
UltraLite®
M-Business Anywhere Programming

Published: March 2007

Copyright and trademarks
Copyright © 2007 iAnywhere Solutions, Inc. Portions copyright © 2007 Sybase, Inc. All rights reserved.

iAnywhere Solutions, Inc. is a subsidiary of Sybase, Inc.

iAnywhere grants you permission to use this document for your own informational, educational, and other non-commercial purposes; provided
that (1) you include this and all other copyright and proprietary notices in the document in all copies; (2) you do not attempt to "pass-off" the
document as your own; and (3) you do not modify the document. You may not publish or distribute the document or any portion thereof without
the express prior written consent of iAnywhere.

This document is not a commitment on the part of iAnywhere to do or refrain from any activity, and iAnywhere may change the content of
this document at its sole discretion without notice. Except as otherwise provided in a written agreement between you and iAnywhere, this
document is provided “as is”, and iAnywhere assumes no liability for its use or any inaccuracies it may contain.

iAnywhere®, Sybase®, and the marks listed at http://www.ianywhere.com/trademarks are trademarks of Sybase, Inc. or its subsidiaries. ®
indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.ianywhere.com/trademarks

Contents

About This Manual ... v

SQL Anywhere documentation ... vi
Documentation conventions ... ix
Finding out more and providing feedback ... xiii

Introduction to UltraLite for M-Business Anywhere 1

UltraLite for M-Business Anywhere features .. 2
UltraLite for M-Business Anywhere architecture ... 3

Understanding UltraLite for M-Business Anywhere Development 5

UltraLite for M-Business Anywhere Quick Start ... 6
Connecting to an UltraLite database ... 10
Maintaining connections and application state across pages 11
Persistent names in M-Business Anywhere applications 12
Database encryption and obfuscation .. 15
Working with data using SQL ... 16
Working with data using the table API .. 20
Accessing schema information ... 26
Handling errors .. 27
Authenticating users ... 28
Synchronizing data ... 29
Deploying UltraLite for M-Business Anywhere applications 32

Tutorial: A Sample Application for M-Business Anywhere 35

Introduction to M-Business Anywhere development tutorial 36
Lesson 1: Create project architecture ... 37
Lesson 2: Create the application files ... 39
Lesson 3: Set up the M-Business Anywhere Server and Client 41
Lesson 4: Add startup code to your application .. 43
Lesson 5: Add inserts to your application .. 46

Copyright © 2007, iAnywhere Solutions, Inc. iii

Lesson 6: Add navigation to your application .. 49
Lesson 7: Add updates and deletes to your application 50
Lesson 8: Add synchronization to your application .. 52

UltraLite for M-Business Anywhere API Reference 55

Data types in UltraLite for M-Business Anywhere ... 56
AuthStatusCode class .. 57
Connection class ... 58
ConnectionParms class .. 66
CreationParms class ... 68
DatabaseManager class .. 70
DatabaseSchema class ... 73
IndexSchema class ... 78
PreparedStatement class .. 81
PublicationSchema class ... 90
ResultSet class .. 91
ResultSetSchema class .. 107
SQLError class .. 111
SQLType class ... 119
SyncParms class ... 121
SyncResult class ... 132
TableSchema class ... 135
ULTable class .. 146
UUID class .. 171

Index .. 173

UltraLite® - M-Business Anywhere Programming

iv Copyright © 2007, iAnywhere Solutions, Inc.

About This Manual
Subject

This manual describes UltraLite for M-Business Anywhere. With UltraLite for M-Business Anywhere you
can develop and deploy web-based database applications to handheld, mobile, or embedded devices, running
Palm OS, Windows CE, or Windows.

M-Business Anywhere is the iAnywhere platform for developing and deploying mobile web-based
applications. The previous name for the product was AvantGo M-Business Server.

Audience
This manual is intended for application developers who want to take advantage of the performance, resource
efficiency, robustness, and security of an UltraLite relational database for data storage and synchronization.

Copyright © 2007, iAnywhere Solutions, Inc. v

SQL Anywhere documentation
This book is part of the SQL Anywhere documentation set. This section describes the books in the
documentation set and how you can use them.

The SQL Anywhere documentation
The complete SQL Anywhere documentation is available in two forms: an online form that combines all
books, and as separate PDF files for each book. Both forms of the documentation contain identical
information and consist of the following books:

♦ SQL Anywhere 10 - Introduction This book introduces SQL Anywhere 10—a product that provides
data management and data exchange technologies, enabling the rapid development of database-powered
applications for server, desktop, mobile, and remote office environments.

♦ SQL Anywhere 10 - Changes and Upgrading This book describes new features in SQL Anywhere
10 and in previous versions of the software, as well as upgrade instructions.

♦ SQL Anywhere Server - Database Administration This book covers material related to running,
managing, and configuring SQL Anywhere databases. It describes database connections, the database
server, database files, backup procedures, security, high availability, and replication with Replication
Server, as well as administration utilities and options.

♦ SQL Anywhere Server - SQL Usage This book describes how to design and create databases; how
to import, export, and modify data; how to retrieve data; and how to build stored procedures and triggers.

♦ SQL Anywhere Server - SQL Reference This book provides a complete reference for the SQL
language used by SQL Anywhere. It also describes the SQL Anywhere system views and procedures.

♦ SQL Anywhere Server - Programming This book describes how to build and deploy database
applications using the C, C++, and Java programming languages, as well as Visual Studio .NET. Users
of tools such as Visual Basic and PowerBuilder can use the programming interfaces provided by these
tools.

♦ SQL Anywhere 10 - Error Messages This book provides a complete listing of SQL Anywhere error
messages together with diagnostic information.

♦ MobiLink - Getting Started This manual introduces MobiLink, a session-based relational-database
synchronization system. MobiLink technology allows two-way replication and is well suited to mobile
computing environments.

♦ MobiLink - Server Administration This manual describes how to set up and administer MobiLink
server-side utilities and functionality.

♦ MobiLink - Client Administration This manual describes how to set up, configure, and synchronize
MobiLink clients. MobiLink clients can be SQL Anywhere or UltraLite databases.

♦ MobiLink - Server-Initiated Synchronization This manual describes MobiLink server-initiated
synchronization, a feature of MobiLink that allows you to initiate synchronization or other remote actions
from the consolidated database.

About This Manual

vi Copyright © 2007, iAnywhere Solutions, Inc.

♦ QAnywhere This manual describes QAnywhere, which is a messaging platform for mobile and
wireless clients as well as traditional desktop and laptop clients.

♦ SQL Remote This book describes the SQL Remote data replication system for mobile computing,
which enables sharing of data between a SQL Anywhere consolidated database and many SQL Anywhere
remote databases using an indirect link such as email or file transfer.

♦ SQL Anywhere 10 - Context-Sensitive Help This manual contains the context-sensitive help for
the Connect dialog, the Query Editor, the MobiLink Monitor, MobiLink Model mode, the SQL Anywhere
Console utility, the Index Consultant, and Interactive SQL.

♦ UltraLite - Database Management and Reference This manual introduces the UltraLite database
system for small devices.

♦ UltraLite - AppForge Programming This manual describes UltraLite for AppForge. With UltraLite
for AppForge you can develop and deploy database applications to handheld, mobile, or embedded
devices, running Palm OS, Symbian OS, or Windows CE.

♦ UltraLite - .NET Programming This manual describes UltraLite.NET. With UltraLite.NET you can
develop and deploy database applications to computers, or handheld, mobile, or embedded devices.

♦ UltraLite - M-Business Anywhere Programming This manual describes UltraLite for M-Business
Anywhere. With UltraLite for M-Business Anywhere you can develop and deploy web-based database
applications to handheld, mobile, or embedded devices, running Palm OS, Windows CE, or Windows
XP.

♦ UltraLite - C and C++ Programming This manual describes UltraLite C and C++ programming
interfaces. With UltraLite, you can develop and deploy database applications to handheld, mobile, or
embedded devices.

Documentation formats
SQL Anywhere provides documentation in the following formats:

♦ Online documentation The online documentation contains the complete SQL Anywhere
documentation, including the books and the context-sensitive help for SQL Anywhere tools. The online
documentation is updated with each maintenance release of the product, and is the most complete and
up-to-date source of documentation.

To access the online documentation on Windows operating systems, choose Start ► Programs ► SQL
Anywhere 10 ► Online Books. You can navigate the online documentation using the HTML Help table
of contents, index, and search facility in the left pane, as well as using the links and menus in the right
pane.

To access the online documentation on Unix operating systems, see the HTML documentation under
your SQL Anywhere installation or on your installation CD.

♦ PDF files The complete set of SQL Anywhere books is provided as a set of Adobe Portable Document
Format (pdf) files, viewable with Adobe Reader.

SQL Anywhere documentation

Copyright © 2007, iAnywhere Solutions, Inc. vii

On Windows, the PDF books are accessible from the online documentation via the PDF link at the top
of each page, or from the Windows Start menu (Start ► Programs ► SQL Anywhere 10 ► Online
Books - PDF Format).

On Unix, the PDF books are available on your installation CD.

About This Manual

viii Copyright © 2007, iAnywhere Solutions, Inc.

Documentation conventions
This section lists the typographic and graphical conventions used in this documentation.

Syntax conventions
The following conventions are used in the SQL syntax descriptions:

♦ Keywords All SQL keywords appear in uppercase, like the words ALTER TABLE in the following
example:

ALTER TABLE [owner.]table-name

♦ Placeholders Items that must be replaced with appropriate identifiers or expressions are shown like
the words owner and table-name in the following example:

ALTER TABLE [owner.]table-name

♦ Repeating items Lists of repeating items are shown with an element of the list followed by an ellipsis
(three dots), like column-constraint in the following example:

ADD column-definition [column-constraint, …]

One or more list elements are allowed. In this example, if more than one is specified, they must be
separated by commas.

♦ Optional portions Optional portions of a statement are enclosed by square brackets.

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that the savepoint-name is optional. The square brackets should not be
typed.

♦ Options When none or only one of a list of items can be chosen, vertical bars separate the items and
the list is enclosed in square brackets.

[ASC | DESC]

For example, you can choose one of ASC, DESC, or neither. The square brackets should not be typed.

♦ Alternatives When precisely one of the options must be chosen, the alternatives are enclosed in curly
braces and a bar is used to separate the options.

[QUOTES { ON | OFF }]

If the QUOTES option is used, one of ON or OFF must be provided. The brackets and braces should not
be typed.

Operating system conventions
♦ Windows The Microsoft Windows family of operating systems for desktop and laptop computers.

The Windows family includes Windows Vista and Windows XP.

Documentation conventions

Copyright © 2007, iAnywhere Solutions, Inc. ix

♦ Windows CE Platforms built from the Microsoft Windows CE modular operating system, including
the Windows Mobile and Windows Embedded CE platforms.

Windows Mobile is built on Windows CE. It provides a Windows user interface and additional
functionality, such as small versions of applications like Word and Excel. Windows Mobile is most
commonly seen on mobile devices.

Limitations or variations in SQL Anywhere are commonly based on the underlying operating system
(Windows CE), and seldom on the particular variant used (Windows Mobile).

♦ Unix Unless specified, Unix refers to both Linux and Unix platforms.

File name conventions

The documentation generally adopts Windows conventions when describing operating system dependent
tasks and features such as paths and file names. In most cases, there is a simple transformation to the syntax
used on other operating systems.

♦ Directories and path names The documentation typically lists directory paths using Windows
conventions, including colons for drives and backslashes as a directory separator. For example,

MobiLink\redirector

On Unix, Linux, and Mac OS X, you should use forward slashes instead. For example,

MobiLink/redirector

If SQL Anywhere is used in a multi-platform environment you must be aware of path name differences
between platforms.

♦ Executable files The documentation shows executable file names using Windows conventions, with
the suffix .exe. On Unix, Linux, and Mac OS X, executable file names have no suffix. On NetWare,
executable file names use the suffix .nlm.

For example, on Windows, the network database server is dbsrv10.exe. On Unix, Linux, and Mac OS
X, it is dbsrv10. On NetWare, it is dbsrv10.nlm.

♦ install-dir The installation process allows you to choose where to install SQL Anywhere, and the
documentation refers to this location using the convention install-dir.

After installation is complete, the environment variable SQLANY10 specifies the location of the
installation directory containing the SQL Anywhere components (install-dir). SQLANYSH10 specifies
the location of the directory containing components shared by SQL Anywhere with other Sybase
applications.

For more information on the default location of install-dir, by operating system, see “SQLANY10
environment variable” [SQL Anywhere Server - Database Administration].

♦ samples-dir The installation process allows you to choose where to install the samples that are
included with SQL Anywhere, and the documentation refers to this location using the convention
samples-dir.

About This Manual

x Copyright © 2007, iAnywhere Solutions, Inc.

After installation is complete, the environment variable SQLANYSAMP10 specifies the location of the
directory containing the samples (samples-dir). From the Windows Start menu, choosing
Programs ► SQL Anywhere 10 ► Sample Applications and Projects opens a Windows Explorer window
in this directory.

For more information on the default location of samples-dir, by operating system, see “Samples
directory” [SQL Anywhere Server - Database Administration].

♦ Environment variables The documentation refers to setting environment variables. On Windows,
environment variables are referred to using the syntax %envvar%. On Unix, Linux, and Mac OS X,
environment variables are referred to using the syntax $envvar or ${envvar}.

Unix, Linux, and Mac OS X environment variables are stored in shell and login startup files, such
as .cshrc or .tcshrc.

Graphic icons

The following icons are used in this documentation.

♦ A client application.

♦ A database server, such as SQL Anywhere.

♦ An UltraLite application.

♦ A database. In some high-level diagrams, the icon may be used to represent both the database and the
database server that manages it.

Documentation conventions

Copyright © 2007, iAnywhere Solutions, Inc. xi

♦ Replication or synchronization middleware. These assist in sharing data among databases. Examples are
the MobiLink server and the SQL Remote Message Agent.

♦ A Sybase Replication Server

♦ A programming interface.

Interface

About This Manual

xii Copyright © 2007, iAnywhere Solutions, Inc.

Finding out more and providing feedback
Finding out more

Additional information and resources, including a code exchange, are available at the iAnywhere Developer
Network at http://www.ianywhere.com/developer/.

If you have questions or need help, you can post messages to the Sybase iAnywhere newsgroups listed below.

When you write to one of these newsgroups, always provide detailed information about your problem,
including the build number of your version of SQL Anywhere. You can find this information by entering
dbeng10 -v at a command prompt.

The newsgroups are located on the forums.sybase.com news server. The newsgroups include the following:

♦ sybase.public.sqlanywhere.general

♦ sybase.public.sqlanywhere.linux

♦ sybase.public.sqlanywhere.mobilink

♦ sybase.public.sqlanywhere.product_futures_discussion

♦ sybase.public.sqlanywhere.replication

♦ sybase.public.sqlanywhere.ultralite

♦ ianywhere.public.sqlanywhere.qanywhere

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information, or ideas on its newsgroups, nor is
iAnywhere Solutions obliged to provide anything other than a systems operator to monitor the service and
ensure its operation and availability.
iAnywhere Technical Advisors as well as other staff assist on the newsgroup service when they have time
available. They offer their help on a volunteer basis and may not be available on a regular basis to provide
solutions and information. Their ability to help is based on their workload.

Feedback
We would like to receive your opinions, suggestions, and feedback on this documentation.

You can email comments and suggestions to the SQL Anywhere documentation team at
iasdoc@ianywhere.com. Although we do not reply to emails sent to that address, we read all suggestions
with interest.

In addition, you can provide feedback on the documentation and the software through the newsgroups listed
above.

Finding out more and providing feedback

Copyright © 2007, iAnywhere Solutions, Inc. xiii

http://www.ianywhere.com/developer/
news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
mailto:iasdoc@ianywhere.com

xiv

CHAPTER 1

Introduction to UltraLite for M-Business
Anywhere

Contents
UltraLite for M-Business Anywhere features .. 2
UltraLite for M-Business Anywhere architecture ... 3

Copyright © 2007, iAnywhere Solutions, Inc. 1

UltraLite for M-Business Anywhere features
UltraLite for M-Business Anywhere is a relational data management system for mobile devices. It has the
performance, resource efficiency, robustness, and security required by business applications. UltraLite also
provides synchronization with enterprise data stores.

System requirements and supported platforms

Development platforms
To develop applications using UltraLite for M-Business Anywhere, you require the following:

♦ M-Business Anywhere is the new name for AvantGo M-Business Server. This software requires M-
Business Server 5.3 or later, and the corresponding M-Business Anywhere client.

Target platforms
UltraLite for M-Business Anywhere supports the following target platforms:

♦ Windows CE 3.0 and higher, with Pocket PC on the ARM processor, including Windows Mobile 5.0.

♦ Palm OS version 5.0 and higher.

♦ Windows, starting with M-Business Anywhere 5.5.

For more information about deployment, see the UltraLite Deployment Option for SQL Anywhere table in
SQL Anywhere Supported Platforms and Engineering Support Status.

Introduction to UltraLite for M-Business Anywhere

2 Copyright © 2007, iAnywhere Solutions, Inc.

UltraLite for M-Business Anywhere architecture
The UltraLite programming interface exposes a set of objects for data manipulation using an UltraLite
database. The following figure describes the object hierarchy.

DatabaseManager

Connection DatabaseSchema

PublicationSchema

SyncParms

SyncResult

Table

TableSchema

IndexSchema

Prepared Statement

ResultSetConnectionParms

ResultSetSchemaCreationParms

The following list describes some of the more commonly-used high-level objects.

♦ DatabaseManager manages connections to UltraLite databases.

See “ DatabaseManager class” on page 70.

♦ ConnectionParms holds a set of connection parameters.

See “ ConnectionParms class” on page 66.

♦ CreationParms holds a set of database creation parameters.

See “ CreationParms class” on page 68.

♦ Connection represents a database connection, and governs transactions.

See “ Connection class” on page 58.

♦ PreparedStatement, ResultSet, and ResultSetSchema manage database requests and their
results using SQL.

See:

UltraLite for M-Business Anywhere architecture

Copyright © 2007, iAnywhere Solutions, Inc. 3

♦ “ PreparedStatement class” on page 81
♦ “ ResultSet class” on page 91
♦ “ ResultSetSchema class” on page 107

♦ Table manages data using a table-based API.

See “ ULTable class” on page 146.

♦ SyncParms and SyncResult manage synchronization through the MobiLink server.

For more information about synchronization with MobiLink, see “UltraLite Clients” [MobiLink - Client
Administration].

Introduction to UltraLite for M-Business Anywhere

4 Copyright © 2007, iAnywhere Solutions, Inc.

CHAPTER 2

Understanding UltraLite for M-Business
Anywhere Development

Contents
UltraLite for M-Business Anywhere Quick Start ... 6
Connecting to an UltraLite database ... 10
Maintaining connections and application state across pages 11
Persistent names in M-Business Anywhere applications 12
Database encryption and obfuscation .. 15
Working with data using SQL ... 16
Working with data using the table API .. 20
Accessing schema information ... 26
Handling errors .. 27
Authenticating users ... 28
Synchronizing data ... 29
Deploying UltraLite for M-Business Anywhere applications 32

Copyright © 2007, iAnywhere Solutions, Inc. 5

UltraLite for M-Business Anywhere Quick Start
The following procedures describe how to run the supplied CustDB and Simple sample applications.

Before you start, ensure that you have M-Business Anywhere 6.0 or later installed and running, and that you
have administrative privileges on the server. You must also have a supported handheld device.

♦ To install and run M-Business Anywhere samples

1. Copy the UltraLite for M-Business Anywhere sample files to your installation directory for deployment.

a. Open a command prompt and change directory to the samples-dir
\UltraLiteForMBusinessAnywhere\CustDB subdirectory of your SQL Anywhere installation.

b. Run the following command:

build.bat deploy-dir

where deploy-dir is the directory where the CustDB and UltraLite files are to be deployed. For
example, you may choose C:\tutorial\mba

The batch file copies the required files to the location you specify. To see what files are being
copied, examine the file samples-dir\UltraLiteForMBusinessAnywhere\CustDB\build.bat using a
text editor.

2. Create a virtual directory in your web server that points to the directory deploy-dir specified in step 1.
The following instructions are for Microsoft IIS:

a. Open the IIS management tool.

b. Right-click your web site and choose New ► Virtual Directory. Name this virtual directory
CustDB and specify your deployment directory deploy-dir as the content directory. Leave the other
settings at their default values.

c. Right-click the new virtual directory and choose Properties. In the HTTP Headers tab, click File
Types and register the following file extensions as the type application/octet-stream:

♦ For Windows and Windows CE: cab, dll
♦ For Palm OS: pdb, prc
♦ udb

d. Make a note of the URL that accesses the file main.htm in this virtual directory. In a default
installation this would be http://localhost/CustDB/main.htm.

3. Add users to M-Business Anywhere.

There are three ways to add new users to M-Business Anywhere: by creating new user profiles, by
allowing users to self-register, and by importing a CSV file. These instructions describe how to create
a new user profile. For more information, see the M-Business Anywhere documentation.

a. Log in to M-Business Anywhere as an administrator.

Understanding UltraLite for M-Business Anywhere Development

6 Copyright © 2007, iAnywhere Solutions, Inc.

The default administrator account settings are a user ID of Admin and an empty password.

b. In the left panel, click Users.

c. Click Create User. The Create User page appears.

d. Type a unique user name in the User Name field.

e. Type the same password in the Password and the Confirm Password fields.

f. Click Save to add the user.

4. Deploy the M-Business Anywhere Client to a handheld device or PC.

a. Click the Download Client Software Only link on the M-Business Anywhere login page. Run the
installation to install the client.

b. On the handheld device or PC, configure M-Business Connect to synchronize with the M-Business
Anywhere server.

Enter the user ID and password of the new M-Business user account you created.

c. Synchronize to the M-Business Anywhere server.

If you have connection problems at this stage, specify the host using an IP number rather than a
host name (to avoid name resolution issues with some versions of ActiveSync).

For more information, see your M-Business Anywhere documentation.

5. Add a group to M-Business Anywhere.

The group will be used to test UltraLite for M-Business Anywhere.

a. From a web browser, connect to M-Business Anywhere.

The default URL is http://localhost or http://localhost:8091.

b. Log in using the administrator account.

c. Click the Groups option in the left navigation panel, and click Create Group.

d. Name your group UltraLite Samples.

6. Configure the M-Business Anywhere channel settings.

a. Add the user you created in step 3 to the group UltraLite Samples using the Users option in the
left panel under Edit Group.

b. Use the group's "Channels" option in the left navigation panel to create the following channel:

Setting Value

Channel Name CustDB

Location http://localhost/CustDB/main.htm or the URL from step 2.

UltraLite for M-Business Anywhere Quick Start

Copyright © 2007, iAnywhere Solutions, Inc. 7

Setting Value

Size 1000

Link depth 3

Allow binary distribution Yes (checked)

Hidden No (unchecked)

After setting the Location value, click View to confirm that you have entered the value correctly.

7. Synchronize your client.

The initial synchronization downloads the UltraLite for M-Business Anywhere files onto your handheld
device.

♦ To verify your setup

1. Check that the required files are present.

♦ On Windows CE, after you have synchronized the device, check that the following files are in the
\Program Files\AvantGo\Pods folder:

♦ ulpod10.dll
♦ custdb.udb

If any of these files is missing, you may have to manually copy them over to the device.

♦ On Palm OS, after you have synchronized your device, check Palm OS App Info for the presence
of the following:

♦ ulpod
♦ custdb

If any of these are missing, you may have to use the Palm install utility to install the UltraLite for
M-Business Anywhere runtime .prc and sample schemas .pdb files to the device.

♦ On Windows desktops, after you have synchronized your device, check that the following files are
in the AvantGo\Pods subdirectory of your AvantGo Connect folder:

♦ ulpod10.dll
♦ custdb.udb

If any of these files are missing, you may have to manually copy them over to the device.

2. Launch M-Business Client.

On your handheld device or PC, check that the About screen displays the UltraLite for M-Business
Anywhere version number. This confirms that UltraLite for M-Business Anywhere is successfully
installed.

Understanding UltraLite for M-Business Anywhere Development

8 Copyright © 2007, iAnywhere Solutions, Inc.

3. Run the CustDB sample application.

a. Start the MobiLink server on your desktop.

From the Start menu, choose Programs ► SQL Anywhere 10 ► MobiLink ► Mobilink Server
Sample.

b. Start the CustDB application on your M-Business Client.

The CustDB application is a link on your M-Business home page.

c. Enter your user ID.

The default value is 50.

d. Synchronize.

Either answer Yes to the prompt "Do you have a network connection now?" or, in the CustDB
application, click Synchronize. This synchronizes data with MobiLink, and is a separate operation
from synchronizing with M-Business Anywhere.

You should now see data in the CustDB fields. You can now explore the CustDB application.

See “Exploring the CustDB Sample for MobiLink” [MobiLink - Getting Started].

HotSync with multiple databases

Each UltraLite database on a Palm OS device must have a distinct creator ID to work properly with HotSync.
In addition, an application with that creator ID must exist on the Palm OS device.

The HotSync Manager uses each application's creator ID as an identifier to handle synchronization. It hands
each properly configured UltraLite application to the MobiLink conduit for synchronization. The conduit
searches for and synchronizes a database with the same creator ID as the application.

For more information about configuring the conduit, see “HotSync synchronization overview” [MobiLink -
Client Administration].

All UltraLite for M-Business Anywhere applications inherit the creator ID of the M-Business client, which
is AvGo. This inheritance means that only one UltraLite database with creator ID AvGo can be synchronized,
and that if you assign a distinct creator ID to your database, HotSync will not find it because there is no
application with a corresponding creator ID.

This limitation is not an issue for the two sample applications (CustDB and Simple), as they share a common
database schema. The only side effect is that when you synchronize the CustDB database, the Simple sample
is also synchronized.

For more information about resolving this problem, see “Registering the Palm creator ID” [UltraLite - C
and C++ Programming].

UltraLite for M-Business Anywhere Quick Start

Copyright © 2007, iAnywhere Solutions, Inc. 9

Connecting to an UltraLite database
UltraLite applications must connect to a database before carrying out operations on the data in it.

Here is the simplest way to establish a connection. Extensions to this technique are given in the following
sections.

var DatabaseMgr;
var Connection;
DatabaseMgr = CreateObject("iAnywhere.UltraLite.DatabaseManager.CustDB");
Connection = DatabaseMgr.openConnection("dbf=" + DatabaseMgr.directory + "\
\mydb.udb");

Using the Connection object
The following properties of the Connection object govern global application behavior.

For more information about the Connection object, see “ Connection class” on page 58.

♦ Commit behavior By default, UltraLite applications are in AutoCommit mode. Each insert, update,
or delete statement is committed to the database immediately. Set Connection.AutoCommit to false to
build transactions into your application. Turning AutoCommit off and performing commits directly can
improve the performance of your application.

See “ commit method” on page 60.

♦ User authentication You can change the user ID and password for the application from the default
values of DBA and sql by using the grantConnectTo and revokeConnectFrom methods.

See “Authenticating users” on page 28.

♦ Synchronization A set of objects governing synchronization are accessed from the Connection
object.

See “Synchronizing data” on page 29.

♦ Tables UltraLite tables are accessed using the Connection.getTable method.

See “ getTable method” on page 62.

Understanding UltraLite for M-Business Anywhere Development

10 Copyright © 2007, iAnywhere Solutions, Inc.

Maintaining connections and application state across
pages

The scope of a JavaScript variable is limited to one web page. Most web applications require multiple pages,
and so a mechanism is needed for making some objects persistent across the pages of an application.

UltraLite for M-Business Anywhere provides persistence for the ULTable, ResultSet, and
PreparedStatement objects. To make one of these objects persist across pages, supply a persistent name as
a parameter when creating the object. You can use the persistent name on subsequent pages.

To carry a connection object from page to page, you reopen the connection on each page. One way to do
this is to use the reOpen method. Another is to supply an open method on each page, perhaps by including
a JavaScript file on each web page to initialize the settings. For examples of how to do this, see the sample
files samples-dir\UltraLiteForMBusinessAnywhere\CustDB\main.htm and samples-dir
\UltraLiteForMBusinessAnywhere\Simple\main_page.htm.

The requirement to reopen connections across pages provides a security feature for UltraLite applications.
You can use it to require that the user confirm some information, perhaps the password, on moving from
page to page.

If an UltraLite object is not needed in another web page, the application should issue a close method on the
object to save memory.

See also
♦ “ reOpenConnection method” on page 72
♦ “ PreparedStatement class” on page 81
♦ “ ResultSet class” on page 91
♦ “ ULTable class” on page 146
♦ “ PreparedStatement class” on page 81

Maintaining connections and application state across pages

Copyright © 2007, iAnywhere Solutions, Inc. 11

Persistent names in M-Business Anywhere applications
In HTML, when control transfers to a new page, all handles to allocated JavaScript objects from the old page
are lost. For example, in main.html, you have a M-Business Anywhere database connection object:

conn = dbMgr.openConnection("...");

If you click a link in main.html and it takes you to a different page (for example: insert.html), you cannot
find the object named "conn" in insert.html. To get the connection object back, you may have to call
dbMgr.openConnection("...") again. However, you do not have to do this since the connection object is still
in memory, you have only lost the JavaScript handle to it.

This is why there is a persistName argument in all the M-Business Anywhere API calls to DataManager,
Connection, ULTable, PreparedStatement, or ResultSet. For example, when the M-Business Anywhere
runtime receives a call from JavaScript for a UltraLite connection object, M-Business Anywhere first checks
to see if a connection object exists in memory that has the same persistName. If the runtime can find a
matching object, it will return that connection object. Otherwise, M-Business Anywhere goes through the
normal procedure to make a new UltraLite database connection and return it.

Using persistent names
There are two types of hierarchy among M-Business Anywhere objects. They both start with
DatabaseManager and Connection:

♦ DatabaseManager -> Connection -> Table (for table API)
♦ DatabaseManager -> Connection -> PreparedStatement -> ResultSet (for Dynamic SQL API)

To retrieve any of these M-Business Anywhere objects with a persistent name, you have to retrieve the top-
level object with a persistent name, and then all the upper level M-Business Anywhere objects along the
hierarchy tree until the one you want.

For example, if you want to retrieve an existing ULTable object from insert.html, you need to give a persistent
name to dbMgr, conn, and table objects in main.html, and then use persistent names in insert.html to get all
of them back:

Code segment for main.html:

var dbMgr = CreateObject("iAnywhere.UltraLite.DatabaseManager.simple");
// "simple" is the persistent name here. A real database manager object is
allocated
var conn = dbMgr.openConnection("CON=simple_con;...");
// "simple_con" is the persistent name here. A real database connection is
made.
var custTable = conn.getTable("ULCustomer", "simpleCustTable");
// a real table is allocated

Code segment for insert.html:

var dbMgr = CreateObject("iAnywhere.UltraLite.DatabaseManager.simple");
// "simple" is the persistent name here.
// The allocated database manager object from main.html is returned

Understanding UltraLite for M-Business Anywhere Development

12 Copyright © 2007, iAnywhere Solutions, Inc.

var conn = dbMgr.openConnection("CON=simple_con;...");
// "simple_con" is the persistent name here.
// The existing connection object from memory is returned.
var custTable = conn.getTable("ULCustomer", "simpleCustTable");
// the existing table object is returned.
var newTable = conn.getTable("ULOrder", "simpleOrderTable");
// since there is no order table from main.html,
// it does not exist in memory. A real order table object is allocated.

Using persistent names correctly

Put the commonly used code in a JavaScript file. Since most HTML pages of an M-Business Anywhere
application need to refer to DatabaseManager, Connection, and some major ULTable objects, it is convenient
to put the code that creates them (or retrieves them with a persistent name) in a common JavaScript file, and
include this file at the top of HTML pages that use them. Both M-Business Anywhere "simple" and "CustDB"
sample programs demonstrate how to do this.

Close the object if you do not plan to use the object from another page. If the M-Business Anywhere
application only has one HTML page, then there is no need to have persistent names. The persistent name
argument can be set to NULL. On the other hand, if each HTML page has many opened PreparedStatement
and ResultSet objects, then the developer needs to balance between the convenience of having them in
memory to retrieve them easily with a persistent name from another html page, and wasted memory usage
because these objects are always around. For example, suppose you have 5 PreparedStatement objects and
10 ResultSet objects created in main.html. They are occupying a significant amount of memory. When the
application jumps to insert.html, if you only need to refer to some of these objects with a persistent name,
then the objects that are not needed anymore are wasting memory. If you try to create new PreparedStatement
and ResultSet objects in insert.html, you may run out of memory. The solution is to explicitly close those
PreparedStatment object or ResultSet object at the end of main.html if you are sure you do not need them
from insert.html.

The state of each M-Business Anywhere object is preserved when it is retrieved with a persistent name. If
you have a persistent ULTable object from page 1, when you call openTable method from page 2 using the
same persistent name, you get the exact ULtable object back with the same state as the one from page 1. If
the cursor is on the nth row of the table when you leave page 1, the cursor will be still on the nth row when
you get it back in page 2. It will not be "before first row".

Be careful using the persistent name on ResultSet. When there are place holders on the PreparedStatment,
you need to be very careful about whether you want to give a persistent name to the ResultSet. For example,
in main.html you have the following code:

var OrderStmt = Connection.prepareStatement(
"SELECT order_id, disc, quant FROM ULOrder WHERE order_id = ?",
"order_query_stmt");
OrderStmt.setInt(1, 5000);
var OrderResultSet = OrderStmt.executeQuery("order_query_result");

Then from insert.html, you want the same ResultSet object, you must do the following:

Persistent names in M-Business Anywhere applications

Copyright © 2007, iAnywhere Solutions, Inc. 13

var OrderStmt = Connection.prepareStatement(
"SELECT order_id, disc, quant FROM ULOrder WHERE order_id = ?",
"order_query_stmt");
//OrderStmt.setInt(1, 5000); // no need to do this since both the OrderStmt
and
OrderResultSet are retrieve from "cache" without any SQL statement being
actually executed
var OrderResultSet = OrderStmt.executeQuery("order_query_result");

This OrderResultSet object contains the same result as the "order_id" set to 5000.

However, consider a different situation. You want the same PreparedStatement because you want to do the
same query on the Order Table. But you want to query with an order ID other than 5000. In this case, you
can assign a persistent name to the PreparedStatement, but you don't need a persistent name on the ResultSet.
Since the order id is different this time, the result set will be different from the previous one. In main.html,
you still do the following:

var OrderStmt = Connection.prepareStatement(
"SELECT order_id, disc, quant FROM ULOrder WHERE order_id = ?",
"order_query_stmt"); // with persistent name
OrderStmt.setInt(1, 5000);
var OrderResultSet = OrderStmt.executeQuery(null); // notice here, no
persistent name

In insert.html, you do the following to get a new ResultSet:

var OrderStmt = Connection.prepareStatement(
"SELECT order_id, disc, quant FROM ULOrder WHERE order_id = ?",
"order_query_stmt"); // get the prepared statement from memory with
persistent name
OrderStmt.setInt(1, 6000); // set a different place holder value
var OrderResultSet = OrderStmt.executeQuery(null); // a real query is
executed
here!

In the example above, since the place holder value is different, or some other operation is performed on the
Order table that you expect the returned result set will be different, you do not use persistent name on the
ResultSet when calling executeQuery.

Understanding UltraLite for M-Business Anywhere Development

14 Copyright © 2007, iAnywhere Solutions, Inc.

Database encryption and obfuscation
You can encrypt or obfuscate your UltraLite database using UltraLite for M-Business Anywhere.

For more information about database encryption, see “UltraLite security considerations” [UltraLite -
Database Management and Reference].

Encryption
UltraLite databases may be unencrypted or may employ either encryption or obfuscation. If you want the
database to be encrypted or obfuscated that choice must be made when the database is created.

Encryption of an UltraLite database uses extremely strong industry-standard techniques to encrypt the data
in the database. The encryption is based on a key phrase that is specified when the database is created. This
key phrase must also be supplied when a connection is made to the database.

If an UltraLite database is encrypted, all connections to that database must specify the correct encryption
key or the connection attempt fails.

For more information about the EncryptionKey property, see “ ConnectionParms class” on page 66 and
“ changeEncryptionKey method” on page 59.

Obfuscation
Obfuscation is a very weak form of encryption that simply masks the data in the database to discourage
casual observation of the contents of the database by file or disk viewer programs. To obfuscate the database,
set the creationParms.obfuscate boolean value to true. For example:

var create_parms = dbMgr.createCreationParms();
create_parms.obfuscate = true;

Example
You can change the encryption key by specifying a new encryption key on the Connection object. Before
calling the changeEncryptionKey method, the application must make a connection to the encrypted database
using the existing encryption key. In the following example code, "apricot" is the new encryption key.

conn.changeEncryptionKey("apricot")

Database encryption and obfuscation

Copyright © 2007, iAnywhere Solutions, Inc. 15

Working with data using SQL
UltraLite applications can access table data using SQL or the Table API. This section describes data access
using SQL.

For information about the Table API, see “Working with data using the table API” on page 20.

This section explains how to perform the following tasks using SQL.

♦ Inserting, deleting, and updating rows.

♦ Executing a query.

♦ Scrolling through the rows of a result set.

This section does not describe the SQL language itself. For more information about SQL features, see SQL
Anywhere Server - SQL Reference [SQL Anywhere Server - SQL Reference].

Data manipulation: INSERT, UPDATE and DELETE

With UltraLite, you can perform SQL Data Manipulation Language operations and DDL operations. These
operations are performed using the ExecuteStatement method, a member of the PreparedStatement class.

For more information the PreparedStatement class, see “ PreparedStatement class” on page 81.

Parameter markers in prepared statements
UltraLite handles variable values using the ? parameter marker. For any INSERT, UPDATE or DELETE,
each ? is referenced according to its ordinal position in the prepared statement. For example, the first ? is
referred to as 1, and the second as 2.

♦ To insert a row

1. Declare a PreparedStatement object.

var PrepStmt;
2. Assign an INSERT statement to your prepared statement object. In the following, TableName and

ColumnName are the names of a table and column.

PrepStmt = conn.prepareStatement(
 "INSERT into TableName(ColumnName) values (?)", null);

The null parameter indicates that the statement has no persistent name.

3. Assign parameter values to the statement.

var NewValue;
NewValue = "Bob";
PrepStmt.setStringParameter(1, NewValue);

4. Execute the statement.

Understanding UltraLite for M-Business Anywhere Development

16 Copyright © 2007, iAnywhere Solutions, Inc.

PrepStmt.executeStatement(null);

♦ To update a row

1. Declare a PreparedStatement object.

var PrepStmt;
2. Assign an UPDATE statement to your prepared statement object. In the following, TableName and

ColumnName are the names of a table and column.

PrepStmt = conn.prepareStatement(
 "UPDATE TableName SET ColumnName = ? WHERE ID = ?", null);

The null parameter indicates that the statement has no persistent name.

3. Assign parameter values to the statement using methods appropriate for the data type.

var NewValue;
NewValue = "Bob";
PrepStmt.setStringParameter(1, NewValue);
PrepStmt.setIntParameter(2, 6);

4. Execute the statement

PrepStmt.executeStatement();

♦ To delete a row

1. Declare a PreparedStatement object.

var PrepStmt;
2. Assign a DELETE statement to your prepared statement object.

PrepStmt = conn.prepareStatement(
 "DELETE FROM customer WHERE ID = ?", null);

The null parameter indicates that the statement has no persistent name.

3. Assign parameter values for the statement.

var IDValue;
IDValue = 6;
PrepStmt.setIntParameter(1, IDValue);

4. Execute the statement.

PrepStmt.executeStatement();

Data retrieval: SELECT

When you execute a SELECT statement, the PreparedStatement.executeQuery method returns a ResultSet
object. The ResultSet class contains methods for navigating within a result set and methods to update data
using the ResultSet.

For more information about ResultSet objects, see “ ResultSet class” on page 91.

Working with data using SQL

Copyright © 2007, iAnywhere Solutions, Inc. 17

Example
In the following code, the results of a query are accessed as a ResultSet. When first assigned, the ResultSet
is positioned before the first row. The ResultSet.moveFirst method is then called to navigate to the first
record in the result set.

var MyResultSet;
var PrepStmt;
PrepStmt = conn.prepareStatement("SELECT ID, Name FROM customer", null);
MyResultSet = PrepStmt.executeQuery(null);
MyResultSet.moveFirst();

Example
The following code demonstrates how to obtain column values for the current row. The example uses
character data; similar methods are available for other data types.

The getString method uses the following syntax: MyResultSetName.getString(Index) where Index is the
ordinal position of the column name in your SELECT statement.

if (MyResultSet.getRowCount() == 0) {
} else {
 alert(MyResultSet.getString(1));
 alert(MyResultSet.getString(2));
 MyResultSet.moveRelative(0);
}

For more information about navigating a result set, see “Navigation with SQL” on page 19.

The following procedure uses a SELECT statement to retrieve information from the database. The results
of the query are assigned to a ResultSet object.

♦ To perform a select statement

1. Declare a PreparedStatement object.

var OrderStmt;
2. Assign a prepared statement to your PreparedStatement object.

OrderStmt = Connection.prepareStatement(
 "SELECT order_id, disc, quant, notes, status, c.cust_id,
 cust_name, p.prod_id, prod_name, price
 FROM ULOrder o, ULCustomer c, ULProduct p
 WHERE o.cust_id = c.cust_id
 AND o.prod_id = p.prod_id
 ORDER BY der_id", "order_query_stmt");

The second parameter is a persistent name that provides cross-page JavaScript object persistence.

3. Execute the query.

OrderResultSet = OrderStmt.executeQuery("order_query");

For more information on how to use queries, see the CustDB sample code in samples-dir
\UltraLiteForMBusinessAnywhere\CustDB\custdb.js.

Understanding UltraLite for M-Business Anywhere Development

18 Copyright © 2007, iAnywhere Solutions, Inc.

Navigation with SQL
UltraLite for M-Business Anywhere provides you with a number of methods to navigate a result set to
perform a wide range of navigation tasks.

The following methods of the ResultSet object allow you to navigate your result set:

♦ moveAfterLast moves to a position after the last row.

♦ moveBeforeFirst moves to a position before the first row.

♦ moveFirst moves to the first row.

♦ moveLast moves to the last row.

♦ moveNext moves to the next row.

♦ movePrevious moves to the previous row.

♦ moveRelative moves a certain number of rows relative to the current row. Positive index values move
forward in the result set, negative index values move backward in the result set, and zero does not move
the cursor. Zero is useful if you want to repopulate a row buffer.

Example
The following code fragment demonstrates how to use the moveFirst method to navigate within a result set.

PrepStmt = conn.prepareStatement(
 "SELECT ID, Name FROM customer", null);
MyResultSet = PrepStmt.executeQuery(null);
MyResultSet.moveFirst();

The same technique is used for all of the move methods.

For more information about these navigational methods, see “ ResultSet class” on page 91.

The ResultSetSchema object
The ResultSet.schema property allows you to retrieve information about the columns in the query.

The following example demonstrates how to use ResultSetSchema to capture schema information.

var i;
var MySchema = rs.schema ;
for (i = 1; i <= MySchema.columnCount; i++) {
 colname = MySchema.getColumnName(i);
 coltype = MySchema.getColumnSQLType(colname).toString();
 alert (colname + " " + coltype);
}

Working with data using SQL

Copyright © 2007, iAnywhere Solutions, Inc. 19

Working with data using the table API
UltraLite applications can access table data using SQL or the Table API. This section describes data access
using the Table API.

For information about SQL, see “Working with data using SQL” on page 16.

This section explains how to perform the following tasks using the Table API.

♦ Scrolling through the rows of a table.

♦ Accessing the values of the current row.

♦ Using find and lookup methods to locate rows in a table.

♦ Inserting, deleting, and updating rows.

Navigation with the Table API

UltraLite for M-Business Anywhere provides you with a number of methods to navigate a table to perform
a wide range of navigation tasks.

The following methods of the ULTable object allow you to navigate your result set:

♦ moveAfterLast moves to a position after the last row.

♦ moveBeforeFirst moves to a position before the first row.

♦ moveFirst moves to the first row.

♦ moveLast moves to the last row.

♦ moveNext moves to the next row.

♦ movePrevious moves to the previous row.

♦ moveRelative moves a certain number of rows relative to the current row. Positive index values move
forward in the table, negative index values move backward in the table, and zero does not move the cursor.
Zero is useful if you want to repopulate a row buffer.

Example
The following code opens the customer table and scrolls through its rows. It then displays an alert with the
last name of each customer.

var tCustomer;
tCustomer = conn.getTable("customer", null);
tCustomer.open();
tCustomer.moveBeforeFirst();
While (tCustomer.moveNext()) {
 alert(tCustomer.getString(3));
}

Understanding UltraLite for M-Business Anywhere Development

20 Copyright © 2007, iAnywhere Solutions, Inc.

Specifying an index
You expose the rows of the table to the application when you open the table object. By default, the rows are
exposed in order by primary key value, but you can specify an index to access the rows in a particular order.

Example
The following code moves to the first row of the customer table as ordered by the ix_name index.

tCustomer = conn.getTable("customer", null);
tCustomer.openWithIndex("ix_name");
tCustomer.moveFirst();

Accessing the values of the current row

At any time, a ULTable object is positioned at one of the following places.

♦ Before the first row of the table.

♦ On a row of the table.

♦ After the last row of the table.

If the ULTable object is positioned on a row, you can use one of the ULTable get methods to get the value
of each column for the current row.

Example
The following code fragment retrieves the value of three columns from the tCustomer ULTable object, and
displays them in text boxes.

var colID, colFirstName, colLastName;
colID = tCustomer.schema.getColumnID("id");
colFirstName = tCustomer.schema.getColumnID("fname");
colLastName = tCustomer.schema.getColumnID("lname");
alert(tCustomer.getInt(colID));
alert(tCustomer.getString(colFirstName));
alert(tCustomer.getString(colLastName));

You can also use methods of ULTable to set values.

tCustomer.setString(colLastName, "Kaminski");

By assigning values to these properties you do not alter the value of the data in the database.

You can assign values to the properties even if you are before the first row or after the last row of the table.
You cannot, however, get values from the column. For example, the following code fragment generates an
error.

tCustomer.moveBeforeFirst();
id = tCustomer.getInt(colID);

Working with data using the table API

Copyright © 2007, iAnywhere Solutions, Inc. 21

Searching rows with find and lookup

UltraLite has several modes of operation for working with data. Two of these modes, the find and lookup
modes, are used for searching. The ULTable object has methods corresponding to these modes for locating
particular rows in a table.

Note
The columns searched using Find and Lookup methods must be in the index used to open the table.

♦ Find methods move to the first row that exactly matches a specified search value, under the sort order
specified when the ULTable object was opened.

For more information about find methods, see “ ULTable class” on page 146.

♦ Lookup methods move to the first row that matches or is greater than a specified search value, under
the sort order specified when the ULTable object was opened.

For more information about lookup methods, see “ ULTable class” on page 146.

♦ To search for a row

1. Enter find or lookup mode.

Call the FindBegin or LookupBegin method. For example, the following code fragment calls
ULTable.findBegin.

tCustomer.findBegin();
2. Set the search values.

You do this by setting values in the current row. Setting these values affects the buffer, not the database.
For example, the following code fragment sets the last name column in the buffer to Kaminski.

tCustomer.setString(3, "Kaminski");

For multi-column indexes, a value for the first column is required, but you can omit the other columns.

3. Search for the row.

Use the appropriate method to carry out the search. For example, the following instruction looks for
the first row that exactly matches the specified value in the current index.

tCustomer.findFirst();

Inserting, updating, and deleting rows

UltraLite exposes the rows in a table to your application one at a time. The ULTable object has a current
position, which may be on a row, before the first row, or after the last row of the table.

Understanding UltraLite for M-Business Anywhere Development

22 Copyright © 2007, iAnywhere Solutions, Inc.

When your application changes location, UltraLite makes a copy of the row in a buffer. Any operations to
get or set values affect only the copy of data in this buffer. They do not affect the data in the database.

Example
The following statement changes the value of the first column in the buffer to 3.

tCustomer.setInt(1 , 3);

Using UltraLite modes
The UltraLite mode determines the purpose for which the values in the buffer will be used. UltraLite has
the following four modes of operation, in addition to a default mode.

♦ Insert mode The data in the buffer is added to the table as a new row when the ULTable.insert method
is called.

♦ Update mode The data in the buffer replaces the current row when the ULTable.update method is
called.

♦ Find mode Used to locate a row whose value exactly matches the data in the buffer when one of the
ULTable.find methods is called.

♦ Lookup mode Used to locate a row whose value matches or is greater than the data in the buffer when
one of the ULTable.lookup methods is called.

♦ To update a row

1. Move to the row you want to update.

You can move to a row by scrolling through the table or by searching using Find and Lookup methods.

2. Enter Update mode.

For example, the following instruction enters Update mode on the table tCustomer.

tCustomer.updateBegin();
3. Set the new values for the row to be updated.

For example, the following instruction sets the new value to Elizabeth.

tCustomer.setString(2, "Elizabeth");
4. Execute the Update.

tCustomer.update();

After the update operation, the current row is the row that was just updated. If you changed the value of a
column in the index specified when the ULTable object was opened, the current position is undefined.

By default, UltraLite operates in AutoCommit mode, so that the update is immediately applied to the row
in permanent storage. If you have disabled AutoCommit mode, the update is not applied until you execute
a commit operation. For more information about AutoCommit mode, see “Managing
transactions” on page 25.

Working with data using the table API

Copyright © 2007, iAnywhere Solutions, Inc. 23

Caution
Do not update the primary key of a row: delete the row and add a new row instead.

Inserting rows
The steps to insert a row are similar to those for updating rows, except that there is no need to locate any
particular row in the table before carrying out the insert operation. Rows are automatically sorted by the
index specified when opening the table.

♦ To insert a row

1. Enter Insert mode.

For example, the following instruction enters Insert mode on the table CustomerTable.

tCustomer.insertBegin();
2. Set the values for the new row.

If you do not set a value for one of the columns, and that column has a default, the default value is used.
If the column has no default, NULL is used. If the column does not allow NULL, the following defaults
are used:

♦ For numeric columns, zero.

♦ For character columns, an empty string.

To set a value to NULL explicitly, use the setNull method.

colID = tCustomer.schema.getColumnID("id");
colFirstName = tCustomer.schema.getColumnID("fname");
colLastName = tCustomer.schema.getColumnID("lname");
tCustomer.setInt(colID, 42);
tCustomer.setString(colFirstName, "Mitch");
tCustomer.setString(colLastName, "McLeod");

3. Execute the insertion.

The inserted row is permanently saved to the database when a Commit is carried out. In AutoCommit
mode, a Commit is carried out as part of the Insert method.

tCustomer.insert();

Deleting rows
There is no delete mode corresponding to the insert or update modes.

The following procedure deletes a row.

♦ To delete a row

1. Move to the row you want to delete.

2. Execute the delete:

tCustomer.deleteRow();

Understanding UltraLite for M-Business Anywhere Development

24 Copyright © 2007, iAnywhere Solutions, Inc.

Working with BLOB data

You can fetch BLOB data for columns declared BINARY or LONG BINARY using the GetByteChunk
method.

See “ getStringChunk method” on page 155.

Managing transactions

UltraLite provides transaction processing to ensure the integrity of the data in your database. A transaction
is a logical unit of work. Either the entire transaction is executed, or none of the statements in the transaction
are executed.

By default, UltraLite operates in AutoCommit mode. In AutoCommit mode, each insert, update, or delete
is executed as a separate transaction. Once the operation is completed, the change is made to the database.

If you set the Connection.AutoCommit property to false, you can use multi-statement transactions. For
example, if your application transfers money between two accounts, the deduction from the source account
and the addition to the destination account constitute a single transaction.

If AutoCommit is false, you must execute a Connection.commit statement to complete a transaction and
make changes to your database permanent, or you may execute a Connection.rollback statement to cancel
all the operations of a transaction. Turning AutoCommit off improves performance.

Note
Synchronization causes a Commit even if you have AutoCommit set to False.

Working with data using the table API

Copyright © 2007, iAnywhere Solutions, Inc. 25

Accessing schema information
Each Connection, ULTable, and ResultSet object contains a schema property. These schema objects provide
information about the tables, columns, indexes, and publications in a database.

♦ DatabaseSchema The number and names of the tables in the database, as well as global properties
such as the format of dates and times.

To obtain a DatabaseSchema object, access the Connection.databaseSchema property.

♦ TableSchema The number and names of columns in the table, as well as the Indexes collections for
the table.

To obtain a TableSchema object, access the ULTable.schema property.

♦ IndexSchema Information about the column, or columns, in the index. As an index has no data directly
associated with it, there is no separate Index object, only a IndexSchema object.

The IndexSchema objects are accessed using the TableSchema.getIndex method.

♦ PublicationSchema The numbers and names of tables and columns contained in a publication.
Publications are also comprised of schema only, so there is a PublicationSchema object but no Publication
object.

The PublicationSchema objects are accessible using the DatabaseSchema.getPublicationSchema
method.

♦ ResultSetSchema The number and names of the columns in a result set.

The ResultSetSchema objects are accessible using the PreparedStatement.getResultSetSchema method
or the ResultSet.schema property.

Understanding UltraLite for M-Business Anywhere Development

26 Copyright © 2007, iAnywhere Solutions, Inc.

Handling errors
In normal operation, UltraLite for M-Business Anywhere can throw errors that are intended to be caught
and handled in the script environment. See “ SQLError class” on page 111.

Errors are expressed as SQLCODE values, negative numbers indicating the particular kind of error.

UltraLite for M-Business Anywhere throws errors only from the DatabaseManager and Connection objects.
The following methods of DatabaseManager can throw errors.

♦ createDatabase
♦ dropDatabase
♦ openConnection

All other errors and exceptions within UltraLite for M-Business Anywhere are routed through the Connection
object.

You can access error numbers from DatabaseManager and Connection objects. See:

♦ “ Connection class” on page 58
♦ “ DatabaseManager class” on page 70

Handling errors

Copyright © 2007, iAnywhere Solutions, Inc. 27

Authenticating users
New users have to be added from an existing connection. As all UltraLite databases are created with a default
user ID and password of DBA and sql, respectively, you must first connect as this initial user.

You cannot change a user ID: you add a user and delete an existing user. A maximum of four user IDs are
permitted for each UltraLite database.

For more information about granting or revoking connection authority, see “ grantConnectTo
method” on page 62 and “ revokeConnectFrom method” on page 63.

♦ To add a user or change the password for an existing user

1. Connect to the database as an existing user.

2. Grant the user connection authority with the desired password.

conn.grantConnectTo("Robert", "newPassword");

♦ To delete an existing user

1. Connect to the database as an existing user.

2. Revoke the user's connection authority as follows.

conn.revokeConnectFrom("Robert");

Understanding UltraLite for M-Business Anywhere Development

28 Copyright © 2007, iAnywhere Solutions, Inc.

Synchronizing data
UltraLite for M-Business Anywhere applications typically involve two kinds of synchronization:

♦ Web content synchronization Web content, including HTML pages that define the application
itself, is synchronized through M-Business Anywhere.

♦ Data synchronization The UltraLite database is synchronized with a MobiLink server.

Although these two kinds of synchronization are distinct, you can initiate them together in a technique called
one-button synchronization. One-button synchronization is the recommended model for most applications,
but as there may be cases where it is necessary to keep synchronization of data and web content entirely
separate, that technique is discussed below.

One-button synchronization

One-button synchronization is a technique for initiating web content synchronization (using M-Business
Anywhere) and UltraLite data synchronization (using MobiLink) in a single operation. It is available on
Windows CE and Windows only. The architecture of one-button synchronization is as follows:

MobiLink
Synchronization
Server

M-Business
Anywhere

Web content
synchronization
Data
synchronization

UltraLite for M-
Business
Anywhere
application

The sequence of events in one button synchronization is as follows:

1. The user synchronizes their web application, perhaps by placing it in the cradle.

2. The M-Business Client synchronizes the web content.

3. The MBConnect component of M-Business Client calls the ulconnect.exe application.

4. ulconnect.exe initiates synchronization of the UltraLite database.

5. Data is synchronized with MobiLink.

Synchronizing data

Copyright © 2007, iAnywhere Solutions, Inc. 29

To implement one-button synchronization you must carry out the following steps:

1. In your application, set the synchronization parameters for MobiLink synchronization.

If you are synchronizing through M-Business Anywhere you can use the SyncParms.setMBAServer
method to set the host and port synchronization parameters. See “ setMBAServer
method” on page 126.

Otherwise, use the standard methods to set synchronization parameters. See “ SyncParms
class” on page 121.

2. Save the synchronization parameters so that they can be read by ulconnect.exe.

Call the Connection.saveSyncParms method to save the synchronization parameters. See “
saveSyncParms method” on page 64.

Synchronizing data

For most users it is useful to use one-button synchronization, which initiates both data synchronization and
web content synchronization. For more information, see “One-button synchronization” on page 29.

This section is for those users who want to synchronize data separately from web content synchronization.

Synchronization requires the MobiLink server and appropriate licensing. You can find a working example
of synchronization in the CustDB sample application.

UltraLite for M-Business Anywhere supports TCP/IP, HTTP, HTTPS, and HotSync synchronization.
Synchronization is initiated by the UltraLite application. In all cases, you use methods and properties of the
Connection object to control synchronization.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.
See “Separately licensed components” [SQL Anywhere 10 - Introduction].

♦ To synchronize over TCP/IP or HTTP

1. Prepare the synchronization information.

Assign values to the required properties of the Connection.syncParms object.

For more information about the properties and the values that you should set, see “UltraLite
Clients” [MobiLink - Client Administration].

2. Synchronize.

Call the Connection.synchronize method.

Understanding UltraLite for M-Business Anywhere Development

30 Copyright © 2007, iAnywhere Solutions, Inc.

Synchronizing data via M-Business Anywhere

Whether you use one-button synchronization or separate data synchronization, you can use a MobiLink
Redirector to configure your M-Business Anywhere server to route data to and from a MobiLink server. For
synchronization from outside the firewall, this reduces the number of ports that need to be externally
accessible.

The following diagram illustrates the architecture for the case of one-button synchronization.

MobiLink
Synchronization
Server

M-Business
Anywhere

Web content
synchronization
Data
synchronization

Redirector

UltraLite for M-
Business
Anywhere
application

♦ To synchronize data via M-Business Anywhere

1. At the server side, set up a MobiLink Redirector to route data between M-Business Anywhere and your
MobiLink server. See “M-Business Anywhere Redirector” [MobiLink - Server Administration].

2. In your client, set synchronization parameters so that UltraLite synchronization is directed to the host
and port number of M-Business Anywhere. You can use the SyncParms.setMBAServer method to carry
out this task. See “ setMBAServer method” on page 126.

3. From a client application, initiate synchronization using either one-button synchronization or separate
data synchronization. See:

♦ “One-button synchronization” on page 29
♦ “Synchronizing data” on page 30

Synchronizing data

Copyright © 2007, iAnywhere Solutions, Inc. 31

Deploying UltraLite for M-Business Anywhere
applications

When you have completed your application or when you want to test your application, you need to deploy
it to a device. This section outlines the steps needed to deploy an UltraLite application to a device.

Deploying applications to Windows CE and Windows desktops

You must carry out the following steps to deploy an UltraLite application to a Windows CE device:

♦ Deploy your application and UltraLite component. See “UltraLite for M-Business Anywhere Quick
Start” on page 6.

♦ Deploy an initial copy of the UltraLite database. See “UltraLite for M-Business Anywhere Quick
Start” on page 6.

In many situations it is sufficient to deploy an UltraLite database. You can use synchronization to load
an initial copy of the data.

You must place the database so that it can be located by the application. The Database On CE connection
parameter defines the location for Windows CE. The Database on Desktop connection parameter defines
the location for Windows. See:

♦ “UltraLite CE_FILE connection parameter” [UltraLite - Database Management and Reference]
♦ “UltraLite DBF connection parameter” [UltraLite - Database Management and Reference].

Deploying applications that use one-button synchronization
One-button synchronization requires a set of files, including: ulconnect.exe,ulconnect.udb,ulpod10.dll, and
ulrt10.dll. For Windows CE, these files are located in file ulpod.cab in the directory install-dir\ultralite
\UltraLiteForMBusinessAnywhere\ce\arm\. When you deploy the cab file to a Windows CE device, it installs
its contents in the proper locations automatically. For Windows, the required files must be deployed manually
from the directory install-dir\ultralite\UltraLiteForMBusinessAnywhere\win32\386\.

Deploying applications to Palm OS

You must carry out the following steps to deploy an UltraLite application to a Palm OS device:

♦ Deploy your application and UltraLite component. See “UltraLite for M-Business Anywhere Quick
Start” on page 6.

♦ Deploy an initial copy of the UltraLite database. See “UltraLite for M-Business Anywhere Quick
Start” on page 6.

In many situations it is sufficient to deploy an appropriately initialized UltraLite database file only. You
can then use synchronization to load an initial copy of the data.

Understanding UltraLite for M-Business Anywhere Development

32 Copyright © 2007, iAnywhere Solutions, Inc.

You can create .pdb files for deployment to Palm OS from any of the UltraLite utilities, including ulxml
and ulinit.

You must supply a database using the correct creator ID, so that it can be located by your application.
The Database On Palm connection parameter uses the creator ID to find the database. See “UltraLite
PALM_FILE connection parameter” [UltraLite - Database Management and Reference].

♦ Deploy the MobiLink synchronization conduit for HotSync.

This step is required only if the application is synchronizing using HotSync. See “HotSync on Palm
OS” [MobiLink - Client Administration].

Deploying UltraLite for M-Business Anywhere applications

Copyright © 2007, iAnywhere Solutions, Inc. 33

34

CHAPTER 3

Tutorial: A Sample Application for M-Business
Anywhere

Contents
Introduction to M-Business Anywhere development tutorial 36
Lesson 1: Create project architecture ... 37
Lesson 2: Create the application files ... 39
Lesson 3: Set up the M-Business Anywhere Server and Client 41
Lesson 4: Add startup code to your application .. 43
Lesson 5: Add inserts to your application .. 46
Lesson 6: Add navigation to your application .. 49
Lesson 7: Add updates and deletes to your application 50
Lesson 8: Add synchronization to your application .. 52

Copyright © 2007, iAnywhere Solutions, Inc. 35

Introduction to M-Business Anywhere development
tutorial

This tutorial describes how to build a cross-platform UltraLite application. At the end of the tutorial you will
have an application and small database that synchronizes with a central consolidated database.

Timing
The tutorial takes about 30 minutes if you copy and paste the code. If you enter the code yourself, it takes
significantly longer.

Prerequisites
This tutorial assumes that you have M-Business Anywhere installed on your computer and that your machine
has a web server that you can use to deliver files.

You must also have access to an M-Business Client to test and run the application.

The tutorial assumes a basic familiarity with JavaScript programming language and M-Business Anywhere
application development.

The tutorial also assumes that you know how to create an UltraLite database using either UltraLite in Sybase
Central, or the ulcreate UltraLite utility.

See also
♦ “Creating an UltraLite database from Sybase Central” [UltraLite - Database Management and

Reference]
♦ “Creating and Configuring UltraLite Databases” [UltraLite - Database Management and Reference]

Tutorial: A Sample Application for M-Business Anywhere

36 Copyright © 2007, iAnywhere Solutions, Inc.

Lesson 1: Create project architecture
The first lesson describes how to set up the project architecture and creating an UltraLite database for the
tutorial.

♦ To create project architecture and empty UltraLite database

1. Create a directory for this tutorial.

This tutorial assumes the directory is c:\Tutorial\mbus. If you create a directory with a different name,
use that directory throughout the tutorial.

Create the following subdirectories for platform-specific files:

♦ c:\Tutorial\mbus\PALM_OS
♦ c:\Tutorial\mbus\WIN32_OS
♦ c:\Tutorial\mbus\WINCE_OS
♦ c:\Tutorial\mbus\WINCE_OS\arm

2. Configure your web server:

a. Map a virtual directory named tutorial on your web server to c:\Tutorial\mbus. The URL to access
this directory will be http://localhost/tutorial.

For Microsoft IIS, you can make these changes from the management tool.

For Apache, make a symbolic link named tutorial from your document root to the c:\Tutorial
\mbus directory, or copy the tutorial files into your Apache document root.

b. Ensure that your web server delivers the following files with MIME type application/octet-stream:

♦ .cab
♦ .dll
♦ .prc
♦ .pdb
♦ .udb

For Microsoft IIS, you can make these changes from the management tool. Go to the virtual
directory properties and make the changes under HTTP Headers and File Types.

For Apache, edit the file mime.types in your conf directory.

3. Create a database using UltraLite in Sybase Central.

For more information about creating a database, see “Creating an UltraLite database from Sybase
Central” [UltraLite - Database Management and Reference].

♦ Table name Customer

♦ Columns in Customer

Lesson 1: Create project architecture

Copyright © 2007, iAnywhere Solutions, Inc. 37

Column Name Data Type (Size) Column allows
NULL values?

Default value

ID integer No autoincrement

FName char(15) No None

LName char(20) No None

City char(20) Yes None

Phone char(12) Yes 555-1234

It is usually better to use global autoincrement or UUID values for primary keys in a synchronizing
environment. The autoincrement default is used here to keep the tutorial shorter.

♦ Primary key Ascending ID

4. Save the database.

If you are developing an application for Windows or Windows CE, choose File ► Save and choose
tutcustomer.udb in the WINCE_OS or the WIN32_OS subdirectory of your tutorial directory as the file
name.

If you are developing an application for Palm OS:

a. From the File menu, choose Export Schema for Palm.

b. Enter Syb3 as the creator ID.

c. Save the file as tutcustomer.pdb in the PALM_OS subdirectory of your tutorial directory.

A note on Palm creator IDs
The creator ID is assigned to you by Palm. You can use Syb3 as your creator ID when you make sample
applications. However, when you create a commercial application, you should use your own creator
ID.

If you are developing a cross-platform application, save the database file in all the above locations.

Tutorial: A Sample Application for M-Business Anywhere

38 Copyright © 2007, iAnywhere Solutions, Inc.

Lesson 2: Create the application files
The following procedure uses the form to create a user interface. This example uses text boxes for input and
output.

♦ Create the application files

1. Create the file c:\Tutorial\mbus\main.html.

This file will be the main file of the application. Later in the tutorial, you will add content to the file.
For now, you just set it up to include a platform-specific file ul_deps.html. Add the following content
to the file:

<html>
<body>

</body>
</html>

2. Create the platform-specific files.

Each of these files references the appropriate UltraLite runtime library and database file. Create a file
ul_deps.html in each of the operating system subdirectories of your tutorial directory, as follows:

<!-- PALM_OS\ul_deps.html -->
<html>

</html>

<!-- WINCE_OS\ul_deps.html -->
<html>

</html>

<!-- WIN32_OS\ul_deps.html -->
<html>

</html>

3. Copy the UltraLite runtime files to the tutorial directory.

The ul_deps.html files require that the UltraLite runtime library and database be in the proper location
relative to the tutorial directory. The database file is already in place from earlier in the tutorial. You
must now copy the UltraLite runtime library into place.

♦ For the Palm OS, copy ulpod10.prc from install-dir\ultralite\UltraLiteForMBusinessAnywhere
\palm\68k to c:\Tutorial\mbus\PALM_OS\.

♦ For Windows CE, copy ulpod10.dll from install-dir\ultralite\UltraLiteForMBusinessAnywhere\ce
\arm to c:\Tutorial\mbus\WINCE_OS\arm\.

♦ For Windows desktops, copy ulpod10.dll from install-dir\ultralite
\UltraLiteForMBusinessAnywhere\win32\386 to c:\Tutorial\mbus\WIN32_OS\.

Lesson 2: Create the application files

Copyright © 2007, iAnywhere Solutions, Inc. 39

All application files are now in place.

Tutorial: A Sample Application for M-Business Anywhere

40 Copyright © 2007, iAnywhere Solutions, Inc.

Lesson 3: Set up the M-Business Anywhere Server and
Client

In this lesson you create an M-Business Anywhere user, group, and channel for your application. This
information is for M-Business Anywhere 6.0.

♦ Configure M-Business Anywhere

1. Open the M-Business Anywhere administration console and login as the admin user.

The default user ID is Admin, with an empty password.

2. Create a new user:

Later in this tutorial, you will use the user name and password you create in this step to synchronize
from an M-Business client. If you already have an M-Business client set up for this server, you may
want to use a user name that already exists.

a. Click the Users menu option in the left navigation panel and then click the Create User link. The
Create New User page appears.

b. Enter a User Name and enter the same password in the Password and Confirm Password fields.
The other fields are optional. Click Create.

3. Create a group and a channel:

a. Click the Groups heading and click New Group.

b. Name the new group UltraLite Samples and click Create and Edit.

c. Under the Web tab, click New Group Channel.

d. Use the following settings for the channel. Make sure to substitute the correct URL for your web
server:

♦ Title UltraLite Tutorial

♦ Location http://localhost:8091/tutorial/main.html.

The location is the URL of the tutorial main.html page, as served by your web server.

♦ Channel Size Limit 1000 KB

♦ Link Depth 3

♦ Allow Binary Distribution Yes (checked).

♦ Hidden No (unchecked)

4. Add the user to the group:

a. Click the Users heading and find the user you created in step 2.

b. Click the User Name to show the user's properties.

Lesson 3: Set up the M-Business Anywhere Server and Client

Copyright © 2007, iAnywhere Solutions, Inc. 41

c. Click Add/Remove Groups.

d. Check the _UltraLite Samples_ group and click Update to add the user to this group.

The user, group, and channel are now set up on M-Business Anywhere. The next step is to synchronize the
content of this channel to an M-Business client. You can do this from whichever platform you want to use.

The next procedure assumes that you have an M-Business client installed. It is recommended that you click
Tools ► Options and set the client options to Show JavaScript Errors. This setting allows easier debugging
of any errors in your application.

♦ Synchronize the channel for your device

• Synchronize your M-Business client with the UltraLite channel on the M-Business Anywhere Server.

At this stage there is no content for your application, so the page appears blank.

Tutorial: A Sample Application for M-Business Anywhere

42 Copyright © 2007, iAnywhere Solutions, Inc.

Lesson 4: Add startup code to your application
In this lesson you add startup code to your application that connects to an UltraLite database. This requires
adding HTML to the main page, and adding JavaScript logic to control the application.

♦ Add content to your application

1. Add content to main.html.

Add the following form to your application's main page, c:\Tutorial\mbus\main.html, immediately after
the <a> tag:

<form name="custForm">
<input type="text" name="fname" size="15">

<input type="text" name="lname" size="20">

<input type="text" name="city" size="20">

<input type="text" name="phone" size="12">

<input type="text" name="custid" size="10">

<table>
 <tr>
 <td><input type="button"
 value="Insert" onclick="ClickInsert();">
 </td>
 <td><input type="button"
 value="Update" onclick="ClickUpdate();">
 </td>
 <td>
 <input type="button"
 value="Delete" onclick="ClickDelete();">
 </td>
 </tr>
 <tr>
 <td>
 <input type="button"
 value="Next" onclick="ClickNext();">
 </td>
 <td>
 <input type="button"
 value="Prev" onclick="ClickPrev();">
 </td>
 <td></td>
 </tr>
 <tr>
 <td colspan=3>
 <input type="button"
 value="Synchronize" onclick="ClickSync();">
 </td>
 </tr>
</table>
</form>

2. Create a JavaScript file c:\Tutorial\mbus\tutorial.js that provides application logic.

3. Add content to the JavaScript file:

Add the following code to the top of the file to declare the required UltraLite objects:

Lesson 4: Add startup code to your application

Copyright © 2007, iAnywhere Solutions, Inc. 43

var DatabaseMgr;
var Connection;
var CustomerTable;

Add connection code:

function Connect()
{
 DatabaseMgr = CreateObject
("iAnywhere.Data.UltraLite.DatabaseManager.Tutorial");
 if(DatabaseMgr == null) {
 alert("Error, make sure POD is on device");
 return;
 }
 var connParms = DatabaseMgr.createConnectionParms();
 var dir = DatabaseMgr.directory;
 connParms.schemaOnPalm = "tutCustomer";
 connParms.databaseOnPalm = "Syb3";
 connParms.databaseOnCE = dir + "\\tutCustomer.udb";
 connParms.databaseOnDesktop = dir + "\\tutCustomer.udb";
 connParms.userID = "DBA";
 connParms.password = "sql";
 try {
 // try to connect to an existing database
 Connection = DatabaseMgr.openConnection(connParms.ToString());
 alert("Connected to an existing database");
 } catch(ex) {
 if(DatabaseMgr.sqlCode !=
DatabaseMgr.SQLError.SQLE_ULTRALITE_DATABASE_NOT_FOUND) {
 alert(ex.getMessage());
 return;
 } else {
 try {
 // the database does not exist, create one
 Connection = DatabaseMgr.createDatabase(connParms.ToString());
 alert("Created a new database");
 } catch(ex2) {
 alert(ex2.getMessage());
 return;
 }
 }
 }
}

4. Use the onload event handler to connect to the database when the application is started:

a. Import tutorial.js into main.html by adding the following line immediately before the <body> tag:

<script src="tutorial.js"></script>
b. Edit main.html and change the <body> tag to the following:

<body onload="Connect();">
5. Test your application.

Tutorial: A Sample Application for M-Business Anywhere

44 Copyright © 2007, iAnywhere Solutions, Inc.

Synchronize your M-Business Client and start the application. A message box appears when your
application creates the UltraLite database. Once this is working properly, you can continue to the next
lesson.

Lesson 4: Add startup code to your application

Copyright © 2007, iAnywhere Solutions, Inc. 45

Lesson 5: Add inserts to your application
This lesson shows how to fill out your application with data manipulation and navigation logic.

♦ Open the table

1. Write code to initialize the CustomerTable that represents the Customer table in your database.

Add the following code to the end of the Connect function in tutorial.js:

try {
 CustomerTable = Connection.getTable("customer", null);
 CustomerTable.open();
} catch(ex3) {
 alert("Error: " + ex3.getMessage());
}

2. Add variables to move data between the database and the web form.

Add the following declarations to the top of tutorial.js, before the Connect function.

var Cust_FName = "";
var Cust_LName = "";
var Cust_City = "";
var Cust_Phone = "";
var Cust_Id = "";

3. Create procedures to fetch and display customer data.

Add the following function to tutorial.js, immediately after the Connect function. It fetches the current
row of the customer and also ensures that NULL columns display as empty strings:

function FetchCurrentRow()
{
 var id;
 if(CustomerTable.getRowCount() == 0) {
 Cust_FName = "";
 Cust_LName = "";
 Cust_City = "";
 Cust_Phone = "";
 Cust_Id = "";
 } else {
 id = CustomerTable.schema.getColumnID("FName");
 Cust_FName = CustomerTable.getString(id);
 id = CustomerTable.schema.getColumnID("LName");
 Cust_LName = CustomerTable.getString(id);
 id = CustomerTable.schema.getColumnID("city");
 if(CustomerTable.isNull(id)) {
 Cust_City = "";
 } else {
 Cust_City = CustomerTable.getString(id);
 }
 id = CustomerTable.schema.getColumnID("phone");
 if(CustomerTable.isNull(id)) {
 Cust_Phone = "";
 } else {
 Cust_Phone = CustomerTable.getString(id);
 }
 id = CustomerTable.schema.getColumnID("id");
 Cust_Id = CustomerTable.getString(id);

Tutorial: A Sample Application for M-Business Anywhere

46 Copyright © 2007, iAnywhere Solutions, Inc.

 }
}

Add the following JavaScript to main.html, immediately before the closing </body> tag.
DisplayCurrentRow takes the values from the database and displays them in the web form. FetchForm
takes the current values in the web form and makes them available to the database code.

<script>
function DisplayCurrentRow()
{
 FetchCurrentRow();
 document.custForm.fname.value = Cust_FName;
 document.custForm.lname.value = Cust_LName;
 document.custForm.city.value = Cust_City;
 document.custForm.phone.value = Cust_Phone;
 document.custForm.custid.value = Cust_Id;
}
function FetchForm()
{
 Cust_FName = document.custForm.fname.value;
 Cust_LName = document.custForm.lname.value;
 Cust_City = document.custForm.city.value;
 Cust_Phone = document.custForm.phone.value;
}
</script>

4. Call DisplayCurrentRow when the application is loaded.

Modify the body tag at the top of main.html as follows:

<body onload="Connect(); DisplayCurrentRow();">

Although there is no data in your database and no rows are displayed, this is a good place to synchronize
M-Business Client to ensure that you have not introduced bugs.

♦ Add code to insert rows

• Write code to implement the Insert button.

In the following procedure, the call to InsertBegin puts the application into insert mode and sets all
values in the current row to their defaults. For example, the ID column receives the next autoincrement
value. The column values are set and the new row is inserted.

Add the following function to tutorial.js, immediately after FetchCurrentRow:

function Insert()
{
 var id;
 try {
 CustomerTable.insertBegin();
 id = CustomerTable.schema.getColumnID("FName");
 CustomerTable.setString(id, Cust_FName);
 id = CustomerTable.schema.getColumnID("LName");
 CustomerTable.setString(id, Cust_LName);
 id = CustomerTable.schema.getColumnID("city");
 if(Cust_City.length > 0) {
 CustomerTable.setString(id, Cust_City);
 }

Lesson 5: Add inserts to your application

Copyright © 2007, iAnywhere Solutions, Inc. 47

 id = CustomerTable.schema.getColumnID("phone");
 if(Cust_Phone.length > 0) {
 CustomerTable.setString(id, Cust_Phone);
 }
 CustomerTable.insert();
 CustomerTable.moveLast();
 } catch(ex) {
 alert("Insert error: " + ex.getMessage());
 }
}

Add the following function to main.html, immediately after the FetchForm function:

function ClickInsert()
{
 FetchForm();
 Insert();
 DisplayCurrentRow();
}

You can now test your application.

♦ Test your application

1. Synchronize your M-Business Client.

2. Run the application.

After an initial message box, the form is displayed.

3. Insert two rows into the table:

a. Enter a first name of Jane in the first text box and a last name of Doe in the second text box. Click
Insert.

A row is added to the table with these values. The application moves to the last row of the table
and displays the row. The label displays the automatically incremented value of the ID column
that UltraLite assigned to the row.

b. Enter a first name of John in the first text box and a last name of Smith in the second. Click Insert.

The next step is to add navigation buttons

Tutorial: A Sample Application for M-Business Anywhere

48 Copyright © 2007, iAnywhere Solutions, Inc.

Lesson 6: Add navigation to your application
This lesson describes code for scrolling forward and backward through the rows of a result set.

♦ Add navigation code to your application

1. Add the MoveNext function to tutorial.js, immediately after the Insert function:

function MoveNext()
{
 if(! CustomerTable.moveNext()) {
 CustomerTable.moveLast();
 }
}

2. Add the MovePrev function to tutorial.js, immediately after the MoveNext function:

function MovePrev()
{
 if(! CustomerTable.movePrevious()) {
 CustomerTable.moveFirst();
 }
}

3. Add the following procedures to main.html:

function ClickNext()
{
 MoveNext();
 DisplayCurrentRow();
}
function ClickPrev()
{
 MovePrev();
 DisplayCurrentRow();
}

4. Synchronize your application and test the navigation buttons.

When the form is first displayed, the controls are empty as the current position is before the first row.
After the form is displayed, click Next and Previous to move through the rows of the table.

Lesson 6: Add navigation to your application

Copyright © 2007, iAnywhere Solutions, Inc. 49

Lesson 7: Add updates and deletes to your application
This lesson describes code for updating and deleting rows.

♦ Add update and delete functions to your application

1. Add the Update function to tutorial.js:

function Update()
{
 var id;
 try {
 CustomerTable.updateBegin();
 id = CustomerTable.schema.getColumnID("fname");
 CustomerTable.setString(id, Cust_FName);
 id = CustomerTable.schema.getColumnID("lname");
 CustomerTable.setString(id, Cust_LName);
 id = CustomerTable.schema.getColumnID("city");
 if(Cust_City.length > 0) {
 CustomerTable.setString(id, Cust_City);
 } else {
 CustomerTable.setNull(id);
 }
 id = CustomerTable.schema.getColumnID("phone");
 if(Cust_Phone.length > 0) {
 CustomerTable.setString(id, Cust_Phone);
 } else {
 CustomerTable.setNull(id);
 }
 CustomerTable.update();
 } catch(ex) {
 alert("Update error: " + ex.getMessage());
 }
}

2. Add the Delete function to tutorial.js:

function Delete()
{
 if(CustomerTable.getRowCount() == 0) {
 return;
 }
 CustomerTable.deleteRow();
 CustomerTable.moveRelative(0);
}

3. Add the following functions to main.html:

function ClickUpdate()
{
 FetchForm();
 Update();
 DisplayCurrentRow();
}
function ClickDelete()
{
 Delete();
 DisplayCurrentRow();
}

Tutorial: A Sample Application for M-Business Anywhere

50 Copyright © 2007, iAnywhere Solutions, Inc.

4. Synchronize your M-Business Client and run the application.

Lesson 7: Add updates and deletes to your application

Copyright © 2007, iAnywhere Solutions, Inc. 51

Lesson 8: Add synchronization to your application
The following procedure implements synchronization.

♦ Add a synchronization function to your application

1. Add the Synchronize function to tutorial.js:

The synchronization parameters are stored in the SyncParms object. For example, the
SyncParms.userName property specifies the user name for which MobiLink searches. The
SyncParms.sendColumnNames property specifies that the column names are sent to MobiLink so it
can generate upload and download scripts.

This function uses a TCP/IP synchronization stream and the default network communication options
(stream parameters). These default options assume that you are synchronizing from either a Windows
CE client connected to the computer running the MobiLink server via ActiveSync, or from a 32-bit
Windows desktop client running on the same computer as MobiLink. If this is not the case, change the
synchronization stream type and set the network communication options to the appropriate values. See:

♦ “ setStream method” on page 130
♦ “ setStreamParms method” on page 130

function Synchronize()
{
 var SyncParms = Connection.syncParms;

 SyncParms.setUserName("user-name");
 SyncParms.setStream(SyncParms.STREAM_TYPE_TCPIP);
 SyncParms.setVersion("ul_default");
 SyncParms.setSendColumnNames(true);
 try {
 Connection.synchronize();
 } catch(ex) {
 alert("Sync error: " + ex.getMessage());
 }
}

2. Add the following function to main.html:

function ClickSync()
{
 window.showBusy = true;
 Synchronize();
 window.showBusy = false;
 DisplayCurrentRow();
}

3. Synchronize your M-Business Client.

This synchronization downloads the latest version of the application. It does not synchronize your
database.

The final step in this tutorial is to synchronize your UltraLite database. The SQL Anywhere sample database
has a Customer table with columns matching those in the Customer table in your UltraLite database. The
following procedure synchronizes your database with the SQL Anywhere sample database.

Tutorial: A Sample Application for M-Business Anywhere

52 Copyright © 2007, iAnywhere Solutions, Inc.

♦ To synchronize your application

1. From a command prompt, start the MobiLink server by running the following command.

mlsrv10 -c "dsn=SQL Anywhere 10 Demo" -v+ -zu+

The -zu+ option provides automatic addition of user scripts. For more information about this option,
see “MobiLink Server Options” [MobiLink - Server Administration].

2. In M-Business Client, click Delete repeatedly to delete all the rows in your table.

Any rows in the table would be uploaded to the Customer table in the SQL Anywhere sample database.

3. Synchronize your application.

Click Synchronize. The MobiLink server window displays the synchronization progress.

4. When the synchronization is complete, click Next and Previous to move through the rows of the table.

This completes the tutorial.

Lesson 8: Add synchronization to your application

Copyright © 2007, iAnywhere Solutions, Inc. 53

54

CHAPTER 4

UltraLite for M-Business Anywhere API
Reference

Contents
Data types in UltraLite for M-Business Anywhere ... 56
AuthStatusCode class .. 57
Connection class ... 58
ConnectionParms class .. 66
CreationParms class ... 68
DatabaseManager class .. 70
DatabaseSchema class ... 73
IndexSchema class ... 78
PreparedStatement class .. 81
PublicationSchema class ... 90
ResultSet class .. 91
ResultSetSchema class .. 107
SQLError class .. 111
SQLType class ... 119
SyncParms class ... 121
SyncResult class ... 132
TableSchema class ... 135
ULTable class .. 146
UUID class .. 171

Copyright © 2007, iAnywhere Solutions, Inc. 55

Data types in UltraLite for M-Business Anywhere
JavaScript has only one numeric data type and only one Date data type.

The prototypes in this API Reference include a variety of other data types in the method and property
descriptions. These types are internal M-Business Anywhere data types. Distinct numeric data types such
as UInt32 (unsigned 32-bit integer) are reported here to give an idea of the size and precision of data that
may be supplied. Distinct data types related to date and time (Date, Time, Timestamp) are reported so that
you can write code to extract the required information from the supplied data if necessary.

UltraLite for M-Business Anywhere API Reference

56 Copyright © 2007, iAnywhere Solutions, Inc.

AuthStatusCode class
Enumerates the status codes that may be reported during MobiLink user authentication.

This object can be obtained from DatabaseManager as follows:

var authStatus = dbMgr.AuthStatusCode;

Properties

The following constants are properties of AuthStatusCode

Constant Value Description

UNKNOWN 0 Authorization status is unknown, possibly be-
cause the connection has not yet performed a
synchronization.

VALID 1 User ID and password were valid at time of syn-
chronization.

VALID_BUT_EXPIRES_SOON 2 User ID and password were valid at time of syn-
chronization but will expire soon.

EXPIRED 3 User ID or password has expired; authorization
failed.

INVALID 4 Bad user ID or password; authorization failed.

IN_USE 5 User ID is already in use; authorization failed.

toString method

Generates the string name of the authorization status code constant.

Syntax
String toString();

Returns
The name of the code or unknown if not a recognized code.

AuthStatusCode class

Copyright © 2007, iAnywhere Solutions, Inc. 57

Connection class
Represents a connection to an UltraLite database.

Connections are instantiated using one of the following methods:

♦ DatabaseManager.openConnection
♦ DatabaseManager.createDatabase

You must open a connection before carrying out any other operation, and you must close the connection
after you have finished all operations on the connection and before your application terminates.

You must close all tables opened on a connection before closing the connection.

When a JavaScript Error is thrown because of a failed UltraLite database operation, the SQL error code is
set on the sqlCode field of the Connection object.

Properties

Prototype Description

Boolean autoCommit Controls whether a commit is performed after each statement
(insert, update or delete).

If autoCommit is false, a commit or rollback is performed
only when the user invokes the commit() or rollback()
method.

By default, a database commit is performed after each suc-
cessful statement. If the commit fails, you have the option to
execute additional SQL statements and perform the commit
again, or execute a rollback statement.

String openParms (read-only) Gets the connection parameters string as a semicolon-sepa-
rated list of name=value pairs.

See “UltraLite Connection String Parameters Refer-
ence” [UltraLite - Database Management and Reference].

DatabaseSchema databaseSchema (read-
only)

Gets the database schema. This property is valid only while
its connection is open.

Boolean skipMBASync (read-write) Controls whether the database should be synchronized dur-
ing one-button synchronization (false) or whether it should
be skipped (true).

Default is false.

See “One-button synchronization” on page 29.

UltraLite for M-Business Anywhere API Reference

58 Copyright © 2007, iAnywhere Solutions, Inc.

Prototype Description

Int32 sqlCode (read-only) Gets the SQL Code of the last operation on this connection.

The SQL Code is the standard SQL Anywhere code and is
reset by any subsequent UltraLite database operation on this
connection.

SyncParms syncParms (read-only) Gets synchronization settings for this connection.

See “Synchronization parameters for UltraLite” [MobiLink
- Client Administration].

SyncResult syncResult (read-only) Gets the results of the most recent synchronization for this
connection.

See “Synchronization parameters for UltraLite” [MobiLink
- Client Administration].

INVALID_DATABASE_ID (read-only) A constant indicating an invalid database.

changeEncryptionKey method

Changes the database encryption key to the specified new key.

Syntax
changeEncryptionKey(String newKey)

Parameters
♦ newKey The new encryption key for the database.

Remarks
If the encryption key is lost, it is not possible to open the database.

close method

Closes this connection.

Syntax
close()

Remarks
Once a connection is closed, it cannot be reopened. To reopen a connection, a new connection object must
be created and opened.

It is an error to use any object (a table or schema for example) associated with a closed connection.

In JavaScript, the closed connection object is not set to NULL automatically after it is closed. It is
recommended that you explicitly set the connection object to NULL after closing the connection.

Connection class

Copyright © 2007, iAnywhere Solutions, Inc. 59

commit method

Commits outstanding changes to the database.

Syntax
commit()

countUploadRow method

Returns the number of rows to be uploaded when the next synchronization takes place.

Syntax
UInt32 countUploadRow(UInt32 mask, UInt32 threshold)

Parameters
♦ mask Set of publications to check.

See PublicationSchema class.

♦ threshold Value that determines the maximum number of rows to count, and so limits the amount of
time taken by the call. A value of 0 corresponds to the maximum limit. A value of 1 determines if any
rows need to be synchronized. threshold must be in range [0,0x0ffffffff].

getDatabaseID method

Gets the current Database ID value, as set by setDatabaseID().

Syntax
UInt32 getDatabaseID()

Remarks
If the value has not been set, the constant Connection.INVALID_DATABASE_ID is returned.

getGlobalAutoIncrementUsage method

Returns the percentage of available global autoincrement values that have been used.

Syntax
UInt16 getGlobalAutoIncrementUsage()

Remarks
If the percentage approaches 100, your application should set a new value for the global database ID using
the setDatabaseID.

UltraLite for M-Business Anywhere API Reference

60 Copyright © 2007, iAnywhere Solutions, Inc.

getLastDownloadTime method

Returns the timestamp of the most recent download.

Syntax
Date getLastDownloadTime(UInt32 mask)

Parameters
♦ mask A set of publications to check.

Remarks
The parameter mask must reference a single publication or be the special constant
PublicationSchema.SYNC_ALL_DB for the time of the last download of the full database.

See also
♦ “ PublicationSchema class” on page 90

getLastIdentity method

Returns the most recent identity value used.

Syntax
UInt64 getLastIdentity()

Remarks
This function is equivalent to the following SQL statement:

 SELECT @@identity

The function is particularly useful in the context of global autoincrement columns. The returned value is an
unsigned 64-bit integer, database data type UNSIGNED BIGINT. Since this statement only allows you to
determine the most recently assigned default value, you should retrieve this value soon after executing the
insert statement to avoid spurious results.

Occasionally, a single insert statement may include more than one column of type global autoincrement. In
this case, the return value is one of the generated default values, but there is no reliable means to determine
which one. For this reason, you should design your database and write your insert statements so as to avoid
this situation.

getNewUUID method

Returns a new UUID value.

Syntax
UUID getNewUUID()

Connection class

Copyright © 2007, iAnywhere Solutions, Inc. 61

getTable method

Creates and returns a reference to the requested table in the database.

Syntax
Table getTable(String name, String persistName)

Parameters
♦ name Name of the table to fetch.

♦ persistName The name for cross-page JavaScript object persistence. Set to null if no persistence is
required (for example, if the application has only a single HTML page).

grantConnectTo method

Grants access to an UltraLite database for a user ID with a specified password.

Syntax
grantConnectTo(String uid, String pwd)

Parameters
♦ uid User ID to grant access to. The maximum length is 16 characters.

♦ pwd The password for the user ID.

Remarks
If an existing user ID is specified, this function updates the password for the user. UltraLite supports a
maximum of 4 users.

isOpen method

Returns true if the connection is open, false otherwise.

Syntax
Boolean isOpen();

prepareStatement method

Pre-compiles and stores into a PreparedStatement object a SQL statement with or without IN parameters.

Syntax
PreparedStatement prepareStatement(String sql, String persistName)

Parameters
♦ sql A SQL statement that may contain one or more '?' IN parameter placeholder.

UltraLite for M-Business Anywhere API Reference

62 Copyright © 2007, iAnywhere Solutions, Inc.

♦ persistName The name for cross-page JavaScript object persistence. Set to null if no persistence is
required (for example, if the application has only a single HTML page).

Remarks
This object can be used to efficiently execute the SQL statement multiple times.

resetLastDownloadTime method

Resets the time of the most recent download.

Syntax
resetLastDownloadTime(UInt32 mask)

Parameters
♦ mask Set of publications to reset.

revokeConnectFrom method

Revokes access to an UltraLite database for a specified user ID.

Syntax
revokeConnectFrom(String uid)

Parameters
♦ uid User ID to be excluded from database access. The maximum length is 16 characters.

rollback method

Rolls back outstanding changes to the database.

Syntax
rollback()

rollbackPartialDownload method

Rolls back the changes from a failed synchronization.

Syntax
rollbackPartialDownload()

Remarks
When a communication error occurs during the download phase of synchronization, UltraLite can apply the
downloaded changes, so that the synchronization can be resumed from the place it was interrupted. If the

Connection class

Copyright © 2007, iAnywhere Solutions, Inc. 63

download changes are not needed (the user or application does not want to resume the download at this
point), RollbackPartialDownload rolls back the failed download transaction.

saveSyncParms method

Saves the synchronization parameters for use by HotSync or for use during one-button synchronization.

Syntax
saveSyncParms()

Remarks
Do not confuse the saveSyncParms method with the Connection.SyncParms property. The SyncParms
property is used to define the synchronization parameters for this connection. The setSyncParms method
just saves these parameters so that HotSync can use them.

See also
♦ “One-button synchronization” on page 29

setDatabaseID method

Sets the database ID value to be used for global autoincrement columns.

Syntax
setDatabaseID(UInt32 value)

Parameters
♦ value Database ID value. value must be in range [0,0x0ffffffff].

startSynchronizationDelete method

Marks for synchronization all subsequent deletes made by this connection.

Syntax
startSynchronizationDelete()

Remarks
Once this function is called, all delete operations are again synchronized.

stopSynchronizationDelete method

Prevents delete operations from being synchronized.

UltraLite for M-Business Anywhere API Reference

64 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
stopSynchronizationDelete()

Remarks
This is useful for deleting old information from an UltraLite database to save space, while not deleting this
information on the consolidated database.

synchronize method

Synchronizes the database using the current SyncParms object.

Syntax
synchronize()

Remarks
A detailed result status is reported in this connection's SyncResult object. The synchronization is carried out
using the synchronization properties defined in the Connection.SyncParms object for this connection.

synchronizeWithParm method

Synchronizes the database using the specified SyncParms object.

Syntax
synchronizeWithParm(SyncParms parms)

Parameters
♦ parms The SyncParms object to use for this synchronization.

Remarks
This method makes it possible to share synchronization parameters among connections.

A detailed result status is reported in this connection's SyncResult object.

Connection class

Copyright © 2007, iAnywhere Solutions, Inc. 65

ConnectionParms class
Specifies parameters for opening a connection to an UltraLite database.

Databases are created with a single authenticated user, DBA, whose initial password is sql. By default,
connections are opened using the user ID DBA and password sql. To disable the default user, use
Connection.revokeConnectFrom. To add a user or change a user's password, use
Connection.grantConnectTo.

Currently, only one connection can be opened at any time. Only one database may be active at a given time.
Attempts to open a connection to a different database while other connections are open result in an error.

Properties

The properties of the class are listed here.

Prototype Description

String additionalParms (read-write) Additional parameters specified as name=value pairs separated
with semicolons.

String cacheSize (read-write) The size of the cache. CacheSize values are specified in bytes.
Use the suffix k or K for kilobytes and use the suffix m or M for
megabytes. The default cache size is sixteen pages. Given a de-
fault page size of 4 KB, the default cache size is 64 KB.

See “UltraLite CACHE_SIZE connection parameter” [UltraLite
- Database Management and Reference].

String connectionName (read-write) A name for the connection. The connection name is used to share
a single connection across multiple web pages.

See “UltraLite CON connection parameter” [UltraLite -
Database Management and Reference], and “Maintaining con-
nections and application state across pages” on page 11.

String creatorIdOnPalm The UltraLite database creator ID on the Palm device.

String databaseOnCE (read-write) The file name of the database on Windows CE.

See “UltraLite CE_FILE connection parameter” [UltraLite -
Database Management and Reference].

String databaseOnDesktop (read-
write)

The file name of the database deployed to Windows.

See “UltraLite DBF connection parameter” [UltraLite -
Database Management and Reference].

String databaseOnPalm (read-write) The file name of the UltraLite database on Palm.

See “UltraLite PALM_FILE connection parameter” [UltraLite -
Database Management and Reference].

UltraLite for M-Business Anywhere API Reference

66 Copyright © 2007, iAnywhere Solutions, Inc.

Prototype Description

String databaseOnSymbian (read-
write)

The file name of the UltraLite database on Symbian.

See “UltraLite SYMBIAN_FILE connection parameter” [Ultra-
Lite - Database Management and Reference].

String encryptionKey (read-write) A key for encrypting the database. OpenConnection must use the
same key as specified during database creation. Suggestions for
keys are:

1. Select an arbitrary, lengthy string

2. Select strings with a variety of numbers, letters and special
characters, to decrease the chances of key penetration.

See “UltraLite DBKEY connection parameter” [UltraLite -
Database Management and Reference].

String password (read-write) The password for an authenticated user. Databases are initially
created with one authenticated user (DBA) with password sql.
Passwords are case-insensitive if the database is case-insensitive
and case-sensitive if the database is case-sensitive. The default
value is sql.

See “UltraLite PWD connection parameter” [UltraLite -
Database Management and Reference].

String userID (read-write) The authenticated user for the database. Databases are initially
created with one authenticated user DBA. The UserID is case-
insensitive. The default value is DBA.

See “UltraLite UID connection parameter” [UltraLite - Database
Management and Reference].

toString method

Generates the string name of the authorization status code constant.

Syntax
String toString();

Returns
The name of the code or unknown if not a recognized code.

ConnectionParms class

Copyright © 2007, iAnywhere Solutions, Inc. 67

CreationParms class
Defines parameters that may be specified when creating an UltraLite database.

Some UltraLite database options must be set at the time the database is created. The following parameters
can be supplied when creating the database using the createDatabase method. See “ createDatabase
method” on page 70.

Properties

The properties of the class are listed here. For more information about the corresponding descriptions, see
“Choosing creation-time database properties for UltraLite” [UltraLite - Database Management and
Reference]

Prototype Description

Boolean caseSensitive Sets the case-sensitivity of string comparisons in the UltraLite
database.

UInt32 checksumLevel Sets the level of checksum validation in the database.

Default is 0.

String dateFormat Sets the default string format in which dates are retrieved from
the database.

String dateOrder Controls the interpretation of date ordering of months, days, and
years.

UInt32 maxHashSize Set the maximum number of bytes that are used to hash the Ul-
traLite indexes.

Default is 0.

UInt32 nearestCentury Controls the interpretation of two-digit years in string-to-date
conversions.

Boolean obfuscate Controls whether or not to obfuscate data in the database. Ob-
fuscation is a form of simple encryption.

UInt32 pageSize Defines the database page size. Valid values are: 1024, 2048,
4096, 8192, 16384.

Default is 4096.

UInt32 precision Specifies the maximum number of digits in the result of any dec-
imal arithmetic.

UInt32 scale Specifies the minimum number of digits after the decimal point
when an arithmetic result is truncated to the maximum precision.

String timeFormat Sets the format for times retrieved from the database.

UltraLite for M-Business Anywhere API Reference

68 Copyright © 2007, iAnywhere Solutions, Inc.

Prototype Description

String timestampFormat Determines how the timestamp is formatted in UltraLite.

String timestampIncrement Determines how the timestamp is truncated in UltraLite.

Boolean utf8Encoding Encodes data using the UTF-8 format, 8-bit multibyte encoding
for Unicode.

CreationParms class

Copyright © 2007, iAnywhere Solutions, Inc. 69

DatabaseManager class
Manages connections to an UltraLite database.

You must open a connection before carrying out any other operation, and you must close the connection
after you have finished all operations on the connection, and before your application terminates. You must
close all tables opened on a connection before closing the connection.

Properties

The properties of the class are listed here.

Property Description

AuthStatusCode AuthSta-
tusCode (read-only)

Gets the AuthStatusCode object associated with the most recent synchro-
nization.

String directory (read-on-
ly)

The directory in which M-Business Anywhere is running.

On Palm OS, this property is NULL.

UInt32 runtimeType
(read-only)

The runtime type: either the UltraLite runtime (stand alone) library or the
UltraLite database engine. The value is an enum, and is one of the following:

♦ DatabaseManager.UL_STANDALONE
♦ DatabaseManager.UL_ENGINE_CLIENT

Int32 sqlCode (read-only) Gets the SQL Code value associated with the most recent operation.

SQLError SQLError
(read-only)

Gets the SQLError object.

SQLType SQLType (read-
only)

Gets the SQLType object.

PODSUInt32 UL_STAN-
DALONE (read only)

A constant indicating that the runtime type is the UltraLite runtime library.

PODSUInt32
UL_ENGINE_CLIENT
(read-only)

A constant indicating that the runtime type is the UltraLite database engine.

createDatabase method

Creates a database and opens a connection to the database as specified by access_parms.

Syntax
Connection createDatabase(
String access_parms ,

UltraLite for M-Business Anywhere API Reference

70 Copyright © 2007, iAnywhere Solutions, Inc.

PODSArray *coll_bytes,
String create_parms
)

Parameters
♦ access_parms Parameters for connecting to the database. access_parms is used to specify connection

parameters (including the database file name and location) and to open the connection.

See “Connecting to an UltraLite Database” [UltraLite - Database Management and Reference].

♦ coll_bytes A byte array defining a database collation to use for the database to be created. A number
of source files are supplied with UltraLite as JavaScript source files (.js) in install-dir\src\ulcollations\ with
file names of the form Collation_XXXXX.js where XXXXX represents the collation name. For example,
coll_1250LATIN2.js.

The .js file must be included in the main html file before the database logic. The byte array variable is
defined in the .js file.

♦ create_parms Parameters for creating the database. Parameter keywords are case-insensitive, and
most values are case-sensitive. create_parms is used to specify certain parameters that may be specified
only at database creation.

See “Choosing creation-time database properties for UltraLite” [UltraLite - Database Management and
Reference].

Returns
No return value.

Remarks
If the database already exists, a SQLE_DATABASE_NOT_CREATED exception is thrown.

Only one database may be active at a given time. Attempts to open a connection to a database result in an
error if there are connections open to a different database.

dropDatabase method

Deletes the specified database.

Syntax
dropDatabase(String parms)

Parameters
♦ parms Parameters for identifying a database.

Remarks
parms is a semicolon-separated list of keyword=value pairs ("param1=value1;param2=value2").
Parameter keywords are case-insensitive, and most values are case-sensitive.

You cannot drop a database that has open connections.

DatabaseManager class

Copyright © 2007, iAnywhere Solutions, Inc. 71

getDatabaseOptions method

Syntax
Connection openConnection(String parms)

openConnection method

Opens a connection to the database specified by parms.

Syntax
Connection openConnection(String parms)

Parameters
♦ parms A String holding the parameters for opening a connection as a set of keyword=value pairs.

Parameter keywords are case-insensitive, and most values are case-sensitive.

Returns
An opened connection.

Remarks
If the database does not exist, an error is thrown. You can check Connection.sqlCode within the error catching
code to identify the cause of the error.

Only one database may be active at a given time. Attempts to open a connection to different database while
other connections are open result in an error.

reOpenConnection method

Returns an opened Connection object.

Syntax
Connection reOpenConnection(String connectionName)

Parameters
♦ connectionName The name of the connection to be reopened, as specified in the

ConnectionParms.connectionName property.

Returns
The method is used to maintain connections across multiple web pages.

UltraLite for M-Business Anywhere API Reference

72 Copyright © 2007, iAnywhere Solutions, Inc.

DatabaseSchema class
Represents the schema of an UltraLite database. A DatabaseSchema object is attached to a connection and
is only valid while that connection is open.

Constants

Constant Description

SYNC_ALL_DB Synchronize all tables in the database.

SYNC_ALL_PUBS Synchronize all publications in the database.

The members of the class are listed here.

getCollationName method

Returns a string identifying the character set and sort order used in this database.

Syntax
String getCollationName()

getDatabaseProperty method

Returns the value of the specified database property.

Syntax
String getDatabaseProperty(String name)

Parameters
♦ name Name of the database property.

Remarks
Recognized properties are:

♦ "date_format" The date format used for string conversions by the database.

♦ "date_order" The date order used for string conversions by the database.

♦ "nearest_century" The nearest century used for string conversions by the database.

♦ "precision" The floating-point precision used for string conversions by the database.

♦ "scale" The minimum number of digits after the decimal point when an arithmetic result is truncated
to the maximum precision during string conversions by the database.

DatabaseSchema class

Copyright © 2007, iAnywhere Solutions, Inc. 73

♦ "time_format" The time format used for string conversions by the database.

♦ "timestamp_format" The timestamp format used for string conversions by the database.

♦ "timestamp_increment" The minimum difference between two unique timestamps, in nanoseconds
(1,000,000th of a second).

getDateFormat method

Returns the date format used for string conversions.

Syntax
String getDateFormat()

getDateOrder method

Returns the date order used for string conversions.

Syntax
String getDateOrder()

getNearestCentury method

Returns the nearest century used for string conversions.

Syntax
String getNearestCentury()

getPrecision method

Returns the floating-point precision used for string conversions.

Syntax
String getPrecision()

getPublicationCount method

Returns the number of publications in the database.

Syntax
UInt16 getPublicationCount()

UltraLite for M-Business Anywhere API Reference

74 Copyright © 2007, iAnywhere Solutions, Inc.

Remarks
Publication IDs range from 1 to getPublicationCount(), inclusively. Publication IDs are not publication
masks.

Note: Publication IDs, masks, and count may change during a schema upgrade. To correctly identify a
publication, access it by name or refresh the cached IDs, masks, and counts after a schema upgrade.

getPublicationName method

Returns the name of the publication identified by the specified publication ID.

Syntax
String getPublicationName(UInt16 pubID)

Parameters
♦ pubID ID of the publication. pubID must be in range [1,getPublicationCount]().

Remarks
Publication IDs are not publication masks.

Note: Publication IDs, masks, and count may change during a schema upgrade. To correctly identify a
publication, access it by name or refresh the cached IDs, masks, and counts after a schema upgrade.

getPublicationSchema method

Returns the publication schema corresponding to the named publication.

Syntax
PublicationSchema getPublicationSchema(String name)

Parameters
♦ name Name of the publication.

getSignature method

Returns the signature of this database.

Syntax
String getSignature()

getTableCount method

Returns the number of tables in the database.

DatabaseSchema class

Copyright © 2007, iAnywhere Solutions, Inc. 75

Syntax
UInt16 getTableCount()

Returns
The number of tables, or 0 if the connection is not open.

Remarks
Table IDs range from 1 to getTableCount(), inclusively.

getTableCountInPublications method

Returns the number of tables included in the specified publication mask.

Syntax
UInt16 getTableCountInPublications(UInt32 mask)

Parameters
♦ mask Set of publications to check.

Remarks
The count does not include tables whose names end in _nosync.

getTableName method

Returns the name of the table identified by the specified table ID.

Syntax
String getTableName(UInt16 tableID)

Parameters
♦ tableID ID of the table. tableID must be in range [1,getTableCount()].

Remarks
Note: Table IDs may change during a schema upgrade. To correctly identify a table, access it by name or
refresh the cached IDs after a schema upgrade.

getTimeFormat method

Returns the time format used for string conversions.

Syntax
String getTimeFormat()

UltraLite for M-Business Anywhere API Reference

76 Copyright © 2007, iAnywhere Solutions, Inc.

getTimestampFormat method

Returns the timestamp format used for string conversions.

Syntax
String getTimestampFormat()

isCaseSensitive method

Returns true if the database is case sensitive, false otherwise.

Syntax
Boolean isCaseSensitive()

isOpen method

Returns true if the database schema is open, false otherwise.

Syntax
Boolean isOpen()

DatabaseSchema class

Copyright © 2007, iAnywhere Solutions, Inc. 77

IndexSchema class
Represents the schema of an UltraLite table index.

This object cannot be directly instantiated. Index schemas are created using the
TableSchema.getPrimaryKey, TableSchema.getIndex and TableSchema.getOptimalIndex methods.

getColumnCount method

Returns the number of columns in this index.

Syntax
UInt16 getColumnCount()

Remarks
Column IDs in indexes range from 1 to getColumnCount(), inclusively.

getColumnName method

Returns the name of the colIDInIndex column in this index.

Syntax
String getColumnName(UInt16 colIDInIndex)

Parameters
♦ colIDInIndex ID in this index of the column. colIDInIndex must be in range [1, getColumnCount()].

getName method

Returns the name of this index.

Syntax
String getName()

getReferencedIndexName method

Returns the name of the referenced primary index if this index is a foreign key.

Syntax
String getReferencedIndexName()

UltraLite for M-Business Anywhere API Reference

78 Copyright © 2007, iAnywhere Solutions, Inc.

getReferencedTableName method

Returns the name of the referenced primary table if index is a foreign key.

Syntax
String getReferencedTableName()

isColumnDescending method

Returns true if column is used in descending order, false if column is used in ascending order.

Syntax
Boolean isColumnDescending(String name)

Parameters
♦ name Name of the column.

isForeignKey method

Returns true if index is the foreign key, false if index is not the foreign key.

Syntax
Boolean isForeignKey()

Remarks
Columns in a foreign key may reference a non-null unique index of another table.

isForeignKeyCheckOnCommit method

Returns true if referential integrity is checked on commits, false if it is checked on inserts and updates.

Syntax
Boolean isForeignKeyCheckOnCommit()

isForeignKeyNullable method

Returns true if this foreign key is nullable, false if this foreign key is not nullable.

Syntax
Boolean isForeignKeyNullable()

IndexSchema class

Copyright © 2007, iAnywhere Solutions, Inc. 79

isPrimaryKey method

Returns true if index is the primary key, false if index is not the primary key.

Syntax
Boolean isPrimaryKey()

Remarks
Columns in the primary key may not be null.

isUniqueIndex method

Returns true if the index is unique, false otherwise.

Syntax
Boolean isUniqueIndex()

Remarks
Columns in a unique index may be null.

isUniqueKey method

Returns true if index is unique key, false if index is not unique key.

Syntax
Boolean isUniqueKey()

Remarks
Columns in a unique key may not be null.

UltraLite for M-Business Anywhere API Reference

80 Copyright © 2007, iAnywhere Solutions, Inc.

PreparedStatement class
Represents a pre-compiled SQL statement with or without IN parameters. Created at runtime using
Connection.prepareStatement.

This object can then be used to efficiently execute this statements multiple times.

When a prepared statement is closed, all ResultSet and ResultSetSchema objects associated with it are also
closed. For resource management reasons, it is preferred that you explicitly close prepared statements when
you are done with them.

AppendBytesParameter method

Appends the specified subset of the specified array of bytes to the new value for the specified
SQLType.LONGBINARY column.

Syntax
AppendBytesParameter(
 UInt16 parameterID,
 Array value,
 UInt32 srcOffset,
 UInt32 count
)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The value to append to the current new value for the parameter.

♦ srcOffset Start position in the source array.

♦ count The number of bytes to be copied.

Remarks
The bytes at position srcOffset (starting from 0) through srcOffset+count-1 of the array value are
appended to the value for the specified parameter. When inserting, insertBegin initializes the new value to
the parameter's default value.

If any of the following is true, an Error with code SQLError.SQLE_INVALID_PARAMETER is thrown
and the destination is not modified:

♦ The value argument is null.

♦ The srcOffset argument is negative.

♦ The count argument is negative.

♦ srcOffset+count is greater than value.length, the length of the source array.

PreparedStatement class

Copyright © 2007, iAnywhere Solutions, Inc. 81

AppendStringChunkParameter method

Appends the String to the new value for the specified SQLType.LONGVARCHAR.

Syntax
AppendStringChunkParameter(
 UInt16 parameterID,
 String value,
)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The value to append to the current new value for the parameter.

Example
The following statement appends one hundred instances of the string XYZ to the first parameter:

for (i = 0; i < 100; i++){
 stmt.AppendStringChunkParameter(1, "XYZ");
}

close method

Close the prepared statement.

Syntax
close()

Remarks
When a prepared statement is closed, all ResultSet and ResultSetSchema objects associated with it are also
closed.

It is recommended that you set the preparedStatement object to null immediately after you close it.

executeQuery method

Executes a SQL SELECT statement and returns the result set.

Syntax
ResultSet executeQuery(String persistName)

Parameter
♦ persistName The name for cross-page JavaScript object persistence. Set to null if no persistence is

required (for example, if the application has only a single HTML page).

UltraLite for M-Business Anywhere API Reference

82 Copyright © 2007, iAnywhere Solutions, Inc.

Returns
The result set of the query, as a set of rows.

executeStatement method

Executes a statement that does not return a result set, such as a SQL INSERT, DELETE or UPDATE
statement.

Syntax
Int32 executeStatement()

Returns
The number of rows affected by the statement.

Remarks
If Connection.autoCommit is true, the statement commits only if one or more rows is affected by the
statement.

getPlan method

Returns a string describing the access plan UltraLite will use to execute a query.

Syntax
String getPlan()

Remarks
This method is intended primarily for use during development.

See also
♦ “Query access plans in UltraLite” [UltraLite - Database Management and Reference].

getResultSetSchema method

Returns the schema describing the result set of this query statement.

Syntax
ResultSetSchema getResultSetSchema()

hasResultSet method

Returns true if a result set is generated when this statement is executed, false if no result set is generated.

PreparedStatement class

Copyright © 2007, iAnywhere Solutions, Inc. 83

Syntax
Boolean hasResultSet()

isOpen method

Returns true if the prepared statement is open, false otherwise.

Syntax
Boolean isOpen()

setBooleanParameter method

Sets the value for the specified parameter using a Boolean.

Syntax
setBooleanParameter(UInt16 parameterID, Boolean value)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

Example
The following statement sets a value for the first parameter:

stmt.setBooleanParameter(1, false);

setBytesParameter method

Sets the value for the specified parameter using an array of bytes.

Syntax
setBytesParameter(UInt16 parameterID, Array value)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

Remarks
Suitable for columns of type SQLType.BINARY or SQLType.LONGBINARY only.

UltraLite for M-Business Anywhere API Reference

84 Copyright © 2007, iAnywhere Solutions, Inc.

Example
The following statement sets a value for the first parameter:

var blob = new Array(3);
blob[0] = 78;
blob[1] = 0;
blob[2] = 68;
stmt.setBytesParameter(1, blob);

setDateParameter method

Sets the value for the specified SQLType.DATE type parameter using a date.

Syntax
setDateParameter(UInt16 parameterID, Date value)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

Remarks
Only the year, month, and day fields of the Date object are relevant.

Example
The following statement sets a value for the first parameter to 2004/09/27:

stmt.setDateParameter(
 1, new Date(2004,9,27,0,0,0,0)
);

setDoubleParameter method

Sets the value for the specified parameter using a double.

Syntax
setDoubleParameter(UInt16 parameterID, Double value)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

Example
The following statement sets a value for the first parameter:

stmt.setDoubleParameter(1, Number.MAX_VALUE);

PreparedStatement class

Copyright © 2007, iAnywhere Solutions, Inc. 85

setFloatParameter method

Sets the value for the specified SQLType.REAL parameter.

Syntax
setFloatParameter(UInt16 parameterID, Float value)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

Example
The following statement sets a floating-point value for the first parameter:

stmt.setFloatParameter(1,
 (2 - Math.pow(2,-23)) * Math.pow(2,127)
);

setIntParameter method

Sets the value for the specified parameter using a UInt16.

Syntax
setUInt16Parameter(UInt16 parameterID, UInt16 value)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

Example
The following statement sets the value for the first parameter to 2147483647:

stmt.setIntParameter(1, 2147483647);

setLongParameter method

Sets the value for the specified parameter.

Syntax
setLongParameter(UInt16 parameterID, Int64 value)

UltraLite for M-Business Anywhere API Reference

86 Copyright © 2007, iAnywhere Solutions, Inc.

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

Example
The following statement sets the value for the first parameter to 9223372036854770000:

stmt.setLongParameter(1, 9223372036854770000);

setNullParameter method

Sets the specified parameter to the SQL NULL value.

Syntax
setNullParameter(UInt16 parameterID)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

setShortParameter method

Sets the value for the specified parameter.

Syntax
setUInt16Parameter(UInt16 parameterID, UInt16 value)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

Example
The following statement sets the value for the first parameter to 32767:

stmt.setShortParameter(1, 32767);

setStringParameter method

Sets the value for the specified parameter.

Syntax
setStringParameter(UInt16 parameterID, String value)

PreparedStatement class

Copyright © 2007, iAnywhere Solutions, Inc. 87

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

Example
The following statement sets the value for the first parameter to ABC:

stmt.setStringParameter(1, "ABC");

setTimeParameter method

Sets the value for the specified SQLType.TIME type parameter using a date.

Syntax
setTimeParameter(UInt16 parameterID, Date value)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

Remarks
Only the hour, minute, and second fields of the Date object are relevant.

Example
The following statement sets a value for the first parameter to 18:02:13:0000:

stmt.setTimeParameter(
 1, new Date(1966,4,1,18,2,13,0)
);

setTimestampParameter method

Sets the value for the specified parameter using a Timestamp.

Syntax
setTimestampParameter(UInt16 parameterID, Date value)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

UltraLite for M-Business Anywhere API Reference

88 Copyright © 2007, iAnywhere Solutions, Inc.

Example
The following statement sets a value for the first parameter to 1966/04/01 18:02:13:0000:

stmt.setTimestampParameter(
 1, new Date(1966,4,1,18,2,13,0)
);

setULongParameter method

Sets the value for the specified parameter using a Double treated as an unsigned value.

Syntax
setULongParameter(UInt16 parameterID, UInt64 value)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter. Uses a Double to represent the value of an unsigned 64-bit
integer.

Remarks
See class Unsigned64.

Example
The following statement sets the value for the first parameter:

stmt.setLongParameter(1, 9223372036854770000 * 4096);

setUUIDParameter method

Sets the value for the specified parameter using a UUID.

Syntax
setUUIDParameter(UInt16 parameterID, UUID value)

Parameters
♦ parameterID The ID number of the parameter. The first parameter in the result set has an ID value

of one.

♦ value The new value for the parameter.

PreparedStatement class

Copyright © 2007, iAnywhere Solutions, Inc. 89

PublicationSchema class
Represents the schema of an UltraLite publication.

This class cannot be directly instantiated. Publication schemas are created using the
DatabaseSchema.getPublicationSchema method.

UltraLite methods requiring a publication mask actually require a set of publications to check. A set is formed
by or'ing the publication masks of individual publications. For example:

pub1.getMask() | pub2.getMask()

Two special mask values are provided by DatabaseSchema object. SYNC_ALL_DB corresponds to the
entire database. SYNC_ALL_PUBS corresponds to all publications.

Publication masks may change during a schema upgrade. To correctly identify a publication, access it by
name or refresh the cached masks after a schema upgrade.

getMask method

Returns the publication mask of this publication.

Syntax
UInt32 getMask()

Remarks
Note: Publication IDs, masks, and count may change during a schema upgrade. To correctly identify a
publication, access it by name or refresh the cached masks, and counts after a schema upgrade.

getName method

Returns the name of this publication.

Syntax
String getName()

UltraLite for M-Business Anywhere API Reference

90 Copyright © 2007, iAnywhere Solutions, Inc.

ResultSet class
Represents a result set in an UltraLite database. Created at runtime using PreparedStatement.executeQuery.

Properties

The properties of the class are listed here.

Property Description

ResultSetSchema schema (read-only) The schema of this result set. This property is only valid while
its prepared statement is open.

NULL_TIMESTAMP_VAL A constant indicating that a timestamp value is NULL.

appendBytes method

Appends the specified subset of the specified array of bytes to the new value for the specified
SQLType.LONGBINARY column.

Syntax
appendBytes(
 UInt16 columnID,
 Array value,
 UInt32 srcOffset,
 UInt32 count
)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

♦ srcOffset The value to append to the current new value for the column.

♦ count The number of bytes to be copied.

Remarks
The bytes at position srcOffset (starting from 0) through srcOffset+count-1 of the array value are appended
to the value for the specified column. When inserting, insertBegin initializes the new value to the column's
default value. The data in the row is not actually changed until you execute an insert, and that change is not
permanent until it is committed.

If any of the following is true, an Error with code SQLCode.SQLE_INVALID_PARAMETER is thrown
and the destination is not modified:

♦ The value argument is null.

ResultSet class

Copyright © 2007, iAnywhere Solutions, Inc. 91

♦ The srcOffset argument is negative.

♦ The count argument is negative.

♦ srcOffset+count is greater than value.length, the length of the source array.

For other errors, a SQLException with the appropriate error code is thrown.

appendStringChunk method

Appends the specified string to the new value for the specified SQLType.LONGVARCHAR column.

Syntax
appendStringChunk(
 UInt16 columnID,
 String value
)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Example
The following statements append one hundred instances of the string XYZ to the value in the first column:

for (i = 0; i < 100; i++){
 t.AppendStringChunk(1, "XYZ");
}

close method

Frees all resources associated with this object.

Syntax
close()

deleteRow method

Deletes the current row.

Syntax
deleteRow()

Remarks
Each deleteRow must be preceded by a call to updateBegin.

UltraLite for M-Business Anywhere API Reference

92 Copyright © 2007, iAnywhere Solutions, Inc.

getBoolean method

Returns the value for the specified column as a Boolean.

Syntax
Boolean getBoolean(UInt16 index)

Parameters
♦ index The ID number of the column. The first column in the result set has an ID of one.

getBytes method

Returns the value for the specified column as an array of bytes.

Syntax
Array getBytes(UInt16 index)

Parameters
♦ index The ID number of the column. The first column in the result set has an ID of one.

Remarks
Only valid for columns of type SQLType.BINARY or SQLType.LONGBINARY.

getBytesSection method

Copies a subset of the contents of a specified SQLType.LONGBINARY or SQLType.BINARY column,
beginning at a specified source offset, to a specified offset of the destination byte array.

Syntax
UInt32 getBytesSection(
 UInt16 index,
 UInt32 srcOffset,
 Array dst,
 UInt32 dstOffset,
 UInt32 count
)

Parameters
index The 1-based ordinal of the column containing the binary data.

srcOffset The zero-relative offset into the source array of bytes. The source offset must be greater than
or equal to 0, otherwise a SQLE_INVALID_PARAMETER error is raised. A buffer bigger than 64K is also
permissible.

dst A destination array of bytes.

ResultSet class

Copyright © 2007, iAnywhere Solutions, Inc. 93

dstOffset The zero-relative offset into the destination array of bytes. The destination offset must be greater
than or equal to 0, otherwise a SQLE_INVALID_PARAMETER error is raised. A buffer bigger than 64K
is also permissible.

count The number of bytes to move. The count must be greater than or equal to 0.

Returns
The number of bytes read.

Remarks
The bytes at position srcOffset (starting from 0) through srcOffset+count-1 of the source array
are copied into positions dstOffset through dstOffset+count-1, respectively, of the destination array. If the
end of the source value is encountered before the specified number of bytes are copied, the remainder of the
destination array is left unchanged.

If any of the following is true, an error is thrown, SQLError code is set to SQLE_INVALID_PARAMETER,
and the destination is not modified:

♦ The dst argument is null.
♦ The srcOffset argument is negative.
♦ The dstOffset argument is negative.
♦ The count argument is negative.
♦ dstOffset + count is greater than dst.length (the length of the destination array).

Errors set
SQLE_CONVERSION_ERROR This error occurs if the column data type is not BINARY or LONG
BINARY.

SQLE_INVALID_PARAMETER This error occurs if the column data type is BINARY and the offset is
not 0 or 1, or, the data length is less than 0.

This error also occurs if the column data type is LONG BINARY and the offset is less than 1.

getDate method

Returns the value as a Date.

Syntax
Date getDate(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

getDouble method

Returns the value as a Double.

UltraLite for M-Business Anywhere API Reference

94 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Double getDouble(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

getFloat method

Returns the value for the specified column.

Syntax
Float getFloat(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

getInt method

Returns the value for the specified column.

Syntax
UInt32 getInt(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

getLong method

Returns the value for the specified column.

Syntax
Int64 getLong(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

getRowCount method

Returns the number of rows in the result set.

Syntax
UInt32 getRowCount()

ResultSet class

Copyright © 2007, iAnywhere Solutions, Inc. 95

getShort method

Returns the value as an Int16.

Syntax
Int16 getShort(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

getString method

Returns the value as a String.

Syntax
String getString(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

getStringChunk method

Copies a subset of the value for the specified SQLType.LONGVARCHAR column, starting at the specified
offset, to the String object.

Syntax
String getStringChunk(
 UInt16 index,
 UInt32 srcOffset,
 UInt32 count
)

Parameters
♦ index The 1-based ordinal in the result set to get

♦ srcOffset The o-based start position in the string value.

♦ count The number of characters to be copied.

Returns
The string, with specified characters copied.

getTime method

Returns the value as a Date.

UltraLite for M-Business Anywhere API Reference

96 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Date getTime(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

getTimestamp method

Returns the value as a Date.

Syntax
Date getTimestamp(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

getULong method

Returns the value as an unsigned 64-bit integer.

Syntax
UInt64 getULong(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

getUUID method

Returns the value of the column as a UUID.

Syntax
UUID getUUID(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

Remarks
The column must be of type SQLType.BINARY with length 16.

isBOF method

Returns true if the current row position is before first row, false otherwise.

ResultSet class

Copyright © 2007, iAnywhere Solutions, Inc. 97

Syntax
Boolean isBOF()

isEOF method

Returns true if the current row position is after the last row, false otherwise.

Syntax
Boolean isEOF()

isNull method

Returns true if the value is null, false otherwise.

Syntax
Boolean isNull(Uint16 index)

Parameters
index The column index value.

isOpen method

Returns true if the ResultSet is open, false otherwise.

Syntax
Boolean isOpen()

moveAfterLast method

Moves to a position after the last row of the ULResultSet.

Syntax
moveAfterLast()

moveBeforeFirst method

Moves to a position before the first row.

Syntax
moveBeforeFirst()

UltraLite for M-Business Anywhere API Reference

98 Copyright © 2007, iAnywhere Solutions, Inc.

moveFirst method

Moves to the first row.

Syntax
Boolean moveFirst()

Returns
True if successful.

False if unsuccessful. The method fails, for example, if there are no rows.

moveLast method

Moves to the last row.

Syntax
Boolean moveLast()

Returns
True if successful.

False if unsuccessful. The method fails, for example, if there are no rows.

moveNext method

Moves to the next row.

Syntax
Boolean moveNext()

Returns
True if successful.

False if unsuccessful. The method fails, for example, if there are no rows.

movePrevious method

Moves to the previous row.

Syntax
Boolean movePrevious()

Returns
true if successful.

ResultSet class

Copyright © 2007, iAnywhere Solutions, Inc. 99

false if unsuccessful. The method fails, for example, if there are no rows.

moveRelative method

Moves a certain number of rows relative to the current row.

Syntax
Boolean moveRelative(Int32 index)

Parameters
index The number of rows to move. The value can be positive, negative, or zero.

Returns
true if successful.

false if unsuccessful. The method fails, for example, if there are no rows.

Remarks
Relative to the current position of the cursor in the result set, positive index values move forward in the result
set, negative index values move backward in the result set and zero does not move the cursor.

setBoolean method

Sets the value for the specified column using a boolean.

Syntax
setBoolean(short columnID, boolean value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
The data in the row is not actually changed until you execute an update, and that change is not permanent
until it is committed.

setBytes method

Sets the value for the specified column using an array of bytes.

Syntax
setBytes(UInt16 columnID, Array value)

UltraLite for M-Business Anywhere API Reference

100 Copyright © 2007, iAnywhere Solutions, Inc.

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Suitable for columns of type SQLType.BINARY or SQLType.LONGBINARY only. The data in the row is
not actually changed until you execute an update, and that change is not permanent until it is committed.

setDate method

Sets the value for the specified column using a Date.

Syntax
setDate(UInt16 columnID, Date value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
The data in the row is not actually changed until you execute an update, and that change is not permanent
until it is committed.

setDateTime method

Sets the value for the specified column using a Date.

Syntax
setDateTime(UInt16 columnID, Date value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
The data in the row is not actually changed until you execute an update, and that change is not permanent
until it is committed.

setDouble method

Sets the value for the specified column using a double.

ResultSet class

Copyright © 2007, iAnywhere Solutions, Inc. 101

Syntax
setDouble(UInt16 columnID, Double value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
The data in the row is not actually changed until you execute an update, and that change is not permanent
until it is committed.

setFloat method

Sets the value for the specified column using a float.

Syntax
setFloat(UInt16 columnID, Float value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
The data in the row is not actually changed until you execute an update, and that change is not permanent
until it is committed.

setInt method

Sets the value for the specified column using an Integer.

Syntax
setInt(UInt16 columnID, Int32 value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
The data in the row is not actually changed until you execute an update, and that change is not permanent
until it is committed.

UltraLite for M-Business Anywhere API Reference

102 Copyright © 2007, iAnywhere Solutions, Inc.

setLong method

Sets the value for the specified column using an Int64.

Syntax
setLong(UInt16 columnID, Int64 value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
The data in the row is not actually changed until you execute an update, and that change is not permanent
until it is committed.

setNull method

Sets a column to the SQL NULL.

Syntax
setNull(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Remarks
The data is not actually changed until you execute an update, and that change is not permanent until it is
committed.

setShort method

Sets the value for the specified column using a UInt16.

Syntax
setShort(UInt16 columnID, Int16 value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
The data in the row is not actually changed until you execute an update, and that change is not permanent
until it is committed.

ResultSet class

Copyright © 2007, iAnywhere Solutions, Inc. 103

setString method

Sets the value for the specified column using a String.

Syntax
setString(UInt16 columnID, String value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
The data in the row is not actually changed until you execute an update, and that change is not permanent
until it is committed.

setTime method

Sets the value for the specified column using a Date.

Syntax
setTime(UInt16 columnID, Date value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
The data in the row is not actually changed until you execute an update, and that change is not permanent
until it is committed.

setTimestamp method

Sets the value for the specified column using a Date.

Syntax
setTimestamp(UInt16 columnID, Date value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

UltraLite for M-Business Anywhere API Reference

104 Copyright © 2007, iAnywhere Solutions, Inc.

Remarks
The data in the row is not actually changed until you execute an update, and that change is not permanent
until it is committed.

setULong method

Sets the value for the specified column using a 64-bit integer treated as an unsigned value.

Syntax
setULong(UInt16 columnID, UInt64 value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
The data in the row is not actually changed until you execute an update, and that change is not permanent
until it is committed.

setUUID method

Sets the value for the specified column using a UUID.

Syntax
setUUID(UInt16 columnID, UUID value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
The data in the row is not actually changed until you execute an update, and that change is not permanent
until it is committed. Only valid for columns of type SQLType.BINARY and length 16.

See also
♦ “Using UUIDs” [MobiLink - Server Administration]

update method

Updates the current row with the current column values (specified using the set methods).

Syntax
update()

ResultSet class

Copyright © 2007, iAnywhere Solutions, Inc. 105

Remarks
Each update must be preceded by a call to updateBegin.

updateBegin method

Prepares to update the current row in this result set.

Syntax
updateBegin()

Remarks
Column values are modified by calling the appropriate setType method or methods.

The data is not actually changed until you execute the update, and that change is not permanent until it is
committed.

UltraLite for M-Business Anywhere API Reference

106 Copyright © 2007, iAnywhere Solutions, Inc.

ResultSetSchema class
Represents the schema of an UltraLite result set.

getColumnCount method

Returns the number of columns in this cursor.

Syntax
UInt16 getColumnCount();

Remarks
Column IDs range from 1 to getColumnCount inclusively.

Column IDs and count may change during a schema upgrade. To correctly identify a column, access it by
name or refresh the cached IDs and counts after a schema upgrade.

getColumnID method

Returns the column ID of the named column.

Syntax
UInt16 getColumnID(String name)

Parameters
♦ name The name of the column.

Remarks
Column IDs range from 1 to getColumnCount(), inclusively.

Column IDs and count may change during a schema upgrade. To correctly identify a column, access it by
name or refresh the cached IDs and counts after a schema upgrade.

getColumnName method

Returns the name of column identified by the specified column ID.

Syntax
String getColumnName(UInt16 columnID)

Parameters
♦ columnID ID of the column. columnID must be in the range [1,getColumnCount()].

ResultSetSchema class

Copyright © 2007, iAnywhere Solutions, Inc. 107

Remarks
Column IDs and count may change during a schema upgrade. To correctly identify a column, access it by
name or refresh the cached IDs and counts after a schema upgrade.

getColumnPrecision method

Returns the precision of the named column.

Syntax
Int32 getColumnPrecision(String name)

Parameters
♦ name The name of the column.

Remarks
The column must be of type SQLType.NUMERIC.

getColumnPrecisionByColID method

Returns the precision of the column.

Syntax
Int32 getColumnPrecisionByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the result set has an ID value of one.

Remarks
The column must be of type SQLType.NUMERIC.

getColumnScale method

Returns the scale of the column.

Syntax
Int32 getColumnScale(String name)

Parameters
♦ name The name of the column.

Remarks
The column must be of type SQLType.NUMERIC.

UltraLite for M-Business Anywhere API Reference

108 Copyright © 2007, iAnywhere Solutions, Inc.

getColumnScaleByColID method

Returns the scale of the column.

Syntax
Int32 getColumnScaleByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the result set has an ID value of one.

Remarks
The column must be of type SQLType.NUMERIC.

getColumnSize method

Returns the size of the named column.

Syntax
UInt32 getColumnSize(String name)

Parameters
♦ name The name of the column.

Remarks
The column must be of type SQLType.NUMERIC.

getColumnSizeByColID method

Returns the size of the column.

Syntax
UInt32 getColumnSizeByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the result set has an ID value of one.

Remarks
The column must be of type SQLType.NUMERIC.

getColumnSQLType method

Returns the SQL data type of the named column.

ResultSetSchema class

Copyright © 2007, iAnywhere Solutions, Inc. 109

Syntax
UInt16 getColumnSQLType(String name)

Parameters
♦ name The name of the column.

getColumnSQLTypeByColID method

Returns the SQLType of the column, in a SQLType enumerated integer.

Syntax
UInt16 getColumnSQLTypeByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the result set has an ID value of one.

isOpen method

Returns true if the result set is open, false otherwise.

Syntax
Boolean isOpen();

UltraLite for M-Business Anywhere API Reference

110 Copyright © 2007, iAnywhere Solutions, Inc.

SQLError class
Enumerates the SQL codes that may be reported by UltraLite for M-Business Anywhere. This class provides
static constants and cannot be directly instantiated.

members Description

SQLE_AGGREGATES_NOT_
ALLOWED

See “Invalid use of an aggregate function” [SQL Anywhere 10 - Error
Messages].

SQLE_ALIAS_NOT_UNIQUE See “Alias '%1' is not unique” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_ALIAS_NOT_YET_DE-
FINED

See “Definition for alias '%1' must appear before its first refer-
ence” [SQL Anywhere 10 - Error Messages].

SQLE_AMBIGUOUS_INDEX
_NAME

See “Index name '%1' is ambiguous” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_BAD_ENCRYPTION_
KEY

See “Incorrect or missing encryption key” [SQL Anywhere 10 - Error
Messages].

SQLE_BAD_PARAM_INDEX See “Input parameter index out of range” [SQL Anywhere 10 - Error
Messages].

SQLE_CANNOT_ACCESS_FI
LESYSTEM

See “Unable to access the filesystem on the device” [SQL Anywhere
10 - Error Messages].

SQLE_CANNOT_CHANGE_U
SER_NAME

See “Cannot change synchronization user_name when status of the
last upload is unknown” [SQL Anywhere 10 - Error Messages].

SQLE_CANNOT_CONVERT See “Invalid data conversion” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_CANNOT_EXECUTE_
STMT

See “Statement cannot be executed” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_CANNOT_MODIFY See “Cannot modify column '%1' in table '%2'” [SQL Anywhere 10 -
Error Messages].

SQLE_CLIENT_OUT_OF_ME
MORY

See “Client out of memory” [SQL Anywhere 10 - Error Messages].

SQLE_COLUMN_AMBIGU-
OUS

See “Column '%1' found in more than one table -- need a correlation
name” [SQL Anywhere 10 - Error Messages].

SQLE_COLUMN_CANNOT_
BE_NULL

See “Column '%1' in table '%2' cannot be NULL” [SQL Anywhere 10
- Error Messages].

SQLE_COLUMN_IN_INDEX See “Cannot alter a column in an index” [SQL Anywhere 10 - Error
Messages].

SQLE_COLUMN_NOT_FOUN
D

See “Column '%1' not found” [SQL Anywhere 10 - Error
Messages].

SQLError class

Copyright © 2007, iAnywhere Solutions, Inc. 111

members Description

SQLE_COLUMN_NOT_IN-
DEXED

See “Column '%1' not part of any indexes in its containing ta-
ble” [SQL Anywhere 10 - Error Messages].

SQLE_COLUMN_NOT_STRE
AMABLE

See “The operation failed because column '%1''s type does not support
streaming” [SQL Anywhere 10 - Error Messages].

SQLE_COMMUNICATIONS_
ERROR

See “Communication error” [SQL Anywhere 10 - Error Messages].

SQLE_CONNECTION_ALRE
ADY_EXISTS

See “This connection already exists” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_CONNECTION_NOT_F
OUND

See “Connection not found” [SQL Anywhere 10 - Error Messages].

SQLE_CONNECTION_RE-
STORED

See “UltraLite connection was restored” [SQL Anywhere 10 - Error
Messages].

SQLE_CONSTRAINT_NOT_F
OUND

See “Constraint '%1' not found” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_CONVERSION_ER-
ROR

See “Cannot convert %1 to a %2” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_COULD_NOT_FIND_F
UNCTION

See “Could not find '%1' in dynamic library '%2'” [SQL Anywhere 10
- Error Messages].

SQLE_COULD_NOT_LOAD_
LIBRARY

See “Could not load dynamic library '%1'” [SQL Anywhere 10 - Error
Messages].

SQLE_CURSOR_ALREADY_
OPEN

See “Cursor already open” [SQL Anywhere 10 - Error Messages].

SQLE_CURSOR_NOT_OPEN See “Cursor not open” [SQL Anywhere 10 - Error Messages].

SQLE_CURSOR_RESTORED See “UltraLite cursor (or result set or table) was restored” [SQL Any-
where 10 - Error Messages].

SQLE_CURSOROP_NOT_AL-
LOWED

See “Illegal cursor operation attempt” [SQL Anywhere 10 - Error
Messages].

SQLE_DATABASE_ERROR See “Internal database error %1 -- transaction rolled back” [SQL Any-
where 10 - Error Messages].

SQLE_DATABASE_NAME_R
EQUIRED

See “Database name required to start server” [SQL Anywhere 10 -
Error Messages].

SQLE_DATABASE_NOT_CR
EATED

See “Database creation failed: %1” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_DATATYPE_NOT_AL-
LOWED

See “Expression has unsupported data type” [SQL Anywhere 10 - Er-
ror Messages].

UltraLite for M-Business Anywhere API Reference

112 Copyright © 2007, iAnywhere Solutions, Inc.

members Description

SQLE_DBSPACE_FULL See “A dbspace has reached its maximum file size” [SQL Anywhere
10 - Error Messages].

SQLE_DESCRIBE_NONSE-
LECT

See “Can only describe a SELECT statement” [SQL Anywhere 10 -
Error Messages].

SQLE_DIV_ZERO_ERROR See “Division by zero” [SQL Anywhere 10 - Error Messages].

SQLE_DOWNLOAD_CON-
FLICT

See “Download failed because of conflicts with existing rows” [SQL
Anywhere 10 - Error Messages].

SQLE_DOWNLOAD_RESTA
RT_FAILED

See “Unable to retry download because upload is not finished” [SQL
Anywhere 10 - Error Messages].

SQLE_DROP_DATABASE_F
AILED

See “An attempt to delete database '%1' failed” [SQL Anywhere 10 -
Error Messages].

SQLE_DUPLICATE_CURSOR
_NAME

See “The cursor name '%1' already exists” [SQL Anywhere 10 - Error
Messages].

SQLE_DUPLICATE_FOREIG
N_KEY

See “Foreign key '%1' for table '%2' duplicates an existing foreign
key” [SQL Anywhere 10 - Error Messages].

SQLE_DUPLICATE_OPTION See “Option '%1' specified more than once” [SQL Anywhere 10 - Er-
ror Messages].

SQLE_DYNAMIC_MEMORY
_EXHAUSTED

See “Dynamic memory exhausted” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_ENCRYPTION_INITIA
LIZATION_FAILED

See “Could not initialize the encryption DLL: '%1'” [SQL Anywhere
10 - Error Messages].

SQLE_ENGINE_ALREADY_
RUNNING

See “Database server already running” [SQL Anywhere 10 - Error
Messages].

SQLE_ENGINE_NOT_MUL-
TIUSER

See “Database server not running in multi-user mode” [SQL Any-
where 10 - Error Messages]

SQLE_ERROR See “Run time SQL error -- %1” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_ERROR_CALLING_FU
NCTION

See “Could not allocate resources to call external function” [SQL
Anywhere 10 - Error Messages].

SQLE_ERROR_IN_ASSIGN-
MENT

See “Error in assignment” [SQL Anywhere 10 - Error Messages].

SQLE_EXPRESSION_ERROR See “Invalid expression near '%1'” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_FEATURE_NOT_EN-
ABLED

See “The method you attempted to invoke was not enabled for your
application” [SQL Anywhere 10 - Error Messages].

SQLError class

Copyright © 2007, iAnywhere Solutions, Inc. 113

members Description

SQLE_FILE_BAD_DB See “Unable to start specified database: '%1' is not a valid database
file” [SQL Anywhere 10 - Error Messages].

SQLE_FILE_IN_USE See “Specified database file already in use” [SQL Anywhere 10 - Error
Messages].

SQLE_FILE_NOT_DB See “Unable to start specified database: '%1' is not a database” [SQL
Anywhere 10 - Error Messages].

SQLE_FILE_VOLUME_NOT_
FOUND

See “Specified file system volume not found for database '%1'” [SQL
Anywhere 10 - Error Messages].

SQLE_FILE_WRONG_VER-
SION

See “Unable to start specified database: '%1' was created by a different
version of the software” [SQL Anywhere 10 - Error Messages].

SQLE_FOREIGN_KEY_NAM
E_NOT_FOUND

See “Foreign key name '%1' not found” [SQL Anywhere 10 - Error
Messages].

SQLE_IDENTIFIER_TOO_LO
NG

See “Identifier '%1' too long” [SQL Anywhere 10 - Error
Messages].

SQLE_INCORRECT_VOLUM
E_ID

See “Incorrect volume ID for '%1'” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_INDEX_NAME_NOT_
UNIQUE

See “Index name '%1' not unique” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_INDEX_NOT_FOUND See “Cannot find index named '%1'” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_INDEX_NOT_UNIQUE See “Index '%1' for table '%2' would not be unique” [SQL Anywhere
10 - Error Messages].

SQLE_INTERRUPTED See “Statement interrupted by user” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_INVALID_CONSTRAI
NT_REF

See “Invalid reference to or operation on constraint '%1'” [SQL Any-
where 10 - Error Messages].

SQLE_INVALID_DESCRIPTO
R_INDEX

See “Invalid descriptor index” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_INVALID_DESCRIPTO
R_NAME

See “Invalid SQL descriptor name” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_INVALID_DISTINCT_
AGGREGATE

See “Grouped query contains more than one distinct aggregate func-
tion” [SQL Anywhere 10 - Error Messages].

SQLE_INVALID_FOREIGN_
KEY

See “No primary key value for foreign key '%1' in table '%2'” [SQL
Anywhere 10 - Error Messages].

SQLE_INVALID_FOREIGN_
KEY_DEF

See “Column '%1' in foreign key has a different definition than pri-
mary key” [SQL Anywhere 10 - Error Messages].

UltraLite for M-Business Anywhere API Reference

114 Copyright © 2007, iAnywhere Solutions, Inc.

members Description

SQLE_INVALID_GROUP_SE-
LECT

See “Function or column reference to '%1' must also appear in a
GROUP BY” [SQL Anywhere 10 - Error Messages].

SQLE_INVALID_LOGON See “Invalid user ID or password” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_INVALID_OPTION_SE
TTING

See “Invalid setting for option '%1'” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_INVALID_OPTION_V
ALUE

See “'%1' is an invalid value for '%2'” [SQL Anywhere 10 - Error
Messages].

SQLE_INVALID_ORDER See “Invalid ORDER BY specification” [SQL Anywhere 10 - Error
Messages].

SQLE_INVALID_PARAME-
TER

See “Invalid parameter” [SQL Anywhere 10 - Error Messages].

SQLE_INVALID_PARSE_PA-
RAMETER

See “Parse error: %1” [SQL Anywhere 10 - Error Messages].

SQLE_INVALID_PUBLICATI
ON_MASK

See “The specified publication mask is invalid” [SQL Anywhere 10 -
Error Messages].

SQLE_INVALID_SQL_IDEN-
TIFIER

See “Invalid SQL identifier” [SQL Anywhere 10 - Error Messages].

SQLE_INVALID_UNION See “Select lists in UNION, INTERSECT, or EXCEPT do not match
in length” [SQL Anywhere 10 - Error Messages].

SQLE_KEYLESS_ENCRYP-
TION

See “Unable to perform requested operation since this database uses
keyless encryption” [SQL Anywhere 10 - Error Messages].

SQLE_LOCKED See “User '%1' has the row in '%2' locked” [SQL Anywhere 10 - Error
Messages].

SQLE_MEMORY_ERROR See “Memory error -- transaction rolled back” [SQL Anywhere 10 -
Error Messages].

SQLE_NAME_NOT_UNIQUE See “Item '%1' already exists” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_NO_COLUMN_NAME See “Derived table '%1' has no name for column %2” [SQL Anywhere
10 - Error Messages].

SQLE_NO_CURRENT_ROW See “No current row of cursor” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_NO_INDICATOR See “No indicator variable provided for NULL result” [SQL Any-
where 10 - Error Messages].

SQLE_NO_MATCHING_SEL
ECT_ITEM

See “The select list for the derived table '%1' has no expression to
match '%2'” [SQL Anywhere 10 - Error Messages].

SQLError class

Copyright © 2007, iAnywhere Solutions, Inc. 115

members Description

SQLE_NO_PRIMARY_KEY See “Table '%1' has no primary key” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_NOERROR SQLE_NOERROR(0) - This code indicates that there was no error or
warning.

SQLE_NON_UPDATEABLE_
COLUMN

See “Cannot update an expression” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_NON_UPDATEABLE_
CURSOR

See “FOR UPDATE has been incorrectly specified for a READ ON-
LY cursor” [SQL Anywhere 10 - Error Messages].

SQLE_NOT_IMPLEMENTED See “Feature '%1' not implemented” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_NOT_SUPPORTED_IN
_ULTRALITE

See “Feature not available with UltraLite” [SQL Anywhere 10 - Error
Messages].

SQLE_NOTFOUND See “Row not found” [SQL Anywhere 10 - Error Messages].

SQLE_ONLY_ONE_TABLE See “INSERT/DELETE on cursor can modify only one table” [SQL
Anywhere 10 - Error Messages].

SQLE_OVERFLOW_ERROR See “Value %1 out of range for destination” [SQL Anywhere 10 -
Error Messages].

SQLE_PAGE_SIZE_INVALID See “Invalid database page size” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_PARTIAL_DOWNLOA
D_NOT_FOUND

See “No partial download was found” [SQL Anywhere 10 - Error
Messages].

SQLE_PERMISSION_DE-
NIED

See “Permission denied: %1” [SQL Anywhere 10 - Error
Messages].

SQLE_PRIMARY_KEY_NOT
_UNIQUE

See “Primary key for table '%1' is not unique” [SQL Anywhere 10 -
Error Messages].

SQLE_PRIMARY_KEY_TWI
CE

See “Table cannot have two primary keys” [SQL Anywhere 10 - Error
Messages].

SQLE_PRIMARY_KEY_VAL
UE_REF

See “Primary key for row in table '%1' is referenced by foreign key
'%2' in table '%3'” [SQL Anywhere 10 - Error Messages].

SQLE_PUBLICATION_NOT_
FOUND

See “Publication '%1' not found” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_PUBLICATION_PREDI
CATE_IGNORED

See “Publication predicates were not evaluated” [SQL Anywhere 10
- Error Messages].

SQLE_RESOURCE_GOVERN
OR_EXCEEDED

See “Resource governor for '%1' exceeded” [SQL Anywhere 10 - Er-
ror Messages].

UltraLite for M-Business Anywhere API Reference

116 Copyright © 2007, iAnywhere Solutions, Inc.

members Description

SQLE_ROW_DELETED_TO_
MAINTAIN_REFERENTIAL_I
NTEGRITY

See “Row was dropped from table %1 to maintain referential integri-
ty” [SQL Anywhere 10 - Error Messages].

SQLE_SCHEMA_UPGRADE_
NOT_ALLOWED

See “A schema upgrade is not currently allowed” [SQL Anywhere 10
- Error Messages].

SQLE_SERVER_SYNCHRON
IZATION_ERROR

See “Synchronization failed due to an error on the server: %1” [SQL
Anywhere 10 - Error Messages].

SQLE_START_STOP_DATAB
ASE_DENIED

See “Request to start/stop database denied” [SQL Anywhere 10 - Er-
ror Messages].

SQLE_STATEMENT_ERROR See “SQL statement error” [SQL Anywhere 10 - Error Messages].

SQLE_STRING_RIGHT_TRU
NCATION

See “Right truncation of string data” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_SUBQUERY_SELECT_
LIST

See “Subquery allowed only one select list item” [SQL Anywhere 10
- Error Messages].

SQLE_SYNC_INFO_IN-
VALID

See “Information for synchronization is incomplete or invalid, check
'%1'” [SQL Anywhere 10 - Error Messages].

SQLE_SYNC_INFO_RE-
QUIRED

See “Information for synchronization was not provided” [SQL Any-
where 10 - Error Messages].

SQLE_SYNC_NOT_REEN-
TRANT

See “Synchronization process was unable to re-enter synchroniza-
tion” [SQL Anywhere 10 - Error Messages].

SQLE_SYNC_STATUS_UN-
KNOWN

See “The status of the last synchronization upload is unknown” [SQL
Anywhere 10 - Error Messages].

SQLE_SYNTAX_ERROR See “Syntax error near '%1' %2” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_TABLE_ALREADY_IN
CLUDED

See “Table '%1' is already included” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_TABLE_IN_USE See “Table in use” [SQL Anywhere 10 - Error Messages].

SQLE_TABLE_NOT_FOUND See “Table '%1' not found” [SQL Anywhere 10 - Error Messages].

SQLE_TOO_MANY_BLOB_R
EFS

See “Too many references to a BLOB” [SQL Anywhere 10 - Error
Messages].

SQLE_TOO_MANY_CON-
NECTIONS

See “Database server connection limit exceeded” [SQL Anywhere 10
- Error Messages].

SQLE_TOO_MANY_PUBLI-
CATIONS

See “Too many publications specified in publication mask” [SQL
Anywhere 10 - Error Messages].

SQLError class

Copyright © 2007, iAnywhere Solutions, Inc. 117

members Description

SQLE_TOO_MANY_TEMP_T
ABLES

See “Too many temporary tables in connection” [SQL Anywhere 10
- Error Messages].

SQLE_TOO_MANY_USERS See “Too many users in database” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_ULTRALITE_DATAB
ASE_NOT_FOUND

See “The database '%1' was not found” [SQL Anywhere 10 - Error
Messages].

SQLE_ULTRALITE_OBJ_CL
OSED

See “Invalid operation on a closed object” [SQL Anywhere 10 - Error
Messages].

SQLE_ULTRALITE_WRITE_
ACCESS_DENIED

See “Write access was denied” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_UNABLE_TO_CON-
NECT

See “Database cannot be started -- %1” [SQL Anywhere 10 - Error
Messages].

SQLE_UNABLE_TO_START_
DATABASE

See “Unable to start specified database: %1” [SQL Anywhere 10 -
Error Messages].

SQLE_UNABLE_TO_START_
DATABASE_VER_NEWER

See “Unable to start specified database: Server must be upgraded to
start database %1” [SQL Anywhere 10 - Error Messages].

SQLE_UNCOMMITTED_TRA
NSACTIONS

See “You cannot synchronize or upgrade with uncommitted transac-
tions” [SQL Anywhere 10 - Error Messages].

SQLE_UNKNOWN_FUNC See “Unknown function '%1'” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_UNKNOWN_OPTION See “'%1' is an unknown option” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_UNKNOWN_USERID See “User ID '%1' does not exist” [SQL Anywhere 10 - Error Mes-
sages].

SQLE_UNRECOGNIZED_OP-
TION

See “The option '%1' is not recognized” [SQL Anywhere 10 - Error
Messages].

SQLE_UPLOAD_FAILED_AT
_SERVER

See “Synchronization server failed to commit the upload” [SQL Any-
where 10 - Error Messages].

SQLE_VALUE_IS_NULL See “Cannot return NULL result as requested data type” [SQL Any-
where 10 - Error Messages].

SQLE_VARIABLE_INVALID See “Invalid host variable” [SQL Anywhere 10 - Error Messages].

SQLE_WRONG_NUM_OF_IN
SERT_COLS

See “Wrong number of values for INSERT” [SQL Anywhere 10 -
Error Messages].

SQLE_WRONG_PARAMETE
R_COUNT

See “Wrong number of parameters to function '%1'” [SQL Anywhere
10 - Error Messages].

UltraLite for M-Business Anywhere API Reference

118 Copyright © 2007, iAnywhere Solutions, Inc.

SQLType class
This enumeration lists as constants the available UltraLite SQL database types used as table column types.

Constant UltraLite Database Type

BAD_INDEX

S_LONG INT

U_LONG UNSIGNED INT

S_SHORT SMALLINT

U_SHORT UNSIGNED SMALLINT

S_BIG BIGINT

U_BIG UNSIGNED BIGINT

TINY TYNY INT

BIT BIT

TIMESTAMP TIMESTAMP

DATE DATE

TIME TIMESTAMP

DOUBLE DOUBLE

REAL REAL

NUMERIC NUMERIC

BINARY BINARY

CHAR CHAR or VARCHAR

LONGVARCHAR LONG VARCHAR

LONGBINARY LONG BINARY

MAX_INDEX

toString method

Returns the string name of the specified SQL column type constant or BAD_SQL_TYPE if not a recognized
type.

SQLType class

Copyright © 2007, iAnywhere Solutions, Inc. 119

Syntax
String toString(UInt16 code)

Parameters
♦ code The SQL column type constant.

UltraLite for M-Business Anywhere API Reference

120 Copyright © 2007, iAnywhere Solutions, Inc.

SyncParms class
Represents synchronization parameters that define how to synchronize an UltraLite database. Each
connection has its own SyncParms instance.

Constants

Constant Value Description

STREAM_TYPE_TCPIP 0 TCP/IP stream

STREAM_TYPE_HTTP 1 HTTP stream

STREAM_TYPE_HTTPS 2 HTTPS synchronization

STREAM_TYPE_TLS 3 TLS synchronization

STREAM_TYPE_HOTSYNC 4 For HotSync synchronization

getAuthenticationParms method

Returns parameters provided to a custom user authentication script or null if no parameters are specified.

Syntax
Array getAuthenticationParms()

getCheckpointStore method

Returns true if the client performs extra checkpoints, false if the client only performs required checkpoints.

Syntax
Boolean getCheckpointStore()

getDisableConcurrency method

Returns true if concurrent synchronization is disabled, false if concurrent synchronization is enabled.

Syntax
Boolean getDisableConcurrency()

getDownloadOnly method

Returns true if uploads are disabled, false if uploads are enabled.

SyncParms class

Copyright © 2007, iAnywhere Solutions, Inc. 121

Syntax
Boolean getDownloadOnly()

getKeepPartialDownload method

Returns true if partial downloads are to be kept, false if partial downloads should be rolled back.

Syntax
Boolean getKeepPartialDownload()

getNewPassword method

Returns the new password that is associated with the MobiLink user after the next synchronization.

Syntax
String getNewPassword()

getPartialDownloadRetained method

Returns true if a download failed because of a communications error and the partial download was retained,
false if the download was not interrupted, or if the partial download was rolled back.

Syntax
Boolean getPartialDownloadRetained()

getPassword method

Returns the MobiLink password for the user specified with setUserName.

Syntax
String getPassword();

getPingOnly method

Returns true if client only pings the server, false if client performs a synchronization.

Syntax
Boolean getPingOnly()

getPublicationMask method

Returns the publications to be synchronized.

UltraLite for M-Business Anywhere API Reference

122 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
UInt32 getPublicationMask();

Remarks
See PublicationSchema class.

getResumePartialDownload method

Returns true if the previous partial download is to be resumed, false if the previous partial download is to
be rolled back.

Syntax
Boolean getResumePartialDownload()

getSendColumnNames method

Returns true if client sends column names to the MobiLink server during synchronization, false if client does
not send column names.

Syntax
Boolean getSendColumnNames()

getSendDownloadAck method

Returns true if client provides a download acknowledgement to the MobiLink server, false if the client does
not provide a download acknowledgement.

Syntax
Boolean getSendDownloadAck()

getStream method

Returns the type of MobiLink synchronization stream to use for synchronization.

Syntax
UInt16 getStream();

getStreamParms method

Returns a string containing all the network protocol options used for synchronization streams.

Syntax
String getStreamParms();

SyncParms class

Copyright © 2007, iAnywhere Solutions, Inc. 123

getUploadOnly method

Returns true if downloads are disabled, false if downloads are enabled

Syntax
Boolean getUploadOnly()

getUserName method

Returns the MobiLink user name.

Syntax
String getUserName()

getVersion method

Returns the version string that indicates which synchronization scripts are to be used.

Syntax
String getVersion()

setAuthenticationParms method

Specifies parameters for a custom user authentication script (MobiLink authenticate_parameters connection
event).

Syntax
setAuthenticationParms(Array value)

Parameters
♦ value An array of strings, each containing an authentication parameter (null array entries result in a

synchronization error).

Remarks
Only the first 255 strings are used and each string should be no longer than 128 characters (longer strings
are truncated when sent to MobiLink).

setCheckpointStore method

Specifies whether the client should perform extra store checkpoints to control the growth of the database
store during synchronization.

UltraLite for M-Business Anywhere API Reference

124 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
setCheckpoint16Store(Boolean value)

Parameters
♦ value Set to true to perform extra checkpoints, or set to false to only perform the required checkpoints.

Remarks
The checkpoint operation adds I/O operations for the application, and so slows synchronization. This option
is most useful for large downloads with many updates. Devices with slow flash memory may not want to
incur the performance penalty.

setDisableConcurrency method

Specifies whether to disable or enable concurrent access to UltraLite while performing a synchronization.

Syntax
setDisableConcurrency(Boolean value);

Parameters
♦ value Set to true to disable concurrent synchronization, or set to false to enable concurrent

synchronization.

Remarks
By default, other threads may perform UltraLite operations while a thread is synchronizing. When concurrent
synchronization is disabled, other threads block on UltraLite calls until the synchronization has completed.

setDownloadOnly method

Specifies whether to disable or enable uploads when synchronizing.

Syntax
setDownloadOnly(Boolean value)

Parameters
♦ value Set to true to disable uploads, or set to false to enable uploads.

setKeepPartialDownload method

Specifies whether to disable or enable partial downloads when synchronizing.

Syntax
setKeepPartialDownload(Boolean value)

SyncParms class

Copyright © 2007, iAnywhere Solutions, Inc. 125

Parameters
♦ value Set to true to enable the retention of partial downloads when synchronzing, or set to false to

discard partial downloads.

Remarks
UltraLite has the ability to restart downloads that fail because of communication errors. UltraLite processes
the download as it is received. If a download is interrupted, then the partial download transaction will remain
in the database and can be resumed during the next synchronization.

To indicate that UltraLite should save partial downloads, specify
Connection.syncParms.setKeepPartialDownload(true); otherwise the download will be rolled back if an
error occurs.

If a partial download was kept, then the output field connection.SyncResult.getPartialDownloadRetained is
set to true when the connection.synchronize exits. If getPartialDownloadRetained is set, then you can resume
a download. To do this, call connection.synchronize with
connection.syncParms.setResumePartialDownload(true). You may still want KeepPartialDownload set to
true as well in case another communication error occurs. No upload is done if a download is skipped.

The download you receive during a resumed download will be as old as when the download originally began.
If you need the most up to date data, then you can do another download immediately after the special resumed
download completes.

When resuming a download, many of the SyncParms fields are not relevant. For example, the
PublicationMask field is not used. You will receive the publications that you requested on the initial
download. The only fields that need to be set are setResumePartialDownload(boolean) and setUserName
(String). The fields setKeepPartialDownload(boolean), setDownloadOnly(boolean), and
setDisableConcurrency(boolean) may be set if desired and will function as normal.

If you have a partial download and it is no longer needed, then you can call
Connection.rollbackPartialDownload to roll back the failed download transaction. Also if you attempt to
synchronize again and do not specify ResumePartialDownload, then the partial download will roll back
before the next synchronization begins.

See “How synchronization failure is handled” [MobiLink - Getting Started].

setMBAServer method

Provides a quick way to set the synchronization parameters for the MobiLink host and port to those of the
M-Business Anywhere server used by the M-Business client.

Syntax
setMBAServer(String host, String port, String url_suffix)

Parameters
♦ host The host or IP value of the M-Business Anywhere server. If host is null, UltraLite sets it to the

current M-Business Anywhere host.

UltraLite for M-Business Anywhere API Reference

126 Copyright © 2007, iAnywhere Solutions, Inc.

♦ port The port on which the M-Business Anywhere server is listening. If port is null, UltraLite sets it
to the current M-Business Anywhere port value.

♦ url_suffix This corresponds to the url_suffix parameter set in the sync.conf file of M-Business
Anywhere.

Remarks
Use the MobiLink redirector for M-Business Anywhere to route data to and from the MobiLink server.

If you are using one-button synchronization, you must save the synchronization parameters using
Connection.saveSyncParms.

For information about configuring M-Business Server to route HTTP database traffic through the M-
Business Anywhere Redirector, see “M-Business Anywhere Redirector” [MobiLink - Server
Administration].

setMBAServerWithMoreParms method

Provides a quick way to set the synchronization parameters for the MobiLink host and port to those of the
M-Business Anywhere server used by the M-Business client.

Syntax
setMBAServerWithMoreParms(String host, String port, String url_suffix, String additional)

Parameters
♦ host The host or IP value of the M-Business Anywhere server. If host is null, UltraLite sets it to the

current M-Business Anywhere host.

♦ port The port on which the M-Business Anywhere server is listening. If port is null, UltraLite sets it
to the current M-Business Anywhere port value.

♦ url_suffix This corresponds to the url_suffix parameter set in the sync.conf file of M-Business
Anywhere.

♦ additional This parameter may contain additional stream parameters that are not covered by the
preceding parameters (for example, proxy host, proxy port or security-related parameters). If you need to
specify host, port or url_suffix information, you may use the setMBAServer method described in the
previous section.

Remarks
Use the MobiLink redirector for M-Business Anywhere to route data to and from the MobiLink server.

This method expands on the capabilities provided by setMBAServer by permitting the user to specify other
parameters in an additional parameter.

If you are using one-button synchronization, you must save the synchronization parameters using
Connection.saveSyncParms.

SyncParms class

Copyright © 2007, iAnywhere Solutions, Inc. 127

For information about configuring M-Business Server to route HTTP database traffic through the M-
Business Anywhere Redirector, see “M-Business Anywhere Redirector” [MobiLink - Server
Administration].

setNewPassword method

Sets a new MobiLink password for the user specified with setUserName.

Syntax
setNewPassword(String value)

Parameters
♦ value New password for MobiLink user.

Remarks
The new password takes effect after the next synchronization.

setPassword method

Sets the MobiLink password for the user specified with setUserName.

Syntax
setPassword(String value)

Parameters
♦ value The password for MobiLink user.

Remarks
This user name and password are separate from any database user ID and password, and serves to identify
and authenticate the application to the MobiLink server.

setPingOnly method

Specifies whether the client should only ping the MobiLink server instead of performing a real
synchronization.

Syntax
setPingOnly(Boolean value);

Parameters
♦ value Set to true to only ping the MobiLink server, or to false to perform a synchronization.

UltraLite for M-Business Anywhere API Reference

128 Copyright © 2007, iAnywhere Solutions, Inc.

setPublicationMask method

Specifies the publications to be synchronized.

Syntax
setPublicationMask(UInt16 mask)

Parameters
♦ mask Set of publications to synchronize.

Remarks
See PublicationSchema class.

setSendColumnNames method

Specifies whether the client should send column names to the MobiLink server during synchronization.

Syntax
setSendColumnNames(Boolean value)

Parameters
♦ value Set to true to send column names, or set to false not to send column names.

Remarks
This parameter is used for direct row handling.

setSendDownloadAck method

Specifies whether the client should send a download acknowledgement to the MobiLink server during
synchronization.

Syntax
setSendDownloadAck(Boolean value)

Parameters
♦ value Set to true to send a download acknowledgement (positive or negative) or set to false to tell the

server that no download acknowledgement is sent.

Remarks
The download acknowledgement is sent after the download has been fully applied and committed at the
remote (positive acknowledgement) or the download fails (negative acknowledgement).

If the client does send a download acknowledgement, the MobiLink server database worker thread must
wait for the client to apply and commit the download. If the client does not sent a download
acknowledgement, the MobiLink server is freed up sooner for its next synchronization.

SyncParms class

Copyright © 2007, iAnywhere Solutions, Inc. 129

setStream method

Sets the MobiLink synchronization stream to use for synchronization.

Syntax
setStream(UInt16 value)

Parameters
♦ value Type of MobiLink synchronization stream to use for synchronization. For a list of valid choices,

see “Constants” on page 121.

Remarks
Most synchronization streams require parameters to identify the MobiLink server address and control other
behavior. These parameters are supplied with the setStreamParms() method.

The default stream type is STREAM_TYPE_TCPIP.

setStreamParms method

Sets the parameters to configure the synchronization stream.

Syntax
setStreamParms(String value)

Parameters
♦ value String containing all the network protocol options used for synchronization streams. Options

are specified as a semicolon-separated list of name=value pairs ("param1=value1;param2=value2").

Remarks
For information about configuring specific stream types, see “Network protocol options for UltraLite
synchronization streams” [MobiLink - Client Administration].

setUploadOnly method

Specifies whether to disable or enable downloads when synchronizing.

Syntax
setUploadOnly(Boolean value)

Parameters
♦ value Set to true to disable downloads, or set to false to enable downloads.

UltraLite for M-Business Anywhere API Reference

130 Copyright © 2007, iAnywhere Solutions, Inc.

setUserName method

Sets the user name that uniquely identifies the MobiLink client to the MobiLink server.

Syntax
setUserName(String value)

Parameters
♦ value MobiLink user name.

Remarks
MobiLink uses this value to determine the download content, to record the synchronization state, and to
recover from interruptions during synchronization. This user name and password are separate from any
database user ID and password, and serve to identify and authenticate the application to the MobiLink server.

setVersion method

Specifies which synchronization script version to use.

Syntax
setVersion(String value)

Parameters
♦ value Script version string.

Remarks
Each synchronization script in the consolidated database is marked with a version string. For example, there
may be two different download_cursor scripts, and each one is identified by different version strings. The
version string allows an UltraLite application to choose from a set of synchronization scripts.

SyncParms class

Copyright © 2007, iAnywhere Solutions, Inc. 131

SyncResult class
Represents the status of UltraLite for M-Business Anywhere methods the last synchronization. Each
connection has its own SyncResult instance.

This class cannot be directly instantiated.

getAuthStatus method

Returns the authorization status code for the last synchronization attempt.

Syntax
UInt16 getAuthStatus()

getIgnoredRows method

Returns true if any uploaded rows were ignored during the most recent synchronization, false if no uploaded
rows were ignored.

Syntax
Boolean getIgnoredRows()

Parameters
♦ return True if any uploaded rows were ignored, false if no uploaded rows were not ignored.

getPartialDownloadRetained method

Returns true if a download was interrupted and the partial download was retained, false if the download was
not interrupted or the partial download was rolled back.

Syntax
Boolean getPartialDownloadRetained()

getStreamErrorCode method

Returns an integer representing the error code reported by the synchronization stream processing.

Syntax
UInt16 getStreamErrorCode()

Parameters
♦ return Error code reported by the synchronization stream.

UltraLite for M-Business Anywhere API Reference

132 Copyright © 2007, iAnywhere Solutions, Inc.

Remarks
See “MobiLink Communication Error Messages” [SQL Anywhere 10 - Error Messages].

getStreamErrorContext method

Returns the basic network operation being performed when the stream error occurred.

Syntax
UInt16 getStreamErrorContext()

Remarks
The known contexts are as follows:

Value Context

0 Unknown

1 Register

2 Unregister

3 Create

4 Destroy

5 Open

6 Close

7 Read

8 Write

9 WriteFlush

10 EndWrite

11 EndRead

12 Yield

13 Softshutdown

getStreamErrorID method

Returns the network layer reporting the error.

Syntax
UInt32 getStreamErrorID()

SyncResult class

Copyright © 2007, iAnywhere Solutions, Inc. 133

Remarks
The value is the ID of network layer. The known IDs are as follows:

Value Description

0 TCP/IP stream

3 For HotSync synchronization

7 HTTP stream

8 HTTPS synchronization

getStreamErrorSystem method

Returns the stream error system-specific code.

Syntax
UInt16 getStreamErrorSystem()

Parameters
♦ return A system-specific error code.

getTimestamp method

Returns the timestamp of the most recent synchronization.

Syntax
Date getTimestamp()

getUploadOK method

Returns true if last upload synchronization was successful, false if last upload synchronization was
unsuccessful.

Syntax
Boolean getUploadOK()

UltraLite for M-Business Anywhere API Reference

134 Copyright © 2007, iAnywhere Solutions, Inc.

TableSchema class
Represents the schema of an UltraLite table.

getColumnCount method

Returns the 1-based number of columns in this table.

Syntax
UInt16 getColumnCount()

Remarks
Column IDs range from 1 to getColumnCount().

getColumnDefaultValue method

Returns the default value of the named column or null if the default value is null.

Syntax
String getColumnDefaultValue(String name)

Parameters
♦ name Name of the column.

getColumnDefaultValueByColID method

Returns the default value of the column or null if the default value is null.

Syntax
String getColumnDefaultValueByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

getColumnID method

Returns the 1-based ID of the specified column.

Syntax
UInt16 getColumnID(String name)

Parameters
♦ name Name of the column.

TableSchema class

Copyright © 2007, iAnywhere Solutions, Inc. 135

getColumnName method

Returns the name of the specified column.

Syntax
String getColumnName(UInt16 colID)

Parameters
♦ colID The 1-based column ID of the column.

getColumnPartitionSize method

Returns the column's global autoincrement partition size as an unsigned 64-bit number represented by a
Double.

Syntax
UInt64 getColumnPartitionSize(String name)

Parameters
♦ name Name of the column.

Remarks
All global autoincrement columns in a given table share the same global autoincrement partition.

getColumnPartitionSizeByColID method

Returns the column's global autoincrement partition size as an unsigned 64-bit number represented by a
Double.

Syntax
UInt64 getColumnPartitionSizeByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Remarks
All global autoincrement columns in a given table share the same global autoincrement partition.

getColumnPrecision method

Returns the precision of the column.

Syntax
Int32 getColumnPrecision(String name)

UltraLite for M-Business Anywhere API Reference

136 Copyright © 2007, iAnywhere Solutions, Inc.

Parameters
♦ name Name of the column.

Remarks
The column must be of type SQLType.NUMERIC.

getColumnPrecisionByColID method

Returns the precision of the column.

Syntax
Int32 getColumnPrecisionByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Remarks
The column must be of type SQLType.NUMERIC

getColumnScale method

Returns the scale of the column.

Syntax
Int32 getColumnScale(String name)

Parameters
♦ name Name of the column.

Remarks
The column must be of type SQLType.NUMERIC.

getColumnScaleByColID method

Returns the scale of the column.

Syntax
Int32 getColumnScaleByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

TableSchema class

Copyright © 2007, iAnywhere Solutions, Inc. 137

Remarks
The column must be of type SQLType.NUMERIC.

getColumnSize method

Returns the size of the column.

Syntax
UInt32 getColumnSize(String name)

Parameters
♦ name Name of the column.

Remarks
The column must be of type SQLType.BINARY or SQLType.CHAR.

getColumnSizeByColID method

Returns the size of the column.

Syntax
UInt32 getColumnSizeByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Remarks
The column must be of type SQLType.BINARY or SQLType.CHAR.

getColumnSQLType method

Returns the SQLType of the column, in a SQLType enumerated integer.

Syntax
Int16 getColumnSQLType(String name)

Parameters
♦ name Name of the column.

getColumnSQLTypeByColID method

Returns the SQLType of the column, in a SQLType enumerated integer.

UltraLite for M-Business Anywhere API Reference

138 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Int16 getColumnSQLTypeByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

getIndex method

Returns the index schema of the named index.

Syntax
IndexSchema getIndex(String name)

Parameters
♦ name Name of the index.

getIndexCount method

Returns the number of indexes on this table.

Syntax
UInt16 getIndexCount()

Remarks
Index IDs range from 1 to getIndexCount(), inclusively.

Note: Index IDs and count may change during a schema upgrade. To correctly identify an index, access it
by name or refresh the cached IDs and counts after a schema upgrade.

getIndexName method

Returns the name of the index identified by the specified index ID.

Syntax
String getIndexName(UInt16 indexID)

Parameters
♦ indexID ID of the index. indexID must be in the range [1,getIndexCount()].

Remarks
Note: Index IDs and count may change during a schema upgrade. To correctly identify an index, access it
by name or refresh the cached IDs and counts after a schema upgrade.

TableSchema class

Copyright © 2007, iAnywhere Solutions, Inc. 139

getName method

Returns the name of this table.

Syntax
String getName()

getOptimalIndex method

Returns the optimal index for searching a table using the named column.

Syntax
IndexSchema getOptimalIndex(String name)

Parameters
♦ name Name of the column.

Remarks
The named column is the first column in the index but the index may have more than one column.

getPrimaryKey method

Returns the index schema of the primary key for this table.

Syntax
IndexSchema getPrimaryKey()

getUploadUnchangedRows method

Returns true if the table is marked to upload all rows, false if the table is not marked to upload all rows.

Syntax
Boolean getUploadUnchangedRows()

Remarks
Tables for which this method returns true always upload unchanged rows, as well as changed rows, when
the table is synchronized. These tables are sometimes referred to as "all sync" tables.

isColumnAutoIncrement method

Returns true if the column is autoincrementing, false otherwise.

UltraLite for M-Business Anywhere API Reference

140 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Boolean isColumnAutoIncrement(String name)

Parameters
♦ name Name of the column.

isColumnAutoIncrementByColID method

Returns true if the column is autoincrementing, false otherwise.

Syntax
Boolean isColumnAutoIncrementByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

isColumnCurrentDate method

Returns true if the column defaults to the current date, false otherwise.

Syntax
Boolean isColumnCurrentDate(String name)

Parameters
♦ name Name of the column.

Remarks
The column must be of type SQLType.DATE.

isColumnCurrentDateByColID method

Returns true if the column defaults to the current date, false otherwise.

Syntax
Boolean isColumnCurrentDateByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Remarks
The column must be of type SQLType.DATE.

TableSchema class

Copyright © 2007, iAnywhere Solutions, Inc. 141

isColumnCurrentTime method

Returns true if the column defaults to the current time, false otherwise.

Syntax
Boolean isColumnCurrentTime(String name)

Parameters
♦ name Name of the column.

Remarks
The column must be of type SQLType.TIME.

isColumnCurrentTimeByColID method

Returns true if the column defaults to the current time, false otherwise.

Syntax
Boolean isColumnCurrentTimeByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Remarks
The column must be of type SQLType.TIME.

isColumnCurrentTimestamp method

Returns true if the column defaults to the current timestamp, false otherwise.

Syntax
Boolean isColumnCurrentTimestamp(String name)

Parameters
♦ name Name of the column.

Remarks
The column must be of type SQLType.TIMESTAMP.

isColumnCurrentTimestampByColID method

Returns true if the column defaults to the current timestamp, false otherwise.

UltraLite for M-Business Anywhere API Reference

142 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Boolean isColumnCurrentTimestampByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Remarks
The column must be of type SQLType.TIME.

isColumnGlobalAutoIncrement method

Returns true if the column defaults to global autoincrement, false otherwise.

Syntax
Boolean isColumnGlobalAutoIncrement(String name)

Parameters
♦ name Name of the column.

♦ return True if the column is global autoincrementing, false if not global autoincrementing.

isColumnGlobalAutoincrementByColID method

Returns true if the column defaults to global autoincrement, false otherwise.

Syntax
Boolean isColumnGlobalAutoincrementByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

isColumnNewUUID method

Returns true if the column defaults to a new UUID, false otherwise.

Syntax
Boolean isColumnNewUUID(String name)

Parameters
♦ name Name of the column.

TableSchema class

Copyright © 2007, iAnywhere Solutions, Inc. 143

isColumnNewUUIDByColID method

Returns true if the column defaults to a new UUID, false otherwise.

Syntax
Boolean isColumnNewUUIDByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

isColumnNullable method

Returns true if the column is nullable, false otherwise.

Syntax
Boolean isColumnNullable(String name)

Parameters
♦ name Name of the column.

isColumnNullableByColID method

Returns true if the column defaults to a new UUID, false otherwise.

Syntax
Boolean isColumnNullableByColID(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

isInPublication method

Returns true if table in publication, false if table not in publication.

Syntax
Boolean isInPublication(String pubName)

Parameters
♦ pubName Name of the publication.

UltraLite for M-Business Anywhere API Reference

144 Copyright © 2007, iAnywhere Solutions, Inc.

isNeverSynchronized method

Returns true if the table is marked as never synchronized, false if the table is not marked as never
synchronized.

Syntax
Boolean isNeverSynchronized()

Remarks
Tables for which this method returns true are never synchronized, even if they are included in a publication.
These tables are sometimes referred to as "no sync" tables.

TableSchema class

Copyright © 2007, iAnywhere Solutions, Inc. 145

ULTable class
Represents an UltraLite table.

Properties

The properties of the class are listed here.

Property Description

TableSchema schema (read-only) The schema of this result set. This property is only valid while its
prepared statement is open.

NULL_TIMESTAMP_VAL A constant indicating that a timestamp value is NULL.

AppendBytes method

Appends the specified subset of the specified array of bytes to the new value for the specified
SQLType.LONGBINARY column.

Syntax
AppendBytes(
 UInt16 columnID,
 Array value,
 UInt32 srcOffset,
 UInt32 count
)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

♦ srcOffset The value to append to the current new value for the column.

♦ count The number of bytes to be copied.

Remarks
The bytes at position srcOffset (starting from 0) through srcOffset+count-1 of the array value are appended
to the value for the specified column. When inserting, insertBegin initializes the new value to the column's
default value. The data in the row is not actually changed until you execute an insert, and that change is not
permanent until it is committed.

If any of the following is true, an Error with code SQLCode.SQLE_INVALID_PARAMETER is thrown
and the destination is not modified:

♦ The value argument is null.

UltraLite for M-Business Anywhere API Reference

146 Copyright © 2007, iAnywhere Solutions, Inc.

♦ The srcOffset argument is negative.

♦ The count argument is negative.

♦ srcOffset+count is greater than value.length, the length of the source array.

For other errors, a SQLException with the appropriate error code is thrown.

AppendStringChunk method

Appends the specified string to the new value for the specified SQLType.LONGVARCHAR column.

Syntax
AppendStringChunk(
 UInt16 columnID,
 String value
)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Example
The following statements append one hundred instances of the string XYZ to the value in the first column:

for (i = 0; i < 100; i++){
 t.AppendStringChunk(1, "XYZ");
}

deleteRow method

Deletes the current row.

Syntax
deleteRow()

deleteAllRows method

Deletes all rows in the table.

Syntax
deleteAllRows()

ULTable class

Copyright © 2007, iAnywhere Solutions, Inc. 147

Remarks
In some applications, it can be useful to delete all rows from a table before downloading a new set of data
into the table. Rows can be deleted from the UltraLite database without being deleted from the consolidated
database using the Connection.startSynchronizationDelete method.

findBegin method

Prepares to perform a new find on this table.

Syntax
findBegin()

Remarks
The value(s) for which to search are specified by calling the appropriate setType method(s) on the columns
in the index with which this table was opened.

findFirst method

Move forward through the table from the beginning, looking for a row that exactly matches a value or full
set of values in the current index.

Syntax
Boolean findFirst()

Returns
true if successful, false otherwise

Remarks
To specify the value for which to search, set the column value for each column in the index. The cursor is
left on the first row that exactly matches the index value. On failure the cursor position is after the last row
(isEOF).

Each search must be preceded by a call to the findBegin method.

See also
♦ “ findBegin method” on page 148
♦ “ isEOF method” on page 98

findFirstForColumns method

Move forward through the table from the beginning, looking for a row that exactly matches a value or partial
set of values in the current index.

UltraLite for M-Business Anywhere API Reference

148 Copyright © 2007, iAnywhere Solutions, Inc.

Syntax
Boolean findFirstForColumns(
 UInt16 numColumns
)

Parameters
♦ numColumns For composite indexes, the number of columns to use in the lookup. For example, if

you have a three column index, and you want to look up a value that matches based on the first column
only, you should set the value for the first column, and then supply a numColumns value of 1.

Returns
true if successful, false otherwise

Remarks
To specify the value for which to search for, set the column value for each column in the index. The cursor
is left on the first row that exactly matches the index value. On failure the cursor position is after the last
row (isEOF).

Each search must be preceded by a call to the findBegin method.

See also
♦ “ findBegin method” on page 148
♦ “ isEOF method” on page 98

findLast method

Move backward through the table from the end, looking for a row that exactly matches a value or full set of
values in the current index.

Syntax
Boolean findLast()

Returns
true if successful, false otherwise.

Remarks
To specify the value for which to search, set the column value for each column in the index. The cursor is
left on the first row found that exactly matches the index value. On failure the cursor position is before the
first row (isBOF).

Each search must be preceded by a call to the findBegin method.

See also
♦ “ findBegin method” on page 148
♦ “ isBOF method” on page 97

ULTable class

Copyright © 2007, iAnywhere Solutions, Inc. 149

findLastForColumns method

Move backward through the table from the end, looking for a row that exactly matches a value or partial set
of values in the current index.

Syntax
Boolean findLastForColumns(UInt16 numColumns)

Parameters
♦ numColumns For composite indexes, the number of columns to use in the lookup. For example, if

you have a three column index, and you want to look up a value that matches based on the first column
only, you should set the value for the first column, and then supply a numColumns value of 1.

Returns
true if successful, false otherwise.

Remarks
To specify the value for which to search, set the column value for each column in the index. The cursor is
left on the first row found that exactly matches the index value. On failure the cursor position is before the
first row (isBOF).

Each search must be preceded by a call to the findBegin method.

See also
♦ “ findBegin method” on page 148
♦ “ isBOF method” on page 97

findNext method

Continues a findFirst search by moving forward through the table from the current position, looking to see
if the next row exactly matches a value or full set of values in the current index.

Syntax
Boolean findNext()

Returns
true if successful, false otherwise.

Remarks
The cursor is left on the next row if it exactly matches the index value. On failure the cursor position is after
the last row (isEOF).

The findNext method behavior is undefined if the column values being searched for are modified during a
row update.

UltraLite for M-Business Anywhere API Reference

150 Copyright © 2007, iAnywhere Solutions, Inc.

findNextForColumns method

Continues a findFirst search by moving forward through the table from the current position, looking to see
if the next row exactly matches a value or partial set of values in the current index.

Syntax
Boolean findNextForColumns(UInt16 numColumns)

Parameters
♦ numColumns For composite indexes, the number of columns to use in the lookup. For example, if

you have a three column index, and you want to look up a value that matches based on the first column
only, you should set the value for the first column, and then supply a numColumns value of 1.

Returns
true if successful, false otherwise.

Remarks
The cursor is left on the next row if it exactly matches the index value. On failure the cursor position is after
the last row (isEOF).

The findNext method behavior is undefined if the column values being searched for are modified during a
row update.

findPrevious method

Continues a findLast search by moving backward through the table from the current position, looking to see
if the previous row exactly matches a value or full set of values in the current index.

Syntax
Boolean findPrevious()

Returns
true if successful, false otherwise.

Remarks
The cursor is left on the previous row if it exactly matches the index value. On failure the cursor position is
before the first row (isBOF).

The findPrevious method behavior is undefined if the column values being searched for are modified during
a row update.

ULTable class

Copyright © 2007, iAnywhere Solutions, Inc. 151

findPreviousForColumns method

Continues a findLast search by moving backward through the table from the current position, looking to see
if the previous row exactly matches a value or partial set of values in the current index.

Syntax
Boolean findPreviousForColumns(
 UInt16 numColumns
)

Parameters
♦ numColumns For composite indexes, the number of columns to use in the lookup. For example, if

you have a three column index, and you want to look up a value that matches based on the first column
only, you should set the value for the first column, and then supply a numColumns value of 1.

Returns
true if successful, false otherwise.

Remarks
The cursor is left on the previous row if it exactly matches the index value. On failure the cursor position is
before the first row (isBOF).

The findPrevious method behavior is undefined if the column values being searched for are modified during
a row update.

getBoolean method

Returns the value for the specified column as a Boolean.

Syntax
Boolean getBoolean(UInt16 index)

Parameters
♦ index The ID number of the column. The first column in the result set has an ID of one.

getBytes method

Returns the value for the specified column as an array of bytes.

Syntax
Array getBytes(UInt16 index)

Parameters
♦ index The ID number of the column. The first column in the result set has an ID of one.

UltraLite for M-Business Anywhere API Reference

152 Copyright © 2007, iAnywhere Solutions, Inc.

Remarks
Only valid for columns of type SQLType.BINARY or SQLType.LONGBINARY.

getBytesSection method

Copies a subset of the contents of the specified SQLType.LONGBINARY column, beginning at the specified
offset, to the specified offset of the destination byte array.

Syntax
UInt32 getBytesSection(
 UInt16 index
 UInt32 srcOffset,
 Array dst,
 UInt32 dstOffset,
 UInt32 count
)

Parameters
index The 1-based ordinal of the column containing the binary data.

srcOffset The start position in the column value. Zero is the beginning of the value.

dst The destination array.

dstOffset The start position in the destination array.

count The number of bytes to be copied

Returns
The number of bytes read.

Remarks
The bytes at position srcOffset (starting from 0) through srcOffset+count-1 of the source column are copied
into positions dstOffset through dstOffset+count-1, respectively, of the destination array. If the end of the
value is encountered before count bytes are copied, the remainder of the destination array is left unchanged.

If any of the following is true, an Error is thrown, Connection.sqlCode set to
SQLError.SQLE_INVALID_PARAMETER and the destination is not modified:

♦ The dst argument is null
♦ The srcOffset argument is negative
♦ The dstOffset argument is negative
♦ The count argument is negative
♦ dstOffset + count is greater than dst.length, the length of the destination array.

getDate method

Returns the value as a Date.

ULTable class

Copyright © 2007, iAnywhere Solutions, Inc. 153

Syntax
Date getDate(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

getDouble method

Returns the value as a Double.

Syntax
Double getDouble(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

getFloat method

Returns the value for the specified column.

Syntax
Float getFloat(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

getInt method

Returns the value for the specified column.

Syntax
Int32 getInt(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

getLong method

Returns the value for the specified column.

Syntax
Int64 getLong(UInt16 index)

UltraLite for M-Business Anywhere API Reference

154 Copyright © 2007, iAnywhere Solutions, Inc.

Parameters
index The 1-based ordinal in the result set to get.

getRowCount method

Returns the number of rows in the result set.

Syntax
UInt32 getRowCount()

getShort method

Returns the value as an Int16.

Syntax
Int16 getShort(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

getString method

Returns the value as a String.

Syntax
String getString(UInt32 index)

Parameters
index The 1-based ordinal in the result set to get.

getStringChunk method

Copies a subset of the value for the specified SQLType.LONGVARCHAR column, starting at the specified
offset, to the String object.

Syntax
String getStringChunk(
 UInt16 index,
 UInt32 srcOffset,
 UInt32 count
)

Parameters
♦ index The 1-based ordinal in the result set to get

ULTable class

Copyright © 2007, iAnywhere Solutions, Inc. 155

♦ srcOffset The o-based start position in the string value.

♦ count The number of characters to be copied.

Returns
The string, with specified characters copied.

getTime method

Returns the value as a Date.

Syntax
Date getTime(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

getTimestamp method

Returns the value as a Date.

Syntax
Date getTimestamp(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

getULong method

Returns the value as an unsigned 64-bit integer.

Syntax
UInt64 getULong(UInt16 index)

Parameters
index The 1-based ordinal in the result set to get.

getUUID method

Returns the value of the column as a UUID.

Syntax
UUID getUUID(UInt16 index)

UltraLite for M-Business Anywhere API Reference

156 Copyright © 2007, iAnywhere Solutions, Inc.

Parameters
index The 1-based ordinal in the result set to get.

Remarks
The column must be of type SQLType.BINARY with length 16.

insert method

Inserts a new row with the current column values (specified using the set methods).

Syntax
insert()

Remarks
Each insert must be preceded by a call to insertBegin.

insertBegin method

Prepares to insert a new row into this table by setting all current column values to their default values.

Syntax
insertBegin()

Remarks
Call the appropriate setType method(s) to specify the non-default values that are to be inserted.

The row is not actually inserted and the data in the row is not actually changed until you execute the insert
method, and that change is not permanent until it is committed.

lookupBackward method

Move backward through the table from the end, looking for a row that matches or is less than a value or full
set of values in the current index.

Syntax
Boolean lookupBackward()

Returns
true if successful, false otherwise.

Remarks
To specify the value for which to search, set the column value for each column in the index. The cursor is
left on the first row that matches or is less than the index value. On failure (no rows less than the value being
looked for) the cursor position is before the first row (isBOF).

ULTable class

Copyright © 2007, iAnywhere Solutions, Inc. 157

Each search must be preceded by a call to the lookupBegin method.

lookupBackwardForColumns method

Move backward through the table from the beginning, looking for a row that matches or is less than a value
or partial set of values in the current index.

Syntax
Boolean lookupBackwardForColumns(UInt16 numColumns)

Parameters
♦ numColumns For composite indexes, the number of columns to use in the lookup. For example, if

you have a three column index, and you want to look up a value that matches based on the first column
only, you should set the value for the first column, and then supply a numColumns value of 1.

Returns
true if successful, false otherwise.

Remarks
To specify the value for which to search, set the column value for each column in the index. The cursor is
left on the first row that matches or is less than the index value. On failure (no rows less than the value being
looked for) the cursor position is before the first row (isBOF).

Each search must be preceded by a call to the lookupBegin method.

lookupBegin method

Prepares to perform a new lookup on this table.

Syntax
lookupBegin()

Remarks
The value(s) for which to search are specified by calling the appropriate setType method(s) on the columns
in the index with which this table was opened.

lookupForward method

Move forward through the table from the beginning, looking for a row that matches or is greater than a value
or full set of values in the current index.

Syntax
Boolean lookupForward()

UltraLite for M-Business Anywhere API Reference

158 Copyright © 2007, iAnywhere Solutions, Inc.

Returns
true if successful, false otherwise.

Remarks
To specify the value for which to search, set the column value for each column in the index. The cursor is
left on the first row that matches or is greater than the index value. On failure (no rows greater than the value
being looked for) the cursor position is after the last row (isEOF).

Each search must be preceded by a call to the lookupBegin method.

lookupForwardForColumns method

Move forward through the table from the beginning, looking for a row that matches or is greater than a value
or partial set of values in the current index.

Syntax
Boolean lookupForwardForColumns(UInt16 numColumns)

Parameters
♦ numColumns For composite indexes, the number of columns to use in the lookup. For example, if

you have a three column index, and you want to look up a value that matches based on the first column
only, you should set the value for the first column, and then supply a numColumns value of 1.

Returns
true if successful, false otherwise.

Remarks
To specify the value for which to search, set the column value for each column in the index. The cursor is
left on the first row that matches or is greater than the index value. On failure (no rows greater than the value
being looked for) the cursor position is after the last row (isEOF).

Each search must be preceded by a call to the lookupBegin method.

isBOF method

Returns true if successful, false otherwise.

Syntax
Boolean isBOF()

isEOF method

Returns true if successful, false otherwise.

ULTable class

Copyright © 2007, iAnywhere Solutions, Inc. 159

Syntax
Boolean isEOF()

isNull method

Returns true if the value is null, false otherwise.

Syntax
Boolean isNull(Uint16 index)

Parameters
index The column index value.

isOpen method

Returns true if the ResultSet is open, false otherwise.

Syntax
Boolean isOpen()

moveAfterLast method

Moves to a position after the last row of the ULResultSet.

Syntax
Boolean moveAfterLast()

Returns
true if successful.

false if unsuccessful. The method fails, for example, if there are no rows.

moveBeforeFirst method

Moves to a position before the first row.

Syntax
Boolean moveBeforeFirst()

Returns
true if successful.

false if unsuccessful. The method fails, for example, if there are no rows.

UltraLite for M-Business Anywhere API Reference

160 Copyright © 2007, iAnywhere Solutions, Inc.

moveFirst method

Moves to the first row.

Syntax
Boolean moveFirst()

Returns
True if successful.

False if unsuccessful. The method fails, for example, if there are no rows.

moveLast method

Moves to the last row.

Syntax
Boolean moveLast()

Returns
True if successful.

False if unsuccessful. The method fails, for example, if there are no rows.

moveNext method

Moves to the next row.

Syntax
Boolean moveNext()

Returns
True if successful.

False if unsuccessful. The method fails, for example, if there are no rows.

movePrevious method

Moves to the previous row.

Syntax
Boolean movePrevious()

Returns
true if successful.

ULTable class

Copyright © 2007, iAnywhere Solutions, Inc. 161

false if unsuccessful. The method fails, for example, if there are no rows.

moveRelative method

Moves a certain number of rows relative to the current row.

Syntax
Boolean moveRelative(Int32 index)

Parameters
index The number of rows to move. The value can be positive, negative, or zero.

Returns
true if successful.

false if unsuccessful. The method fails, for example, if there are no rows.

Remarks
Relative to the current position of the cursor in the result set, positive index values move forward in the result
set, negative index values move backward in the result set and zero does not move the cursor.

open method

Opens this table for data access using its primary key.

Syntax
open()

openWithIndex method

Opens this table for data access using the specified index.

Syntax
openWithIndex(String index)

Parameters
♦ index The name of the index with which to open the table. If null, the primary key is used.

setBoolean method

Sets the value for the specified column using a boolean.

Syntax
setBoolean(short columnID, boolean value)

UltraLite for M-Business Anywhere API Reference

162 Copyright © 2007, iAnywhere Solutions, Inc.

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
The data in the row is not actually changed until you execute an insert or update, and that change is not
permanent until it is committed.

Example
The following statement sets the value for the first column to false:

t.setBoolean(1, false);

setBytes method

Sets the value for the specified column using an array of bytes.

Syntax
setBytes(UInt16 columnID, Array value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
Suitable for columns of type SQLType.BINARY or SQLType.LONGBINARY only. The data in the row is
not actually changed until you execute an insert or update, and that change is not permanent until it is
committed.

Example
The following statements set the value of the first column:

var blob = new Array(3);
blob[0] = 78;
blob[1] = 0'
blob[2] = 68;
t.setBytes(1, blob);

setDate method

Sets the value for the specified column using a Date.

Syntax
setDate(UInt16 columnID, Date value)

ULTable class

Copyright © 2007, iAnywhere Solutions, Inc. 163

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
The data in the row is not actually changed until you execute an insert or update, and that change is not
permanent until it is committed.

Example
The following statement sets the value of the first column to 2004/09/27:

t.setDate(
 1, new Date(2002,9,27,0,0,0,0)
);

setDouble method

Sets the value for the specified column using a double.

Syntax
setDouble(UInt16 columnID, Double value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
The data in the row is not actually changed until you execute an insert or update, and that change is not
permanent until it is committed.

Example
The following example sets the value of the first column:

t.setDouble(1, Number.MAX_VALUE);

setFloat method

Sets the value for the specified column using a Float.

Syntax
setFloat(UInt16 columnID, Float value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

UltraLite for M-Business Anywhere API Reference

164 Copyright © 2007, iAnywhere Solutions, Inc.

♦ value The new value for the column.

Remarks
The data in the row is not actually changed until you execute an insert or update, and that change is not
permanent until it is committed.

Example
The following statement sets the value of the first column:

t.setFloat(
 1,
 (2 - Math.pow(2,-23)) * Math.pow(2,127)
);

setInt method

Sets the value for the specified column using an Integer.

Syntax
setInt(UInt16 columnID, Int32 value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
The data in the row is not actually changed until you execute an insert or update, and that change is not
permanent until it is committed.

Example
The following statement sets the value of the first column to 2147483647:

t.setInt(1, 2147483647);

setLong method

Sets the value for the specified column using an Int64.

Syntax
setLong(UInt16 columnID, Int64 value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

ULTable class

Copyright © 2007, iAnywhere Solutions, Inc. 165

Remarks
The data in the row is not actually changed until you execute an insert or update, and that change is not
permanent until it is committed.

Example
The following statement sets the value of the first column to 9223372036854770000:

t.setLong(1, 9223372036854770000);

setNull method

Sets a column to the SQL NULL.

Syntax
setNull(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Remarks
The data is not actually changed until you execute an insert or update, and that change is not permanent until
it is committed.

setShort method

Sets the value for the specified column using a UInt16.

Syntax
setShort(UInt16 columnID, Int16 value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
The data in the row is not actually changed until you execute an insert or update, and that change is not
permanent until it is committed.

Example
The following statement sets the value of the first column to 32767:

t.setShort(1, 32767);

UltraLite for M-Business Anywhere API Reference

166 Copyright © 2007, iAnywhere Solutions, Inc.

setString method

Sets the value for the specified column using a String.

Syntax
setString(UInt16 columnID, String value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
The data in the row is not actually changed until you execute an insert or update, and that change is not
permanent until it is committed.

Example
The following statement sets the value of the first column to abc.

t.setString(1, "abc");

setTime method

Sets the value for the specified column using a Date.

Syntax
setTime(UInt16 columnID, Date value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
The data in the row is not actually changed until you execute an insert or update, and that change is not
permanent until it is committed.

Example
The following statement sets the value for the first column to 18:02:13:0000:

t.setTime(
 1, new Date(1966,4,1,18,2,13,0)
);

setTimestamp method

Sets the value for the specified column using a Date.

ULTable class

Copyright © 2007, iAnywhere Solutions, Inc. 167

Syntax
setTimestamp(UInt16 columnID, Date value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
The data in the row is not actually changed until you execute an insert or update, and that change is not
permanent until it is committed.

Example
The following statement sets the value of the first column to 1966/04/01 18:02:13:0000:

t.setTimestamp(
 1, new Date(1966,4,1,18,2,13,0)
);

setToDefault method

Sets the value for the specified column to its default value.

Syntax
setToDefault(UInt16 columnID)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

Remarks
The data in the row is not actually changed until you execute an insert or update, and that change is not
permanent until it is committed.

setULong method

Sets the value for the specified column using a 64-bit integer treated as an unsigned value.

Syntax
setULong(UInt16 columnID, UInt64 value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

UltraLite for M-Business Anywhere API Reference

168 Copyright © 2007, iAnywhere Solutions, Inc.

Remarks
The data in the row is not actually changed until you execute an insert or update, and that change is not
permanent until it is committed.

Example
The following statement sets the value for the first column:

t.setULong(
 1, 9223372036854770000 * 4096
);

setUUID method

Sets the value for the specified column using a UUID.

Syntax
setUUID(UInt16 columnID, UUID value)

Parameters
♦ columnID The ID number of the column. The first column in the table has an ID value of one.

♦ value The new value for the column.

Remarks
The data in the row is not actually changed until you execute an insert or update, and that change is not
permanent until it is committed. Only valid for columns of type SQLType.BINARY and length 16.

Example
The following statement sets a new UUID value for the first column in the table:

t.setUUID(1, conn.getNewUUID(););

See also
♦ “Using UUIDs” [MobiLink - Server Administration]

truncate method

Deletes all rows in the table while temporarily activating stop synchronization delete.

Syntax
truncate()

update method

Updates the current row with the current column values (specified using the set methods).

ULTable class

Copyright © 2007, iAnywhere Solutions, Inc. 169

Syntax
update()

Remarks
Each update must be preceded by a call to updateBegin.

updateBegin method

Prepares to update the current row in this table.

Syntax
updateBegin()

Remarks
Column values are modified by calling the appropriate setType method or methods.

The data in the row is not actually changed until you execute the update, and that change is not permanent
until it is committed.

Modifying columns in the index used to open the table will affect any active searches in unpredictable ways.
Columns in the primary key of the table can not be updated.

UltraLite for M-Business Anywhere API Reference

170 Copyright © 2007, iAnywhere Solutions, Inc.

UUID class
Represents a UUID. A UUID (Universally Unique Identifer) or GUID (Globally Unique Identifier) is a
generated value guaranteed to be unique across all computers and databases. UUIDs are stored as
SQLType.BINARY(16) values in UltraLite databases and can be used to uniquely identify rows. The UUID
class stores immutable UUIDs.

A UUID is associated with the Connection that created it and can no longer be converted to a string after
the connection is closed.

equals method

Returns true if this UUID is the same as the other argument, false otherwise.

Syntax
Boolean equals(UUID other)

Parameters
♦ other UUID with which to compare.

toString method

Returns a string representation of this UUID.

Syntax
String toString()

Remarks
The string is of the format XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX, where X is a
hexadecimal digit or null if the Connection associated with the UUID is closed.

UUID class

Copyright © 2007, iAnywhere Solutions, Inc. 171

172

Index
A
accessing schema information

UltraLite for M-Business Anywhere, 26
AppendBytes method [UL M-Business Anywhere]

ULTable syntax, 146
appendBytes method [UL M-Business Anywhere]

ResultSet syntax, 91
AppendBytesParameter method [UL M-Business
Anywhere]

PreparedStatement syntax, 81
AppendStringChunk method [UL M-Business
Anywhere]

ULTable syntax, 147
appendStringChunk method [UL M-Business
Anywhere]

ResultSet syntax, 92
AppendStringChunkParameter method [UL M-
Business Anywhere]

PreparedStatement syntax, 82
architecture

UltraLite for M-Business Anywhere, 3
AuthStatusCode class [UL M-Business Anywhere]

properties, 57
syntax, 57

AutoCommit mode
UltraLite for M-Business Anywhere, 25

AvantGo (see M-Business Anywhere)
AvantGo M-Business Server (see M-Business
Anywhere)
AvGo

UltraLite for M-Business Anywhere creator ID, 9

B
BLOBs

GetByteChunk method in UltraLite for M-Business
Anywhere, 25
UltraLite for M-Business Anywhere, 25

bugs
providing feedback, xiii

C
casting

data types in UltraLite for M-Business Anywhere,
22

changeEncryptionKey method [UL M-Business
Anywhere]

Connection syntax, 59
close method [UL M-Business Anywhere]

Connection syntax, 59
PreparedStatement syntax, 82
ResultSet syntax, 92

columns
accessing schema information in UltraLite for M-
Business Anywhere, 26

Columns collection
UltraLite for M-Business Anywhere, 20

Commit method
UltraLite for M-Business Anywhere, 25

commit method [UL M-Business Anywhere]
Connection syntax, 60

commits
UltraLite for M-Business Anywhere, 25

Connection class [UL M-Business Anywhere]
properties, 58
syntax, 58

ConnectionParms class [UL M-Business Anywhere]
properties, 66
syntax, 66

conventions
documentation, viii
file names in documentation, x

countUploadRow method [UL M-Business Anywhere]
Connection syntax, 60

createDatabase method [UL M-Business Anywhere]
DatabaseManager syntax, 70

CreationParms class [UL M-Business Anywhere]
properties, 68
syntax, 68

creator IDs
UltraLite for M-Business Anywhere, 9

D
data manipulation

SQL in UltraLite for M-Business Anywhere, 16
table API in UltraLite for M-Business Anywhere,
20
UltraLite for M-Business Anywhere, 16

data types

Copyright © 2007, iAnywhere Solutions, Inc. 173

accessing in UltraLite for M-Business Anywhere,
21
casting in UltraLite for M-Business Anywhere, 22
JavaScript, 56
UltraLite for M-Business Anywhere, 56

database schemas
accessing in UltraLite for M-Business Anywhere,
26

DatabaseManager class [UL M-Business Anywhere]
properties, 70
syntax, 70

DatabaseSchema class
UltraLite for M-Business Anywhere development,
26

DatabaseSchema class [UL M-Business Anywhere]
constants, 73
syntax, 73

deleteAllRows method [UL M-Business Anywhere]
ULTable syntax, 147

deleteRow method [UL M-Business Anywhere]
ResultSet syntax, 92
ULTable syntax, 147

deleting
rows in UltraLite for M-Business Anywhere, 22

deploying
UltraLite for M-Business Anywhere, 32
UltraLite for M-Business Anywhere applications to
Palm OS, 32
UltraLite for M-Business Anywhere to Windows
CE, 32
UltraLite for M-Business Anywhere to Windows
desktops, 32

developer community
newsgroups, xiii

development platforms
UltraLite for M-Business Anywhere, 2

DML operations
UltraLite for M-Business Anywhere, 16

documentation
conventions, viii
SQL Anywhere, vi

dropDatabase method [UL M-Business Anywhere]
DatabaseManager syntax, 71

E
encryption

UltraLite for M-Business Anywhere development,
15

equals method [UL M-Business Anywhere]
Class UUID syntax, 171

error handling
UltraLite for M-Business Anywhere, 27

errors
handling in UltraLite for M-Business Anywhere,
27

executeQuery method [UL M-Business Anywhere]
PreparedStatement syntax, 82

executeStatement method [UL M-Business Anywhere]
PreparedStatement syntax, 83

F
features

for M-Business Anywhere, 2
feedback

documentation, xiii
providing, xiii

find methods
UltraLite for M-Business Anywhere, 22

find mode
UltraLite for M-Business Anywhere, 23

findBegin method [UL M-Business Anywhere]
ULTable syntax, 148

findFirst method [UL M-Business Anywhere]
ULTable syntax, 148

findFirstForColumns method [UL M-Business
Anywhere]

ULTable syntax, 148
finding out more and providing feed back

technical support, xiii
findLast method [UL M-Business Anywhere]

ULTable syntax, 149
findLastForColumns method [UL M-Business
Anywhere]

ULTable syntax, 150
findNext method [UL M-Business Anywhere]

ULTable syntax, 150
findNextForColumns method [UL M-Business
Anywhere]

ULTable syntax, 151
findPrevious method [UL M-Business Anywhere]

ULTable syntax, 151
findPreviousForColumns method [UL M-Business
Anywhere]

Index

174 Copyright © 2007, iAnywhere Solutions, Inc.

ULTable syntax, 152
firewalls

M-Business Anywhere synchronization, 31

G
getAuthenticationParms method [UL M-Business
Anywhere]

SyncParms syntax, 121
getAuthStatus method [UL M-Business Anywhere]

SyncResult syntax, 132
getBoolean method [UL M-Business Anywhere]

ResultSet syntax, 93
ULTable syntax, 152

GetByteChunk method
UltraLite for M-Business Anywhere, 25

getBytes method [UL M-Business Anywhere]
ResultSet syntax, 93
ULTable syntax, 152

getBytesSection method [UL M-Business Anywhere]
ResultSet syntax, 93
ULTable syntax, 153

getCheckpointStore method [UL M-Business
Anywhere]

SyncParms syntax, 121
getCollationName method [UL M-Business Anywhere]

DatabaseSchema syntax, 73
getColumnCount method [UL M-Business Anywhere]

IndexSchema syntax, 78
ResultSetSchema syntax, 107
TableSchema syntax, 135

getColumnDefaultValue method [UL M-Business
Anywhere]

TableSchema syntax, 135
getColumnDefaultValueByColID method [UL M-
Business Anywhere]

TableSchema syntax, 135
getColumnID method [UL M-Business Anywhere]

ResultSetSchema syntax, 107
TableSchema syntax, 135

getColumnName method [UL M-Business Anywhere]
IndexSchema syntax, 78
ResultSetSchema syntax, 107
TableSchema syntax, 136

getColumnPartitionSize method [UL M-Business
Anywhere]

TableSchema syntax, 136

getColumnPartitionSizeByColID method [UL M-
Business Anywhere]

TableSchema syntax, 136
getColumnPrecision method [UL M-Business
Anywhere]

ResultSetSchema syntax, 108
TableSchema syntax, 136

getColumnPrecisionByColID method [UL M-Business
Anywhere]

ResultSetSchema syntax, 108
TableSchema syntax, 137

getColumnScale method [UL M-Business Anywhere]
ResultSetSchema syntax, 108
TableSchema syntax, 137

getColumnScaleByColID method [UL M-Business
Anywhere]

ResultSetSchema syntax, 109
TableSchema syntax, 137

getColumnSize method [UL M-Business Anywhere]
ResultSetSchema syntax, 109
TableSchema syntax, 138

getColumnSizeByColID method [UL M-Business
Anywhere]

ResultSetSchema syntax, 109
TableSchema syntax, 138

getColumnSQLType method [UL M-Business
Anywhere]

ResultSetSchema syntax, 109
TableSchema syntax, 138

getColumnSQLTypeByColID method [UL M-
Business Anywhere]

ResultSetSchema syntax, 110
TableSchema syntax, 138

getDatabaseID method [UL M-Business Anywhere]
Connection syntax, 60

getDatabaseOptions method [UL M-Business
Anywhere]

DatabaseManager syntax, 72
getDatabaseProperty method [UL M-Business
Anywhere]

DatabaseSchema syntax, 73
getDate method [UL M-Business Anywhere]

ResultSet syntax, 94
ULTable syntax, 153

getDateFormat method [UL M-Business Anywhere]
DatabaseSchema syntax, 74

getDateOrder method [UL M-Business Anywhere]
DatabaseSchema syntax, 74

Copyright © 2007, iAnywhere Solutions, Inc. 175

getDisableConcurrency method [UL M-Business
Anywhere]

SyncParms syntax, 121
getDouble method [UL M-Business Anywhere]

ResultSet syntax, 94
ULTable syntax, 154

getDownloadOnly method [UL M-Business
Anywhere]

SyncParms syntax, 121
getFloat method [UL M-Business Anywhere]

ResultSet syntax, 95
ULTable syntax, 154

getGlobalAutoIncrementUsage method [UL M-
Business Anywhere]

Connection syntax, 60
getIgnoredRows method [UL M-Business Anywhere]

SyncResult syntax, 132
getIndex method [UL M-Business Anywhere]

TableSchema syntax, 139
getIndexCount method [UL M-Business Anywhere]

TableSchema syntax, 139
getIndexName method [UL M-Business Anywhere]

TableSchema syntax, 139
getInt method [UL M-Business Anywhere]

ResultSet syntax, 95
ULTable syntax, 154

getKeepPartialDownload method [UL M-Business
Anywhere]

SyncParms syntax, 122
getLastDownloadTime method [UL M-Business
Anywhere]

Connection syntax, 61
getLastIdentity method [UL M-Business Anywhere]

Connection syntax, 61
getLong method [UL M-Business Anywhere]

ResultSet syntax, 95
ULTable syntax, 154

getMask method [UL M-Business Anywhere]
PublicationSchema syntax, 90

getName method [UL M-Business Anywhere]
IndexSchema syntax, 78
PublicationSchema syntax, 90
TableSchema syntax, 140

getNearestCentury method [UL M-Business
Anywhere]

DatabaseSchema syntax, 74
getNewPassword method [UL M-Business Anywhere]

SyncParms syntax, 122

getNewUUID method [UL M-Business Anywhere]
Connection syntax, 61

getOptimalIndex method [UL M-Business Anywhere]
TableSchema syntax, 140

getPartialDownloadRetained method [UL M-Business
Anywhere]

SyncParms syntax, 122
SyncResult syntax, 132

getPassword method [UL M-Business Anywhere]
SyncParms syntax, 122

getPingOnly method [UL M-Business Anywhere]
SyncParms syntax, 122

getPlan method [UL M-Business Anywhere]
PreparedStatement syntax, 83

getPrecision method [UL M-Business Anywhere]
DatabaseSchema syntax, 74

getPrimaryKey method [UL M-Business Anywhere]
TableSchema syntax, 140

getPublicationCount method [UL M-Business
Anywhere]

DatabaseSchema syntax, 74
getPublicationMask method [UL M-Business
Anywhere]

SyncParms syntax, 122
getPublicationName method [UL M-Business
Anywhere]

DatabaseSchema syntax, 75
getPublicationSchema method [UL M-Business
Anywhere]

DatabaseSchema syntax, 75
getReferencedIndexName method [UL M-Business
Anywhere]

IndexSchema syntax, 78
getReferencedTableName method [UL M-Business
Anywhere]

IndexSchema syntax, 79
getResultSetSchema method [UL M-Business
Anywhere]

PreparedStatement syntax, 83
getResumePartialDownload method [UL M-Business
Anywhere]

SyncParms syntax, 123
getRowCount method [UL M-Business Anywhere]

ResultSet syntax, 95
ULTable syntax, 155

getSendColumnNames method [UL M-Business
Anywhere]

SyncParms syntax, 123

Index

176 Copyright © 2007, iAnywhere Solutions, Inc.

getSendDownloadAck method [UL M-Business
Anywhere]

SyncParms syntax, 123
getShort method [UL M-Business Anywhere]

ResultSet syntax, 96
ULTable syntax, 155

getSignature method [UL M-Business Anywhere]
DatabaseSchema syntax, 75

getStream method [UL M-Business Anywhere]
SyncParms syntax, 123

getStreamErrorCode method [UL M-Business
Anywhere]

SyncResult syntax, 132
getStreamErrorContext method [UL M-Business
Anywhere]

SyncResult syntax, 133
getStreamErrorID method [UL M-Business Anywhere]

SyncResult syntax, 133
getStreamErrorSystem method [UL M-Business
Anywhere]

SyncResult syntax, 134
getStreamParms method [UL M-Business Anywhere]

SyncParms syntax, 123
getString method [UL M-Business Anywhere]

ResultSet syntax, 96
ULTable syntax, 155

getStringChunk method [UL M-Business Anywhere]
ResultSet syntax, 96
ULTable syntax, 155

getTable method [UL M-Business Anywhere]
Connection syntax, 62

getTableCount method [UL M-Business Anywhere]
DatabaseSchema syntax, 75

getTableCountInPublications method [UL M-Business
Anywhere]

DatabaseSchema syntax, 76
getTableName method [UL M-Business Anywhere]

DatabaseSchema syntax, 76
getTime method [UL M-Business Anywhere]

ResultSet syntax, 96
ULTable syntax, 156

getTimeFormat method [UL M-Business Anywhere]
DatabaseSchema syntax, 76

getTimestamp method [UL M-Business Anywhere]
ResultSet syntax, 97
SyncResult syntax, 134
ULTable syntax, 156

getTimestampFormat method [UL M-Business
Anywhere]

DatabaseSchema syntax, 77
getting help

technical support, xiii
getULong method [UL M-Business Anywhere]

ResultSet syntax, 97
ULTable syntax, 156

getUploadOK method [UL M-Business Anywhere]
SyncResult syntax, 134

getUploadOnly method [UL M-Business Anywhere]
SyncParms syntax, 124

getUploadUnchangedRows method [UL M-Business
Anywhere]

TableSchema syntax, 140
getUserName method [UL M-Business Anywhere]

SyncParms syntax, 124
getUUID method [UL M-Business Anywhere]

ResultSet syntax, 97
ULTable syntax, 156

getVersion method [UL M-Business Anywhere]
SyncParms syntax, 124

grantConnectTo method
UltraLite for M-Business Anywhere, 28

grantConnectTo method [UL M-Business Anywhere]
Connection syntax, 62

H
hasResultSet method [UL M-Business Anywhere]

PreparedStatement syntax, 83
help

technical support, xiii
HotSync

UltraLite for M-Business Anywhere, 9
HotSync synchronization

UltraLite for M-Business Anywhere
synchronization parameters, 64

I
iAnywhere developer community

newsgroups, xiii
icons

used in manuals, xi
IndexSchema class [UL M-Business Anywhere]

syntax, 78
insert method [UL M-Business Anywhere]

ULTable syntax, 157

Copyright © 2007, iAnywhere Solutions, Inc. 177

insert mode
UltraLite for M-Business Anywhere, 23

insertBegin method [UL M-Business Anywhere]
ULTable syntax, 157

inserting
rows in UltraLite for M-Business Anywhere, 22

install-dir
documentation usage, x

isBOF method [UL M-Business Anywhere]
ResultSet syntax, 97
ULTable syntax, 159

isCaseSensitive method [UL M-Business Anywhere]
DatabaseSchema syntax, 77

isColumnAutoIncrement method [UL M-Business
Anywhere]

TableSchema syntax, 140
isColumnAutoIncrementByColID method [UL M-
Business Anywhere]

TableSchema syntax, 141
isColumnCurrentDate method [UL M-Business
Anywhere]

TableSchema syntax, 141
isColumnCurrentDateByColID method [UL M-
Business Anywhere]

TableSchema syntax, 141
isColumnCurrentTime method [UL M-Business
Anywhere]

TableSchema syntax, 142
isColumnCurrentTimeByColID method [UL M-
Business Anywhere]

TableSchema syntax, 142
isColumnCurrentTimestamp method [UL M-Business
Anywhere]

TableSchema syntax, 142
isColumnCurrentTimestampByColID [UL M-Business
Anywhere] method

TableSchema syntax, 142
isColumnDescending method [UL M-Business
Anywhere]

IndexSchema syntax, 79
isColumnGlobalAutoIncrement method [UL M-
Business Anywhere] method

TableSchema syntax, 143
isColumnGlobalAutoincrementByColID method [UL
M-Business Anywhere] method

TableSchema syntax, 143
isColumnNewUUID method [UL M-Business
Anywhere] method

TableSchema syntax, 143
isColumnNewUUIDByColID method [UL M-Business
Anywhere]

TableSchema syntax, 144
isColumnNullable method [UL M-Business Anywhere]

TableSchema syntax, 144
isColumnNullableByColID method [UL M-Business
Anywhere]

TableSchema syntax, 144
isEOF method [UL M-Business Anywhere]

ResultSet syntax, 98
ULTable syntax, 159

isForeignKey method [UL M-Business Anywhere]
IndexSchema syntax, 79

isForeignKeyCheckOnCommit method [UL M-
Business Anywhere]

IndexSchema syntax, 79
isForeignKeyNullable method [UL M-Business
Anywhere]

IndexSchema syntax, 79
isInPublication method [UL M-Business Anywhere]

TableSchema syntax, 144
isNeverSynchronized method [UL M-Business
Anywhere]

TableSchema syntax, 145
isNull method [UL M-Business Anywhere]

ResultSet syntax, 98
ULTable syntax, 160

isOpen method [UL M-Business Anywhere]
Connection syntax, 62
DatabaseSchema syntax, 77
PreparedStatement syntax, 84
ResultSet syntax, 98
ResultSetSchema syntax, 110
ULTable syntax, 160

isPrimaryKey method [UL M-Business Anywhere]
IndexSchema syntax, 80

isUniqueIndex method [UL M-Business Anywhere]
IndexSchema syntax, 80

isUniqueKey method [UL M-Business Anywhere]
IndexSchema syntax, 80

J
JavaScript

maintaining application state, 11
JavaScript data types

UltraLite for M-Business Anywhere, 56

Index

178 Copyright © 2007, iAnywhere Solutions, Inc.

JavaScript programming language
UltraLite for M-Business Anywhere, 55

L
lookup methods

UltraLite for M-Business Anywhere, 22
lookup mode

UltraLite for M-Business Anywhere, 23
lookupBackward method [UL M-Business Anywhere]

ULTable syntax, 157
lookupBackwardForColumns method [UL M-Business
Anywhere]

ULTable syntax, 158
lookupBegin method [UL M-Business Anywhere]

ULTable syntax, 158
lookupForward method [UL M-Business Anywhere]

ULTable syntax, 158
lookupForwardForColumns method [UL M-Business
Anywhere]

ULTable syntax, 159

M
M-Business Anywhere, v

(see also UltraLite for M-Business Anywhere)
modes

UltraLite for M-Business Anywhere, 23
moveAfterLast method [UL M-Business Anywhere]

ResultSet syntax, 98
ULTable syntax, 160

moveBeforeFirst method [UL M-Business Anywhere]
ResultSet syntax, 98
ULTable syntax, 160

MoveFirst method
UltraLite for M-Business Anywhere, 20
UltraLite for M-Business Anywhere development,
17

moveFirst method [UL M-Business Anywhere]
ResultSet syntax, 99
ULTable syntax, 161

moveLast method [UL M-Business Anywhere]
ResultSet syntax, 99
ULTable syntax, 161

MoveNext method
UltraLite for M-Business Anywhere, 20
UltraLite for M-Business Anywhere development,
17

moveNext method [UL M-Business Anywhere]

ResultSet syntax, 99
ULTable syntax, 161

movePrevious method [UL M-Business Anywhere]
ResultSet syntax, 99
ULTable syntax, 161

moveRelative method [UL M-Business Anywhere]
ResultSet syntax, 100
ULTable syntax, 162

N
names

UltraLite for M-Business Anywhere persistence,
12

network protocol options
UltraLite for M-Business Anywhere API, 130

newsgroups
technical support, xiii

O
obfuscation

UltraLite for M-Business Anywhere, 15
object hierarchy

UltraLite for M-Business Anywhere, 3
online books

PDF, vi
Open method

ULTable object in UltraLite for M-Business
Anywhere, 20

open method [UL M-Business Anywhere]
ULTable syntax, 162

OpenByIndex method
ULTable object in UltraLite for M-Business
Anywhere, 17

openConnection method [UL M-Business Anywhere]
DatabaseManager syntax, 72

openWithIndex method [UL M-Business Anywhere]
ULTable syntax, 162

P
passwords

authentication in UltraLite for M-Business
Anywhere, 28

PDF
documentation, vi

performance
UltraLite closing objects, 13

Copyright © 2007, iAnywhere Solutions, Inc. 179

UltraLite putting common code in JavaScript file,
13

persistent name
UltraLite for M-Business Anywhere, 12

persistName
UltraLite for M-Business Anywhere argument, 12

platforms
supported in UltraLite for M-Business Anywhere,
2

prepared statements
UltraLite for M-Business Anywhere, 16

PreparedStatement class
UltraLite for M-Business Anywhere usage, 16

PreparedStatement class [UL M-Business Anywhere]
syntax, 81

prepareStatement method [UL M-Business Anywhere]
Connection syntax, 62

publications
accessing schema information in UltraLite for M-
Business Anywhere, 26

PublicationSchema class
UltraLite for M-Business Anywhere development,
26

PublicationSchema class [UL M-Business Anywhere]
syntax, 90

R
Redirector

UltraLite for M-Business Anywhere
synchronization, 31

reOpenConnection method [UL M-Business
Anywhere]

DatabaseManager syntax, 72
resetLastDownloadTime method [UL M-Business
Anywhere]

Connection syntax, 63
ResultSet class [UL M-Business Anywhere]

properties, 91
syntax, 91

ResultSetSchema class [UL M-Business Anywhere]
syntax, 107

revokeConnectFrom method
UltraLite for M-Business Anywhere, 28

revokeConnectFrom method [UL M-Business
Anywhere]

Connection syntax, 63
Rollback method

UltraLite for M-Business Anywhere, 25
rollback method [UL M-Business Anywhere]

Connection syntax, 63
rollbackPartialDownload method [UL M-Business
Anywhere]

Connection syntax, 63
rollbacks

UltraLite for M-Business Anywhere, 25
rows

accessing values in UltraLite for M-Business
Anywhere, 21

S
samples-dir

documentation usage, x
saveSyncParms method [UL M-Business Anywhere]

Connection syntax, 64
schemas

UltraLite for M-Business Anywhere, 26
scope

variables in UltraLite for M-Business Anywhere,
11

scrolling
UltraLite for M-Business Anywhere, 20

security
UltraLite for M-Business Anywhere, 11

SELECT statement
UltraLite for M-Business Anywhere development,
17

setAuthenticationParms method [UL M-Business
Anywhere]

SyncParms syntax, 124
setBoolean method [UL M-Business Anywhere]

ResultSet syntax, 100
ULTable syntax, 162

setBooleanParameter method [UL M-Business
Anywhere]

PreparedStatement syntax, 84
setBytes method [UL M-Business Anywhere]

ResultSet syntax, 100
ULTable syntax, 163

setBytesParameter method [UL M-Business
Anywhere]

PreparedStatement syntax, 84
setCheckpointStore method [UL M-Business
Anywhere]

SyncParms syntax, 124

Index

180 Copyright © 2007, iAnywhere Solutions, Inc.

setDatabaseID method [UL M-Business Anywhere]
Connection syntax, 64

setDate method [UL M-Business Anywhere]
ResultSet syntax, 101
ULTable syntax, 163

setDateParameter method [UL M-Business Anywhere]
PreparedStatement syntax, 85

setDateTime method [UL M-Business Anywhere]
ResultSet syntax, 101

setDisableConcurrency method [UL M-Business
Anywhere]

SyncParms syntax, 125
setDouble method [UL M-Business Anywhere]

ResultSet syntax, 101
ULTable syntax, 164

setDoubleParameter method [UL M-Business
Anywhere]

PreparedStatement syntax, 85
setDownloadOnly method [UL M-Business Anywhere]

SyncParms syntax, 125
setFloat method [UL M-Business Anywhere]

ResultSet syntax, 102
ULTable syntax, 164

setFloatParameter method [UL M-Business Anywhere]
PreparedStatement syntax, 86

setInt method [UL M-Business Anywhere]
ResultSet syntax, 102
ULTable syntax, 165

setIntParameter method [UL M-Business Anywhere]
PreparedStatement syntax, 86

setKeepPartialDownload method [UL M-Business
Anywhere]

SyncParms syntax, 125
setLong method [UL M-Business Anywhere]

ResultSet syntax, 103
ULTable syntax, 165

setLongParameter method [UL M-Business Anywhere]
PreparedStatement syntax, 86

setMBAServer method [UL M-Business Anywhere]
SyncParms syntax, 126

setMBAServerWithMoreParms method [UL M-
Business Anywhere]

SyncParms syntax, 127
setNewPassword method [UL M-Business Anywhere]

SyncParms syntax, 128
setNull method [UL M-Business Anywhere]

ResultSet syntax, 103
ULTable syntax, 166

setNullParameter method [UL M-Business Anywhere]
PreparedStatement syntax, 87

setPassword method [UL M-Business Anywhere]
SyncParms syntax, 128

setPingOnly method [UL M-Business Anywhere]
SyncParms syntax, 128

setPublicationMask method [UL M-Business
Anywhere]

SyncParms syntax, 129
setSendColumnNames method [UL M-Business
Anywhere]

SyncParms syntax, 129
setSendDownloadAck method [UL M-Business
Anywhere]

SyncParms syntax, 129
setShort method [UL M-Business Anywhere]

ResultSet syntax, 103
ULTable syntax, 166

setShortParameter method [UL M-Business Anywhere]
PreparedStatement syntax, 87

setStream method [UL M-Business Anywhere]
SyncParms syntax, 130

setStreamParms method [UL M-Business Anywhere]
SyncParms syntax, 130

setString method [UL M-Business Anywhere]
ResultSet syntax, 104
ULTable syntax, 167

setStringParameter method [UL M-Business
Anywhere]

PreparedStatement syntax, 87
setTime method [UL M-Business Anywhere]

ResultSet syntax, 104
ULTable syntax, 167

setTimeParameter method [UL M-Business Anywhere]
PreparedStatement syntax, 88

setTimestamp method [UL M-Business Anywhere]
ResultSet syntax, 104
ULTable syntax, 167

setTimestampParameter method [UL M-Business
Anywhere]

PreparedStatement syntax, 88
setToDefault method [UL M-Business Anywhere]

ULTable syntax, 168
setULong method [UL M-Business Anywhere]

ResultSet syntax, 105
ULTable syntax, 168

setULongParameter method [UL M-Business
Anywhere]

Copyright © 2007, iAnywhere Solutions, Inc. 181

PreparedStatement syntax, 89
setUploadOnly method [UL M-Business Anywhere]

SyncParms syntax, 130
setUserName method [UL M-Business Anywhere]

SyncParms syntax, 131
setUUID method [UL M-Business Anywhere]

ResultSet syntax, 105
ULTable syntax, 169

setUUIDParameter method [UL M-Business
Anywhere]

PreparedStatement syntax, 89
setVersion method [UL M-Business Anywhere]

SyncParms syntax, 131
SQL Anywhere

documentation, vi
SQLError class [UL M-Business Anywhere]

syntax, 111
SQLType class [UL M-Business Anywhere]

syntax, 119
startSynchronizationDelete method [UL M-Business
Anywhere]

Connection syntax, 64
stopSynchronizationDelete method [UL M-Business
Anywhere]

Connection syntax, 64
support

newsgroups, xiii
supported platforms

UltraLite for M-Business Anywhere, 2
synchronization

UltraLite for M-Business Anywhere architecture
illustration, 31
UltraLite for M-Business Anywhere code summary
for, 30
UltraLite for M-Business Anywhere one-button ,
29
UltraLite for M-Business Anywhere overview, 29

synchronize method [UL M-Business Anywhere]
Connection syntax, 65

synchronizeWithParm method [UL M-Business
Anywhere]

Connection syntax, 65
synchronizing UltraLite applications

UltraLite for M-Business Anywhere development,
29

SyncParms class [UL M-Business Anywhere]
constants, 121
syntax, 121

SyncResult class [UL M-Business Anywhere]
syntax, 132

T
tables

accessing schema information in UltraLite for M-
Business Anywhere, 26

TableSchema class
UltraLite for M-Business Anywhere development,
26

TableSchema class [UL M-Business Anywhere]
syntax, 135

technical support
newsgroups, xiii

toString method [UL M-Business Anywhere]
AuthStatusCode syntax, 57
Class UUID syntax, 171
ConnectionParms syntax, 67
SQLType syntax, 119

transaction processing
UltraLite for M-Business Anywhere, 25

transactions
UltraLite for M-Business Anywhere, 25

troubleshooting
newsgroups, xiii
UltraLite M-Business Anywhere handling errors,
27
UltraLite M-Business Anywhere SQL error codes,
111
UltraLite M-Business Anywhere using
setKeepPartialDownload, 125

truncate method [UL M-Business Anywhere]
ULTable syntax, 169

tutorials
UltraLite for M-Business Anywhere, 35

U
ULTable class

UltraLite for M-Business Anywhere development,
17

ULTable class [UL M-Business Anywhere]
properties, 146
syntax, 146

UltraLite databases
accessing schema information for M-Business
Anywhere, 26

Index

182 Copyright © 2007, iAnywhere Solutions, Inc.

connecting in UltraLite for M-Business Anywhere,
10

UltraLite engine
M-Business Anywhere property for, 70

UltraLite for M-Business Anywhere
about, 1
accessing schema information, 26
architecture, 3
building CustDB and Simple applications, 6
connecting to UltraLite databases, 10
data manipulation using SQL, 16
data manipulation with Table API, 20
deploying applications, 32
deploying applications to Palm OS, 32
deploying applications to Windows CE, 32
deploying applications to Windows desktops, 32
encryption, 15
error handling, 27
features, 2
maintaining state, 11
object hierarchy, 3
project architecture, 37
quick start, 6
supported platforms, 2
synchronizing UltraLite applications, 29
system requirements, 2
tutorial, 35
user authentication, 28

UltraLite for M-Business Anywhere API
alphabetical listing, 55

UltraLite for M-Business Anywhere API classes
AuthStatusCode, 57
Connection, 58
ConnectionParms, 66
CreationParms, 68
DatabaseManager, 70
DatabaseSchema, 73
IndexSchema, 78
PreparedStatement, 81
PublicationSchema, 90
ResultSet, 91
ResultSetSchema, 107
SQLError, 111
SQLType, 119
SyncParms, 121
SyncResult, 132
TableSchema, 135
ULTable, 146

UltraLite for M-Business Anywhere API methods
appendBytes (ResultSet class), 91
AppendBytes (ULTable class), 146
AppendBytesParameter (PreparedStatement class),
81
appendStringChunk (ResultSet syntax), 92
AppendStringChunk (ULTable class), 147
AppendStringChunkParameter (PreparedStatement
class), 82
changeEncryptionKey (Connection class), 59
close (Connection class), 59
close (PreparedStatement class), 82
close (ResultSet class), 92
commit (Connection class), 60
countUploadRow (Connection class), 60
createDatabase (DatabaseManager class), 70
deleteAllRows (ULTable class), 147
deleteRow (ResultSet class), 92
deleteRow (ULTable class), 147
dropDatabase (DatabaseManager class), 71
equals (Class UUID), 171
executeQuery (PreparedStatement class), 82
executeStatement (PreparedStatement class), 83
findBegin (ULTable class), 148
findFirst (ULTable class), 148
findFirstForColumns (ULTable class), 148
findLast (ULTable class), 149
findLastForColumns (ULTable class), 150
findNext (ULTable syntax), 150
findNextForColumns (ULTable class), 151
findPrevious (ULTable class), 151
findPreviousForColumns (ULTable class), 152
getAuthenticationParms (SyncParms class), 121
getAuthStatus (SyncResult class), 132
getBoolean (ResultSet class), 93
getBoolean (ULTable class), 152
getBytes (ULTable class), 152
getBytes(ResultSet class), 93
getBytesSection (ResultSet class), 93
getBytesSection (ULTable class), 153
getCheckpointStore (SyncParms class), 121
getCollationName (DatabaseSchema class), 73
getColumnCount (IndexSchema class), 78
getColumnCount (ResultSetSchema class), 107
getColumnCount (TableSchema class), 135
getColumnDefaultValue (TableSchema class), 135
getColumnDefaultValueByColID (TableSchema
class), 135

Copyright © 2007, iAnywhere Solutions, Inc. 183

getColumnID (ResultSetSchema class), 107
getColumnID (TableSchema class), 135
getColumnName (IndexSchema class), 78
getColumnName (ResultSetSchema class), 107
getColumnName (TableSchema class), 136
getColumnPartitionSize (TableSchema class), 136
getColumnPartitionSizeByColID (TableSchema
class), 136
getColumnPrecision (ResultSetSchema class), 108
getColumnPrecision (TableSchema class), 136
getColumnPrecisionByColID (ResultSetSchema
class), 108
getColumnPrecisionByColID (TableSchema class),
137
getColumnScale (ResultSetSchema class), 108
getColumnScale (TableSchema class), 137
getColumnScaleByColID (ResultSetSchema class),
109
getColumnScaleByColID (TableSchema class),
137
getColumnSize (ResultSetSchema class), 109
getColumnSize (TableSchema class), 138
getColumnSizeByColID (ResultSetSchema class),
109
getColumnSizeByColID (TableSchema class), 138
getColumnSQLType (ResultSetSchema class), 109
getColumnSQLType (TableSchema class), 138
getColumnSQLTypeByColID (ResultSetSchema
class), 110
getColumnSQLTypeByColID (TableSchema class),
138
getDatabaseID (Connection class), 60
getDatabaseOptions (DatabaseManager class), 72
getDatabaseProperty (DatabaseSchema class), 73
getDate (ResultSet class), 94
getDate (ULTable class), 153
getDateFormat (DatabaseSchema class), 74
getDateOrder (DatabaseSchema class), 74
getDisableConcurrency (SyncParms class), 121
getDouble (ResultSet class), 94
getDouble (ULTable class), 154
getDownloadOnly (SyncParms class), 121
getFloat (ResultSet class), 95
getFloat (ULTable class), 154
getGlobalAutoIncrementUsage (Connection class),
60
getIgnoredRows (SyncResult class), 132
getIndex (TableSchema class), 139

getIndexCount (TableSchema class), 139
getIndexName (TableSchema class), 139
getInt (ResultSet class), 95
getInt (ULTable class), 154
getKeepPartialDownload (SyncParms class), 122
getLastDownloadTime (Connection class), 61
getLastIdentity (Connection class) , 61
getLong (ResultSet class), 95
getLong (ULTable class), 154
getMask (PublicationSchema class), 90
getName (IndexSchema class), 78
getName (PublicationSchema class), 90
getName (TableSchema class), 140
getNearestCentury (DatabaseSchema class), 74
getNewPassword (SyncParms class), 122
getNewUUID (Connection class), 61
getOptimalIndex (TableSchema class), 140
getPartialDownloadRetained (SyncParms class),
122
getPartialDownloadRetained (SyncResult class),
132
getPassword(SyncParms class), 122
getPingOnly (SyncParms class), 122
getPlan (PreparedStatement class), 83
getPrecision (DatabaseSchema class), 74
getPrimaryKey (TableSchema class), 140
getPublicationCount (DatabaseSchema class), 74
getPublicationMask (SyncParms class), 122
getPublicationName (DatabaseSchema class), 75
getPublicationSchema (DatabaseSchema class), 75
getReferencedIndexName (IndexSchema class), 78
getReferencedTableName (IndexSchema class), 79
getResultSetSchema (PreparedStatement class), 83
getResumePartialDownload (SyncParms class),
123
getRowCount (ResultSet class), 95
getRowCount (ULTable class), 155
getSendColumnNames (SyncParms class), 123
getSendDownloadAck (SyncParms class), 123
getShort (ResultSet class), 96
getShort (ULTable class), 155
getSignature (DatabaseSchema class), 75
getStream (SyncParms class), 123
getStreamErrorCode (SyncResult class), 132
getStreamErrorContext (SyncResult class), 133
getStreamErrorID (SyncResult class), 133
getStreamErrorSystem (SyncResult class), 134
getStreamParms (SyncParms class), 123

Index

184 Copyright © 2007, iAnywhere Solutions, Inc.

getString (ResultSet class), 96
getString (ULTable class), 155
getStringChunk (ResultSet class), 96
getStringChunk (ULTable class), 155
getTable (Connection class), 62
getTableCount (DatabaseSchema class), 75
getTableCountInPublications (DatabaseSchema
class), 76
getTableName (DatabaseSchema class), 76
getTime (ResultSet class), 96
getTime (ULTable class), 156
getTimeFormat (DatabaseSchema class), 76
getTimestamp (ResultSet class), 97
getTimestamp (SyncResult class), 134
getTimestamp (ULTable class), 156
getTimestampFormat (DatabaseSchema class), 77
getULong (ResultSet class), 97
getULong (ULTable class), 156
getUploadOK (SyncResult class), 134
getUploadOnly (SyncParms class), 124
getUploadUnchangedRows (TableSchema class),
140
getUserName (SyncParms class), 124
getUUID (ResultSet class), 97
getUUID (ULTable class), 156
getVersion (SyncParms class), 124
grantConnectTo (Connection class), 62
hasResultSet (PreparedStatement class), 83
insert (ULTable class), 157
insertBegin (ULTable class), 157
isBOF (ResultSet class), 97
isBOF (ULTable class), 159
isCaseSensitive (DatabaseSchema class), 77
isColumnAutoIncrement (TableSchema class), 140
isColumnAutoIncrementByColID (TableSchema
class), 141
isColumnCurrentDate (TableSchema class), 141
isColumnCurrentDateByColID (TableSchema
class), 141
isColumnCurrentTime (TableSchema class), 142
isColumnCurrentTimeByColID (TableSchema
class), 142
isColumnCurrentTimestamp (TableSchema class),
142
isColumnCurrentTimestampByColID
(TableSchema class), 142
isColumnDescending (IndexSchema class), 79

isColumnGlobalAutoIncrement (TableSchema
class), 143
isColumnGlobalAutoincrementByColID
(TableSchema class), 143
isColumnNewUUID (TableSchema class), 143
isColumnNewUUIDByColID (TableSchema class),
144
isColumnNullable (TableSchema class), 144
isColumnNullableByColID (TableSchema class),
144
isEOF (ResultSet class), 98
isEOF (ULTable class), 159
isForeignKey (IndexSchema class), 79
isForeignKeyCheckOnCommit (IndexSchema
class), 79
isForeignKeyNullable (IndexSchema class), 79
isInPublication (TableSchema class), 144
isNeverSynchronized (TableSchema class), 145
isNull (ResultSet class), 98
isNull (ULTable class), 160
isOpen (Connection class), 62
isOpen (DatabaseSchema class), 77
isOpen (PreparedStatement class), 84
isOpen (ResultSet class), 98
isOpen (ResultSetSchema class), 110
isOpen (ULTable class), 160
isPrimaryKey (IndexSchema class), 80
isUniqueIndex (IndexSchema class), 80
isUniqueKey (IndexSchema class), 80
lookupBackward (ULTable class), 157
lookupBackwardForColumns (ULTable class), 158
lookupBegin (ULTable class), 158
lookupForward (ULTable class), 158
lookupForwardForColumns (ULTable class), 159
moveAfterLast (ResultSet class), 98
moveAfterLast (ULTable class), 160
moveBeforeFirst (ResultSet class), 98
moveBeforeFirst (ULTable class), 160
moveFirst (ResultSet class), 99
moveFirst (ULTable class), 161
moveLast (ResultSet class), 99
moveLast (ULTable class), 161
moveNext (ResultSet class), 99
moveNext (ULTable class), 161
movePrevious (ResultSet class), 99
movePrevious (ULTable class), 161
moveRelative (ResultSet class), 100
moveRelative (ULTable class), 162

Copyright © 2007, iAnywhere Solutions, Inc. 185

open (ULTable class), 162
openConnection (DatabaseManager class), 72
openWithIndex (ULTable class), 162
prepareStatement (Connection class), 62
reOpenConnection (DatabaseManager class), 72
resetLastDownloadTime (Connection class), 63
revokeConnectFrom (Connection class), 63
rollback (Connection class), 63
rollbackPartialDownload (Connection class), 63
saveSyncParms (Connection class), 64
setAuthenticationParms (SyncParms class), 124
setBoolean (ResultSet class), 100
setBoolean (ULTable class), 162
setBooleanParameter (PreparedStatement class), 84
setBytes (ResultSet class), 100
setBytes (ULTable class), 163
setBytesParameter (PreparedStatement class), 84
setCheckpointStore (SyncParms class), 124
setDatabaseID (Connection class), 64
setDate (ResultSet class), 101
setDate (ULTable class), 163
setDateParameter (PreparedStatement class), 85
setDateTime (ResultSet class), 101
setDisableConcurrency (SyncParms class), 125
setDouble (ResultSet class), 101
setDouble (ULTable class), 164
setDoubleParameter (PreparedStatement class), 85
setDownloadOnly (SyncParms class), 125
setFloat (ResultSet class), 102
setFloat (ULTable class), 164
setFloatParameter (PreparedStatement class), 86
setInt (ResultSet class), 102
setInt (ULTable class), 165
setIntParameter (PreparedStatement class), 86
setKeepPartialDownload (SyncParms class), 125
setLong (ResultSet class), 103
setLong (ULTable class), 165
setLongParameter (PreparedStatement class), 86
setMBAServer (SyncParms class), 126
setMBAServerWithMoreParms (SyncParms class),
127
setNewPassword (SyncParms class), 128
setNull (ResultSet class), 103
setNull (ULTable class), 166
setNullParameter (PreparedStatement class), 87
setPassword (SyncParms class), 128
setPingOnly (SyncParms class), 128
setPublicationMask (SyncParms class), 129

setSendColumnNames (SyncParms class), 129
setSendDownloadAck (SyncParms class), 129
setShort (ResultSet class), 103
setShort (ULTable class), 166
setShortParameter (PreparedStatement class), 87
setStream (SyncParms class), 130
setStreamParms (SyncParms class), 130
setString (ResultSet class), 104
setString (ULTable class), 167
setStringParameter (PreparedStatement class), 87
setTime (ResultSet class), 104
setTime (ULTable class), 167
setTimeParameter (PreparedStatement class), 88
setTimestamp (ResultSet class), 104
setTimestamp (UL M-Business Anywhere), 167
setTimestampParameter (PreparedStatement class),
88
setToDefault (ULTable class), 168
setULong (ResultSet class), 105
setULong (ULTable class), 168
setULongParameter (PreparedStatement class), 89
setUploadOnly (SyncParms class), 130
setUserName (SyncParms class), 131
setUUID (ResultSet class), 105
setUUID (ULTable class), 169
setUUIDParameter (PreparedStatement class), 89
setVersion (SyncParms class), 131
startSynchronizationDelete (Connection class), 64
stopSynchronizationDelete (Connection class), 64
synchronize (Connection class), 65
synchronizeWithParm (Connection class), 65
toString (AuthStatusCode class), 57
toString (Class UUID), 171
toString (ConnectionParms class), 67
toString (SQLType class), 119
truncate (ULTable class), 169
update (ResultSet class), 105
update (ULTable class), 169
updateBegin (ResultSet class), 106
updateBegin (ULTable class), 170

UltraLite for M-Business Anywhere API properties
AuthStatusCode class, 57
Connection class, 58
ConnectionParms class, 66
CreationParms class, 68
DatabaseManager class, 70
ResultSet class, 91
ULTable class, 146

Index

186 Copyright © 2007, iAnywhere Solutions, Inc.

UltraLite M-Business Anywhere (see UltraLite for M-
Business Anywhere)
UltraLite runtime

M-Business Anywhere property for, 70
update method [UL M-Business Anywhere]

ResultSet syntax, 105
ULTable syntax, 169

update mode
UltraLite for M-Business Anywhere, 23

updateBegin method [UL M-Business Anywhere]
ResultSet syntax, 106
ULTable syntax, 170

updating
rows UltraLite for M-Business Anywhere, 22

user authentication
UltraLite for M-Business Anywhere, 28

UUID class [UL M-Business Anywhere]
syntax, 171

V
values

accessing in UltraLite for M-Business Anywhere,
21

Visual Basic
supported versions in UltraLite for M-Business
Anywhere, 2

W
Windows CE

building CustDB and Simple applications using M-
Business Anywhere, 6
target platform in UltraLite for M-Business
Anywhere, 2

Copyright © 2007, iAnywhere Solutions, Inc. 187

188

	UltraLite® - M-Business Anywhere Programming
	Contents
	About This Manual
	SQL Anywhere documentation
	Documentation conventions
	Finding out more and providing feedback

	Introduction to UltraLite for M-Business Anywhere
	UltraLite for M-Business Anywhere features
	System requirements and supported platforms

	UltraLite for M-Business Anywhere architecture

	Understanding UltraLite for M-Business Anywhere Development
	UltraLite for M-Business Anywhere Quick Start
	Connecting to an UltraLite database
	Maintaining connections and application state across pages
	Persistent names in M-Business Anywhere applications
	Database encryption and obfuscation
	Working with data using SQL
	Data manipulation: INSERT, UPDATE and DELETE
	Data retrieval: SELECT
	Navigation with SQL
	The ResultSetSchema object

	Working with data using the table API
	Navigation with the Table API
	Accessing the values of the current row
	Searching rows with find and lookup
	Inserting, updating, and deleting rows
	Working with BLOB data
	Managing transactions

	Accessing schema information
	Handling errors
	Authenticating users
	Synchronizing data
	One-button synchronization
	Synchronizing data
	Synchronizing data via M-Business Anywhere

	Deploying UltraLite for M-Business Anywhere applications
	Deploying applications to Windows CE and Windows desktops
	Deploying applications to Palm OS

	Tutorial: A Sample Application for M-Business Anywhere
	Introduction to M-Business Anywhere development tutorial
	Lesson 1: Create project architecture
	Lesson 2: Create the application files
	Lesson 3: Set up the M-Business Anywhere Server and Client
	Lesson 4: Add startup code to your application
	Lesson 5: Add inserts to your application
	Lesson 6: Add navigation to your application
	Lesson 7: Add updates and deletes to your application
	Lesson 8: Add synchronization to your application

	UltraLite for M-Business Anywhere API Reference
	Data types in UltraLite for M-Business Anywhere
	AuthStatusCode class
	Properties
	 toString method

	 Connection class
	Properties
	 changeEncryptionKey method
	close method
	 commit method
	 countUploadRow method
	 getDatabaseID method
	 getGlobalAutoIncrementUsage method
	 getLastDownloadTime method
	 getLastIdentity method
	 getNewUUID method
	 getTable method
	 grantConnectTo method
	 isOpen method
	 prepareStatement method
	 resetLastDownloadTime method
	 revokeConnectFrom method
	 rollback method
	 rollbackPartialDownload method
	 saveSyncParms method
	 setDatabaseID method
	 startSynchronizationDelete method
	 stopSynchronizationDelete method
	 synchronize method
	 synchronizeWithParm method

	 ConnectionParms class
	Properties
	 toString method

	 CreationParms class
	Properties

	 DatabaseManager class
	Properties
	 createDatabase method
	 dropDatabase method
	 getDatabaseOptions method
	 openConnection method
	 reOpenConnection method

	 DatabaseSchema class
	Constants
	 getCollationName method
	 getDatabaseProperty method
	getDateFormat method
	 getDateOrder method
	 getNearestCentury method
	 getPrecision method
	 getPublicationCount method
	 getPublicationName method
	 getPublicationSchema method
	 getSignature method
	 getTableCount method
	getTableCountInPublications method
	 getTableName method
	 getTimeFormat method
	 getTimestampFormat method
	 isCaseSensitive method
	 isOpen method

	 IndexSchema class
	getColumnCount method
	 getColumnName method
	 getName method
	 getReferencedIndexName method
	 getReferencedTableName method
	 isColumnDescending method
	 isForeignKey method
	 isForeignKeyCheckOnCommit method
	 isForeignKeyNullable method
	 isPrimaryKey method
	 isUniqueIndex method
	 isUniqueKey method

	 PreparedStatement class
	 AppendBytesParameter method
	 AppendStringChunkParameter method
	 close method
	 executeQuery method
	 executeStatement method
	 getPlan method
	 getResultSetSchema method
	 hasResultSet method
	 isOpen method
	 setBooleanParameter method
	 setBytesParameter method
	 setDateParameter method
	 setDoubleParameter method
	 setFloatParameter method
	 setIntParameter method
	 setLongParameter method
	 setNullParameter method
	setShortParameter method
	 setStringParameter method
	 setTimeParameter method
	 setTimestampParameter method
	 setULongParameter method
	setUUIDParameter method

	 PublicationSchema class
	 getMask method
	 getName method

	 ResultSet class
	Properties
	 appendBytes method
	 appendStringChunk method
	 close method
	 deleteRow method
	 getBoolean method
	 getBytes method
	 getBytesSection method
	 getDate method
	getDouble method
	 getFloat method
	 getInt method
	 getLong method
	 getRowCount method
	 getShort method
	 getString method
	 getStringChunk method
	 getTime method
	 getTimestamp method
	 getULong method
	 getUUID method
	 isBOF method
	 isEOF method
	 isNull method
	 isOpen method
	 moveAfterLast method
	 moveBeforeFirst method
	 moveFirst method
	 moveLast method
	 moveNext method
	 movePrevious method
	 moveRelative method
	 setBoolean method
	 setBytes method
	 setDate method
	 setDateTime method
	 setDouble method
	 setFloat method
	 setInt method
	setLong method
	 setNull method
	 setShort method
	setString method
	 setTime method
	 setTimestamp method
	 setULong method
	setUUID method
	 update method
	 updateBegin method

	 ResultSetSchema class
	 getColumnCount method
	 getColumnID method
	 getColumnName method
	 getColumnPrecision method
	 getColumnPrecisionByColID method
	 getColumnScale method
	 getColumnScaleByColID method
	 getColumnSize method
	 getColumnSizeByColID method
	 getColumnSQLType method
	 getColumnSQLTypeByColID method
	 isOpen method

	 SQLError class
	 SQLType class
	 toString method

	 SyncParms class
	Constants
	 getAuthenticationParms method
	 getCheckpointStore method
	 getDisableConcurrency method
	 getDownloadOnly method
	 getKeepPartialDownload method
	 getNewPassword method
	 getPartialDownloadRetained method
	 getPassword method
	 getPingOnly method
	getPublicationMask method
	 getResumePartialDownload method
	 getSendColumnNames method
	 getSendDownloadAck method
	 getStream method
	 getStreamParms method
	getUploadOnly method
	 getUserName method
	 getVersion method
	 setAuthenticationParms method
	 setCheckpointStore method
	 setDisableConcurrency method
	 setDownloadOnly method
	 setKeepPartialDownload method
	 setMBAServer method
	 setMBAServerWithMoreParms method
	 setNewPassword method
	 setPassword method
	 setPingOnly method
	setPublicationMask method
	 setSendColumnNames method
	 setSendDownloadAck method
	 setStream method
	 setStreamParms method
	 setUploadOnly method
	 setUserName method
	 setVersion method

	 SyncResult class
	 getAuthStatus method
	 getIgnoredRows method
	 getPartialDownloadRetained method
	 getStreamErrorCode method
	 getStreamErrorContext method
	getStreamErrorID method
	getStreamErrorSystem method
	 getTimestamp method
	 getUploadOK method

	 TableSchema class
	 getColumnCount method
	 getColumnDefaultValue method
	 getColumnDefaultValueByColID method
	 getColumnID method
	 getColumnName method
	 getColumnPartitionSize method
	 getColumnPartitionSizeByColID method
	 getColumnPrecision method
	 getColumnPrecisionByColID method
	 getColumnScale method
	 getColumnScaleByColID method
	 getColumnSize method
	getColumnSizeByColID method
	 getColumnSQLType method
	 getColumnSQLTypeByColID method
	 getIndex method
	 getIndexCount method
	 getIndexName method
	 getName method
	 getOptimalIndex method
	 getPrimaryKey method
	 getUploadUnchangedRows method
	 isColumnAutoIncrement method
	 isColumnAutoIncrementByColID method
	 isColumnCurrentDate method
	 isColumnCurrentDateByColID method
	 isColumnCurrentTime method
	 isColumnCurrentTimeByColID method
	 isColumnCurrentTimestamp method
	 isColumnCurrentTimestampByColID method
	 isColumnGlobalAutoIncrement method
	 isColumnGlobalAutoincrementByColID method
	 isColumnNewUUID method
	isColumnNewUUIDByColID method
	 isColumnNullable method
	 isColumnNullableByColID method
	 isInPublication method
	 isNeverSynchronized method

	 ULTable class
	Properties
	 AppendBytes method
	AppendStringChunk method
	 deleteRow method
	 deleteAllRows method
	 findBegin method
	 findFirst method
	 findFirstForColumns method
	 findLast method
	 findLastForColumns method
	 findNext method
	 findNextForColumns method
	 findPrevious method
	 findPreviousForColumns method
	 getBoolean method
	 getBytes method
	 getBytesSection method
	 getDate method
	 getDouble method
	 getFloat method
	 getInt method
	 getLong method
	 getRowCount method
	 getShort method
	 getString method
	 getStringChunk method
	 getTime method
	 getTimestamp method
	 getULong method
	 getUUID method
	 insert method
	 insertBegin method
	 lookupBackward method
	 lookupBackwardForColumns method
	 lookupBegin method
	 lookupForward method
	 lookupForwardForColumns method
	 isBOF method
	 isEOF method
	isNull method
	 isOpen method
	 moveAfterLast method
	 moveBeforeFirst method
	 moveFirst method
	 moveLast method
	 moveNext method
	 movePrevious method
	 moveRelative method
	 open method
	 openWithIndex method
	 setBoolean method
	 setBytes method
	 setDate method
	 setDouble method
	 setFloat method
	 setInt method
	 setLong method
	 setNull method
	 setShort method
	 setString method
	 setTime method
	setTimestamp method
	 setToDefault method
	 setULong method
	 setUUID method
	 truncate method
	 update method
	 updateBegin method

	 UUID class
	 equals method
	 toString method

	Index

