

♦ CURRENT DATE with the NOW function or GETDATE function within a single statement

See also
♦ “Expressions in UltraLite” on page 215
♦ “GETDATE function [Date and time]” on page 267
♦ “NOW function [Date and time]” on page 288

CURRENT TIME special value

Description
The current hour, minute, second, and fraction of a second.

Data type
TIME

Usage
The fraction of a second is stored to 6 decimal places. The accuracy of the current time is limited by the
accuracy of the system clock.

The returned date is based on a reading of the system clock when the SQL statement is executed by the
UltraLite runtime. If you use CURRENT TIME with any of the following, all values are based on separate
clock readings:

UltraLite SQL Elements Reference

208 Copyright © 2006, iAnywhere Solutions, Inc.

♦ CURRENT TIME multiple times within the same statement

♦ CURRENT TIME with CURRENT DATE or CURRENT TIMESTAMP within a single statement

♦ CURRENT TIME with the NOW function or GETDATE function within a single statement

See also
♦ “Expressions in UltraLite” on page 215
♦ “GETDATE function [Date and time]” on page 267
♦ “NOW function [Date and time]” on page 288

CURRENT TIMESTAMP special value

Description
Combines CURRENT DATE and CURRENT TIME to form a TIMESTAMP value containing the year,
month, day, hour, minute, second, and fraction of a second.

Data type
TIMESTAMP

Usage
The fraction of a second is stored to 3 decimal places. The accuracy is limited by the accuracy of the system
clock.

Columns declared with DEFAULT CURRENT TIMESTAMP do not necessarily contain unique values.

The information CURRENT TIMESTAMP returns is equivalent to the information returned by the
GETDATE and NOW functions.

CURRENT_TIMESTAMP is equivalent to CURRENT TIMESTAMP.

The returned date is based on a reading of the system clock when the SQL statement is executed by the
UltraLite runtime. If you use CURRENT TIMESTAMP with any of the following, all values are based on
separate clock readings:

♦ CURRENT TIMESTAMP multiple times within the same statement

♦ CURRENT TIMESTAMP with CURRENT DATE or CURRENT TIME within a single statement

♦ CURRENT TIMESTAMP with the NOW function or GETDATE function within a single statement

See also
♦ “CURRENT TIME special value” on page 208
♦ “Expressions in UltraLite” on page 215
♦ “NOW function [Date and time]” on page 288
♦ “GETDATE function [Date and time]” on page 267
♦ “NOW function [Date and time]” on page 288

Special values in UltraLite

Copyright © 2006, iAnywhere Solutions, Inc. 209

SQLCODE special value

Description
Current SQLCODE value at the time the special value was evaluated.

Data type
String.

Usage
The SQLCODE value is set after each statement. You can check the SQLCODE to see whether or not the
statement succeeded.

Example
Use a SELECT statement to produce an error code for each attempt to fetch a new row from the result set.
For example: SELECT a, b, SQLCODE FROM MyTable.

See also
♦ “Expressions in UltraLite” on page 215
♦ SQL Anywhere 10 - Error Messages [SQL Anywhere 10 - Error Messages].

UltraLite SQL Elements Reference

210 Copyright © 2006, iAnywhere Solutions, Inc.

Dates and times in UltraLite
Many of the date and time functions use dates built from date and time parts. UltraLite and SQL Anywhere
support the same date parts. See “Date parts” on page 237.

Dates and times in UltraLite

Copyright © 2006, iAnywhere Solutions, Inc. 211

Data types in UltraLite
Available data types in UltraLite SQL include:

♦ Integer data types

♦ Decimal data types

♦ Floating-point data types

♦ Character data types

♦ Binary data types

♦ Date/time data types

Note
Domains (user-defined data types) are not supported in UltraLite SQL.

You can create a host variable with any one of the supported types. UltraLite supports a subset of the data
types available in SQL Anywhere.

The following are the SQL data types supported in UltraLite databases.

Data type Description

BIT Boolean values (0 or 1).

See “BIT data type” [SQL Anywhere Server - SQL Reference].

{ CHAR | CHARACTER } (max-
length)

Character data of max-length, in the range of 1-32767 bytes.

When evaluating expressions, the maximum length for a temporary
character value is 2048 bytes.

See “CHAR data type” [SQL Anywhere Server - SQL Reference].

VARCHAR(max-length) VARCHAR is used for variable-length character data of max-
length.

See “VARCHAR data type” [SQL Anywhere Server - SQL Refer-
ence].

LONG VARCHAR Arbitrary length character data. Conditions in SQL statements (such
as in the WHERE clause) cannot operate on LONG VARCHAR
columns. The only operations allowed on LONG VARCHAR
columns are to insert, update, or delete them, or to include them in
the select-list of a query.

You can cast strings to/from LONGVARCHAR data.

See “LONG VARCHAR data type” [SQL Anywhere Server - SQL
Reference].

UltraLite SQL Elements Reference

212 Copyright © 2006, iAnywhere Solutions, Inc.

Data type Description

[UNSIGNED] BIGINT An integer requiring 8 bytes of storage.

See “BIGINT data type” [SQL Anywhere Server - SQL Reference].

{ DECIMAL | DEC | NUMERIC }
(precision , scale])]

The representation of a decimal number using two parts: precision
(total digits) and scale (digits that follow a decimal point).

See “DECIMAL data type” [SQL Anywhere Server - SQL Refer-
ence], “NUMERIC data type” [SQL Anywhere Server - SQL Refer-
ence] and “Decimal point position considerations” on page 36.

DOUBLE [PRECISION] A double-precision floating-point number. In this data type PRECI-
SION is an optional part of the DOUBLE data type name. See
“DOUBLE data type” [SQL Anywhere Server - SQL Reference].

FLOAT [(precision)] A floating-point number, which may be single or double precision.
See “FLOAT data type” [SQL Anywhere Server - SQL Reference].

[UNSIGNED] { INT | INTEGER } An unsigned integer requiring 4 bytes of storage. See “INTEGER
data type” [SQL Anywhere Server - SQL Reference].

REAL A single-precision floating-point number stored in 4 bytes. See “RE-
AL data type” [SQL Anywhere Server - SQL Reference].

[UNSIGNED] SMALLINT An integer requiring 2 bytes of storage. See “SMALLINT data
type” [SQL Anywhere Server - SQL Reference].

[UNSIGNED] TINYINT An integer requiring 1 byte of storage. See “TINYINT data
type” [SQL Anywhere Server - SQL Reference].

DATE A calendar date, such as a year, month, and day. See “DATE data
type” [SQL Anywhere Server - SQL Reference].

TIME The time of day, containing hour, minute, second, and fraction of a
second. See “TIME data type” [SQL Anywhere Server - SQL Refer-
ence].

DATETIME Identical to TIMESTAMP. See “DATETIME data type” [SQL Any-
where Server - SQL Reference].

TIMESTAMP A point in time, containing year, month, day, hour, minute, second,
and fraction of a second. See “TIMESTAMP data type” [SQL Any-
where Server - SQL Reference].

VARBINARY (max-length) Identical to BINARY. See “VARBINARY data type” [SQL Any-
where Server - SQL Reference].

BINARY (max-length) Binary data of maximum length max-length bytes. The maximum
length should not exceed 2048 bytes. See “BINARY data type” [SQL
Anywhere Server - SQL Reference].

Data types in UltraLite

Copyright © 2006, iAnywhere Solutions, Inc. 213

Data type Description

LONG BINARY Arbitrary length binary data. Conditions in SQL statements (such as
in the WHERE clause) cannot operate on LONG BINARY columns.
The only operations allowed on LONG BINARY columns are to
insert, update, or delete them, or to include them in the select-list of
a query.

You can cast values to/from LONGBINARY data.

See “LONG BINARY data type” [SQL Anywhere Server - SQL Ref-
erence].

UNIQUEIDENTIFIER Typically used for a primary key or other unique column to hold
UUID (Universally Unique Identifier) values that uniquely identify
rows. UltraLite provides functions that generate UUID values in such
a way that a value produced on one computer does not match a UUID
produced on another computer. UNIQUEIDENTIFIER values gen-
erated in this way can therefore be used as keys in a synchronization
environment.

See “UNIQUEIDENTIFIER data type” [SQL Anywhere Server -
SQL Reference].

User-defined data types and their equivalents

Unlike SQL Anywhere databases, UltraLite does not support user-defined data types. The following table
lists UltraLite data type equivalents to built-in SQL Anywhere aliases:

SQL Anywhere data type UltraLite equivalent

MONEY NUMERIC(19,4)

SMALLMONEY NUMERIC(10,4)

TEXT LONG VARCHAR

XML LONG VARCHAR

UltraLite SQL Elements Reference

214 Copyright © 2006, iAnywhere Solutions, Inc.

Expressions in UltraLite
Expressions are formed by combining data, often in the form of column references, with operators or
functions.

Syntax
expression:
 case-expression
| constant
| [correlation-name.]column-name
| - expression
| expression operator expression
| (expression)
| function-name (expression, …)
| if-expression
| special value
| input-parameter

Parameters
case-expression:
CASE expression
WHEN expression
THEN expression,…
[ELSE expression]
END

alternative form of case-expression:
CASE
WHEN search-condition
THEN expression,…
[ELSE expression]
END

constant:
 integer | number | string | host-variable

special-value:
 CURRENT { DATE | TIME | TIMESTAMP }
| NULL
| SQLCODE
| SQLSTATE

if-expression:
IF condition
THEN expression
[ELSE expression]
ENDIF

input-parameter:
{ ? | :name [: indicator-name] }

operator:
{ + | - | * | / | || | % }

Expressions in UltraLite

Copyright © 2006, iAnywhere Solutions, Inc. 215

See also
♦ “Constants in expressions” on page 216
♦ “Special values in UltraLite” on page 208
♦ “Column names in expressions” on page 216
♦ “UltraLite SQL Function Reference SQL Functions” on page 235
♦ “Subqueries in expressions” on page 219
♦ “Search conditions in UltraLite” on page 221
♦ “Data types in UltraLite” on page 212
♦ “CASE expressions” on page 217
♦ “Input parameters” on page 220

Constants in expressions

Description
In UltraLite, constants are numbers or string literals.

Syntax
' constant '

Usage
String constants are enclosed in single quotes (').

An apostrophe is represented inside a string by two single quotes in a row ('').

Example
To use a possessive phrase, type the string literal as follows:

'John''s database'

See also
♦ “Escape sequences” [SQL Anywhere Server - SQL Reference]

Column names in expressions

Description
A column name is an identifier in an expression.

Syntax
correlation-name.column-name

Usage
A column name is preceded by an optional correlation name, which typically is the name of a table.

If a column name is a keyword or has characters other than letters, digits and underscore, it must be
surrounded by quotation marks (" "). For example, the following are valid column names:

UltraLite SQL Elements Reference

216 Copyright © 2006, iAnywhere Solutions, Inc.

Employees.Name
address
"date hired"
"salary"."date paid"

See also
♦ “FROM clause” on page 344

IF expressions

Description
Sets a search condition to return a specific subset of data.

Syntax
IF search-condition
THEN expression1
[ELSE expression2]
ENDIF

Usage
This expression returns the following:

♦ If search-condition is TRUE, the IF expression returns expression1.

♦ If search-condition is FALSE and an ELSE clause is specified, the IF expression returns expression2.

♦ If search-condition is FALSE, and there is no expression2, the IF expression returns NULL.

♦ If search-condition is UNKNOWN, the IF expression returns NULL.

F For more information about TRUE, FALSE and UNKNOWN conditions, see “NULL value” [SQL
Anywhere Server - SQL Reference] and “Search conditions” [SQL Anywhere Server - SQL Reference].

CASE expressions

Description
The CASE expression provides conditional SQL expressions.

Syntax 1
CASE expression1
WHEN expression2 THEN expression3, …
[ELSE expression4]
END

SELECT id,
 (CASE name
 WHEN 'Tee Shirt' THEN 'Shirt'
 WHEN 'Sweatshirt' THEN 'Shirt'
 WHEN 'Baseball Cap' THEN 'Hat'

Expressions in UltraLite

Copyright © 2006, iAnywhere Solutions, Inc. 217

 ELSE 'Unknown'
 END) as Type
FROM Product

Syntax 2
CASE
WHEN search-condition
THEN expression1, …
[ELSE expression2]
END

Usage
Case expressions can be used anywhere a regular expression can be used.

Syntax 1 If the expression following the CASE keyword is equal to the expression following the first
WHEN keyword, then the expression following the associated THEN keyword is returned. Otherwise the
expression following the ELSE keyword is returned, if specified.

For example, the following code uses a case expression as the second clause in a SELECT statement. It
selects a row from the Product table where the name column has a value of Sweatshirt.

Syntax 2 If the search-condition following the first WHEN keyword is TRUE, the expression following
the associate THEN keyword is returned. Otherwise the expression following the ELSE clause is returned,
if specified.

NULLIF function for abbreviated CASE expressions The NULLIF function provides a way to write
some CASE statements in short form. The syntax for NULLIF is as follows:

NULLIF (expression-1, expression-2)

NULLIF compares the values of the two expressions. If the first expression equals the second expression,
NULLIF returns NULL. If the first expression does not equal the second expression, NULLIF returns the
first expression.

Example
The following statement uses a CASE expression as the third clause of a SELECT statement to associate a
string with a search condition. It selects a row from the Product table where the name column does not have
a value of Tee Shirt and the quantity is less than fifty.

SELECT id, name,
 (CASE
 WHEN name='Tee Shirt' THEN 'Sale'
 WHEN quantity >= 50 THEN 'Big Sale'
 ELSE 'Regular price'
 END) as Type
FROM Product

Aggregate expressions

Description
Performs an aggregate computation that the UltraLite runtime does not provide.

UltraLite SQL Elements Reference

218 Copyright © 2006, iAnywhere Solutions, Inc.

Syntax
SUM(expression)

Usage
An aggregate expression calculates a single value from a range of rows.

An aggregate expression is one in which either an aggregate function is used, or in which one or more of
the operands is an aggregate expression.

When a SELECT statement does not have a GROUP BY clause, the expressions in the select-list must be
either all aggregate expressions or none of the expressions can be an aggregate expression. When a SELECT
statement does have a GROUP BY clause, any non-aggregate expression in the select-list must appear in the
GROUP BY list.

Example
For example, the following query computes the total payroll for employees in the employee table. In this
query, SUM(salary) is an aggregate expression:

SELECT SUM(salary)
FROM employee

Subqueries in expressions

Description
A subquery is a SELECT statement that is nested inside another SELECT statement.

Syntax
A subquery is structured like a regular query.

Usage
In UltraLite, you can only use subquery references in the following situations:

♦ As a table expression in the FROM clause. This form of table expression (also called derived tables)
must have a derived table name and column names in which values in the SELECT list are fetched.

♦ To supply values for the EXISTS, ANY, ALL, and IN search conditions.

You can write subqueries with references to names that are specified before (to the left of) the subquery,
sometimes known as outer references to the left. However, you cannot have references to items within
subqueries (sometimes known as inner references).

Example
The following subquery is used to list all product IDs for items that are low in stock (that is, less than 20
items).

FROM SalesOrderItems
 (SELECT ID
 FROM Products
 WHERE Quantity < 20)

Expressions in UltraLite

Copyright © 2006, iAnywhere Solutions, Inc. 219

See also
♦ “SELECT statement” on page 342
♦ “Using Subqueries” [SQL Anywhere Server - SQL Usage]
♦ “Search conditions in UltraLite” on page 221

Input parameters

Usage
Input parameters act as placeholders to allow end-users to supply values to a prepared statement. These user-
supplied values are then used to execute the statement.

Syntax
{ ? | :name [: indicator-name] }

Usage
Use the placeholder character of ? or the named form in expressions. You can use input parameters whenever
you can use a column name or constant.

The precise mechanism used to supply the values to the statement are dependent upon the API you use to
create your UltraLite client.

Using the named form The named form of an input parameter has special meaning. In general, name is
always used to specify multiple locations where an actual value is supplied.

For embedded SQL applications only, the indicator-name supplies the variable into which the null indicator
is placed. If you use the named form with the other components, indicator-name is ignored.

Deducing data types The data type of the input parameter is deduced when the statement is prepared
from one of the following patterns:

♦ CAST (? AS type)

In this case, type is a database type specification such as CHARACTER(32).

♦ Exactly one operand of a binary operator is an input parameter. The type is deduced to be the type of the
operand.

If the type cannot be deduced, UltraLite generates an error. For example:

♦ -?: the operand is unary.

♦ ? + ?: both are input parameters.

Example
The following embedded SQL statement has two input parameters:

INSERT INTO MyTable VALUES (:v1, :v2, :v1)

The first instance of v1 supplies its value to both the v2 and v1 locations in the statement.

UltraLite SQL Elements Reference

220 Copyright © 2006, iAnywhere Solutions, Inc.

See also
♦ “Using host variables” [UltraLite - C and C++ Programming]
♦ “Preparing statements” [SQL Anywhere Server - Programming]
♦ UltraLite C/C++: “Data manipulation: Insert, Delete, and Update” [UltraLite - C and C++

Programming]
♦ UltraLite.NET: “Data manipulation: INSERT, UPDATE, and DELETE” [UltraLite - .NET

Programming]
♦ UltraLite for AppForge: “Data manipulation: INSERT, UPDATE, and DELETE” [UltraLite - AppForge

Programming]
♦ UltraLite for M-Business: “Data manipulation: INSERT, UPDATE and DELETE” [UltraLite - M-

Business Anywhere Programming]

Search conditions in UltraLite

Usage
To specify a search condition for a WHERE clause, a HAVING clause, an ON phrase in a join, or an IF
expression. A search condition is also called a predicate.

Syntax
search-condition:
 expression compare expression
| expression IS [NOT] { NULL | TRUE | FALSE | UNKNOWN }
| expression [NOT] BETWEEN expression AND expression
| expression [NOT] IN (expression, ...)
| expression [NOT] IN (subquery)
| expression [NOT] { ANY | ALL } (subquery)
| expression [NOT] EXISTS (subquery)
| NOT search-condition
| search-condition AND search-condition
| search-condition OR search-condition
| (search-condition)

Parameters
compare:
= | > | < | >= | <= | <> | != | !< | !>

Usage
In UltraLite, search conditions can appear in the:

♦ WHERE clause

♦ HAVING clause

♦ ON phrase

♦ SQL queries

Search conditions can be used to choose a subset of the rows from a table in a FROM clause in a SELECT
statement, or in expressions such as an IF or CASE to select specific values. In UltraLite, every condition

Expressions in UltraLite

Copyright © 2006, iAnywhere Solutions, Inc. 221

evaluates as one of TRUE, FALSE, or UNKNOWN. This is called three-valued logic. The result of a
comparison is UNKNOWN if either value being compared is the NULL value. Search conditions are satisfied
only if the result of the condition is TRUE.

The different types of search conditions supported by UltraLite include:

♦ ALL conditions
♦ ANY conditions
♦ BETWEEN conditions
♦ EXISTS conditions
♦ IN conditions

These conditions are discussed in separate sections that follow.

Note
Subqueries form an important class of expression that is used in many search conditions.

See also
♦ “Comparison operators” on page 222
♦ “Three-valued logic” [SQL Anywhere Server - SQL Reference]
♦ “Subqueries in expressions” on page 219

Comparison operators

Description
Any operator that allows two or more expressions to be compared with in a search condition.

Syntax
expression operator expression

Parameters

Operator Interpretation

= equal to

[NOT] LIKE a text comparison, possibly using regular expressions

> greater than

< less than

>= greater than or equal to

<= less than or equal to

!= not equal to

UltraLite SQL Elements Reference

222 Copyright © 2006, iAnywhere Solutions, Inc.

Operator Interpretation

<> not equal to

!> not greater than

!< not less than

Usage
Comparing dates In comparing dates, < means earlier and > means later.

Case-sensitivity In UltraLite, comparisons are carried out with the same attention to case as the database
on which they are operating. By default, UltraLite databases are created as case insensitive.

NOT operator The NOT operator negates an expression.

Example
Either of the following two queries will find all Tee shirts and baseball caps that cost $10 or less. However,
note the difference in position between the negative logical operator (NOT) and the negative comparison
operator (!>).

SELECT ID, Name, Quantity
FROM Products
WHERE (name = 'Tee Shirt' OR name = 'BaseBall Cap')
AND NOT UnitPrice > 10
SELECT ID, Name, Quantity
FROM Products
WHERE (name = 'Tee Shirt' OR name = 'BaseBall Cap')
AND UnitPrice !> 10

See also
♦ “Logical operators” on page 223
♦ “Search conditions in UltraLite” on page 221

Logical operators

Description
Logical operators can do any of the following:

♦ Compare conditions (AND, OR, and NOT).

♦ Test the truth or NULL value nature of the expressions (IS).

Syntax 1
condition1 logical-operator condition2

Syntax 2
NOT condition

Expressions in UltraLite

Copyright © 2006, iAnywhere Solutions, Inc. 223

Syntax 3
expression IS [NOT] { truth-value | NULL }

Usage
Search conditions can be used to choose a subset of the rows from a table in a FROM clause in a SELECT
statement, or in expressions such as an IF or CASE to select specific values. In UltraLite, every condition
evaluates as one of TRUE, FALSE, or UNKNOWN. This is called three-valued logic. The result of a
comparison is UNKNOWN if either value being compared is the NULL value. Search conditions are satisfied
only if the result of the condition is TRUE.

AND The combined condition is TRUE if both conditions are TRUE, FALSE if either condition is FALSE,
and UNKNOWN otherwise.

condition1 OR condition2

OR The combined condition is TRUE if either condition is TRUE, FALSE if both conditions are FALSE,
and UNKNOWN otherwise.

NOT The NOT condition is TRUE if condition is FALSE, FALSE if condition is TRUE, and UNKNOWN
if condition is UNKNOWN.

IS The condition is TRUE if the expression evaluates to the supplied truth-value, which must be one of
TRUE, FALSE, or UNKNOWN. Otherwise, the value is FALSE.

Example
The IS NULL condition is satisfied if the column contains a NULL value. If you use the IS NOT NULL
operator, the condition is satisfied when the column contains a value that is not NULL. This example shows
an IS NULL condition: WHERE paid_date IS NULL

See also
♦ “Three-valued logic” [SQL Anywhere Server - SQL Reference]
♦ “Comparison operators” on page 222
♦ “Search conditions in UltraLite” on page 221

ALL conditions

Description
Use the ALL condition in conjunction with a comparison operators to compare a single value to the data
values produced by the subquery.

Syntax
expression compare [NOT] ALL (subquery)

Parameters
compare:
= | > | < | >= | <= | <> | != | !< | !>

UltraLite SQL Elements Reference

224 Copyright © 2006, iAnywhere Solutions, Inc.

Usage
UltraLite uses the specified comparison operator to compare the test value to each data value in the result
set. If all of the comparisons yield TRUE results, the ALL test returns TRUE.

Example
Find the order and customer IDs of those orders placed after all products of order #2001 were shipped.

SELECT ID, CustomerID
FROM SalesOrders
WHERE OrderDate > ALL (
 SELECT ShipDate
 FROM SalesOrderItems
 WHERE ID=2001)

See also
♦ “The ALL test” [SQL Anywhere Server - SQL Usage]
♦ “Comparison operators” on page 222

ANY conditions

Description
Use the ANY condition in conjunction with a comparison operators to compare a single value to the column
of data values produced by the subquery.

Syntax 1
expression compare [NOT] ANY (subquery)

Syntax 2
expression = ANY (subquery)

Parameters
compare:
= | > | < | >= | <= | <> | != | !< | !>

Usage
UltraLite uses the specified comparison operator to compare the test value to each data value in the column.
If any of the comparisons yields a TRUE result, the ANY test returns TRUE.

Syntax 1 is TRUE if expression is equal to any of the values in the result of the subquery, and FALSE if
the expression is not NULL and does not equal any of the values returned by the subquery. The ANY
condition is UNKNOWN if expression is the NULL value, unless the result of the subquery has no rows,
in which case the condition is always FALSE.

Example
Find the order and customer IDs of those orders placed after the first product of the order #2005 was shipped.

SELECT ID, CustomerID
FROM SalesOrders
WHERE OrderDate > ANY (
 SELECT ShipDate

Expressions in UltraLite

Copyright © 2006, iAnywhere Solutions, Inc. 225

 FROM SalesOrderItems
 WHERE ID=2005)

See also
♦ “The ANY test” [SQL Anywhere Server - SQL Usage]
♦ “Comparison operators” on page 222

BETWEEN conditions

Description
Specifies an inclusive range, in which the lower value and the upper value are searched for as well as the
values they delimit.

Syntax
expression [NOT] BETWEEN start-expression AND end-expression

Usage
The BETWEEN condition can evaluate to TRUE, FALSE, or UNKNOWN. Without the NOT keyword, the
condition evaluates as TRUE if expression is between start-expression and end-expression. The NOT
keyword reverses the meaning of the condition, but leaves UNKNOWN unchanged.

The BETWEEN condition is equivalent to a combination of two inequalities:

[NOT] (expression >= start-expression
 AND expression <= end-expression)

Example
List all the products cheaper than $10 or more expensive than $15.

SELECT Name, UnitPrice
FROM Products
WHERE UnitPrice NOT BETWEEN 10 AND 15

EXISTS conditions

Description
Checks whether a subquery produces any rows of query results

Syntax
 [NOT] EXISTS (subquery)

Usage
The EXISTS condition is TRUE if the subquery result contains at least one row, and FALSE if the subquery
result does not contain any rows. The EXISTS condition cannot be UNKNOWN.

You can reverse the logic of the EXISTS condition by using the NOT EXISTS form. In this case, the test
returns TRUE if the subquery produces no rows, and FALSE otherwise.

UltraLite SQL Elements Reference

226 Copyright © 2006, iAnywhere Solutions, Inc.

Example
List the customers who placed orders after July 13, 2001.

SELECT GivenName, Surname
FROM Customers
WHERE EXISTS (
 SELECT *
 FROM SalesOrders
 WHERE (OrderDate > '2001-07-13') AND
 (Customers.ID = SalesOrders.CustomerID))

IN conditions

Syntax
expression [NOT] IN
{ (subquery) | (value-expr, …) }

Parameters
value-expr are expressions that take on a single value, which may be a string, a number, a date, or any other
SQL data type.

Usage
An IN condition, without the NOT keyword, evaluates according to the following rules:

♦ TRUE if expression is not NULL and equals at least one of the values.

♦ UNKNOWN if expression is NULL and the values list is not empty, or if at least one of the values is
NULL and expression does not equal any of the other values.

♦ FALSE if expression is NULL and subquery returns no values; or if expression is not NULL, none of
the values are NULL, and expression does not equal any of the values.

You can reverse the logic of the IN condition by using the NOT IN form.

The following search condition expression IN (values) is identical to the search condition expression =
ANY (values). The search condition expression NOT IN (values) is identical to the search condition
expression <> ALL (values).

Example
Select the company name and state for customers who are from the following Canadian provinces: Ontario,
Manitoba, and Quebec.

SELECT CompanyName , Province
FROM Customers
WHERE State IN('ON', 'MB', 'PQ')

Expressions in UltraLite

Copyright © 2006, iAnywhere Solutions, Inc. 227

Operators in UltraLite
Operators are used to compute values, which may in turn be used as operands in a higher-level expression.

UltraLite SQL supports the following types of operators:

♦ Comparison operators evaluate and return a result using one (unary) or two (binary) comparison
operands. Comparisons result in the usual three logical values: true, false, and unknown.

♦ Arithmetic operators evaluate and return a result set for all floating-point, decimal, and integer numbers.

♦ String operators concatenate two string values together. For example, "my" + "string" returns the string
"my string".

♦ Bitwise operators evaluate and turn specific bits on or off within the internal representation of an integer.

♦ Logical operators evaluate search conditions. Logical evaluations result in the usual three logical values:
true, false, and unknown.

The normal precedence of operations applies.

See also
♦ “Operator precedence” on page 229
♦ “Comparison operators” on page 222
♦ “Arithmetic operators” on page 228
♦ “String operators” on page 229
♦ “Bitwise operators” on page 229
♦ “Logical operators” on page 223

Arithmetic operators

Arithmetic operators allow you to perform calculations.

expression + expression Addition. If either expression is NULL, the result is NULL.

expression – expression Subtraction. If either expression is NULL, the result is NULL.

– expression Negation. If the expression is NULL, the result is NULL.

expression * expression Multiplication. If either expression is NULL, the result is NULL.

expression / expression Division. If either expression is NULL or if the second expression is 0, the
result is NULL.

expression % expression Modulo finds the integer remainder after a division involving two whole
numbers. For example, 21 % 11 = 10 because 21 divided by 11 equals 1 with a remainder of 10. If either
expression is NULL, the result is NULL.

See also
♦ “Arithmetic operations” [SQL Anywhere Server - SQL Usage]

UltraLite SQL Elements Reference

228 Copyright © 2006, iAnywhere Solutions, Inc.

String operators

String operators allow you to concatenate strings.

expression || expression String concatenation (two vertical bars). If either string is NULL, it is treated
as the empty string for concatenation.

expression + expression Alternative string concatenation. When using the + concatenation operator,
you must ensure the operands are explicitly set to character data types rather than relying on implicit data
conversion.

For example, the following query returns the integer value 579:

SELECT 123 + 456

whereas the following query returns the character string 123456:

SELECT '123' + '456'

You can use the CAST or CONVERT functions to explicitly convert data types.

Bitwise operators

Bitwise operators perform bit manipulations between two expressions. The following operators can be used
on integer data types in UltraLite.

Operator Description

& bitwise AND

| bitwise OR

^ bitwise exclusive OR

~ bitwise NOT

The bitwise operators &, |, and ~ are not interchangeable with the logical operators AND, OR, and NOT.
The bitwise operators operate on integer values using the bit representation of the values.

Example
The following statement selects rows in which the specified bits are set.

SELECT *
FROM tableA
WHERE (options & 0x0101) <> 0

Operator precedence

The precedence of operators in expressions is as follows. Expressions in parentheses are evaluated first, then
multiplication and division before addition and subtraction. String concatenation happens after addition and
subtraction. The operators at the top of the list are evaluated before those at the bottom of the list.

Operators in UltraLite

Copyright © 2006, iAnywhere Solutions, Inc. 229

Tip
Make the order of operation explicit in UltraLite, rather than relying on an operator precedence. That means,
when you use more than one operator in an expression you should order operations clearly with parentheses.

1. names, functions, constants, IF expressions, CASE expressions

2. ()

3. unary operators (operators that require a single operand): +, -

4. ~

5. &, | , ^

6. *, /, %

7. +, -

8. ||

9. comparisons: >, <, <>, !=, <=, >=, [NOT] BETWEEN, [NOT] IN, [NOT] LIKE

10. comparisons: IS [NOT] TRUE, FALSE, UNKNOWN

11. NOT

12. AND

13. OR

UltraLite SQL Elements Reference

230 Copyright © 2006, iAnywhere Solutions, Inc.

Variables in UltraLite
You cannot use SQL variables (including global variables) in UltraLite applications except for the
@@identity global variable.

@@identity

The @@identity global variable is the only SQL variable that you can with UltraLite. UltraLite uses this
variable through API calls, however, not SQL queries.

F For more information about the @@identity global variable, see “@@identity global variable” [SQL
Anywhere Server - SQL Reference].

See also
♦ “Global database ID considerations” on page 40
♦ “global_id option” on page 104

Variables in UltraLite

Copyright © 2006, iAnywhere Solutions, Inc. 231

Query access plans in UltraLite
UltraLite query access plans show how tables and indexes are accessed when a query is executed. UltraLite
includes a query optimizer: an internal component of the UltraLite runtime that attempts to produce an
efficient plan for the query: it tries to avoid the use of temporary tables to store intermediate results and
attempts to ensure that only the pertinent subset of a table is accessed when a query joins two tables.

Overriding the optimizer

The optimizer always aims identify the most efficient access plan possible, but this goal is not guaranteed
—especially with a complicated query where a great number of possibilities may exist. In extreme cases,
you can override the table order it selects by adding the OPTION (FORCE ORDER) clause to a query,
which forces UltraLite to access the tables in the order they appear in the query. This option is not
recommended for general use. If performance is slow, a better approach is usually to create appropriate
indexes to speed up execution.

Performance tip
If you are not going to update data with the query, you should try specifying the FOR READ ONLY clause
in your query. This clause may yield better performance.

When to view a query access plan

View a query access plan in Interactive SQL when you need to know:

♦ What index will be used to return the results. An index scan object contains the name of the table and
the index on that table that is being used.

♦ Whether a temporary table will be used to return the results. Temporary tables are written to the UltraLite
temporary file. See “The temporary file” on page 16 for details.

♦ Which order tables are joined. This allows you to determine how performance is affected.

♦ Why a query is running slowly or to ensure that a query does not run slowly.

Viewing an UltraLite query access plan

As a development aid, you can use Interactive SQL to display an UltraLite plan that summarizes how a
prepared statement is to be executed. The plan is displayed on a tab in the Results pane of the utility.

In UltraLite, a query plan is strictly a short textual summary of the plan. No other plan types are supported.
However, being a short plan, it allows you to compare plans quickly, because information is summarized
on a single line.

Consider the following statement:

UltraLite SQL Elements Reference

232 Copyright © 2006, iAnywhere Solutions, Inc.

SELECT I.inv_no, I.name, T.quantity, T.prod_no
FROM Invoice I, Transactions T
WHERE I.inv_no = T.inv_no

This statement might produce the following plan:

join[scan(Invoice,primary),index-scan(Transactions,secondary)]

The plan indicates that the join operation is accomplished by reading all rows from the Invoice table
(following index named primary) and then using the index named secondary from the Transactions table to
read only the row whose inv_no column matches.

F For more information on Interactive SQL, see “The Interactive SQL utility” [SQL Anywhere Server -
Database Administration]. For more information on abbreviations used in the plan, see “Reading UltraLite
access plans” on page 233.

Reading UltraLite access plans

Because UltraLite short plans are textual summaries of how a query is accessed, you need to understand
how the operations of either a join or a scan of a table are implemented.

♦ For scan operations Represented with a single operand, which applies to a single table only and
uses an index. The table name and index name are displayed as round brackets ((,)) following the
operation name.

♦ For other operations Represented with one or more operands, which can also be plans in and of
themselves. In UltraLite, these operands are comma-separated lists contained by square brackets ([]).

Operation list
Operations supported by UltraLite are listed in the table that follows.

Operation Description

count(*) Counts the number of rows in a table.

distinct[plan] Implements the DISTINCT aspect of a query to compare and
eliminate duplicate rows. It is used when the underlying plan
sorts rows in such a way that duplicate contiguous rows are
eliminated. If two contiguous rows match, only the first row
is added to the result set.

dummy No operation performed. It only occurs in two cases:

♦ When you specify DUMMY in a FROM clause.

♦ When the FROM clause is missing from the query.

filter[plan] Executes a search condition for each row supplied by the
underlying plan. Only the rows that evaluate to true are for-
warded as part of the result set.

Query access plans in UltraLite

Copyright © 2006, iAnywhere Solutions, Inc. 233

Operation Description

group-by[plan] Creates an aggregate of GROUP BY results, in order to sort
multiple rows of grouped data. Rows are listed in the order
they occur and are grouped by comparing contiguous rows.

group-single[plan] Creates an aggregate of GROUP BY results, but only when
it is known that a single row will be returned.

keyset[plan] Records which rows were used to create rows in a temporary
table so UltraLite can update the original rows. If you do not
want those rows to be updated, then use the FOR READ
ONLY clause in the query to eliminate this operation.

index-scan(table-name, index-name) Reads only part of the table; the index is used to find the
starting row.

join[plan, plan] Performs an inner join between two plans.

lojoin[plan, plan] Performs a left outer join between two plans.

like-scan(table-name, index-name) Reads only part of a table; the index is used to find the start-
ing row by pattern matching.

rowlimit[plan] Performs the row limiting operation on propagated rows.
Row limits are set by the TOP n or FIRST clause of the
SELECT statement.

scan(table-name, index-name) Reads an entire table following the order indicated by the
index.

sub-query[plan] Marks the start of a subquery.

temp[plan] Creates a temporary table from the rows in the underlying
plan. UltraLite uses a temporary table when underlying rows
must be ordered and no index was found to accomplish this
ordering.

You can add an index to eliminate the need for a temporary
table. However, each additional index used increases the
duration needed to insert or synchronize rows in the table to
which the index applies.

union-all[plan, ..., plan] Performs a UNION ALL operation on the rows generated in
the underlying plan.

UltraLite SQL Elements Reference

234 Copyright © 2006, iAnywhere Solutions, Inc.

CHAPTER 11

UltraLite SQL Function Reference

Contents
Function types ... 236
Alphabetical list of functions .. 241

About this chapter
Functions are used to return information from the database. They are allowed anywhere an expression is
allowed. The chapter includes a grouping of functions by type, followed by an alphabetical list of functions.

Before you begin
Functions use the same syntax conventions used by SQL statements. Ensure you understand these
conventions and how they are used in this chapter.

F For a complete list of syntax conventions, see “Syntax conventions” [SQL Anywhere Server - SQL
Reference].

Copyright © 2006, iAnywhere Solutions, Inc. 235

Function types
This section groups the available function by type.

UltraLite supports a subset of the same functions documented for SQL Anywhere, and sometimes with a
few differences.

Note
Unless otherwise stated, any function that receives NULL as a parameter returns NULL.

UltraLite Aggregate functions

Aggregate functions summarize data over a group of rows from the database. The groups are formed using
the GROUP BY clause of the SELECT statement. Aggregate functions are allowed only in the select list
and in the HAVING and ORDER BY clauses of a SELECT statement.

List of functions
The following aggregate functions are available:

♦ “AVG function [Aggregate]” on page 245
♦ “COUNT function [Aggregate]” on page 255
♦ “LIST function [Aggregate]” on page 277
♦ “MAX function [Aggregate]” on page 281
♦ “MIN function [Aggregate]” on page 282
♦ “SUM function [Aggregate]” on page 308

UltraLite Data type conversion functions

Data type conversion functions are used to convert arguments from one data type to another, or to test whether
they can be converted.

List of functions
The following data type conversion functions are available:

♦ “CAST function [Data type conversion]” on page 247
♦ “CONVERT function [Data type conversion]” on page 252
♦ “HEXTOINT function [Data type conversion]” on page 269
♦ “INTTOHEX function [Data type conversion]” on page 273
♦ “ISDATE function [Data type conversion]” on page 273

UltraLite Date and time functions

Date and time functions perform operations on date and time data types or return date or time information.

UltraLite SQL Function Reference

236 Copyright © 2006, iAnywhere Solutions, Inc.

In this chapter, the term datetime is used to mean date or time or timestamp. The specific data type
DATETIME is indicated as DATETIME.

F For more information on datetime data types, see “Data types in UltraLite” on page 212.

List of functions
The following date and time functions are available:

♦ “DATE function [Date and time]” on page 257
♦ “DATEADD function [Date and time]” on page 257
♦ “DATEDIFF function [Date and time]” on page 258
♦ “DATEFORMAT function [Date and time]” on page 259
♦ “DATENAME function [Date and time]” on page 260
♦ “DATEPART function [Date and time]” on page 260
♦ “DATETIME function [Date and time]” on page 261
♦ “DAY function [Date and time]” on page 262
♦ “DAYNAME function [Date and time]” on page 262
♦ “DAYS function [Date and time]” on page 263
♦ “DOW function [Date and time]” on page 265
♦ “GETDATE function [Date and time]” on page 267
♦ “HOUR function [Date and time]” on page 269
♦ “HOURS function [Date and time]” on page 270
♦ “MINUTE function [Date and time]” on page 282
♦ “MINUTES function [Date and time]” on page 283
♦ “MONTH function [Date and time]” on page 285
♦ “MONTHNAME function [Date and time]” on page 285
♦ “MONTHS function [Date and time]” on page 286
♦ “NOW function [Date and time]” on page 288
♦ “QUARTER function [Date and time]” on page 291
♦ “SECOND function [Date and time]” on page 297
♦ “SECONDS function [Date and time]” on page 298
♦ “TODAY function [Date and time]” on page 310
♦ “WEEKS function [Date and time]” on page 314
♦ “YEAR function [Date and time]” on page 315
♦ “YEARS function [Date and time]” on page 315
♦ “YMD function [Date and time]” on page 316

Date parts

Many of the date functions use dates built from date parts. The following table displays allowed values of
date parts.

Date part Abbreviation Values

Year yy 1–9999

Quarter qq 1–4

Function types

Copyright © 2006, iAnywhere Solutions, Inc. 237

Date part Abbreviation Values

Month mm 1–12

Week wk 1–54. Weeks begin on Sunday.

Day dd 1–31

Dayofyear dy 1–366

Weekday dw 1–7 (Sunday = 1, …, Saturday = 7)

Hour hh 0–23

Minute mi 0–59

Second ss 0–59

Millisecond ms 0–999

Calyearofweek cyr Integer. The year in which the week begins. The week con-
taining the first few days of the year may have started in
the previous year, depending on the weekday on which the
year started. Years starting on Monday through Thursday
have no days that are part of the previous year, but years
starting on Friday through Sunday start their first week on
the first Monday of the year.

Calweekofyear cwk 1–54. The week number within the year that contains the
specified date.

Caldayofweek cdw 1–7. (Monday = 1, …, Sunday = 7)

Miscellaneous functions

Miscellaneous functions perform operations on arithmetic, string, or date/time expressions, including the
return values of other functions.

List of functions
The following miscellaneous functions are available:

♦ “ARGN function [Miscellaneous]” on page 242
♦ “COALESCE function [Miscellaneous]” on page 251
♦ “EXPLANATION function [Miscellaneous]” on page 266
♦ “GREATER function [Miscellaneous]” on page 268
♦ “IFNULL function [Miscellaneous]” on page 271
♦ “ISNULL function [Miscellaneous]” on page 273
♦ “LESSER function [Miscellaneous]” on page 276
♦ “NEWID function [Miscellaneous]” on page 287
♦ “NULLIF function [Miscellaneous]” on page 288

UltraLite SQL Function Reference

238 Copyright © 2006, iAnywhere Solutions, Inc.

Numeric functions

Numeric functions perform mathematical operations on numerical data types or return numeric information.

List of functions
The following numeric functions are available:

♦ “ABS function [Numeric]” on page 241
♦ “ACOS function [Numeric]” on page 241
♦ “ASIN function [Numeric]” on page 243
♦ “ATAN function [Numeric]” on page 244
♦ “ATAN2 function [Numeric]” on page 244
♦ “CEILING function [Numeric]” on page 248
♦ “COS function [Numeric]” on page 254
♦ “COT function [Numeric]” on page 255
♦ “DEGREES function [Numeric]” on page 264
♦ “EXP function [Numeric]” on page 266
♦ “FLOOR function [Numeric]” on page 267
♦ “LOG function [Numeric]” on page 278
♦ “LOG10 function [Numeric]” on page 279
♦ “MOD function [Numeric]” on page 284
♦ “PI function [Numeric]” on page 290
♦ “POWER function [Numeric]” on page 291
♦ “RADIANS function [Numeric]” on page 292
♦ “REMAINDER function [Numeric]” on page 292
♦ “ROUND function [Numeric]” on page 296
♦ “SIGN function [Numeric]” on page 300
♦ “SIN function [Numeric]” on page 301
♦ “SQRT function [Numeric]” on page 303
♦ “TAN function [Numeric]” on page 309
♦ “TRUNCNUM function [Numeric]” on page 311

String functions

String functions perform conversion, extraction, or manipulation operations on strings, or return information
about strings.

When working in a multibyte character set, check carefully whether the function being used returns
information concerning characters or bytes.

List of functions
The following string functions are available:

♦ “ASCII function [String]” on page 242
♦ “BYTE_LENGTH function [String]” on page 246
♦ “BYTE_SUBSTR function [String]” on page 246
♦ “CHAR function [String]” on page 249

Function types

Copyright © 2006, iAnywhere Solutions, Inc. 239

♦ “CHARINDEX function [String]” on page 249
♦ “CHAR_LENGTH function [String]” on page 250
♦ “DIFFERENCE function [String]” on page 264
♦ “INSERTSTR function [String]” on page 272
♦ “LCASE function [String]” on page 274
♦ “LEFT function [String]” on page 275
♦ “LENGTH function [String]” on page 275
♦ “LOCATE function [String]” on page 278
♦ “LOWER function [String]” on page 280
♦ “LTRIM function [String]” on page 280
♦ “PATINDEX function [String]” on page 289
♦ “REPEAT function [String]” on page 293
♦ “REPLACE function [String]” on page 294
♦ “REPLICATE function [String]” on page 295
♦ “RIGHT function [String]” on page 295
♦ “RTRIM function [String]” on page 297
♦ “SIMILAR function [String]” on page 300
♦ “SOUNDEX function [String]” on page 302
♦ “SPACE function [String]” on page 303
♦ “STR function [String]” on page 304
♦ “STRING function [String]” on page 305
♦ “STRTOUUID function [String]” on page 305
♦ “STUFF function [String]” on page 306
♦ “SUBSTRING function [String]” on page 307
♦ “TRIM function [String]” on page 310
♦ “UCASE function [String]” on page 311
♦ “UPPER function [String]” on page 312
♦ “UUIDTOSTR function [String]” on page 313

UltraLite SQL Function Reference

240 Copyright © 2006, iAnywhere Solutions, Inc.

Alphabetical list of functions
Each function is listed, and the function type (numeric, character, and so on) is indicated next to it.

F For links to all functions of a given type, see “Function types” on page 236.

ABS function [Numeric]

Description
Returns the absolute value of a numeric expression.

Syntax
ABS(numeric-expression)

Parameters
numeric expression The number whose absolute value is to be returned.

Standards and compatibility
♦ SQL/2003 SQL foundation feature outside of core SQL.

Example
The following statement returns the value 66.

SELECT ABS(-66);

ACOS function [Numeric]

Description
Returns the arc-cosine, in radians, of a numeric expression.

Syntax
ACOS(numeric-expression)

Parameters
numeric-expression The cosine of the angle.

Usage
This function converts its argument to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result.

See also
♦ “ASIN function [Numeric]” on page 243
♦ “ATAN function [Numeric]” on page 244
♦ “ATAN2 function [Numeric]” on page 244

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 241

♦ “COS function [Numeric]” on page 254

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the arc-cosine value for 0.52.

SELECT ACOS(0.52);

ARGN function [Miscellaneous]

Description
Returns a selected argument from a list of arguments.

Syntax
ARGN(integer-expression, expression [, …])

Parameters
integer-expression The position of an argument within the list of expressions.

expression An expression of any data type passed into the function. All supplied expressions must be of
the same data type.

Usage
Using the value of the integer-expression as n, returns the nth argument (starting at 1) from the remaining
list of arguments. While the expressions can be of any data type, they must all be of the same data type. The
integer expression must be from one to the number of expressions in the list or NULL is returned. Multiple
expressions are separated by a comma.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 6.

SELECT ARGN(6, 1,2,3,4,5,6);

ASCII function [String]

Description
Returns the integer ASCII value of the first byte in a string-expression.

Syntax
ASCII(string-expression)

UltraLite SQL Function Reference

242 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
string-expression The string.

Usage
If the string is empty, then ASCII returns zero. Literal strings must be enclosed in quotes. If the database
character set is multibyte and the first character of the parameter string consists of more than one byte, the
result is NULL.

See also
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 90.

SELECT ASCII('Z');

ASIN function [Numeric]

Description
Returns the arc-sine, in radians, of a number.

Syntax
ASIN(numeric-expression)

Parameters
numeric-expression The sine of the angle.

Usage
The SIN and ASIN functions are inverse operations.

This function converts its argument to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result.

See also
♦ “ACOS function [Numeric]” on page 241
♦ “ATAN function [Numeric]” on page 244
♦ “ATAN2 function [Numeric]” on page 244
♦ “SIN function [Numeric]” on page 301

Standards and compatibility
♦ SQL/2003 Vendor extension.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 243

Example
The following statement returns the arc-sine value for 0.52.

SELECT ASIN(0.52);

ATAN function [Numeric]

Description
Returns the arc-tangent, in radians, of a number.

Syntax
ATAN(numeric-expression)

Usage
The ATAN and TAN functions are inverse operations.

Parameters
numeric-expression The tangent of the angle.

Usage
This function converts its argument to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result.

See also
♦ “ACOS function [Numeric]” on page 241
♦ “ASIN function [Numeric]” on page 243
♦ “ATAN2 function [Numeric]” on page 244
♦ “TAN function [Numeric]” on page 309

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the arc-tangent value for 0.52.

SELECT ATAN(0.52);

ATAN2 function [Numeric]

Description
Returns the arc-tangent, in radians, of the ratio of two numbers.

Syntax
ATAN2 (numeric-expression-1, numeric-expression-2)

UltraLite SQL Function Reference

244 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
numeric-expression-1 The numerator in the ratio whose arc-tangent is calculated.

numeric-expression-2 The denominator in the ratio whose arc-tangent is calculated.

Usage
This function converts its arguments to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result.

See also
♦ “ACOS function [Numeric]” on page 241
♦ “ASIN function [Numeric]” on page 243
♦ “ATAN function [Numeric]” on page 244
♦ “TAN function [Numeric]” on page 309

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the arc-tangent value for the ratio 0.52 to 0.60.

SELECT ATAN2(0.52, 0.60);

AVG function [Aggregate]

Description
Computes the average, for a set of rows, of a numeric expression or of a set unique values.

Syntax 1
AVG(numeric-expression | DISTINCT numeric-expression)

Parameters
numeric-expression The expression whose average is calculated over a set of rows.

DISTINCT numeric-expression Computes the average of the unique numeric values in the input.

Usage
This average does not include rows where the numeric-expression is the NULL value. Returns the NULL
value for a group containing no rows.

See also
♦ “SUM function [Aggregate]” on page 308
♦ “COUNT function [Aggregate]” on page 255

Standards and compatibility
♦ SQL/2003 Core feature. Syntax 2 is feature T611.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 245

Example
The following statement returns the value 49988.623200.

SELECT AVG(Salary) FROM Employees ;

The following statement could be used to determine the average based on unique prices in the production
list:

SELECT AVG(DISTINCT ListPrice) FROM Production ;

BYTE_LENGTH function [String]

Description
Returns the number of bytes in a string.

Syntax
BYTE_LENGTH(string-expression)

Parameters
string-expression The string whose length is to be calculated.

Usage
Trailing white space characters in the string-expression are included in the length returned.

The return value of a NULL string is NULL.

If the string is in a multibyte character set, the BYTE_LENGTH value may differ from the number of
characters returned by CHAR_LENGTH.

See also
♦ “CHAR_LENGTH function [String]” on page 250
♦ “DATALENGTH function [System]” on page 256
♦ “LENGTH function [String]” on page 275
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 12.

SELECT BYTE_LENGTH('Test Message');

BYTE_SUBSTR function [String]

Description
Returns a substring of a string. The substring is calculated using bytes, not characters.

UltraLite SQL Function Reference

246 Copyright © 2006, iAnywhere Solutions, Inc.

Syntax
BYTE_SUBSTR(string-expression, start [, length])

Parameters
string-expression The string from which the substring is taken.

start An integer expression indicating the start of the substring. A positive integer starts from the beginning
of the string, with the first character being position 1. A negative integer specifies a substring starting from
the end of the string, the final character being at position -1.

length An integer expression indicating the length of the substring. A positive length specifies the number
of bytes to be taken starting at the start position. A negative length returns at most length bytes up to, and
including, the starting position, from the left of the starting position.

Usage
If length is specified, the substring is restricted to that number of bytes. Both start and length can be either
positive or negative. Using appropriate combinations of negative and positive numbers, you can get a
substring from either the beginning or end of the string.

If start is zero and length is non-negative, a start value of 1 is used. If start is zero and length is negative, a
start value of -1 is used.

See also
♦ “SUBSTRING function [String]” on page 307
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value Test.

SELECT BYTE_SUBSTR('Test Message', 1, 4);

CAST function [Data type conversion]

Description
Returns the value of an expression converted to a supplied data type.

Syntax
CAST(expression AS data type)

Parameters
expression The expression to be converted.

data type The target data type.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 247

Usage
If you do not indicate a length for character string types, the database server chooses an appropriate length.
If neither precision nor scale is specified for a DECIMAL conversion, the database server selects appropriate
values.

See also
♦ “CONVERT function [Data type conversion]” on page 252
♦ “LEFT function [String]” on page 275

Standards and compatibility
♦ SQL/2003 Core feature.

Example
The following function ensures a string is used as a date:

SELECT CAST('2000-10-31' AS DATE);

The value of the expression 1 + 2 is calculated, and the result is then cast into a single-character string.

SELECT CAST(1 + 2 AS CHAR);

You can use the CAST function to shorten strings

SELECT CAST ('Surname' AS CHAR(5));

CEILING function [Numeric]

Description
Returns the ceiling of a number.

Syntax
CEILING(numeric-expression)

Parameters
numeric-expression The number whose ceiling is to be calculated.

Usage
The Ceiling function returns the first integer that is greater or equal to a given value. For positive numbers,
this is also known as "rounding up."

This function converts its argument to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result.

See also
♦ “FLOOR function [Numeric]” on page 267

UltraLite SQL Function Reference

248 Copyright © 2006, iAnywhere Solutions, Inc.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 60.

SELECT CEILING(59.84567);

CHAR function [String]

Description
Returns the character with the ASCII value of a number.

Syntax
CHAR(integer-expression)

Parameters
integer-expression The number to be converted to an ASCII character. The number must be in the range
0 to 255, inclusive.

Usage
The character returned corresponds to the supplied numeric expression in the current database character set,
according to a binary sort order.

CHAR returns NULL for integer expressions with values greater than 255 or less than zero.

See also
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value Y.

SELECT CHAR(89);

CHARINDEX function [String]

Description
Returns the position of one string in another.

Syntax
CHARINDEX(string-expression-1, string-expression-2)

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 249

Parameters
string-expression-1 The string for which you are searching.

string-expression-2 The string to be searched.

Usage
The first character of string-expression-1 is identified as 1. If the string being searched contains more than
one instance of the other string, then the CHARINDEX function returns the position of the first instance.

If the string being searched does not contain the other string, then the CHARINDEX function returns 0.

See also
♦ “SUBSTRING function [String]” on page 307
♦ “REPLACE function [String]” on page 294
♦ “LOCATE function [String]” on page 278
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns last and first names from the Surname and GivenName tables, but only
when the last name includes the letter K:

SELECT Surname, GivenName
FROM Employees
WHERE CHARINDEX('K', Surname) = 1 ;

Results returned:

Surname GivenName

Klobucher James

Kuo Felicia

Kelly Moira

CHAR_LENGTH function [String]

Description
Returns the number of characters in a string.

Syntax
CHAR_LENGTH (string-expression)

Parameters
string-expression The string whose length is to be calculated.

UltraLite SQL Function Reference

250 Copyright © 2006, iAnywhere Solutions, Inc.

Usage
Trailing white space characters are included in the length returned.

The return value of a NULL string is NULL.

If the string is in a multibyte character set, the value returned by the CHAR_LENGTH function may differ
from the number of bytes returned by the BYTE_LENGTH function.

Note
You can use the CHAR_LENGTH function and the LENGTH function interchangeably for CHAR,
VARCHAR, and LONG VARCHAR data types. However, you must use the LENGTH function for
BINARY and bit array data types.

See also
♦ “BYTE_LENGTH function [String]” on page 246
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Core feature.

Example
The following statement returns the value 8.

SELECT CHAR_LENGTH('Chemical');

COALESCE function [Miscellaneous]

Description
Returns the first non-NULL expression from a list. This function is identical to the ISNULL function.

Syntax
COALESCE(expression, expression [, …])

Parameters
expression Any expression.

At least two expressions must be passed into the function.

Usage
The result is NULL only if all the arguments are NULL.

The parameters can be of any scalar type, but not necessarily same type.

Standards and compatibility
♦ SQL/2003 Core feature.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 251

Example
The following statement returns the value 34.

SELECT COALESCE(NULL, 34, 13, 0);

CONVERT function [Data type conversion]

Description
Returns an expression converted to a supplied data type.

Syntax
CONVERT(data type, expression [, format-style])

Parameters
data type The data type to which the expression is converted.

expression The expression to be converted.

format-style The style code to apply to the outputted value. Use this parameter when converting strings
to date or time data types, and vice versa. The table below shows the supported style codes, followed by a
representation of the output format produced by that style code. The style codes are separated into two
columns, depending on whether the century is included in the output format (for example, 06 versus 2006).

Without century (yy) style
codes

With century (yyyy) style
codes

Output format

- 0 or 100 Mmm dd yyyy hh:nnAA

1 101 mm/dd/yy[yy]

2 102 [yy]yy.mm.dd

3 103 dd/mm/yy[yy]

4 104 dd.mm.yy[yy]

5 105 dd-mm-yy[yy]

6 106 dd Mmm yy[yy]

7 107 Mmm dd, yy[yy]

8 108 hh:nn:ss

- 9 or 109 Mmm dd yyyy hh:nn:ss:sssAA

10 110 mm-dd-yy[yy]

11 111 [yy]yy/mm/dd

12 112 [yy]yymmdd

UltraLite SQL Function Reference

252 Copyright © 2006, iAnywhere Solutions, Inc.

Without century (yy) style
codes

With century (yyyy) style
codes

Output format

- 13 or 113 dd Mmm yyyy hh:nn:ss:sss (24 hour
clock, Europe default + milliseconds,
4-digit year)

- 14 or 114 hh:nn:ss:sss (24 hour clock)

- 20 or 120 yyyy-mm-dd hh:nn:ss (24-hour
clock, ODBC canonical, 4-digit
year)

- 21 or 121 yyyy-mm-dd hh:nn:ss.sss (24 hour
clock, ODBC canonical with mil-
liseconds, 4-digit year)

Usage
If no format-style argument is provided, style code 0 is used.

F For a description of the styles produced by each output symbol (such as Mmm), see “date_format
property” on page 97.

See also
♦ “CAST function [Data type conversion]” on page 247

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statements illustrate the use of format style.

SELECT CONVERT(CHAR(20), OrderDate, 104) FROM SalesOrders ;

OrderDate

16.03.2000

20.03.2000

23.03.2000

25.03.2000

…

SELECT CONVERT(CHAR(20), OrderDate, 7) FROM SalesOrders;

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 253

OrderDate

Mar 16, 00

Mar 20, 00

Mar 23, 00

Mar 25, 00

…

The following statement illustrates conversion to an integer, and returns the value 5.

SELECT CONVERT(integer, 5.2);

COS function [Numeric]

Description
Converts a number from radians to cosine.

Syntax
COS(numeric-expression)

Parameters
numeric-expression The angle, in radians.

Usage
The COS function returns the cosine of the angle given by numeric-expression.

This function converts its argument to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result. If the parameter is NULL, the result is NULL.

See also
♦ “ACOS function [Numeric]” on page 241
♦ “COT function [Numeric]” on page 255
♦ “SIN function [Numeric]” on page 301
♦ “TAN function [Numeric]” on page 309

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value of the cosine of an angle 0.52 radians.

SELECT COS(0.52);

UltraLite SQL Function Reference

254 Copyright © 2006, iAnywhere Solutions, Inc.

COT function [Numeric]

Description
Converts a number from radians to cotangent.

Syntax
COT(numeric-expression)

Parameters
numeric-expression The angle, in radians.

Usage
The COT function returns the cotangent of the angle given by numeric-expression.

This function converts its argument to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result. If the parameter is NULL, the result is NULL.

See also
♦ “COS function [Numeric]” on page 254
♦ “SIN function [Numeric]” on page 301
♦ “TAN function [Numeric]” on page 309

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the cotangent value of 0.52.

SELECT COT(0.52);

COUNT function [Aggregate]

Description
Counts the number of rows in a group depending on the specified parameters.

Syntax 1
COUNT(
*
| expression
| DISTINCT expression
)

Parameters
* Returns the number of rows in each group.

expression Returns the number of rows of each group.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 255

DISTINCT expression Returns the number of different values in the expression.

Usage
Rows where the value is the NULL value are not included in the count.

See also
♦ “AVG function [Aggregate]” on page 245
♦ “SUM function [Aggregate]” on page 308

Standards and compatibility
♦ SQL/2003 Core feature. Syntax 2 is feature T611.

Example
The following statement returns each unique city, and the number of rows with that city value.

SELECT City , COUNT(*) FROM Employees GROUP BY City;

DATALENGTH function [System]

Description
Returns the length, in bytes, of the underlying storage for the result of an expression.

Syntax
DATALENGTH(expression)

Parameters
expression expression is usually a column name. If expression is a string constant, you must enclose it
in quotes.

Usage
The return values of the DATALENGTH function are as follows:

Data type DATALENGTH

SMALLINT 2

INTEGER 4

DOUBLE 8

CHAR Length of the data

BINARY Length of the data

Standards and compatibility
♦ SQL/2003 Vendor extension.

UltraLite SQL Function Reference

256 Copyright © 2006, iAnywhere Solutions, Inc.

Example
The following statement returns the value 27, the longest string in the CompanyName column.

SELECT MAX(DATALENGTH(CompanyName))
FROM Customers;

DATE function [Date and time]

Description
Converts the expression into a date, and removes any hours, minutes, or seconds.

F For information about controlling the interpretation of date formats, see “date_order
property” on page 100.

Syntax
DATE(expression)

Parameters
expression The value to be converted to date format. An expression is usually a string.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 1999-01-02 as a date.

SELECT DATE('1999-01-02 21:20:53');

DATEADD function [Date and time]

Description
Returns the date produced by adding a number of the date parts to a date.

Syntax
DATEADD(date-part, numeric-expression, date-expression)

date-part :
year | quarter | month | week | day | dayofyear | hour | minute | second | millisecond

Parameters
date-part The date part to be added to the date.

F For more information about date parts, see “Date parts” on page 237.

numeric-expression The number of date parts to be added to the date. The numeric_expression can be
any numeric type, but the value is truncated to an integer.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 257

date-expression The date to be modified.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value: 1995-11-02 00:00:00.000.

SELECT DATEADD(month, 102, '1987/05/02');

DATEDIFF function [Date and time]

Description
Returns the interval between two dates.

Syntax
DATEDIFF(date-part, date-expression-1, date-expression-2)

date-part :
year | quarter | month | week | day | dayofyear | hour | minute | second | millisecond

Parameters
date-part Specifies the date part in which the interval is to be measured. Choose one of the date objects
listed above.

F For a complete list of date parts, see “Date parts” on page 237.

date-expression-1 The starting date for the interval. This value is subtracted from date-expression-2 to
return the number of date-parts between the two arguments.

date-expression-2 The ending date for the interval. Date-expression-1 is subtracted from this value to
return the number of date-parts between the two arguments.

Usage
This function calculates the number of date parts between two specified dates. The result is a signed integer
value equal to (date2 – date1), in date parts.

The DATEDIFF function results are truncated, not rounded, when the result is not an even multiple of the
date part.

When you use day as the date part, the DATEDIFF function returns the number of midnights between the
two times specified, including the second date but not the first.

When you use month as the date part, the DATEDIFF function returns the number of first-of-the-months
between two dates, including the second date but not the first.

When you use week as the date part, the DATEDIFF function returns the number of Sundays between the
two dates, including the second date but not the first.

For the smaller time units there are overflow values:

UltraLite SQL Function Reference

258 Copyright © 2006, iAnywhere Solutions, Inc.

♦ milliseconds 24 days

♦ seconds 68 years

♦ minutes 4083 years

♦ others No overflow limit

The function returns an overflow error if you exceed these limits.

Standards and compatibility
♦ SQL/2003 Transact-SQL extension.

Example
The following statement returns 1.

SELECT DATEDIFF(hour, '4:00AM', '5:50AM');

The following statement returns 102.

SELECT DATEDIFF(month, '1987/05/02', '1995/11/15');

The following statement returns 0.

SELECT DATEDIFF(day, '00:00', '23:59');

The following statement returns 4.

SELECT DATEDIFF(day,
 '1999/07/19 00:00',
 '1999/07/23 23:59');

The following statement returns 0.

SELECT DATEDIFF(month, '1999/07/19', '1999/07/23');

The following statement returns 1.

SELECT DATEDIFF(month, '1999/07/19', '1999/08/23');

DATEFORMAT function [Date and time]

Description
Returns a string representing a date expression in the specified format.

Syntax
DATEFORMAT(datetime-expression, string-expression)

Parameters
datetime-expression The datetime to be converted.

string-expression The format of the converted date.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 259

F For information on date format descriptions, see “date_format property” on page 97.

Usage
Any allowable date format can be used for the string-expression.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value Jan 01, 1989.

SELECT DATEFORMAT('1989-01-01', 'Mmm dd, yyyy');

DATENAME function [Date and time]

Description
Returns the name of the specified part (such as the month June) of a datetime value, as a character string.

Syntax
DATENAME(date-part, date-expression)

Parameters
date-part The date part to be named.

F For a complete listing of allowed date parts, see “Date parts” on page 237.

date-expression The date for which the date part name is to be returned. The date must contain the
requested date-part.

Usage
The DATENAME function returns a string, even if the result is numeric, such as 23 for the day.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value May.

SELECT DATENAME(month, '1987/05/02');

DATEPART function [Date and time]

Description
Returns the value of part of a datetime value.

UltraLite SQL Function Reference

260 Copyright © 2006, iAnywhere Solutions, Inc.

Syntax
DATEPART(date-part, date-expression)

Parameters
date-part The date part to be returned.

F For a complete listing of allowed date parts, see “Date parts” on page 237.

date-expression The date for which the part is to be returned.

Usage
The date must contain the date-part field.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 5.

SELECT DATEPART(month , '1987/05/02');

DATETIME function [Date and time]

Description
Converts an expression into a timestamp.

Syntax
DATETIME(expression)

Parameters
expression The expression to be converted. It is generally a string.

Usage
Attempts to convert numerical values return an error.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns a timestamp with value 1998-09-09 12:12:12.000.

SELECT DATETIME('1998-09-09 12:12:12.000');

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 261

DAY function [Date and time]

Description
Returns an integer from 1 to 31.

Syntax
DAY(date-expression)

Parameters
date-expression The date.

Usage
The integers 1 to 31 correspond to the day of the month in a date.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 12.

SELECT DAY('2001-09-12');

DAYNAME function [Date and time]

Description
Returns the name of the day of the week from a date.

Syntax
DAYNAME(date-expression)

Parameters
date-expression The date.

Usage
The English names are returned as: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value Saturday.

SELECT DAYNAME ('1987/05/02');

UltraLite SQL Function Reference

262 Copyright © 2006, iAnywhere Solutions, Inc.

DAYS function [Date and time]

Description
A function that evaluates days. For specific details, see this function's usage.

Syntax 1: integer
DAYS([datetime-expression,] datetime-expression)

Syntax 2: timestamp
DAYS(datetime-expression, integer-expression)

Parameters
datetime-expression A date and time.

integer-expression The number of days to be added to the datetime-expression. If the integer-
expression is negative, the appropriate number of days is subtracted from the timestamp. If you supply an
integer expression, the datetime-expression must be explicitly cast as a date or timestamp.

F For information on casting data types, see “CAST function [Data type conversion]” on page 247.

Usage
The behavior of this function can vary depending on what you supply:

♦ If you give a single date, this function returns the number of days since 0000-02-29.

Note
0000-02-29 is not meant to imply an actual date; it is the date used by the date algorithm.

♦ If you give two dates, this function returns the integer number of days between them. Instead, use the
DATEDIFF function.

♦ If you give a date and an integer, this function adds the integer number of days to the specified date.
Instead, use the DATEADD function.

This function ignores hours, minutes, and seconds.

See also
♦ “DATEDIFF function [Date and time]” on page 258
♦ “DATEADD function [Date and time]” on page 257

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the integer 729889.

SELECT DAYS('1998-07-13 06:07:12');

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 263

The following statements return the integer value –366, indicating that the second date is 366 days prior to
the first. It is recommended that you use the second example (DATEDIFF).

SELECT DAYS('1998-07-13 06:07:12',
 '1997-07-12 10:07:12');
SELECT DATEDIFF(day,
 '1998-07-13 06:07:12',
 '1997-07-12 10:07:12');

The following statements return the timestamp 1999-07-14 00:00:00.000. It is recommended that you use
the second example (DATEADD).

SELECT DAYS(CAST('1998-07-13' AS DATE), 366);
SELECT DATEADD(day, 366, '1998-07-13');

DEGREES function [Numeric]

Description
Converts a number from radians to degrees.

Syntax
DEGREES(numeric-expression)

Parameters
numeric-expression An angle in radians.

Usage
The DEGREES function returns the degrees of the angle given by numeric-expression.

This function converts its argument to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result. If the parameter is NULL, the result is NULL.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 29.79380534680281.

SELECT DEGREES(0.52);

DIFFERENCE function [String]

Description
Returns the difference in the SOUNDEX values between the two string expressions.

Syntax
DIFFERENCE (string-expression-1, string-expression-2)

UltraLite SQL Function Reference

264 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
string-expression-1 The first SOUNDEX argument.

string-expression-2 The second SOUNDEX argument.

Usage
The DIFFERENCE function compares the SOUNDEX values of two strings and evaluates the similarity
between them, returning a value from 0 through 4, where 4 is the best match.

This function always returns some value. The result is NULL only if one of the arguments are NULL.

See also
♦ “SOUNDEX function [String]” on page 302
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 3.

SELECT DIFFERENCE('test', 'chest');

DOW function [Date and time]

Description
Returns a number from 1 to 7 representing the day of the week of a date, where Sunday=1, Monday=2, and
so on.

Syntax
DOW(date-expression)

Parameters
date-expression The date.

Usage
The DOW function is not affected by the value specified for the first_day_of_week database option. For
example, even if first_day_of_week is set to Monday, the DOW function returns a 2 for Monday.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 5.

SELECT DOW('1998-07-09');

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 265

EXP function [Numeric]

Description
Returns the exponential function, e to the power of a number.

Syntax
EXP(numeric-expression)

Parameters
numeric-expression The exponent.

Usage
The EXP function returns the exponential of the value specified by numeric-expression.

This function converts its argument to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result. If the parameter is NULL, the result is NULL.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The statement returns the value 3269017.3724721107.

SELECT EXP(15);

EXPLANATION function [Miscellaneous]

Returns the plan optimization strategy of a SQL statement.

Syntax
EXPLANATION(string-expression)

Parameters
string-expression The SQL statement, which is commonly a SELECT statement, but can also be an
UPDATE or DELETE statement.

Usage
The optimization is returned as a string.

This information can help you decide which indexes to add or how to structure your database for better
performance.

In Interactive SQL, you can view the plan for any SQL statement on the Plan tab in the Results pane.

See also
♦ “Query access plans in UltraLite” on page 232

UltraLite SQL Function Reference

266 Copyright © 2006, iAnywhere Solutions, Inc.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement passes a SELECT statement as a string parameter and returns the plan for executing
the query.

SELECT EXPLANATION('SELECT * FROM Departments WHERE DepartmentID > 100');

FLOOR function [Numeric]

Description
Returns the floor of (largest integer not greater than) a number.

Syntax
FLOOR(numeric-expression)

Parameters
numeric- expression The number, usually a float.

Usage
This function converts its arguments to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result.

See also
♦ “CEILING function [Numeric]” on page 248

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statements returns a Floor value of 123

SELECT FLOOR (123);

The following statements returns a Floor value of 123

SELECT FLOOR (123.45);

The following statements returns a Floor value of -124

SELECT FLOOR (-123.45);

GETDATE function [Date and time]

Description
Returns the current year, month, day, hour, minute, second and fraction of a second.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 267

Syntax
GETDATE()

Usage
The accuracy is limited by the accuracy of the system clock.

The information the GETDATE function returns is equivalent to the information returned by the NOW
function and the CURRENT TIMESTAMP special value.

See also
♦ “NOW function [Date and time]” on page 288

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the system date and time.

SELECT GETDATE();

GREATER function [Miscellaneous]

Description
Returns the greater of two parameter values.

Syntax
GREATER(expression-1, expression-2)

Parameters
expression-1 The first parameter value to be compared.

expression-2 The second parameter value to be compared.

Usage
If the parameters are equal, the first is returned.

See also
♦ “LESSER function [Miscellaneous]” on page 276

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 10.

SELECT GREATER(10, 5) FROM dummy;

UltraLite SQL Function Reference

268 Copyright © 2006, iAnywhere Solutions, Inc.

HEXTOINT function [Data type conversion]

Description
Returns the decimal integer equivalent of a hexadecimal string.

Syntax
HEXTOINT(hexadecimal-string)

Parameters
hexadecimal-string The string to be converted to an integer.

Usage
The HEXTOINT function accepts string literals or variables consisting only of digits and the uppercase or
lowercase letters A-F, with or without a 0x prefix. The following are all valid uses of HEXTOINT:

SELECT HEXTOINT('0xFFFFFFFF');
SELECT HEXTOINT('0x00000100');
SELECT HEXTOINT('100');
SELECT HEXTOINT('0xffffffff80000001');

The HEXTOINT function removes the 0x prefix, if present. If the data exceeds 8 digits, it must represent a
value that can be represented as a signed 32-bit integer value.

The HEXTOINT function returns the platform-independent SQL INTEGER equivalent of the hexadecimal
string. The hexadecimal value represents a negative integer if the 8th digit from the right is one of the digits
8–9 and the uppercase or lowercase letters A–F and the previous leading digits are all uppercase or lowercase
letter F. The following is not a valid use of HEXTOINT since the argument represents a positive integer
value that cannot be represented as a signed 32-bit integer:

SELECT HEXTOINT('0x0080000001');

See also
♦ “INTTOHEX function [Data type conversion]” on page 273

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 420.

SELECT HEXTOINT('1A4');

HOUR function [Date and time]

Description
Returns the hour component of a datetime.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 269

Syntax
HOUR(datetime-expression)

Parameters
datetime-expression The datetime.

Usage
The value returned is a number from 0 to 23 corresponding to the datetime hour.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 21:

SELECT HOUR('1998-07-09 21:12:13');

HOURS function [Date and time]

Description
A function that evaluates hours. For specific details, see this function's usage.

Syntax 1: integer
HOURS ([datetime-expression,] datetime-expression)

Syntax 2: timestamp
HOURS (datetime-expression, integer-expression)

Parameters
datetime-expression A date and time.

integer-expression The number of hours to be added to the datetime-expression. If integer-expression
is negative, the appropriate number of hours is subtracted from the datetime. If you supply an integer
expression, the datetime-expression must be explicitly cast as a DATETIME data type.

F For information on casting data types, see “CAST function [Data type conversion]” on page 247.

Usage
The behavior of this function can vary depending on what you supply:

♦ If you give a single date, this function returns the number of hours since 0000-02-29.

Note
0000-02-29 is not meant to imply an actual date; it is the date used by the date algorithm.

UltraLite SQL Function Reference

270 Copyright © 2006, iAnywhere Solutions, Inc.

♦ If you give two timestamps, this function returns the integer number of hours between them. Instead,
use the DATEDIFF function.

♦ If you give a date and an integer, this function adds the integer number of hours to the specified timestamp.
Instead, use the DATEADD function.

See also
♦ “DATEDIFF function [Date and time]” on page 258
♦ “DATEADD function [Date and time]” on page 257

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statements return the value 4, signifying that the second timestamp is four hours after the first.
It is recommended that you use the second example (DATEDIFF).

SELECT HOURS('1999-07-13 06:07:12',
 '1999-07-13 10:07:12');
SELECT DATEDIFF(hour,
 '1999-07-13 06:07:12',
 '1999-07-13 10:07:12');

The following statement returns the value 17517342.

SELECT HOURS('1998-07-13 06:07:12');

The following statements return the datetime 1999-05-13 02:05:07.000. It is recommended that you use the
second example (DATEADD).

SELECT HOURS(
 CAST('1999-05-12 21:05:07' AS DATETIME), 5);
SELECT DATEADD(hour, 5, '1999-05-12 21:05:07');

IFNULL function [Miscellaneous]

Description
Returns the first non NULL expression.

Syntax
IFNULL(expression-1, expression-2 [, expression-3])

Parameters
expression-1 The expression to be evaluated. Its value determines whether expression-2 or
expression-3 is returned.

expression-2 The return value if expression-1 is NULL.

expression-3 The return value if expression-1 is not NULL.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 271

Usage
If the first expression is the NULL value, then the value of the second expression is returned. If the first
expression is not NULL, the value of the third expression is returned. If the first expression is not NULL
and there is no third expression, NULL is returned.

Standards and compatibility
♦ SQL/2003 Transact-SQL extension.

Example
The following statement returns the value –66.

SELECT IFNULL(NULL, -66);

The following statement returns NULL, because the first expression is not NULL and there is no third
expression.

SELECT IFNULL(-66, -66);

INSERTSTR function [String]

Description
Inserts a string into another string at a specified position.

Syntax
INSERTSTR(integer-expression, string-expression-1, string-expression-2)

Parameters
integer-expression The position after which the string is to be inserted. Use zero to insert a string at the
beginning.

string-expression-1 The string into which the other string is to be inserted.

string-expression-2 The string to be inserted.

Usage
See also

♦ “STUFF function [String]” on page 306
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value backoffice.

SELECT INSERTSTR(0, 'office ', 'back');

UltraLite SQL Function Reference

272 Copyright © 2006, iAnywhere Solutions, Inc.

INTTOHEX function [Data type conversion]

Description
Returns a string containing the hexadecimal equivalent of an integer.

Syntax
INTTOHEX(integer-expression)

Parameters
integer-expression The integer to be converted to hexadecimal.

See also
♦ “HEXTOINT function [Data type conversion]” on page 269

Standards and compatibility
♦ SQL/2003 Transact-SQL extension.

Example
The following statement returns the value 0000009c.

SELECT INTTOHEX(156);

ISDATE function [Data type conversion]

Description
Tests if a string argument can be converted to a date.

Syntax
ISDATE(string)

Parameters
string The string to be analyzed to determine if the string represents a valid date.

Usage
If a conversion is possible, the function returns 1; otherwise, 0 is returned. If the argument is NULL, 0 is
returned.

Standards and compatibility
♦ SQL/2003 Vendor extension.

ISNULL function [Miscellaneous]

Description
Returns the first non-NULL expression from a list. This function is identical to the COALESCE function.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 273

Syntax
ISNULL(expression, expression, …])

Parameters
expression An expression to be tested against NULL.

At least two expressions must be passed into the function.

See also
♦ “COALESCE function [Miscellaneous]” on page 251

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value –66.

SELECT ISNULL(NULL ,-66, 55, 45, NULL, 16);

LCASE function [String]

Description
Converts all characters in a string to lowercase. This function is identical the LOWER function.

Syntax
LCASE(string-expression)

Parameters
string-expression The string to be converted to lowercase.

See also
♦ “LOWER function [String]” on page 280
♦ “UCASE function [String]” on page 311
♦ “UPPER function [String]” on page 312
♦ “String functions” on page 239

Usage
The LCASE function is similar to the LOWER function.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value chocolate.

SELECT LCASE('ChoCOlatE');

UltraLite SQL Function Reference

274 Copyright © 2006, iAnywhere Solutions, Inc.

LEFT function [String]

Description
Returns a number of characters from the beginning of a string.

Syntax
LEFT(string-expression, integer-expression)

Parameters
string-expression The string.

integer-expression The number of characters to return.

Usage
If the string contains multibyte characters, and the proper collation is being used, the number of bytes returned
may be greater than the specified number of characters.

You can specify an integer-expression that is larger than the value in the column. In this case, the entire
value is returned.

Whenever possible, if the input string uses character length semantics the return value will be described in
terms of character length semantics.

See also
♦ “RIGHT function [String]” on page 295
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the first 5 characters of each Surname value in the Customers table.

SELECT LEFT(Surname, 5) FROM Customers;

LENGTH function [String]

Description
Returns the number of characters in the specified string.

Syntax
LENGTH(string-expression)

Parameters
string-expression The string.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 275

Usage
Use this function to determine the length of a string. For example, specify a column name for string-
expression to determine the length of values in the column.

If the string contains multibyte characters, and the proper collation is being used, LENGTH returns the
number of characters, not the number of bytes. If the string is of data type BINARY, the LENGTH function
behaves as the BYTE_LENGTH function.

Note
You can use the LENGTH function and the CHAR_LENGTH function interchangeably for CHAR,
VARCHAR, and LONG VARCHARdata types. However, you must use the LENGTH function for BINARY
and bit array data types.

See also
♦ “BYTE_LENGTH function [String]” on page 246
♦ “International Languages and Character Sets” [SQL Anywhere Server - Database Administration]
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 9.

SELECT LENGTH('chocolate');

LESSER function [Miscellaneous]

Description
Returns the lesser of two parameter values.

Syntax
LESSER(expression-1, expression-2)

Parameters
expression-1 The first parameter value to be compared.

expression-2 The second parameter value to be compared.

Usage
If the parameters are equal, the first value is returned.

See also
♦ “GREATER function [Miscellaneous]” on page 268

UltraLite SQL Function Reference

276 Copyright © 2006, iAnywhere Solutions, Inc.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 5.

SELECT LESSER(10,5) FROM dummy;

LIST function [Aggregate]

Description
Returns a comma-delimited list of values.

Syntax
LIST(
{ string-expression | DISTINCT string-expression }
[, delimiter-string])

Parameters
string-expression A string, usually a column name. For each row, the expression's value is added to the
comma-separated list.

DISTINCT string-expression An expression; for example, the name of a column that you are using in
the query. For each unique value of that column, the value is added to the comma-separated list.

delimiter-string A delimiter string for the list items. The default setting is a comma. There is no delimiter
if a value of NULL or an empty string is supplied. The delimiter-string must be a constant.

Usage
NULL values are not added to the list. LIST (X) returns the concatenation (with delimiters) of all the non-
NULL values of X for each row in the group. If there does not exist at least one row in the group with a
definite X-value, then LIST(X) returns the empty string.

A LIST function cannot be used as a window function, but it can be used as input to a window function.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Examples
The following statement returns all street addresses from the Employees table.

SELECT LIST(Street) FROM Employees;

Sorted IDs '1751,591,1062,1191,992,888,318,184,1576,207,1684,1643,1607,1740,409,1507'

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 277

LOCATE function [String]

Description
Returns the position of one string within another.

Syntax
LOCATE(string-expression-1, string-expression-2 [, integer-expression])

Parameters
string-expression-1 The string to be searched.

string-expression-2 The string to be searched for.

integer-expression The character position in the string to begin the search. The first character is position
1. If the starting offset is negative, the locate function returns the last matching string offset rather than the
first. A negative offset indicates how much of the end of the string is to be excluded from the search. The
number of bytes excluded is calculated as (–1 * offset) –1.

Usage
If integer-expression is specified, the search starts at that offset into the string.

The first string can be a long string (longer than 255 bytes), but the second is limited to 255 bytes. If a long
string is given as the second argument, the function returns a NULL value. If the string is not found, 0 is
returned. Searching for a zero-length string will return 1. If any of the arguments are NULL, the result is
NULL.

If multibyte characters are used, with the appropriate collation, then the starting position and the return value
may be different from the byte positions.

See also
♦ “String functions” on page 239
♦ “CHARINDEX function [String]” on page 249

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 8.

SELECT LOCATE(
 'office party this week – rsvp as soon as possible',
 'party',
 2);

LOG function [Numeric]

Description
Returns the natural logarithm of a number.

UltraLite SQL Function Reference

278 Copyright © 2006, iAnywhere Solutions, Inc.

Syntax
LOG(numeric-expression)

Parameters
numeric-expression The number.

See also
♦ “LOG10 function [Numeric]” on page 279

Usage
The argument is an expression that returns the value of any built-in numeric data type.

This function converts its argument to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result. If the parameter is NULL, the result is NULL.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the natural logarithm of 50.

SELECT LOG(50);

LOG10 function [Numeric]

Description
Returns the base 10 logarithm of a number.

Syntax
LOG10(numeric-expression)

Parameters
numeric-expression The number.

Usage
The argument is an expression that returns the value of any built-in numeric data type.

This function converts its argument to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result. If the parameter is NULL, the result is NULL.

See also
♦ “LOG function [Numeric]” on page 278

Standards and compatibility
♦ SQL/2003 Vendor extension.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 279

Example
The following statement returns the base 10 logarithm for 50.

SELECT LOG10(50);

LOWER function [String]

Description
Converts all characters in a string to lowercase. This function is identical the LCASE function.

Syntax
LOWER(string-expression)

Parameters
string-expression The string to be converted.

Usage
The LCASE function is identical to the LOWER function.

See also
♦ “LCASE function [String]” on page 274
♦ “UCASE function [String]” on page 311
♦ “UPPER function [String]” on page 312
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Core feature.

Example
The following statement returns the value chocolate.

SELECT LOWER('chOCOLate');

LTRIM function [String]

Description
Trims leading blanks from a string.

Syntax
LTRIM(string-expression)

Parameters
string-expression The string to be trimmed.

UltraLite SQL Function Reference

280 Copyright © 2006, iAnywhere Solutions, Inc.

Usage
The actual length of the result is the length of the expression minus the number of characters removed. If all
of the characters are removed, the result is an empty string.

If the parameter can be null, the result can be null.

If the parameter is null, the result is the null value.

See also
♦ “RTRIM function [String]” on page 297
♦ “TRIM function [String]” on page 310
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

The TRIM specifications defined by the SQL/2003 standard (LEADING and TRAILING) are supplied
by the SQL Anywhere LTRIM and RTRIM functions respectively.

Example
The following statement returns the value Test Message with all leading blanks removed.

SELECT LTRIM(' Test Message');

MAX function [Aggregate]

Description
Returns the maximum expression value found in each group of rows.

Syntax 1
MAX(expression | DISTINCT expression)

Parameters
expression The expression for which the maximum value is to be calculated. This is commonly a column
name.

DISTINCT expression Returns the same as MAX(expression), and is included for completeness.

Usage
Rows where expression is NULL are ignored. Returns NULL for a group containing no rows.

See also
♦ “MIN function [Aggregate]” on page 282

Standards and compatibility
♦ SQL/2003 Core feature. Syntax 2 is feature T611.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 281

Example
The following statement returns the value 138948.000, representing the maximum salary in the Employees
table.

SELECT MAX(Salary)
FROM Employees;

MIN function [Aggregate]

Description
Returns the minimum expression value found in each group of rows.

Syntax 1
MIN(expression | DISTINCT expression)

Parameters
expression The expression for which the minimum value is to be calculated. This is commonly a column
name.

DISTINCT expression Returns the same as MIN(expression), and is included for completeness.

Usage
Rows where expression is NULL are ignored. Returns NULL for a group containing no rows.

See also
♦ “MAX function [Aggregate]” on page 281

Standards and compatibility
♦ SQL/2003 Core feature. Syntax 2 is feature T611.

Example
The following statement returns the value 24903.000, representing the minimum salary in the Employees
table.

SELECT MIN(Salary)
FROM Employees;

MINUTE function [Date and time]

Description
Returns a minute component of a datetime value.

Syntax
MINUTE(datetime-expression)

UltraLite SQL Function Reference

282 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
datetime-expression The datetime value.

Usage
The value returned is a number from number from 0 to 59 corresponding to the datetime minute.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 22.

SELECT MINUTE('1998-07-13 12:22:34');

MINUTES function [Date and time]

Description
The behavior of this function can vary depending on what you supply:

♦ If you give a single date, this function returns the number of minutes since 0000-02-29.

Note
0000-02-29 is not meant to imply an actual date; it is the date used by the date algorithm.

♦ If you give two timestamps, this function returns the integer number of minutes between them. Instead,
use the DATEDIFF function.

♦ If you give a date and an integer, this function adds the integer number of minutes to the specified
timestamp. Instead, use the DATEADD function.

Syntax 1: integer
MINUTES([datetime-expression,] datetime-expression)

Syntax 2: timestamp
MINUTES(datetime-expression, integer-expression)

Parameters
datetime-expression A date and time.

integer-expression The number of minutes to be added to the datetime-expression. If integer-
expression is negative, the appropriate number of minutes is subtracted from the datetime value. If you
supply an integer expression, the datetime-expression must be explicitly cast as a DATETIME data type.

Usage
Since this function returns an integer, overflow can occur when syntax 1 is used with timestamps greater
than or equal to 4083-03-23 02:08:00.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 283

See also
♦ “CAST function [Data type conversion]” on page 247

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statements return the value 240, signifying that the second timestamp is 240 seconds after the
first. It is recommended that you use the second example (DATEDIFF).

SELECT MINUTES('1999-07-13 06:07:12',
 '1999-07-13 10:07:12');
SELECT DATEDIFF(minute,
 '1999-07-13 06:07:12',
 '1999-07-13 10:07:12');

The following statement returns the value 1051040527.

SELECT MINUTES('1998-07-13 06:07:12');

The following statements return the timestamp 1999-05-12 21:10:07.000. It is recommended that you use
the second example (DATEADD).

SELECT MINUTES(CAST('1999-05-12 21:05:07'
AS DATETIME), 5);
SELECT DATEADD(minute, 5, '1999-05-12 21:05:07');

MOD function [Numeric]

Description
Returns the remainder when one whole number is divided by another.

Syntax
MOD(dividend, divisor)

Parameters
dividend The dividend, or numerator of the division.

divisor The divisor, or denominator of the division.

Usage
Division involving a negative dividend gives a negative or zero result. The sign of the divisor has no effect.

See also
♦ “REMAINDER function [Numeric]” on page 292

UltraLite SQL Function Reference

284 Copyright © 2006, iAnywhere Solutions, Inc.

Standards and compatibility
♦ SQL/2003 SQL foundation feature outside of core SQL.

Example
The following statement returns the value 2.

SELECT MOD(5, 3);

MONTH function [Date and time]

Description
Returns a month of the given date.

Syntax
MONTH(date-expression)

Parameters
date-expression A datetime value.

Usage
The value returned is a number from number from 1 to 12 corresponding to the datetime month.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 7.

SELECT MONTH('1998-07-13');

MONTHNAME function [Date and time]

Description
Returns the name of the month from a date.

Syntax
MONTHNAME(date-expression)

Parameters
date-expression The datetime value.

Usage
The MONTHNAME function returns a string, even if the result is numeric, such as 2 for the month of
February.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 285

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value September.

SELECT MONTHNAME('1998-09-05');

MONTHS function [Date and time]

Description
The behavior of this function can vary depending on what you supply:

♦ If you give a single date, this function returns the number of months since 0000-02.

Note
0000-02 is not meant to imply an actual date; it is the date used by the date algorithm.

♦ If you give two timestamps, this function returns the integer number of months between them. Instead,
use the DATEDIFF function.

♦ If you give a date and an integer, this function adds the integer number of minutes to the specified
timestamp. Instead, use the DATEADD function.

Syntax 1: integer
MONTHS([datetime-expression,] datetime-expression)

Syntax 2: timestamp
MONTHS(datetime-expression, integer-expression)

Parameters
datetime-expression A date and time.

integer-expression The number of months to be added to the datetime-expression. If integer-
expression is negative, the appropriate number of months is subtracted from the datetime value. If you supply
an integer-expression, the datetime-expression must be explicitly cast as a datetime data type.

F For information on casting data types, see “CAST function [Data type conversion]” on page 247.

Usage
The value of MONTHS is calculated from the number of first days of the month between the two dates.

Standards and compatibility
♦ SQL/2003 Vendor extension.

UltraLite SQL Function Reference

286 Copyright © 2006, iAnywhere Solutions, Inc.

Example
The following statements return the value 2, signifying that the second date is two months after the first. It
is recommended that you use the second example (DATEDIFF).

SELECT MONTHS('1999-07-13 06:07:12',
 '1999-09-13 10:07:12');
SELECT DATEDIFF(month,
 '1999-07-13 06:07:12',
 '1999-09-13 10:07:12');

The following statement returns the value 23981.

SELECT MONTHS('1998-07-13 06:07:12');

The following statements return the timestamp 1999-10-12 21:05:07.000. It is recommended that you use
the second example (DATEADD).

SELECT MONTHS(CAST('1999-05-12 21:05:07'
AS DATETIME), 5);
SELECT DATEADD(month, 5, '1999-05-12 21:05:07');

NEWID function [Miscellaneous]

Description
Generates a UUID (Universally Unique Identifier) value. A UUID is the same as a GUID (Globally Unique
Identifier).

Syntax
NEWID()

Parameters
There are no parameters associated with the NEWID function.

Usage
The NEWID function generates a unique identifier value. It can be used in a DEFAULT clause for a column.

UUIDs can be used to uniquely identify rows in a table. The values are generated such that a value produced
on one computer will not match that produced on another. Hence, they can also be used as keys in
synchronization and replication environments.

See also
♦ “The NEWID default” [SQL Anywhere Server - SQL Usage]
♦ “STRTOUUID function [String]” on page 305
♦ “UUIDTOSTR function [String]” on page 313

Standards and compatibility
♦ SQL/2003 Vendor extension.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 287

Example
The following statement creates a table named mytab with two columns. Column pk has a unique identifier
data type, and assigns the NEWID function as the default value. Column c1 has an integer data type.

CREATE TABLE mytab(
 pk UNIQUEIDENTIFIER PRIMARY KEY DEFAULT NEWID(),
 c1 INT);

The following statement returns a unique identifier as a string:

SELECT NEWID();

For example, the value returned might be 96603324-6FF6-49DE-BF7D-F44C1C7E6856.

NOW function [Date and time]

Description
Returns the current year, month, day, hour, minute, second, and fraction of a second. The accuracy is limited
by the accuracy of the system clock.

Syntax
NOW(*)

Usage
The information the NOW function returns is equivalent to the information returned by the GETDATE
function and the CURRENT TIMESTAMP special value.

See also
♦ “GETDATE function [Date and time]” on page 267
♦ “CURRENT TIMESTAMP special value” on page 209

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the current date and time.

SELECT NOW(*);

NULLIF function [Miscellaneous]

Description
Provides an abbreviated CASE expression by comparing expressions.

Syntax
NULLIF(expression-1, expression-2)

UltraLite SQL Function Reference

288 Copyright © 2006, iAnywhere Solutions, Inc.

Parameters
expression-1 An expression to be compared.

expression-2 An expression to be compared.

Usage
NULLIF compares the values of the two expressions.

If the first expression equals the second expression, NULLIF returns NULL.

If the first expression does not equal the second expression, or if the second expression is NULL, NULLIF
returns the first expression.

The NULLIF function provides a short way to write some CASE expressions.

See also
♦ “CASE expressions” on page 217

Standards and compatibility
♦ SQL/2003 Core feature.

Example
The following statement returns the value a:

SELECT NULLIF('a', 'b');

The following statement returns NULL.

SELECT NULLIF('a', 'a');

PATINDEX function [String]

Description
Returns an integer representing the starting position of the first occurrence of a pattern in a string.

Syntax
PATINDEX('%pattern%', string_expression)

Parameters
pattern The pattern to be searched for. If the leading percent wildcard is omitted, the PATINDEX function
returns one (1) if the pattern occurs at the beginning of the string, and zero if not.

The pattern for UltraLite uses the following wildcards:

Wildcard Matches

_ (underscore) Any one character

% (percent) Any string of zero or more characters

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 289

Wildcard Matches

[] Any single character in the specified range or set

[^] Any single character not in the specified range or set

string-expression The string to be searched for the pattern.

Usage
The PATINDEX function returns the starting position of the first occurrence of the pattern. If the pattern is
not found, it returns zero (0).

See also
♦ “LOCATE function [String]” on page 278
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 2.

SELECT PATINDEX('%hoco%', 'chocolate');

The following statement returns the value 11.

SELECT PATINDEX('%4_5_', '0a1A 2a3A 4a5A');

PI function [Numeric]

Description
Returns the numeric value PI.

Syntax
PI(*)

Standards and compatibility
♦ SQL/2003 Vendor extension.

Usage
This function returns a DOUBLE value.

Example
The following statement returns the value 3.141592653…

SELECT PI(*);

UltraLite SQL Function Reference

290 Copyright © 2006, iAnywhere Solutions, Inc.

POWER function [Numeric]

Description
Calculates one number raised to the power of another.

Syntax
POWER(numeric-expression-1, numeric-expression-2)

Parameters
numeric-expression-1 The base.

numeric-expression-2 The exponent.

Usage
This function converts its arguments to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result. If any argument is NULL, the result is a NULL value.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 64.

SELECT POWER(2, 6);

QUARTER function [Date and time]

Description
Returns a number indicating the quarter of the year from the supplied date expression.

Syntax
QUARTER(date-expression)

Parameters
date- expression The date.

Usage
The quarters are as follows:

Quarter Period (inclusive)

1 January 1 to March 31

2 April 1 to June 30

3 July 1 to September 30

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 291

Quarter Period (inclusive)

4 October 1 to December 31

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 2.

SELECT QUARTER('1987/05/02');

RADIANS function [Numeric]

Description
Converts a number from degrees to radians.

Syntax
RADIANS(numeric-expression)

Parameters
numeric-expression A number, in degrees. This angle is converted to radians.

Usage
This function converts its argument to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns a value of approximately 0.5236.

SELECT RADIANS(30);

REMAINDER function [Numeric]

Description
Returns the remainder when one whole number is divided by another.

Syntax
REMAINDER(dividend, divisor)

Parameters
dividend The dividend, or numerator of the division.

UltraLite SQL Function Reference

292 Copyright © 2006, iAnywhere Solutions, Inc.

divisor The divisor, or denominator of the division.

Usage
Alternatively, try using the MOD function.

See also
♦ “MOD function [Numeric]” on page 284

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 2.

SELECT REMAINDER(5, 3);

REPEAT function [String]

Description
Concatenates a string a specified number of times.

Syntax
REPEAT(string-expression, integer-expression)

Parameters
string-expression The string to be repeated.

integer-expression The number of times the string is to be repeated. If integer-expression is negative,
an empty string is returned.

Usage
If the actual length of the result string exceeds the maximum for the return type, an error occurs. The result
is truncated to the maximum string size allowed.

Alternatively, try using the REPLICATE function.

See also
♦ “REPLICATE function [String]” on page 295
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value repeatrepeatrepeat.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 293

SELECT REPEAT('repeat', 3);

REPLACE function [String]

Description
Replaces a string with another string, and returns the new results.

Syntax
REPLACE(original-string, search-string, replace-string)

Parameters
If any argument is NULL, the function returns NULL.

original-string The string to be searched. This can be any length.

search-string The string to be searched for and replaced with replace-string. This string is limited to 255
bytes. If search-string is an empty string, the original string is returned unchanged.

replace-string The replacement string, which replaces search-string. This can be any length. If
replacement-string is an empty string, all occurrences of search-string are deleted.

Usage
This function replaces all occurrences.

See also
♦ “SUBSTRING function [String]” on page 307
♦ “CHARINDEX function [String]” on page 249
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value xx.def.xx.ghi.

SELECT REPLACE('abc.def.abc.ghi', 'abc', 'xx');

The following statement generates a result set containing ALTER PROCEDURE statements which, when
executed, would repair stored procedures that reference a table that has been renamed. (To be useful, the
table name must be unique.)

SELECT REPLACE(
 REPLACE(proc_defn, 'OldTableName', 'NewTableName'),
 'CREATE PROCEDURE',
 'ALTER PROCEDURE')
FROM SYS.SYSPROCEDURE
WHERE proc_defn LIKE '%OldTableName%';

Use a separator other than the comma for the LIST function:

UltraLite SQL Function Reference

294 Copyright © 2006, iAnywhere Solutions, Inc.

SELECT REPLACE(LIST(table_id), ',', '--')
FROM SYS.SYSTAB
WHERE table_id <= 5;

REPLICATE function [String]

Description
Concatenates a string a specified number of times.

Syntax
REPLICATE(string-expression, integer-expression)

Parameters
string-expression The string to be repeated.

integer-expression The number of times the string is to be repeated.

Usage
If the actual length of the result string exceeds the maximum for the return type, an error occurs. The result
is truncated to the maximum string size allowed.

Alternatively, try using the REPEAT function.

See also
♦ “REPEAT function [String]” on page 293
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value repeatrepeatrepeat.

SELECT REPLICATE('repeat', 3);

RIGHT function [String]

Description
Returns the rightmost characters of a string.

Syntax
RIGHT(string-expression, integer-expression)

Parameters
string-expression The string to be left-truncated.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 295

integer-expression The number of characters at the end of the string to return.

Usage
If the string contains multibyte characters, and the proper collation is being used, the number of bytes returned
may be greater than the specified number of characters.

You can specify an integer-expression that is larger than the value in the column. In this case, the entire
value is returned.

Whenever possible, if the input string uses character length semantics the return value will be described in
terms of character length semantics.

See also
♦ “LEFT function [String]” on page 275
♦ “International Languages and Character Sets” [SQL Anywhere Server - Database Administration]
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the last 5 characters of each Surname value in the Customers table.

SELECT RIGHT(Surname, 5) FROM Customers;

ROUND function [Numeric]

Description
Rounds the numeric-expression to the specified integer-expression amount of places after the decimal point.

Syntax
ROUND(numeric-expression, integer-expression)

Parameters
numeric-expression The number, passed into the function, to be rounded.

integer-expression A positive integer specifies the number of significant digits to the right of the decimal
point at which to round. A negative expression specifies the number of significant digits to the left of the
decimal point at which to round.

Usage
The result of this function is either numeric or double. When there is a numeric result and the integer integer-
expression is a negative value, the precision is increased by one.

See also
♦ “TRUNCNUM function [Numeric]” on page 311

UltraLite SQL Function Reference

296 Copyright © 2006, iAnywhere Solutions, Inc.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 123.200.

SELECT ROUND(123.234, 1);

RTRIM function [String]

Description
Returns a string with trailing blanks removed.

Syntax
RTRIM(string-expression)

Parameters
string-expression The string to be trimmed.

Usage
The actual length of the result is the length of the expression minus the number of characters removed. If all
of the characters are removed, the result is an empty string.

If the argument is null, the result is the null value.

See also
♦ “TRIM function [String]” on page 310
♦ “LTRIM function [String]” on page 280
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

The TRIM specifications defined by the SQL/2003 standard (LEADING and TRAILING) are supplied
by the SQL Anywhere LTRIM and RTRIM functions respectively.

Example
The following statement returns the string Test Message, with all trailing blanks removed.

SELECT RTRIM('Test Message ');

SECOND function [Date and time]

Description
Returns a second of the given date.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 297

Syntax
SECOND(datetime-expression)

Parameters
datetime-expression The datetime value.

Usage
Returns a number from 0 to 59 corresponding to the second component of the given datetime value.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 25.

SELECT SECOND('1998-07-13 21:21:25');

SECONDS function [Date and time]

Description
The behavior of this function can vary depending on what you supply:

♦ If you give a single date, this function returns the number of seconds since 0000-02-29.

Note
0000-02-29 is not meant to imply an actual date; it is the date used by the date algorithm.

♦ If you give two timestamps, this function returns the integer number of seconds between them. Instead,
use the DATEDIFF function.

♦ If you give a date and an integer, this function adds the integer number of seconds to the specified
timestamp. Instead, use the DATEADD function.

Syntax 1: integer
SECONDS([datetime-expression,] datetime-expression)

Syntax 2: timestamp
SECONDS(datetime-expression, integer-expression)

Parameters
datetime-expression A date and time.

integer-expression The number of seconds to be added to the datetime-expression. If integer-
expression is negative, the appropriate number of minutes is subtracted from the datetime value. If you
supply an integer expression, the datetime-expression must be explicitly cast as a datetime data type.

UltraLite SQL Function Reference

298 Copyright © 2006, iAnywhere Solutions, Inc.

See also
♦ “CAST function [Data type conversion]” on page 247
♦ “DATEADD function [Date and time]” on page 257
♦ “DATEDIFF function [Date and time]” on page 258

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statements return the value 14400, signifying that the second timestamp is 14400 seconds
after the first.

SELECT SECONDS('1999-07-13 06:07:12',
 '1999-07-13 10:07:12');
SELECT DATEDIFF(second,
 '1999-07-13 06:07:12',
 '1999-07-13 10:07:12');

The following statement returns the value 63062431632.

SELECT SECONDS('1998-07-13 06:07:12');

The following statements return the datetime 1999-05-12 21:05:12.0.

SELECT SECONDS(CAST('1999-05-12 21:05:07'
AS TIMESTAMP), 5);

SELECT DATEADD(second, 5, '1999-05-12 21:05:07');

SHORT_PLAN function [Miscellaneous]

Description
Returns a short description of the UltraLite plan optimization strategy of a SQL statement, as a string. The
description is the same as that returned by the EXPLANATION function.

Syntax
SHORT_PLAN(string-expression)

Usage
For some queries, the execution plan for UltraLite may differ from the plan selected for SQL Anywhere.

Parameters
string-expression The SQL statement, which is commonly a SELECT statement, but can also be an
UPDATE or DELETE statement.

See also
♦ “EXPLANATION function [Miscellaneous]” on page 266

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 299

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement passes a SELECT statement as a string parameter and returns the plan for executing
the query.

SELECT EXPLANATION(
 'SELECT * FROM Departments WHERE DepartmentID > 100');

This information can help with decisions about indexes to add or how to structure your database for better
performance.

In Interactive SQL, you can view the plan for any SQL statement on the Plan tab in the Results pane.

SIGN function [Numeric]

Description
Returns the sign of a number.

Syntax
SIGN(numeric-expression)

Parameters
numeric-expression The number for which the sign is to be returned.

Usage
For negative numbers, the SIGN function returns -1.

For zero, the SIGN function returns 0.

For positive numbers, the SIGN function returns 1.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value -1

SELECT SIGN(-550);

SIMILAR function [String]

Description
Returns a number indicating the similarity between two strings.

UltraLite SQL Function Reference

300 Copyright © 2006, iAnywhere Solutions, Inc.

Syntax
SIMILAR(string-expression-1, string-expression-2)

Parameters
string-expression-1 The first string to be compared.

string-expression-2 The second string to be compared.

Usage
The function returns an integer between 0 and 100 representing the similarity between the two strings. The
result can be interpreted as the percentage of characters matched between the two strings. A value of 100
indicates that the two strings are identical.

This function can be used to correct a list of names (such as customers). Some customers may have been
added to the list more than once with slightly different names. Join the table to itself and produce a report
of all similarities greater than 90 percent, but less than 100 percent.

The calculation performed for the SIMILAR function is more complex than just the number of characters
that match.

See also
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 75, indicating that the two values are 75% similar.

SELECT SIMILAR('toast', 'coast');

SIN function [Numeric]

Description
Returns the sine of a number.

Syntax
SIN(numeric-expression)

Parameters
numeric-expression The angle, in radians.

Usage
The SIN function returns the sine of the argument, where the argument is an angle expressed in radians. The
SIN and ASIN functions are inverse operations.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 301

This function converts its argument to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result.

See also
♦ “ASIN function [Numeric]” on page 243
♦ “COS function [Numeric]” on page 254
♦ “COT function [Numeric]” on page 255
♦ “TAN function [Numeric]” on page 309

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the SIN value of 0.52.

SELECT SIN(0.52);

SOUNDEX function [String]

Description
Returns a number representing the sound of a string.

Syntax
SOUNDEX(string-expression)

Parameters
string-expression The string.

Usage
The SOUNDEX function value for a string is based on the first letter and the next three consonants other
than H, Y, and W. Vowels in string-expression are ignored unless they are the first letter of the string. Doubled
letters are counted as one letter. For example, the word apples is based on the letters A, P, L, and S.

Multibyte characters are ignored by the SOUNDEX function.

Although it is not perfect, the SOUNDEX function normally returns the same number for words that sound
similar and that start with the same letter.

The SOUNDEX function works best with English words. It is less useful for other languages.

See also
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

UltraLite SQL Function Reference

302 Copyright © 2006, iAnywhere Solutions, Inc.

Example
The following statement returns two identical numbers, 3827, representing the sound of each name.

SELECT SOUNDEX('Smith'), SOUNDEX('Smythe');

SPACE function [String]

Description
Returns a specified number of spaces.

Syntax
SPACE(integer-expression)

Parameters
integer-expression The number of spaces to return.

Usage
If integer-expression is negative, a null string is returned.

See also
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns a string containing 10 spaces.

SELECT SPACE(10);

SQRT function [Numeric]

Description
Returns the square root of a number.

Syntax
SQRT(numeric-expression)

Parameters
numeric-expression The number for which the square root is to be calculated.

Usage
This function converts its argument to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 303

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 3.

SELECT SQRT(9);

STR function [String]

Description
Returns the string equivalent of a number.

Syntax
STR(numeric-expression [, length [, decimal]])

Parameters
numeric-expression Any approximate numeric (float, real, or double precision) expression between –
1E126 and 1E127.

length The number of characters to be returned (including the decimal point, all digits to the right and left
of the decimal point, and blanks). The default is 10.

decimal The number of decimal digits to be returned. The default is 0.

Usage
If the integer portion of the number cannot fit in the length specified, then the result is a string of the specified
length containing all asterisks. For example, the following statement returns ***.

SELECT STR(1234.56, 3);

Note
The maximum length that is supported is 128. Any length that is not between 1 and 128 yields a result of
NULL.

See also
♦ “String functions” on page 239

Example
The following statement returns a string of six spaces followed by 1235, for a total of ten characters.

SELECT STR(1234.56);

The following statement returns the result 1234.6.

SELECT STR(1234.56, 6, 1);

UltraLite SQL Function Reference

304 Copyright © 2006, iAnywhere Solutions, Inc.

Standards and compatibility
♦ SQL/2003 Vendor extension.

STRING function [String]

Description
Concatenates one or more strings into one large string.

Syntax
STRING(string-expression,…)

Parameters
string-expression A string.

If only one argument is supplied, it is converted into a single expression. If more than one argument is
supplied, they are concatenated into a single string.

Usage
Numeric or date parameters are converted to strings before concatenation. The STRING function can also
be used to convert any single expression to a string by supplying that expression as the only parameter.

If all parameters are NULL, STRING returns NULL. If any parameters are non-NULL, then any NULL
parameters are treated as empty strings.

See also
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value testing123.

SELECT STRING('testing', NULL, 123);

STRTOUUID function [String]

Description
Converts a string value to a unique identifier (UUID or GUID) value.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 305

Not needed in newer databases
In databases created before version 9.0.2, the STRTOUUID and UUIDTOSTR functions were needed to
convert between binary and string representations of UUID values.
In databases created using version 9.0.2 or later, the UNIQUEIDENTIFIER data type was changed to a
native data type. You do not need to use STRTOUUID and UUIDTOSTR functions with these versions.
For more information, see “Data types in UltraLite” on page 212.

Syntax
STRTOUUID(string-expression)

Parameters
string-expression A string in the format xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx .

Usage
Converts a string in the format xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx , where x is a hexadecimal digit, to
a unique identifier value.

This function is useful for inserting UUID values into a database.

See also
♦ “UUIDTOSTR function [String]” on page 313
♦ “NEWID function [Miscellaneous]” on page 287
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
CREATE TABLE T1 (
 pk UNIQUEIDENTIFIER PRIMARY KEY, c1 INT);
INSERT INTO T1 (pk, c1)
VALUES (STRTOUUID('12345678-1234-5678-9012-123456789012'), 1);

STUFF function [String]

Description
Deletes a number of characters from one string and replaces them with another string.

Syntax
STUFF(string-expression-1, start, length, string-expression-2)

Parameters
string-expression-1 The string to be modified by the STUFF function.

start The character position at which to begin deleting characters. The first character in the string is position
1.

UltraLite SQL Function Reference

306 Copyright © 2006, iAnywhere Solutions, Inc.

length The number of characters to delete.

string-expression-2 The string to be inserted. To delete a portion of a string using the STUFF function,
use a replacement string of NULL.

Usage
See also

♦ “INSERTSTR function [String]” on page 272
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value chocolate pie.

SELECT STUFF('chocolate cake', 11, 4, 'pie');

SUBSTRING function [String]

Description
Returns a substring of a string.

Syntax
{ SUBSTRING | SUBSTR } (string-expression, start [, length])

Parameters
string-expression The string from which a substring is to be returned.

start The start position of the substring to return, in characters.

length The length of the substring to return, in characters. If length is specified, the substring is restricted
to that length.

Usage
In UltraLite, the database does not have an ansi_substring option. Nonetheless, the SUBSTR function
behaves as if ansi_substring is set to on by default. In other words, the function's behavior corresponds to
ANSI/ISO SQL/2003 behavior:

♦ Start value The first character in the string is at position 1. A negative or zero start offset is treated
as if the string were padded on the left with non-characters.

♦ Length value A positive length specifies that the substring ends length characters to the right of the
starting position.

A negative length returns an error.

If string-expression is of binary data type, the SUBSTRING function behaves as BYTE_SUBSTR.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 307

It is recommended that you avoid using non-positive start offsets or negative lengths with the SUBSTRING
function. Where possible, use the LEFT or RIGHT functions instead.

Whenever possible, if the input string uses character length semantics the return value is described in terms
of character length semantics.

See also
♦ “BYTE_SUBSTR function [String]” on page 246
♦ “LEFT function [String]” on page 275
♦ “RIGHT function [String]” on page 295
♦ “CHARINDEX function [String]” on page 249
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Core feature.

Example
The following table shows the values returned by the SUBSTRING function when used in a SELECT
statement, with the ansi_substring option set to On and Off.

Example Result with ansi_sub-
string set to On

Result with ansi_sub-
string set to Off

SUBSTRING('front yard', 1, 4) fron fron

SUBSTRING('back yard', 6, 4) yard yard

SUBSTR('abcdefgh', 0, -2) Returns an error gh

SUBSTR('abcdefgh', -2, 2) Returns an empty string gh

SUBSTR('abcdefgh', 2, -2) Returns an error ab

SUBSTR('abcdefgh', 2, -4) Returns an error ab

SUBSTR('abcdefgh', 2, -1) Returns an error b

SUM function [Aggregate]

Description
Returns the total of the specified expression for each group of rows.

Syntax 1
SUM(expression | DISTINCT expression)

Parameters
expression The object to be summed. This is commonly a column name.

UltraLite SQL Function Reference

308 Copyright © 2006, iAnywhere Solutions, Inc.

DISTINCT expression Computes the sum of the unique values of expression in the input.

Usage
Rows where the specified expression is NULL are not included.

Returns NULL for a group containing no rows.

See also
♦ “COUNT function [Aggregate]” on page 255
♦ “AVG function [Aggregate]” on page 245

Standards and compatibility
♦ SQL/2003 Core feature. Syntax 2 is T611.

Example
The following statement returns the value 3749146.740.

SELECT SUM(Salary)
FROM Employees;

TAN function [Numeric]

Description
Returns the tangent of a number.

Syntax
TAN(numeric-expression)

Parameters
numeric-expression An angle, in radians.

Usage
The ATAN and TAN functions are inverse operations.

This function converts its argument to DOUBLE, performs the computation in double-precision floating
point, and returns a DOUBLE as the result.

See also
♦ “COS function [Numeric]” on page 254
♦ “SIN function [Numeric]” on page 301

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value of the tan of 0.52.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 309

SELECT TAN(0.52);

TODAY function [Date and time]

Description
Returns the current date.

Syntax
TODAY(*)

Usage
Use this syntax in place of the historical CURRENT DATE function.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statements return the current day according to the system clock.

SELECT TODAY(*) ;
SELECT CURRENT DATE

TRIM function [String]

Description
Removes leading and trailing blanks from a string.

Syntax
TRIM(string-expression)

Parameters
string-expression The string to be trimmed.

Usage
See also

♦ “LTRIM function [String]” on page 280
♦ “RTRIM function [String]” on page 297
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 The TRIM function is a SQL/2003 core feature.

SQL Anywhere does not support the additional parameters trim specification and trim character, as
defined in SQL/2003. The SQL Anywhere implementation of TRIM corresponds to a TRIM specification
of BOTH.

UltraLite SQL Function Reference

310 Copyright © 2006, iAnywhere Solutions, Inc.

For the other TRIM specifications defined by the SQL/2003 standard (LEADING and TRAILING), SQL
Anywhere supplies the LTRIM and RTRIM functions respectively.

Example
The following statement returns the value chocolate with no leading or trailing blanks.

SELECT TRIM(' chocolate ');

TRUNCNUM function [Numeric]

Description
Truncates a number at a specified number of places after the decimal point.

Syntax
{ TRUNCNUM | "TRUNCATE" }(numeric-expression, integer-expression)

Parameters
numeric-expression The number to be truncated.

integer-expression A positive integer specifies the number of significant digits to the right of the decimal
point at which to round. A negative expression specifies the number of significant digits to the left of the
decimal point at which to round.

Usage
If any parameter is NULL, the result is NULL.

See also
♦ “ROUND function [Numeric]” on page 296

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 600.

SELECT TRUNCNUM(655, -2);

The following statement: returns the value 655.340.

SELECT TRUNCNUM(655.348, 2);

UCASE function [String]

Description
Converts all characters in a string to uppercase. This function is identical the UPPER function.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 311

Syntax
UCASE(string-expression)

Parameters
string-expression The string to be converted to uppercase.

Usage
The UCASE function is similar to the UPPER function.

See also
♦ “UPPER function [String]” on page 312
♦ “LCASE function [String]” on page 274
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value CHOCOLATE.

SELECT UCASE('ChocoLate');

UPPER function [String]

Description
Converts all characters in a string to uppercase. This function is identical the UCASE function.

Syntax
UPPER(string-expression)

Parameters
string-expression The string to be converted to uppercase.

Usage
The UCASE function is similar to the UPPER function.

See also
♦ “UCASE function [String]” on page 311
♦ “LCASE function [String]” on page 274
♦ “LOWER function [String]” on page 280
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

UltraLite SQL Function Reference

312 Copyright © 2006, iAnywhere Solutions, Inc.

Example
The following statement returns the value CHOCOLATE.

SELECT UPPER('ChocoLate');

UUIDTOSTR function [String]

Description
Converts a unique identifier value (UUID, also known as GUID) to a string value.

Not needed in newer databases
In databases created before version 9.0.2, the STRTOUUID and UUIDTOSTR functions were needed to
convert between binary and string representations of UUID values.
In databases created using version 9.0.2 or later, the UNIQUEIDENTIFIER data type was changed to a
native data type. You do not need to use STRTOUUID and UUIDTOSTR functions with these versions.
For more information, see “Data types in UltraLite” on page 212.

Syntax
UUIDTOSTR(uuid-expression)

Parameters
uuid-expression A unique identifier value.

Usage
Converts a unique identifier to a string value in the format xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx, where x
is a hexadecimal digit. If the binary value is not a valid uniqueidentifier, NULL is returned.

This function is useful if you want to view a UUID value.

See also
♦ “NEWID function [Miscellaneous]” on page 287
♦ “STRTOUUID function [String]” on page 305
♦ “String functions” on page 239

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement creates a table mytab with two columns. Column pk has a unique identifier data
type, and column c1 has an integer data type. It then inserts two rows with the values 1 and 2 respectively
into column c1.

CREATE TABLE mytab(
 pk UNIQUEIDENTIFIER PRIMARY KEY DEFAULT NEWID(),
 c1 INT);
INSERT INTO mytab(c1) values (1);
INSERT INTO mytab(c1) values (2);

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 313

Executing the following SELECT statement returns all of the data in the newly created table.

SELECT * FROM mytab;

You will see a two-column, two-row table. The value displayed for column pk will be binary values.

To convert the unique identifier values into a readable format, execute the following command:

SELECT UUIDTOSTR(pk), c1 FROM mytab;

The UUIDTOSTR function is not needed for databases created with version 9.0.2 or later.

WEEKS function [Date and time]

Description
Given two dates, this function returns the integer number of weeks between them. It is recommended that
you use the “DATEDIFF function [Date and time]” on page 258 instead for this purpose.

Given a single date, this function returns the number of weeks since 0000-02-29.

Given one date and an integer, it adds the integer number of weeks to the specified date. It is recommended
that you use the “DATEADD function [Date and time]” on page 257 instead for this purpose.

Syntax 1 returns an integer. Syntax 2 returns a timestamp.

Syntax 1
WEEKS([datetime-expression,] datetime-expression)

Syntax 2
WEEKS(datetime-expression, integer-expression)

Parameters
datetime-expression A date and time.

integer-expression The number of weeks to be added to the datetime-expression. If integer-
expression is negative, the appropriate number of weeks is subtracted from the datetime value. If you supply
an integer-expression, the datetime-expression must be explicitly cast as a datetime data type.

F For information on casting data types, see “CAST function [Data type conversion]” on page 247.

Usage
The difference of two dates in weeks is the number of Sundays between the two dates.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statements return the value 8, signifying that the second date is eight weeks after the first. It
is recommended that you use the second form (DATEDIFF).

UltraLite SQL Function Reference

314 Copyright © 2006, iAnywhere Solutions, Inc.

SELECT WEEKS('1999-07-13 06:07:12',
 '1999-09-13 10:07:12');
SELECT DATEDIFF(week,
 '1999-07-13 06:07:12',
 '1999-09-13 10:07:12');

The following statement returns the value 104270.

SELECT WEEKS('1998-07-13 06:07:12');

The following statements return the timestamp 1999-06-16 21:05:07.0. It is recommended that you use the
second form (DATEADD).

SELECT WEEKS(CAST('1999-05-12 21:05:07'
AS TIMESTAMP), 5);
SELECT DATEADD(week, 5, '1999-05-12 21:05:07');

YEAR function [Date and time]

Description
Takes a timestamp value as a parameter and returns the year specified by that timestamp.

Syntax
YEAR(datetime-expression)

Parameters
datetime-expression A date, time, or timestamp.

Usage
The value is returned as a short value.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following example returns the value 2001.

SELECT YEAR('2001-09-12');

YEARS function [Date and time]

Description
Given two dates, this function returns the integer number of years between them. It is recommended that
you use the “DATEDIFF function [Date and time]” on page 258 instead for this purpose.

Given one date, it returns the year. It is recommended that you use the “DATEPART function [Date and
time]” on page 260 instead for this purpose.

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 315

Given one date and an integer, it adds the integer number of years to the specified date. It is recommended
that you use the “DATEADD function [Date and time]” on page 257 instead for this purpose.

Syntax 1
YEARS([datetime-expression,] datetime-expression)

Syntax 2
YEARS(datetime-expression, integer-expression)

Parameters
datetime-expression A date and time.

integer-expression The number of years to be added to the datetime-expression. If integer-expression
is negative, the appropriate number of years is subtracted from the datetime value. If you supply an integer-
expression, the datetime-expression must be explicitly cast as a datetime data type.

F For information on casting data types, see “CAST function [Data type conversion]” on page 247.

Usage
The value of YEARS is calculated from the number of first days of the year between the two dates.

Syntax 1 returns an integer. Syntax 2 returns a timestamp.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statements both return –4.

SELECT YEARS('1998-07-13 06:07:12',
 '1994-03-13 08:07:13');
SELECT DATEDIFF(year,
 '1998-07-13 06:07:12',
 '1994-03-13 08:07:13');

The following statements return 1998.

SELECT YEARS('1998-07-13 06:07:12')
SELECT DATEPART(year, '1998-07-13 06:07:12');

The following statements return the given date advanced 300 years.

SELECT YEARS(CAST('1998-07-13 06:07:12' AS TIMESTAMP), 300)
SELECT DATEADD(year, 300, '1998-07-13 06:07:12');

YMD function [Date and time]

Description
Returns a date value corresponding to the given year, month, and day of the month. Values are small integers
from -32768 to 32767.

UltraLite SQL Function Reference

316 Copyright © 2006, iAnywhere Solutions, Inc.

Syntax
YMD(
integer-expression1,
integer-expression2,
integer-expression3)

Parameters
integer-expression1 The year.

integer-expression2 The number of the month. If the month is outside the range 1–12, the year is adjusted
accordingly.

integer-expression3 The day number. The day can be any integer; the date is adjusted accordingly.

Standards and compatibility
♦ SQL/2003 Vendor extension.

Example
The following statement returns the value 1998-06-12.

SELECT YMD(1998, 06, 12);

If the values are outside their normal range, the date will adjust accordingly. For example, the following
statement returns the value 2000-03-01.

SELECT YMD(1999, 15, 1);

Alphabetical list of functions

Copyright © 2006, iAnywhere Solutions, Inc. 317

CHAPTER 12

UltraLite SQL Statement Reference

Contents
UltraLite SQL statements overview ... 320
ALTER TABLE statement .. 322
ALTER PUBLICATION statement ... 326
COMMIT statement ... 327
CREATE INDEX statement ... 328
CREATE PUBLICATION statement .. 330
CREATE TABLE statement ... 331
DELETE statement .. 336
DROP INDEX statement ... 337
DROP PUBLICATION statement .. 338
DROP TABLE statement ... 339
INSERT statement ... 340
ROLLBACK statement ... 341
SELECT statement .. 342
START SYNCHRONIZATION DELETE statement ... 347
STOP SYNCHRONIZATION DELETE statement ... 348
TRUNCATE TABLE statement .. 349
UNION operation ... 351
UPDATE statement ... 352

About this chapter
This chapter provides a complete reference for the SQL language used by UltraLite. Specifically, it describes
the syntax and conventions required in an UltraLite context.

Copyright © 2006, iAnywhere Solutions, Inc. 319

UltraLite SQL statements overview
The SQL statements in this chapter are supported by UltraLite SQL. They are a subset of the statement
supported by SQL Anywhere databases.

Before you begin
♦ Tables in UltraLite do not support the concept of an owner. As a convenience for existing SQL and for

SQL that is programmatically generated, UltraLite still allows the syntax owner.table-name. However,
the owner is not checked.

♦ UltraLite SQL statements follow the same syntax conventions used by SQL Anywhere statements.
Ensure you understand these conventions and how they are used to represent SQL syntax. See “Syntax
conventions” [SQL Anywhere Server - SQL Reference].

♦ Using UltraLite SQL creates a transaction. A transaction consists of all changes (INSERTs, UPDATEs,
and DELETEs) since the last ROLLBACK or COMMIT. For more comprehensive details, see
“Transaction processing, recovery, and backup” on page 19.

These changes can be made permanent by executing a COMMIT. A ROLLBACK statement causes the
changes to be removed. See “COMMIT statement” on page 327 and “ROLLBACK
statement” on page 341.

Statement categories

SQL statements are organized and identified by the initial word in a statement, which is almost always a
verb. This makes the nature of the language into a set of imperative statements (commands) to the database.
In UltraLite, supported SQL statements can be classified as follows:

♦ Data retrieval statements Also known as queries, these statements allow select rows of data
expressions from tables. Data retrieval is achieved with the “SELECT statement” on page 342.

F For more information on supported UltraLite SQL expressions, see “Expressions in
UltraLite” on page 215. For more information on supported UltraLite SQL operators see “Operators in
UltraLite” on page 228.

♦ Data manipulation statements Allow you to change content in the database. Data manipulation
is achieved with the “DELETE statement” on page 336, the“INSERT statement” on page 340, and
the“UPDATE statement” on page 352.

♦ Data definition statements Allow you to define the structure or schema of a database. The schema
can be changed with the “CREATE INDEX statement” on page 328, the “CREATE TABLE
statement” on page 331, the “DROP INDEX statement” on page 337 the “DROP TABLE
statement” on page 339, and even the “ALTER TABLE statement” on page 322 and the “TRUNCATE
TABLE statement” on page 349.

♦ Transaction control statements Allow you to control transactions within your UltraLite
application. Transaction control is achieved with either the “COMMIT statement” on page 327 or the
“ROLLBACK statement” on page 341.

UltraLite SQL Statement Reference

320 Copyright © 2006, iAnywhere Solutions, Inc.

♦ Synchronization management Allow you to temporarily control synchronization with a MobiLink
server. Synchronization management is achieved with the “START SYNCHRONIZATION DELETE
statement” on page 347, “STOP SYNCHRONIZATION DELETE statement” on page 348, the “ALTER
PUBLICATION statement” on page 326, the “CREATE PUBLICATION statement” on page 330, and
the “DROP PUBLICATION statement” on page 338.

UltraLite SQL statements overview

Copyright © 2006, iAnywhere Solutions, Inc. 321

ALTER TABLE statement
Description

Use this statement to modify a table definition.

Syntax
ALTER TABLE table-name
{ add-clause | modify-clause | drop-clause |
rename-clause }

add-clause :
 ADD { column-definition | table-constraint }

modify-clause :
ALTER column-definition

drop-clause :
DROP { column-name | CONSTRAINT constraint-name }

rename-clause :
RENAME { new-table-name | old-column-name TO new-column-name
 | CONSTRAINT old-constraint-name TO new-constraint-name }

column-definition :
column-name data-type
[[NOT] NULL]
[DEFAULT column-default]
[column-constraint …]

column-constraint :
[UNIQUE]

column-default :
{ GLOBAL AUTOINCREMENT [(number)] |
AUTOINCREMENT | CURRENT DATE |
CURRENT TIME | CURRENT TIMESTAMP |
NULL |
NEWID() |
 constant-value }

table-constraint :
[CONSTRAINT constraint-name]
{ foreign-key-constraint|unique-key-constraint }
[WITH MAX HASH SIZE value]

foreign-key-constraint :
[NOT NULL] FOREIGN KEY [role-name] (ordered-column-list)
REFERENCES table-name [(column-name, …)]
[CHECK ON COMMIT]

unique-key-constraint :
 UNIQUE(ordered-column-list)

UltraLite SQL Statement Reference

322 Copyright © 2006, iAnywhere Solutions, Inc.

ordered-column-list :
[(column-name [ASC | DESC], …,)]

Parameters
add-clause Add a new column or table constraint to the table:

♦ ADD column-definition Adds a new column to the table. If the column has a default value, all rows in
the new column are populated with that default value.

♦ ADD table-constraint Adds a constraint to the table. The optional constraint name allows you to modify
or drop individual constraints at a later time, rather than having to modify the entire table constraint.

Note
You cannot add a primary key in UltraLite.

F See “CREATE TABLE statement” on page 331 for a full explanation of column-definition and table-
constraint.

modify-clause Change a single column definition.

F See “CREATE TABLE statement” on page 331 for a full explanation of column-definition (note that
primary keys in the column-definition cannot be used with ALTER statements).

drop-clause Delete a column or a table constraint:

♦ DROP column-name Delete the column from the table. If the column is contained in any index,
uniqueness constraint, foreign key, or primary key, then the index, constraint, or key must be deleted
before the column can be deleted.

♦ DROP CONSTRAINT table-constraint Delete the named constraint from the table definition.

Note
You cannot drop a primary key in UltraLite.

F See “CREATE TABLE statement” on page 331 for a full explanation of table-constraint.

rename-clause Change the name of a table, column, or constraint:

♦ RENAME new-table-name Change the name of the table to new-table-name. Note that any
applications using the old table name must be modified. Foreign keys that were automatically assigned
the old table name will not change names.

♦ RENAME old-column-name TO new-column-name Change the name of the column to the new-
column-name. Note that any applications using the old column name will need to be modified.

♦ RENAME old-constraint-name TO new-constraint-name Change the name of the constraint to the
new-constraint-name. Note that any applications using the old constraint name need to be modified.

ALTER TABLE statement

Copyright © 2006, iAnywhere Solutions, Inc. 323

Note
You cannot rename a primary key in UltraLite.

column-constraint A column constraint restricts the values the column can hold in order to help ensure
the integrity of data in the database. A column constraint can only be UNIQUE.

UNIQUE Identifies one or more columns that uniquely identify each row in the table. No two rows in the
table can have the same values in all the named column(s). A table may have more than one unique constraint.

Remarks
Only one table-constraint or column-constraint can be added, modified, or deleted in one ALTER TABLE
statement.

The role name is the name of the foreign key. The main function of the role-name is to distinguish two
foreign keys to the same table. Alternatively, you can name the foreign key with CONSTRAINT constraint-
name. However, do not use both methods to name a foreign key.

If the column is contained in a uniqueness constraint, a foreign key, or a primary key, then the constraint or
key must be deleted before the column can be modified. You cannot MODIFY a table or column constraint.
To change a constraint, you must DELETE the old constraint and ADD the new constraint.

A table whose name ends with nosync can only be renamed to a table name that also ends with nosync.
See “Nosync tables in UltraLite” [MobiLink - Client Administration].

ALTER TABLE cannot execute if a statement that affects the table is already being referenced by another
request or query. Similarly, UltraLite does not process requests referencing the table while that table is being
altered. Furthermore, you cannot execute ALTER TABLE when the database includes active queries or
uncommitted transactions.

For UltraLite.NET users: You cannot execute this statement, unless you also call the Dispose method for all
data objects (for example, ULDataReader). See “Dispose method” [UltraLite - .NET Programming].

Statements are not released if schema changes are initiated at the same time. See “Impact of schema changes
in UltraLite” on page 15.

Examples
The following example drops the office column from the employee table.

ALTER TABLE employee
DROP office

The following example allows the table to now hold up to 50 characters.

ALTER TABLE customer
MODIFY address CHAR(50)

See also
♦ “CREATE TABLE statement” on page 331
♦ “DROP TABLE statement” on page 339
♦ “Data types in UltraLite” on page 212
♦ “Altering UltraLite column definitions” on page 59

UltraLite SQL Statement Reference

324 Copyright © 2006, iAnywhere Solutions, Inc.

♦ “Using table and column constraints” [SQL Anywhere Server - SQL Usage]
♦ “Overriding partition sizes for autoincremented columns” [MobiLink - Client Administration]
♦ “Determining the most recently assigned GLOBAL AUTOINCREMENT value” [MobiLink - Client

Administration]

ALTER TABLE statement

Copyright © 2006, iAnywhere Solutions, Inc. 325

ALTER PUBLICATION statement
Description

Use this statement to alter a publication. A publication identifies synchronized data in an UltraLite remote
database.

Syntax
ALTER PUBLICATION publication-name alterpub-clause

alterpub-clause :
 ADD TABLE table-name [WHERE search-condition]
| ALTER TABLE table-name [WHERE search-condition]
| { DELETE | DROP } table-name
| RENAME publication-name

Parameters

WHERE clause If a WHERE clause is changed via this statement, only rows satisfying search-
condition are considered for upload from the associated table during synchronization. For information about
search conditions, see “Search conditions in UltraLite” on page 221.

If you do not specify a WHERE clause, every row in the table that has changed in UltraLite since the last
synchronization is considered for upload.

Side effects
Automatic commit.

See also
♦ “Designing synchronization in UltraLite” [MobiLink - Client Administration]
♦ “CREATE PUBLICATION statement” on page 330
♦ “DROP PUBLICATION statement” on page 338
♦ “START SYNCHRONIZATION DELETE statement” on page 347
♦ “STOP SYNCHRONIZATION DELETE statement” on page 348

Example
The following statement adds the customers table to the pub_contact publication.

ALTER PUBLICATION pub_contact
 ADD TABLE customers

UltraLite SQL Statement Reference

326 Copyright © 2006, iAnywhere Solutions, Inc.

COMMIT statement
Description

Use this statement to make changes to the database permanent.

Syntax
COMMIT [WORK]

Parameters
WORK is an optional keyword.

Remarks
A transaction is the inserts, updates, and deletes performed on one database connection to a database between
COMMIT or ROLLBACK statements. The COMMIT statement ends a transaction and makes all changes
made during this transaction permanent in the database.

ALTER, CREATE, and DROP statements are committed automatically.

See also
♦ “ROLLBACK statement” on page 341

COMMIT statement

Copyright © 2006, iAnywhere Solutions, Inc. 327

CREATE INDEX statement
Description

Use this statement to create an index on a specified table. Indexes can improve query performance by
providing quick ways for UltraLite to look up specific rows. Conversely, because they have to be maintained,
indexes may slow down INSERT, DELETE, and UPDATE statements, as well as synchronization.

F For more information about indexes, see “Indexes in UltraLite databases” on page 20. UltraLite can also
use query access plans to optimize queries. For details, see “Query access plans in UltraLite” on page 232.

Syntax
CREATE [UNIQUE] INDEX [index-name]
ON table-name (ordered-column-list)
WITH MAX HASH SIZE x

ordered-column-list :
[(column-name [ASC | DESC], …,])]

Parameters
UNIQUE The UNIQUE parameter ensures that there are not two rows in the table with identical values in
all the columns in the index. Each index key must be unique or contain a NULL in at least one column.

There is a difference between a unique constraint on a table and a unique index. Columns in a unique index
are allowed to be NULL, while columns in a unique constraint are not. A foreign key can reference either a
primary key or a column with a unique constraint, but not a unique index, because it can include multiple
instances of NULL.

ordered-column-list An ordered list of columns. The ordered list can be sorted in ascending or
descending order.

WITH MAX HASH SIZE Sets the default index hash size in bytes. If you do not set this value, a default
size of 8 bytes is used for index hashing. See “max_hash_size property” on page 106.

Remarks
Indexes are automatically used to improve the performance of queries issued to the database, and to sort
queries with an ORDER BY clause. Once an index is created, it is never referenced in a SQL statement again
except to remove it with DROP INDEX.

Indexes use space in the database. Also, the additional work required to maintain indexes can affect the
performance of data modification operations. For these reasons, you should avoid creating indexes that do
not improve query performance.

UltraLite does not process requests or queries referencing the index while the CREATE INDEX statement
is being processed. Furthermore, you cannot execute CREATE INDEX when the database includes active
queries or uncommitted transactions.

For UltraLite.NET users: You cannot execute this statement, unless you also call the Dispose method for all
data objects (for example, ULDataReader). See “Dispose method” [UltraLite - .NET Programming].

UltraLite automatically creates indexes for primary keys and for unique constraints.

UltraLite SQL Statement Reference

328 Copyright © 2006, iAnywhere Solutions, Inc.

Statements are not released if schema changes are initiated at the same time. See “Impact of schema changes
in UltraLite” on page 15.

Side effects
♦ Automatic commit.

Example
The following example creates a two-column index on the employee table.

CREATE INDEX employee_name_index
ON employee
(emp_lname, emp_fname)

The following example creates an index on the sales_order_items table for the prod_id column.

CREATE INDEX item_prod
ON sales_order_items
(prod_id)

See also
♦ “DROP INDEX statement” on page 337
♦ “Working with UltraLite indexes” on page 65

CREATE INDEX statement

Copyright © 2006, iAnywhere Solutions, Inc. 329

CREATE PUBLICATION statement
Description

Use this statement to create a publication.

Syntax
CREATE PUBLICATION publication-name
(TABLE table-name [WHERE search-condition], ...)

Parameters

WHERE clause If a WHERE clause is specified, only rows satisfying search-condition are considered
for upload from the associated table during synchronization. For information about search conditions, see
“Search conditions in UltraLite” on page 221.

If you do not specify a WHERE clause, every row in the table that has changed in UltraLite since the last
synchronization is considered for upload.

Remarks
A publication establishes tables that are synchronized during a single synchronization operation. They
determine which data is uploaded to the MobiLink server. The MobiLink server may send back rows for
these (and only these) tables during its download session. Rows that are downloaded do not have to satisfy
the WHERE clause for a table.

Only entire tables can be published. You cannot publish specific columns of a table in UltraLite.

Side effects
♦ Automatic commit.

Example
The following statement publishes all the columns and rows of two tables.

CREATE PUBLICATION pub_contact (
 TABLE contact,
 TABLE company
)

The following statement publishes only the active customer rows by including a WHERE clause that tests
the status column of the customer table.

CREATE PUBLICATION pub_customer (
 TABLE customer
 WHERE status = 'active'
)

See also
♦ “UltraLite Clients” [MobiLink - Client Administration]
♦ “DROP PUBLICATION statement” on page 338
♦ “ALTER PUBLICATION statement” on page 326
♦ “Search conditions in UltraLite” on page 221

UltraLite SQL Statement Reference

330 Copyright © 2006, iAnywhere Solutions, Inc.

CREATE TABLE statement
Description

Use this statement to create a new table in the database.

Syntax
CREATE TABLE table-name
({ column-definition | table-constraint }, …)

column-definition :
column-name data-type [[NOT]
NULL] [DEFAULT column-default] [column-constraint …]

column-constraint :
[UNIQUE | PRIMARY KEY]

table-constraint :
[CONSTRAINT constraint-name] spec

column-default :
{GLOBAL AUTOINCREMENT [(number)] |
AUTOINCREMENT | CURRENT DATE |
CURRENT TIME | CURRENT TIMESTAMP |
NULL |
NEWID() |
 constant-value}

spec :
{ PRIMARY KEY (ordered-column-list |
[NOT NULL] FOREIGN KEY [role-name](ordered-column-list)
 REFERENCES table-name (column-name, . . .)
 [CHECK ON COMMIT] |
UNIQUE (ordered-column-list) } [WITH MAX HASH SIZE number]

ordered-column-list :
[(column-name [ASC | DESC] …,])]

Parameters

column-definition Define a column in the table. Available parameters for this clause include:

♦ column-name The column name is an identifier. Two columns in the same table cannot have the same
name. For more information on identifiers, see “Identifiers in UltraLite” on page 203.

♦ data-type For information on data types, see “Data types in UltraLite” on page 212.

♦ [NOT] NULL If NOT NULL is specified, or if the column is in a UNIQUE or PRIMARY KEY
constraint, the column cannot contain NULL in any row. Otherwise, NULL is allowed.

♦ column-default and column-constraint Clauses that contain several parameters that are used to create
an expression. These parameters are explained in “Expressions in UltraLite” on page 215.

CREATE TABLE statement

Copyright © 2006, iAnywhere Solutions, Inc. 331

column-constraint A short form for the equivalent table constraint, with only the current row. A column
constraint can be one of:

♦ UNIQUE Identifies one or more columns that uniquely identify each row in the table. No two rows in
the table can have the same values in all the named column(s). A table may have more than one unique
constraint. NULL values are not allowed.

♦ PRIMARY KEY This is the same as a unique constraint, except that a column can have only one primary
key constraint. The primary key usually identifies the best identifier for a row. For example, the customer
number might be the primary key for the customer table.

Columns included in primary keys are automatically made NOT NULL.

table-constraint A table constraint restricts the values that one or more columns in the table can hold in
order to help ensure the integrity of data in the database. If a statement would cause a violation of a constraint,
execution of the statement does not complete, any changes made by the statement before error detection are
rolled back, and an error is reported.

column-default If a DEFAULT value is specified, it is used as the value for the column in any INSERT
statement that does not specify a value for the column. If no DEFAULT is specified, it is equivalent to
DEFAULT NULL. Default options include:

♦ AUTOINCREMENT When using AUTOINCREMENT, the column must be one of the integer data
types, or an exact numeric type. On inserts into the table, if a value is not specified for the
AUTOINCREMENT column, a unique value larger than any other value in the column is generated. If
an INSERT specifies a value for the column that is larger than the current maximum value for the column,
that value is used as a starting point for subsequent inserts.

Tip
In UltraLite, the autoincrement value is not set to 0 when the table is created, and AUTOINCREMENT
generates negative numbers when a signed data type is used for the column. You should therefore declare
AUTOINCREMENT columns as unsigned integers to prevent negative values from being used.

♦ GLOBAL AUTOINCREMENT Similar to AUTOINCREMENT, except that the domain is
partitioned. For details on how partitioning works, see “Using GLOBAL AUTOINCREMENT in
UltraLite” [MobiLink - Client Administration].

Each partition contains the same number of values. You assign each copy of the database a unique global
database identification number. See “global_id option” on page 104.

UltraLite supplies default values in a database only from the partition uniquely identified by that database's
number.

♦ NULL The column can contain NULL.

♦ NEWID() A function that generates a unique identifier value. For details, see “NEWID function
[Miscellaneous]” on page 287.

♦ CURRENT TIMESTAMP Combines CURRENT DATE and CURRENT TIME to form a
TIMESTAMP value containing the year, month, day, hour, minute, second, and fraction of a second. The

UltraLite SQL Statement Reference

332 Copyright © 2006, iAnywhere Solutions, Inc.

fraction of a second is stored to 3 decimal places. The accuracy is limited by the accuracy of the system
clock. See “CURRENT TIMESTAMP special value” on page 209.

♦ CURRENT DATE CURRENT DATE returns the current year, month, and day. See “CURRENT
DATE special value” on page 208.

♦ CURRENT TIME The current hour, minute, second and fraction of a second. See “CURRENT TIME
special value” on page 208.

♦ constant-value A constant for the data type of the column. Typically the constant is a number or a
string.

spec Describes additional specifications. spec can be one of:

♦ Primary key The primary key usually identifies the collection of columns to immediately identify the
rows in a table. Columns included in primary keys cannot allow NULL.

♦ Foreign key Restricts the values for a set of columns to match the values in a primary key or, less
commonly, a unique constraint of another table (the primary table).

♦ role-name The role name is the name of the foreign key. The main function of the role-name is to
distinguish two foreign keys to the same table. Alternatively, you can name the foreign key with
CONSTRAINT constraint-name. However, do not use both methods to name a foreign key.

♦ NOT NULL Disallow NULL in the foreign key columns. A NULL in a foreign key means that no row
in the primary table corresponds to this row in the foreign table.

If at least one value in a multi-column foreign key is NULL, there is no restriction on the values that can
be held in other columns of the key.

♦ CHECK ON COMMIT Causes the database server to wait for a COMMIT before checking that foreign
keys are enforced.

This means that database changes can be applied in any order. Otherwise, the primary key (or values for
UNIQUE constraint) must be in the database before a row with those foreign key values can be added.

♦ UNIQUE Identifies one or more columns that uniquely identify each row in the table. No two rows in
the table can have the same values in all the named column(s). A table may have more than one unique
constraint.

♦ ordered-column-list An ordered list of columns. The ordered list can be sorted in ascending or
descending order.

♦ WITH MAX HASH SIZE Sets the default index hash size in bytes. If you do not set this value, a default
size of 8 bytes is used for index hashing. See “max_hash_size property” on page 106.

Remarks
Column constraints are normally used unless the constraint references more than one column in the table.
In these cases, a table constraint must be used. If a statement would cause a violation of a constraint, execution
of the statement does not complete, any changes made by the statement before error detection are undone,
and an error is reported.

CREATE TABLE statement

Copyright © 2006, iAnywhere Solutions, Inc. 333

Each row in the table has a unique primary key value.

If no role name is specified, the role name is assigned as follows:

1. If there is no foreign key with a role name the same as the table name, the table name is assigned as the
role name.

2. If the table name is already taken, the role name is the table name concatenated with a zero-padded,
three-digit number unique to the table.

Schema changes Statements are not released if schema changes are initiated at the same time. See
“Impact of schema changes in UltraLite” on page 15.

UltraLite does not process requests or queries referencing the table while the CREATE TABLE statement
is being processed. Furthermore, you cannot execute CREATE TABLE when the database includes active
queries or uncommitted transactions.

For UltraLite.NET users: You cannot execute this statement, unless you also call the Dispose method for all
data objects (for example, ULDataReader). See “Dispose method” [UltraLite - .NET Programming].

Side effects
♦ Automatic commit.

Example
The following example creates a table for a library database to hold book information.

CREATE TABLE library_books (
 isbn CHAR(20) PRIMARY KEY,
 copyright_date DATE,
 title CHAR(100),
 author CHAR(50),
 location CHAR(50),
 FOREIGN KEY location REFERENCES room
)

The following example creates a table for a library database to hold information on borrowed books. The
default value for date_borrowed indicates that the book is borrowed on the day the entry is made. The
date_returned column is NULL until the book is returned.

CREATE TABLE borrowed_book (
 loaner_name CHAR(100) PRIMARY KEY,
 date_borrowed DATE NOT NULL DEFAULT CURRENT DATE,
 date_returned DATE,
 book CHAR(20)
 FOREIGN KEY book REFERENCES library_books (isbn),
)

The following example creates tables for a sales database to hold order and order item information.

CREATE TABLE Orders (
 order_num INTEGER NOT NULL PRIMARY KEY,
 date_ordered DATE,
 name CHAR(80)
);
CREATE TABLE Order_item (
 order_num INTEGER NOT NULL,

UltraLite SQL Statement Reference

334 Copyright © 2006, iAnywhere Solutions, Inc.

 item_num SMALLINT NOT NULL,
 PRIMARY KEY (order_num, item_num),
 FOREIGN KEY (order_num)
 REFERENCES Orders (order_num)
)

See also
♦ “DROP TABLE statement” on page 339
♦ “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
♦ “Data types in UltraLite” on page 212
♦ “Overriding partition sizes for autoincremented columns” [MobiLink - Client Administration]

CREATE TABLE statement

Copyright © 2006, iAnywhere Solutions, Inc. 335

DELETE statement
Description

Use this statement to delete rows from a table in the database.

Syntax
DELETE
[FROM] table-name
[WHERE search-condition]

Parameters

WHERE clause If a WHERE clause is specified, only rows satisfying search-condition are deleted. For
information about search conditions, see “Search conditions in UltraLite” on page 221.

Additionally, the WHERE clause does not support non-deterministic functions (like RAND) or variables.
Nor does this clause restrict columns; columns may need to reference another table when used in a subquery.

Remarks
The DELETE statement deletes all the rows that satisfy the search condition from the named table.

The way in which UltraLite traces row states is unique. Be sure you understand the implication of deletes
and row states. See “How UltraLite tracks row states” on page 18.

Example
The following statement removes employee 105 from the database.

DELETE
FROM employee
WHERE emp_id = 105

The following statement removes all data prior to the year 2000 from the fin_data table.

DELETE
FROM fin_data
WHERE year < 2000

See also
♦ “START SYNCHRONIZATION DELETE statement” on page 347
♦ “STOP SYNCHRONIZATION DELETE statement” on page 348

UltraLite SQL Statement Reference

336 Copyright © 2006, iAnywhere Solutions, Inc.

DROP INDEX statement
Description

Use this statement to permanently remove an index definition from the database.

Syntax
DROP INDEX [table-name.]index-name

Remarks
You cannot drop the primary index.

UltraLite does not process requests or queries referencing the index while the DROP INDEX statement is
being processed. Furthermore, you cannot execute DROP INDEX when the database includes active queries
or uncommitted transactions.

For UltraLite.NET users: You cannot execute this statement, unless you also call the Dispose method for all
data objects (for example, ULDataReader). See “Dispose method” [UltraLite - .NET Programming].

Statements are not released if schema changes are initiated at the same time. See “Impact of schema changes
in UltraLite” on page 15.

See also
♦ “CREATE INDEX statement” on page 328
♦ “Working with UltraLite indexes” on page 65

DROP INDEX statement

Copyright © 2006, iAnywhere Solutions, Inc. 337

DROP PUBLICATION statement
Description

Use this statement to drop a publication.

Syntax
DROP PUBLICATION publication-name1, ..., publication-nameX

Remarks
Use this when a publication that describes which data is uploaded to the MobiLink server has become
outdated.

See also
♦ “Designing synchronization in UltraLite” [MobiLink - Client Administration]
♦ “ALTER PUBLICATION statement” on page 326
♦ “CREATE PUBLICATION statement” on page 330

Example
The following statement drops the pub_contact publication.

DROP PUBLICATION pub_contact

UltraLite SQL Statement Reference

338 Copyright © 2006, iAnywhere Solutions, Inc.

DROP TABLE statement
Description

Use this statement to permanently remove a table definition and all data in the table from a database.

Syntax
DROP TABLE table-name

Remarks
The DROP TABLE statement removes the definition of the indicated table. All data in the table is
automatically deleted as part of the dropping process. Also, all indexes and keys for the table are dropped
by the DROP TABLE statement.

UltraLite does not process requests or queries referencing the table or its indexes while the DROP TABLE
statement is being processed. Furthermore, you cannot execute DROP TABLE when the database includes
active queries or uncommitted transactions.

For UltraLite.NET users: You cannot execute this statement, unless you also call the Dispose method for all
data objects (for example, ULDataReader). See “Dispose method” [UltraLite - .NET Programming].

Statements are not released if schema changes are initiated at the same time. See “Impact of schema changes
in UltraLite” on page 15.

See also
♦ “ALTER TABLE statement” on page 322
♦ “CREATE TABLE statement” on page 331

DROP TABLE statement

Copyright © 2006, iAnywhere Solutions, Inc. 339

INSERT statement
Description

Use this statement to insert a single row into a table or to insert rows from a query result set.

Syntax
INSERT [INTO]
table-name [(column-name, …)]
{ VALUES (expression, ...) | SELECT statement }

Remarks
If the optional list of column names is given, the values are inserted one for one into the specified columns.
If the list of column names is not specified, the values are inserted into the table columns in the order they
were created (the same order as retrieved with SELECT *). The row is inserted into the table at an arbitrary
position.

You must use either the VALUES expression or SELECT statement. You cannot use both.

Character strings inserted into tables are always stored in the same case as they are entered, regardless of
whether the database is case sensitive.

Examples
The following statement adds an Eastern Sales department to the database.

INSERT
INTO department (dept_id, dept_name)
VALUES (230, 'Eastern Sales')

See also
♦ “SELECT statement” on page 342

UltraLite SQL Statement Reference

340 Copyright © 2006, iAnywhere Solutions, Inc.

ROLLBACK statement
Description

Use this statement to end a transaction and undo any changes made since the last COMMIT or ROLLBACK.

Syntax
ROLLBACK [WORK]

Parameters
WORK is an optional keyword.

Remarks
A transaction is the inserts, updates, and deletes performed on one database connection to a database between
COMMIT or ROLLBACK statements. The ROLLBACK statement ends the current transaction and undoes
all changes made to the database since the previous COMMIT or ROLLBACK.

See also
♦ “COMMIT statement” on page 327

ROLLBACK statement

Copyright © 2006, iAnywhere Solutions, Inc. 341

SELECT statement
Description

Use this statement to retrieve information from the database.

Syntax
SELECT [DISTINCT] [FIRST | TOP n [START AT m]]
select-list
[FROM table-expression, … table-expression]
[WHERE search-condition]
[GROUP BY group-by-expression,...group-by-expression]
[HAVING search-condition]
[ORDER BY order-by-expression,...order-by-expression]
[FOR { UPDATE | READ ONLY }]
[OPTION (FORCE ORDER)]

select-list :
{ column-name | column-expression } [AS]
alias-name

order-by-expression :
{ integer | expression } [ASC | DESC]

Parameters

select-list A list of expressions, separated by commas, specifying what will be retrieved from the database.
Use an asterisk (*) to select all columns of all tables in the FROM clause.

You can define an alias name following the expression in the select-list to represent that expression. The
alias name can then be used elsewhere in the query, such as in the WHERE clause or ORDER BY clause.

DISTINCT clause If you do not specify DISTINCT, all rows that satisfy the clauses of the SELECT
statement are returned. If DISTINCT is specified, duplicate output rows are eliminated. Many statements
take significantly longer to execute when DISTINCT is specified, so you should reserve DISTINCT for
cases where it is necessary.

FIRST or TOP or START AT clause You can explicitly retrieve only the first row of a result set or the
first n rows of a result set. The TOP and START AT clauses provide additional flexibility in queries by
explicitly limiting the result set by parameterizing it with specific instructions: the TOP clause specifies the
number of rows to return and the START AT clause sets the starting point result set.

FROM clause Rows are retrieved from the tables and views specified in the table-expression. See “FROM
clause” on page 344.

WHERE clause If a WHERE clause is specified, only rows satisfying search-condition are selected. For
information about search conditions, see “Search conditions in UltraLite” on page 221.

GROUP BY clause The result of the query contains one row for each distinct set of values in the GROUP
BY expressions. The resulting rows are often referred to as groups since there is one row in the result for
each group of rows from the table list. Aggregate functions can be applied to the rows in these groups. NULL
is considered to be a unique value if it occurs.

UltraLite SQL Statement Reference

342 Copyright © 2006, iAnywhere Solutions, Inc.

HAVING clause This clause selects rows based on the group values and not on the individual row values.
The HAVING expressions can only be used if either the statement has a GROUP BY clause or the select
list consists solely of aggregate functions. The search condition must be an aggregate expression. It can only
involve aggregate expressions and expressions occurring in the GROUP BY clause. The HAVING condition
is tested after a candidate row has been completely grouped.

ORDER BY clause This clause sorts the results of a query according to the expression specified in the
clause. Each item in the ORDER BY list can be labeled as ASC for ascending order (the default) or DESC
for descending order. If the expression is an integer n, then the query results are sorted by the nth item in
the select list.

The only way to ensure that rows are returned in a particular order is to use ORDER BY. In the absence of
an ORDER BY clause, UltraLite returns rows in whatever order is most efficient.

FOR clause This clause has two variations that control the query's behavior:

♦ For READ ONLY This clause prevents the query from being used for updates. You should include
this clause whenever possible, since it optimizes performance.

♦ FOR UPDATE This clause is applied by default. It allows the query to be used for updates.

OPTION (FORCE ORDER) clause This clause is not recommended for general use. It overrides the
UltraLite choice of the order in which to access tables, and requires that UltraLite access the tables in the
order they appear in the query. Only use this clause when the query order is determined to be more efficient
than the UltraLite order.

F UltraLite can also use query access plans to optimize queries. For more information, see “Query access
plans in UltraLite” on page 232.

Example
The following statement selects the number of employees from the employee table.

SELECT COUNT(*)
FROM employee

The following statement selects 10 rows from the employee table starting from the 40th row and ending at
the 49th row.

SELECT TOP 10 START AT 40 * FROM employee

See also
♦ “SELECT statement” [SQL Anywhere Server - SQL Reference]
♦ “Queries: Selecting Data from a Table” [SQL Anywhere Server - SQL Usage]

SELECT statement

Copyright © 2006, iAnywhere Solutions, Inc. 343

FROM clause

Description
Use this clause to specify the database tables or views involved in a SELECT statement. When there is no
FROM clause, the expressions in the SELECT statement must be constant expressions.

Syntax
FROM table-expression, …

table-expression :
[table-name
[[AS] correlation-name]
| (SELECT-expression)
[AS] derived-table-name (column-name, …)
| (table-expression)
| table-expression join-operator table-expression [ON search-condition]

join-operator :
, | CROSS JOIN | INNER JOIN | LEFT OUTER JOIN | JOIN

Parameters
table-name A base table or temporary table. Tables cannot be owned by different users in UltraLite. If
you qualify tables with user ID, the ID is ignored.

correlation-name An identifier to use when referencing an object elsewhere in the statement.

If the same correlation name is used twice for the same table in a table expression, that table is treated as if
it were listed only once. For example, the following two SELECT statements are equivalent:

SELECT *
FROM sales_order
CROSS JOIN sales_order_items,
sales_order
CROSS JOIN employee

SELECT *
FROM sales_order
CROSS JOIN sales_order_items
CROSS JOIN employee

Whereas the following would be treated as two instances of the Person table, with different correlation names
HUSBAND and WIFE:

SELECT *
FROM Person HUSBAND, Person WIFE

derived-table-name A derived table is a table expression that you specify as a SELECT statement.
Following the parenthesized SELECT statement, is the name of the derived tabled and the parenthesized list
of derived column names. You must include a derived column name for each select expression in the derived
table.

Items from the select list of the derived table are referenced by the (optional) derived table name followed
by a period (.) and the column name. You can use the column name by itself if it is unambiguous.

UltraLite SQL Statement Reference

344 Copyright © 2006, iAnywhere Solutions, Inc.

You cannot reference derived table names within the SELECT statement. These references are sometimes
called inner references. See “Subqueries in expressions” on page 219.

Remarks

Derived tables
Although this description refers to tables, it also applies to derived tables unless otherwise noted.

The FROM clause creates a result set consisting of all the columns from all the tables specified. Initially, all
combinations of rows in the component tables are in the result set, and the number of combinations is usually
reduced by JOIN conditions and/or WHERE conditions.

The join operator connects two tables based on common column names. Supported operators in UltraLite
are:

♦ ,

♦ CROSS JOIN

♦ INNER JOIN

♦ LEFT OUTER JOIN

♦ JOIN

These operators can take specific conditions as specified above. The ON condition is specified for a single
join operation and indicates how the join is to create rows in the result set. The JOIN operator always requires
an ON condition.

A WHERE clause is used to restrict the rows in the result set, after potential rows have been created by a
join.

Comma joins are the same as a CROSS JOIN. You cannot use an ON phrase with either this operator.

For INNER joins restricting with an ON or WHERE is equivalent. For OUTER joins, they are not equivalent.

For more information about joins, see “Joins: Retrieving Data from Several Tables” [SQL Anywhere Server
- SQL Usage]. Note that UltraLite does not support KEY JOINS nor NATURAL joins.

Example
The following are valid FROM clauses:

...
FROM employee
...
...
FROM employee NATURAL JOIN department
...
...
FROM customer
CROSS JOIN sales_order
CROSS JOIN sales_order_items
CROSS JOIN product
...

SELECT statement

Copyright © 2006, iAnywhere Solutions, Inc. 345

The following query illustrates how to use derived tables in a query:

SELECT lname, fname, number_of_orders
FROM customer JOIN
 (SELECT cust_id, COUNT(*)
 FROM sales_order
 GROUP BY cust_id)
 AS sales_order_counts(cust_id,
 number_of_orders)
ON (customer.id = sales_order_counts.cust_id)
WHERE number_of_orders > 3

See also
♦ “DELETE statement” on page 336
♦ “SELECT statement” on page 342
♦ “UPDATE statement” on page 352
♦ “Joins: Retrieving Data from Several Tables” [SQL Anywhere Server - SQL Usage]

UltraLite SQL Statement Reference

346 Copyright © 2006, iAnywhere Solutions, Inc.

START SYNCHRONIZATION DELETE statement
Description

Use this statement to restart logging of deletes for MobiLink synchronization.

Syntax
START SYNCHRONIZATION DELETE

Remarks
UltraLite databases automatically track changes made to rows that need to be synchronized. UltraLite
uploads these changes to the consolidated database during the next synchronization of the table that was
changed. This statement allows you to temporarily restart tracking of deleted rows.

When a STOP SYNCHRONIZATION DELETE statement is executed, none of the delete operations
executed on that connection are synchronized. The effect continues until a START SYNCHRONIZATION
DELETE statement is executed. Repeating STOP SYNCHRONIZATION DELETE has no additional effect.

A single START SYNCHRONIZATION DELETE statement restarts the logging, regardless of the number
of STOP SYNCHRONIZATION DELETE statements preceding it.

Do not use START SYNCHRONIZATION DELETE if your application does not synchronize data.

The way in which UltraLite traces row states is unique. Be sure you understand the implication of deletes
and row states. See “How UltraLite tracks row states” on page 18.

Example
The following sequence of SQL statements illustrates how to use START SYNCHRONIZATION DELETE
and STOP SYNCHRONIZATION DELETE.

STOP SYNCHRONIZATION DELETE;
DELETE FROM PROPOSAL
WHERE last_modified < months(CURRENT TIMESTAMP, -1)
START SYNCHRONIZATION DELETE;
COMMIT;

See also
♦ “STOP SYNCHRONIZATION DELETE statement” on page 348

START SYNCHRONIZATION DELETE statement

Copyright © 2006, iAnywhere Solutions, Inc. 347

STOP SYNCHRONIZATION DELETE statement
Description

Use this statement to temporarily stop logging of deletes for MobiLink synchronization.

Syntax
STOP SYNCHRONIZATION DELETE

Remarks
UltraLite databases automatically track changes made to rows that need to be synchronized. UltraLite
uploads these changes to the consolidated database during the next synchronization. This statement allows
you to temporarily suspend tracking of deleted rows.

When a STOP SYNCHRONIZATION DELETE statement is executed, none of the subsequent delete
operations executed on that connection are synchronized. The effect continues until a START
SYNCHRONIZATION DELETE statement is executed.

Repeating STOP SYNCHRONIZATION DELETE has no additional effect. A single START
SYNCHRONIZATION DELETE statement restarts the logging, regardless of the number of STOP
SYNCHRONIZATION DELETE statements preceding it.

This command can be useful to make corrections to a remote database, but should be used with caution as
it effectively disables MobiLink synchronization.

Do not use STOP SYNCHRONIZATION DELETE if your application does not synchronize data.

The way in which UltraLite traces row states is unique. Be sure you understand the implication of deletes
and row states. See “How UltraLite tracks row states” on page 18.

See also
♦ “START SYNCHRONIZATION DELETE statement” on page 347

UltraLite SQL Statement Reference

348 Copyright © 2006, iAnywhere Solutions, Inc.

TRUNCATE TABLE statement
Description

Use this statement to delete all rows from a table, without deleting the table definition.

Syntax
TRUNCATE TABLE table-name

Remarks
The TRUNCATE TABLE statement deletes all rows from a table and the MobiLink server is not informed
of their removal upon subsequent synchronizations. It is equivalent to executing the following statements:

STOP SYNCHRONIZATION DELETE;
DELETE FROM TABLE;
START SYNCHRONIZATION DELETE;

Note
This statement should be used with great care on a database involved in synchronization or replication.
Because the MobiLink server is not notified, this deletion can lead to inconsistencies that can cause
synchronization or replication to fail.

After a TRUNCATE TABLE statement, the table structure and all of the indexes continue to exist until you
issue a DROP TABLE statement. The column definitions and constraints remain intact.

TRUNCATE TABLE cannot execute if a statement that affects the table is already being referenced by
another request or query. Similarly, UltraLite does not process requests referencing the table while that table
is being altered. Furthermore, you cannot execute TRUNCATE TABLE when the database includes active
queries or uncommitted transactions.

For UltraLite.NET users: You cannot execute this statement, unless you also call the Dispose method for all
data objects (for example, ULDataReader). See “Dispose method” [UltraLite - .NET Programming].

Schema changes Statements are not released if schema changes are initiated at the same time. See
“Impact of schema changes in UltraLite” on page 15.

Side effects
If the table contains a column defined as DEFAULT AUTOINCREMENT or DEFAULT GLOBAL
AUTOINCREMENT, TRUNCATE TABLE resets the next available value for the column.

Once rows are marked as deleted with TRUNCATE TABLE, they are no longer accessible to the user who
performed this action. However, they do remain accessible from other connections. Use ROLLBACK to
make them re-accessible to the current user. Use COMMIT to physically delete the rows, and thereby make
the data unaccessible from all connections.

If you synchronize the truncated table, all INSERT statements applied to the table take precedence over a
TRUNCATE TABLE statement.

TRUNCATE TABLE statement

Copyright © 2006, iAnywhere Solutions, Inc. 349

Example
Delete all rows from the Departments table.

TRUNCATE TABLE Departments

See also
♦ “DELETE statement” on page 336
♦ “START SYNCHRONIZATION DELETE statement” on page 347
♦ “STOP SYNCHRONIZATION DELETE statement” on page 348

UltraLite SQL Statement Reference

350 Copyright © 2006, iAnywhere Solutions, Inc.

UNION operation
Description

Use this statement to combine the results of two or more select statements.

Syntax
select-statement-without-ordering
[UNION [ALL | DISTINCT] select-statement-without-ordering]...
[ORDER BY [number [ASC | DESC] , ...]

Remarks
The results of several SELECT statements can be combined into a larger result using UNION. The component
SELECT statements must each have the same number of items in the select list, and cannot contain an
ORDER BY clause.

The results of UNION ALL are the combined results of the component SELECT statements. The results of
UNION are the same as UNION ALL, except that duplicate rows are eliminated. Eliminating duplicates
requires extra processing, so UNION ALL should be used instead of UNION where possible. UNION
DISTINCT is identical to UNION.

If corresponding items in two select lists have different data types, UltraLite chooses a data type for the
corresponding column in the result and automatically converts the columns in each component SELECT
statement appropriately.

The column names displayed are the same column names that are displayed for the first SELECT statement.
An alternative way of customizing result set column names is to use the WITH clause in the SELECT
statement.

The ORDER BY clause uses integers to establish the ordering, where the integer indicates the query
expression(s) on which to sort the results.

Example
The following example lists all distinct surnames of employees and customers.

SELECT emp_lname
FROM Employee
UNION
SELECT lname
FROM Customer

See also
♦ “SELECT statement” on page 342

UNION operation

Copyright © 2006, iAnywhere Solutions, Inc. 351

UPDATE statement
Description

Use this statement to modify existing rows in database tables.

Syntax
UPDATE table-name
SET column-name = expression, ...
[WHERE search-condition]

Parameters
table-name The table-name specifies the name of the table to update. Only a single table is allowed.

SET clause Each named column is set to the value of the expression on the right-hand side of the equal
sign. There are no restrictions on the expression. If the expression is a column-name, the old value is used.

Only columns specified in the SET clause have their values changed. In particular, you cannot use UPDATE
to set a column's value to its default.

WHERE clause If a WHERE clause is specified, only rows satisfying search-condition are updated. For
information about search conditions, see “Search conditions in UltraLite” on page 221.

Remarks
The UPDATE statement modifies values in a table.

Character strings inserted into tables are always stored in the same case as they are entered, regardless of
whether the database is case sensitive.

Example
The following example transfers employee Philip Chin from the sales department (department 129) to the
marketing department (department 400).

UPDATE employee
SET dept_id = 400
WHERE emp_id = 129

See also
♦ “INSERT statement” on page 340
♦ “DELETE statement” on page 336
♦ “Search conditions in UltraLite” on page 221

UltraLite SQL Statement Reference

352 Copyright © 2006, iAnywhere Solutions, Inc.

Index
Symbols
% operator

modulo function, UltraLite, 284
&

bitwise operator for UltraLite, 229
-a option

UltraLite HotSync Conduit installer [ulcond10]
utility, 163
UltraLite initialize database [ulinit] utility, 172
UltraLite load XML to database [ulload] utility,
174
UltraLite synchronization [ulsync] utility, 178

-b option
UltraLite unload data to XML [ulunload] utility,
180
UltraLite unload old database [ulunloadold] utility,
183

-c option
Interactive SQL [dbisql] utility for UltraLite, 155
UltraLite database creation [ulcreate] utility, 165
UltraLite HotSync Conduit installer [ulcond10]
utility, 163
UltraLite information [ulinfo] utility, 169
UltraLite initialize database [ulinit] utility, 172
UltraLite load XML to database [ulload] utility,
174
UltraLite synchronization [ulsync] utility, 178
UltraLite unload data to XML [ulunload] utility,
180
UltraLite unload old database [ulunloadold] utility,
183

-codepage option
Interactive SQL [dbisql] utility for UltraLite, 155

-d option
Interactive SQL [dbisql] utility for UltraLite, 155
UltraLite AppForge registration [ulafreg] utility,
161
UltraLite HotSync Conduit installer [ulcond10]
utility, 163
UltraLite load XML to database [ulload] utility,
174
UltraLite SQL Preprocessor [sqlpp] utility, 158
UltraLite unload data to XML [ulunload] utility,
180

-d1 option
Interactive SQL [dbisql] utility for UltraLite, 155

-e option
UltraLite SQL Preprocessor [sqlpp] utility, 158
UltraLite synchronization [ulsync] utility, 178
UltraLite unload data to XML [ulunload] utility,
180

-f option
Interactive SQL [dbisql] utility for UltraLite, 155
UltraLite load XML to database [ulload] utility,
174
UltraLite unload data to XML [ulunload] utility,
180
UltraLite unload old database [ulunloadold] utility,
183

-g option
UltraLite database creation [ulcreate] utility, 165
UltraLite information [ulinfo] utility, 169
UltraLite load XML to database [ulload] utility,
174
UltraLite SQL Preprocessor [sqlpp] utility, 158

-h option
UltraLite SQL Preprocessor [sqlpp] utility, 158

-I option
UltraLite load XML to database [ulload] utility,
174

-k option
UltraLite SQL Preprocessor [sqlpp] utility, 158
UltraLite synchronization [ulsync] utility, 178

-l option
UltraLite database creation [ulcreate] utility, 165

-n option
UltraLite HotSync Conduit installer [ulcond10]
utility, 163
UltraLite initialize database [ulinit] utility, 172
UltraLite SQL Preprocessor [sqlpp] utility, 158
UltraLite synchronization [ulsync] utility, 178
UltraLite unload data to XML [ulunload] utility,
180

-nogui option
Interactive SQL [dbisql] utility for UltraLite, 155

-o extended options
UltraLite database creation [ulcreate] utility, 165
UltraLite initialize database [ulinit] utility, 172
UltraLite load XML to database [ulload] utility,
174
UltraLite overview, 186
UltraLite usage, 186

Copyright © 2006, iAnywhere Solutions, Inc. 353

-o option
UltraLite SQL Preprocessor [sqlpp] utility, 158

-ol option
UltraLite database creation [ulcreate] utility, 165
UltraLite load XML to database [ulload] utility,
174

-onerror option
Interactive SQL [dbisql] utility for UltraLite, 155
UltraLite load XML to database [ulload] utility,
174

-or option
UltraLite information [ulinfo] utility, 169
UltraLite load XML to database [ulload] utility,
174
UltraLite synchronization [ulsync] utility, 178
UltraLite unload data to XML [ulunload] utility,
180

-p option
UltraLite database creation [ulcreate] utility, 165
UltraLite HotSync Conduit installer [ulcond10]
utility, 163
UltraLite initialize database [ulinit] utility, 172
UltraLite load XML to database [ulload] utility,
174

-q option
Interactive SQL [dbisql] utility for UltraLite, 155
UltraLite AppForge registration [ulafreg] utility,
161
UltraLite database creation [ulcreate] utility, 165
UltraLite HotSync Conduit installer [ulcond10]
utility, 163
UltraLite information [ulinfo] utility, 169
UltraLite initialize database [ulinit] utility, 172
UltraLite load XML to database [ulload] utility,
174
UltraLite SQL Preprocessor [sqlpp] utility, 158
UltraLite synchronization [ulsync] utility, 178
UltraLite unload data to XML [ulunload] utility,
180
UltraLite unload old database [ulunloadold] utility,
183

-qq option
UltraLite HotSync Conduit installer [ulcond10]
utility, 163

-r option
UltraLite AppForge registration [ulafreg] utility,
161
UltraLite information [ulinfo] utility, 169

UltraLite SQL Preprocessor [sqlpp] utility, 158
UltraLite synchronization [ulsync] utility, 178

-rc option
UltraLite AppForge registration [ulafreg] utility,
161
UltraLite information [ulinfo] utility, 169

-s option
UltraLite load XML to database [ulload] utility,
174
UltraLite SQL Preprocessor [sqlpp] utility, 158
UltraLite unload data to XML [ulunload] utility,
180

-t option
UltraLite database creation [ulcreate] utility, 165
UltraLite load XML to database [ulload] utility,
174
UltraLite unload data to XML [ulunload] utility,
180

-u option
UltraLite HotSync Conduit installer [ulcond10]
utility, 163
UltraLite SQL Preprocessor [sqlpp] utility, 158

-v option
UltraLite database creation [ulcreate] utility, 165
UltraLite information [ulinfo] utility, 169
UltraLite load XML to database [ulload] utility,
174
UltraLite synchronization [ulsync] utility, 178
UltraLite unload data to XML [ulunload] utility,
180
UltraLite unload old database [ulunloadold] utility,
183

-w option
UltraLite initialize database [ulinit] utility, 172
UltraLite SQL Preprocessor [sqlpp] utility, 158

-x option
Interactive SQL [dbisql] utility for UltraLite, 155
UltraLite HotSync Conduit installer [ulcond10]
utility, 163
UltraLite SQL Preprocessor [sqlpp] utility, 158
UltraLite synchronization [ulsync] utility, 178
UltraLite unload data to XML [ulunload] utility,
180

-y option
UltraLite database creation [ulcreate] utility, 165
UltraLite load XML to database [ulload] utility,
174

Index

354 Copyright © 2006, iAnywhere Solutions, Inc.

UltraLite unload data to XML [ulunload] utility,
180
UltraLite unload old database [ulunloadold] utility,
183

-z option
UltraLite database creation [ulcreate] utility, 165
UltraLite SQL Preprocessor [sqlpp] utility, 158

.NET
UltraLite engine support, 11

.NET compatibility
UltraLite driver for ADO.NET, 13

/* comment indicator
UltraLite about, 205

// comment indicator
UltraLite about, 205

?
UltraLite input parameter, 220

@ option
Interactive SQL [dbisql] utility for UltraLite, 155

@@identity global variable
UltraLite usage, 231

^
bitwise operator for UltraLite, 229

|
bitwise operator for UltraLite, 229

~
bitwise operator for UltraLite, 229

– comment indicator
UltraLite about, 205

A
ABS function

UltraLite SQL syntax, 241
ACOS function

UltraLite SQL syntax, 241
ActiveSync

supported versions, 12
adding

UltraLite column methods, 58
UltraLite columns, 322
UltraLite indexes, 67
UltraLite users, 76

adding a column to an UltraLite table
about, 58

adding a new UltraLite user
about, 76

adding UltraLite indexes

about, 67
ADO.NET

UltraLite drivers for, 13
AES encryption algorithm

UltraLite fips usage, 38
UltraLite reference, 102
UltraLite usage, 38

aggregate expressions
UltraLite SQL syntax, 218

aggregate functions
UltraLite alphabetical list, 236

algorithms
UltraLite cryptographic module for AES FIPS
encryption, 102

aliases
UltraLite columns, 342
UltraLite DELETE statement, 336
UltraLite equivalents of, 214

ALL conditions
UltraLite SQL, 224

allsync tables
UltraLite overview, 57

ALTER PUBLICATION statement
UltraLite SQL syntax, 326

ALTER TABLE statement
UltraLite SQL syntax, 322
UltraLite usage, 59

altering
UltraLite column methods, 59
UltraLite columns methods, 59
UltraLite publications, 326
UltraLite table methods, 59
UltraLite tables , 322

altering UltraLite column definitions
about, 59

ambiguous string to date conversions
UltraLite reference, 109
UltraLite usage, 35

AND
bitwise operators for UltraLite, 229
logical operators for UltraLite, 223

ANY conditions
UltraLite SQL, 225

APIs
UltraLite choices, 13
UltraLite engine support, 11

AppForge
UltraLite engine support, 11

Copyright © 2006, iAnywhere Solutions, Inc. 355

UltraLite support, 13
AppForge registry update utility

syntax, 161
applications, vii

(see also UltraLite applications)
arc-cosine function

UltraLite ACOS function, 241
arc-sine function

UltraLite ASIN function, 243
arc-tangent function

UltraLite ATAN function, 244
ARGN function

UltraLite SQL syntax, 242
arithmetic

operators and UltraLite SQL syntax, 228
arithmetic operators

UltraLite SQL syntax, 228
articles

UltraLite copying method, 63
ASCII

UltraLite sorting, 31
UltraLite syntax, 242

ASIN function
UltraLite SQL syntax, 243

assembling parameters into connection strings
UltraLite about, 49

ATAN function
UltraLite SQL syntax, 244

ATAN2 function
UltraLite SQL syntax, 244

authentication
UltraLite bypassing, 45
UltraLite setup, 45

autocommit
UltraLite, 19

AUTOINCREMENT
@@identity (UltraLite), 231
UltraLite SQL syntax, 331

average function
UltraLite AVG function, 245

AVG function
UltraLite SQL syntax, 245

B
backups

UltraLite databases, 19
UltraLite databases on Palm, 185

UltraLite databases on Windows CE, 51
base 10 logarithm

UltraLite LOG10 function, 279
BETWEEN conditions

UltraLite SQL, 226
BIGINT data type

UltraLite, 212
binary

UltraLite sorting, 31
BINARY data types

UltraLite, 212
bitwise operators

UltraLite SQL syntax, 229
browsing

UltraLite table methods, 61
browsing the information in UltraLite tables

about, 61
BYTE_LENGTH function

UltraLite SQL syntax, 246
BYTE_SUBSTR function

UltraLite SQL syntax, 246

C
C++ applications

UltraLite engine support, 11
C-language programming

UltraLite support, 13
cache size

UltraLite usage, 36
CACHE_SIZE connection parameter

UltraLite syntax, 128
cascading deletes

not supported in UltraLite, 5
cascading updates

not supported in UltraLite, 5
case database property

UltraLite database creation [ulcreate] utility, 165
UltraLite reference, 94
UltraLite usage, 33

CASE expression
UltraLite NULLIF function, 288
UltraLite SQL syntax, 217

case sensitivity
comparison operators for UltraLite, 222
UltraLite case reference, 94
UltraLite strings, 204

case sensitivity considerations

Index

356 Copyright © 2006, iAnywhere Solutions, Inc.

UltraLite about, 33
CAST function

UltraLite SQL syntax, 247
catalog

UltraLite system tables, 192
CE_FILE connection parameter

UltraLite syntax, 133
CEILING function

UltraLite SQL syntax, 248
Certicom

UltraLite cryptographic module, 38
CHAR data type

UltraLite, 212
CHAR function

UltraLite SQL syntax, 249
CHAR_LENGTH function

UltraLite SQL syntax, 250
character functions

UltraLite alphabetical list, 239
character set considerations

UltraLite, 31
character sets

synchronization for UltraLite, 31
UltraLite databases, 32
UltraLite on Palm OS, 32
UltraLite on Symbian, 32
UltraLite on Windows, 32
UltraLite on Windows CE, 32
UltraLite strings, 204

character strings
UltraLite embedded SQL, 158

CHARINDEX function
UltraLite SQL syntax, 249

check constraints
UltraLite limitations, 5

checksum_level
UltraLite reference, 95

checksums
UltraLite checksum_level reference, 95
UltraLite usage, 37

choosing a data management component
UltraLite about, 11

choosing an index type
UltraLite about, 66

choosing an UltraLite deployment environment
about, 12

choosing creation-time database properties
about, 30

choosing your programming interface
UltraLite about, 12

client
embedded engine for UltraLite, 11

COALESCE function
UltraLite SQL syntax, 251

code points
UltraLite, 31

collation sequences
UltraLite about, 31
UltraLite changing, 31

column compression
UltraLite SQL ALTER TABLE statement, 322

column names
UltraLite SQL syntax, 216

column names in expressions
UltraLite about, 216

columns
UltraLite adding methods, 58
UltraLite aliases, 342
UltraLite altering, 322
UltraLite altering methods, 59
UltraLite altering usage, 59
UltraLite copying method, 63
UltraLite renaming, 322

combining
UltraLite result of multiple select statements, 351

comma-separated lists
UltraLite LIST function syntax, 277

command line utilities
Interactive SQL [dbisql] syntax for UltraLite, 155
UltraLite AppForge registration [ulafreg] utility,
161
UltraLite database creation [ulcreate] utility, 165
UltraLite engine start [uleng10] utility, 168
UltraLite engine stop [ulstop] utility, 177
UltraLite HotSync Conduit installer [ulcond10]
utility, 163
UltraLite information [ulinfo] utility, 169
UltraLite initialize database [ulinit] utility, 172
UltraLite load XML to database [ulload] utility,
174
UltraLite Palm [ULDBUtil] utility, 185
UltraLite SQL Preprocessor [sqlpp] utility, 158
UltraLite synchronization [ulsync] , 178
UltraLite unload data to XML [ulunload] utility,
180

Copyright © 2006, iAnywhere Solutions, Inc. 357

UltraLite unload old database [ulunloadold] utility,
183

comments
UltraLite syntax, 205

comments in UltraLite
about, 205

COMMIT statement
UltraLite SQL syntax, 327

committing
UltraLite COMMIT syntax, 327
UltraLite database rows, 18
UltraLite transaction overview , 19

comparing
UltraLite and SQL Anywhere databases, 5
UltraLite statistics, 8

comparing UltraLite and SQL Anywhere
about, 5

comparison operators
dynamic SQL syntax for UltraLite, 222
UltraLite SQL, 222

compatibility
UltraLite SQL, 222

compressed columns
UltraLite SQL ALTER TABLE statement, 322

computed columns
UltraLite limitations, 5

CON connection parameter
UltraLite syntax, 130

concatenating strings
string operators for UltraLite, 229

concurrency
synchronizing UltraLite applications, 18
UltraLite databases, 17

concurrent access
UltraLite engine, 11

conditions
ALL conditions for UltraLite SQL, 224
ANY for UltraLite SQL, 225
BETWEEN for UltraLite SQL, 226
EXISTS for UltraLite SQL, 226
IN for UltraLite SQL, 227
searching in UltraLite SQL, 221

conduit
installing, 163
installing for CustDB, 163

configuring post-creation database options
about, 40

connecting

UltraLite database troubleshooting, 49
UltraLite databases, 45

connecting to an UltraLite database
about, 43

connection failures
UltraLite troubleshooting, 47

connection methods
UltraLite about, 44

connection parameters
DBN for UltraLite, 142
UltraLite, 43
UltraLite CACHE_SIZE , 128
UltraLite CE_FILE, 133
UltraLite choosing between, 50
UltraLite CON, 130
UltraLite connection summary, 47
UltraLite DBF, 131
UltraLite DBKEY, 143
UltraLite file_name, 131
UltraLite key, 143
UltraLite list of, 44
UltraLite NT_FILE, 135
UltraLite overview, 47
UltraLite PALM_ALLOW_BACKUP, 145
UltraLite PALM_DB , 139
UltraLite PALM_FILE, 137
UltraLite password, 146
UltraLite precedence of, 49
UltraLite PWD, 146
UltraLite RESERVE_SIZE , 148
UltraLite START , 149
UltraLite supplying, 47
UltraLite SYMBIAN_FILE , 140
UltraLite troubleshooting, 47
UltraLite UID , 150
UltraLite userid , 150

connection strings
UltraLite parameters overview, 47
UltraLite setting , 49

connections
concurrency in UltraLite, 17
UltraLite limitations, 8
UltraLite overview, 43

consolidated databases
UltraLite sample, 88

constants
UltraLite SQL syntax, 216

constants in expressions

Index

358 Copyright © 2006, iAnywhere Solutions, Inc.

UltraLite about, 216
constraints

UltraLite ALTER TABLE statement, 322
UltraLite renaming, 322

conventions
documentation, x
file names in documentation, xii

conversion functions
UltraLite alphabetical list, 236

CONVERT function
UltraLite SQL syntax, 252

converting
UltraLite ambiguous dates, 35
UltraLite ambiguous dates reference, 109

converting strings
UltraLite about, 239

copying
UltraLite table method, 62

copying and pasting data to/from UltraLite databases
about, 62

COS function
UltraLite SQL syntax, 254

cosine function
UltraLite COS function, 254

COT function
UltraLite SQL syntax, 255

cotangent function
UltraLite COT function, 255

COUNT function
UltraLite SQL syntax, 255

count operation
UltraLite query access plans, 233

create database wizard
UltraLite, 25
UltraLite usage, 25

CREATE INDEX statement
UltraLite SQL syntax, 328
UltraLite usage, 67

CREATE PUBLICATION statement
UltraLite SQL syntax, 330
UltraLite usage, 73

create publication wizard
UltraLite rows publishing, 74
UltraLite tables publishing, 72

CREATE TABLE statement
UltraLite SQL syntax , 331
UltraLite usage, 57

creating

reference databases for UltraLite, 26
UltraLite CREATE PUBLICATION statement,
330
UltraLite databases, 24, 165
UltraLite databases from a MobiLink sync model,
26
UltraLite databases from the command prompt, 25
UltraLite databases from XML, 28
UltraLite indexes, 67
UltraLite publications tables, 72
UltraLite table methods, 56
UltraLite tables, 331
UltraLite users, 76

creating and configuring UltraLite databases
about, 23

creating databases
Sybase Central UltraLite plug-in, 25

creating UltraLite databases
about, 24

creating UltraLite tables
about, 56

creator IDs
UltraLite PALM_DB parameter, 139

CROSS JOIN clause
UltraLite SQL syntax, 344

Crossfire
UltraLite support, 13

cryptography
UltraLite Certicom module, 38

CURRENT DATE
UltraLite special value, 208

current date function
UltraLite TODAY function, 310

current row
concurrency in UltraLite, 17

CURRENT TIME
UltraLite special value, 208

CURRENT TIMESTAMP
SQL special value for UltraLite, 5
UltraLite special value, 209

cursors
concurrency in UltraLite, 17, 18

CustDB application
starting in UltraLite, 83

CustDB UltraLite sample
UltraLite about, 79
UltraLite database synchronization, 86
UltraLite file locations, 81

Copyright © 2006, iAnywhere Solutions, Inc. 359

UltraLite source code, 81
UltraLite tutorial, 80

custdb.db
location of, 81

custdb.sql
calling synchronization scripts, 88

custdb.udb
UltraLite location of, 81

D
data

UltraLite selecting rows, 342
UltraLite viewing methods, 61

data management
UltraLite, 11

Data Manager
UltraLite database storage, 50

data type conversion functions
UltraLite about, 236

data types
BIGINT in UltraLite, 212
BINARY in UltraLite, 212
CHAR in UltraLite, 212
DATE in UltraLite, 212
DECIMAL in UltraLite, 212
DOUBLE in UltraLite, 212
FLOAT in UltraLite, 212
INT in UltraLite, 212
INTEGER in UltraLite, 212
LONG BINARY in UltraLite, 212
LONG VARCHAR in UltraLite, 212
NUMERIC in UltraLite, 212
REAL in UltraLite, 212
SMALLINT in UltraLite, 212
TIME in UltraLite, 212
TIMESTAMP in UltraLite, 212
TINYINT in UltraLite, 212
UltraLite, 212
UltraLite alias equivalents, 214
UltraLite SQL, 212
UltraLite SQL conversion functions, 236
VARBINARY in UltraLite, 212
VARCHAR in UltraLite, 212

data types in UltraLite
about, 212

database
UltraLite extended options, 187

UltraLite synchronization utility [ulsync] syntax,
178

database engine
UltraLite , 11

database files, vii
(see also UltraLite databases)
UltraLite connection parameters, 50
UltraLite encrypting, 143

database objects
UltraLite copying method, 63

database options, vii, 40
(see also database options (UltraLite))

database options (UltraLite)
browsing, 78
global_id reference, 104
global_id usage, 40
ml_remote_id reference, 108
ml_remote_id usage, 40

database page size considerations
UltraLite about, 36

database properties, vii
(see also database properties (UltraLite))

database properties (UltraLite)
browsing, 78
case reference, 94
case usage, 33
checksum_level reference, 95
choosing creation-time, 30
date usage, 34
date_format reference, 97
date_order reference, 100
fips property reference, 102
fips usage, 38
max_hash_size reference, 106
max_hash_size usage, 33
nearest_century reference, 109
nearest_century usage, 35
obfuscate reference, 110
obfuscate usage, 38
page_size reference, 112
page_size usage, 36
precision reference, 114
precision usage, 36
scale reference, 116
scale usage, 36
time_format reference, 118
time_format usage, 34
timestamp_format reference, 120

Index

360 Copyright © 2006, iAnywhere Solutions, Inc.

timestamp_format usage, 35
timestamp_increment reference, 123
timestamp_increment usage, 35
utf8_encoding reference, 125
utf8_encoding usage, 32

database utilities
UltraLite database connections, 49

databases, vii
(see also UltraLite databases)
comparing UltraLite and SQL Anywhere, 5
creating with UltraLite plug-in, 25
UltraLite inserting rows, 340

DATALENGTH function
UltraLite SQL syntax, 256

date considerations
UltraLite about, 34

DATE data type
UltraLite, 212

DATE function
UltraLite SQL syntax, 257

date functions
UltraLite alphabetical list, 236

date parts
about, 34, 237

date_format database property
UltraLite reference, 97
UltraLite usage, 34

date_order database property
UltraLite reference, 100
UltraLite usage, 34

DATEADD function
UltraLite SQL syntax, 257

DATEDIFF function
UltraLite SQL syntax, 258

DATEFORMAT function
UltraLite SQL syntax, 259

DATENAME function
UltraLite SQL syntax, 260

DATEPART function
UltraLite SQL syntax, 260

dates
UltraLite ambiguous string conversions, 35, 109
UltraLite conversion functions, 236
UltraLite formatting reference, 97
UltraLite formatting usage, 34
UltraLite ordering, 100
UltraLite rollover point, 35, 109

dates and times in UltraLite

about, 211
datetime

UltraLite conversion functions, 236
DATETIME function

UltraLite SQL syntax, 261
DAY function

UltraLite SQL syntax, 262
day of week

UltraLite DOW function, 265
DAYNAME function

UltraLite SQL syntax, 262
DAYS function

UltraLite SQL syntax, 263
DBF connection parameter

UltraLite syntax, 131
dbisql utility

UltraLite exit codes, 157
UltraLite syntax, 155

DBKEY connection parameter
UltraLite syntax, 143

DBN connection parameter
UltraLite syntax, 142

DDL statements
UltraLite schema changes with, 15

DECIMAL data type
UltraLite, 212

decimal point position considerations
UltraLite about, 36

decimal precision
UltraLite precision reference, 114
UltraLite precision usage, 36

decimals
used in UltraLite, 206

DEFAULT TIMESTAMP columns
UltraLite SQL syntax, 331

default values
UltraLite CURRENT DATE, 208
UltraLite CURRENT TIME, 208
UltraLite CURRENT TIMESTAMP, 209
UltraLite SQLCODE, 210

defaults
UltraLite autoincrement, 331

definitions
UltraLite altering tables , 322

DEGREES function
SQL syntax, 264

DELETE statement
UltraLite dynamic SQL syntax, 336

Copyright © 2006, iAnywhere Solutions, Inc. 361

deleting
UltraLite columns, 322
UltraLite databases, 18
UltraLite deleting all rows from a table, 349
UltraLite indexes, 68
UltraLite publications, 75
UltraLite SQL STOP SYNCHRONIZATION
DELETE statement, 348
UltraLite START SYNCHRONIZATION DELETE
statement, 347
UltraLite table methods, 60
UltraLite users, 77
UltraLite utility to delete databases, 185

deleting an existing UltraLite user
about, 77

demos, vii
(see also tutorials)

derived tables
subqueries for UltraLite SQL, 219
UltraLite FROM clause, 344
UltraLite SQL, 219

desktop creation
UltraLite about, 24

development platforms
UltraLite, 12

devices
UltraLite multiple connection parameters for, 50

DIFFERENCE function
UltraLite SQL syntax, 264

digits
UltraLite maximum number, 36, 114

DISTINCT keyword
UltraLite SQL, 342

distinct operation
UltraLite query access plans, 233

documentation
conventions, x
SQL Anywhere, viii

DOUBLE data type
UltraLite, 212

double hyphen
UltraLite comment indicator, 205

double slash
UltraLite comment indicator, 205

DOW function
UltraLite SQL syntax, 265

DROP INDEX statement
UltraLite SQL syntax, 337

UltraLite usage, 68
DROP PUBLICATION statement

UltraLite SQL syntax, 338
UltraLite usage, 75

DROP TABLE statement
UltraLite SQL syntax, 339
UltraLite usage, 61

dropping
UltraLite columns, 322
UltraLite indexes, 68
UltraLite SQL CREATE INDEX statement, 328
UltraLite SQL DROP INDEX statement, 337
UltraLite SQL DROP PUBLICATION statement,
338
UltraLite SQL DROP TABLE statement, 339
UltraLite table methods, 60

dropping a publication for UltraLite
about, 75

dropping an index
UltraLite about, 68

dropping publications
UltraLite clients, 75

dropping UltraLite tables
about, 60

dummy operation
UltraLite query access plans, 233

dynamic SQL
arithmetic operators for UltraLite, 228
bitwise operators for UltraLite, 229
logical operators for UltraLite, 223
operator precedence for UltraLite, 229
string operators for UltraLite, 229

E
editing

UltraLite table methods, 61
ELSE

CASE expression for UltraLite, 217
IF expressions for UltraLite, 217

embedded SQL
line numbers for UltraLite, 158
NULL values in UltraLite, 207
UltraLite character strings, 158
UltraLite preprocessor for, 158
UltraLite support, 13

encoding
UltraLite utf8, 32, 125

Index

362 Copyright © 2006, iAnywhere Solutions, Inc.

encryption
UltraLite database property reference, 102
UltraLite encryption keys, 143
UltraLite fips reference, 38
UltraLite obfuscate property reference, 110
UltraLite obfuscate property usage, 38
UltraLite reference, 102
UltraLite usage, 38

END
CASE expression for UltraLite, 217

ENDIF
IF expressions for UltraLite, 217

engine
embedded client for UltraLite, 11

entity-relationship diagrams
UltraLite about, 63

entity-relationship tab
UltraLite using, 63

environment variables
ERRORLEVEL for UltraLite, 157
UltraLite ULSQLCONNECT, 53
UltraLite usage, 49

ER Diagram tab
UltraLite about, 63

erasing
UltraLite table methods, 60

error codes
UltraLite database creation [ulcreate] utility, 189
UltraLite database synchronization [ulsync] utility,
189
UltraLite load XML to database [ulload] utility,
189
UltraLite unload data to XML [ulunload] utility,
189
UltraLite utilities, 189

ERRORLEVEL environment variable
Interactive SQL return code for UltraLite, 157

examples, vii
(see also tutorials)

exclusive OR
bitwise operator for UltraLite, 229

EXISTS conditions
UltraLite SQL, 226

exit codes
Interactive SQL [dbisql] utility for UltraLite, 157
UltraLite database creation [ulcreate] utility, 189
UltraLite database synchronization [ulsync] utility,
189

UltraLite load XML to database [ulload] utility,
189
UltraLite unload data to XML [ulunload] utility,
189

EXP function
UltraLite SQL syntax, 266

expansion cards
UltraLite writing to, 51

EXPLANATION function
UltraLite SQL syntax, 266

exploring the CustDB Samples for UltraLite
about, 79

exponential function
UltraLite EXP function, 266

exponents
in UltraLite, 206

expressions
aggregate for UltraLite, 218
CASE expressions for UltraLite, 217
IF expressions for UltraLite, 217
SQL operator precedence for UltraLite, 229
subqueries for UltraLite SQL, 219
UltraLite column names, 216
UltraLite constants, 216
UltraLite input parameters, 220
UltraLite SQL, 215

expressions in UltraLite
about, 215

extended creation-time options
about, 186

extended options
about, 187
UltraLite creation-time properties, 186
UltraLite overview, 186
UltraLite synchronization, 187

extended synchronization parameters
about, 187

F
failures

UltraLite preventing out-of-memory errors, 148
features

UltraLite, 4
Federal Information Processing Standards (see FIPS)
feedback

documentation, xv
providing, xv

Copyright © 2006, iAnywhere Solutions, Inc. 363

fetching rows
concurrency in UltraLite, 18

file names
UltraLite connection parameters, 50

file objects
UltraLite types, 15

file systems, vii
(see also VFS)

files
UltraLite CustDB sample location, 81

filter operation
UltraLite query access plans, 233

filtering
UltraLite table methods, 62

FIPS
UltraLite fips property reference, 102
UltraLite fips property usage, 38
UltraLite setup and deployment for, 102

fips database property
UltraLite usage, 38

FIRST clause
UltraLite SQL SELECT statement, 342

FLOAT data type
UltraLite, 212

FLOOR function
UltraLite SQL syntax, 267

FOR clause
UltraLite SELECT statement, 343

FORCE ORDER clause
UltraLite SELECT statement, 343

foreign keys
UltraLite copying method, 63
UltraLite foreign keys, 331
UltraLite of unnamed, 331

format options (UltraLite)
case-sensitivity reference, 94
case-sensitivity usage, 33
date_format reference, 97
date_format usage, 34
date_order reference, 100
date_order usage, 34
max_hash_size reference, 106
max_hash_size usage, 33
nearest_century reference, 109
nearest_century usage, 35
precision reference, 114
precision usage, 36
scale reference, 116

scale usage, 36
time_format reference, 118
time_format usage, 34
timestamp_format reference, 120
timestamp_format usage, 35
timestamp_increment reference, 123
timestamp_increment usage, 35
UltraLite checksum_level reference, 95
utf8_encoding reference, 125
utf8_encoding usage, 32

FROM clause
UltraLite SELECT statement, 342
UltraLite SQL syntax, 344

functions
alphabetical list of all functions, 241
types of function for UltraLite, 236
UltraLite aggregate, 236
UltraLite data type conversion SQL, 236
UltraLite date and time, 236
UltraLite miscellaneous, 238
UltraLite numeric, 239
UltraLite string, 239

functions, aggregate
about, 236
UltraLite AVG, 245
UltraLite COUNT, 255
UltraLite LIST, 277
UltraLite MAX, 281
UltraLite MIN, 282
UltraLite SUM, 308

functions, data type conversion
UltraLite about, 236
UltraLite CAST, 247
UltraLite CONVERT, 252
UltraLite HEXTOINT, 269
UltraLite INTTOHEX, 273
UltraLite ISDATE, 273
UltraLite ISNULL, 273

functions, date and time
UltraLite DATE, 257
UltraLite DATEADD, 257
UltraLite DATEDIFF, 258
UltraLite DATEFORMAT, 259
UltraLite DATENAME, 260
UltraLite DATEPART, 260
UltraLite DATETIME, 261
UltraLite DAY, 262
UltraLite DAYNAME, 262

Index

364 Copyright © 2006, iAnywhere Solutions, Inc.

UltraLite DAYS, 263
UltraLite DOW, 265
UltraLite GETDATE, 267
UltraLite HOUR, 269
UltraLite HOURS, 270
UltraLite MINUTE, 282
UltraLite MINUTES, 283
UltraLite MONTH, 285
UltraLite MONTHNAME, 285
UltraLite MONTHS, 286
UltraLite NOW, 288
UltraLite QUARTER, 291
UltraLite SECOND, 297
UltraLite SECONDS, 298
UltraLite TODAY, 310
UltraLite WEEKS, 314
UltraLite YEAR, 315
UltraLite YEARS, 315
UltraLite YMD, 316
UltraLite, about, 236

functions, miscellaneous
UltraLite about, 238
UltraLite ARGN, 242
UltraLite COALESCE, 251
UltraLite EXPLANATION, 266
UltraLite GREATER, 268
UltraLite IFNULL, 271
UltraLite LESSER, 276
UltraLite NEWID, 287
UltraLite NULLIF, 288
UltraLiteSHORT_PLAN, 299

functions, numeric
DEGREES, 264
UltraLite about, 239
UltraLite ABS, 241
UltraLite ACOS, 241
UltraLite ASIN, 243
UltraLite ATAN, 244
UltraLite ATAN2, 244
UltraLite CEILING, 248
UltraLite COS, 254
UltraLite COT, 255
UltraLite EXP, 266
UltraLite FLOOR, 267
UltraLite LOG, 278
UltraLite LOG10, 279
UltraLite MOD, 284
UltraLite PI, 290

UltraLite POWER, 291
UltraLite RADIANS, 292
UltraLite REMAINDER, 292
UltraLite ROUND, 296
UltraLite SIGN, 300
UltraLite SIN, 301
UltraLite SQRT, 303
UltraLite TAN, 309
UltraLite TRUNCNUM, 311

functions, string
UltraLite about, 239
UltraLite ASCII, 242
UltraLite BYTE_LENGTH, 246
UltraLite BYTE_SUBSTR, 246
UltraLite CHAR, 249
UltraLite CHAR_LENGTH, 250
UltraLite CHARINDEX, 249
UltraLite DIFFERENCE, 264
UltraLite INSERTSTR, 272
UltraLite LCASE, 274
UltraLite LEFT, 275
UltraLite LENGTH, 275
UltraLite LOCATE, 278
UltraLite LOWER, 280
UltraLite LTRIM, 280
UltraLite PATINDEX, 289
UltraLite REPEAT, 293
UltraLite REPLACE, 294
UltraLite REPLICATE, 295
UltraLite RIGHT, 295
UltraLite SIMILAR, 300
UltraLite SOUNDEX, 302
UltraLite SPACE, 303
UltraLite STR, 304
UltraLite STRING, 305
UltraLite STUFF, 306
UltraLite SUBSTRING, 307
UltraLite TRIM, 310
UltraLite UCASE, 311
UltraLite UPPER, 312
UltraLite UUIDTOSTR, 313
UltraLiteRTRIM, 297
UltraLiteSTRTOUUID, 305

functions, system
UltraLite DATALENGTH, 256

Copyright © 2006, iAnywhere Solutions, Inc. 365

G
GETDATE function

UltraLite SQL syntax, 267
global autoincrement

UltraLite global_id reference, 104
global database ID considerations

UltraLite about, 40
global database identifier

UltraLite global_id reference, 104
global variables

@@identity (UltraLite), 231
global_database_id option

UltraLite CREATE TABLE statement, 331
global_id option

UltraLite reference, 104
UltraLite usage, 40

globally unique identifiers
UltraLiteSQL syntax for NEWID function, 287

government
UltraLite security for, 38, 102

GREATER function
UltraLite SQL syntax, 268

GROUP BY clause
UltraLite SELECT statement, 342

group-by operation
UltraLite query access plans, 233

GUIDs
UltraLite SQL syntax for UUIDTOSTR function,
313
UltraLiteSQL syntax for NEWID function, 287
UltraLiteSQL syntax for STRTOUUID function,
305

H
hash

UltraLite configuring size for, 71
UltraLite optimal size for, 69
UltraLite size considerations, 33

hashing
UltraLite indexes reference, 106

HAVING clause
UltraLite SELECT statement, 343

hexadecimal strings
UltraLite about, 269

HEXTOINT function
UltraLite SQL syntax, 269

host platforms

UltraLite Windows supported platforms, 12
HotSync conduit

installing, 163
installing for CustDB, 163

HOUR function
UltraLite SQL syntax, 269

HOURS function
UltraLite SQL syntax, 270

I
icons

used in manuals, xii
identifiers

UltraLite SQL, 203
identifiers in UltraLite

about, 203
IDENTITY column

@@identity (UltraLite), 231
IDs

ml_remote_id reference, 108
ml_remote_id usage, 40
UltaLite global database reference, 104
UltraLite global database usage, 40
UltraLite user, 45

IF expressions
UltraLite SQL syntax, 217

IFNULL function
UltraLite SQL syntax, 271

IN conditions
UltraLite SQL, 227

in-process runtime
UltraLite, 11

index creation wizard
UltraLite using, 67

index performance considerations
UltraLite about, 33

index-scan operation
UltraLite query access plans, 233

indexes
UltraLite copying method, 63
UltraLite creating, 67
UltraLite databases, 20
UltraLite deleting, 68
UltraLite hash considerations, 33
UltraLite hash value reference, 106
UltraLite non-unique indexes, 66
UltraLite page_size usage, 36

Index

366 Copyright © 2006, iAnywhere Solutions, Inc.

UltraLite performance enhancements, 69
UltraLite primary keys, 27
UltraLite types, 66
UltraLite unique indexes, 66, 328
UltraLite unique keys, 66
UltraLite when to create, 67
UltraLite when to use, 65
UltraLite working with, 65

indicators
UltraLite comments in SQL block, 205

indices
UltraLite system table, 194, 195

initializing databases
Sybase Central UltraLite plug-in, 25

INNER JOIN clause
UltraLite SQL syntax, 344

inner references
subqueries for UltraLite SQL, 219

input parameters
UltraLite about, 220

INSERT statement
UltraLite object copying usage, 63
UltraLite SQL syntax, 340

inserting
UltraLite inserting rows, 340

INSERTSTR function
UltraLite SQL syntax, 272

install-dir
documentation usage, xii

INT data type
UltraLite, 212

INTEGER data type
UltraLite, 212

integrity
UltraLite CREATE TABLE statement, 331

integrity constraints
UltraLite usage, 331

Interactive SQL
UltraLite command line, 155
UltraLite displaying plans, 232
UltraLite plan interpretation, 233
UltraLite plan operations, 233
UltraLite text plans, 232

Interactive SQL utility [dbisql]
UltraLite exit codes, 157
UltraLite syntax, 155

introducing CustDB
about, 80

introducing the UltraLite database management system
about, 4

introducing UltraLite database connections
about, 44

introduction to UltraLite utilities
about, 154

INTTOHEX function
UltraLite SQL syntax, 273

IS
logical operators for UltraLite, 223

ISDATE function
UltraLite SQL syntax, 273

ISNULL function
UltraLite SQL syntax, 273

isolation levels
UltraLite, 18

J
join operation

UltraLite query access plans, 233
joins

UltraLite FROM clause syntax, 344

K
key connection parameter

UltraLite syntax, 143
KEY JOIN clause

UltraLite SQL syntax, 344
keys

registry for ulcond cache size, 163
UltraLite index creation from, 66
UltraLite index hash, 33
UltraLite primary, 56

keyset operation
UltraLite query access plans, 233

keywords
UltraLite SQL, 202

keywords in UltraLite
about, 202

L
LCASE function

UltraLite SQL syntax, 274
LEFT function

UltraLite SQL syntax, 275
LEFT OUTER JOIN clause

UltraLite SQL syntax, 344

Copyright © 2006, iAnywhere Solutions, Inc. 367

LENGTH function
UltraLite SQL syntax, 275

LESSER function
UltraLite SQL syntax, 276

libraries
choosing in UltraLite, 13
UltraLite required for FIPS, 102

like-scan operation
UltraLite query access plans, 233

limitations
UltraLite, 8
UltraLite data types, 212

line length
sqlpp utility output for UltraLite, 158

LIST function
UltraLite SQL syntax, 277

lists
UltraLite LIST function syntax, 277

literals
UltraLite about strings, 216

loading
UltraLite databases, 174

LOCATE function
UltraLite SQL syntax, 278

locking
UltraLite concurrency, 17

LOG function
UltraLite SQL syntax, 278

LOG10 function
UltraLite SQL syntax, 279

logical operators
UltraLite SQL syntax, 223

logs
UltraLite internal mechanism, 15, 19

lojoin operation
UltraLite query access plans, 233

LONG BINARY data type
UltraLite, 212

LONG VARCHAR data type
UltraLite, 212

LOWER function
UltraLite SQL syntax, 280

lowercase strings
UltraLite LCASE function, 274
UltraLite LOWER function, 280

LTRIM function
UltraLite SQL syntax, 280

M
M-Business Anywhere

UltraLite engine support, 11
UltraLite support, 13

mathematical expressions
arithmetic operators for UltraLite, 228

MAX function
UltraLite SQL syntax, 281

max_hash_size property
UltraLite reference, 106
UltraLite usage, 33

maximum
columns per table for UltraLite, 8
connections per UltraLite database, 8
rows per table for UltraLite, 8
tables per UltraLite database, 8
UltraLite date ranges, 212

media failures
UltraLite databases, 19

memory failures
UltraLite preventing, 148

memory usage
UltraLite database storage, 50
UltraLite indexes, 20
UltraLite row states, 18

metadata
UltraLite considering for reserve size, 148

MIN function
UltraLite SQL syntax, 282

minimum
UltraLite date ranges, 212

MINUTE function
UltraLite SQL syntax, 282

MINUTES function
UltraLite SQL syntax, 283

ml_add_connection_script system procedure
adding, 88

ml_add_table_script system procedure
adding, 88

ml_remote_id
UltraLite property configuration, 169
UltraLite setting value of, 40

ml_remote_id option
UltraLite reference, 108
UltraLite usage, 40

MobiLink

Index

368 Copyright © 2006, iAnywhere Solutions, Inc.

UltraLite CREATE PUBLICATION statement,
330
UltraLite SQL DROP PUBLICATION statement,
338
UltraLite SQL STOP SYNCHRONIZATION
DELETE statement, 348
UltraLite START SYNCHRONIZATION DELETE
statement, 347
UltraLite user ID uniqueness, 40

MobiLink synchronization
setting timestamp_increment reference, 123

MOD function
UltraLite SQL syntax, 284

modeling
UltraLite databases from MobiLink, 26

modifying
UltraLite columns, 322
UltraLite tables, 322

MONEY
UltraLite equivalent of, 214

MONTH function
UltraLite SQL syntax, 285

MONTHNAME function
UltraLite SQL syntax, 285

MONTHS function
UltraLite SQL syntax, 286

multi-process access
UltraLite engine, 11

multi-threaded applications
UltraLite, 11

multiple databases
UltraLite, 17

multiple devices
UltraLite connection parameters for, 50

N
names

UltraLite column names, 216
NATURAL JOIN clause

UltraLite SQL syntax, 344
nearest century conversion considerations

UltraLite about, 35
nearest_century database property

UltraLite reference, 109
UltraLite usage, 35

NEWID function
UltraLiteSQL syntax, 287

newsgroups
technical support, xv

non-unique indexes
UltraLite index creation from, 66

nosync tables
UltraLite overview, 57

NOT
bitwise operator for UltraLite, 229
logical operators for UltraLite, 223

NOW function
UltraLite SQL syntax, 288

NT_FILE connection parameter
UltraLite syntax , 135

NULL
UltraLite ISNULL function, 273

NULL value in UltraLite
about, 207

NULL values
UltraLite SQL, 207

NULLIF function
UltraLite about, 288
using with CASE expressions in UltraLite, 218

numbers
UltraLite SQL, 206

numbers in UltraLite
about, 206

NUMERIC data type
UltraLite, 212

numeric functions
UltraLite alphabetical list, 239

numeric precision
UltraLite precision reference, 114
UltraLite precision usage, 36

O
obfuscate database property

UltraLite reference, 110
UltraLite usage, 38

obfuscation
UltraLite usage, 38

on-device creation
about, 29

opening connections with connection strings
about, 47

operating systems
UltraLite, 12
UltraLite Windows supported platforms, 12

Copyright © 2006, iAnywhere Solutions, Inc. 369

operator precedence
UltraLite SQL syntax, 229

operators
arithmetic operators for UltraLite, 228
bitwise operators for UltraLite, 229
comparison operators for UltraLite, 222
logical operators for UltraLite, 223
precedence of operators for UltraLite, 229
string operators for UltraLite, 229
UltraLite SQL syntax, 228

operators in UltraLite
about, 228

optimization
UltraLite queries, 343
UltraLite SQL, 232

optimizer, vii
(see also query optimizer)
UltraLite impact of, 232
UltraLite overriding, 232
UltraLite plan interpretation, 233
UltraLite plan operations, 233
UltraLite using, 232

options
UltraLite browsing, 78
UltraLite nearest_century reference, 109
UltraLite nearest_century usage, 35
UltraLite utilities, 186

options (UltraLite)
global_id reference, 104
ml_remote_id reference, 108

OR
bitwise operators for UltraLite, 229
logical operators for UltraLite, 223

ORDER BY clause
UltraLite SELECT statement, 343

order of operations
SQL operator precedence for UltraLite, 229

outer references
subqueries for UltraLite SQL, 219

overhead
UltraLite considering for reserve size, 148

P
page_size database property

UltraLite reference, 112
UltraLite usage, 36

pages

UltraLite size of, 36
Palm Computing Platform, vii

(see also Palm OS)
Palm data management utility

syntax, 185
Palm HotSync Conduit installer utility

syntax, 163
Palm OS

expansion cards, using, 51
UltraLite character sets, 32
UltraLite databases, 51
UltraLite PDB records, 51
UltraLite VFS databases, 51

PALM_ALLOW_BACKUP connection parameter
UltraLite syntax, 145

PALM_DB connection parameter
file database name for UltraLite, 139

PALM_FILE connection parameter
UltraLite syntax , 137

parameters
UltraLite connection list, 44
UltraLite connection overview, 47
UltraLite SQL input, 220

partitioning
UltraLite rows publishing, 73

Password connection parameter
UltraLite syntax, 146

passwords
PWD UltraLite connection parameter, 146
UltraLite adding new, 45
UltraLite changing, 76
UltraLite considerations, 76
UltraLite databases, 45
UltraLite defaults, 76
UltraLite semantics, 46

paths
UltraLite connection parameters, 50

PATINDEX function
UltraLiteSQL syntax, 289

pattern matching
UltraLitePATINDEX function, 289
wildcards, 289

PDB, vii
(see also UltraLite databases and Palm OS)
UltraLite databases, 51

performance
ulcond10 cache for UltraLite, 163
UltraLite CACHE_SIZE , 128

Index

370 Copyright © 2006, iAnywhere Solutions, Inc.

UltraLite indexes, 27, 65, 69
UltraLite page sizes, 36
UltraLite preventing memory failures, 148
UltraLite query optimization, 343

persistent memory
UltraLite database storage, 50

physical limitations
UltraLite, 8

PI function
UltraLite SQL syntax, 290

placeholder
UltraLite SQL input parameter, 220

planning for scalability
UltraLite about, 10

plans
UltraLite cursors, 266
UltraLite operations for, 233
UltraLite plan interpretation, 233
UltraLite plan operations, 233
UltraLite queries, overriding, 232
UltraLite queries, reading, 233
UltraLite queries, working with, 232
UltraLite SQL syntax, 266
UltraLite text plans, 232

platforms
UltraLite file storage, 50
UltraLite multiple connection parameters for, 50

POWER function
UltraLite SQL syntax, 291

precedence
SQL operator precedence for UltraLite, 229

precision database property
UltraLite reference, 114
UltraLite usage, 36

predicates
ALL for UltraLite SQL, 224
ANY for UltraLite SQL, 225
BETWEEN for UltraLite SQL, 226
comparison operators for UltraLite, 222
EXISTS for UltraLite SQL, 226
IN for UltraLite SQL, 227
UltraLite SQL, 221

prefix
UltraLite for Windows CE databases , 51

prepared statements
UltraLite input parameters, 220

primary keys
generating unique values, 287

generating unique values using UUIDs, 287
UltraLite indexing, 27
UltraLite integrity constraints, 331
UltraLite order of columns, 331
UltraLite tables, 56
UltraLiteUUIDs and GUIDs, 287

procedures
UltraLite limitations, 5

programming interfaces
UltraLite supported, 13

properties
UltraLite browsing, 78
UltraLite databases, 30
UltraLite system table, 197

properties (UltraLite)
case reference, 94
checksum_level reference, 95
date_format reference, 97
date_order reference, 100
fips property reference, 102
nearest_century reference, 109
obfuscate reference, 110
page_size reference, 112
precision reference, 114
scale reference, 116
time_format reference, 118
timestamp_format reference, 120
timestamp_increment reference, 123
utf8_encoding reference, 125

publications
UltraLite altering , 326
UltraLite copying method, 63
UltraLite CREATE PUBLICATION statement,
330
UltraLite dropping , 75
UltraLite limit of, 172
UltraLite maximum of, 8
UltraLite publishing tables, 72
UltraLite rows publishing, 73
UltraLite SQL CREATE INDEX statement, 328
UltraLite SQL DROP INDEX statement, 337
UltraLite SQL DROP PUBLICATION statement,
338
UltraLite SQL DROP TABLE statement, 339
UltraLite system table, 196
UltraLite WHERE clause usage, 73
UltraLite working with, 72

publishing

Copyright © 2006, iAnywhere Solutions, Inc. 371

UltraLite rows, 73
UltraLite tables, 72

publishing a subset of rows from an UltraLite table
about, 73

publishing whole UltraLite tables
about, 72

PWD connection parameter
UltraLite syntax, 146

Q
QUARTER function

UltraLite SQL syntax, 291
queries

UltraLite optimization, 343
query access plans in UltraLite

about, 232
query optimization, vii

(see also optimizer)
UltraLite SQL, 232

query optimizer, vii
(see also optimizer)
UltraLite, 232

query plans
UltraLite how to read, 233
UltraLite operations, 233
UltraLite overriding, 232
UltraLite text of, 232
UltraLite working with, 232

R
RADIANS function

UltraLite SQL syntax, 292
range

UltraLite date type, 212
reading

rows in UltraLite, 18
reading UltraLite access plans

about, 233
REAL data type

UltraLite, 212
recovery

UltraLite databases, 18, 19
reference databases

creating for UltraLite, 26
options for UltraLite, 27

referential integrity
UltraLite databases, 5

UltraLite indexes, 65
registry keys

ulcond cache size, 163
REMAINDER function

UltraLite SQL syntax, 292
remote databases

deleting UltraLite data, 185
remote ID considerations for MobiLink server
synchronization

about, 40
remote IDs

setting in UltraLite databases, 40
UltraLite about, 40

remote servers
UltraLite creating tables , 331

removing
UltraLite users, 77

renaming
UltraLite columns, 322
UltraLite constraints , 322
UltraLite tables, 322

REPEAT function
UltraLite SQL syntax, 293

REPLACE function
UltraLite SQL syntax, 294

REPLICATE function
UltraLite SQL syntax, 295

requests
concurrency in UltraLite, 17

RESERVE_SIZE connection parameter
UltraLite syntax, 148

reserved words
UltraLite SQL, 202

restoring
UltraLite databases, 19

return codes
Interactive SQL [dbisql] utility for UltraLite, 157

RIGHT function
UltraLite SQL syntax, 295

RIGHT OUTER JOIN clause
UltraLite SQL syntax, 344

role names
UltraLite foreign keys, 331
UltraLite role names, 331

role of user authentication
UltraLite about, 45

ROLLBACK statement
UltraLite SQL syntax, 341

Index

372 Copyright © 2006, iAnywhere Solutions, Inc.

rollbacks
UltraLite databases, 18

rolling back
UltraLite transaction overview , 19
UltraLite transactions, 341

ROUND function
UltraLite SQL syntax, 296

rounding
UltraLite scale reference, 116
UltraLite scale usage , 36

row packing
UltraLite observing, 148

rowlimit operation
UltraLite query access plans, 233

rows
UltraLite deleting all rows from a table, 349
UltraLite inserting rows, 340
UltraLite publishing, 73
UltraLite selecting, 342
UltraLite updating rows, 352

RTRIM function
UltraLiteSQL syntax, 297

runtime
UltraLite files for, 11

runtime library
UltraLite, 11

S
sample application

starting CustDB in UltraLite, 83
samples, vii

(see also tutorials)
samples-dir

documentation usage, xii
scale database property

UltraLite reference, 116
UltraLite usage, 36

scan operation
UltraLite query access plans, 233

schema
UltraLite catalog of tables for, 15
UltraLite changes, precautions, 15

schemas
UltraLite system tables, 192

scripted uploads
UltraLite CREATE PUBLICATION syntax, 330

search conditions

ALL for UltraLite SQL, 224
ANY for UltraLite SQL, 225
BETWEEN for UltraLite SQL, 226
EXISTS for UltraLite SQL, 226
IN for UltraLite SQL, 227
UltraLite SQL, 221

search conditions in UltraLite
about, 221

SECOND function
UltraLite SQL syntax, 297

SECONDS function
UltraLite SQL syntax, 298

security
UltraLite, 38, 102
UltraLite user authentication, 45

security considerations
UltraLite about, 38

SELECT statement
UltraLite browsing data usage, 62
UltraLite object copying usage, 63
UltraLite SQL syntax, 342

selecting
UltraLite forming unions, 351
UltraLite selecting rows, 342

sensitivity
UltraLite case reference, 94
UltraLite case usage, 33

SHORT_PLAN function
UltraLiteSQL syntax, 299

SIGN function
UltraLite SQL syntax, 300

SIMILAR function
UltraLite SQL syntax, 300

SIN function
UltraLite SQL syntax, 301

slash-asterisk
UltraLite comment indicator, 205

SMALLINT data type
UltraLite, 212

SMALLMONEY
UltraLite equivalent of, 214

sort order
UltraLite collations, 31

SOUNDEX function
UltraLite SQL syntax, 302

SPACE function
UltraLite SQL syntax, 303

special values

Copyright © 2006, iAnywhere Solutions, Inc. 373

UltraLite CURRENT DATE, 208
UltraLite CURRENT TIME, 208
UltraLite CURRENT TIMESTAMP, 209
UltraLite SQL, 208
UltraLite SQLCODE, 210

SQL, vii
(see also UltraLite SQL)
comparison operators for UltraLite, 222
data types in UltraLite, 212
expressions in UltraLite, 215
operators in UltraLite, 228
search conditions in UltraLite, 221
UltraLite identifiers , 203
UltraLite keywords , 202
UltraLite numbers, 206
UltraLite reserved words, 202
UltraLite schema changes with, 15
UltraLite statement types, 320
UltraLite strings, 204
variables in UltraLite, 231

SQL Anywhere
documentation, viii
statistics, comparing with UltraLite, 8

SQL Anywhere databases
database comparison, 5

SQL functions
types of function for UltraLite, 236
UltraLite aggregate, 236
UltraLite data type conversion, 236
UltraLite date and time, 236
UltraLite miscellaneous, 238
UltraLite numeric, 239
UltraLite string, 239

SQL preprocessor utility
UltraLite syntax , 158

SQL statements
UltraLite COMMIT syntax, 327
UltraLite CREATE PUBLICATION syntax, 330
UltraLite CREATE TABLE syntax , 331
UltraLite DELETE dynamic SQL syntax, 336
UltraLite FROM clause syntax, 344
UltraLite INSERT syntax, 340
UltraLite SQL ALTER PUBLICATION syntax,
326
UltraLite SQL ALTER TABLE syntax, 322
UltraLite SQL CREATE INDEX syntax, 328
UltraLite SQL DROP INDEX syntax, 337
UltraLite SQL DROP PUBLICATION syntax, 338

UltraLite SQL DROP TABLE syntax, 339
UltraLite SQL ROLLBACK syntax, 341
UltraLite SQL SELECT syntax, 342
UltraLite SQL STOP SYNCHRONIZATION
DELETE syntax, 348
UltraLite SQL UNION syntax, 351
UltraLite START SYNCHRONIZATION DELETE
syntax, 347
UPDATE syntax for UltraLite SQL, 352

SQL syntax
alphabetical list of all functions, 241
CASE expression for UltraLite, 217
IF expressions for UltraLite, 217
UltraLite column names, 216
UltraLite comments, 205
UltraLite constants, 216
UltraLite functions, 236
UltraLite input parameters, 220
UltraLite special values, 208
UltraLite SQLCODE special value, 210

SQLCODE
UltraLite concurrency checks, 17
UltraLite special value, 210

SQLCODE SQLE_LOCKED
UltraLite concurrency error, 17

SQLE_NOTFOUND
UltraLite concurrency error, 17

sqlpp utility
syntax for UltraLite, 158

SQRT function
UltraLite SQL syntax, 303

square root function
UltraLite SQRT function, 303

START connection parameter
UltraLite syntax, 149

START SYNCHRONIZATION DELETE statement
UltraLite SQL syntax, 347

state bytes
UltraLite databases, 18

statement syntax
UltraLite FROM clause, 344

statements
UltraLite COMMIT syntax , 327
UltraLite CREATE PUBLICATION syntax, 330
UltraLite CREATE TABLE syntax , 331
UltraLite DELETE dynamic SQL syntax, 336
UltraLite FROM clause, 344
UltraLite INSERT syntax, 340

Index

374 Copyright © 2006, iAnywhere Solutions, Inc.

UltraLite prepared, input parameters for, 220
UltraLite SQL ALTER PUBLICATION syntax,
326
UltraLite SQL ALTER TABLE syntax, 322
UltraLite SQL CREATE INDEX syntax, 328
UltraLite SQL DROP INDEX syntax, 337
UltraLite SQL DROP PUBLICATION syntax, 338
UltraLite SQL DROP TABLE syntax, 339
UltraLite SQL ROLLBACK syntax, 341
UltraLite SQL SELECT syntax, 342
UltraLite SQL STOP SYNCHRONIZATION
DELETE syntax, 348
UltraLite SQL UNION syntax, 351
UltraLite START SYNCHRONIZATION DELETE
syntax, 347
UltraLite TRUNCATE TABLE syntax, 349
UltraLite types, 320
UPDATE syntax for UltraLite SQL, 352

statistics
UltraLite, 8

STOP SYNCHRONIZATION DELETE statement
UltraLite SQL syntax, 348

storage
PALM_ALLOW_BACKUP for UltraLite, 145
UltraLite reserve size, 148

stored procedures
UltraLite limitations, 5

STR function
UltraLite SQL syntax, 304

STRING function
UltraLite SQL syntax, 305

string functions
UltraLite alphabetical list, 239

string length
UltraLite LENGTH function, 275

string literals
UltraLite about, 216

string operators
dynamic SQL syntax for UltraLite, 229

string position
UltraLite LOCATION function, 278

strings
removing trailing blanks in UltraLite, 297
replacingin UltraLite , 294
UltraLite ambiguous conversions to dates, 35, 109
UltraLite case sensitivity, 204
UltraLite SQL, 204
UltraLite SQL functions, 239

strings in UltraLite
about, 204

strong encryption
UltraLite reference, 102
UltraLite usage, 38

STRTOUUID function
UltraLiteSQL syntax, 305

STUFF function
UltraLite SQL syntax, 306

subqueries
UltraLite SQL, 219

subquery operation
UltraLite query access plans, 233

SUBSTR function
UltraLite SQL syntax, 307

SUBSTRING function
UltraLite SQL syntax, 307

substrings
replacingin UltraLite , 294
UltraLite about, 307

SUM function
UltraLite SQL syntax, 308

supplying UltraLite connection parameters
about, 47

support
newsgroups, xv

Sybase Central
browsing CustDB in UltraLite, 88
creating UltraLite databases, 25
UltraLite column creation methods, 58
UltraLite copying database objects method, 63
UltraLite creating indexes, 67
UltraLite creating table methods, 56
UltraLite system table browsing methods, 61
UltraLite table alteration methods, 59
UltraLite table browsing methods, 61
UltraLite table creation methods, 56
UltraLite table deletion methods, 60

Symbian
UltraLite character sets, 32

SYMBIAN_FILE connection parameter
file database name for UltraLite, 140

synchronization
character sets in UltraLite, 31
setting timestamp_increment reference, 123
ulsync utility for UltraLite databases, 178
UltraLite CustDB tutorial, 86
UltraLite schema changes during, 15

Copyright © 2006, iAnywhere Solutions, Inc. 375

UltraLite system table, 192
synchronization logic

browsing Sybase Central in UltraLite, 88
synchronization model

UltraLite databases, 26
synchronization parameters

UltraLite Disable Concurrency overview, 18
synchronization scripts

browsing the UltraLite sample, 88
syntax

arithmetic operators for UltraLite, 228
bitwise operators for UltraLite, 229
CASE expression for UltraLite, 217
comparison operators for UltraLite, 222
IF expressions for UltraLite, 217
logical operators for UltraLite, 223
SQL operator precedence for UltraLite, 229
string operators for UltraLite, 229
UltraLite column names, 216
UltraLite constants, 216
UltraLite CURRENT DATE special value, 208
UltraLite CURRENT TIMESTAMP special value,
209
UltraLite special values, 208
UltraLite SQL comments, 205
UltraLite SQL CURRENT TIME special value,
208
UltraLite SQL functions, 236
UltraLite SQL input parameters, 220
UltraLite SQL operators, 228
UltraLite SQLCODE special value, 210

SYS
UltraLite system tables, 192

sysarticle system table [UltraLite]
about, 196

syscolumn system table [UltraLite]
about, 193

sysindex system table [UltraLite]
about, 194

sysixcol system table [UltraLite]
about, 195

syspublication system table [UltraLite]
about, 196

systable system table [UltraLite]
about, 192

system failures
UltraLite databases, 19

system functions

UltraLite limitations, 5
system objects

UltraLite displaying methods, 62
system tables

UltraLite about, 192
UltraLite browsing methods, 61
UltraLite hiding and showing, 192
UltraLite sysarticle, 196
UltraLite syscolumn, 193
UltraLite sysindex, 194
UltraLite sysixcol, 195
UltraLite syspublication, 196
UltraLite systable, 192
UltraLite sysuldata, 197

sysuldata system table [UltraLite]
about, 197

T
table constraints

UltraLite adding, deleting, or modifying, 322
UltraLite CREATE TABLE statement, 331

table expressions
subqueries for UltraLite SQL, 219

table owners
UltraLite, 203

tableOrder
UltraLite ulsync options for, 178

tables
UltraLite altering, 322
UltraLite altering methods, 59
UltraLite browsing methods, 61
UltraLite copying method, 63
UltraLite copying methods, 62
UltraLite creating , 331
UltraLite creating methods, 56
UltraLite deleting methods, 60
UltraLite editing methods, 61
UltraLite inserting rows, 340
UltraLite limitations, 8
UltraLite renaming, 322
UltraLite replicating , 322
UltraLite rows publishing, 73
UltraLite table filtering methods, 62
UltraLite temporary, 16, 232
UltraLite truncating, 349
UltraLite working with, 56

TAN function

Index

376 Copyright © 2006, iAnywhere Solutions, Inc.

UltraLite SQL syntax, 309
target platforms

UltraLite, 12
TCP/IP, vii

(see also TCP/IP synchronization)
technical support

newsgroups, xv
temp operation

UltraLite query access plans, 233
temporary files

UltraLite, 16
temporary tables

UltraLite about, 16
UltraLite limitations, 5
UltraLite queries, 232

text
UltraLite equivalent of, 214

THEN
IF expressions for UltraLite, 217

threads
concurrency in UltraLite, 17

time considerations
UltraLite about, 34

TIME data type
UltraLite , 212

time functions
UltraLite alphabetical list, 236

time_format database property
UltraLite reference, 118
UltraLite usage, 34

times
UltraLite conversion functions, 236

TIMESTAMP
UltraLite column limitations, 5
UltraLite TIMESTAMP columns, 331

timestamp considerations
UltraLite about, 35

TIMESTAMP data type
UltraLite, 212

timestamp_format database property
UltraLite reference, 120
UltraLite usage, 35

timestamp_increment database property
UltraLite reference, 123
UltraLite usage, 35

timestamp_increment property
using in MobiLink synchronization reference, 123

TINYINT data type

UltraLite, 212
TODAY function

UltraLite SQL syntax, 310
TOP clause

UltraLite SQL SELECT statement, 342
transaction log

UltraLite internal, 15, 19
transactions

concurrency in UltraLite, 17
UltraLite committing, 327
UltraLite databases, 18
UltraLite rolling back, 341

transport-layer security, vii
(see also TLS)

triggers
UltraLite limitations, 5

TRIM function
UltraLite SQL syntax, 310

troubleshooting
UltraLite connections, 47, 49

TRUNCATE TABLE statement
UltraLite SQL syntax, 349

truncating
UltraLite tables, 349

TRUNCNUM function
UltraLite SQL syntax, 311

tuning
UltraLite indexes, 33

tuning performance with index hashing
about, 69

tutorials
UltraLite CustDB database synchronization, 86
UltraLite CustDB files, 81
UltraLite CustDB introduction, 80
UltraLite CustDB sample, 79

U
UCASE function

UltraLite SQL syntax, 311
UDB, vii

(see also UltraLite databases)
UID connection parameter

UltraLite syntax, 150
ulafreg utility

syntax, 161
ulcond10 utility

syntax, 163

Copyright © 2006, iAnywhere Solutions, Inc. 377

ulcreate utility
syntax, 165
using, 25

ULDBUtil
about, 185

uleng10 utility
syntax, 168

ulinfo utility
UltraLite syntax, 169

ulinit utility
syntax, 172
using, 26

ulload utility
syntax, 174
UltraLite enhancement in version 10.0.0, 178
using, 28

ULSQLCONNECT environment variable
about, 47
description, 53

ulstop utility
syntax, 177

ulsync utility
extended options, 187
syntax, 178

UltraLite, vii
(see also UltraLite databases and UltraLite
applications)
about, 3
API choosing , 13
comma-separated lists, 277
data conversion, 236
data management options, 11
deployment options, 11
development platforms, 12
embedded engine client files, 11
error codes, 189
libraries choosing , 13
multi-threaded applications, 11
runtime files, 11
SQL functions, aggregate, 236
SQL functions, data type conversion, 236
SQL functions, date and time, 236
SQL functions, miscellaneous, 238
SQL functions, numeric, 239
SQL functions, string, 239
SQL functions, types of, 236
SQL statement reference, 319
statistics, comparing with SQL Anywhere, 8

supported APIs, 12
supported Windows platforms, 12
table owners, 203
utility programs, 153, 154

UltraLite APIs (see UltraLite C/C++ API) (see
UltraLite for M-Business Anywhere API) (see UltraLite
AppForge API) (see UltraLite.NET API)
UltraLite applications, vii

(see also UltraLite for M-Business Anywhere API)
(see also UltraLite.NET API)
(see also UltraLite AppForge API)
(see also UltraLite C/C++ API)

UltraLite connection parameters
about, 47
list of, 44

UltraLite connection string parameters reference
about, 127

UltraLite data and state management
about, 16

UltraLite database creation utility
syntax, 165

UltraLite database settings reference
about, 93

UltraLite database synchronization utility
extended options, 187

UltraLite databases
about, 15
backing up on Windows CE, 51
collation sequences, 31
columns adding, 58
columns altering, 59
concurrency, 17
connection overview, 44
connection parameter list, 44
connection parameters overview, 47
create database wizard, using, 25
creating, 24
creating from SQL Anywhere reference database,
26
creating from the command prompt, 25
database comparison, 5
deleting application data from Palm OS device,
185
desktop creation options, 24
encrypting, 38, 102
entity-relationship diagrams, 63
environment variables, 49
features, 4

Index

378 Copyright © 2006, iAnywhere Solutions, Inc.

file internals, 15
file storage, 15, 50
file storage on Palm OS, 51
indexes creating, 328
indexes hashing overview, 33
indexes hashing reference, 106
indexes types of, 66
indexes working with, 65
indexes, when to create, 67
indexing primary keys, 27
initializing from Sybase Central, 25
initializing from the command prompt, 26
introduction, 4, 15
limitations, 8
managing multiple, 17
methods of creating, 24
MobiLink synchronization, 192
modeling from MobiLink, 26
objects copy method, 63
options browsing, 78
page_size reference, 112
page_size usage, 36
Palm OS support, 51
properties, 30
properties browsing, 78
publications about, 72
publications dropping, 75
publishing rows, 73
publishing tables, 72
schema, 192
schema changes, 15
schema overview, 15
sourcing from XML, 28
storage, 50
system table indices, 194, 195
system table properties, 197
system table publications, 196
system tables displaying, 192
table synchronization suffixes, 57
tables copying, 62
tables creating, 56
tables dropping, 60
tables filtering, 62
tables, browsing, 61
temporary files, 16
ULSQLCONNECT, 49
unique keys, 66
upgrade previous versions, 24

user IDs, 45
users adding, 76
users deleting, 77
UTF8BIN collation for UNICODE characters, 31
Windows CE, 51
Windows desktop, 51
working with, 55

UltraLite engine
about, 11

UltraLite engine start utility
syntax, 168

UltraLite engine stop utility
syntax, 177

UltraLite information utility
about, 169

UltraLite initialize database utility
about, 172

UltraLite load XML to database utility
syntax, 174

UltraLite passwords
about, 45

UltraLite registry update utility
syntax, 161

UltraLite runtime
about, 11

UltraLite SQL
comments, 205
data types, 212
dates, 211
expressions, 215
identifiers, 203
keywords, 202
NULL values, 207
numbers, 206
operators, 228
query access plans for, 232
special values, 208
strings, 204
times, 211
variables, 231

UltraLite SQL elements reference
about, 201

UltraLite SQL statements
ALTER PUBLICATION statement syntax, 326
ALTER TABLE statement syntax, 322
categories of, 320
COMMIT statement syntax, 327
CREATE INDEX statement syntax, 328

Copyright © 2006, iAnywhere Solutions, Inc. 379

CREATE PUBLICATION statement syntax, 330
CREATE TABLE statement syntax, 331
DELETE statement syntax, 336
DROP INDEX statement syntax, 337
FROM clause, 344
INSERT statement, 340
overview, 319
ROLLBACK statement syntax, 341
SELECT statement syntax, 342
START SYNCHRONIZATION DELETE
statement syntax, 347
STOP SYNCHRONIZATION DELETE statement
syntax, 348
TRUNCATE TABLE syntax, 349
UNION operation syntax, 351
UPDATE statement syntax, 352

UltraLite SQL statements overview
about, 320

UltraLite synchronization
remote IDs and user IDs, 40

UltraLite synchronization utility
syntax, 178

UltraLite system table reference
about, 191

UltraLite system tables
about, 192

UltraLite temporary files
about, 16

UltraLite unload database utility
syntax, 180

UltraLite unload old database utility
syntax, 183

UltraLite user IDs
about, 45
MobiLink uniqueness, 40

UltraLite utilities reference
about, 153

UltraLite-specific decisions you need to make
about, 10

UltraLite.NET
UltraLite engine support, 11

ulunload utility
syntax, 180

ulunloadold utility
syntax, 183

understanding database management fundamentals for
UltraLite

about, 15

undoing
UltraLite transactions, 341

UNICODE characters
UltraLite collation for, 31

UNION operation
UltraLite SQL syntax, 351

union-all operation
UltraLite query access plans, 233

unions
UltraLite multiple select statements, 351

unique constraints
UltraLite copying method, 63
UltraLite CREATE TABLE statement, 331

unique indexes
UltraLite databases, 328
UltraLite index creation from, 66

unique keys
UltraLite index creation from, 66

UNIQUEIDENTIFIER data type
UltraLite, 212

universally unique identifiers, vii
(see also UUIDs)
UltraLiteSQL syntax for NEWID function, 287

unload old database utility [ulunloadold]
syntax, 183

unloading
UltraLite databases, 180
UltraLite databases from earlier versions, 183

unnamed foreign keys
UltraLite usage, 331

UPDATE statement
UltraLite SQL syntax, 352

updates
UltraLite databases, 18

updating
UltraLite updating rows, 352

UPPER function
UltraLite SQL syntax, 312

uppercase characters
UPPER function, 312

uppercase strings
UltraLite UCASE function, 311
UltraLite UPPER function, 312

user authentication
PWD UltraLite connection parameter, 146
UltraLite, 45
UltraLite bypassing, 45
UltraLite databases, 45

Index

380 Copyright © 2006, iAnywhere Solutions, Inc.

UltraLite setup, 45
user IDs

UltraLite adding new, 45
UltraLite changing, 76
UltraLite considerations, 76
UltraLite databases, 45
UltraLite defaults, 76
UltraLite semantics, 46

user-defined data types
UltraLite equivalents of, 214
unsupported in UltraLite, 212

users
UltraLite adding, 76
UltraLite deleting, 77
UltraLite working with, 76

using allsync and nosync suffixes
UltraLite about, 57

utf8_encoding database property
UltraLite reference, 125
UltraLite usage, 32

UTF8BIN collation
UltraLite considerations, 31

utilities
Interactive SQL [dbisql] syntax for UltraLite, 155
ulcreate, 165
ulload, 174
UltraLite AppForge registration [ulafreg] utility,
161
UltraLite database creation [ulcreate] utility, 165
UltraLite engine start [uleng10] utility, 168
UltraLite engine stop [ulstop] utility, 177
UltraLite error codes, 189
UltraLite HotSync Conduit installer [ulcond10]
utility, 163
UltraLite information [ulinfo] utility, 169
UltraLite initialize database [ulinit] utility, 172
UltraLite load XML to database [ulload] utility,
174
UltraLite Palm [ULDBUtil] utility, 185
UltraLite SQL Preprocessor [sqlpp] utility, 158
UltraLite synchronization [ulsync] , 178
UltraLite unload data to XML [ulunload] utility,
180
UltraLite unload old database [ulunloadold] utility,
183

UUIDs
UltraLite SQL syntax for UUIDTOSTR function,
313

UltraLiteSQL syntax for NEWID function, 287
UltraLiteSQL syntax for STRTOUUID function,
305

UUIDTOSTR function
UltraLite SQL syntax, 313

V
validating

UltraLite checksum usage, 37
UltraLite checksum_level reference, 95

values
UltraLite index hash, 33

VARBINARY data type
UltraLite, 212

VARCHAR data type
UltraLite, 212

variables
UltraLite SQL, 231

variables in UltraLite
about, 231

VFS
UltraLite databases, 51

viewing
UltraLite table methods, 61

viewing an UltraLite query access plan
about, 232

viewing entity-relationship diagrams from the UltraLite
plug-in

about, 63
viewing UltraLite database settings

about, 78
virtual file system (see VFS)
Visual Basic compatibility

UltraLite support, 13

W
WEEKS function

UltraLite SQL syntax, 314
WHEN

CASE expression for UltraLite, 217
when to use an index

UltraLite about, 65
when to view a query access plan

about, 232
WHERE clause

UltraLite ALTER PUBLICATION statement, 326

Copyright © 2006, iAnywhere Solutions, Inc. 381

UltraLite CREATE PUBLICATION statement,
330
UltraLite DELETE statement, 336
UltraLite publication usage, 73
UltraLite SELECT statement, 342
UltraLite UPDATE statement, 352

wildcards
pattern matching, 289

Windows
UltraLite character sets, 32

windows, vii
(see also Windows ME)
(see also Windows Mobile 5)
(see also Windows NT)
(see also Windows Vista)
(see also Windows XP/200x)

Windows CE
UltraLite character sets, 32
UltraLite database prefix, 51
UltraLite databases, 51
UltraLite engine support, 11
UltraLite FIPS enablement, 102

Windows desktop
UltraLite databases, 51
UltraLite engine support, 11

wizards
UltraLite create database, 25
UltraLite index creation, 67
UltraLite publication creation tables, 72

words
UltraLite keywords, 202
UltraLite reserved words, 202

working with indexes
UltraLite about, 65

working with UltraLite databases
about, 55

working with UltraLite indexes
about, 65

working with UltraLite publications
about, 72

working with UltraLite tables and columns
about, 56

working with UltraLite users
about, 76

X
XML

loading to database, 174
sourcing UltraLite databases from , 28
UltraLite equivalent of, 214
unloading database to, 178

Y
YEAR function

UltraLite SQL syntax, 315
YEARS function

UltraLite SQL syntax, 315
YMD function

UltraLite SQL syntax, 316

Z
zero-padding

UltraLite date_format reference, 98, 121

Index

382 Copyright © 2006, iAnywhere Solutions, Inc.

	UltraLite® - Database Management and Reference
	Contents
	About This Manual
	SQL Anywhere documentation
	Documentation conventions
	Finding out more and providing feedback

	Part I. Introducing UltraLite
	Introducing UltraLite
	Introducing the UltraLite database management system
	Comparing UltraLite and SQL Anywhere
	UltraLite-specific decisions you need to make
	Planning for scalability
	Choosing a data management component
	Choosing an UltraLite deployment environment
	Choosing your programming interface

	Understanding database management fundamentals for UltraLite
	The UltraLite database file
	The UltraLite database schema
	The temporary file

	UltraLite data and state management
	Understanding concurrency in UltraLite
	How UltraLite tracks row states
	Transaction processing, recovery, and backup
	Indexes in UltraLite databases

	Part II. Using UltraLite Databases
	Creating and Configuring UltraLite Databases
	Creating UltraLite databases
	Desktop creation
	Creating an UltraLite database from Sybase Central
	Creating an UltraLite database from the command prompt
	Creating an UltraLite database from a MobiLink synchronization model
	Creating an UltraLite database from a SQL Anywhere reference database
	Creating an UltraLite database from XML

	On-device creation

	Choosing creation-time database properties
	Character considerations
	Platform requirements for character set encoding

	Index performance considerations
	Case sensitivity considerations
	Date considerations
	Time considerations
	Timestamp considerations
	Nearest century conversion considerations
	Decimal point position considerations
	Database page size considerations
	Security considerations

	Configuring post-creation database options
	Remote ID considerations for MobiLink server synchronization
	Global database ID considerations

	Connecting to an UltraLite Database
	Introducing UltraLite database connections
	List of UltraLite database connection parameters
	The role of user authentication
	Interpreting user ID and password combinations

	Opening connections with connection strings
	Supplying UltraLite connection parameters
	Assembling parameters into connection strings
	Specifying file paths in a connection parameter

	Storing parameters with the ULSQLCONNECT environment variable

	Working with UltraLite Databases
	Working with UltraLite tables and columns
	Creating UltraLite tables
	Using allsync and nosync suffixes
	Adding a column to an UltraLite table
	Altering UltraLite column definitions
	Dropping UltraLite tables
	Browsing the information in UltraLite tables
	Copying and pasting data to/from UltraLite databases
	Viewing entity-relationship diagrams from the UltraLite plug-in

	Working with UltraLite indexes
	When to use an index
	Choosing an index type
	Adding UltraLite indexes
	Dropping an index
	Tuning performance with index hashing
	Choosing an optimal hash size
	Setting the hash size

	Working with UltraLite publications
	Publishing whole UltraLite tables
	Publishing a subset of rows from an UltraLite table
	Dropping a publication for UltraLite

	Working with UltraLite users
	Adding a new UltraLite user
	Deleting an existing UltraLite user

	Viewing UltraLite database settings

	Exploring the CustDB Samples for UltraLite
	Introducing CustDB
	Finding CustDB sample files
	Lesson 1: Logging in and populating the UltraLite remote
	Lesson 2: Using the CustDB client application
	Browsing orders
	Adding an order
	Changing the status of an order

	Lesson 3: Synchronizing with the CustDB consolidated database
	Confirming the synchronization at the consolidated database

	Lesson 4: Browsing MobiLink synchronization scripts
	Browsing the synchronization scripts

	What's next?

	Part III. UltraLite Database Reference
	UltraLite Database Settings Reference
	case property
	checksum_level property
	date_format property
	date_order property
	fips property
	global_id option
	max_hash_size property
	ml_remote_id option
	nearest_century property
	obfuscate property
	page_size property
	precision property
	scale property
	time_format property
	timestamp_format property
	timestamp_increment property
	utf8_encoding property

	UltraLite Connection String Parameters Reference
	CACHE_SIZE connection parameter
	CON connection parameter
	DBF connection parameter
	CE_FILE connection parameter
	NT_FILE connection parameter
	PALM_FILE connection parameter
	PALM_DB connection parameter
	SYMBIAN_FILE connection parameter
	DBN connection parameter
	DBKEY connection parameter
	PALM_ALLOW_BACKUP connection parameter
	PWD connection parameter
	RESERVE_SIZE connection parameter
	START connection parameter
	UID connection parameter

	UltraLite Utilities Reference
	Introduction to UltraLite utilities
	Interactive SQL utility (dbisql)
	 SQL Preprocessor for UltraLite utility (sqlpp)
	UltraLite AppForge Registry utility (ulafreg)
	UltraLite HotSync Conduit Installation utility for Palm OS (ulcond10)
	UltraLite Create Database utility (ulcreate)
	UltraLite Engine utility (uleng10)
	UltraLite Information utility (ulinfo)
	UltraLite Initialize Database utility (ulinit)
	UltraLite Load XML to Database utility (ulload)
	UltraLite Engine Stop utility (ulstop)
	UltraLite Synchronization utility (ulsync)
	UltraLite Unload Database to XML utility (ulunload)
	UltraLite Unload Old Database utility (ulunloadold)
	UltraLite Data Management utility for Palm OS (ULDBUtil)
	Supported extended options
	Extended creation-time options
	Extended synchronization parameters

	Supported exit codes

	UltraLite System Table Reference
	UltraLite system tables
	systable system table
	syscolumn system table
	sysindex system table
	sysixcol system table
	syspublication system table
	sysarticle system table
	sysuldata system table

	Part IV. UltraLite SQL Reference
	UltraLite SQL Elements Reference
	Keywords in UltraLite
	Identifiers in UltraLite
	Strings in UltraLite
	Comments in UltraLite
	Numbers in UltraLite
	The NULL value in UltraLite
	Special values in UltraLite
	CURRENT DATE special value
	CURRENT TIME special value
	CURRENT TIMESTAMP special value
	SQLCODE special value

	Dates and times in UltraLite
	Data types in UltraLite
	User-defined data types and their equivalents

	Expressions in UltraLite
	Constants in expressions
	Column names in expressions
	IF expressions
	CASE expressions
	Aggregate expressions
	Subqueries in expressions
	Input parameters
	Search conditions in UltraLite
	Comparison operators
	Logical operators
	ALL conditions
	ANY conditions
	BETWEEN conditions
	EXISTS conditions
	IN conditions

	Operators in UltraLite
	Arithmetic operators
	String operators
	Bitwise operators
	Operator precedence

	Variables in UltraLite
	@@identity

	Query access plans in UltraLite
	When to view a query access plan
	Viewing an UltraLite query access plan
	Reading UltraLite access plans

	UltraLite SQL Function Reference
	Function types
	UltraLite Aggregate functions
	UltraLite Data type conversion functions
	UltraLite Date and time functions
	Date parts

	Miscellaneous functions
	Numeric functions
	String functions

	Alphabetical list of functions
	ABS function [Numeric]
	ACOS function [Numeric]
	ARGN function [Miscellaneous]
	ASCII function [String]
	ASIN function [Numeric]
	ATAN function [Numeric]
	ATAN2 function [Numeric]
	AVG function [Aggregate]
	BYTE_LENGTH function [String]
	BYTE_SUBSTR function [String]
	CAST function [Data type conversion]
	CEILING function [Numeric]
	CHAR function [String]
	CHARINDEX function [String]
	CHAR_LENGTH function [String]
	COALESCE function [Miscellaneous]
	CONVERT function [Data type conversion]
	COS function [Numeric]
	COT function [Numeric]
	COUNT function [Aggregate]
	DATALENGTH function [System]
	DATE function [Date and time]
	DATEADD function [Date and time]
	DATEDIFF function [Date and time]
	DATEFORMAT function [Date and time]
	DATENAME function [Date and time]
	DATEPART function [Date and time]
	DATETIME function [Date and time]
	DAY function [Date and time]
	DAYNAME function [Date and time]
	DAYS function [Date and time]
	DEGREES function [Numeric]
	DIFFERENCE function [String]
	DOW function [Date and time]
	EXP function [Numeric]
	EXPLANATION function [Miscellaneous]
	FLOOR function [Numeric]
	GETDATE function [Date and time]
	GREATER function [Miscellaneous]
	HEXTOINT function [Data type conversion]
	HOUR function [Date and time]
	HOURS function [Date and time]
	IFNULL function [Miscellaneous]
	INSERTSTR function [String]
	INTTOHEX function [Data type conversion]
	ISDATE function [Data type conversion]
	ISNULL function [Miscellaneous]
	LCASE function [String]
	LEFT function [String]
	LENGTH function [String]
	LESSER function [Miscellaneous]
	LIST function [Aggregate]
	LOCATE function [String]
	LOG function [Numeric]
	LOG10 function [Numeric]
	LOWER function [String]
	LTRIM function [String]
	MAX function [Aggregate]
	MIN function [Aggregate]
	MINUTE function [Date and time]
	MINUTES function [Date and time]
	MOD function [Numeric]
	MONTH function [Date and time]
	MONTHNAME function [Date and time]
	MONTHS function [Date and time]
	NEWID function [Miscellaneous]
	NOW function [Date and time]
	NULLIF function [Miscellaneous]
	PATINDEX function [String]
	PI function [Numeric]
	POWER function [Numeric]
	QUARTER function [Date and time]
	RADIANS function [Numeric]
	REMAINDER function [Numeric]
	REPEAT function [String]
	REPLACE function [String]
	REPLICATE function [String]
	RIGHT function [String]
	ROUND function [Numeric]
	RTRIM function [String]
	SECOND function [Date and time]
	SECONDS function [Date and time]
	SHORT_PLAN function [Miscellaneous]
	SIGN function [Numeric]
	SIMILAR function [String]
	SIN function [Numeric]
	SOUNDEX function [String]
	SPACE function [String]
	SQRT function [Numeric]
	STR function [String]
	STRING function [String]
	STRTOUUID function [String]
	STUFF function [String]
	SUBSTRING function [String]
	SUM function [Aggregate]
	TAN function [Numeric]
	TODAY function [Date and time]
	TRIM function [String]
	TRUNCNUM function [Numeric]
	UCASE function [String]
	UPPER function [String]
	UUIDTOSTR function [String]
	WEEKS function [Date and time]
	YEAR function [Date and time]
	YEARS function [Date and time]
	YMD function [Date and time]

	UltraLite SQL Statement Reference
	UltraLite SQL statements overview
	Statement categories

	ALTER TABLE statement
	ALTER PUBLICATION statement
	COMMIT statement
	CREATE INDEX statement
	CREATE PUBLICATION statement
	CREATE TABLE statement
	DELETE statement
	DROP INDEX statement
	DROP PUBLICATION statement
	DROP TABLE statement
	INSERT statement
	ROLLBACK statement
	SELECT statement
	FROM clause

	START SYNCHRONIZATION DELETE statement
	STOP SYNCHRONIZATION DELETE statement
	TRUNCATE TABLE statement
	UNION operation
	UPDATE statement

	Index

