
Programmers Reference

jConnect™ for JDBC™ 7.07
SP110

DOCUMENT ID: DC39001-01-0707110-01
LAST REVISED: August 2013
Copyright © 2013 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

jConnect for JDBC ...1
Java Database Connectivity (JDBC)1

Programming Information ...3
jConnect Version Property ..3

SybDriver. setVersion Method3
JCONNECT_VERSION Connection Property4

Invoking the jConnect Driver ..6
Configuring jConnect for J2EE servers7
Establish a Connection ...8

Connection Properties ...8
Connect to Adaptive Server35
Use the sql.ini and Interfaces File Directory

Services ...36
Connecting to a Server Using JNDI37

Internationalization and Localization42
Using jConnect to Pass Unicode Data42
jConnect Character Set Converters43

Database Issues ...48
Failover Support ...49
Server-to-Server Remote Procedure Calls52
Wide Table Support for Adaptive Server53
Accessing Database Metadata54
Use Cursors with Result Sets55
Support for Batch Updates66
Updating a Database from a Result Set of a

Stored Procedure ..67
Datatypes ...68

Variable-Length Rows in Data-Only-Locked Tables74
Large Object (LOB) Support ...74
Large Object Locator Support75
Advanced Features in jConnect76

Programmers Reference iii

BCP Insert ...76
Supported Adaptive Server Cluster Edition

Features ..77
Event Notification ...78
Error Messages ...80
Password Encryption ...85
Store Java Objects as Column Data in Table87
Dynamic Class Loading91
JDBC 4.0 Specifications Support94
JDBC 3.0 Specifications Support95
Support for JDBC 2.0 Optional Package

Extensions ..97
Restrictions and Interpretations of JDBC Standards . .104

Unsupported JDBC 4.0 Specification
Requirements ..105

Use Connection.isClosed and
IS_CLOSED_TEST105

Statement.close with Unprocessed Results106
Adjustments for Multithreading106
ResultSet.getCursorName107
Execute Stored Procedures107

Security ...109
Restrictions ...109
Implement Custom SSL Socket Plug-ins109

Using Custom Socket with jConnect110
Create and Configure a Custom Socket111
SSL Support in jConnect113

Kerberos ...114
Configuring Kerberos for jConnect114
GSSMANAGER_CLASS Connection Property . 115
Kerberos Environment117
Sample Applications ..120
Interoperability ...122
Troubleshooting Kerberos123

Related Documents ..124

Contents

iv jConnect for JDBC

Troubleshooting ...125
Debugging with jConnect ..125

Obtaining an Instance of the Debug Class125
Turning On Debugging in an Application125
Turning Off Debugging in an Application126
Setting the CLASSPATH for Debugging126
Using the Debugging Methods126

Dynamic Logging ..127
Enabling Logging Dynamically in jConnect129
Enabling Logging Statically in jConnect129

Capture TDS Communication130
PROTOCOL_CAPTURE Connection Property ..130
Pause and Resume Methods in Capture Class .130

Resolve Connection Errors ...131
Manage Memory in jConnect Applications132
Resolve Stored Procedure Errors132

RPC Returns Fewer Output Parameters Than
Registered ...132

Fetch/State Error ..133
Stored Procedure Executed in Unchained

Transaction Mode ...133
Resolve Custom Socket Implementation Error133

Performance and Tuning ...135
Improve jConnect performance135

BigDecimal Rescaling ..135
REPEAT_READ Connection Property136
SunIoConverter Character-Set Conversion136

Performance Tuning for Prepared Statements in
Dynamic SQL ...137

Choose Prepared Statements and Stored
Procedures ..138

Prepared Statements in Portable Applications . 138
Prepared Statements with jConnect Extensions

...139
Connection.PrepareStatement140

Contents

Programmers Reference v

DYNAMIC_PREPARE Connection Property140
SybConnection.PrepareStatement Method141
ESCAPE_PROCESSING_DEFAULT

Connection Property142
Optimized Batch in jConnect142

Cursor Performance ..143
LANGUAGE_CURSOR Connection Property . . .144

Migrating jConnect Applications145
Migrating Applications to jConnect 7.x145
Change Sybase Extensions145

Extension Change Example146
Method Names ..146
Debug Class ..147

Web Server Gateways ...149
TDS tunnelling ..149
Configure jConnect and Gateways150

Web Server and Adaptive Server on One Host . 150
Dedicated JDBC Web Server and Adaptive

Server on One Host150
Web Server and Adaptive Server on Separate

Hosts ...151
Connect to Server Through Firewall152

Usage Requirements ..152
Viewing the Index.html File152
Running Sample Applet153
Modifying Applet Screen Dimensions153

TDS-Tunnelling Servlet ...153
Reviewing Requirements154
Installing and Setting Servlet Arguments154
Invoking the Servlet ...155
Tracking Active TDS Sessions155
Terminating TDS Sessions156
Resuming a TDS Session156

jConnect Sample Programs ..157
Running IsqlApp ...157

Contents

vi jConnect for JDBC

jConnect Sample Programs and Code161
Sample Applications ..161

Running the Sample Applets161
Running the Sample Programs with SQL

Anywhere ..161
Sample Code ..162

SQL Exception and Warning Messages165
Glossary ...197
Index ..201

Contents

Programmers Reference vii

Contents

viii jConnect for JDBC

jConnect for JDBC

jConnect™ for JDBC™ is the Sybase® high-performance JDBC driver.

jConnect for JDBC is both:

• A native-protocol or all-Java driver, and
• A net-protocol or all-Java driver.

The protocol used by jConnect is Tabular Data Stream™ 5.0 (TDS, version 5), the native
protocol for Adaptive Server Enterprise and Open Server™ applications. jConnect
implements the JDBC standard to provide optimal connectivity to the complete family of
Sybase products, allowing access to over 25 enterprise and legacy systems, including:

• Adaptive Server® Enterprise
• SQL Anywhere®

• Sybase® IQ
• Replication Server®

• DirectConnect™

In addition, jConnect for JDBC can access Oracle, AS/400, and other data sources using
Sybase DirectConnect.

In some instances, the jConnect implementation of JDBC deviates from the JDBC
specifications.

See also
• Restrictions and Interpretations of JDBC Standards on page 104

Java Database Connectivity (JDBC)
Java Database Connectivity (JDBC), from the Oracle Corporation, is a specification for an
application program interface (API) that allows Java applications to access multiple database
management systems using Structured Query Language (SQL).

The JDBC Driver Manager handles multiple drivers that connect to different databases.

A set of interfaces is included in the standard JDBC API and the JDBC Standard Extension
API so you can open connections to databases, execute SQL commands, and process results.

jConnect for JDBC

Programmers Reference 1

Table 1. JDBC Interfaces

Interface Description

java.sql.Driver Locates the driver for a database URL

java.sql.Connection Connects to a specific database

java.sql.Statement Allows users to execute SQL statements.

java.sql.Prepared-
Statement

Handles SQL statements with parameters

java.sql.CallableS-
tatement

Handles database stored procedure calls

java.sql.ResultSet Gets the results of SQL statements

java.sql.DatabaseMe-
taData

Use this interface to access information about the database
you have obtained connection to.

java.sql.ResultSetMe-
taData

Use this interface to retrieve information about ResultSet.

javax.sql.Rowset Handles JDBC RowSet implementations

javax.sql.DataSource Handles connection to a data source

javax.sql.Connection-
PoolDataSource

Handles connection pools

Each relational database management system requires a driver to implement these interfaces.
There are four types of JDBC drivers:

• Type 1 JDBC-ODBC bridge – translates JDBC calls into ODBC calls and passes them to
an ODBC driver. Some ODBC software must reside on the client machine. Some client
database code may also reside on the client machine.

• Type 2 native-API partly-Java driver – converts JDBC calls into database-specific calls.
This driver, which communicates directly with the database server, also requires some
binary code on the client machine.

• Type 3 net-protocol all-Java driver – communicates to a middle-tier server using a DBMS-
independent net protocol. A middle-tier gateway then converts the request to a vendor-
specific protocol.

• Type 4 native-protocol all-Java driver – converts JDBC calls to the vendor-specific DBMS
protocol, allowing client applications direct communication with the database server.

For more information about JDBC and its specification, see the Oracle Technology Network
for Java.

jConnect for JDBC

2 jConnect for JDBC

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

Programming Information

Review the basic components of, and programming requirements for, jConnect for JDBC.

Start the jConnect driver, set connection properties, connect to a database server, and review
information about using jConnect features. For information about JDBC programming, go to
the resource page for Java developers at the Oracle Technology Network for Java.

jConnect Version Property
The JCONNECT_VERSION connection property determines the driver’s behavior and the
features activated.

For example, Adaptive Server 15.5 supports both jConnect 6.05 and 7.0, however, these two
versions process datetime and time data differently. When connecting to Adaptive Server
15.5, jConnect 7.0, which supports microsecond granularity for time data, uses
bigdatetime or bigtime even if the target Adaptive Server columns are defined as
datetime or time. jConnect 6.05, however, does not support microsecond granularity and
always transfers datetime or time data when connecting to Adaptive Server 15.5.

You can set the jConnect version by using either the SybDriver.setVersion method or
the JCONNECT_VERSION connection property.

SybDriver. setVersion Method
The setVersion method affects the jConnect default behavior for all connections created
by the SybDriver object.

You can call setVersion multiple times to change the version setting. New connections
inherit the behavior associated with the version setting at the time the connection is made.
Changing the version setting during a session does not affect current connections. You can use
the com.sybase.jdbcx.SybDriver.VERSION_LATEST constant to ensure that you
are always requesting the highest version value possible for the jConnect driver you are using.
However, by setting the version to
com.sybase.jdbcx.SybDriver.VERSION_LATEST, you may see behavior
changes if you replace your current jConnect driver with a newer one.

This code sample shows how to load the jConnect driver and set its version:
import java.sql.DriverManager;
import com.sybase.jdbcx.SybDriver;
SybDriver sybDriver = (SybDriver)
 Class.forName("com.sybase.jdbc4.jdbc.SybDriver")
 .newInstance();
sybDriver.setVersion(com.sybase.jdbcx.SybDriver.

Programming Information

Programmers Reference 3

http://www.oracle.com/technetwork/java/index.html

 VERSION_7);
DriverManager.registerDriver(sybDriver);

JCONNECT_VERSION Connection Property
Use the JCONNECT_VERSION connection property to override the SybDriver version
setting and specify a different version setting for a specific connection.

See the valid JCONNECT_VERSION values and the jConnect characteristics associated with
these values.

Table 2. Features Associated with jConnect Version

JCON-
NECT_VER-
SION

Features

7.0 jConnect 7.0 behaves in the same way as jConnect 6.05, except that in 7.0, jConnect
requests support for:

• bigdatetime and bigtime SQL datatypes from the server. Versions of Adap-
tive Server earlier than 15.5 ignore this request.

• JDBC 4.0.
• Valid values of ENABLE_BULK_LOAD are null (default), ARRAYIN-

SERT_WITH_MIXED_STATEMENTS, ARRAYINSERT, BCP, and
LOG_BCP.

6.05 jConnect 6.05 behaves in the same way as jConnect 6.0, except that in 6.05, jConnect
requests support for:

• Computed columns, including metadata.
• Larger identifiers. With large identifiers, you can use identifiers or object names with

lengths of up to 255 bytes. The large identifier applies to most user-defined identifiers,
including table name, column name, and index name.

6.0 jConnect 6.0 behaves in the same way as jConnect 5.x, except that in 6.0, jConnect
requests support for:

• date and time SQL datatypes. Versions of Adaptive Server earlier than 12.5.1
ignore this request.

• unichar and univarchar datatypes from the server. Versions of Adaptive
Server earlier than 12.5.1 ignore this request.

• Wide tables from the server. Versions of Adaptive Server earlier than 12.5.1 ignore this
request.

• Default value of DISABLE_UNICHAR_SENDING is false.

5.0 jConnect 5.x behaves in the same way as jConnect 4.0.

Programming Information

4 jConnect for JDBC

JCON-
NECT_VER-
SION

Features

4.0 jConnect 4.0 behaves in the same way as jConnect 3.0, except that in 4.0, jConnect
requests support for:

• The default value of the LANGUAGE connection property is null.

• The default behavior of Statement.cancel is to cancel only the Statement

object on which it is invoked. This behavior is JDBC-compliant.
Use CANCEL_ALL to set the behavior of Statement.cancel.

• You can use JDBC 2.0 methods to store and retrieve Java objects as column data.

3.0 jConnect 3.0 behaves in the same way as jConnect 2.0, except that in 3.0:

• If the CHARSET connection property does not specify a character set, jConnect uses
the default character set of the database.

• The default value for CHARSET_CONVERTER is the CheckPureConvert-
er class.

2.0 • The default value of the LANGUAGE connection property is us_english.

• If the CHARSET connection property does not specify a character set, the default
character set is iso_1.

• The default value for CHARSET_CONVERTER is the Truncation-
Converter class, unless the CHARSET connection property specifies a multibyte
or 8-bit character set, in which case the default CHARSET_CONVERTER is the
CheckPureConverter class.

• The default behavior of Statement.cancel is to cancel the object it is invoked on and
any other Statement objects that have begun to execute and are waiting for results.
This behavior is not JDBC-compliant.
Use CANCEL_ALL to set the behavior of Statement.cancel.

See also
• JDBC 4.0 Specifications Support on page 94

• Restrictions and Interpretations of JDBC Standards on page 104

• jConnect Character Set Converters on page 43

• Date and Time Datatypes on page 72

• JDBC 3.0 Specifications Support on page 95

• Wide Table Support for Adaptive Server on page 53

• Store Java Objects as Column Data in Table on page 87

• Using jConnect to Pass Unicode Data on page 42

Programming Information

Programmers Reference 5

Invoking the jConnect Driver
Register and invoke jConnect, and add jConnect to the jdbc.drivers system property.

At initialization, the DriverManager class attempts to load the drivers listed in
jdbc.drivers. This is less efficient than calling Class.forName. You can list multiple
drivers in this property, separated with a colon (:).

This sample code shows how to add a driver tojdbc.drivers within a program:

Properties sysProps = System.getProperties();
String drivers = "com.sybase.jdbc4.jdbc.SybDriver";
String oldDrivers =
sysProps.getProperty("jdbc.drivers");
if (oldDrivers != null)
 drivers += ":" + oldDrivers;
 sysProps.put("jdbc.drivers", drivers.toString());

Note: You cannot use System.getProperties for Java applets. Use the
Class.forName method instead.

In Java 6 and JDBC 4, you can use the Java system property jdbc.drivers to specify
driver classes, for example:
java -Djdbc.drivers=com.sybase.jdbc4.jdbc.SybDriver UseDriver

You need not use the UseDriver program to load the driver explicitly:
public class UseDriver
{
 public static void main(String[] args)
 {
 try {
 Connection conn = java.sql.DriverManager.getConnection
 ("jdbc:sybase:Tds:localhost:5000?
USER=sa&PASSWORD=secret");
 // more code to use connection ...
 }
 catch (SQLException se){
 System.out.println("ERROR: SQLException "+se);
 }
 }
}

Programming Information

6 jConnect for JDBC

Configuring jConnect for J2EE servers
Use the com.sybase.jdbc4.jdbc.SybConnectionPoolDataSource class to
configure connection pools to an Adaptive Server server in application servers such as
EAServer.

The com.sybase.jdbc4.jdbc.SybConnectionPoolDataSource
implementation of the javax.sql.ConnectionPoolDataSource interface provides
getter and setter methods for every connection property.

You can also configure jConnect programmatically, for example:
private DataSource getDataSource ()
{
 SybConnectionPoolDataSource connectionPoolDataSource = new
 SybConnectionPoolDataSource();
 connectionPoolDataSource.setDatabaseName("pubs2");
 connectionPoolDataSource.setNetworkProtocol("Tds");
 connectionPoolDataSource.setServerName("localhost");
 connectionPoolDataSource.setPortNumber(5000);
 connectionPoolDataSource.setUser("sa");
 connectionPoolDataSource.setPassword(PASSWORD);
 return connectionPoolDataSource;
}
private void work () throws SQLException
{
 Connection conn = null;
 Statement stmt = null;
 DataSource ds = getDataSource();
 try {
 conn = ds.getConnection();
 stmt = conn.createStatement();
 // ...
 }
 finally {
 if (stmt != null) {
 try { stmt.close(); } catch (Exception ex) { /* ignore */ }
 }
 if (conn != null) {
 try { conn.close(); } catch (Exception ex) { /* ignore */ }
 }
 }
}

Programming Information

Programmers Reference 7

Establish a Connection
Establish a connection to an Adaptive Server or SQL Anywhere database using jConnect.

Connection Properties
Connection properties specify the information needed to log in to a server and define expected
client and server behavior.

Connection property names are not case-sensitive.

Setting Connection Properties
You must set connection properties before you connect to a server.

Set the connection properties by either:

• Using the DriverManager.getConnection method in your application, or,

• Setting the connection properties when you define the URL.

Note: Driver connection properties that you set in the URL do not override any
corresponding connection properties set in the application using the
DriverManager.getConnection method.

This sample code uses the DriverManager.getConnection method. The sample
programs provided with jConnect also contain examples of setting these properties.
 Properties props = new Properties();
 props.put("user", "userid");
 props.put("password", "user_password");
 /*
 * If the program is an applet that wants to access
 * a server that is not on the same host as the
 * web server, then it uses a proxy gateway.
 */
 props.put("proxy", "localhost:port");
 /*
 * Make sure you set connection properties before
 * attempting to make a connection. You can also
 * set the properties in the URL.
 */
 Connection con = DriverManager.getConnection
 ("jdbc:sybase:Tds:host:port", props);

Current Connection Settings
To view a driver’s current connection settings, use
Driver.getDriverPropertyInfo(String url, Properties props).

This code returns an array of DriverPropertyInfo objects containing:

Programming Information

8 jConnect for JDBC

• Driver properties
• Current settings on which the driver properties are based
• The URL and properties passed in

jConnect Connection Properties
The connection properties for jConnect and their default values.

These properties are not case-sensitive.

You can use the getClientInfo() and setClientInfo() standard methods to
dynamically set the properties indicated as such.

Table 3. Connection Properties

Property Description

ALTERNATE_ SERVER_NAME Specifies the alternate server name used by the primary and
secondary database in a mirrored SQL Anywhere environment.
The primary and secondary database use the same alternate
server name so that client applications can connect to the cur-
rent primary server without knowing in advance which of the
two servers is the primary server.

The JDBC URL syntax is jdbc:syb-
ase:Tds:<hostname>:<port#>/database?
connection_property=value;. However, when

ALTERNATE_SERVER_NAME is set, jConnect ignores the
values of the hostname and port variables. Instead, jConnect
uses the SQL Anywhere UDP discovery protocol to determine
the current primary server.

For information about database mirroring, see the SQL Any-
where Server - Database Administration Guide.

You can also use ALTERNATE_SERVER_NAME with an

SQL Anywhere server that is not mirrored. However, you will
always get the same host and port values from the singleton
server.

Default value is null.

This property is static.

Programming Information

Programmers Reference 9

Property Description

APPLICATIONNAME Specifies an application name. This is a user-defined property.
You can program the server side to interpret the value provided
to this property.

Default value is null.

This property is static.

BE_AS_JDBC_ COMPLI-
ANT_AS_ POSSIBLE

Adjusts other properties to ensure that jConnect methods re-
spond in a way that is as compliant as possible with the JDBC
3.0 standard.

These properties are affected (and overridden) when this prop-
erty is set to true:

• CANCEL_ALL (set to false)

• LANGUAGE CURSOR (set to false)

• SELECT_OPENS_CURSOR (set to true)

• FAKE_METADATA (set to true)

• GET_BY_NAME_USES_COLUMN_LABEL (set to

false)

Default value is false.

This property is static.

CACHE_COLUMN_ METADA-
TA

If you repeatedly use PreparedStatement or Call-
ableStatement objects that perform SELECT queries,

setting CACHE_COLUMN_METADATA to true might im-

prove performance. When set to true, the statement remembers
the ResultSet metadata information associated with the

SELECT query results from the first execution of the statement.
On subsequent executions, the metadata is re-used without
being reconstructed. This saves CPU time through the use of
additional memory.

Use the SUPPRESS_ROW_FORMAT connection property

when connecting to Adaptive Server 15.7 ESD #1 and later.

Default value is false.

This property is static.

Programming Information

10 jConnect for JDBC

Property Description

PRE_CACHE_DATATYPE_INFO If you repeatedly use Statement or its derived interfaces to
obtain datatype metadata, setting PRE_CACHE_DATA-

TYPE_INFO to true might improve performance.

When PRE_CACHE_DATATYPE_INFO is set to true, informa-
tion about all user-defined datatypes that serve various Re-
sultsetMetadata APIs, like isCaseSensitive
and isSearchable, is cached at connection time. Subse-

quent access to this information is then available from the
cache.

When PRE_CACHE_DATATYPE_INFO is false (the default),
jConnect does not cache any user-defined datatype informa-
tion.

Note: Depending on the number of user-defined datatypes that
exist in the database to which the connection is being obtained,
the time it takes to establish the connection may increase.

Default value is false.

This property is dynamic.

Programming Information

Programmers Reference 11

Property Description

CANCEL_ALL Specifies the behavior of the Statement.cancel meth-

od:

• If CANCEL_ALL is false, invoking State-
ment.cancel cancels only the Statement object

on which it is invoked. Thus, if stmtA is a Statement
object, stmtA.cancel cancels the execution of the

SQL statement contained in stmtA in the database, but no

other statements are affected. stmtA is canceled whether

it is in cache waiting to execute or has started to execute and
is waiting for results.

• If CANCEL_ALL is true, invoking State-
ment.cancel cancels not only the object on which it is

invoked, but also any other Statement objects on the

same connection that have executed and are waiting for
results.

This example sets CANCEL_ALL to false. props is a Prop-
erties object for specifying connection properties:

props.put("CANCEL_ALL", "false");

To cancel the execution of all Statement objects on a con-

nection, regardless of whether or not they have begun execution
on the server, use the extension method SybConnec-
tion.cancel.

Default values are:

• true – for JCONNECT_VERSION <= “3”

• false – for JCONNECT_VERSION >= “4”

This property is static.

Programming Information

12 jConnect for JDBC

Property Description

CAPABILITY_TIME Used only when JCONNECT_VERSION >= 6. When jCon-

nect is connected to a server that supports the TIME datatype,

and all parameters of type java.sql.Time or escape
literals {t ...} are processed as TIME. Versions of

jConnect earlier than 6.0 treat such parameters as DATETIME
and prepend '1970-01-01' to the java.sql.Time parame-

ter. If the underlying datatype is datetime or small-
datetime the date part also gets stored in the database. In

jConnect 6.0 or later, when TIME is processed, the server

converts time to the underlying datatype and prepends its own
base year. This result in incompatibilities between old and new
data. If you are using datetime or smalldatetime
datatypes for java.sql.Time, then for backward com-

patibility, leave CAPABILITY_TIME as false. Leaving this

property as false forces jConnect to process
java.sql.Time parameters or escape literals
{t ...} as DATETIME regardless of the server capability

of handling TIME datatype. Setting this property to true causes

jConnect to process java.sql.Time parameters as

TIME datatype when connected to Adaptive Server. Sybase

recommends that you leave this property as false if you are
using smalldatetime or datetime columns to store

time values.

Default value is false.

This property is static.

CAPABILITY_ WIDETABLE If you do not require JDBC ResultSetMetaData like

Column name as a performance improvement, set this property
to false. The result is that less data is exchanged over the net-
work, which improves performance. Unless you are using
EAServer, Sybase recommends that you use the default setting.

Default value is false.

This property is static.

Programming Information

Programmers Reference 13

Property Description

CHARSET Specifies the character set for strings passed to the database. If
the CHARSET value is null, jConnect uses the default char-

acter set of the server to send string data to the server. If you

specify a CHARSET, the database must be able to handle

characters in that format. If the database cannot do so, a mes-
sage is generated indicating that character conversion cannot
be properly completed.

If you are using jConnect 6.05 or later and the DISA-
BLE_UNICHAR_SENDING is set to false, jConnect de-

tects when a client is trying to send characters to the server that
cannot be represented in the character set that is being used for
the connection. When that occurs, jConnect sends the character
data to the server as unichar data, which allows clients to

insert Unicode data into unichar/univarchar columns

and parameters.

Default value is null.

This property is static.

CHARSET_ CONVERT-
ER_CLASS

Specifies the character set converter class you want jConnect to
use. jConnect uses the version setting from SybDriv-
er.setVersion, or the version passed in with the

JCONNECT_VERSION property, to determine the default

character-set converter class to use.

Default value is version dependent.

This property is static.

CLASS_LOADER A property you set to an DynamicClassLoader object that you
create. The DynamicClassLoader loads Java classes that are
stored in the database but are not in the CLASSPATH at ap-
plication start-up time.

Default value is null.

This property is static.

CONNECTION_ FAILOVER Used with the Java Naming and Directory Interface (JNDI).

Default value is true.

This property is static.

Programming Information

14 jConnect for JDBC

Property Description

CRC When this property is set to true, the update counts that are
returned are cumulative counts that include updates directly
affected by the statement executed and any triggers invoked as
a result of the statement being executed.

Default value is false.

This property is static.

DATABASE Use this property to specify the database name for a connection
when the connection information is obtained from a Sybase
interfaces file. The URL of an interfaces file

cannot supply the database name.

Default value is null.

This property is static.

DEFAULT_QUERY_ TIMEOUT When this connection property is set, it is used as the default
query timeout for any statements created on this connection.

Default value is 0 (no timeout).

This property is dynamic.

DELETE_WARN-
INGS_FROM_EXCEP-
TION_CHAIN

Specifies whether to retain or remove SQLWarning from the
SQLException chain.

Values:

• true – jConnect removes SQLWarning objects from the
SQLException chain.

• false – jConnect retains the SQLWarning objects in the
SQLException chain.

Default value is true.

This property is static.

DISABLE_UNICHAR_ SEND-
ING

When a client application sends unichar characters to the

server (along with non-unichar characters), there is a slight

performance hit for any character data sent to the database. This
property defaults to false in jConnect 6.05 and later. Clients
using older versions of jConnect who want to send unichar
data to the database must set this property to false.

Default value is version dependent.

This property is static.

Programming Information

Programmers Reference 15

Property Description

DISABLE_ UNPROCESSED_
PARAM_WARNINGS

Disables warnings. During results processing for a stored pro-
cedure, jConnect often reads return values other than row data.
If you do not process the return value, jConnect raises a warn-
ing. To disable these warnings (which might improve perform-
ance), set this property to true.

Default value is false.

This property is static.

DYNAMIC_PREPARE Determines whether dynamic SQL prepared statements are
precompiled in the database.

Default value is true.

This property is dynamic.

EARLY_BATCH_
READ_THRESHOLD

Specifies the number of rows after which a reader thread should
be started to drain out the server responses for a batch.

Set this value to -1 if the early read is never required.

Default value is -1.

This property is static.

ENABLE_BULK_ LOAD Specifies whether to use bulk load to insert rows to the data-
base.

Valid values are:

• null – disables bulk load.

• ARRAYINSERT_WITH_MIXED_STATEMENTS – en-
ables bulk load with row-level logging and allows your
application to execute other statements during the bulk-
load operation.

• ARRAYINSERT – enables bulk load with row-level log-
ging, but your application cannot execute other statements
during the bulk-load operation.

• BCP – enables bulk load with page-level logging; your
application cannot execute other statements during the
bulk-load operation.

• LOG_BCP – same as BCP except the complete transaction
is dumped for possible full recovery.

Default value is null.

This property is dynamic.

Programming Information

16 jConnect for JDBC

Property Description

ENABLE_LOB_ LOCATORS Specifies whether jConnect should create a client-side materi-
alized LOB or server-side LOB locator.

Valid values are:

• false – jConnect uses client-side materialized LOBs. That
is, the entire LOB data is processed and cached on the client
side.

• true – works only when autocommit is set to false, other-
wise internally, the value changes to false. When set to true,
server locators are used instead of storing the LOB data on
client side.

Default value is false.

This property is dynamic.

ENABLE_SERVER_ PACKET-
SIZE

Specifies if the connection packet size is set to the value sug-
gested by the server. If true, the driver does not use PACK-
ETSIZE connection property, and the server is free to use any

value between 512 and the maximum packet size. If false, the
PACKETSIZE connection property is used.

Default value is true.

This property is static.

ENCRYPT_ PASSWORD Allows a secure login. When this property is true, both login
and remote site passwords are encrypted before being sent to
the server. Passwords are no longer sent in clear text.

ENCRYPT_PASSWORD has precedence over RE-
TRY_WITH_NO_ENCRYPTION.

Default value is false.

This property is static.

Programming Information

Programmers Reference 17

Property Description

ESCAPE_ PROCESSING_ DE-
FAULT

Circumvents processing of JDBC function escapes in SQL
statements. By default, jConnect parses all SQL statements
submitted to the database for valid JDBC function escapes. If
your application is not going to use JDBC function escapes in
its SQL calls, you can set this connection property to false to
avoid this processing, which might provide a slight perform-
ance benefit.

Additionally, ESCAPE_PROCESSING_DEFAULT helps

with back-end servers such as Sybase IQ that use curly braces
as part of the SQL syntax.

Default value is true.

This property is static.

EXECUTE_BATCH_ PAST_ER-
RORS

Specifies whether jConnect allows a batch update operation to
ignore nonfatal errors encountered while executing individual
statements and to complete the batch update, or aborts the batch
update operation.

Valid values are:

• true – allows a batch update operation to ignore nonfatal
errors encountered and to complete the batch update.

• false – aborts a batch update when a nonfatal error is en-
countered.

Default value is false.

This property is static.

EXPIRESTRING Contains the license expiration date. Expiration is set to

Never except for evaluation copies of jConnect.

Default value is never.

This property is static and read-only.

Programming Information

18 jConnect for JDBC

Property Description

FAKE_METADATA Returns fake metadata. When you call the ResultSetMe-
taData methods getCatalogName, getSche-
maName, and getTableName and this property is true,

the call returns empty strings ("") because the server does not
supply useful metadata.

When this property is false, calling these methods throws a
“Not Implemented” SQLException.

If you have enabled wide tables and are using an Adaptive
Server 12.5 or later, this property setting is ignored because the
server supplies useful metadata.

Default value is false.

This property is static.

GET_BY_NAME_ USES_COL-
UMN_ LABEL

Provides backward compatibility with versions of jConnect
earlier than 6.0.

With Adaptive Server version 12.5 and later, jConnect has ac-
cess to more metadata than was previously available. Prior to
version 12.5, column name and column alias
meant the same thing. jConnect can now differentiate between
the two when used with a 12.5 or later Adaptive Server with
wide tables enabled.

To preserve backward compatibility, set this property to true. If
you want calls to getByte, getInt, get* (String
columnName) to look at the actual name for the column, set

this property to false.

Default value is true.

This property is static.

Programming Information

Programmers Reference 19

Property Description

GET_COLUMN_ LA-
BEL_FOR_NAME

Maintains backward compatibility with jConnect 5.5 or earlier,
where a call to ResultMetaData.getColumnName
returns the column label rather than the column name.

Valid values are:

• true – ResultMetaData.getColumnName re-

turns column label.

• false – ResultMetaData.getColumnName re-

turns column name.

Default value is false.

This property is static.

GSSMANAGER_ CLASS Specifies a third-party implementation of the
org.ietf.jgss.GSSManager class.

You can set this property to a string or a GSSManager ob-

ject.

If you set the property to a string, the value should be the fully
qualified class name of the third-party GSSManager imple-
mentation. If you set the property to an object, the object must
extend the org.ietf.jgss.GSSManager class.

Default value is null.

This property is static.

HOMOGENEOUS_ BATCH Invokes the Adaptive Server optimized batching protocol to
speed up batch operations for PreparedStatement ob-

jects.

Valid values are:

• true – optimized batching protocol is used.

• false – unoptimized batching protocol is used even if jCon-
nect is connected to an Adaptive Server that supports new
optimized batching protocol.

Default value is true.

This property is dynamic.

Programming Information

20 jConnect for JDBC

Property Description

HOSTNAME Identifies the name of the current host.

Default value is none. The max length is 30 characters and, if
exceeded, it is truncated to 30.

This property is static.

HOSTPROC Identifies the application process on the host machine.

Default value is none.

This property is static.

IGNORE_DONE_IN_ PROC Intermediate update results (as in stored procedures) are not
returned; only the final result set is.

Default value is false.

This property is static.

IGNORE_WARNINGS Specifies whether or not to check for and generate warning
messages. This property checks only for warnings regarding
the loss of precision when storing timestamp values into Adap-
tive Server date and time datatypes, which have lower

precision than the Java timestamp.

Valid values are:

• true – jConnect does not check for and generate warning
messages, thus improving performance.

• false – the default value, which directs jConnect to check
and generate warning messages.

Before setting IGNORE_WARNINGS to true, thoroughly

test the impact of such a configuration on your application.

Default value is false.

This property is static.

IMPLICIT_CURSOR_
FETCH_SIZE

Use this property with the SELECT_OPENS_CURSOR
property to force jConnect to open a read-only cursor on every
select query that is sent to the database. The cursor has a fetch
size of the value set in this property, unless overridden by the
Statement.setFetchSize method.

Default value is 0.

This property is static.

Programming Information

Programmers Reference 21

Property Description

INTERNAL_QUERY_ TIMEOUT Use this property to set the query timeout used by statements
internally created and executed by jConnect. This may prevent
application failures if internal commands do not complete in a
reasonable time.

Default value is 0(no timeout).

This property is dynamic.

IS_CLOSED_TEST Allows you to specify what query, if any, is sent to the database
when Connection.isClosed is called.

Default value is null.

This property is static.

J2EE_TCK_ COMPLIANT When this property is true, the jConnect driver enables behav-
ior that is compliant with the J2EE 1.4 technology compati-
bility kit (TCK) test suite, which causes some loss of perform-
ance. Therefore, Sybase recommends using the default value of
false.

Default value is false.

This property is static.

JAVA_CHARSET_ MAPPING Specifies a user-defined character set mapping that supersedes
the default Adaptive Server character set mapping.

Default value is none.

This property is static.

JCE_PROVIDER_ CLASS Specifies the Java Cryptography Extension (JCE) provider
used in RSA encryption algorithms.

Default value is bundled JCE provider.

This property is static.

JCONNECT_VERSION Sets version-specific characteristics.

Default value is 7.

This property is static.

Programming Information

22 jConnect for JDBC

Property Description

LANGUAGE Specifies the language in which messages from jConnect and
the server appear. The setting must match a language in sy-
slanguages because server messages are localized ac-

cording to the language setting in your local environment. The
languages supported are Chinese, US English, French, Ger-
man, Japanese, Korean, Polish, Portuguese, and Spanish.

Default value is version dependent.

This property is static.

LANGUAGE_ CURSOR Determines that jConnect uses language cursors instead of
protocol cursors.

Default value is false.

This property is static.

LITERAL_PARAMS When true, any parameters set by the setXXX methods in the

PreparedStatement interface are inserted literally into

the SQL statement when it is executed.

If false, parameter markers are left in the SQL statement and the
parameter values are sent to the server separately.

Default value is false.

This property is static.

NEWPASSWORD Specifies the new password used in password expiration han-
dling.

Default value is null.

This property is static.

Programming Information

Programmers Reference 23

Property Description

OPTIMIZE_FOR_ PERFORM-
ANCE

Specifies whether or not to enable jConnect performance-en-
hancing properties. This property controls only the IG-
NORE_WARNINGS property.

Valid values are:

• true – jConnect runs in enhanced performance mode.

• false – the default value, which means that jConnect runs in
normal mode.

Before setting OPTIMIZE_FOR_PERFORMANCE to true,

thoroughly test the impact of such a configuration on your
application.

Default value is false.

This property is static.

OPTIMIZE_STRING_ CONVER-
SIONS

Specifies whether or not to enable string conversion optimiza-
tion.

This optimization behavior might improve jConnect perform-
ance when a client uses character datatypes in SQL prepared
statements.

Valid values are:

• 0 – string conversion optimization is not enabled.

• 1 – enables string conversion optimization when jConnect
uses UTF8 or server default character set.

• 2 – enables string conversion optimization for all cases.

Default value is 0.

This property is static.

PACKETSIZE Identifies the network packet size. If you are using Adaptive
Server 15.0 or later, Sybase recommends that you do not set this
property, and allow jConnect and Adaptive Server to select the
network packet size that is appropriate for your environment.

Default value is 512.

This property is static.

Programming Information

24 jConnect for JDBC

Property Description

PASSWORD Identifies the login password.StringString.

Set automatically if using the getConnec-
tion(String, String, String), method, or

explicitly if using getConnection(String,
Props).

Default value is none.

This property is static.

PRELOAD_JARS Contains a comma-separated list of .jar file names that are

associated with the CLASS_LOADER that you specify.

These .jar files are loaded at connect time, and are available

for use by any other connection using the same jConnect driver.

Default value is null.

This property is static.

PROMPT_FOR_ NEWPASS-
WORD

Specifies whether to perform a transparent password change or
to prompt for the new password.

Valid values are:

• true – prompts you to manually set the new password.

• false – jConnect checks the value of NEWPASSWORD
and, if it is not null, uses this value to replace the expired
password.

Default value is false.

This property is static.

PROTOCOL_ CAPTURE Specifies a file for capturing TDS communication between an
application and an Adaptive Server.

Default value is null.

This property is dynamic.

PROXY Specifies a gateway address. For the HTTP protocol, the URL
is http://host:port.

To use the HTTPS protocol that supports encryption, the URL
is https://host:port/servlet_alias.

Default value is none.

This property is static.

Programming Information

Programmers Reference 25

Property Description

QUERY_TIMEOUT_ CAN-
CELS_ALL

Forces jConnect to cancel all statements on a connection when
a read timeout is encountered. This behavior can be used when
a client has calls execute() and the timeout occurs be-

cause of a deadlock (for example, trying to read from a table
that is currently being updated in another transaction).

Default value is false.

This property is dynamic.

RELEASE_LOCKS_ON_CUR-
SOR_ CLOSE

Specifies whether Adaptive Server releases shared read-only
cursor locks at isolation levels 2 and 3 when a cursor is closed:

• false – does not enable shared cursor locks release on close.

• true – enables shared cursor locks release on close.

Default value is false.

This property is static.

REMOTEPWD Contains remote server passwords for access through server-
to-server remote procedure calls.

Default value is none.

This property is static.

REPEAT_READ Determines whether the driver keeps copies of columns and
output parameters so that columns can be read out of order or
repeatedly.

Default value is true.

This property is static.

Programming Information

26 jConnect for JDBC

Property Description

REQUEST_HA_ SESSION Indicates whether the connecting client wants to begin a high
availability (HA) failover session.

You cannot reset the property once a connection has been
made. For additional flexibility for requesting failover ses-
sions, code the client application to set RE-
QUEST_HA_SESSION at runtime.

Setting this property to true causes jConnect to attempt a fail-
over login. If you do not set this connection property, a failover
session does not start, even if the server is configured for fail-
over.

Default value is false.

This property is static.

REQUEST_ KERBEROS_SES-
SION

Determines whether jConnect uses Kerberos for authentica-
tion. If you set this property to true, you must also enter a value
for the SERVICE_PRINCIPAL_NAME property.

You may also want to provide a value for the GSSMANAG-
ER_CLASS property.

Default value is false.

This property is static.

RETRY_WITH_NO_ ENCRYP-
TION

Allows server to retry logging in using clear text passwords.

When both ENCRYPT_PASSWORD and RE-
TRY_WITH_NO_ENCRYPTION properties are set to true,

jConnect first logs in using the encrypted password. If login
fails, jConnect logs in using the clear text password.

Default value is false.

This property is static.

RMNAME Sets the Resource Manager name when using distributed trans-
actions (XA). This property overrides a Resource Manager
name that may be set in an LDAP server entry.

Default value is null.

This property is static.

Programming Information

Programmers Reference 27

Property Description

SECONDARY_ SERVER_HOST-
PORT

Sets the host name and port for the secondary server when the
client is using an HA failover session. The value for this prop-
erty should be in the form of hostName:portNumber.

This property is ignored unless you have also set RE-
QUEST_HA_SESSION to true.

Default value is null.

This property is static.

SELECT_OPENS_ CURSOR Determines whether calls to Statement.execute-
Query automatically generate a cursor when the query con-

tains a FOR UPDATE clause.

If you have previously called Statement.setFetch-
Size or Statement.setCursorName on the same

statement, a setting of true for SELECT_OPENS_CURSOR
has no effect.

You may experience some performance degradation when
SELECT_OPENS_CURSOR is set to true.

Default value is false.

This property is static.

SEND_BATCHPARAMS_IMME-
DIATE

Specifies whether jConnect sends the parameters for the cur-
rent row immediately after invoking PreparedState-
ment.addBatch() or only after invoking Prepar-
edStatement.executeBatch().

• true – jConnect sends the parameters for the current row
immediately after invoking PreparedState-
ment.addBatch(). This minimizes usage of client

memory and gives the server more time to process the batch
parameters.

• false – jConnect sends the batch parameters only after in-
voking PreparedStatement.execute-
Batch().

Default value is false.

This property is dynamic.

Programming Information

28 jConnect for JDBC

Property Description

SERIALIZE_ REQUESTS Determines whether jConnect waits for responses from the
server before sending additional requests.

Default value is false.

This property is static.

SERVER_INITIATED_ TRANS-
ACTIONS

Allows the server to control transactions. By default the prop-
erty is set to true and jConnect lets the server start and control
transactions by using the Transact-SQL command set chained

on. If set to false, the transactions are started and controlled by
jConnect by using the Transact-SQL command begin tran.
Sybase recommends that you allow the server to control the
transactions.

Default value is true.

This property is static.

SERVICENAME Indicates the name of a back-end database server that a Di-
rectConnect gateway serves. Also used to indicate which da-
tabase to use upon connecting to SQL Anywhere.

Default value is none.

This property is static.

SERVERTYPE When connected to OpenSwitch, set this property to OSW,
which allows jConnect to send certain instructions to Open-
Switch that allows OpenSwitch to remember initial connection
settings for example, isolation level, textsize, quoted identifier
and autocommit when OpenSwitch redirects a connection to a
different server instance.

Default value is none.

This property is static.

Programming Information

Programmers Reference 29

Property Description

SERVICE_ PRINCIPAL_NAME Used when establishing a Kerberos connection to Adaptive
Server. The value of this property should correspond both to the
server entry in your key distribution center (KDC) and to the
server name under which your database is running.

The value of the SERVICE_PRINCIPAL_NAME property

is ignored if the REQUEST_KERBEROS_SESSION
property is set to false.

Default value is null.

This property is static.

SESSION_ID A TDS session ID. When this property is set, jConnect assumes
that an application is trying to resume communication on an
existing TDS session held open by the TDS-tunnelling gate-
way. jConnect skips the login negotiations and forwards all
requests from the application to the specified session ID.

Default value is null.

This property is static.

SESSION_TIMEOUT Specifies the amount of time, in seconds, that an HTTP-tun-
nelled session (created using the jConnect TDS-tunnelling
servlet) remains alive while idle. After the specified time, the
connection is automatically closed.

Default value is null.

This property is static.

Programming Information

30 jConnect for JDBC

Property Description

SETMAXROWS_ AFFECTS_SE-
LECT_ ONLY

Specifies whether setMaxRows limits only the rows re-

turned by select statements to be consistent with the JDBC
specification.

Valid values are:

• true – Statement.setMaxRows(int max)
limits only the number of rows returned as a result of the
select statements.

• false – Statement.setMaxRows(int max)
limits the number of rows returned as a result of the select,
insert, update, and delete statements.

SETMAXROWS_AFFECTS_SELECT_ONLY is ignored

when connected to Adaptive Server 15.5 or earlier.

Default value is true.

This property is static.

SQLINITSTRING Defines a set of commands to be passed to the database server
when a connection is opened. These must be SQL commands
that can be executed using the Statement.execu-
teUpdate method.

Default value is null.

This property is static.

STREAM_CACHE_ SIZE Specifies the maximum size used to cache statement response
streams.

Default value is null (unlimited cache size).

This property is dynamic.

STRIP_BLANKS Forces the server to remove the preceding and trailing blanks in
a string value before storing it in the table.

Valid values are:

• false – string values sent by the client are stored as is.

• true – preceding and trailing blanks in a string value are
removed before storing it in the table.

Default value is false.

This property is static.

Programming Information

Programmers Reference 31

Property Description

SUPPRESS_ CONTROL_TOKEN Suppresses control tokens.

Valid values are:

• false – control tokens are sent.

• true – control tokens are suppressed.

Default value is false.

This property is static.

SUPPRESS_PARAM_ FORMAT When executing dynamic SQL prepared statements, jConnect
client can use the SUPPRESS_PARAM_FORMAT connec-

tion string property to suppress parameter format metadata.
The client sends less parameter metadata where possible for
better performance.

Valid values are:

• false – parameter format metadata is not suppressed in
select, insert, and update operations.

• true – the default value; parameter format metadata is sup-
pressed where possible.

Default value is true.

This property is static.

SUPPRESS_ROW_ FORMAT In jConnect, client can use the SUPPRESS_ROW_FORMAT
connection string property to force Adaptive Server to send
TDS_ROWFMT or TDS_ROWFMT2 data only when the row
format changes for a dynamic SQL prepared statement. Adap-
tive Server can send less data to the client if possible, resulting
in better performance.

Valid values are:

• false – TDS_ROWFMT or TDS_ROWFMT2 data is sent,
even if the row format has not changed.

• true – the default; forces the server to send
TDS_ROWFMT or TDS_ROWFMT2 only when the row
format has changed.

Default value is true.

This property is static.

Programming Information

32 jConnect for JDBC

Property Description

SUPPRESS_ROW_ FORMAT2 Specifies that Adaptive Server is to send data using the
TDS_ROWFMT byte sequence where possible instead of the
TDS_ROWFMT2 byte sequence.

Valid values are:

• false – the default value; TDS_ROWFMT2 is not sup-
pressed.

• true – forces the server to send data in TDS_ROWFMT
where possible.

When connected to Adaptive Server 15.7 ESD #1 or later, use
the SUPPRESS_ROW_FORMAT connection property in-

stead.

Default value is false.

This property is static.

SYBSOCKET_ FACTORY Enables jConnect to use your custom socket implementation.

Set SYBSOCKET_FACTORY either to:

• The name of a class that implements com.syb-
ase.jdbcx.SybSocketFactory; or

• DEFAULT, which instantiates a new
java.net.Socket()

Use this property to make an SSL connection to your database.

Default value is null.

This property is static.

TEXTSIZE Allows you to set the text size. By default, Adaptive Server and
SQL Anywhere allow 32,627 bytes to be read from an image or
text column. If you have the jConnect Meta Data tables instal-
led, jConnect changes that value to 2GB. However, setting this
value when connected to OpenSwitch allows the connection to
remember the setting when OpenSwitch redirects a connection
to a different server instance.

Default value is 2GB.

This property is static.

Programming Information

Programmers Reference 33

Property Description

USE_METADATA Creates and initializes a DatabaseMetaData object

when you establish a connection. The DatabaseMeta-
Data object is necessary to connect to a specified database.

jConnect uses DatabaseMetaData for some features,

including Distributed Transaction Management support (JTA/
JTS) and dynamic class loading (DCL).

If you receive error 010SJ, which indicates that your applica-
tion requires metadata, install the stored procedures for return-
ing metadata that come with jConnect. See Installing Stored
Procedures in the jConnect for JDBC Installation Guide.

Default value is true.

This property is static.

USER Specifies the login ID.

Set automatically if using the getConnec-
tion(String, String, String) method, or ex-

plicitly if using getConnection(String,
Props).

Default value is none.

This property is static.

VERSIONSTRING Provides read-only version information for the JDBC driver.

Default value is jConnect driver version.

This property is static.

See also
• DYNAMIC_PREPARE Connection Property on page 140
• Password Encryption on page 85
• Security on page 109
• Optimized Batch in jConnect on page 142
• Cursor Performance on page 143
• Failover Support on page 49
• Wide Table Support for Adaptive Server on page 53
• CONNECTION_FAILOVER Property on page 40
• Large Object Locator Support on page 75
• Use Connection.isClosed and IS_CLOSED_TEST on page 105
• Supersede Default Character Set Mapping on page 47

Programming Information

34 jConnect for JDBC

• JCONNECT_VERSION Connection Property on page 4
• Release Locks at Cursor Close on page 61
• TDS tunnelling on page 149
• Using DynamicClassLoader on page 91
• Using jConnect to Pass Unicode Data on page 42
• Selecting a Character Set Converter on page 44
• Preloading .jar Files on page 94

Connect to Adaptive Server
In Java application, define a URL using the jConnect driver to connect to an Adaptive Server.

The basic format of the URL is:
jdbc:sybase:Tds:host:port

where:

• jdbc:sybase identifies the driver.
• Tds is the Sybase communication protocol for Adaptive Server.
• host:port is the Adaptive Server host name and listening port. See $SYBASE/

interfaces (UNIX) or %SYBASE%\ini\sql.ini (Windows) for the entry that
your database or Open Server application uses. Obtain the host:port from the query entry.

You can connect to a specific database using this format:
jdbc:sybase:Tds:host:port/database

Note: Connect to a specific database using SQL Anywhere or DirectConnect. Use the
SERVICENAME connection property to specify the database name instead of “/database.”

This code creates a connection to an Adaptive Server on host “myserver” listening on port
3697:
SysProps.put("user","userid");
SysProps.put("password","user_password");
String url = "jdbc:sybase:Tds:myserver:3697";
Connection_con =
 DriverManager.getConnection(url,SysProps);

URL Connection Property Parameters
Specify the values for the jConnect driver connection properties when you define a URL.

Note: Driver connection properties set in the URL do not override any corresponding
connection properties set in the application using the
DriverManager.getConnection method.

Set a connection property in the URL, append the property name and its value to the URL
definition. Use this syntax:
jdbc:sybase:Tds:host:port/database?
 property_name=value

Programming Information

Programmers Reference 35

Set multiple connection properties, append each additional connection property and value,
preceded by “&.” For example:
jdbc:sybase:Tds:myserver:1234/mydatabase?
 LITERAL_PARAMS=true&PACKETSIZE=512&HOSTNAME=myhost

If the value for one of the connection properties contains “&,” precede the “&” in the
connection property value with a backslash (\). For example, if your host name is “a&bhost,”
use this syntax:
jdbc:sybase:Tds:myserver:1234/mydatabase?
 LITERAL_PARAMS=true&PACKETSIZE=512&HOSTNAME=
 a\&bhost

Do not use quotes for connection property values, even if they are strings. For example, use:
HOSTNAME=myhost

not:
HOSTNAME="myhost"

Use the sql.ini and Interfaces File Directory Services
Use sql.ini file for Windows and the interfaces file for UNIX to provide server
information for jConnect for JDBC.

By using the sql.ini or interfaces file, enterprises can centralize the information
about the services available in the enterprise networks including Adaptive Server information.

Use the connection string to identify the sql.ini or interfaces file. On jConnect for
JDBC, you can connect to only a single Directory Services URL (DSURL).

Connection String for Single DSURL for jConnect
When connecting to a DSURL, you must specify the path to the sql.ini or interfaces
file and the server name.

If you do not to set the path, jConnect returns an error.

This specifies the path to the sql.ini file:

String url = "jdbc:sybase:jndi:file://D:/syb1252/ini/mysql.ini?
myaseISO1”

where:

• server name = myaseISO1
• sql.ini file path = file://D:/syb1252/ini/sql.ini?
This specifies the path to the interfaces file:

String url = "jdbc:sybase:jndi:file:///work/sybase/interfaces?myase"

where:

• server name = myase

Programming Information

36 jConnect for JDBC

• interfaces file path = file:///work/sybase/interfaces

Format of sql.Ini and Interfaces Files for SSL
Review the format of sql.ini and interfaces files for SSL.

Format for sql.ini file for SSL:

[SYBSRV2]
master=nlwnsck,mango1,4100,ssl
query=nlwnsck,mango1,4100,ssl
query=nlwnsck,mango1,5000,ssl

The format for the interfaces file is:
sybsrv2
master tcp ether mango1 5000 ssl
query tcp ether mango1 4100 ssl
query tcp ether mango1 5000 ssl

Note: jConnect supports multiple query entries under the same server name in the sql.ini
or interfaces file. jConnect attempts to connect to values for host or port from the
query entry in the sequence, as in the sql.ini or interfaces file. If jConnect finds a SSL
in a query entry, it requires the application to be coded to handle SSL connections by
specifying an application specific socket factory, or the connection may fail.

Connecting to a Server Using JNDI
In jConnect, use the Java Naming and Directory Interface (JNDI) to provide connection
information.

jConnect provides:

• A centralized location where you can specify host names and ports for connecting to a
server. You do not need to hard-code a specific host and port number in an application.

• A centralized location where you can specify connection properties and a default database
for all applications to use.

• The jConnect CONNECTION_FAILOVER property for handling unsuccessful
connection attempts. When CONNECTION_FAILOVER is true, jConnect attempts to
connect to a sequence of host/port server addresses in the JNDI name space until one
succeeds.

Using jConnect with JNDI, make sure that certain information is available in any directory
service that JNDI accesses and that required information is set in the
javax.naming.Context class.

See also
• Connection URL for Using JNDI on page 38

• Required Directory Service Information on page 38

• CONNECTION_FAILOVER Property on page 40

Programming Information

Programmers Reference 37

• Providing JNDI Context Information on page 40

Connection URL for Using JNDI
To specify that jConnect use JNDI to obtain connection information, place “jndi” as the URL
protocol after “sybase”.

For example:

jdbc:sybase:jndi:protocol-information-for-use-with-JNDI

Anything that follows “jndi” in the URL is handled through JNDI. For example, to use JNDI
with the Lightweight Directory Access Protocol (LDAP), you might enter:
jdbc:sybase:jndi:ldap://LDAP_hostname:port_number/servername=
 Sybase11,o=MyCompany,c=US

This URL tells JNDI to obtain information from an LDAP server, gives the host name and port
number of the LDAP server to use, and provides the name of a database server in an LDAP-
specific form.

Required Directory Service Information
Review the required directory service information when using JNDI with jConnect.

JNDI must return this information for the target database server:

• A host name and port number to connect to
• The name of the database to use
• Any connection properties that individual applications are not allowed to set on their own

Stores this information according to a fixed format in any directory service used for providing
connection information. The required format consists of a numerical object identifier (OID),
which identifies the type of information being provided (for example, the destination
database), followed by the formatted information.

Note: You can use the alias name to reference the attribute instead of the OID.

Table 4. Directory Service Information for JNDI

Attribute Description Alias OID (object_id)

Interfaces entry replacement in LDAP
directory services

sybaseServer 1.3.6.1.4.1.897.4.1.1

Collection point for sybaseServer
LDAP attributes

sybaseServer 1.3.6.1.4.1.897.4.2

Version sybaseVersion 1.3.6.1.4.1.897.4.2.1

Server name sybaseServer 1.3.6.1.4.1.897.4.2.2

Service sybaseService 1.3.6.1.4.1.897.4.2.3

Programming Information

38 jConnect for JDBC

Attribute Description Alias OID (object_id)

Status sybaseStatus 1.3.6.1.4.1.897.4.2.4

(Required)Address sybaseAddress 1.3.6.1.4.1.897.4.2.5

Security mechanism sybaseSecurity 1.3.6.1.4.1.897.4.2.6

Retry count sybaseRetryCount 1.3.6.1.4.1.897.4.2.7

Loop delay sybaseRetryDelay 1.3.6.1.4.1.897.4.2.8

(Required)jConnect connection pro-
tocol

sybaseJconnectProtocol 1.3.6.1.4.1.897.4.2.9

(Required)jConnect connection prop-
erty

sybaseJconnectProperty 1.3.6.1.4.1.897.4.2.10

(Required)Database name sybaseDatabasename 1.3.6.1.4.1.897.4.2.11

High availability failover servername sybaseHAservername 1.3.6.1.4.1.897.4.2.15

ResourceManager name sybaseResourceManagerName 1.3.6.1.4.1.897.4.2.16

ResourceManager type sybaseResourceManagerType 1.3.6.1.4.1.897.4.2.17

JDBCDataSource interface sybaseJdbcDataSource- Inter-
face

1.3.6.1.4.1.897.4.2.18

ServerType sybaseServerType 1.3.6.1.4.1.897.4.2.19

These examples show connection information entered for the database server “SYBASE11”
under an LDAP directory service. You can use either the OID or the alias.

• Example 1 – uses the attribute OID:
dn: servername=SYBASE11,o=MyCompany,c=US
 servername:SYBASE11
1.3.6.1.4.1.897.4.2.5:TCP#1#giotto 1266
1.3.6.1.4.1.897.4.2.5:TCP#1#giotto 1337
1.3.6.1.4.1.897.4.2.5:TCP#1#standby1 4444
1.3.6.1.4.1.897.4.2.10:REPEAT_READ=false&
 PACKETSIZE=1024
 1.3.6.1.4.1.897.4.2.10:CONNECTION_FAILOVER=true
 1.3.6.1.4.1.897.4.2.11:pubs2
 1.3.6.1.4.1.897.4.2.9:Tds

• Example 2 – uses the attribute alias, which is not case sensitive:
dn: servername=SYBASE11,o=MyCompany,c=US
 servername:SYBASE11
sybaseAddress:TCP#1#giotto 1266
sybaseAddress:TCP#1#giotto 1337
sybaseAddress:TCP#1#standby1 4444
sybaseJconnectProperty:REPEAT_READ=false&
 PACKETSIZE=1024
sybaseJconnectProperty:CONNECTION_FAILOVER=true

Programming Information

Programmers Reference 39

sybaseDatabasename:pubs2
sybaseJconnectProtocol:Tds

In these examples, SYBASE11 can be accessed through either port 1266 or port 1337 on
host “giotto,” and accessed through port 4444 on host “standby1.” Two connection
properties, REPEAT_READ and PACKETSIZE, are set within one entry. The
CONNECTION_FAILOVER connection property is set as a separate entry. Applications
connecting to SYBASE11 are initially connected with the pubs2 database. You do not
need to specify a connection protocol, but if you do, you must enter the attribute as “Tds”,
not “TDS”.

CONNECTION_FAILOVER Property
CONNECTION_FAILOVER is a boolean-valued connection property you can use when
jConnect uses JNDI to get connection information.

If CONNECTION_FAILOVER is true (the default), jConnect makes multiple attempts to
connect to a server. If one attempt to connect to a host and port number associated with a server
fails, jConnect uses JNDI to get the next host and port number associated with the server and
attempts to connect through them. Connection attempts proceed sequentially through all the
hosts and ports associated with a server.

For example, if a database server is associated with these hosts and port numbers, as in the
earlier LDAP example:
1.3.6.1.4.1.897.4.2.5:TCP#1#giotto 1266
1.3.6.1.4.1.897.4.2.5:TCP#1#giotto 1337
1.3.6.1.4.1.897.4.2.5:TCP#1#standby 4444

To get a connection to the server, jConnect tries to connect to the host “giotto” at port 1266. If
this fails, jConnect tries port 1337 on “giotto.” If this fails, jConnect tries to connect to host
“standby1” through port 4444.

If CONNECTION_FAILOVER is false, jConnect attempts to connect to an initial host and port
number. If the attempt fails, jConnect throws a SQL exception and does not try again.

Providing JNDI Context Information
Be familiar with the JNDI specification to use jConnect with JNDI.

See the JNDI specification from Oracle Technology Network.

In particular, make sure that required initialization properties are set in
javax.naming.directory.DirContext when JNDI and jConnect are used
together. Set these properties either at the system level or at runtime.

The properties are:

• Context.INITIAL_CONTEXT_FACTORY – takes the fully qualified class name of
the initial context factory for JNDI to use. This determines the JNDI driver that is used with
the URL specified in the Context.PROVIDER_URL property.

Programming Information

40 jConnect for JDBC

http://www.oracle.com/technetwork/java/jndi/index.html

• Context.PROVIDER_URL – takes the URL of the directory service that the driver (for
example, the LDAP driver) is to access. The URL should be a string, such as “ldap://
ldaphost:427”.

This example shows how to set context properties at runtime and how to get a connection using
JNDI and LDAP. The INITIAL_CONTEXT_FACTORY context property is set to invoke the
Oracle implementation of an LDAP service provider. The Context.PROVIDER_URL
property is set to the URL of an LDAP directory service located on the host “ldap_server1” at
port 389.
Properties props = new Properties();

 /* We want to use LDAP, so INITIAL_CONTEXT_FACTORY is set to the
 * class name of an LDAP context factory. In this case, the
 * context factory is provided by Sun’s implementation of a
 * driver for LDAP directory service.
 */
 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");

 /* Now, we set PROVIDER_URL to the URL of the LDAP server that
 * is to provide directory information for the connection.
 */
 props.put(Context.PROVIDER_URL, "ldap://ldap_server1:389");

 /* Set up additional context properties, as needed. */
 props.put("user", "xyz");
 props.put("password", "123");

 /* get the connection */
 Connection con = DriverManager.getConnection
 ("jdbc:sybase:jndi:ldap://ldap_server1:389" +
 "/servername=Sybase11,o=MyCompany,c=US",props);

The connection string passed to getConnection contains LDAP-specific information,
which the developer must provide.

When JNDI properties are set at runtime, as in the preceding example, jConnect passes them to
JNDI to be used in initializing a server, as in this jConnect code:
javax.naming.directory.DirContext ctx =
 new javax.naming.directory.InitialDirContext(props);

jConnect then obtains the connection information it needs from JNDI by invoking
DirContext.getAtributes, as in this example, where ctx is a DirContext object:

javax.naming.directory.Attributes attrs =
 ctx.getAttributes("ldap://ldap_server1:389/servername=" +
 "Sybase11", SYBASE_SERVER_ATTRIBUTES);

SYBASE_SERVER_ATTRIBUTES is an array of strings defined within jConnect. The array
values are the OIDs for the required directory information listed in Required Directory
Service Information on page 38 .

Programming Information

Programmers Reference 41

Internationalization and Localization
Review the internationalization and localization issues relevant to jConnect.

Using jConnect to Pass Unicode Data
In Adaptive Server version 12.5 and later, database clients can take advantage of the
unichar and univarchar datatypes

The two datatypes allow for the efficient storage and retrieval of Unicode data, allowing users
to designate database table columns to store Unicode data, regardless of the default character
set of the server.

Quoting from the Unicode Standard, version 2.0:
The Unicode Standard is a fixed-width, uniform encoding scheme for
encoding characters and text. The repertoire of this international
character code for information processing includes characters for the
major scripts of the world, as well as technical symbols in common.
The Unicode character encoding treats alphabetic characters,
ideographic characters, and symbols identically, which means they can
be used in any mixture and with equal facility. The Unicode Standard
is modeled on the ASCII character set, but uses a 16-bit encoding to
support full multilingual text.

Note: In Adaptive Server version 12.5 through 12.5.0.3, the server was required to use a
default character set of utf-8 to use the Unicode datatypes. However, in Adaptive Server 12.5.1
and later, database users can use unichar and univarchar without having to consider the
default character set of the server.

You can use the unichar and univarchar datatypes anywhere that you can use char and
varchar character datatypes, without having to make syntax changes.

• unichar – use n to specify the number of Unicode characters (the amount of storage
allocated is 2 bytes per character).

• univarchar – usen to specify the maximum length in characters for the variable-length
datatypes.

When the server accepts unichar and univarchar data, jConnect behaves as follows:

• For all character data that a client sends to the server—for example, using
PreparedStatement.setString (int column, String value)—
jConnect determines if the string can be converted to the default character set of the server.

• If jConnect determines that the characters cannot be converted to the character set of the
server (for example, some characters cannot be represented), it sends the data to the server
encoded as unichar/univarchar data.

Programming Information

42 jConnect for JDBC

For example, if a client attempts to send a Unicode Japanese character to an Adaptive Server
12.5.1 that has iso_1 as the default character set, jConnect detects that the Japanese character
cannot be converted to an iso_1 character. jConnect then sends the string as Unicode data.

There is a performance penalty when a client sends unichar/univarchar data to a server,
because jConnect must perform character-to-byte conversion twice for all strings and
characters that do not map directly to the default character set of the server.

If you are using a jConnect version that is earlier than 6.05 and you want to use the unichar
and univarchar datatypes, you must:

1. Set the JCONNECT_VERSION = 6 or later.

2. Set the DISABLE_UNICHAR_SENDING connection property to false.

For more information on support for unichar and univarchar datatypes, see
Adaptive Server Enterprise Manuals.

See also
• JCONNECT_VERSION Connection Property on page 4

• Setting Connection Properties on page 8

jConnect Character Set Converters
There are two character set conversion classes. The conversion class that jConnect uses is
based on the JCONNECT_VERSION, CHARSET, and CHARSET_CONVERTER_CLASS
connection properties.

• The TruncationConverter class works only with single-byte character sets that use
ASCII characters such as iso_1 and cp850. It does not work with multibyte character sets
or single-byte character sets that use non-ASCII characters. The
TruncationConverter class is the default converter when JCONNECT_VERSION
is set to 2.
Using the TruncationConverter class, jConnect 7 handles character sets in the
same manner as jConnect version 2.2. The TruncationConverter class is the default
converter when the JCONNECT_VERSION = 2.

• The PureConverter class is a pure Java, multibyte character-set converter. jConnect
uses this class if the JCONNECT_VERSION = 4 or later. jConnect also uses this converter
when JCONNECT_VERSION = 2 if it detects a character set specified in the CHARSET
connection property that is incompatible with the TruncationConverter class.

Although it enables multibyte character-set conversions, the PureConverter class
may negatively impact jConnect driver performance.

See also
• Improving Character Set Conversion Performance on page 45

Programming Information

Programmers Reference 43

Selecting a Character Set Converter
jConnect uses the JCONNECT_VERSION to determine the default character-set converter
class to use.

For JCONNECT_VERSION = 2.0 or 3.0, the default is TruncationConverter. For
JCONNECT_VERSION = 4.0 or later, the default is PureConverter.

You can also set the CHARSET_CONVERTER_CLASS connection property to specify which
character-set converter you want jConnect to use. This is useful if you want to use a character-
set converter other than the default for your jConnect version.

For example, if you set JCONNECT_VERSION = 4.0 or later but want to use the
TruncationConverterclass rather than the multibyte PureConverter class, you can
set CHARSET_CONVERTER_CLASS:

...
 props.put("CHARSET_CONVERTER_CLASS",
 "com.sybase.jdbc4.charset.TruncationConverter")

Setting the CHARSET Connection Property
Specify the character set to use in your application by setting the CHARSET driver property.

If you do not set the CHARSET property:

• For JCONNECT_VERSION = 2.0, jConnect uses iso_1 as the default character set.

• For JCONNECT_VERSION = 3.0 through 6.05, jConnect uses the default character set of
the database, and adjusts automatically to perform any necessary conversions on the client
side.

• For jConnect versions starting with 6.05, if jConnect cannot successfully convert the user
data to the negotiated charset, it sends unconverted Unicode characters to the server if the
server supports the Unicode characters, otherwise, it throws an exception.

You can also use the -J charset command line option for the IsqlApp application to specify a
character set.

To determine which character sets are installed on your Adaptive Server, issue this SQL query
on your server:
select name from syscharsets
 go

For the PureConverter class, if the designated CHARSET does not work with the client
Java Virtual Machine (JVM), the connection fails with a SQLException, indicating that
you must set CHARSET to a character set that is supported by both Adaptive Server and the
client.

When the TruncationConverter class is used, character truncation is applied
regardless of whether the designated CHARSET is 7-bit ASCII or not. Therefore, if your

Programming Information

44 jConnect for JDBC

application must process non-ASCII data (for instance, any Asian languages), do not use
TruncationConverter, as this causes data corruption.

Improving Character Set Conversion Performance
If you use multibyte character sets and need to improve driver performance, you can use the
SunIoConverter class provided with the jConnect samples.

In addition, you can use TruncationConverter to improve performance if your
application deals with only 7-bit ASCII data.

See also
• SunIoConverter Character-Set Conversion on page 136

Supported Character Sets
Sybase character sets supported by jConnect, and the corresponding JDK byte converter for
each supported character set.

Although jConnect supports UCS-2, currently no Sybase databases or Open Servers support
UCS-2.

Adaptive Server versions 12.5 and later support a version of Unicode known as UTF-16
encoding.

Table 5. Supported Sybase Character Sets

SybCharset Name JDK Byte Converter

ascii_7 ASCII

big5 Big5

big5hk (for JDK 1.3 and above) Big5_HKSCS

cp037 Cp037

cp437 Cp437

cp500 Cp500

cp850 Cp850

cp852 Cp852

cp855 Cp855

cp857 Cp857

cp860 Cp860

cp863 Cp863

cp864 Cp864

Programming Information

Programmers Reference 45

SybCharset Name JDK Byte Converter

cp866 Cp866

cp869 Cp869

cp874 Cp874

cp932 MS932

cp936 GBK

cp949 Cp949

cp950 Cp950

cp1250 Cp1250

cp1251 Cp1251

cp1252 Cp1252

cp1253 Cp1253

cp1254 Cp1254

cp1255 Cp1255

cp1256 Cp1256

cp1257 Cp1257

cp1258 Cp1258

deckanji EUC_JP

eucgb EUC_CN

eucjis EUC_JP

eucksc EUC_KR

gb18030 GB18030

ibm420 Cp420

ibm918 Cp918

iso_1 ISO8859_1

iso88592 ISO8859-2

is088595 ISO8859_5

iso88596 ISO8859_6

iso88597 ISO8859_7

Programming Information

46 jConnect for JDBC

SybCharset Name JDK Byte Converter

iso88598 ISO8859_8

iso88599 ISO8859_9

iso15 ISO8859_15_FDIS

koi8 KOI8_R

mac MacRoman

mac_cyr MacCyrillic

mac_ee MacCentralEurope

macgreek MacGreek

macturk MacTurkish

sjis MS932

tis620 MS874

ucs2 Unicode

utf8 UTF8

Unsupported Character Sets
Some Sybase character sets are not supported in jConnect because no JDK byte converters are
analogous to the Sybase character sets.

• cp1047
• euccns
• greek8
• roman8
• roman9
• turkish8

You can use these character sets with the TruncationConverter class as long as the
application uses only the 7-bit ASCII subsets of these characters.

Supersede Default Character Set Mapping
Use the JAVA_CHARSET_MAPPING connection property to supersede the default Adaptive
Server character set mapping.

• Example – maps the server character set cp949 to ms949:
props.put("CHARSET", "cp949"); /* Server character set */
props.put("JAVA_CHARSET_MAPPING", "ms949"); /* Java character set
mapping */

Programming Information

Programmers Reference 47

Most of the Adaptive Server character sets have the same name as the Java character sets
that they are mapped to. See Supported Character Sets on page 45 for those character sets
that are mapped to a Java character set with a different name.

European Currency Symbol Support
jConnect supports the use of the European currency symbol, or “euro,” and its conversion to
and from UCS-2 Unicode.

The euro is included in these Sybase character sets: cp1250, cp1251, cp1252, cp1253, cp1254,
cp1255, cp1256, cp1257, cp1258, cp874, iso885915, and utf8.

To use the euro symbol:

• Use the PureConvertor or CheckPureConverter class, pure Java, multibyte
character-set converter.

• Verify that the new character sets are installed on the server.
• Select the appropriate character set on the client.

See also
• jConnect Character Set Converters on page 43

• Setting the CHARSET Connection Property on page 44

Database Issues
Review the database issues relevant to jConnect.

See also
• Support for Batch Updates on page 66

• Datatypes on page 68

• Failover Support on page 49

• Server-to-Server Remote Procedure Calls on page 52

• Wide Table Support for Adaptive Server on page 53

• Use Cursors with Result Sets on page 55

• Transact-SQL Queries with COMPUTE Clause on page 65

• Variable-Length Rows in Data-Only-Locked Tables on page 74

• Large Object (LOB) Support on page 74

• Large Object Locator Support on page 75

• Accessing Database Metadata on page 54

• Updating a Database from a Result Set of a Stored Procedure on page 67

Programming Information

48 jConnect for JDBC

Failover Support
jConnect supports the Adaptive Server failover.

Sybase Failover allows you to configure two Adaptive Servers as companions.

Note: Sybase Failover in a high availability system is a different feature than connection
failover. Sybase strongly recommends that you read this section very carefully if you want to
use both.

If the primary companion fails, the devices, databases, and connections for that server can be
taken over by the secondary companion. You can configure a high availability system either
asymmetrically or symmetrically.

• An asymmetric configuration includes two Adaptive Servers that are physically located on
different machines but are connected so that if one of the servers is brought down, the other
assumes its workload. The secondary Adaptive Server acts as a “hot standby” and does not
perform any work until failover occurs.

• A symmetric configuration also includes two Adaptive Servers running on separate
machines. However, if failover occurs, either Adaptive Server can act as a primary or
secondary companion for the other Adaptive Server. In this configuration, each Adaptive
Server is fully functional with its own system devices, system databases, user databases,
and user logins.

In either setup, the two machines are configured for dual access, which makes the disks visible
and accessible to both machines. You can enable failover in jConnect and connect a client
application to an Adaptive Server configured for failover. If the primary server fails over to the
secondary server, the client application also automatically switches to the second server and
reestablishes network connections.

See Using Sybase Failover in High Availability Systems in the Adaptive Server
Documentation for more detailed information.

When using jConnect as part of your failover strategy:

• Have two Adaptive Servers configured for failover.
• Only changes that were committed to the database before failover are retained when the

client fails over.
• Set the REQUEST_HA_SESSION jConnect connection property to true.

• jConnect event notification does not work when failover occurs.
• Close all statements when they are no longer used. jConnect stores information on

statements to enable failover. Unclosed statements result in memory leaks.

Implementing Failover in jConnect
Implement failover support in jConnect.

1. Set:

Programming Information

Programmers Reference 49

• REQUEST_HA_SESSION to true.

• SECONDARY_SERVER_HOSTPORT to the host name and port number where your
secondary server is listening.

2. Use JNDI to connect to the server. Include an entry for the primary server and a separate
entry for the secondary server in the directory service information file required by JNDI.

The primary server entry has an attribute (the HA OID) that refers to the entry for the
secondary server.

Using LDAP as the service provider for JNDI, there are three possible forms that this HA
attribute can have:
• Relative distinguished name (RDN) – assumes that the search base (typically provided

by the java.naming.provider.url attribute), combined with the value of this
attribute, is enough to identify the secondary server.
For example, assume the primary server is at hostname:4200 and the secondary server
is at hostname:4202:
dn: servername=haprimary, o=Sybase, c=US
1.3.6.1.4.1.897.4.2.5: TCP#1#hostname 4200
1.3.6.1.4.1.897.4.2.15: servername=hasecondary
objectclass: sybaseServer
dn: servername=hasecondary, o=Sybase, c=US
1.3.6.1.4.1.897.4.2.5: TCP#1#hostname 4202
objectclass: sybaseServer

• Distinguished name (DN) – assumes that the value of the HA attribute uniquely
identifies the secondary server, and may or may not duplicate values found in the
search base.
For example:
dn: servername=haprimary, o=Sybase, c=US
1.3.6.1.4.1.897.4.2.5: TCP#1#hostname 4200
1.3.6.1.4.1.897.4.2.15: servername=hasecondary,
 o=Sybase, c=US ou=Accounting
objectclass: sybaseServer
dn: servername=hasecondary, o=Sybase, c=US, ou=Accounting
1.3.6.1.4.1.897.4.2.5: TCP#1#hostname 4202
objectclass: sybaseServer

Notice that hasecondary is located in a different branch of the tree (see the
additional ou=Accounting qualifier).

• Full LDAP URL – assumes nothing about the search base. The HA attribute is expected
to be a fully qualified LDAP URL that is used to identify the secondary (it may even
point to a different LDAP server).
For example:
dn: servername=hafailover, o=Sybase, c=US
1.3.6.1.4.1.897.4.2.5: TCP#1#hostname 4200
1.3.6.1.4.1.897.4.2.15: ldap://ldapserver: 386/
servername=secondary,

Programming Information

50 jConnect for JDBC

 o=Sybase, c=US ou=Accounting
objectclass: sybaseServer
dn: servername=secondary, o=Sybase, c=US, ou=Accounting
1.3.6.1.4.1.897.4.2.5: TCP#1#hostname 4202
objectclass: sybaseServer

Use the REQUEST_HA_SESSION connection property to indicate that the connecting
client wants to begin a failover session with Adaptive Server that is configured for failover.
Setting this property to true instructs jConnect to attempt a failover login. If you do not set
this connection property, a failover session doses not start, even if the server is configured
correctly. The default value for REQUEST_HA_SESSION is false.

Set the connection property like any other connection property. You cannot reset the
property once a connection has been made.

If you want more flexibility for requesting failover sessions, code the client application to
set REQUEST_HA_SESSION at runtime.

This example shows connection information entered for the database server SYBASE1
under an LDAP directory service, where "tahiti" is the primary server, and "moorea" is the
secondary companion server:
dn: servername=SYBASE11,o=MyCompany,c=US
1.3.6.1.4.1.897.4.2.5:TCP#1#tahiti 3456
1.3.6.1.4.1.897.4.2.10:REPEAT_READ=false&PACKETSIZE=1024
1.3.6.1.4.1.897.4.2.10:CONNECTION_FAILOVER=false
1.3.6.1.4.1.897.4.2.11:pubs2
1.3.6.1.4.1.897.4.2.9:Tds
1.3.6.1.4.1.897.4.2.15:servername=SECONDARY
1.3.6.1.4.1.897.4.2.10:REQUEST_HA_SESSION=true
dn:servername=SECONDARY, o=MyCompany, c=US
1.3.6.1.4.1.897.4.2.5:TCP#1#moorea 6000

3. Request a connection using JNDI and LDAP:

a) Use the directory of the LDAP server to determine the name and location of the
primary and secondary servers:
/* get the connection */
Connection con = DriverManager.getConnection
 ("jdbc:sybase:jndi:ldap://ldap_server1:389" +
 "/servername=Sybase11,o=MyCompany,c=US",props);

, or
b) Specify a searchbase:

props.put(Context.PROVIDER_URL,
 "ldap://ldap_server1:389/ o=MyCompany, c=US");
Connection con=DriverManager.getConnection
 ("jdbc:sybase:jndi:servername=Sybase11", props);

Failover process allows:

Programming Information

Programmers Reference 51

• Logging in to the primary server – if an Adaptive Server is not configured for failover
or cannot grant a failover session, the client cannot log in.

'The server denied your request to use the high-
availability feature.

Please reconfigure your database, or do not request a
high-availability session.'

• Failing over to secondary server – when failover occurs, the SQL exception JZ0F2 is
thrown:

‘Sybase high-availability failover has occurred. The
current transaction is aborted, but the connection is
still usable. Retry your transaction.’

The client automatically reconnects to the secondary database using JNDI and lets
you:

• Identity the database to which the client was connected and any committed
transactions are retained.

• Partially read result sets, cursors, and stored procedure invocations are lost.
• Restart your application with a procedure or return to the last completed transaction

or activity.
• Failing back to primary server – the system administrator determines the timing of

failback, by issuing sp_failback on the secondary server. The client fails back from the
secondary server to the primary server.

After failback, the client can expect the same behavior and results on the primary server
during failover to the secondary server.

See also
• Connection Properties on page 8
• Connecting to a Server Using JNDI on page 37

Server-to-Server Remote Procedure Calls
A Transact-SQL language command or stored procedure running on one server can execute a
stored procedure located on another server.

The server to which an application has connected logs in to the remote server, and executes a
server-to-server remote procedure call.

An application can specify a universal password for server-to-server communication, that is, a
password used in all server-to-server connections. Once the connection is open, the server
uses this password to log in to any remote server. By default, jConnect uses the password of the
current connection as the default password for server-to-server communications.

However, if the passwords are different on two servers for the same user, and that user is
performing server-to-server remote procedure calls, the application must explicitly define
passwords for each server it plans to use.

Programming Information

52 jConnect for JDBC

jConnect includes a property that enables you to set a universal remote password or different
passwords on several servers.

Set and configure the property using the setRemotePassword method in the
SybDriver class:

Properties connectionProps = new Properties();

public final void setRemotePassword(String serverName,
 String password, Properties connectionProps)

To use this method, the application must import the SybDriver class, then call the method:

import com.sybase.jdbcx.SybDriver;
SybDriver sybDriver = (SybDriver)
 Class.forName("com.sybase.jdbc4.jdbc.SybDriver").newInstance();
sybDriver.setRemotePassword
 (serverName, password, connectionProps);

Note: To set different remote passwords for various servers, repeat the preceding call for each
server.

This call adds the given server name-password pair to the given Properties object, which
can be passed by the application to DriverManager in
DriverManager.getConnection (server_url, props).

If serverName is null, the universal password is set to password for subsequent connections
to all servers except the ones specifically defined by previous calls to
setRemotePassword.

When an application sets the REMOTEPWD property, jConnect no longer sets the default
universal password.

Wide Table Support for Adaptive Server
Adaptive Server 15.7 ESD #1 offers limits and parameters that are larger than previous
versions of the database server.

For example:

• Tables can contain 1024 columns.
• varchar and varbinary columns can contain more than 255 bytes of data.
• You can send and retrieve up to 2048 parameters when invoking stored procedures or as

parameters to PreparedStatement.
• When connected to Adaptive Server 15.7 ESD #1 and later, you can send and retrieve up to

32767 parameters to PreparedStatement.

To ensure that jConnect requests wide table support from the database, the default setting of
JCONNECT_VERSION must be 6.0 or later.

Note: jConnect continues to work with an Adaptive Server version 12.5 and later if you set
JCONNECT_VERSION to earlier than 6.0. However, if you try selecting from a table that

Programming Information

Programmers Reference 53

requires wide table support to fully retrieve the data, you may encounter unexpected errors or
data truncation.

You can also set JCONNECT_VERSION to 6.0 or later when you access data from a Sybase
server that does not support wide tables. In this case, the server simply ignores your request for
wide table support.

In addition to the larger number of columns and parameters, wide table support provides
extended result set metadata. For example, in versions of jConnect earlier than 6.0, the
ResultSetMetaData methods getCatalogName, getSchemaName, and
getTableName all returned Not Implemented SQLExceptions because that metadata was
not supplied by the server. When you enable wide table support, the server now sends back this
information, and the three methods return useful information.

Accessing Database Metadata
To JDBC support DatabaseMetaData methods, Sybase provides a set of stored
procedures that jConnect can call for metadata about a database.

These stored procedures must be installed on the server for the JDBC metadata methods to
work.

If the stored procedures for providing metadata are not already installed in a Sybase server,
you can install them using stored procedure scripts provided with jConnect:

• sql_server.sql installs stored procedures on Adaptive Server databases earlier than
version 12.0.

• sql_server12.sql installs stored procedures on Adaptive Server database version
12.0.x.

• sql_server12.5.sql installs stored procedures on Adaptive Server database
version 12.5.x.

• sql_server15.0.sql installs stored procedures for Adaptive Server 15.0 through
15.5.

• sql_server15.7.sql installs stored procedures for Adaptive Server 15.7 or 15.7
ESD # 2.

• sql_server15.7.0.2.sql installs stored procedures for Adaptive Server 15.7
ESD #2 or later.

• sql_asa.sql – installs stored procedures on the SQL Anywhere database version 9.x.

• sql_asa10.sql – installs stored procedures on the SQL Anywhere database version
10.x.

• sql_asa11.sql – installs stored procedures on the SQL Anywhere database version
11.x.

• sql_asa12.sql – installs stored procedures on the SQL Anywhere database version
12.x.

Note: The most recent versions of these scripts are compatible with all versions of jConnect.

Programming Information

54 jConnect for JDBC

See the Sybase jConnect for JDBC Installation Guide and Sybase jConnect for JDBC Release
Bulletin for complete instructions on installing stored procedures.

In addition, to use the metadata methods, you must set the USE_METADATA connection
property to true (its default value) when you establish a connection.

You cannot get metadata of temporary tables in a database.

Note: The DatabaseMetaData.getPrimaryKeys method finds primary keys
declared in a table definition (CREATE TABLE) or with alter table (ALTER TABLE ADD
CONSTRAINT). It does not find keys that are defined using sp_primarykey.

Use Cursors with Result Sets
jConnect implements many JDBC 2.0 cursor and update methods.

These methods make it easier to use cursors and to update rows in a table based on values in a
result set.

In JDBC 2.0, ResultSets are characterized by their type and their concurrency. The type
and concurrency values are part of the java.sql.ResultSet interface and are described
in its Javadoc.

When requested, jConnect opens server-side scrollable cursors when the server is Adaptive
Server 15.0 or later.

Table 6. java.sql.ResultSet Options Available in jConnect

Concurrency Type

TYPE_FOR-
WARD_ ONLY

TYPE_SCROLL_
INSENSITIVE

TYPE_SCROLL_
SENSITIVE

CON-
CUR_READ_ONLY

Supported Supported Not available

CONCUR_UPDATA-
BLE

Supported Not available Not available

See also
• JDBC 2.0 Methods for Positioned Updates and Deletes on page 59

• Cursor with PreparedStatement Object on page 62

• TYPE_SCROLL_INSENSITIVE Result Sets in jConnect on page 63

• JDBC 1.x Methods for Positioned Updates and Deletes on page 58

• Creating and Using a Cursor on page 57

Programming Information

Programmers Reference 55

Cursors
Methods for creating a cursor using jConnect.

• SybStatement.setCursorName – assigns explicitly the cursor a name.

The signature for SybStatement.setCursorName is:

void setCursorName(String name) throws SQLException;
• SybStatement.setFetchSize – creates a cursor and specifies the number of rows

returned from the database in each fetch.
The signature for SybStatement.setFetchSize is:

void setFetchSize(int rows) throws SQLException;

When you use setFetchSize to create a cursor, the jConnect driver names the cursor.
To get the name of the cursor, use ResultSet.getCursorName.

Another way you can create cursors is to specify the kind of ResultSet you want returned
by the statement, using this JDBC method on the connection:
Statement createStatement(int resultSetType, int
resultSetConcurrency)throws SQL Exception

If you request an unsupported ResultSet, a SQL warning is chained to the connection.
When the returned Statement is executed, you receive the kind of ResultSet that is most
like the one you requested. See the JDBC Specification for more details on the behavior of this
method.

If you do not use createStatement, the default types of ResultSet are:

• If you call only Statement.executeQuery, the ResultSet returned is a
SybResultSet that is TYPE_FORWARD_ONLY and CONCUR_READ_ONLY.

• If you call setCursorName, the ResultSet returned from executeQuery is a
SybCursorResultSet that is TYPE_FORWARD_ONLY and
CONCUR_UPDATABLE.

• If you call setFetchSize, the ResultSet returned from executeQuery is a
SybCursorResultSet that is TYPE_FORWARD_ONLY and
CONCUR_READ_ONLY.

To verify the kind of ResultSet object is what you intended, use these two ResultSet
methods:
int getConcurrency() throws SQLException;
int getType() throws SQLException;

Programming Information

56 jConnect for JDBC

Creating and Using a Cursor
Use the Statement.setCursorName or SybStatement.setFetchSize method
to create a cursor .

1. Create a cursor using Statement.setCursorName or
SybStatement.setFetchSize.

2. Invoke Statement.executeQuery to open the cursor for a statement and return a
cursor result set.

3. Invoke ResultSet.next to fetch rows and position the cursor in the result set.

This example uses each of the two methods for creating cursors and returning a result set. It
also uses ResultSet.getCursorName to get the name of the cursor created by
SybStatement.setFetchSize.

// With conn as a Connection object, create a
// Statement object and assign it a cursor using
// Statement.setCursorName().
Statement stmt = conn.createStatement();
stmt.setCursorName("author_cursor");

// Use the statement to execute a query and return
// a cursor result set.
ResultSet rs = stmt.executeQuery("SELECT au_id,
 au_lname, au_fname FROM authors
 WHERE city = 'Oakland'");
while(rs.next())
{
...
}

// Create a second statement object and use
// SybStatement.setFetchSize()to create a cursor
// that returns 10 rows at a time.
SybStatement syb_stmt = conn.createStatement();
syb_stmt.setFetchSize(10);

// Use the syb_stmt to execute a query and return
// a cursor result set.
SybCursorResultSet rs2 =
 (SybCursorResultSet)syb_stmt.executeQuery
 ("SELECT au_id, au_lname, au_fname FROM authors
 WHERE city = 'Pinole'");
while(rs2.next())
{
...
}

// Get the name of the cursor created through the
// setFetchSize() method.
String cursor_name = rs2.getCursorName();
 ...

Programming Information

Programmers Reference 57

// For jConnect 6.0, create a third statement
// object using the new method on Connection,
// and obtain a SCROLL_INSENSITIVE ResultSet.
// Note: you no longer have to downcast the
// Statement or the ResultSet.
Statement stmt = conn.createStatement(
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
ResultSet rs3 = stmt.executeQuery
 ("SELECT ... [whatever]");
// Execute any of the JDBC 2.0 methods that
// are valid for read only ResultSets.
rs3.next();
rs3.previous();
rs3.relative(3);
rs3.afterLast();
...

JDBC 1.x Methods for Positioned Updates and Deletes
Review the methods to use JDBC 1.x.

This example creates two Statement objects, one for selecting rows into a cursor result set,
and the other for updating the database from rows in the result set.

// Create two statement objects and create a cursor
// for the result set returned by the first
// statement, stmt1. Use stmt1 to execute a query
// and return a cursor result set.
Statement stmt1 = conn.createStatement();
Statement stmt2 = conn.createStatement();
stmt1.setCursorName("author_cursor");
ResultSet rs = stmt1.executeQuery("SELECT
 au_id,au_lname, au_fname
 FROM authors WHERE city = 'Oakland'
 FOR UPDATE OF au_lname");

// Get the name of the cursor created for stmt1 so
// that it can be used with stmt2.
String cursor = rs.getCursorName();

// Use stmt2 to update the database from the
// result set returned by stmt1.
String last_name = new String("Smith");
while(rs.next())
{
 if (rs.getString(1).equals("274-80-9391"))
 {
 stmt2.executeUpdate("UPDATE authors "+
 "SET au_lname = "+last_name +
 "WHERE CURRENT OF " + cursor);

Programming Information

58 jConnect for JDBC

 }
}

Deletions in a Result Set
Use the Statement object stmt2 to perform a positioned deletion

stmt2.executeUpdate("DELETE FROM authors
 WHERE CURRENT OF " + cursor);

JDBC 2.0 Methods for Positioned Updates and Deletes
The JDBC 2.0 methods to update the columns in the current cursor row and the database from
the current cursor row in a result set.

Updating Columns in Result Sets
JDBC 2.0 specifies a number of methods for updating column values from a result set in
memory, on the client.

You can then use the updated values to perform an update, insert, or delete operation on the
underlying database. All of these methods are implemented in the SybCursorResultSet
class.

Examples of some of the JDBC 2.0 update methods available in jConnect are:

void updateAsciiStream(String columnName, java.io.InputStream x, int
length)
 throws SQLException;
void updateBoolean(int columnIndex, boolean x) throws SQLException;
void updateFloat(int columnIndex, float x) throws SQLException;
void updateInt(String columnName, int x) throws SQLException;
void updateInt(int columnIndex, int x) throws SQLException;
void updateObject(String columnName, Object x) throws SQLException;

Methods for Updating a Database from a Result Set
JDBC 2.0 specifies methods for updating or deleting rows in the database, based on the current
values in a result set.

These methods are simpler in form than Statement.executeUpdate in JDBC 1.x and
do not require a cursor name. They are implemented in SybCursorResultSet:

void updateRow() throws SQLException;
void deleteRow() throws SQLException;

Note: The concurrency of the result set must be CONCUR_UPDATABLE. Otherwise, the
above methods raise exceptions. For insertRow, all table columns that require non-null
entries must be specified. Methods provided on DatabaseMetaData dictate when these
changes are visible.

Programming Information

Programmers Reference 59

Example

This example creates a single Statement object that returns a cursor result set. For each row
in the result set, column values are updated in memory and the database is updated with the
new column values for the row.
// Create a Statement object and set fetch size to
// 25. This creates a cursor for the Statement
// object Use the statement to return a cursor
// result set.
SybStatement syb_stmt =
(SybStatement)conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIV
E,
 ResultSet.CONCUR_UPDATABLE);
syb_stmt.setFetchSize(25);
SybCursorResultSet syb_rs =
(SybCursorResultSet)syb_stmt.executeQuery(
 "SELECT * from T1 WHERE ...")

// Update each row in the result set according to
// code in the following while loop. jConnect
// fetches 25 rows at a time, until fewer than 25
// rows are left. Its last fetch takes any
// remaining rows.
while(syb_rs.next())
{
 // Update columns 2 and 3 of each row, where
// column 2 is a varchar in the database and
// column 3 is an integer.
 syb_rs.updateString(2, "xyz");
syb_rs.updateInt(3,100);
//Now, update the row in the database.
 syb_rs.updateRow();
}
// Create a Statement object using the
// JDBC 2.0 method implemented in jConnect 6.0
Statement stmt = conn.createStatement
(ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_UPDATABLE);
// In jConnect 6.0, downcasting to SybCursorResultSet is not
// necessary. Update each row in the ResultSet in the same
// manner as above
while (rs.next())
{
rs.updateString(2, “xyz”);
rs.updateInt(3,100);
 rs.updateRow();
// Use the Statement to return an updatable ResultSet
ResultSet rs = stmt.executeQuery(“SELECT * FROM T1 WHERE...”);
}

Programming Information

60 jConnect for JDBC

Deleting Rows from Result Sets
Delete a row from a cursor result set.

To delete a row, use the SybCursorResultSet.deleteRow:

 while(syb_rs.next())
 {
 int col3 = getInt(3);
 if (col3 >100)
 {
 syb_rs.deleteRow();
 }
 }

Inserting Rows into Result Sets
Insert a row using the JDBC 2.0 API.

There is no need to downcast to a SybCursorResultSet.

// prepare to insert
rs.moveToInsertRow();
// populate new row with column values
rs.updateString(1, "New entry for col 1");
rs.updateInt(2, 42);
// insert new row into db
rs.insertRow();
// return to current row in result set
rs.moveToCurrentRow();

Release Locks at Cursor Close
Adaptive Server 15.7 extends the declare cursor syntax to include the
release_locks_on_close option, which releases shared cursor locks at isolation
levels 2 and 3 when a cursor is closed.

jConnect accordingly supports the release-lock-on-close semantics.

To use jConnect connection, set the RELEASE_LOCKS_ON_CURSOR_CLOSE connection
property to true. The default value is false.

This setting takes effect only when connected to a server that supports
release_locks_on_close.

For information about release_locks_on_close, see the Adaptive Server Enterprise
Reference Manual:Commands.

Programming Information

Programmers Reference 61

Select for Update Support
Adaptive Server 15.7 and later supports select for update, which can lock rows for subsequent
updates within the same transaction, and supports exclusive locks for updatable cursors.

See Queries: Selecting Data from a Table in the Adaptive Server Enterprise Transact-SQL
Users Guide.

This functionality is automatically available to clients when the for update clause is
added to a select statement and to any updatable cursors opened within the clients.

Cursor with PreparedStatement Object
You can use PreparedStatement multiple times with the same or different values for its
input parameters.

If you use a cursor with a PreparedStatement object, you must close the cursor after
each use and then reopen the cursor to use it again. A cursor is closed when you close its
result set(ResultSet.close. It is opened when you execute its prepared statement
(PreparedStatement.executeQuery).

This example shows how to create a PreparedStatement object, assign it a cursor, and
execute the PreparedStatement object twice, closing and then reopening the cursor.

// Create a prepared statement object with a
// parameterized query.
PreparedStatement prep_stmt =
conn.prepareStatement(
"SELECT au_id, au_lname, au_fname "+
"FROM authors WHERE city = ? "+
"FOR UPDATE OF au_lname");

//Create a cursor for the statement.
prep_stmt.setCursorName("author_cursor");

// Assign the parameter in the query a value.
// Execute the prepared statement to return a
// result set.
prep_stmt.setString(1, "Oakland");
ResultSet rs = prep_stmt.executeQuery();

//Do some processing on the result set.
while(rs.next())
{
 ...
}

// Close the result, which also closes the cursor.
rs.close();

// Execute the prepared statement again with a new

Programming Information

62 jConnect for JDBC

// parameter value.
prep_stmt.setString(1,"San Francisco");
rs = prep_stmt.executeQuery();
// reopens cursor

TYPE_SCROLL_INSENSITIVE Result Sets in jConnect
jConnect supports TYPE_SCROLL_INSENSITIVE result sets.

jConnect uses the Tabular Data Stream (TDS)—the Sybase proprietary protocol—to
communicate with Sybase database servers. Adaptive Server 15.0 and later supports TDS
scrollable cursors. For servers that do not support TDS scrollable cursors, jConnect caches the
row data on demand, on the client, on each call to ResultSet.next. However, when the
end of the result set is reached, the entire result set is stored in the client memory. Because this
may cause a performance strain, Sybase recommends that you use
TYPE_SCROLL_INSENSITIVE result sets only with Adaptive Server 15.0 or when the
result set is reasonably small.

Note: When you use TYPE_SCROLL_INSENSITIVE ResultSets in jConnect, and the
server does not support TDS scrollable cursors, you can call the isLast method only after
the last row of the ResultSet has been read. Calling isLast before the last row is reached
throws an UnimplementedOperationException.

jConnect provides the ExtendResultSet in the sample2 directory; this sample provides
a limited TYPE_SCROLL_INSENSITIVE ResultSet using JDBC 1.0 interfaces.

This implementation uses standard JDBC 1.0 methods to produce a scroll-insensitive, read-
only result set, that is, a static view of the underlying data that is insensitive to changes made
while the result set is open. ExtendedResultSet caches all of the ResultSet rows on
the client. Be cautious when you use this class with large result sets.

The sample.ScrollableResultSet interface:

• Is an extension of JDBC 1.0 java.sql.ResultSet.

• Defines additional methods that have the same signatures as the JDBC 2.0
java.sql.ResultSet.

• Does not contain all of the JDBC 2.0 methods. The missing methods deal with modifying
the ResultSet.

The methods from the JDBC 2.0 API are:

boolean previous() throws SQLException;
boolean absolute(int row) throws SQLException;
boolean relative(int rows) throws SQLException;
boolean first() throws SQLException;
boolean last() throws SQLException;
void beforeFirst() throws SQLException;
void afterLast() throws SQLException;

Programming Information

Programmers Reference 63

boolean isFirst() throws SQLException;
boolean isLast() throws SQLException;
boolean isBeforeFirst() throws SQLException;
boolean isAfterLast() throws SQLException;
int getFetchSize() throws SQLException;
void setFetchSize(int rows) throws SQLException;
int getFetchDirection() throws SQLException;
void setFetchDirection(int direction) throws SQLException;
int getType() throws SQLException;
int getConcurrency() throws SQLException;
int getRow() throws SQLException;

To use the sample classes, create an ExtendedResultSet using any JDBC 1.0
java.sql.ResultSet. Below are the relevant pieces of code (assume a Java 1.1
environment):
// import the sample files
import sample.*;
//import the JDBC 1.0 classes
import java.sql.*;
// connect to some db using some driver;
// create a statement and a query;
// Get a reference to a JDBC 1.0 ResultSet
ResultSet rs = stmt.executeQuery(_query);
// Create a ScrollableResultSet with it
ScrollableResultSet srs = new ExtendedResultSet(rs);
// invoke methods from the JDBC 2.0 API
srs.beforeFirst();
// or invoke methods from the JDBC 1.0 API
if (srs.next())
 String column1 = srs.getString(1);

Programming Information

64 jConnect for JDBC

Figure 1: Class Diagram Showing Relationship Between Sample Classes and
JDBC API

See the JDBC 2.0 API at Oracle Technology Network for Java for more details.

Transact-SQL Queries with COMPUTE Clause
jConnect for JDBC supports Transact-SQL queries that include a COMPUTE clause.

A COMPUTE clause allows you to display detail and summary results in one select statement.
The summary row appears following the detail rows of a specific group. For example:
select type, price, advance
 from titles
 order by type
 compute sum(price), sum(advance) by type
type price advance
------------ --------- ----------
UNDECIDED NULL NULL

Compute Result:
------------------------ ------------------------
NULL NULL

type price advance
------------ --------- ----------
business 2.99 10,125.00
business 11.95 5,000.00

business 19.99 5,000.00
business 19.99 5,000.00

Compute Result:
------------------------ ------------------------

Programming Information

Programmers Reference 65

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

54.92 25,125.00

...

...

(24 rows affected)

When jConnect executes a select statement that includes a COMPUTE clause, jConnect
returns multiple result sets to the client. The number of result sets depends on the number of
unique groupings available. Each group contains one result set for the detail rows and one
result set for the summary. The client must process all result sets to fully process the rows
returned; if it does not, only the detail rows of the first group of data are included in the first
result set returned.

For more information about the COMPUTE clause, see the Adaptive Server Enterprise
Transact-SQL Users Guide. For more information about processing multiple result sets, see
the JDBC API documentation on the Oracle Technology Network for Java Web site.

Support for Batch Updates
Batch updates allow a Statement object to submit multiple statements as one unit (batch) to
an underlying database for processing together.

Any statement added to a batch must return only an update count and cannot return a
ResultSet.

See BatchUpdates.java in the sample2 subdirectories for an example of using batch
updates with Statement, PreparedStatement, and CallableStatement.

jConnect also supports dynamic PreparedStatements in batch.

Implementation Notes
jConnect implements batch updates as specified in the JDBC 2.0 API.

Exceptions are:

• The EXECUTE_BATCH_PAST_ERRORS connection property controls how failures are
handled in batch execution.
By default, EXECUTE_BATCH_PAST_ERRORS is false and jConnect stops processing
after the first failure. BatchUpdateException.getUpdateCounts returns an
int[] array with length of M < N, indicating that the first M statements in the batch
succeeded, that the M+1 statement failed, and M+2..N statements were not executed. "N"
represents the total statements in the batch.
When EXECUTE_BATCH_PAST_ERRORS is true, jConnect continues processing in the
presence of nonfatal failures. BatchUpdateException.getUpdateCounts
returns an int[] array with length of N, where "N" represents the total statements in the
batch. Examine the individual update counts to determine execution status of each
statement.

Programming Information

66 jConnect for JDBC

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

• To call stored procedures in batch (unchained) mode, you must create the stored procedure
in unchained mode.

• If Adaptive Server encounters a fatal error during batch execution,
BatchUpdateException.getUpdateCounts returns only an int[] length of
zero. The entire transaction is rolled back if a fatal error is encountered, resulting in zero
successful rows.

• Batch updates in databases that do not support batch updates: jConnect carries out batch
updates in an executeUpdate loop even if your database does not support batch
updates. This allows you to use the same batch code, regardless of the database to which
you are pointing.

For details on batch updates, see the JDBC API documentation.

See also
• Stored Procedure Executed in Unchained Transaction Mode on page 133

Updating a Database from a Result Set of a Stored Procedure
jConnect includes update and delete methods that allow you to get a cursor on the result set
returned by a stored procedure.

You can then use the position of the cursor to update or delete rows in the underlying table that
provided the result set. The methods are in SybCursorResultSet:

void updateRow(String tableName) throws SQLException;
void deleteRow(String tableName) throws SQLException;

The tableName parameter identifies the database table that provided the result set.

To get a cursor on the result set returned by a stored procedure, use either
SybCallableStatement.setCursorName or
SybCallableStatement.setFetchSize before you execute the callable statement
that contains the procedure. This example shows how to create a cursor on the result set of a
stored procedure, update values in the result set, and then update the underlying table using the
SybCursorResultSet.update method:

// Create a CallableStatement object for executing the stored
// procedure.
CallableStatement sproc_stmt =
 conn.prepareCall("{call update_titles}",
 ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_UPDATABLE);

// Set the number of rows to be returned from the database with
// each fetch. This creates a cursor on the result set.
(SybCallableStatement)sproc_stmt.setFetchSize(10);

//Execute the stored procedure and get a result set from it.
SybCursorResultSet sproc_result = (SybCursorResultSet)
 sproc_stmt.executeQuery();

// Move through the result set row by row, updating values in the

Programming Information

Programmers Reference 67

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

// cursor’s current row and updating the underlying titles table
// with the modified row values.
while(sproc_result.next())
{
 sproc_result.updateString(...);
 sproc_result.updateInt(...);
 ...
 sproc_result.updateRow(titles);
}

Datatypes
Review the use of numeric, image, text, date, time, and char data.

Numeric Datatype
The SybPreparedStatement extension supports the way Adaptive Server handles the
NUMERIC datatype where precision (total digits) and scale (digits after the decimal) can be
specified.

The corresponding datatype in Java java.math.BigDecimal is slightly different, and
these differences can cause problems when jConnect applications use the setBigDecimal
method to control values of an input/output parameter. Specifically, there are cases where the
precision and scale of the parameter must precisely match that precision and scale of the
corresponding SQL object, whether it is a stored procedure parameter or a column.

The SybPreparedStatement extension used with the following method gives jConnect
applications more control over setBigDecimal:

public void setBigDecimal (int parameterIndex, BigDecimal X, int
scale,
 int precision) throws SQLException

See the SybPrepExtension.java sample in the /sample2 subdirectories under your
jConnect installation directory for more information.

Image Datatype
jConnect has a TextPointer class with sendData methods for updating an image
column in an Adaptive Server or SQL Anywhere database.

In versions of jConnect earlier than 4.0, you had to send image data using the
setBinaryStream method in java.sql.PreparedStatement. In version 5.0 and
later, the TextPointer.sendData methods use java.io.InputStream and
greatly improve performance when you send image data to an Adaptive Server database.

Warning! Using the TextPointer class with sendData() method may affect the
application as TextPointer is not a standard JDBC form.

Sybase recommends you use PreparedStatement.setBinaryStream(int
paramIndex, InputStream image) or utilize the LOB locator support, both
standard JDBCforms to send image data. However, setBinaryStream() may consume

Programming Information

68 jConnect for JDBC

much more memory on procedure cache than the TextPointer class when large image data is
handled.

Until a replacement for the TextPointer class is implemented, Sybase will continue
supporting it.

To obtain instances of the TextPointer class, use either of these methods in
SybResultSet:

• public TextPointer getTextPtr(String columnName)
• public TextPointer getTextPtr(int columnIndex)

Public Methods in TextPointer Class
Review the public methods in TextPointer class in jConnect.

The com.sybase.jdbcx package contains the TextPointer class. Its public
method interface is:
public void sendData(InputStream is, boolean log)
 throws SQLException
public void sendData(InputStream is, int length,
 boolean log) throws SQLException
public void sendData(InputStream is, int offset,
 int length, boolean log) throws SQLException
public void sendData(byte[] byteInput, int offset,
 int length, boolean log) throws SQLEXception

where:

• sendData(InputStream is, boolean log) updates an image column with data in the
specified input stream.

• sendData(InputStream is, int length, boolean log) updates an image column with data in
the specified input stream. length is the number of bytes being sent.

• sendData(InputStream is , int offset, int length, boolean log) updates an image column
with data in the specified input stream, starting at the byte offset given in the offset
parameter and continuing for the number of bytes specified in the length parameter.

• sendData(byte[] byteInput, int offset, int length, boolean log) updates a column with
image data contained in the byte array specified in the byteInput parameter. The update
starts at the byte offset given in the offset parameter and continues for the number of bytes
specified in the length parameter.

• log is a parameter for each method that specifies whether image data is to be fully logged
in the database transaction log. If the log parameter is true, the entire binary image is
written into the transaction log. If the log parameter is false, the update is logged, but the
image itself is not included in the log.

Programming Information

Programmers Reference 69

TextPointer Object
The text and image columns contain timestamp and page-location information that is
separate from their text and image data.

When data is selected from a text or image column, this extra information is “hidden” as
part of the result set.

A TextPointer object for updating an image column requires this hidden information but
does not need the image portion of the column data. To get this information, select the column
into a ResultSet object, then use SybResultSet.getTextPtr, which extracts text-
pointer information, ignores image data, and creates a TextPointer object.

When a column contains a significant amount of image data, selecting the column for one or
more rows and waiting to get all the data is likely to be inefficient, since the data is not used. To
shortcut this process, use the set textsize command to minimize the amount of data returned in
a packet. This code example for getting a TextPointer object includes the use of set
textsize for this purpose.

/*
 * Define a string for selecting pic column data for author ID
 * 899-46-2035.
 */
 String getColumnData = "select pic from au_pix where au_id =
'899-46-2035'";

 /*
 * Use set textsize to return only a single byte of column data
 * to a Statement object. The packet with the column data will
 * contain the "hidden" information necessary for creating a
 * TextPointer object.
 */
 Statement stmt= connection.createStatement();
 stmt.executeUpdate("set textsize 1");

 /*
 * Select the column data into a ResultSet object--cast the
 * ResultSet to SybResultSet because the getTextPtr method is
 * in SybResultSet, which extends ResultSet.
 */
 SybResultSet rs = (SybResultSet)stmt.executeQuery(getColumnData);

 /*
 * Position the result set cursor on the returned column data
 * and create the desired TextPointer object.
 */
 rs.next();
 TextPointer tp = rs.getTextPtr("pic");

 /*
 * Now, assuming we are only updating one row, and won’t need
 * the minimum textsize set for the next return from the server,
 * we reset textsize to its default value.

Programming Information

70 jConnect for JDBC

 */
 stmt.executeUpdate("set textsize 0");

Executing the Update with TextPointer.sendData
Use the TextPointer object to update the pic column with image data in the file
Anne_Ringer.gif.

Sample code:
/*
 *First, define an input stream for the file.
 */
 FileInputStream in = new FileInputStream("Anne_Ringer.gif");

 /*
 * Prepare to send the input stream without logging the image data
 * in the transaction log.
 */
 boolean log = false;

 /*
 * Send the image data in Anne_Ringer.gif to update the pic
 * column for author ID 899-46-2035.
 */
 tp.sendData(in, log);

See the TextPointers.java sample in the sample2 subdirectories under your
jConnect installation directory for more information.

Updating an Image Column with TextPointer.sendData
Update a column with image data using TextPointer.sendData.

1. Get a TextPointer object for the row and column that you want to update.

2. Use TextPointer.sendData to execute the update.

In this example, image data from the file Anne_Ringer.gif is sent to update the pic
column of the au_pix table in the pubs2 database. The update is for the row with author ID
899-46-2035.

Text Datatype
In jConnect 3.0 and earlier versions, a TextPointer class is used with sendData
methods for updating a text column in an Adaptive Server or SQL Anywhere database.

The TextPointer class has been deprecated, that is, it is no longer recommended and may
cease to exist in a future version of Java.

If your data server is Adaptive Server or SQL Anywhere, use the standard JDBC form to send
text data:

PreparedStatement.setAsciiStream(int paramIndex,
 InputStream text, int length)

Programming Information

Programmers Reference 71

or:

PreparedStatement.setUnicodeStream(int paramIndex,
 InputStream text, int length)

or:

PreparedStatement.setCharacterStream(int paramIndex, Reader
reader, int length)

Date and Time Datatypes
jConnect for JDBC supports the Adaptive Server datetime, smalldatetime,
bigdatetime, bigtime, date, and time datatypes:

• datetime can hold dates between January 1, 1753 and December 31, 9999 that are
accurate to 1/300 second on platforms that support this level of granularity.

• smalldatetime can hold dates from January 1, 1900 to June 6, 2079, with accuracy to
the minute.

• bigdatetime indicates the number of microseconds that have passed since January 1,
0000 0:00:00.000000. The range of legal bigdatetime values is from January 1, 0001
00:00:00.000000 to December 31, 9999 23:59:59.999999.

• bigtime indicates the number of microseconds that have passed since the beginning of
the day. The range of legal bigtime values is from 00:00:00.000000 to
23:59:59.999999.

• date can hold dates from January 1, 0001 to December 31, 9999, exactly matching the
allowable values in java.sql.Date. A direct mapping exists between
java.sql.Date and the date datatype.

• time can hold time between 00:00:00:000 and 23:59:59:990. A direct mapping exists
between java.sql.Time and the time datatype.

Date, Time, Datetime, and Smalldatetime Datatypes
jConnect for JDBC supports date, time, datetime, and smalldatetime.

If you select from a table that contains a date or time column, and you have not enabled
date/time support in jConnect (by setting the version), the server tries to convert the date
or time to a datetime value before returning it.

• This might cause problems if the date to be returned is earlier than 1/1/1753. In that case, a
conversion error occurs, and the database informs you of the error.

• SQL Anywhere supports a date and time datatype, but they are not yet directly
compatible with those in Adaptive Server version 12.5.1 and later. Using jConnect,
continue to use the datetime and smalldatetime datatypes when communicating
with SQL Anywhere.

• The maximum value in a datetime column in SQL Anywhere is 1-1-7911 00:00:00.

Programming Information

72 jConnect for JDBC

• Using jConnect, you receive conversion errors if you attempt to insert dates earlier than
1/1/1753 into datetime columns or parameters.

• Refer to the Adaptive Server manuals for more information on the date and time
datatypes; of special note is the information about on allowable implicit conversions.

• If you use getObject with an Adaptive Server date, time, or datetime column,
the value returned is, respectively, a java.sql.Date, java.sql.Time, or
java.sql.Timestamp datatype.

Bigdatetime and Bigtime Datatypes
When connecting to Adaptive Server 15.5 and later, jConnect transfers data using the
bigdatetime and bigtime datatypes even if the receiving Adaptive Server columns are
defined as datetime and time.

• This means that Adaptive Server may silently truncate the values from jConnect to fit
Adaptive Server columns. For example, a bigtime value of 23:59:59.999999 is saved as
23:59:59.996 in an Adaptive Server column with datatype time.

• When connecting to Adaptive Server 15.0.x and earlier, jConnect for JDBC transfers data
using the datetime and time datatypes.

Char, Varchar, Text, and GetByte Datatypes
Do not use rs.getByte on a char, univarchar, unichar, varchar, or text
field unless the data is hex, octal, or decimal.

Other Supported Datatypes
Review other Adaptive Server datatypes supported by jConnect.

jConnect supports these Adaptive Server datatypes:

• bigint – an exact numeric datatype designed to be used when the range of the existing
int types is insufficient.

• unsigned int – unsigned versions of the exact numeric integer datatypes:
unsignedsmallint, unsignedint, and unsignedbigint.

• unitext – a variable-length datatype for Unicode characters.

Bigint Datatype
Sybase supports bigint, which is a 64-bit integer datatype that is supported as a native
Adaptive Server datatype.

bigint maps to the Java datatype long. To use this as a parameter, call
PreparedStatement.setLong(int index, long value) and jConnect sends the
data as bigint to Adaptive Server. When retrieving from a bigint column, use the
ResultSet.getLong(int index) method.

Programming Information

Programmers Reference 73

Unitext Datatype
jConnect internally stores and retrieves data from Adaptive Server when unitext columns
are used.

Unsigned Int Datatypes
Adaptive Server supports unsigned bigint, unsigned int, and unsigned
smallint as native Adaptive Server datatypes.

Because, there are no corresponding unsigned datatypes in Java, you must set and get the
next higher integer to process the data correctly. For example, if you are retrieving data from
an unsigned int, using the Java datatype int is too small to contain positive large values, and
as a result, ResultSet.getInt (int index) might return incorrect data or throw an
exception. To process the data correctly, get the next higher integer value
ResultSet.getLong().

Adaptive Server Data-
type

Java Datatype

unsigned smallint setInt(), getInt()
unsigned int setLong(), getLong()
unsigned bigint setBigDecimal(), getBigDecimal()

Variable-Length Rows in Data-Only-Locked Tables
Versions of Adaptive Server earlier than 15.7 configured for 16K logical page sizes could not
create data-only-locked (DOL) tables with variable-length rows if a variable-length column
began more than 8191 bytes after the start of the row.

This limitation has been removed starting in Adaptive Server 15.7. See Data Storage in the
Adaptive Server Enterprise Performance and Tuning Series: Physical Database Tuning.

JDBC clients do not need special configuration to use this feature. When connected to
Adaptive Server version 15.7 that has been configured to receive wide DOL rows, these clients
automatically insert records using the wide offset. An error message is received if a client
attempts to send a wide DOL row to an earlier version of Adaptive Server, or to a 15.7
Adaptive Server for which the wide DOL row option is disabled.

Large Object (LOB) Support
jConnect supports using large object (LOB) datatypes—text, unitext, and image
• LOB columns with in-row storage – In Adaptive Server, LOB columns that are marked for

in-row are stored in-row when there is adequate memory to hold the entire row. When the

Programming Information

74 jConnect for JDBC

size of a row increases over its defined limit due to an update to any column in it, the LOB
columns which are stored in-row are moved off-row to bring it within the limits. See In-
Row Off-Row LOB in the Adaptive Server Enterprise Transact-SQL Users Guide.
The bulk insert routines in jConnect support the in-row and off-row storage of text,
image, and unitext LOB columns in Adaptive Server. Bulk insert routines from
earlier client versions always store LOB columns off-row.

• LOB objects as parameters of stored procedures – jConnect supports using text,
unitext, and image as input parameters in stored procedures and as parameter marker
datatypes.

Large Object Locator Support
jConnect supports large object (LOB) locators. A LOB locator contains a logical pointer to
LOB data rather than the data itself, reducing the amount of data that passes through the
network between Adaptive Server and its clients.

Server support for LOB locators was introduced in Adaptive Server 15.7.

jConnect accesses LOB data using server-side locators when connected to an Adaptive Server
that supports LOB locators and autocommit is turned off. Otherwise, jConnect
materializes LOB data at the client side. You can use the complete LOB API with client-side
materialized LOB data, however, due to larger data, API performance may be different than
when used with LOB locators.

Note: When you are using LOB locators, retrieving a large result set that includes LOB data on
each row may impact your application's performance. Adaptive Server returns a LOB locator
as part of the result set and, to obtain LOB data, jConnect must cache the remaining result set.
Sybase recommends that you keep result sets small, or that you enable cursor support to limit
the size of data to be cached.

To enable LOB locator support, establish a connection to Adaptive Server with the
ENABLE_LOB_LOCATORS connection property set to true. When enabled, client
applications can access the locators using the Blob, Clob, and NClob classes from the
java.sql package.

Note: When both LOB locators and autocommit are enabled, jConnect automatically
switches the LOB locators to client-side-materialized LOB even if the Adaptive Server is
capable of supporting LOB locators. This increases the memory used by the client and may
degrade performance. Therefore, it is advisable to use LOB locators with autocommit
off.

For information about the Blob, Clob, and NClob classes, see the Java documentation.

Programming Information

Programmers Reference 75

Advanced Features in jConnect
jConnect provides advanced features such as event notification, error message handling,
password encryption, dynamic class loading, and JDBC specification support.

Review the instructions to use the advanced features supported by jConnect.

See also
• BCP Insert on page 76
• Supported Adaptive Server Cluster Edition Features on page 77
• Event Notification on page 78
• Error Messages on page 80
• Password Encryption on page 85
• JDBC 4.0 Specifications Support on page 94
• Store Java Objects as Column Data in Table on page 87
• Dynamic Class Loading on page 91
• JDBC 3.0 Specifications Support on page 95
• Support for JDBC 2.0 Optional Package Extensions on page 97

BCP Insert
jConnect supports large insertions of rows to Adaptive Server version 12.5.2 and later using
bulk-load inserts.

Although this feature does not require special configuration on the server, a larger page size,
network packet size, and max memory size significantly improves performance.

Depending on the client memory, use of larger batches also improves performance.

To enable this feature, set ENABLE_BULK_LOAD to any of the valid values:

• ARRAYINSERT_WITH_MIXED_STATEMENTS – enables bulk load with row-level
logging and allows your application to execute other statements during the bulk load
operation.

• ARRAYINSERT – enables bulk load with row-level logging, but your application cannot
execute other statements during the bulk load operation.

• BCP – enables bulk load with page-level logging; your application cannot execute other
statements during the bulk load operation.

• LOG_BCP – enables the bulk load with page-level logging using the Adaptive Server
fast-log BCP feature; your application cannot execute other statements during the bulk
load operation.

When you use prepared statements and ENABLE_BULK_LOAD is set to a valid value,
jConnect uses the BULK routines to insert a batch of records to the Sybase databases.

Programming Information

76 jConnect for JDBC

Supported Adaptive Server Cluster Edition Features
jConnect supports the Adaptive Server Cluster Edition environment, where multiple Adaptive
Servers connect to a shared set of disks and a high-speed private interconnection. This allows
Adaptive Server to scale using multiple physical and logical hosts.

For more information about Cluster Edition, see the Adaptive Server Enterprise Users Guide
to Clusters.

Login Redirection
When a client application attempts to connect to a busy server, login redirection helps balance
the load of the servers by allowing the server to redirect the client connection to less busy
servers within the cluster.

At any given time, some servers within a cluster environment are usually more loaded with
work than others. The login redirection occurs during the login sequence and the client
application does not receive notification that it was redirected. Login redirection is enabled
automatically when a client application connects to a server that supports this feature.

Note: When a client application connects to a server that is configured to redirect clients, the
login time may increase because the login process is restarted whenever a client connection is
redirected to another server.

Connection Migration
Connection migration allows a server in a cluster environment to dynamically distribute load,
and seamlessly migrate an existing client connection and its context to another server within
the cluster.

This feature enables a cluster environment to achieve optimal resource utilization and
decrease computing time. Because migration between servers is seamless, connection
migration also helps create a highly available, zero-downtime environment. Connection
migration is enabled automatically when a client application connects to a server that supports
this feature.

Note: Command execution time may increase during server migration. Sybase recommends
that you increase the command timeouts accordingly.

Connection Failover
Connection failover allows a client application to switch to an alternate Adaptive Server if the
primary server becomes unavailable due to an unplanned event, like power outage or a socket
failure.

In a cluster environment, client applications can fail over numerous times to multiple servers
using dynamic failover addresses.

With high availability enabled, the client application does not need to be configured to know
the possible failover targets. Adaptive Server keeps the client updated with the best failover

Programming Information

Programmers Reference 77

list based on cluster membership, logical cluster usage, and load distribution. During failover,
the client refers to the ordered failover list while attempting to reconnect. If the driver
successfully connects to a server, the driver internally updates the list of host values based on
the list returned. Otherwise, the driver throws a connection failure exception.

Note: The connection properties DEFAULT_QUERY_TIMEOUT and
INTERNAL_QUERY_TIMEOUT or DriverManager.setLoginTimeout(xx) play vital role to
switch over from failed node to highly available node after failover occurs.

Enabling Connection Failover
You can use the connection string to enable connection failover by setting
REQUEST_HA_SESSION to true.

For example:
URL="jdbc:sybase:Tds:server1:port1,server2:port2,...,
serverN:portN/mydb?REQUEST_HA_SESSION=true"

where server1:port1, server2:port2, ... , serverN:portN is the ordered failover list.

jConnect attempts to connect to the first host and port specified in the failover list. If
unsuccessful, goes through the list until a connection is established or until the end of the list is
reached.

Note: The list of alternate servers specified in the connection string is used only during initial
connection. After the connection is established with any available instance, and if the client
supports high availability, the client receives an updated list of the best possible failover
targets from the server. This new list overrides the specified list.

Event Notification
You can use event notification to have your application notified when an Open Server
procedure is executed.

To use this feature, you must use the SybConnection class, which extends the
Connection interface. SybConnection contains a regWatch method for turning
event notification on and a regNoWatch method for turning event notification off.

Your application must also implement the SybEventHandler interface. This interface
contains one public method, void event(String proc_name, ResultSet
params), which is called when the specified event occurs. The parameters of the event are
passed to event, which tells the application how to respond.

To use event notification in your application, call SybConnection.regWatch() to
register your application in the notification list of a registered procedure:
SybConnection.regWatch(proc_name,eventHdlr,option)

where:

Programming Information

78 jConnect for JDBC

• proc_name is a string that is the name of the registered procedure that generates the
notification.

• eventHdler is an instance of the SybEventHandler class that you implement.
• option is either NOTIFY_ONCE or NOTIFY_ALWAYS. Use NOTIFY_ONCE if you want

the application to be notified only the first time a procedure executes. Use
NOTIFY_ALWAYS if you want the application to be notified every time the procedure
executes.

Whenever an event with the designated proc_name occurs on the Open Server, jConnect calls
eventHdlr.event from a separate thread. The event parameters are passed to eventHdlr.event
when it is executed. Because it is a separate thread, event notification does not block execution
of the application.

If proc_name is not a registered procedure, or if Open Server cannot add the client to the
notification list, the call to regWatch throws a SQL exception.

To turn off event notification:
SybConnection.regNoWatch(proc_name)

Warning! When you use Sybase event notification extensions, the application must call the
close method on the connection to remove a child thread created by the first call to regWatch.
Failing to do so may cause the virtual machine to stop responding when it exits the application.

Event Notification Example
Review instructions to implement an event handler and then register an event with an instance
for your event handler, once a connection is established.

Event notification sample code:
 public class MyEventHandler implements SybEventHandler
 {
 // Declare fields and constructors, as needed.
 ...
 public MyEventHandler(String eventname)
 {
 ...
 }

 // Implement SybEventHandler.event.
 public void event(String eventName, ResultSet params)
 {
 try
 {
 // Check for error messages received prior to event
 // notification.
 SQLWarning sqlw = params.getWarnings();
 if sqlw != null
 {
 // process errors, if any
 ...
 }
 // process params as you would any result set with

Programming Information

Programmers Reference 79

 // one row.
 ResultSetMetaData rsmd = params.getMetaData();
 int numColumns = rsmd.getColumnCount();
 while (params.next()) // optional
 {
 for (int i = 1; i <= numColumns; i++)
 {
 System.out.println(rsmd.getColumnName(i) + " =
 " + params.getString(i));
 }
 // Take appropriate action on the event. For example,
 // perhaps notify application thread.
 ...
 }
 }
 catch (SQLException sqe)
 {
 // process errors, if any
 ...
 }
 }
 }

 public class MyProgram
 {
 ...
 // Get a connection and register an event with an instance
 // of MyEventHandler.
 Connection conn = DriverManager.getConnection(...);
 MyEventHandler myHdlr = new MyEventHandler("MY_EVENT");

 // Register your event handler.
 ((SybConnection)conn).regWatch("MY_EVENT", myHdlr,
 SybEventHandler.NOTIFY_ALWAYS);
 ...
 conn.regNoWatch("MY_EVENT");
 conn.close();
 }

Error Messages
jConnect provides two classes for returning Sybase-specific error information,
SybSQLException and SybSQLWarning, as well as a SybMessageHandler
interface that allows you to customize the way jConnect handles error messages received from
the server.

Numeric Errors Returned as Warnings
Numeric errors are handled by default as severity 10 in Adaptive Server12.0 through 12.5.

A severity-level 10 message is classified as a status information message, not as an error, and
its content is transferred in a SQLWarning object.

This code illustrates the process:

Programming Information

80 jConnect for JDBC

static void processWarnings(SQLWarning warning)
{
if (warning != null)
 {
 System.out.println ("\n -- Warning received -- \n");
 }//end if
 while (warning != null)
 {
 System.out.println ("Message: " + warning.getMessage());
 System.out.println("SQLState: " + warning.getSQLState());
 System.out.println ("ErrorCode: " +
 warning.getErrorCode());
 System.out.println ("----------------------------");
 warning = warning.getNextWarning();
 }//end while
}//end processWarnings

When a numeric error occurs, the ResultSet object returned contains no result set data, and the
relevant information concerning the error must be obtained from the SQLWarning. Therefore,
in a JDBC application, the code that checks for and processes a SQLWarning should not
depend on a result set. For example, the following code checks for and processes SQLWarning
data both inside and outside the result-set processing while loop:
while (rs.next())
{
 String value = rs.getString(1);
 System.out.println ("Fetched value: " + value);

 // Check for SQLWarning on the result set.
 processWarnings (rs.getWarnings());

}//end while

 // Check for SQLWarning on the result set.
 processWarnings (rs.getWarnings());

Here, the code checks for SQLWarning even if there is no result set data (rs.next() is
false). The following example is output for a program properly written to detect and report
numeric errors. The error is a division by zero:
-- Warning received --

Message: Divide by zero occurred.
SQLState: 01012
ErrorCode: 3607

Retrieve Sybase-Specific Error Information
jConnect provides an EedInfo interface that specifies methods for obtaining Sybase-
specific error information.

The EedInfo interface is implemented in SybSQLException and SybSQLWarning,
which extend the SQLException and SQLWarning classes.

SybSQLException and SybSQLWarning contain these methods:

Programming Information

Programmers Reference 81

• public ResultSet getEedParams, which returns a one-row result set containing
any parameter values that accompany the error message.

• public int getStatus, which returns a 1 if there are parameter values, and returns
a 0 if there are no parameter values in the message.

• public int getLineNumber, which returns the line number of the stored
procedure or query that caused the error message.

• public String getProcedureName, which returns the name of the procedure
that caused the error message.

• public String getServerName, which returns the name of the server that
generated the message.

• public int getSeverity, which returns the severity of the error message.
• public int getState, which returns information about the internal source of the

error message in the server for use only by Sybase Technical Support.
• public int getTranState, which returns one of the following transaction states:

• 0 – the connection is currently in an extended transaction.
• 1 – the previous transaction committed successfully.
• 3 – the previous transaction aborted.

Some error messages can be SQLException or SQLWarning messages without being
SybSQLException or SybSQLWarning messages. Your application should check the
type of exception it is handling before it downcasts to SybSQLException or
SybSQLWarning.

Customizing Error-Message Handling
Use the SybMessageHandler interface to customize the way jConnect handles error
messages generated by the server.

Implementing SybMessageHandler in your own class for handling error messages can
provide the following benefits:

• Universal error handling – error-handling logic can be placed in your error-message
handler, instead of being repeated throughout your application.

• Universal error logging – your error-message handler can contain the logic for handling all
error logging.

• Remapping of error-message severity, based on application requirements – your error-
message handler can contain logic for recognizing specific error messages, and
downgrading or upgrading their severity based on application considerations rather than
the severity rating of the server. For example, during a cleanup operation that deletes old
rows, you might want to downgrade the severity of a message that a row does not exist.
However, you may want to upgrade the severity in other circumstances.

Note: Error-message handlers implementing the SybMessageHandler interface only
receive server-generated messages; they do not handle messages generated by jConnect.

When jConnect receives an error message, it checks to see if a SybMessageHandler class
has been registered for handling the message. If so, jConnect invokes the messageHandler

Programming Information

82 jConnect for JDBC

method, which accepts a SQL exception as its argument. jConnect then processes the message
based on what value is returned from messageHandler. The error-message handler can:

• Return the SQL exception as is.
• Return a null. As a result, jConnect ignores the message.
• Create a SQL warning from a SQL exception, and return it. This results in the warning

being added to the warning-message chain.
• If the originating message is a SQL warning, messageHandler can evaluate the SQL

warning as urgent, and create and return a SQL exception once the control is returned to
jConnect.

Installing an Error-Message Handler
Install an error-message handler implementing SybMessageHandler by calling the
setMessageHandler method from SybDriver, SybConnection, or
SybStatement.

If you install an error-message handler from SybDriver, all subsequent SybConnection
objects inherit it. If you install an error-message handler from a SybConnection object, it
is inherited by all SybStatement objectscreated by that SybConnection.

This hierarchy only applies from the time the error-message handler object is installed. For
example, if you create a SybConnection object called “myConnection,” and then call
SybDriver.setMessageHandler to install an error-message handler object,
“myConnection” cannot use that object.

To return the current error-message handler object, use getMessageHandler.

Error Message Handler Example
Example for an error message handler in jConnect.

 import java.io.*;
 import java.sql.*;
 import com.sybase.jdbcx.SybMessageHandler;
 import com.sybase.jdbcx.SybConnection;
 import com.sybase.jdbcx.SybStatement;
 import java.util.*;

 public class MyApp
 {
 static SybConnection conn = null;
 static SybStatement stmt = null
 static ResultSet rs = null;
 static String user = "guest";
 static String password = "sybase";
 static String server = "jdbc:sybase:Tds:192.138.151.39:4444";
 static final int AVOID_SQLE = 20001;

 public MyApp()
 {
 try
 {

Programming Information

Programmers Reference 83

 Class.forName("com.sybase.jdbc4.jdbc.SybDriver").newIn
stance();
 Properties props = new Properties();
 props.put("user", user);
 props.put("password", password);
 conn = (SybConnection)
 DriverManager.getConnection(server, props);
 conn.setMessageHandler(new NoResultSetHandler());
 stmt =(SybStatement) conn.createStatement();
 stmt.executeUpdate("raiserror 20001 'your error'");

 for (SQLWarning sqw = _stmt.getWarnings();
 sqw != null;
 sqw = sqw.getNextWarning());
 {
 if (sqw.getErrorCode() == AVOID_SQLE);
 {
 System.out.println("Error" + sqw.getErrorCode()+
 " was found in the Statement’s warning list.");
 break;
 }
 }
 stmt.close();
 conn.close();
 }
 catch(Exception e)
 {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }

 class NoResultSetHandler implements SybMessageHandler
 {
 public SQLException messageHandler(SQLException sqe)
 {
 int code = sqe.getErrorCode();
 if (code == AVOID_SQLE)
 {
 System.out.println("User " + _user + " downgrading " +
 AVOID_SQLE + " to a warning");
 sqe = new SQLWarning(sqe.getMessage(),
 sqe.getSQLState(),sqe.getErrorCode());
 }
 return sqe;
 }
 }

 public static void main(String args[])
 {
 new MyApp();
 }

Programming Information

84 jConnect for JDBC

Password Encryption
By default, jConnect for JDBC sends plain text passwords over the network to Adaptive
Server for authentication.

However, jConnect also supports symmetrical and asymmetrical password encryption and
can encrypt passwords before they are sent over the network.

The symmetrical encryption mechanism uses the same key to encrypt and decrypt the
password, whereas an asymmetrical encryption mechanism uses one key (the public key) to
encrypt the password and another key (the private key) to decrypt the password. Because the
private key is not shared across the network, asymmetrical encryption is considered more
secure than symmetrical encryption. When password encryption is enabled, and the server
supports asymmetric encryption, this format is used instead of symmetric encryption.

Note: To use the asymmetric password encryption feature, you must have a server that
supports password encryption, such as Adaptive Server 15.0.2 or later.

Enabling Password Encryption
The ENCRYPT_PASSWORD connection property specifies whether the password is
transmitted in encrypted format.

This same property enables asymmetric key encryption. When password encryption is
enabled and the server supports asymmetric key encryption, this format is used instead of
symmetric key encryption.

Set the ENCRYPT_PASSWORD connection property to true to enable password encryption.
The default value is false.

Note: If the server is configured to require clients to use an encrypted password, entering a
plain text password causes user login to fail.

Enabling Login Retry with Clear Text Password
Server login fails when the ENCRYPT_PASSWORD property is set to true, and the server does
not support password encryption.

To use a clear text password for servers that do not support password encryption, set the
RETRY_WITH_NO_ENCRYPTION connection property to true.

When both ENCRYPT_PASSWORD and RETRY_WITH_NO_ENCRYPTION properties are
set to true, jConnect first logs in using the encrypted password. If login fails, jConnect logs in
using the clear text password.

Programming Information

Programmers Reference 85

Setting Up the Java Cryptography Extension (JCE) Provider
Asymmetric password encryption mechanism uses RSA encryption algorithms to encrypt the
password being transmitted.

To perform this RSA encryption, configure your JRE with a suitable Java Cryptography
Extension (JCE) provider. The configured JCE provider should be capable of supporting the
“RSA/NONE/OAEPWithSHA1AndMGF1Padding” transformation. The JCE provider
included with your JRE may be incapable of handling such a transformation. To use the
extended password encryption feature in this case, configure an external JCE provider that
includes support for this transformation. If the JCE cannot handle the required transformation,
you receive an error message at login.

You can use the JCE_PROVIDER_CLASS connection property to specify the JCE provider.
There are a number of commercial and open source JCE providers that you can choose from.
For example, the “Bouncy Castle Crypto APIs for Java” is a popular open source Java JCE
provider. If you choose not to specify the JCE_PROVIDER_CLASS property, jConnect
attempts to use any bundled JCE.

Using GSE-J to Perform RSA Password Encryption
Use the Certicom Security Builder GSE-J to perform RSA password encryption.

Certicom Security Builder GSE-J is a FIPS 140-2 compliant JCE provider that is included in
the jConnect driver. This provider contains two JAR files, EccpressoFIPS.jar and
EccpressoFIPSJca.jar, which are both accessible from the $JDBC_HOME/
classes and the $JDBC_HOME/devclasses directories.

To use the Certicom Security Builder GSE-J provider, set the value of
JCE_PROVIDER_CLASS connection property to “com.certicom.ecc.jcae.Certicom”.

Note: If you enable password encryption by setting the ENCRYPT_PASSWORD connection
property but not the JCE_PROVIDER_CLASS connection property, jConnect attempts to
locate and load the Certicom Security Builder GSE-J provider. This succeeds only if
EccpressoFIPS.jar and EccpressoFIPSJca.jar are located in the same
directory as the jConnect JAR file—jconn4.jar or jconn4d.jar—in use.

Specifying Custom JCE Provider
Specify a custom JCE provider in jConnect. If jConnect cannot use the specified JCE provider,
it attempts to use the JCE providers configured in the JRE security profile.

1. Set the JCE_PROVIDER_CLASS property to the fully qualified class name of the
provider you want to use.

For example, to use the Bouncy Castle JCE:
String url = "jdbc:sybase:Tds:myserver:3697";
Properties props = new Properties();
props.put("ENCRYPT_PASSWORD ", “true”);
props.put("JCE_PROVIDER_CLASS",

Programming Information

86 jConnect for JDBC

"org.bouncycastle.jce.provider.BouncyCastleProvider");

/* Set up additional connnection properties as needed */
props.put("user", "xyz");
props.put("password", "123");

/* get the connection */
Connection con = DriverManager.getConnection(url, props);

2. Configure the JCE provider.

Either:
• Copy the JCE provider jar file into the JRE standard extension directory:

• For UNIX platforms: ${JAVA_HOME}/jre/lib/ext
• For Windows: %JAVA_HOME%\jre\lib\ext

• Or, if you cannot copy the JCE jar file to the appropriate directory, see JCE Reference
Guide for instructions on setting up an external JCE provider.

If no other JCE providers are configured, or if configured providers do not support the
required transformation and password encryption is enabled, the connection fails.

Store Java Objects as Column Data in Table
Database products enable you to directly store Java objects as column data in a database.

In such databases, Java classes are treated as datatypes, and you can declare a column with a
Java class as its datatype.

jConnect supports storing Java objects in a database by implementing the setObject
methods defined in the PreparedStatement interface and the getObject methods
defined in the CallableStatement and ResultSet interfaces. This allows you to use
jConnect with an application that uses native JDBC classes and methods to directly store and
retrieve Java objects as column data.

Note: To use getObject and setObject, set the jConnect version to
com.sybase.jdbcx.SybDriver.VERSION_4 or later.

Adaptive Server version 12.0 and later, and SQL Anywhere version 6.0.x and later can store
Java objects in a table, with some limitations. See the jConnect for JDBC Release Bulletin.

See also
• Prerequisites for Storing Java Objects as Column Data on page 88

• Receive Java Objects from Database on page 89

• JCONNECT_VERSION Connection Property on page 4

• Sending Java Objects to Database on page 88

Programming Information

Programmers Reference 87

http://docs.oracle.com/javase/1.4.2/docs/guide/security/jce/JCERefGuide.html
http://docs.oracle.com/javase/1.4.2/docs/guide/security/jce/JCERefGuide.html

Prerequisites for Storing Java Objects as Column Data
Store Java objects belonging to a user-defined Java class in a column.

• The class must implement the java.io.Serializable interface. This is because
jConnect uses native Java serialization and deserialization to send objects to a database and
receive them back from the database.

• The class definition must be installed in the destination database, or you must be using the
DynamicClassLoader (DCL) to load a class directly from SQL Anywhere or an
Adaptive Server server and use it as if it were present in the local CLASSPATH.

• The client system must have the class definition in a .class file that is accessible through
the local CLASSPATH environment variable.

See also
• Dynamic Class Loading on page 91

Sending Java Objects to Database
Use the setObject methods to send Java objects to a database.

To send an instance of a user-defined class as column data, use one of the setObject
methods, as specified in the PreparedStatement interface:

void setObject(int parameterIndex, Object x, int targetSqlType,
 int scale) throws SQLException;
void setObject(int parameterIndex, Object x, int targetSqlType)
 throws SQLException;
void setObject(int parameterIndex, Object x) throws SQLException;

In jConnect, to send a Java object, you can use the java.sql.Types.JAVA_OBJECT
target sql.Type, or you can use java.sql.Types.OTHER.

This example defines an Address class, shows the definition of a Friends table that has an
Address column whose datatype is the Address class, and inserts a row into the table.

public class Address implements Serializable
{
 public String streetNumber;
 public String street;
 public String apartmentNumber;
 public String city;
 public int zipCode;
 //Methods
 ...
}

Programming Information

88 jConnect for JDBC

/* This code assumes a table with the following structure
** Create table Friends:
** (firstname varchar(30) ,
** lastname varchar(30),
** address Address,
** phone varchar(15))
*/
// Connect to the database containing the Friends table.
Connection conn =
 DriverManager.getConnection("jdbc:sybase:Tds:localhost:5000",
 "username", "password");

// Create a Prepared Statement object with an insert statement
//for updating the Friends table.
PreparedStatement ps = conn.prepareStatement("INSERT INTO
 Friends values (?,?,?,?)");

// Now, set the values in the prepared statement object, ps.
// set firstname to "Joan."
ps.setString(1, "Joan");

// Set last name to "Smith."
ps.setString(2, "Smith");

// Assuming that we already have "Joan_address" as an instance
// of Address, use setObject(int parameterIndex, Object x) to
// set the address column to "Joan_address."
ps.setObject(3, Joan_address);

// Set the phone column to Joan’s phone number.
ps.setString(4, "123-456-7890");

// Perform the insert.
ps.executeUpdate();

Receive Java Objects from Database
Client JDBC applications can receive a Java object from the database in a result set or as the
value of an output parameter returned from a stored procedure.

If a result set contains a Java object as column data, use one of the getObject methods in the
ResultSet interface to retrieve the object:

Object getObject(int columnIndex) throws SQLException;
Object getObject(String columnName) throws SQLException;

If an output parameter from a stored procedure contains a Java object, use this getObject
method in the CallableStatement interface to retrieve the object:

Object getObject(int parameterIndex) throws SQLException;

This example illustrates the use of ResultSet.getObject(int
parameterIndex) to assign an object received in a result set to a class variable. The

Programming Information

Programmers Reference 89

example uses the Address class and Friends table and presents a simple application that
prints a name and address on an envelope.
/*
 ** This application takes a first and last name, gets the
 ** specified person’s address from the Friends table in the
 ** database, and addresses an envelope using the name and
 ** retrieved address.
 */
 public class Envelope
 {
 Connection conn = null;
 String firstName = null;
 String lastName = null;
 String street = null;
 String city = null;
 String zip = null;

 public static void main(String[] args)
 {
 if (args.length < 2)
 {
 System.out.println("Usage: Envelope <firstName>
 <lastName>");
 System.exit(1);
 }
 // create a 4" x 10" envelope
 Envelope e = new Envelope(4, 10);
 try
 {
 // connect to the database with the Friends table.
 conn = DriverManager.getConnection(
 "jdbc:sybase:Tds:localhost:5000", "username",
 "password");
 // look up the address of the specified person
 firstName = args[0];
 lastName = args[1];
 PreparedStatement ps = conn.prepareStatement(
 "SELECT address FROM friends WHERE " +
 "firstname = ? AND lastname = ?");
 ps.setString(1, firstName);
 ps.setString(2, lastName);
 ResultSet rs = ps.executeQuery();
 if (rs.next())
 {
 Address a = (Address) rs.getObject(1);
 // set the destination address on the envelope
 e.setAddress(firstName, lastName, a);
 }
 conn.close();
 }
 catch (SQLException sqe)
 {
 sqe.printStackTrace();
 System.exit(2);
 }

Programming Information

90 jConnect for JDBC

 // if everything was successful, print the envelope
 e.print();
 }
 private void setAddress(String fname, String lname, Address a)
 {
 street = a.streetNumber + " " + a.street + " " +
 a.apartmentNumber;
 city = a.city;
 zip = "" + a.zipCode;
 }
 private void print()
 {
 // Print the name and address on the envelope.
 ...
 }
 }

You can find a more detailed example of HandleObject.java in the sample2
subdirectory under your jConnect installation directory.

Dynamic Class Loading
SQL Anywhere and Adaptive Server allow you to specify Java classes.

• Datatypes of SQL columns
• Datatypes of Transact-SQL variables
• Default values for SQL columns

jConnect version 6.05 and later implements DynamicClassLoader (DCL) to load a class
directly from an SQL Anywhere or Adaptive Server server and use it as if it were present in the
local CLASSPATH.

In jConnect 6.0 and earlier versions, only classes that appeared in the jConnect CLASSPATH
were accessible, that is, any attempt of a jConnect application to access an instance of a class
that was not in the local CLASSPATH, resulted in a java.lang.ClassNotFound
exception.

All security features present in the superclass are inherited. The loader delegation model
implemented in Java 2 is followed—first jConnect attempts to load a requested class from the
CLASSPATH; if that fails, jConnect tries the DynamicClassLoader.

See Java in Adaptive Server for more detailed information about using Java and Adaptive
Server.

Using DynamicClassLoader
Use the CLASS_LOADER connection property to provide a convenient mechanism for
sharing one class loader among several connections.

1. Create and configure a class loader.

The code for your jConnect application should look similar to this:
Properties props = new Properties();// URL of the server where the
classes live.

Programming Information

Programmers Reference 91

String classesUrl = "jdbc:sybase:Tds:myase:1200"; // Connection
properties for connecting to above server.
props.put("user", "grinch");
props.put("password", "meanone");
... // Ask the SybDriver for a new class loader.
DynamicClassLoader loader = driver.getClassLoader(classesUrl,
props);

2. Use the CLASS_LOADER connection property to make the new class loader available to
the statement that executes the query.

Once you create the class loader, pass it to subsequent connections as shown (continuing
from the code example in step 1):
// Stash the class loader so that other connection(s)
// can know about it.
props.put("CLASS_LOADER", loader);// Additional connection
properties
props.put("user", "joeuser");
props.put("password", "joespassword");// URL of the server we now
want to connect to.
String url = "jdbc:sybase:Tds:jdbc.sybase.com:4446";// Make a
connection and go.
Connection conn = DriverManager.getConnection(url, props);

Assume the Java class definition is:
class Addr {
 String street;
 String city;
 String state;
}

Assume the SQL table definition:

create table employee (char(100) name, int empid, Addr address)
3. Use the client-side code in the absence of an Addr class in the client application

CLASSPATH:

Statement stmnt = conn.createStatement();
// Retrieve some rows from the table that has a Java class
// as one of its fields.
ResultSet rs = stmnt.executeQuery(
 "select * from employee where empid = ’19’");
if (rs.next() {
 // Even though the class is not in our class path,
 // we should be able to access its instance.
 Object obj = rs.getObject("address");
 // The class has been loaded from the server, so let's take a
look.

Programming Information

92 jConnect for JDBC

 Class c = obj.getClass();
 // Some Java Reflection can be done here to access the fields
of obj.
 ...
}

Ensure that sharing a class loader across connections does not result in class conflicts. For
example, if two different, incompatible instances of class org.foo.Bar exist in two
different databases, problems might arise if you use the same loader to access both classes.
The first class is loaded when examining a result set from the first connection. When it is time
to examine a result set from the second connection, the class is already loaded. Consequently,
the second class is never loaded, and there is no direct way for jConnect to detect this situation.

However, Java has a built-in mechanism for ensuring that the version of a class matches the
version information in a deserialized object. The above situation is at least detected and
reported by Java.

Classes and their instances do not need to reside in the same database or server, but there is no
reason why both the loader and subsequent connections cannot refer to the same database or
server.

Deserialization
The serialized object is an instance of a class that resides on a server and does not exist in the
CLASSPATH.

This example illustrates how to deserialize an object from a local file:

SybResultSet.getObject() makes use of DynamicObjectInputStream,
which is a subclass of ObjectInputStream that loads a class definition from
DynamicClassLoader, rather than the default system (“boot”) class loader.

// Make a stream on the file containing the
//serialized object.
FileInputStream fileStream = new FileInputStream("serFile");
// Make a "deserializer" on it. Notice that, apart
//from the additional parameter, this is the same
//as ObjectInputStreamDynamicObjectInputStream
stream = new DynamicObjectInputStream(fileStream, loader);
// As the object is deserialized, its class is
//retrieved through the loader from our server.
Object obj = stream.readObject();stream.close();

Programming Information

Programmers Reference 93

Preloading .jar Files
jConnect version 6.05 or later has a connection property called PRELOAD_JARS. When
defined as a comma-delimited list of .jar file names, the .jar files are loaded in their
entirety.

In this context, “JAR” refers to the “retained JARname” used by the server. This is the .jar
file name specified in the install Java program, for example:

install java new jar 'myJarName' from file '/tmp/mystuff.jar'

If you set PRELOAD_JARS, the .jar files are associated with the class loader, so it is
unnecessary to preload them with every connection. You should only specify
PRELOAD_JARS for one connection. Subsequent attempts to preload the same .jar files
may result in performance problems as the .jar file data is retrieved from the server
unnecessarily.

Note: SQL Anywhere cannot return a .jar file as one entity, so jConnect iteratively retrieves
each class in turn. However, Adaptive Server retrieves the entire .jar file and loads each
class that it contains.

Additional Dynamic Class Loading Features
Additional features include the ability to keep the database connection of a loader alive when a
series of class loads is expected, and to explicitly load a single class by name.

You can use public methods inherited from java.lang.ClassLoader. Methods in
java.lang.Class that deal with loading classes are also available; however, use these
methods with caution because some of them make assumptions about which class loader gets
used. In particular, you should use the three-argument version of Class.forName,
otherwise the system (boot) class loader is used.

There are various public methods in DynamicClassLoader. For more information, see
the Javadoc in the JDBC_HOME/docs/en/javadocs.

See also
• Error Messages on page 80

JDBC 4.0 Specifications Support
Some JDBC 4.0 specifications that are supported by jConnect.

• Connection management
• Automatic SQL driver loading
• Database metadata
• National character set conversion
• Wrapper pattern

Programming Information

94 jConnect for JDBC

• Scalar functions CHAR_LENGTH, CHARACTER_LENGTH, CURRENT_DATE,
CURRENT_TIME, CURRENT_TIMESTAMP, EXTRACT, and OCTET_LENGTH,
POSITION

See Oracle Technology Network for Java for information about the JDBC 4.0 specifications.

JDBC 3.0 Specifications Support
JDBC 3.0 features that are supported in jConnect 7.0.

Savepoint Support
You can use the Savepoint interface, which contains methods to set, release, or roll back a
transaction to designated savepoints.

• Using Savepoints in your transactions – n JDBC 3.0, the Savepoint interface allows
you to partition a transaction into logical breakpoints, providing control over how much of
the transaction gets rolled back.

• Setting and rolling back to a Savepoint – JDBC 3.0 API includes the method
Connection.setSavepoint, which sets a savepoint within the current transaction
and returns a Savepoint object. The Connection.rollback method is
overloaded to take a Savepoint object argument.

• Releasing a Savepoint – The Connection.releaseSavepoint method takes a
Savepoint object as a parameter and removes it from the current transaction.

After a Savepoint has been released, if you try to reference it in a rollback operation, a
SQLException occurs. Any savepoints you create in a transaction are automatically
released and become invalid when the transaction is committed or when the entire
transaction is rolled back. If you roll a transaction back to a savepoint, it automatically
releases and invalidates any other savepoints that were created after the savepoint in
question.

Note: You can use the DatabaseMetaData.supportsSavepoints method to
determine whether a JDBC API implementation supports savepoints.

Retrieval of Parameter Metadata
The JDBC 3.0 ParameterMetaData interface describes the number, type, and properties
of parameters to prepared statements, and supports the most current DatabaseMetaData
methods.

Retrieval of Autogenerated Keys
JDBC 3.0 addresses the common need to obtain from columns the value of an autogenerated
or autoincremented key.

To retrieve the autogenerated keys, pass the constant
Statement.RETURN_GENERATED_KEYS as the second parameter of the
Statement.execute() method.

Programming Information

Programmers Reference 95

http://www.oracle.com/technetwork/index.html

After you have executed the statement, call Statement.getGeneratedKeys() to
retrieve the generated keys. The result set contains a row for each generated key retrieved.

Note: Adaptive Server cannot return a result set of generated keys. If you execute a batch of
insert commands, invoking Statement.getGeneratedKeys() returns only the value
of the last generated key.

For more information about retrieving auto-generated keys, including a sample code, search
for “retrieving automatically generated keys” on the Oracle Java Web site.

Multiple Open ResultSet Objects
JDBC 3.0 includes getMoreResults(int), which takes an argument that specifies
whether ResultSet objects returned by a Statement object should be closed before
returning any subsequent ResultSet objects.

The JDBC 3.0 specification allows the Statement interface to support multiple open
ResultSets, which removes the limitation of the JDBC 2.0 specification that statements
returning multiple results must have only one ResultSet open at any given time. To support
multiple open results, the Statement interface adds an overloaded version of the method
getMoreResults(). The getMoreResults(int) method takes an integer flag that
specifies the behavior of previously opened ResultSets when the getResultSet()
method is called. The interface defines the flags as follows:

• CLOSE_ALL_RESULTS – all previously opened ResultSet objects are closed when
calling getMoreResults().

• CLOSE_CURRENT_RESULT – the current ResultSet object are closed when calling
getMoreResults().

• KEEP_CURRENT_RESULT – the current ResultSet object is not closed when calling
getMoreResults().

Pass Parameters to CallableStatement Objects by Name
Allows a string to identify the parameter to be set for a CallableStatement object.

You can use the CallableStatement interface to specify parameters by their names,
rather than by parameter's index. This is useful when a procedure has many parameters with
default values. You can use named parameters to specify only the values that have no default
value.

Holdable Cursor Support
A holdable cursor, or result does not automatically close when the transaction that contains the
cursor is committed. You must specify the holdability of a ResultSet object.

JDBC 3.0 supports specifying cursor holdability. You must specify the holdability of your
ResultSet when you prepare a statement using the createStatement(),
prepareStatement(), or prepareCall() methods. The holdability may be one of
the following constants:

Programming Information

96 jConnect for JDBC

• HOLD_CURSORS_OVER_COMMIT – ResultSet objects (cursors) are not closed;
they are held open when a commit operation is implicitly or explicitly performed.

• CLOSE_CURSORS_AT_COMMIT – ResultSet objects (cursors) are closed when a
commit operation is implicitly or explicitly performed.

Closing a cursor when a transaction is committed usually results in better performance. Unless
you require the cursor after the transaction, Sybase recommends that you close the cursor
when the commit operation is carried out. Because the specification does not define the default
holdability of a ResultSet, its behavior depends on the implementation.

Support for JDBC 2.0 Optional Package Extensions
The JDBC 2.0 Optional Package (formerly the JDBC 2.0 Standard Extension API) defined
several features that JDBC 2.0 drivers could implement.

jConnect version 6.05 and later have implemented several of these optional package extension
features:

• JNDI for naming conventions – works with any Sybase DBMS supported by jConnect
• Connection pooling – works with any Sybase DBMS supported by jConnect
• Distributed transaction management support – works only with Adaptive Server

Sybase recommends that you use JNDI 1.2, which is compatible with Java 1.1.6 and later.

JNDI for Naming Databases
Review the information for JNDI for naming databases.

Reference
The JDBC 2.0 Optional Package (formerly the JDBC 2.0 Standard Extension API).

Related Interfaces
Related interfaces provide JDBC clients with an alternative to the standard approach for
obtaining database connections.

• javax.sql.DataSource
• javax.naming.Referenceable
• javax.naming.spi.ObjectFactory
Instead of invoking Class.forName
(“com.sybase.jdbc4.jdbc.SybDriver”), then passing a JDBC URL to the
DriverManager's getConnection() method, clients can access a JNDI name server
using a logical name to retrieve a javax.sql.DataSource object. This object is
responsible for loading the driver and establishing the connection to the physical database it
represents. The client code is simpler and reusable because the vendor-specific information
has been placed within the DataSource object.

The Sybase implementation of the DataSource object is
com.sybase.jdbcx.SybDataSource (see the Javadoc for details). This

Programming Information

Programmers Reference 97

implementation supports the standard properties using the design pattern for JavaBean
components:

• databaseName
• dataSourceName
• description
• networkProtocol
• password
• portNumber
• serverName
• user

Note: roleName is not supported.

jConnect provides an implementation of the javax.naming.spi.ObjectFactory
interface so the DataSource object can be constructed from the attributes of a name server
entry. When given a javax.naming.Reference, or a javax.naming.Name and a
javax.naming.DirContext, this factory can construct
com.sybase.jdbcx.SybDataSource objects. To use this factory, set the
java.naming.object.factory system property to include
com.sybase.jdbc4.SybObjectFactory.

Usage
DataSource is used in different ways, in different applications.

All options are presented with some code examples. For more information, see the JDBC 2.0
Optional Package (formerly the JDBC 2.0 Standard Extension API), and the JNDI
documentation on the Oracle Java Web site.

Configuration by Administrator: LDAP
jConnect has supported LDAP connectivity since version 4.0. As a result, the recommended
approach, which requires no custom software, is to configure DataSources as LDAP
entries using the LDAP Data Interchange Format (LDIF).

For example:

dn:servername:myASE, o=MyCompany, c=US
1.3.6.1.4.1.897.4.2.5:TCP#1# mymachine 4000
1.3.6.1.4.1.897.4.2.10:PACKETSIZE=1024&user=me&password=secret
1.3.6.1.4.1.897.4.2.11:userdb

Programming Information

98 jConnect for JDBC

Access by Client
A JDBC client application allows you to access the server name to obtain a reference to a
DataSource object, instead of accessing the DriverManager and providing a JDBC
URL.

This is a typical JDBC client application. Once you obtain the connection, the client code is
identical to any other JDBC client code. The code is generic and references Sybase only when
setting the object factory property, which you can do as part of the environment setup.

The jConnect installation contains the sample program sample2/
SimpleDataSource.java to illustrate the use of DataSource. This sample is
provided for reference only, that is, you cannot run the sample unless you configure your
environment and edit the sample appropriately. SimpleDataSource.java contains the
following critical code:

import javax.naming.*;
import javax.sql.*;
import java.sql.*;
// set necessary JNDI properties for your environment (same as above)
Properties jndiProps = new Properties();
// used by JNDI to build the SybDataSource
jndiProps.put(Context.OBJECT_FACTORIES,
 "com.sybase.jdbc4.jdbc.SybObjectFactory");
// nameserver that JNDI should talk to
jndiProps.put(Context.PROVIDER_URL, "ldap: some_ldap_server:238/" +
"o=MyCompany,c=Us");
// used by JNDI to establish the naming context
jndiProps.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");
// obtain a connection to your name server
Context ctx = new InitialContext(jndiProps);
DataSource ds = (DataSource) ctx.lookup("servername=myASE");
// obtains a connection to the server as configured earlier.
// in this case, the default username and password will be used
Connection conn = ds.getConnection();
// do standard JDBC methods
...

Programming Information

Programmers Reference 99

You need not explicitly pass the Properties to the InitialContext constructor if the
properties have already been defined within the virtual machine, that is, passed when Java was
either set as part of the browser properties, or by using:

java -
Djava.naming.object.factory=com.sybase.jdbc4.jdbc.SybObjectFactory

See your Java VM documentation for more information about setting environment properties.

Programmatic Configuration
The purpose of programmatic configuration is to define a data source, then deploy it under a
logical name to a name server.

If the server needs to be reconfigured (for example, moved to another machine, port, and so
on), the administrator runs this configuration utility (outlined as follows) and reassigns the
logical name to the new data source configuration. This phase is typically done by the person
who performs database system administration or application integration for their company. As
a result, the client code does not change, since it knows only the logical name.

import javax.sql.*;
import com.sybase.jdbcx.*;
.....
// create a SybDataSource, and configure it
SybDataSource ds = new com.sybase.jdbc4.jdbc.SybDataSource();
ds.setUser("my_username");
ds.setPassword("my_password");
ds.setDatabaseName("my_favorite_db");
ds.setServerName("db_machine");
ds.setPortNumber(4000);
ds.setDescription("This DataSource represents the Adaptive Server
 Enterprise server running on db_machine at port 2638. The default
 username and password have been set to 'me' and 'mine'
respectively.
 Upon connection, the user will access the my_favorite_db database
on
 this server.");
Properties props = newProperties()
props.put("REPEAT_READ","false");
props.put("REQUEST_HA_SESSION","true");
ds.setConnectionProperties(props);
// store the DataSource object. Typically this is
// done by setting JNDI properties specific to the
// type of JNDI service provider you are using.
// Then, initialize the context and bind the object.

Programming Information

100 jConnect for JDBC

Context ctx = new InitialContext();
ctx.bind("java:comp/env/jdbc/myASE", ds);

Once you set up your DataSource, decide where and how you want to store the
information. To assist you, SybDataSource is both java.io.Serializable and
javax.naming.Referenceable, but it is still up to the administrator to determine how
the data is stored, depending on what service provider you are using for JNDI.

Retrieve Datasource Object by Client
The client retrieves the DataSource object by setting its JNDI properties the same way the
DataSource was deployed.

The client needs to have an object factory available that can transform the object as it is stored
(for example, serialized) into a Java object.

Context ctx = new InitialContext();
DataSource ds = (DataSource) ctx.lookup("java:comp/env/jdbc/myASE");
Connection conn = ds.getConnection();

Connection Pooling
Review the connection pooling instructions in jConnect.

Reference
Review the JDBC 2.0 Optional Package (formerly the JDBC 2.0 Standard Extension API).

Related Interfaces
Review the related interfaces in JDBC.

• javax.sql.ConnectionPoolDataSource
• javax.sql.PooledConnection

Overview
Traditional database applications create one connection to a database that you use for each
session of an application. However, a Web-based database application may need to open and
close a new connection several times when using the application.

An efficient way to handle Web-based database connections is to use connection pooling,
which maintains open database connections and manages connection sharing across different
user requests to maintain performance and to reduce the number of idle connections. On each
connection request, the connection pool first determines if there is an idle connection in the
pool. If there is, the connection pool returns that connection instead of making a new
connection to the database.

The com.sybase.jdbc4.jdbc.ConnectionPoolDataSource class is provided
to interact with connection pooling implementations. When you use
ConnectionPoolDataSource, pool implementations listen to the
PooledConnection. The implementation is notified when you close the connection, or if

Programming Information

Programmers Reference 101

you have an error that destroys the connection. At this point, the pool implementation decides
what to do with the PooledConnection.

Without connection pooling, a transaction:

1. Creates a connection to the database.
2. Sends the query to the database.
3. Gets back the result set.
4. Displays the result set.
5. Destroys the connection.

With connection pooling, the sequence looks more like this:

1. Transaction determines whether an unused connection exists in the poo” of connections.
2. If so, uses it; otherwise creates a new connection.
3. Sends the query to the database.
4. Gets back the result set.
5. Displays the result set.
6. Returns the connection to the pool. The user still calls close(), but the connection

remains open, and the pool is notified of the close request.

It is less costly to reuse a connection than to create a new one every time a client needs to
establish a connection to a database.

To enable a third party to implement the connection pool, the jConnect implementation has the
ConnectionPoolDataSource interface produce PooledConnections, similar to
the way the DataSource interface produces Connections.The pool implementation
creates real database connections, using the getPooledConnection() methods of
ConnectionPoolDataSource. Then, the pool implementation registers itself as a
listener to the PooledConnection. Currently, when a client requests a connection, the
pool implementation invokes getConnection() on an available
PooledConnection. When the client finishes with the connection and calls close, the
pool implementation is notified through the ConnectionEventListener interface that
the connection is free and available for reuse.

The pool implementation is also notified through the ConnectionEventListener
interface if the client somehow corrupts the database connection, so that the pool
implementation can remove that connection from the pool.For more information, refer to
Appendix B in the JDBC 2.0 Optional Package (formerly the JDBC 2.0 Standard Extension
API).

Configuration by Administrator: LDAP
Configure the LDAP by entering an additional line to your LDIF entry.

In this example, the added line of code is bolded for your reference.
dn:servername=myASE, o=MyCompany, c=US
1.3.6.1.4.1.897.4.2.5:TCP#1# mymachine 4000

Programming Information

102 jConnect for JDBC

1.3.6.1.4.1.897.4.2.10:PACKETSIZE=1024&user=me&password=secret
1.3.6.1.4.1.897.4.2.11:userdb
1.3.6.1.4.1.897.4.2.18:ConnectionPoolDataSource

See also
• JNDI for Naming Databases on page 97

• Configuration by Administrator: LDAP on page 98

Access by Middle-Tier Clients
Initializes three properties INITIAL_CONTEXT_FACTORY, PROVIDER_URL, and
OBJECT_FACTORIES and retrieves a ConnectionPoolDataSource object.

For a more complete code example, see sample2/SimpleConnectionPool.java.
The fundamental difference between access by client and middle-tier client is:

...
ConnectionPoolDatabase cpds = (ConnectionPoolDataSource)
 ctx.lookup("servername=myASE");
PooledConnection pconn = cpds.getPooledConnection();

Distributed Transaction Management Support
Provides a standard Java API for performing distributed transactions with Adaptive Server.
This feature is designed for use in a large multitier environment.

Reference
The JDBC 2.0 Optional Package (formerly the JDBC 2.0 Standard Extension API).

Related Interfaces
Review the related interfacs in JDBC.

• javax.sql.XADataSource
• javax.sql.XAConnection
• javax.transaction.xa.XAResource

Background and System Requirements
Use the dtm_tm_role to enable the Distribute Transaction Management support.

• jConnect must be communicating directly with the resource manager within Sybase
Adaptive Server version 12.0 and later, and the installation must have Distributed
Transaction Management support.

• Any user who wants to participate in a distributed transaction must be granted
dtm_tm_role, or the transactions fail.

• To use distributed transactions, you must install the stored procedures in the /sp directory.
Refer to Installing Stored Procedures in the jConnect for JDBC Installation Guide.

Programming Information

Programmers Reference 103

Figure 2: Distributed Transaction Management Support with Version 12.x

Configuration by Administrator LDAP
Configure the LDAP by entering an additional line to your LDIF entry.

In this example, the added line of code is displayed in bold.

dn:servername:myASE, o=MyCompany, c=US
1.3.6.1.4.1.897.4.2.5:TCP#1# mymachine 4000
1.3.6.1.4.1.897.4.2.10:PACKETSIZE=1024&user=me&password=secret
1.3.6.1.4.1.897.4.2.11:userdb
1.3.6.1.4.1.897.4.2.18:XADataSource

See also
• JNDI for Naming Databases on page 97
• Configuration by Administrator: LDAP on page 98

Access by Middle-Tier Clients
Initializes three properties INITIAL_CONTEXT_FACTORY, PROVIDER_URL, and
OBJECT_FACTORIES, and retrieves a XADataSoure object.

For example:

...
XADataSoruce xads = (XADatasource) ctx.lookup ("server=myASE");
XAConnection xaconn = xads.getXAConnection ();

or, override the default settings for the user name and password:

...
XADataSource xads = (XADatasource) ctx.lookup("servername=myASE");
XAConnection xaconn = xads.getXAConnection("my_username",
"my_password");

Restrictions and Interpretations of JDBC Standards
The jConnect implementation of JDBC deviates from the JDBC standards.

See also
• Adjustments for Multithreading on page 106
• Unsupported JDBC 4.0 Specification Requirements on page 105

Programming Information

104 jConnect for JDBC

• Use Connection.isClosed and IS_CLOSED_TEST on page 105

• Statement.close with Unprocessed Results on page 106

• ResultSet.getCursorName on page 107

• Execute Stored Procedures on page 107

Unsupported JDBC 4.0 Specification Requirements
Review the JDBC 4.0 statements that are not supported in this release.

• java.sql.RowID
• XML APIs introduced in JDBC 4.0

Use Connection.isClosed and IS_CLOSED_TEST
jConnect offers a default interpretation of the isClosed method that differs from the
behavior defined in the JDBC 4.0 specification.

When you call Connection.isClosed, jConnect verifies that Connection.close
has been called on this connection. If close has been called, jConnect returns true for
isClosed. However, if Connection.close has not been called, jConnect tries to
execute the sp_mda on the database. sp_mda is part of the standard metadata that jConnect
users must install when they use jConnect with a database.

According to section 11.1 of the JDBC 4.0 specification:

The Connection.isClosed method is only guaranteed to return true after
Connection.close has been called. Connection.isClosed cannot be called, in
general, to determine whether a database connection is valid. A typical client can determine
that a connection is invalid by catching the exception that is thrown when an operation is
attempted.

The purpose of calling sp_mda is so that jConnect can try to execute a procedure that is known
(or at least, expected) to reside on the database server. If the stored procedure executes
normally, jConnect returns false for isClosed because it has verified that the database
connection is valid and working. However, if the call to sp_mda results in a SQLException
being thrown, jConnect catches the exception and returns true for isClosed because it
appears that there is something wrong with the connection.

To force jConnect to more closely follow the standard JDBC behavior for isClosed(), set
the IS_CLOSED_TEST connection property to the special value “INTERNAL.” The
INTERNAL setting means that jConnect returns true for isClosed only when
Connection.close has been called, or when jConnect has detected an IOException that
has disabled the connection.

You can also specify a query other than sp_mda to use when isClosed is called. For
example, if you intend for jConnect to attempt a select 1 when isClosed is called, set the
IS_CLOSED_TEST connection property to select 1.

Programming Information

Programmers Reference 105

Statement.close with Unprocessed Results
The JDBC specification deos not clearly address how a driver should behave when you call
Statement.execute and later call close on that same statement object without
processing all of the results (update counts and ResultSets) returned by the Statement.

For example, assume that there is a stored procedure on the database that performs seven row
inserts. An application then executes that stored procedure using a Statement.execute.
In this case, a Sybase database returns seven update counts (one for each inserted row) to the
application. In normal JDBC application logic, you would process those update counts in a
loop using the getMoreResults, getResultSet and getUpdateCount methods.
These are clearly explained on the Java SE documentation in the Javadoc for the java.sql.*
package.

However, an application programmer might incorrectly call Statement.close before
reading through all of the returned update counts. In this case, jConnect sends a cancel to the
database, which might have unexpected and unwanted side effects.

In this particular example, if the application calls Statement.close before the database
has completed the inserts, the database might not execute all of the inserts. It might stop, for
example, after only five rows are inserted because the cancel is processed on the database
before the stored procedure completes. jConnect throws a SQLException when you try to
close a Statement when there are still unprocessed results.

The missing inserts would not be reported to you. jConnect programmers are strongly advised
to adhere to these guidelines:

• When you call Statement.close, a cancel is sent to the server if not all the results
(update counts and ResultSets) have been completely processed. In cases where you only
executed select statements, this is fine. However, in cases where you executed insert/
update/delete operations, this might result in not all of those operations completing as
expected.

• Therefore, you should never call close with unprocessed results when you have
executed anything but pure select statements.

• Instead, if you call Statement.execute, be sure your code processes all the results by
using the getUpdateCount, getMoreResults, and getResultSet methods.

Adjustments for Multithreading
Several threads simultaneously call methods on the same Statement instance,
CallableStatement, or PreparedStatement, which Sybase does not recommend
you must manually synchronize the calls to the methods on the Statement; jConnect does
not do this automatically.

For example, if you have two threads operating on the same Statement instance—one
thread sending a query and the other thread processing warnings—you must synchronize the
calls to the methods on the Statement or there might be conflicts.

Programming Information

106 jConnect for JDBC

http://www.oracle.com/technetwork/java/index.html

ResultSet.getCursorName
JDBC drivers generate a cursor name for any SQL query so that a string can always be
returned. However, jConnect does not return a name when ResultSet.getCursorName
is called.

Provided you either:

• Called setFetchSize or setCursorName on the corresponding statement, or

• Set the SELECT_OPENS_CURSOR connection property to true, and your query was in
the form of SELECT... FOR UPDATE. For example:
select au_id from authors for update

If you do not call setFetchSize or setCursorName on the corresponding statement, or
set the SELECT_OPENS_CURSOR connection property to true, null is returned.

According to the JDBC 2.0 API documentation, all other SQL statements do not need to open
a cursor and return a name.

For more information on how to use cursors in jConnect, see Cursors with Result Sets.

See also
• Use Cursors with Result Sets on page 55

Execute Stored Procedures
Executing a stored procedure in a CallableStatement object that represents parameter
values as question marks, you get better performance than if you use both question marks and
literal values for parameters.

Also, if you mix literals and question marks, you cannot use output parameters with a stored
procedure.

This example creates sp_stmt as a CallableStatement object for executing the stored
procedure MyProc:
CallableStatement sp_stmt = conn.prepareCall(
 "{call MyProc(?,?)}");

The two parameters in MyProc are represented as question marks. You can register one or both
of them as output parameters using the registerOutParameter methods in the
CallableStatement interface.

In this example, sp_stmt2 is a CallableStatement object for executing the stored
procedure MyProc2.
CallableStatement sp_stmt2 = conn.prepareCall(
 {"call MyProc2(?,'javelin')}");

In sp_stmt2, one parameter value is given as a literal value and the other as a question mark.
You cannot register either parameter as an output parameter.

Programming Information

Programmers Reference 107

To execute stored procedures with RPC commands using name-binding for parameters, use
either of these procedures:

• Use language commands, passing input parameters to them directly from Java variables
using the PreparedStatement class.

// Prepare the statement
System.out.println("Preparing the statement...");
String stmtString = "exec " + procname + " @p3=?, @p1=?";
PreparedStatement pstmt = con.preparedStatement(stmtString);

// Set the values
pstmt.setString(1, "xyz");
pstmt.setInt(2, 123);

// Send the query
System.out.println("Executing the query...");
ResultSet rs = pstmt.executeQuery();

• With jConnect version 6.05 and later, use the
com.sybase.jdbcx.SybCallableStatement interface:

import com.sybase.jdbcx.*;
....
// prepare the call for the stored procedure to execute as an RPC
String execRPC = "{call " + procName + " (?, ?)}";
SybCallableStatement scs = (SybCallableStatement)
con.prepareCall(execRPC);

// set the values and name the parameters
// also (optional) register for any output parameters
scs.setString(1, "xyz");
scs.setParameterName(1, "@p3");
scs.setInt(2, 123);
scs.setParameterName(2, "@p1");

// execute the RPC
// may also process the results using getResultSet()
// and getMoreResults()
// see the samples for more information on processing results
ResultSet rs = scs.executeQuery();

Programming Information

108 jConnect for JDBC

Security

jConnect provides Secure Sockets Layer (SSL) and Kerberos options for securing client-
server communications

• SSL – use SSL to encrypt communications, including the login exchange, between client
and server applications.

• Kerberos – use Kerberos to authenticate Java applications or users of Java applications to
Adaptive Server without sending user names or passwords over a network. Also use
Kerberos to set up a single sign-on (SSO) environment and provide mutual authentication
between the digital identity of a Java application and that of Adaptive Server Enterprise.

Note: You may use Kerberos to encrypt communications and provide data integrity
checking, but these features have not been implemented for jConnect.

You can Kerberos and SSL together, providing the advantage of both SSO and encryption of
data transferred between client and server applications.

Restrictions
Kerberos and SSL is used with Adaptive Server; SQL Anywhere does not currently support
either SSL or Kerberos security.

Sybase recommends that you read related documentation about SSL and Kerberos before
attempting to use either with jConnect. The setup information assumes that the servers you
intend to use have been configured to work properly with SSL, with Kerberos, or with both.

For further information on Kerberos, SSL, and configuring Adaptive Server Enterprise, see
Related Documents on page 124. Also, see the white paper on setting up Kerberos, which is
referenced in the jConnect for JDBC Release Bulletin.

Implement Custom SSL Socket Plug-ins
Plug a custom socket implementation into an application to customize the communication
between a client and server.

javax.net.ssl.SSLSocket is an example of a socket that you can customize to enable
encryption.

com.sybase.jdbcx.SybSocketFactory is a Sybase extension interface that
contains the createSocket(String, int, Properties) method, which returns a
java.net.Socket. To use a custom socket factory in jConnect, an application must
implement this interface by defining the createSocket() method.

Security

Programmers Reference 109

jConnect uses the socket for subsequent input or output operations. Classes that implement
SybSocketFactory create sockets and provide a general framework for the addition of
public socket-level functionality, as shown:
/**
 * Returns a socket connected to a ServerSocket on the named host,
 * at the given port.
 * @param host the server host
 * @param port the server port
 * @param props Properties passed in through the connection
 * @returns Socket
 * @exception IOException, UnknownHostException
 */
public java.net.Socket createSocket(String host, int port,
Properties props)
 throws IOException, UnknownHostException;

Passing in properties allows instances of SybSocketFactory to use connection properties
to implement an intelligent socket.

When you implement SybSocketFactory, the same application code can use different
kinds of sockets by passing the different kinds of factories or pseudo-factories that create
sockets to the application.

You can customize factories with parameters used in socket construction. For example, you
can customize factories to return sockets with different networking timeouts or security
parameters already configured. The sockets returned to the application can be subclasses of
java.net.Socket to directly expose new APIs for features such as compression,
security, record marking, statistics collection, or firewall tunnelling
(javax.net.SocketFactory).

Note: SybSocketFactory is intended to be an overly simplified
javax.net.SocketFactory, enabling applications to bridge from java.net.* to
javax.net.*

Using Custom Socket with jConnect
Review the steps to use custom socket with jConnect.

1. Provide a Java class that implements com.sybase.jdbcx.SybSocketFactory.

2. Set the SYBSOCKET_FACTORY connection property so that jConnect can use your
implementation to obtain a socket.

To use a custom socket with jConnect, set the SYBSOCKET_FACTORY connection
property to either:
• The class name that implements com.sybase.jdbcx.SybSocketFactory,

or,
• DEFAULT (this instantiates a new java.net.Socket).

Security

110 jConnect for JDBC

See also
• Connection Properties on page 8
• Create and Configure a Custom Socket on page 111

Create and Configure a Custom Socket
You can create an instance of SSL socket and configure the socket, before jConnect obtains
it.

jConnect uses the socket to connect to a server.

This example shows how an implementation of SSL can create an instance of SSLSocket,
configure it, and then return it. The MySSLSocketFactory class implements
SybSocketFactory and extends javax.net.ssl.SSLSocketFactory to
implement SSL. It contains two createSocket methods—one for
SSLSocketFactory and one for SybSocketFactory—that:

• Create an SSL socket
• Invoke SSLSocket.setEnableCipherSuites to specify the cipher suites

available for encryption
• Return the socket to be used by jConnect

Example
public class MySSLSocketFactory extends SSLSocketFactory
 implements SybSocketFactory
 {
 /**
 * Create a socket, set the cipher suites it can use, return
 * the socket.
 * Demonstrates how cither suites could be hard-coded into the
 * implementation.
 *
 * See javax.net.SSLSocketFactory#createSocket
 */
public Socket createSocket(String host, int port)
 throws IOException, UnknownHostException
 {
 // Prepare an array containing the cipher suites that are to
 // be enabled.
 String enableThese[] =
 {
 "SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA",
 "SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5",
 "SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA"
 }
 ;
 Socket s =
 SSLSocketFactory.getDefault().createSocket(host, port);
 ((SSLSocket)s).setEnabledCipherSuites(enableThese);
 return s;
 }

Security

Programmers Reference 111

/**
 * Return an SSLSocket.
 * Demonstrates how to set cipher suites based on connection
 * properties like:
 * Properties _props = new Properties();
 * Set other url, password, etc. properties.
 * _props.put(("CIPHER_SUITES_1",
 * "SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA");
 * _props.put("CIPHER_SUITES_2",
 * "SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5");
 * _props.put("CIPHER_SUITES_3",
 * "SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA");
 * _conn = _driver.getConnection(url, _props);
 *
 * See com.sybase.jdbcx.SybSocketFactory#createSocket
 */
public Socket createSocket(String host, int port,
 Properties props)
 throws IOException, UnknownHostException
 {
 // check to see if cipher suites are set in the connection
 // properites
 Vector cipherSuites = new Vector();
 String cipherSuiteVal = null;
 int cipherIndex = 1;
 do
 {
 if((cipherSuiteVal = props.getProperty("CIPHER_SUITES_"
 + cipherIndex++)) == null)
 {
 if(cipherIndex <= 2)
 {
 // No cipher suites available
 // return what the object considers its default
 // SSLSocket, with cipher suites enabled.
 return createSocket(host, port);
 }
 else
 {
 // we have at least one cipher suite to enable
 // per request on the connection
 break;
 }
 else
 }
 // add to the cipher suit Vector, so that
 // we may enable them together
 cipherSuites.addElement(cipherSuiteVal);
 }
 }
 while(true);
 // lets you create a String[] out of the created vector
 String enableThese[] = new String[cipherSuites.size()];
 cipherSuites.copyInto(enableThese);

Security

112 jConnect for JDBC

 Socket s =
 SSLSocketFactory.getDefault().createSocket
 (host, port);
 // enable the cipher suites
 ((SSLSocket)s).setEnabledCipherSuites(enableThese);
 // return the SSLSocket
 return s;
 }
 // other methods
 }

Because jConnect requires no information about the kind of socket it is, you must complete
any configuration before you return a socket.

For additional information, see:

• EncryptASE.java – located in the sample2 subdirectory of your jConnect
installation, this sample shows how to use the SybSocketFactory interface with
jConnect applications.

• MySSLSocketFactoryASE.java – also located in the sample2 subdirectory of
your jConnect installation, this is a sample implementation of the SybSocketFactory
interface that you can plug in to your application and use.

SSL Support in jConnect
To use SSL sockets in versions of jConnect earlier than 15.7 SP 100, you had to create an
implementation of SybSocketFactory interface and use it by setting the
SYBSOCKET_FACTORY connection property.

In version 15.7 SP100, jConnect has built-in support to connect to Adaptive Server using SSL
sockets. The new connection property ENABLE_SSL when set to:

• false – (the default) jConnect will not use SSL sockets.
• true – jConnect uses SSL sockets and the target Adaptive Server must be enabled for SSL

socket connections.

Note: Sybase recommends that you set the login timeout using
DriverManager.setLoginTimeout property to allow the connection to timeout when
attempting SSL connection on a non SSL enabled Adaptive Server.

The SSL socket feature depends on the following standard Java properties:

• javax.net.ssl.keyStore

• javax.net.ssl.keyStorePassword

• javax.net.ssl.trustStore

• javax.net.ssl.trustStorePassword

• javax.net.ssl.trustStore

• javax.net.ssl.trustStoreType

See the Java J2SE 6 Documentation for more information on Java standard properties.

Security

Programmers Reference 113

Kerberos
Kerberos is a network authentication protocol that uses encryption for authentication of client-
server applications.

Kerberos provides these advantages for users and system administrators:

• A Kerberos database can serve as a centralized storehouse for users.
• Kerberos facilitates the single-sign-on (SSO) environment, in which a user system login

provides the credentials necessary to access a database.
• Kerberos is an IETF standard. Interoperability is possible between different

implementations of Kerberos.

Configuring Kerberos for jConnect
Review the instructions to configure jConnect to use Kerberos security mechanism.

Prerequisites

There are several prerequisites for configuring Kerberos for jConnect:

• JDK 6 or later
• A Java Generic Security Services (GSS) Manager:

• The default GSS Manager, which is part of the JDK, or
• Wedgetail JCSI Kerberos version 2.6 or later, or
• CyberSafe TrustBroker Application Security Runtime Library version 3.1.0 or later,

or
• A GSS Manager implementation from another vendor.

• A key distribution center(KDC) that is supported and interoperable at the server side with
your GSS library and at the client side with your GSSManager.

Task

1. Set the REQUEST_KERBEROS_SESSION property to true.

2. Set the SERVICE_PRINCIPAL_NAME property to the name that your Adaptive Server
Enterprise is running under. In general, this is the name set with the -s option when the
server is started. The service principal name must also be registered with the KDC. If you
do not set a value for this property, jConnect uses the host name of the client machine.

3. (Optional) Set the GSSMANAGER_CLASS property.

For more information on the REQUEST_KERBEROS_SESSION and
SERVICE_PRINCIPAL_NAME, see the jConnect Connection Properties on page 9

Security

114 jConnect for JDBC

See also
• GSSMANAGER_CLASS Connection Property on page 115

• Programming Information on page 3

GSSMANAGER_CLASS Connection Property
When using Kerberos, jConnect relies on several Java classes that implement the Generic
Security Services (GSS) API.

Much of this functionality is provided by the org.ietf.jgss.GSSManager class.

jConnect checks the value of GSSMANAGER_CLASS for a GSSManager class object to use
in Kerberos authentication.

If the value of GSSMANAGER_CLASS is set to a string instead of a class object, jConnect uses
the string to create an instance of the specified class and uses the new instance in Kerberos
authentication.

If the value of GSSMANAGER_CLASS is set to something that is neither a GSSManager
class object nor a string, or if jConnect encounters a ClassCastException, jConnect
throws a SQLException indicating the problem.

Java allows vendors to provide their own implementations of the GSSManager class.

Examples of vendor-supplied GSSManager implementations are those provided by
Wedgetail Communications and CyberSafe Limited. Users can configure a vendor-written
GSSManager class to work in a particular Kerberos environment. Vendor-supplied
GSSManager classes may also offer more interoperability with Windows than the standard
Java GSSManager class provides.

Before using a vendor-supplied implementation of GSSManager, be sure to read the vendor
documentation. Vendors use system property settings other than the standard Java system
properties used for Kerberos and may locate realm names and key distribution center (KDC)
entries without using configuration files.

Setting Up the GSSMANAGER_CLASS Property
Use a vendor implementation of GSSManager with jConnect by setting the
GSSMANAGER_CLASS connection property.

There are two ways to set this property:

• Create an instance of GSSManager, and set this instance as the value of the
GSSMANAGER_CLASS property.

• Set the value of the GSSMANAGER_CLASS property as a string, specifying the fully
qualified class name of the GSSManager object. jConnect uses this string to call
Class.forName().newInstance() and casts the returned object as a
GSSManager class.

Security

Programmers Reference 115

In either case, the application CLASSPATH variable must include the location of the classes
and .jar files for the vendor implementation.

Note: If you do not set the GSSMANAGER_CLASS connection property, jConnect uses the
org.ietf.jgss.GSSManager.getInstance method to load the default Java
GSSManager implementation.

When you use the GSSMANAGER_CLASS connection property to pass in a fully qualified
class name, jConnect calls the no-argument constructor for the GSSManager. This
instantiates a GSSManager that is in the default configuration for the vendor
implementation, so you do not have control over the exact configuration of the GSSManager
object. If you create your own instance of GSSManager, you can use constructor arguments
to set configuration options.

GSS Manager Examples
Review instructions to create an instance of GSSManager for your requirement or allow
jConnect to create a GSSManager object when the GSSMANAGER_CLASS connection
property is set to a fully qualified class name.

Creating an Instance of GSSManager
Create an instance of GSSManager and pass it to the GSSMANAGER_CLASS property.

1. Instantiate a GSSManager in your application code:

GSSManager gssMan = new
com.dstc.security.kerberos.gssapi.GSSManager();

This example uses the default constructor with no arguments. You can use other vendor-
supplied constructors, which allow you to set various configuration options.

2. Pass the new GSSManager instance into the GSSMANAGER_CLASS connection property:

Properties props = new Properties();
props.put("GSSMANAGER_CLASS", gssMan);

3. Use these connection properties, including GSSMANAGER_CLASS, in your connection:

Connection conn = DriverManager.getConnection (url, props);

Passing String to GSSMANAGER_CLASS
Pass string to GSSMANAGER_CLASS in an application.

1. Ceate a string specifying the fully qualified class name of the GSSManager object. For
example:

String gssManClass =
"com.dstc.security.kerberos.gssapi.GSSManager";

2. Pass the string to the GSSMANAGER_CLASS connection property. For example:

Security

116 jConnect for JDBC

Properties props = new Properties();
props.put("GSSMANAGER_CLASS", gssManClass);

3. Use these connection properties, including GSSMANAGER_CLASS, in your connection.
For example:

Connection conn = DriverManager.getConnection (url, props);

Kerberos Environment
You can use jConnect with three different implementations of Kerberos.

• CyberSafe
• MIT
• Microsoft Active Directory

See the Kerberos white paper.

CyberSafe
Review the CyberSafe Kerberos implementation in jConnect.

• Encryption keys – specify a Data Encryption Standard (DES) key when creating a
principal to be used by Java in the CyberSafe KDC.

The Java reference implementation does not support Triple Data Encryption Standard
(3DES) keys.

Note: You can use 3DES keys if you are using CyberSafe GSSManager with a CyberSafe
KDC and have set the GSSMANAGER_CLASS property.

• Address mapping and realm information – CyberSafe uses DNS records to locate KDC
address mapping and realm information.

CyberSafe Kerberos does not use a krb5.conf configuration file. Alternately,
CyberSafe locates KDC address mapping and realm information in the krb.conf and
krb.realms files, respectively. See CyberSafe documentation for more information.

If you are using the standard Java GSSManager implementation, you must still create a
krb5.conf file for use by Java. The CyberSafe krb.conf file is formatted differently
from the krb5.conf file. Create a krb5.conf file as specified in the Java SE
documentation or in the MIT documentation. You do not need a krb5.conf file if using
the CyberSafe GSSManager.
For examples of the krb5.conf file, see white paper on setting up Kerberos, the URL is
referenced in the jConnect for JDBC Release Bulletin.

• Solaris – when using CyberSafe client libraries on Solaris, make sure your library search
path includes the CyberSafe libraries before any other Kerberos libraries.

A client uses krb5.conf file with a CyberSafe or MIT KDC. For example:

Please note that customers must alter the
default_realm, [realms] and [doamin_realm]

Security

Programmers Reference 117

http://www.sybase.com/detail?id=1029260

information to reflect their Kerberos environment.
Customers should *not* attempt to use this file as is.
#

[libdefaults]
 default_realm = ASE
 default_tgs_enctypes = des-cbc-crc
 default_tkt_enctypes = des-cbc-crc
 kdc_req_checksum_type = 2
 ccache_type = 2

[realms]

 ASE = {
 kdc = kdchost
 admin_server = kdchost
 }

[domain_realm]
 .sybase.com = ASE
 sybase.com = ASE

[logging]
 default = FILE:/var/krb5/kdc.log
 kdc = FILE:/var/krb5/kdc.log
 kdc_rotate = {

How often to rotate kdc.log. Logs will get rotated
no more often than the period, and less often if the
KDC is not used frequently.

 period = 1d

how many versions of kdc.log to keep around
(kdc.log.0, kdc.log.1, ...)

 versions = 10
 }

[appdefaults]
 kinit = {
 renewable = true
 forwardable= true
 }

MIT
Specify a DES key when creating a principal to be used by Java in the MIT KDC.

The Java reference implementation does not support 3DES keys.

If you plan to use only the standard Java GSSManager implementation, specify an
encryption key of type des-cbc-crc or des-cbc-md5. Specify the encryption type as:

des-cbc-crc:normal

Security

118 jConnect for JDBC

where normal is the type of key salt. It may be possible to use other salt types.

Note: If you are using Wedgetail GSSManager, you can create principals in an MIT KDC of
type des3-cbc-sha1-kd.

Microsoft Active Directory
Review the components in a Microsoft Active Directory server for Kerberos.

• User accounts and service principal – make sure that you have set up accounts in Active
Directory for your user principals user(the users) and service principals (the accounts that
represent your database servers). Your user principals and service principals should both
be created as Users within Active Directory.

• Client machines – modify the Windows Registry to use the Java reference
implementation to set up an SSO environment.

See the instructions at the Microsoft support site to modify Windows Registry.
• Configuration file – on Windows, the Kerberos configuration file is called krb5.ini.

Java looks for krb5.ini by default at C:\WINNT\krb5.ini.

Java allows you to specify the location of this file. The format of krb5.ini is identical to
that of krb5.conf.

For examples of the krb5.conf file, see Kerberos white paper, which is referenced in
the jConnect for JDBC Release Bulletin.

For more information on Kerberos for Microsoft Active Directory, see the Microsoft
Developer Network.

A client uses the krb5.conf file with Active Directory as the KDC. For example:

Please note that customers must alter the
default_realm, [realms] and [domain_realm]
information to reflect their Kerberos environment.
Customers should *not* attempt to use this file as is.
#

[libdefaults]
 default_realm = W2K.SYBASE.COM
 default_tgs_enctypes = des-cbc-crc
 default_tkt_enctypes = des-cbc-crc
 kdc_req_checksum_type = 2
 ccache_type = 2

[realms]

 W2K.SYBASE.COM = {
 kdc = 1.2.3.4:88
 admin_server = adserver
 }

[domain_realm]
 .sybase.com = W2K.SYBASE.COM

Security

Programmers Reference 119

http://support.microsoft.com/
http://msdn.microsoft.com
http://msdn.microsoft.com

 sybase.com = W2K.SYBASE.COM

[logging]
 default = FILE:/var/krb5/kdc.log
 kdc = FILE:/var/krb5/kdc.log
 kdc_rotate = {

How often to rotate kdc.log. Logs will get rotated no
more often than the period, and less often if the KDC
is not used frequently.

 period = 1d

how many versions of kdc.log to keep around
(kdc.log.0, kdc.log.1, ...)

 versions = 10
 }

[appdefaults]
 kinit = {
 renewable = true
 forwardable= true
 }

Setting DES Encryption
If you intend to use the Java reference GSS Manager implementation, you must use DES
encryption for both user and service principals.

1. In the Active Directory, right-click on the specific user principal or service principal name.

2. Select Properties.

3. Click the Account tab.

4. For both the user principal and service principal, specify that DES encryption types should
be used.

Sample Applications
The two commented code samples available in the jConnect-7_0/sample2 directory
illustrate how to establish a Kerberos connection to Adaptive Server Enterprise.

• ConnectKerberos.java – a simple Kerberos login to Adaptive Server Enterprise.

• ConnectKerberosJAAS.java – a more detailed sample showing how a Kerberos
login might be implemented within application-server code.

Running ConnectKerberos.java
Review the instructions to run ConnectKerberos.java file sample application.

1. Make sure your machine has valid Kerberos credentials. This task varies depending on
your machine and environment.

Security

120 jConnect for JDBC

• Windows – you can establish Kerberos credentials for a machine in an Active
Directory environment by successfully logging in using Kerberos authentication.

• UNIX or Linux – you can establish Kerberos credentials for a UNIX or Linux machine
using the kinit utility for your Kerberos client. If you do not obtain an initial credential
using kinit, you are prompted for a user name and password when you attempt to run
the sample application.

Note: Typically, the GSSManager provider implementation provided by standard JDK
can use only the DES_CBC_MD5 and DES_CBC_CRC encryption types. You may be
able to use other encryption types by using third-party software and setting the
GSSMANAGER_CLASS property.

2. Determine the location of the credentials for your machine.
• Windows – for a machine running in an Active Directory environment, Kerberos

credentials are stored in an in-memory ticket cache.
• UNIX or Linux – for a UNIX or Linux machine using the JRE supplied, CyberSafe,

Solaris, or MIT implementations of Kerberos, kinit places credentials by default in /
tmp/krb5cc_{user_id_number}, where {user_id_number} is unique to your
user name.

If the credentials are placed elsewhere, specify that location in the sample2/
exampleLogin.conf file by setting the ticketCache property.

3. Specify to the Java reference implementation the default realm and host name of the KDC
machine. Java may obtain this information from the krb5.conf or krb5.ini
configuration files or from Java System properties. If you use a vendor GSS Manager
implementation, that implementation may obtain host and realm information from DNS
SRV records.

Sybase recommends that you use a Kerberos configuration file, which allows for more
control of the Kerberos environment, including the ability to specify to Java the type of
encryption to request during authentication.

Note: On Linux, the Java reference implementation looks for the Kerberos configuration
file in /etc/krb5.conf.

If you do not use a Kerberos configuration file, and your Kerberos configuration is not set
up to use DNS SRV records, you can specify the realm and KDC using the
java.security.krb5.realm and java.security.krb5.kdc system properties.

4. Edit ConnectKerberos.java so that the connection URL points to your database.

5. Compile ConnectKerberos.java.

Ensure that you are using JDK version 6 or later. Read through the source code comments,
and ensure the jconn4.jar from your jConnect installation is specified in your
CLASSPATH environment variable.

6. Execute ConnectKerberos.class:

java ConnectKerberos

Security

Programmers Reference 121

Ensure that you are using the Java version 6 executable. The sample application output
explains that a successful connection has been established and executes the SQL:

select 1

• To execute the sample without using a Kerberos configuration file, use:
java -Djava.security.krb5.realm=your_realm
-Djava.security.krb5.kdc=your_kdc ConnectKerberos

where your_realm is your default realm, and your_kdc is your KDC.
• If necessary, you can run the sample application in debug mode to see debug output

from the Java Kerberos layer:
java -Dsun.security.krb5.debug=true ConnectKerberos

You can also make a Kerberos connection using IsqlApp, the Java version of isql, located
in the jConnect-7_0/classes directory:

java IsqlApp -S jdbc:sybase:Tds:hostName:portNum
-K service_principal_name
-F path_to_JAAS_login_module_config_file

Interoperability
jConnect supports interoperability combinations of KDCs, GSS libraries, and platforms on
which jConnect has successfully established a connection to Adaptive Server Enterprise.

The absence of any particular combination does not indicate that a connection cannot be
established with that combination. You can find the most recent status at the jConnect for
JDBC Web site.

Table 7. Interoperability Combinations

Client Plat-
form

KDC GSSManager GSS C libra-
ries \a

ASE Platform

Solaris 8b CyberSafe Java GSS CyberSafe Solaris 8

Solaris 8 Active Directoryc Java GSS CyberSafe Solaris 8

Solaris 8 MIT Java GSS CyberSafe Solaris 8

Solaris 8 MIT Wedgetail GSSd MIT Solaris 8

Solaris 8 CyberSafe Wedgetail GSSe CyberSafe Solaris 8

Windows 2000 Active Directory Java GSS CyberSafe Solaris 8

Windows XP Active Directory Java GSSf CyberSafe Solaris 8

Security

122 jConnect for JDBC

http://www.sybase.com/products/allproductsa-z/softwaredeveloperkit/jconnect
http://www.sybase.com/products/allproductsa-z/softwaredeveloperkit/jconnect

Client Plat-
form

KDC GSSManager GSS C libra-
ries \a

ASE Platform

a. These are the libraries that Adaptive Server Enterprise is using for its GSS functionality.

b. All Solaris 8 platforms in this table are 32-bit.

c. All Active Directory entries in the table refer to an Active Directory server running on Windows
2000. For Kerberos interoperability, Active Directory users must be set to “Use DES encryption types
for this account.”

d. Used Wedgetail JCSI Kerberos 2.6. The encryption type was 3DES.

e. Used Wedgetail JCSI Kerberos 2.6. The encryption type was DES.

f. Java 1.4.x has a bug which requires that clients use System.setProperty("os.name", "Windows
2000"); to ensure that Java can find the in-memory credential on Windows XP clients.

Sybase recommends that you use the latest versions of these libraries. Contact the vendor if
you intend to use older versions or if you have problems with non-Sybase products.

Encryption Types
The standard Java GSS implementation provided by typical JREs supports only DES
encryption.

If you intend to use the 3DES, RC4-HMAC, AES-256, or AES-128 encryption standards, you
must use the CyberSafe or Wedgetail GSSManagers.

Refer to the respective documentation for more information about Wedgetail and CyberSafe.

Troubleshooting Kerberos
Review the considerations when troubleshooting Kerberos security issues.

• The Java reference implementation supports only the DES encryption type. You must
configure your Active Directory and KDC principals to use DES encryption.

• The value of the SERVICE_PRINCIPAL_NAME property must be set to the same name
you specify with the -s option when you start your data server.

• Check the krb5.conf and krb5.ini files. For CyberSafe clients, check the
krb.conf and krb.realms files or DNS SRV records.

• You can set the debug property to true in the JAAS login configuration file.

• You can set the debug property to true at the command line:

-Dsun.security.krb5.debug=true
• The JAAS login configuration file provides several options that you can set for your

particular needs. For information about JAAS and the Java GSS API, refer to:
• JAAS login configuration file
• Class Krb5LoginModule
• Troubleshooting JGSS

Security

Programmers Reference 123

http://docs.oracle.com/javase/1.4.2/docs/guide/security/jgss/tutorials/LoginConfigFile.html
http://docs.oracle.com/javase/1.4.2/docs/guide/security/jaas/spec/com/sun/security/auth/module/Krb5LoginModule.html
http://docs.oracle.com/javase/1.4.2/docs/guide/security/jgss/tutorials/Troubleshooting.html

Related Documents
Review the additional information on Kerberos security.

• Java tutorial on JAAS and the Java GSS API
• MIT Kerberos documentation and download site
• CyberSafe Limited
• CyberSafe Limited document on Windows-Kerberos interoperability
• Kerberos RFC 1510

Security

124 jConnect for JDBC

http://docs.oracle.com/javase/1.4.2/docs/guide/security/jgss/tutorials/index.html
http://web.mit.edu/kerberos/www/index.html
http://www.cybersafe.ltd.uk
http://www.cybersafe.ltd.uk/docs_cybersafe/Kerberos%20Interoperability%20-%20Microsoft%20W2k%20&%20ActiveTRUST.pdf
http://www.linuxdig.com/rfc/individual/1510.php

Troubleshooting

Review the solutions and workarounds for problems you might encounter when using
jConnect.

Debugging with jConnect
jConnect includes a Debug class that contains a set of debugging functions.

The Debug methods include a variety of assert, trace, and timer functions that let you define
the scope of the debugging process and the output destination for the debugging results.

The jConnect installation also includes a complete set of debug-enabled classes. These classes
are located in the devclasses subdirectory under your jConnect installation directory. For
debugging purposes, you must redirect your CLASSPATH environment variable to reference
the debug mode runtime classes (devclasses/jconn4d.jar), rather than the standard
jConnect classes directory. You can also do this by explicitly providing a -classpath
argument to the java command when you run a Java program.

Obtaining an Instance of the Debug Class
Import the Debug interface and obtain an instance of the Debug class by calling the
getDebug method on the SybDriver class.

import com.sybase.jdbcx.Debug;
//
...
SybDriver sybDriver = (SybDriver)
Class.forName("com.sybase.jdbc4.jdbc.SybDriver").newInstance();
Debug sybdebug = sybDriver.getDebug();
...

Turning On Debugging in an Application
Use the debug method on the Debug object to turn on debugging within your application.

Add this call:
sybdebug.debug(true, [classes], [printstream]);

The classes parameter is a string that lists the specific classes you want to debug, separated by
colons. For example:
sybdebug.debug(true,"MyClass")

and:
sybdebug.debug(true,"MyClass:YourClass")

Troubleshooting

Programmers Reference 125

Using “STATIC” in the class string turns on debugging for all static methods in jConnect in
addition to the designated classes. For example:
sybdebug.debug(true,"STATIC:MyClass")

You can specify “ALL” to turn on debugging for all classes. For example:
sybdebug.debug(true,"ALL");

The printstream parameter is optional. If you do not specify a printstream, the debug output
goes to the output file you specified with DriverManager.setLogStream.

Turning Off Debugging in an Application
Review the instruction to turn off debugging method.

Add this call:
sybdebug.debug(false);

Setting the CLASSPATH for Debugging
Before you run your debug-enabled application, replace the optimized jConnect
jconn4.jar file with the debug version jconn4d.jar, which you can find in the
devclasses subdirectory under your jConnect installation directory.

To set the environment variable:

• For UNIX, replace $JDBC_HOME/classes/jconn4.jar with $JDBC_HOME/
devclasses/jconn4d.jar.

• For Windows, replace %JDBC_HOME%\classes\jconn4.jar with %JDBC_HOME
%\devclasses\jconn4d.jar.

Using the Debugging Methods
Customize the debugging methods in jConnect.

You can add calls to other Debug methods.

If any of these methods are static, use null for the object parameter.

• println – define the message to print in the output log if debugging is enabled and the
object is included in the list of classes to debug. The debug output goes to the file you
specified with sybdebug.debug.

The syntax is:
sybdebug.println(object,message string);

For example:
sybdebug.println(this,"Query: "+ query);

produces a message similar to this in the output log:
myApp(thread[x,y,z]): Query: select * from authors

Troubleshooting

126 jConnect for JDBC

• assert – assert a condition and throw a runtime exception when the condition is not met.
You can also define the message to print in the output log if the condition is not met.
The syntax is:
sybdebug.assert(object,boolean condition,message
 string);

For example:
sybdebug.assert(this,amount<=buf.length,amount+"
 too big!");

produces a message similar to this in the output log if “amount” exceeds the value of
buf.length:

java.lang.RuntimeException:myApp(thread[x,y,z]):
Assertion failed: 513 too big!
at jdbc.sybase.utils.sybdebug.assert(
sybdebug.java:338)
at myApp.myCall(myApp.java:xxx)
at more stack:

• startTimer and stopTimer – start and stop a timer that measures the milliseconds
that elapse during an event. The method keeps one timer per object, and one for all static
methods. The syntax to start the timer is:
sybdebug.startTimer(object);

The syntax to stop the timer is:
sybdebug.stopTimer(object,message string);

For example:
sybdebug.startTimer(this);
stmt.executeQuery(query);
sybdebug.stopTimer(this,"executeQuery");

produces a message similar to this in the output log:
myApp(thread[x,y,z]):executeQuery elapsed time =
 25ms

Dynamic Logging
Starting with 15.7 ESD #4, jConnect for JDBC supports logging mechanism by implementing
the standard Java logger mechanism.

Example
The application obtains the handle of the jConnect logger, and turn logging on or off as and
when required.

try
{
// Get logger for all classes present in

Troubleshooting

Programmers Reference 127

//"com.sybase.jdbc4.jdbc" package

Logger LOG = Logger.getLogger("com.sybase.jdbc4.jdbc");

// To log class-specific log message,
// provide complete class name, for example:
//Logger.getLogger("com.sybase.jdbc4.jdbc.
//SybConnection");
//Get handle as per user's requirement
Handler handler = new ConsoleHandler();

//Set logging level
handler.setLevel(Level.ALL);

//Added user specific handler to logger object
LOG.addHandler(handler);

//Set logging level
LOG.setLevel(Level.ALL);

Class.forName("com.sybase.jdbc4.jdbc.SybDriver");
Properties properties = new Properties();
properties.put("USER", USER_NAME);
properties.put("PASSWORD", PASSWORD);
Connection con = DriverManager.getConnection("jdbc:sybase:Tds:" +
 HOST_PORT, properties);
Statement stmt = con.createStatement();
stmt.execute("select @@version");

//Dynamically turn off logging mechanism
LOG.setLevel(Level.OFF);
con.close();
...
}

Logging Levels
jConnect allows application users to set message granularity to Level.FINE, Level.FINER,
and Level.FINEST. For example:

• When a user sets the logging level to Level.FINE on SybConnection class, jConnect
reports: Dr1_Col setClientInfo(Properties)

• Level.FINER on SybConnection class reports: Dr1_Co1
setClientInfo(Properties.size = [3])

• Level.FINEST on SybConnection class reports: Dr1_Co1
setClientInfo(Properties = [[ClientUserValue,
ApplicationNameValue, ClientHostnameValue]])

Troubleshooting

128 jConnect for JDBC

Enabling Logging Dynamically in jConnect
Dynamically enable logging by using LogHandler API programmatically in your
application.

1. Enable or disable logging by programmatically using LogHandler API. Enter the
following code to enable console-level logging on SybConnection and
SybStatement classes:

LogManager logManager = LogManager.getLogManager();
 Handler handler = new ConsoleHandler();
 handler.setLevel(Level.ALL);
 Logger connLOG =
Logger.getLogger(SybConnection.class.getName());
 connLOG.addHandler(handler);
 connLOG.setLevel(Level.FINE);
 logManager.addLogger(connLOG);
 Logger stmtLOG =
Logger.getLogger(SybStatement.class.getName());
 stmtLOG.addHandler(handler);
 stmtLOG.setLevel(Level.FINE);
 logManager.addLogger(stmtLOG);

2. Run the application.

3. You can tune the logging setting dynamically using the LogHandler as given in Step 1.
Some of the suggested ways to achieve this:

• Expose an interface where you can change a property that internally manages logging
levels.

• Run a surrogate thread that tunes the logging as required in your application.

Enabling Logging Statically in jConnect
Statically enable logging in jConnect that implements the standard Java logging mechanism.

1. Use the text editor to modify the contents of the standard logging file in $JRE_DIR/
lib/logging.properties.

handlers= java.util.logging.FileHandler
java.util.logging.FileHandler.formatter =
com.sybase.jdbc4.utils.LogUtil
.level= ALL

2. Add or enter the following contents in the file:
com.sybase.jdbc4.jdbc.SybDriver.level = FINEST
com.sybase.jdbc4.jdbc.SybConnection.level = FINEST
com.sybase.jdbc4.jdbc.SybStatement.level = FINER
com.sybase.jdbc4.jdbc.SybPreparedStatement.level = FINE
com.sybase.jdbc4.jdbc.SybResultSet.level = FINE

3. Adjust the level of logging to Level.FINE, Level.FINER, and Level.FINEST to set the
appropriate granularity of logging.

Troubleshooting

Programmers Reference 129

Note: jConnect does not support package-level logging.

4. Save the logging.properties file.

Capture TDS Communication
TDS is the Sybase-proprietary protocol for handling communication between a client
application and Adaptive Server.

jConnect includes a PROTOCOL_CAPTURE connection property that allows you to capture
raw TDS packets to a file.

If you are having problems with an application that you cannot resolve within either the
application or the server, use PROTOCOL_CAPTURE to capture the communication between
the client and the server in a file. You can then send the file, which contains binary data and is
not directly interpretable, to Sybase Technical Support for analysis.

Note: The captured TDS protocol data saved to a file contains sensitive user authentication
information and may contain confidential company or customer data. To protect this
confidential data from unauthorized or accidental disclosure, use file permissions or
encryption to properly protect the files containing captured data.

PROTOCOL_CAPTURE Connection Property
Use the PROTOCOL_CAPTURE connection property to specify a file for receiving the TDS
packets exchanged between an application and an Adaptive Server.

PROTOCOL_CAPTURE takes effect immediately so that TDS packets exchanged during
connection establishment are written to the specified file. All packets continue to be written to
the file until Capture.pause is executed or the session is closed.

This example shows the use of PROTOCOL_CAPTURE to send TDS data to the file
tds_data:

...
props.put("PROTOCOL_CAPTURE", "tds_data")
Connection conn = DriverManager.getConnection(url, props);

where url is the connection URL, and props is a Properties object for specifying
connection properties.

Pause and Resume Methods in Capture Class
The Capture class is in the com.sybase.jdbcx package, and contains pause and
resume methods.

Capture.pause stops the capture of raw TDS packets into a file; Capture.resume
restarts the capture.

Troubleshooting

130 jConnect for JDBC

The TDS capture file for an entire session can become very large. You can limit the size of the
capture file, if you know where in an application you want to capture TDS data.

Limiting Size of Capture File
Review the instructions to limit the size of the capture file.

1. Immediately after you have established a connection, get the Capture object for the
connection and use the pause method to stop capturing TDS data:

Capture cap = ((SybConnection)conn).getCapture();
 cap.pause();

2. Place cap.resume where you want to start capturing TDS data.

3. Place cap.pause where you want to stop capturing data.

Resolve Connection Errors
Address the problems that may arise when you are trying to establish a connection or start a
gateway.

Gateway connection refused:
HTTP/1.0 502 Bad Gateway|Restart Connection

This error message indicates that something is wrong with the hostname or port# used to
connect to your Adaptive Server. Check the [query] entry in $SYBASE/interfaces
(UNIX) or in %SYBASE%\ini\sql.ini (Windows).

If the problem persists after you have verified the hostname and port#, you can learn more by
starting the HTTP server using the “verbose” system property.

For Windows, go to a DOS prompt and enter:
httpd -Dverbose=1 > filename

For UNIX, enter:
sh httpd.sh -Dverbose=1 > filename &

where filename is the debug messages output file.

Your Web server probably does not support the connect method. Applets can connect only
to the host from which they were downloaded.

The HTTP gateway and your Web server must run on the same host. In this scenario, your
applet can connect to the same machine/host through the port controlled by the HTTP
gateway, which routes the request to the appropriate database.

To see how this is accomplished, review the source of Isql.java and gateway.html in
the sample2 subdirectory under the jConnect installation directory. Search for “proxy.”

Troubleshooting

Programmers Reference 131

Manage Memory in jConnect Applications
Use the Statement objects and subclasses, if you notice increased memory use in jConnect
applications

• In jConnect applications, explicitly close all Statement objects and subclasses (for
example, PreparedStatement, CallableStatement) after their last use to
prevent statements from accumulating in memory. Closing only the ResultSet is not
sufficient.
For example, this statement causes problems:
ResultSet rs = _conn.prepareCall(_query).execute();
...
rs.close();

Instead, use:
PreparedStatement ps = _conn.prepareCall(_query);
ResultSet rs = ps.executeQuery();
...
rs.close();
ps.close();

• Native support for scrollable or updatable scrollable cursors may not be available,
depending on the version of Adaptive Server or SQL Anywhere database you are
connecting to. To support scrollable or updatable scrollable cursors when not supported
natively by the back-end server, jConnect caches the row data on demand, on the client, on
each call to ResultSet.next. However, when the end of the result set is reached, the
entire result set is stored in client memory. Because this may cause a performance
degradation, Sybase recommends that you use TYPE_SCROLL_INSENSITIVE result
sets only when the result set is reasonably small. jConnect determines if the Adaptive
Server connection supports native scrollable cursor functionality and uses it instead of
client-side caching. As a result, most applications can expect significant performance gain
in accessing out-of-order rows and reduction in client-side memory requirements.

Resolve Stored Procedure Errors
Address the problems that occur when you are trying to use jConnect and stored procedures.

RPC Returns Fewer Output Parameters Than Registered
If you call CallableStatement.registerOutParam for more parameters than you
have declared as OUTPUT parameters in the stored procedure, an error occurs.

SQLState: JZ0SG - An RPC did not return as many output parameters as
the application had registered for it.

Troubleshooting

132 jConnect for JDBC

Make sure you have declared all of the appropriate parameters as “OUTPUT.” Look at the line
of code that reads:
 create procedure yourproc (@p1 int OUTPUT, ...

Note: If you receive this error while using SQL Anywhere, upgrade to SQL Anywhere version
5.5.04 or later.

Fetch/State Error
Fetch/State error occurs if a query does not return row data.

You can use the CallableStatement.executeUpdate or execute methods rather
than the executeQuery method.

As required by the JDBC standards, jConnect throws a SQL exception if executeQuery
has no result sets.

Stored Procedure Executed in Unchained Transaction Mode
This error occurs when JDBC attempts to send the connection in autocommit(true)
mode.

Sybase Error 7713 - Stored Procedure can only be executed in
unchained transaction mode.
The application can change the connection to chained mode using
Connection.setAutoCommit(false) or by using a “set chained on” language
command. This error occurs if the stored procedure was not created in a compatible mode.

To fix the problem, use:
sp_procxmode procedure_name,"anymode"

Resolve Custom Socket Implementation Error
Custom socket implementation error occurs when you try to set up an SSL socket when calling
sun.security.ssl.SSLSocketImpl.setEnabledCipherSuites.

java.lang.IllegalArgumentException:
SSL_SH_anon_EXPORT_WITH_RC4_40_MDS
Verify that the SSL libraries are in the system library path.

Troubleshooting

Programmers Reference 133

Troubleshooting

134 jConnect for JDBC

Performance and Tuning

Review the instructions to fine-tune or improve performance when working with jConnect.

Improve jConnect performance
Review the options to optimize the performance of an application using jConnect.

• Use TextPointer.sendData methods to send text and image data to an Adaptive
Server database.

• Create precompiled PreparedStatement objects for dynamic SQL statements that
are used repeatedly during a session.

• Use batch updates to improve performance by reducing network traffic; specifically, all
queries are sent to the server in one group and all responses returned to the client are sent in
one group.

• For sessions that are likely to move image data, large row sets, and lengthy text data, use
the PACKETSIZE connection property to set the maximum feasible packet size.

• For TDS-tunneled HTTP, set the maximum TDS packet size and configure your Web
server to support the HTTP1.1 keep-alive feature. Also, set the SkipDoneProc servlet
argument to true.

• Use protocol cursors, the default setting of the LANGUAGE_CURSOR connection
property.

• If you use TYPE_SCROLL_INSENSITIVE result sets, use them only when the result set
is reasonably small.

See also
• Support for Batch Updates on page 66
• Image Datatype on page 68
• Performance Tuning for Prepared Statements in Dynamic SQL on page 137
• TYPE_SCROLL_INSENSITIVE Result Sets in jConnect on page 63
• LANGUAGE_CURSOR Connection Property on page 144

BigDecimal Rescaling
The JDBC 1.0 specification requires a scale factor with getBigDecimal method.

When a BigDecimal object is returned from the server, it must be rescaled using the original
scale factor you used with getBigDecimal.

To eliminate the processing time required for rescaling, use the JDBC 2.0 getBigDecimal
method, which jConnect implements in the SybResultSet class and does not require a
scale value:

Performance and Tuning

Programmers Reference 135

public BigDecimal getBigDecimal(int columnIndex)
 throws SQLException

For example:
SybResultSet rs =
 (SybResultSet)stmt.executeQuery("SELECT
 numeric_column from T1");
 while (rs.next())
 {
 BigDecimal bd rs.getBigDecimal(
 "numeric_column");
 ...
 }

REPEAT_READ Connection Property
You can improve performance on retrieving a result set from the database if you set the
REPEAT_READ connection property to false.

When REPEAT_READ is false:

• You must read column values in order, according to column index. This is difficult if you
want to access columns by name rather than column number.

• You cannot read a column value in a row more than once.

SunIoConverter Character-Set Conversion
If you are using multibyte character sets and want to improve driver performance, use the
SunIoConverter class provided with the jConnect samples.

This converter is based on the sun.io classes provided by Oracle Corporation.

The SunIoConverter class is not a pure Java implementation of the character-set
converter feature and, therefore, is not integrated with the standard jConnect product.
However, Sybase has provided this converter class for your reference, and you can use it with
the jConnect driver to improve character-set conversion performance.

Note: Based on Sybase testing, the SunIoConverter class improved performance on all
VMs on which it was tested. However, Oracle Corporation reserves the right to remove or
change the sun.io classes with future releases of the JDK. Therefore, this
SunIoConverter class may not be compatible with later JDK releases.

To use the SunIoConverter class, you must install the jConnect sample applications.
Once the samples are installed, set the CHARSET_CONVERTER_CLASS connection
property to reference the SunIoConverter class in the sample2 subdirectory under your
jConnect installation directory.

See the Sybase jConnect for JDBC Installation Guide for complete instructions on installing
jConnect and its components, including the sample applications.

Performance and Tuning

136 jConnect for JDBC

If you are using a database with its default character set as iso_1, or if you are using only the
first 7 bits of ASCII, you can gain significant performance benefits by using the
TruncationConverter.

See also
• jConnect Character Set Converters on page 43

Performance Tuning for Prepared Statements in Dynamic
SQL

In Embedded SQL™, dynamic statements are SQL statements that need to be compiled at
runtime, rather than statically.

Typically, dynamic statements contain input parameters, although this is not a requirement. In
SQL, the prepare command precompiles a dynamic statement and saves it so that it can be
executed repeatedly without being recompiled during a session.

If a statement is used multiple times in a session, precompiling it provides better performance
than sending it to the database and compiling it for each use. The more complex the statement,
the greater the performance benefit.

If a statement is likely to be used only a few times, precompiling it may be inefficient because
of the overhead involved in precompiling, saving, and later deallocating it in the database.

Precompiling a dynamic SQL statement for execution and saving it in memory uses time and
resources. If a statement is not likely to be used multiple times during a session, the costs of
doing a database prepare may outweigh its benefits. Another consideration is that once a
dynamic SQL statement is prepared in the database, it is very similar to a stored procedure. In
some cases, it may be preferable to create stored procedures and have them reside on the
server, rather than defining prepared statements in the application.

You can use jConnect to optimize the performance of dynamic SQL statements on a Sybase
database by creating:

• PreparedStatement objects that contain precompiled statements in cases where a
statement is likely to be executed several times in a session.

• PreparedStatement objects that contain uncompiled SQL statements in cases where
a statement is used very few times in a session.

The optimal way to set the DYNAMIC_PREPARE connection property and create
PreparedStatement objects can depend on whether your application needs to be
portable across JDBC drivers or whether you are writing an application that allows jConnect-
specific extensions to JDBC.

jConnect provides performance tuning features for dynamic SQL statements.

Performance and Tuning

Programmers Reference 137

See also
• Choose Prepared Statements and Stored Procedures on page 138

Choose Prepared Statements and Stored Procedures
If you create a PreparedStatement object containing a precompiled dynamic SQL
statement, once the statement is compiled in the database, it effectively becomes a stored
procedure that is retained in memory and attached to the data structure associated with your
session.

In deciding whether to maintain stored procedures in the database or to create
PreparedStatement objects containing compiled SQL statements in your application,
resource demands and database and application maintenance are important considerations:

• Once a stored procedure is compiled, it is globally available across all connections. In
contrast, a dynamic SQL statement in a PreparedStatement object must be
compiled and deallocated in every session that uses it.

• If your application accesses multiple databases, using stored procedures means that the
same stored procedures must be available on all target databases. This can create a
database maintenance problem. If you use PreparedStatement objects for dynamic
SQL statements, you avoid this problem.

• If your application creates CallableStatement objects for invoking stored
procedures, you can encapsulate SQL code and table references in the stored procedures.
You can then modify the underlying database or SQL code without have to change the
application.

Prepared Statements in Portable Applications
If your application runs on databases from different vendors and you want some
PreparedStatement objects to contain precompiled statements and others to contain
uncompiled statements, use the PreparedStatement in portable applications.

• When you access a Sybase database, make sure that the DYNAMIC_PREPARE connection
property is set to true.

• To return PreparedStatement objects containing precompiled statements, use
Connection.prepareStatement in the standard way:

PreparedStatement ps_precomp =
 Connection.prepareStatement(sql_string);

• To return PreparedStatement objects containing uncompiled statements, use
Connection.prepareCall.

Connection.prepareCall returns a CallableStatement object, but because
CallableStatement is a subclass of PreparedStatement, you can upcast a
CallableStatement object to a PreparedStatement object, as:

PreparedStatement ps_uncomp =
 Connection.prepareCall(sql_string);

Performance and Tuning

138 jConnect for JDBC

The PreparedStatement object ps_uncomp is guaranteed to contain an uncompiled
statement, because only Connection.prepareStatement is implemented to return
PreparedStatement objects containing precompiled statements.

Prepared Statements with jConnect Extensions
If you are not concerned about portability across drivers, you can write code that uses
SybConnection.prepareStatement to specify whether a PreparedStatement
object contains precompiled or uncompiled statements.

In this case, how you code prepared statements depends on whether most of the dynamic
statements in an application are likely to be executed many times or only a few times during a
session.

If Most Dynamic Statements Are Executed Infrequently
Dynamic SQL statements are executed only once or twice in a session for an application.

• Set the connection property DYNAMIC_PREPARE to false.

• To return PreparedStatement objects containing uncompiled statements, use
Connection.prepareStatement in the standard way:

PreparedStatement ps_uncomp =
 Connection.prepareStatement(sql_string);

• To return PreparedStatement objects containing precompiled statements, use
SybConnection.prepareStatement with dynamic set to true. For example:

PreparedStatement ps_precomp =
 (SybConnection)conn.prepareStatement(sql_string, true);

If Most Dynamic Statements Executed Are Multiple Times in a Session
Use the DYNAMIC_PREPARE and PreparedStatement objects to execute the dynamic
statements multiple times in an application in the course of a session.

• Set the connection property DYNAMIC_PREPARE to true.

• To return PreparedStatement objects containing precompiled statements, use
Connection.prepareStatement in the standard way:

PreparedStatement ps_precomp =
Connection.prepareStatement(sql_string);

• To return PreparedStatement objects containing uncompiled statements, you can
use either Connection.prepareCall or
SybConnection.prepareStatement, with dynamic set to false. For example:

PreparedStatement ps_uncomp =
 (SybConnection)conn.prepareStatement(sql_string, false);
PreparedStatement ps_uncomp = Connection.prepareCall(sql_string);

See also
• Prepared Statements in Portable Applications on page 138

Performance and Tuning

Programmers Reference 139

Connection.PrepareStatement
jConnect implements Connection.prepareStatement so you can set it to return
either precompiled SQL statements or uncompiled SQL statements in PreparedStatement
objects.

If you set Connection.prepareStatement to return precompiled SQL statements in
PreparedStatement objects, it sends dynamic SQL statements to the database to be
precompiled and saved exactly as they would be under direct execution of the prepare
command. If you set Connection.prepareStatement to return uncompiled SQL
statements, it returns them in PreparedStatement objects without sending them to the
database.

The type of SQL statement that Connection.prepareStatement returns is
determined by the connection property DYNAMIC_PREPARE, and applies throughout a
session.

For Sybase-specific applications, jConnect 6.05 and later provides a prepareStatement
method under the jConnect SybConnection class.
SybConnection.prepareStatement allows you to specify whether an individual
dynamic SQL statement is to be precompiled, independent of the session-level setting of the
DYNAMIC_PREPARE connection property.

DYNAMIC_PREPARE Connection Property
DYNAMIC_PREPARE is a Boolean-valued connection property for enabling dynamic SQL
prepared statements.

• If DYNAMIC_PREPARE is true (the default), every invocation of
Connection.prepareStatement during a session attempts to return a
precompiled statement in a PreparedStatement object.
In this case, when a PreparedStatement is executed, the statement it contains is
already precompiled in the database, with placeholders for dynamically assigned values,
and the statement needs only to be executed.

• If DYNAMIC_PREPARE is false for a connection, the PreparedStatement object
returned by Connection.prepareStatement does not contain a precompiled
statement.
In this case, each time a PreparedStatement is executed, the dynamic SQL statement
it contains must be sent to the database to be both compiled and executed.

In this example, DYNAMIC_PREPARE is false to disable precompilation of dynamic SQL
statements, and props is a Properties object for specifying connection properties.
...
props.put("DYNAMIC_PREPARE", "false")
Connection conn = DriverManager.getConnection(url, props);

When DYNAMIC_PREPARE is true:

Performance and Tuning

140 jConnect for JDBC

• Not all dynamic statements can be precompiled under the prepare command. The SQL-92
standard places some restrictions on the statements that can be used with the prepare
command, and individual database vendors may have their own constraints.

• If the database generates an error because it cannot precompile and save a statement sent to
it through Connection.prepareStatement, jConnect traps the error and returns a
PreparedStatement object containing an uncompiled dynamic SQL statement.
Each time the PreparedStatement object is executed, the statement is re-sent to the
database to be compiled and executed.

• A precompiled statement resides in memory in the database and persists either to the end of
a session or until its PreparedStatement object is explicitly closed. Garbage
collection on a PreparedStatement object does not remove the prepared statement
from the database.

As a general rule, explicitly close every PreparedStatement object after its last use to
prevent prepared statements from accumulating in server memory during a session and
slowing performance.

SybConnection.PrepareStatement Method
Use the SybConnection.prepareStatement extension method to return dynamic
SQL statements in PreparedStatement objects.

If your application allows jConnect-specific extensions to JDBC:
PreparedStatement SybConnection.prepareStatement(String sql_stmt,
 boolean dynamic) throws SQLException

SybConnection.prepareStatement can return PreparedStatement objects
containing either precompiled or uncompiled SQL statements, depending on the setting of the
dynamic parameter. If dynamic is true, SybConnection.prepareStatement returns
a PreparedStatement object with a precompiled SQL statement. If dynamic is false, it
returns a PreparedStatement object with an uncompiled SQL statement.

This example shows the use of SybConnection.prepareStatement to return a
PreparedStatement object containing a precompiled statement:

PreparedStatement precomp_stmt = ((SybConnection)
conn).prepareStatement
 ("SELECT * FROM authors WHERE au_fname LIKE ?", true);

In this example, the connection object conn is cast to a SybConnection object to allow the
use of SybConnection.prepareStatement. The SQL string passed to
SybConnection.prepareStatement is precompiled in the database, even if the
connection property DYNAMIC_PREPARE is false.

If the database generates an error because it cannot to precompile a statement sent to it through
SybConnection.prepareStatement, jConnect throws a SQLException, and the
call fails to return a PreparedStatement object. This is unlike

Performance and Tuning

Programmers Reference 141

Connection.prepareStatement, which traps SQL errors and, in the event of an error,
returns a PreparedStatement object containing an uncompiled statement.

ESCAPE_PROCESSING_DEFAULT Connection Property
By default, jConnect parses all SQL statements submitted to the database for valid JDBC
function escapes.

If your application is not going to use JDBC function escapes in its SQL calls, set this
connection property to false to circumvent this parsing. This may give a slight performance
benefit.

Optimized Batch in jConnect
jConnect implements an internal algorithm to speed up batch operations for
PreparedStatement objects.

This algorithm is invoked when the HOMOGENEOUS_BATCH connection property is true.

Note: Homogeneous batching is available only when your client application is connected to a
server that supports this feature. Adaptive Server Enterprise 15.7 introduces support for
homogeneous batching.

This example illustrates a PreparedStatement batching operation using the addBatch
and executeBatch methods:

String sql = "update members set lastname = ? where member_id = ?";
prep_stmt = connection.prepareStatement(sql);
prep_stmt.setString(1, "Forrester");
prep_stmt.setLong(2, 45129);
prep_stmt.addBatch();
prep_stmt.setString(1, "Robinson");
prep_stmt.setLong(2, 45130);
prep_stmt.addBatch();
prep_stmt.setString(1, "Servo");
prep_stmt.setLong(2, 45131);
prep_stmt.addBatch();
prep_stmt.executeBatch();

where connection is a connection instance, prep_stmt is a prepared statement instance,
and ? denotes parameter placeholders for the prepared statement.

Performance and Tuning

142 jConnect for JDBC

Homogeneous Batch with Large Object (LOB) Columns
When the HOMOGENEOUS_BATCH and ENABLE_LOB_LOCATORS properties are true, the
client application cannot mix LOB and non-LOB prepared statement setter methods in the
same batch.

For example, this is invalid:
String sql = "update members SET catchphrase = ? WHERE member_id
= ?";
prep_stmt = connection.prepareStatement(sql);
prep_stmt.setString(1, "Push the button, Frank!");
prep_stmt.setLong(2, 45129);
prep_stmt.addBatch();
Clob myclob = con.createClob();
myclob.setString(1, "Hi-keeba!");
prep_stmt.setClob(1, myclob);
prep_stmt.setLong(2, 45130);
prep_stmt.addBatch();
pstmt.executeBatch();

where catchphrase is a column of type text. This code fails because the setString
method and the setClob method are used in the same batch for the same column.

Cursor Performance
When you use the Statement.setCursorName method or the setFetchSize()
method in the SybCursorResultSet class, jConnect creates a cursor in the database.

Other methods cause jConnect to open, fetch, and update a cursor.

jConnect creates and manipulates cursors either by sending SQL statements to the database or
by encoding cursor commands as tokens within the TDS communication protocol. Cursors of
the first type are language cursors, cursors of the second type are protocol cursors.

Protocol cursors provide better performance than language cursors. In addition, not all
databases support language cursors. For example, SQL Anywhere databases do not support
language cursors.

In jConnect, the default condition is for all cursors to be protocol cursors. However, the
LANGUAGE_CURSOR connection property lets you use language commands in the database
to create and manipulate cursors.

Performance and Tuning

Programmers Reference 143

LANGUAGE_CURSOR Connection Property
LANGUAGE_CURSOR is a Boolean-valued connection property in jConnect that allows you
to determine whether cursors are created as protocol cursors or language cursors.

• If LANGUAGE_CURSOR is false (the default), all cursors created during a session are
protocol cursors, which provide better performance. jConnect creates and manipulates the
cursors by sending cursor commands as tokens in the TDS protocol.

• If LANGUAGE_CURSOR is true, all cursors created during a session are language cursors.
jConnect creates and manipulates the cursors by sending SQL statements to the database
for parsing and compilation.
There is no known advantage to setting LANGUAGE_CURSOR to true, but the option is
provided in case an application displays unexpected behavior when
LANGUAGE_CURSOR is false.

Performance and Tuning

144 jConnect for JDBC

Migrating jConnect Applications

Review instructions to migrate applications from jConnect 5.x and 6.x to jConnect 7.x.

Migrating Applications to jConnect 7.x
Review the instructions to migrate applications to jConnect 7.x.

1. If your code uses Sybase extensions, or if you explicitly import any jConnect class in your
code, change package import statements as needed.

For example, change import statements such as:
import com.sybase.jdbc.*

and:
import com.sybase.jdbc2.jdbc.*

to:
import com.sybase.jdbcx.*

2. Set JDBC_HOME to the top directory of the jConnect driver you installed:

JDBC_HOME=jConnect-7_0
3. Change your CLASSPATH environment variable to reflect the new installation; it must

include:

JDBC_HOME/classes/jconn4.jar
4. Change the source code where the driver is loaded, and recompile the application to use the

new driver:

Class.forName("com.sybase.jdbc4.jdbc.SybDriver");
5. Verify that the jConnect 7.0 driver is the first jConnect driver specified in your

CLASSPATH environment variable.

See also
• Change Sybase Extensions on page 145

Change Sybase Extensions
jConnect version 4.1 and later include the package com.sybase.jdbcx that contains all of
the Sybase extensions to JDBC.

In versions of jConnect earlier than 4.1, these extensions were available in the
com.sybase.jdbc and com.sybase.utils packages.

Migrating jConnect Applications

Programmers Reference 145

The com.sybase.jdbcx package provides a consistent interface across different versions
of jConnect. All of the Sybase extensions are defined as Java interfaces, which allow the
underlying implementations to change without affecting applications built using these
interfaces.

When you develop new applications that use Sybase extensions, use com.sybase.jdbcx.
The interfaces in this package allow you to upgrade applications to versions of jConnect later
than 4.0 with minimal changes.

Some of the Sybase extensions have been changed to accommodate the
com.sybase.jdbcx interface.

Extension Change Example
Review the code differences if an application uses the SybMessageHandler.

• jConnect 4.0 code:
import com.sybase.jdbc.SybConnection;
import com.sybase.jdbc.SybMessageHandler;
.
.
Connection con = DriverManager.getConnection(url, props);
SybConnection sybCon = (SybConnection) con;
sybCon.setMessageHandler(new ConnectionMsgHandler());

• jConnect 6.0 code:
import com.sybase.jdbcx.SybConnection;
import com.sybase.jdbcx.SybMessageHandler;
.
.
Connection con = DriverManager.getConnection(url, props);
SybConnection sybCon = (SybConnection) con;
sybCon.setSybMessageHandler(new ConnectionMsgHandler());

See the samples provided with jConnect for more examples of how to use Sybase
extensions.

Method Names
Review the list of renamed methods in the interface.

Table 8. Method Name Changes

Actual Method Name Version 4.0 and Earlier Version 4.0 and Later

SybConnection getCapture() createCapture()
SybConnection setMessageHan-

dler()
setSybMessageHan-
dler()

Migrating jConnect Applications

146 jConnect for JDBC

Actual Method Name Version 4.0 and Earlier Version 4.0 and Later

SybConnection getMessageHan-
dler()

getSybMessageHan-
dler()

SybStatement setMessageHan-
dler()

setSybMessageHan-
dler()

SybStatement getMessageHan-
dler()

getSybMessageHan-
dler()

Debug Class
Direct static references to the Debug class are no longer supported, but exist in deprecated
form in the com.sybase.utils package.

Use jConnect debugging facilities, use the getDebug method of the SybDriver class to
obtain a reference to the Debug class. For example:

import com.sybase.jdbcx.SybDriver;
import com.sybase.jdbcx.Debug;
.
.
.
SybDriver sybDriver =
 SybDriver)Class.forName
 ("com.sybase.jdbc4.jdbc.SybDriver") newInstance();
Debug sybDebug = sybDriver.getDebug();
sybDebug.debug(true, "ALL", System.out);

A complete list of Sybase extensions is in the jConnect Javadoc documentation located in the
docs/ directory of your jConnect installation directory.

Migrating jConnect Applications

Programmers Reference 147

Migrating jConnect Applications

148 jConnect for JDBC

Web Server Gateways

If your database server runs on a different host than your Web server, or if you are developing
Internet applications that must connect to a secure database server through a firewall, you need
a gateway to act as a proxy, providing a path to the database server.

To connect to servers using the SSL protocol, jConnect includes a Java servlet that you can
install on any Web server that supports the javax.servlet interfaces. This servlet
enables jConnect to support encryption using the Web server as the gateway.

Note: jConnect includes support for SSL on the client system.

See also
• Implement Custom SSL Socket Plug-ins on page 109

TDS tunnelling
jConnect uses TDS to communicate with database servers. Requests from a client to a back-
end server that go through the gateway contain TDS in the body of the request.

HTTP-tunnelled TDS is useful for forwarding requests. The request header indicates the
length of the TDS included in the request packet.

TDS is a connection-oriented protocol, whereas HTTP is not. To support security features
such as encryption for Internet applications, jConnect uses a TDS-tunnelling servlet to
maintain a logical connection across HTTP requests. The servlet generates a session ID during
the initial login request, and the session ID is included in the header of every subsequent
request. Using session IDs lets you identify active sessions and even resume a session, as long
as the servlet has an open connection using that specific session ID.

The logical connection provided by the TDS-tunnelling servlet enables jConnect to support
encrypted communication between two systems; for example, a jConnect client with the
CONNECT_PROTOCOL connection property set to https can connect to a Web server running
the TDS-tunnelling servlet.

Web Server Gateways

Programmers Reference 149

Configure jConnect and Gateways
There are several options for setting up your Web servers and Adaptive Servers to install the
jConnect driver and to use a gateway with the TDS-tunnelling servlet.

Web Server and Adaptive Server on One Host
In a two-tier configuration, the Web server and Adaptive Server are both installed on the same
host.

• Install jConnect on the Web server host.
• No gateway is required.

Figure 3: Web Server and Adaptive Server on One Host

Dedicated JDBC Web Server and Adaptive Server on One Host
In a single host configuration, you have a separate host for your main Web server.

A second host is shared by a Web server specifically for Adaptive Server access and the
Adaptive Server. Links from the main server send requests requiring SQL access to the
dedicated Web server.

• Install jConnect on the second (Adaptive Server) host.
• No gateway is required on the second (Adaptive Server) host.

Web Server Gateways

150 jConnect for JDBC

Figure 4: Dedicated JDBC Web Server and Adaptive Server on One Host

Web Server and Adaptive Server on Separate Hosts
In a three-tier configuration, the Adaptive Server is on a separate host than the Web server.
jConnect requires a gateway to act as a proxy to the Adaptive Server.

• Install jConnect on the Web server host.
• Install a TDS-tunnelling servlet or a different gateway.

Figure 5: Web Server and Adaptive Server on Separate Hosts

Web Server Gateways

Programmers Reference 151

Connect to Server Through Firewall
Connect to a server protected by a firewall.

You must use a Web server with the TDS-tunnelling servlet to support transmission of
database request responses over the Internet.

• Install jConnect on the Web server host.
• Requires a Web server that supports the javax.servlet interfaces.

Figure 6: Connecting to a Server Through a Firewall

Usage Requirements
Review the usage requirements for Web server gateways.

Viewing the Index.html File
Use your Web browser to view the index.html file in your jConnect installation directory.
index.html provides links to the jConnect documentation and sample code.

If you use Netscape on the same machine where you have installed jConnect, be sure that your
browser does not have access to your CLASSPATH environment variable. See Restrictions on
Setting CLASSPATH When You Use Netscape in the Sybase jConnect for JDBC Installation
Guide and Release Bulletin.

1. Open your Web browser.

2. Enter the URL that matches your setup. For example, if your browser and the Web server
are running on the same host, enter:

http://localhost:8000/index.html

Web Server Gateways

152 jConnect for JDBC

If the browser and the Web server are running on different hosts, enter:
http://host:port/index.html

where host is the name of the host on which the Web server is running, and port is the
listening port.

Running Sample Applet
Review the instructions to execute the sample applet in jConnect.

1. Click Run Sample JDBC Applets.

2. In the Executable Samples table, locate Isql.java and click Run at the end of the
row.

The sample Isql.java applet prompts for a simple query on a sample database and
displays the results. The applet displays a default Adaptive Server host name, port number,
user name (guest), password (sybase), database, and query. Using the default values, the
applet connects to the Sybase demonstration database, and returns results after you click
Go.

Modifying Applet Screen Dimensions
On UNIX platforms, if the applet does not appear as expected, you can modify the applet
screen dimensions.

1. Use a text editor to open $JDBC_HOME/sample2/gateway.html.

2. Change the height parameter in line 7 to 650. You can experiment with different height
settings.

3. Reload the Web page on your browser.

TDS-Tunnelling Servlet
To use the TDS-tunnelling servlet, you need a Web server that supports the
javax.servlet interfaces, such as the Oracle Corporation Java Web server.

When you install the Web server, include the jConnect TDS-tunnelling servlet in the list of
active servlets. You can also set servlet parameters to define connection timeouts and
maximum packet size.

With the TDS-tunnelling servlet, requests from a client to the back-end server that go through
the gateway include a GET or POST command, the TDS session ID (after the initial request),
back-end address, and status of the request.

TDS is in the body of the request. Two header fields indicate the length of the TDS stream and
the session ID assigned by the gateway.

When the client sends a request, the Content-Length header field indicates the size of the TDS
content, and the request command is POST. If there is no TDS data in the request because the

Web Server Gateways

Programmers Reference 153

client is either retrieving the next portion of the response data from the server, or closing the
connection, the request command is GET.

The following example illustrates how information is passed between the client and an
HTTPS gateway using the TDS-tunneled HTTPS protocol; it shows a connection to a back-
end server named “DBSERVER” with a port number of 1234.

• Client to gateway login request – No session ID required.

• Query– POST/tds?ServerHost=dbserver&ServerPort=1234& Operation=more
HTTP/1.0

• Header – Content-Length: 605
• Content (TDS) – Login request

• Gateway to client – Header contains session ID assigned by the TDS servlet.

• Query– 200 SUCCESS HTTP/1.0
• Header – Content-Length: 210 TDS-Session: TDS00245817298274292
• Content (TDS) – Login acknowledgment EED

• Client to gateway – Headers for all subsequent requests contain the session ID.

• Query– POST/tds?TDS-Session=TDS00245817298274292&Operation=more
HTTP/1.0

• Header – Content-Length: 32
• Content (TDS) – Query “SELECT * from authors”

• Gateway to client – Headers for all subsequent responses contain the session ID

• Query– 200 SUCCESS HTTP/1.0
• Header – Content-Length: 2048 TDS-Session: TDS00245817298274292
• Content (TDS) – Row format and some rows from query response

Reviewing Requirements
To use jConnect servlet for TDS-tunnelling, you must have a Web server that supports the
javax.servlet interface.

To install the server, follow the instructions that are provided with the Java servlet.

Installing and Setting Servlet Arguments
jConnect installation includes a gateway2 subdirectory under the classes directory. The
subdirectory contains files required for the TDS-tunnelling servlet.

1. Copy the jConnect gateway package to a gateway2 subdirectory under the servlets
directory of your Web server.

After you have copied the servlets, activate the servlets by following the instructions for
your Web server.

Web Server Gateways

154 jConnect for JDBC

2. Add the servlet to theWeb server and, to customize performance set the optional
arguments:
• SkipDoneProc [true|false] – Sybase databases often return row count information

while intermediate processing steps are performed during the execution of a query.
Usually, client applications ignore this data. If you set SkipDoneProc to true, the
servlet removes this extra information from responses, which reduces network usage
and processing requirements on the client. This is particularly useful when using
HTTPS/SSL, because the unwanted data is not encrypted/decrypted.

• TdsResponseSize – set the maximum TDS packet size for the tunneled HTTPS. A
larger TdsResponseSize is more efficient if you have only a few users with a large
volume of data. Use a smaller TdsResponseSize if you have many users making
smaller transactions.

• TdsSessionIdleTimeout – define the amount of time, in milliseconds that the server
connection can remain idle before the connection is automatically closed. The default
TdsSessionIdleTimeout is 600,000 (10 minutes).
If you have interactive client programs that may be idle for long periods of time and you
do not want the connections broken, increase the TdsSessionIdleTimeout.
You can also set the connection timeout value from the jConnect client using the
SESSION_TIMEOUT connection property. This is useful if you have specific
applications that may be idle for longer periods. In this case, set a longer timeout for
those connections with the SESSION_TIMEOUT connection property, rather than
setting it for the servlet.

• Debug – turn on debugging.

See also
• Debugging with jConnect on page 125

Invoking the Servlet
jConnect determines when to use the gateway where the TDS-tunnelling servlet is installed
based on the path extension of the proxy connection property.

jConnect recognizes the servlet path extension to the proxy and invokes the servlet on the
designated gateway.

Define the connection URL using this format:
http://host:port/TDS-servlet-path

jConnect invokes the TDS-tunnelling servlet on the Web server to tunnel TDS through HTTP.
The servlet path must be the path you defined in the servlet alias list for your Web server.

Tracking Active TDS Sessions
View information about active TDS sessions, including the server connections, for each
session.

Use your Web browser to open the administrative URL:

Web Server Gateways

Programmers Reference 155

http://host:port/TDS-servlet-path?Operation=list

For example, if your server is “myserver” and the TDS servlet path is /tds, enter:

http://myserver:8080/tds?Operation=list

This shows you a list of active TDS sessions. You can click on a session to see more
information, including the server connection.

Terminating TDS Sessions
To terminate a TDS session, use the URL defined in any active TDS session.

Select an active session from the list of sessions on the first page, then click Terminate This
Session.

Resuming a TDS Session
When you specify a SESSION_ID, jConnect skips the login phase of the protocol and
resumes the connection with the gateway using the designated session ID.

Set the SESSION_ID connection property so that, if necessary, you can resume an existing
open connection.

If the session ID you specified does not exist on the servlet, jConnect throws a SQL exception
the first time you attempt to use the connection.

Web Server Gateways

156 jConnect for JDBC

jConnect Sample Programs

Review jConnect sample programs.

Running IsqlApp
IsqlApp allows you to issue isql commands from the command line, and run jConnect sample
programs.

The syntax for IsqlApp:
IsqlApp [-U username]
 [-P password]
 [-S servername]
 [-G gateway]
 [-p {http|https}]
 [-D debug_class_list]
 [-v]
 [-I input_command_file]
 [-c command_terminator]
 [-C charset]
 [-L language]
 [-K service_principal_name]
 [-F JAAS_login_config_file_path]
 [-T sessionID]
 [-V <version {2,3,4,5}>]

Parameter Description

-U The login ID with which you want to connect to a server.

-P The password for the specified login ID.

-S The name of the server to which you want to connect.

-G The gateway address. For HTTP, the URL is: http://host:port.

To use HTTPS, the URL is https://host:port/servlet_alias.

-p Whether to use HTTP or HTTPS.

-D Turns on debugging for all classes or for just the ones you specify, separated
by a comma. For example:

-D ALL – displays debugging output for all classes.

-D SybConnection, Tds – displays debugging output only for the Syb-
Connection and Tds classes.

jConnect Sample Programs

Programmers Reference 157

Parameter Description

-v Turns on verbose output for display or printing.

-I Causes IsqlApp to take commands from a file instead of the keyboard.

After the parameter, specify the name of the file to use for the IsqlApp input.
The file must contain command terminators (“go” by default).

-c Lets you specify a keyword (for example, “go”) that, when entered on a line
by itself, terminates the command. This lets you enter multiline commands
before using the terminator keyword. If you do not specify a command
terminator, each new line terminates a command.

-C Specifies the character set for strings passed through TDS.

If you do not specify a character set, IsqlApp uses the default charset of the
server.

-L Specifies the language in which to display error messages returned from the
server, and for jConnect messages.

-K Indicates the user wants to make a Kerberos login to Adaptive Server. This
parameter sets the service principal name. For example:

-K myASE
where the service principal name for your server is myASE.

-F Specifies the path to the JAAS login configuration file. You must set this
property if you use the -K option. For example:

-F /foo/bar/exampleLogin.conf

See the ConnectKerberos.java sample in the sample2 direc-

tory of your jConnect installation.

-T When this parameter is set, jConnect assumes that an application is trying to
resume communication on an existing TDS session held open by the TDS-
tunnelling gateway. jConnect skips the login negotiations and forwards all
requests from the application to the specified session ID.

-V Enables the use of version-specific characteristics.

You must enter a space after each option flag.

To obtain a full description of the command line options, enter:
java IsqlApp -help

This example shows how to connect to a database on a host named “myserver” through port
“3756”, and run an isql script named “myscript”:

jConnect Sample Programs

158 jConnect for JDBC

java IsqlApp -U sa -P sapassword
 -S jdbc:sybase:Tds:myserver:3756
 -I $JDBC_HOME/sp/myscript -c run

An applet that provides GUI access to isql commands is available as: $JDBC_HOME/
sample2/gateway.html (UNIX) %JDBC_HOME%\sample2\gateway.html
(Windows).

See also
• Security on page 109

• JCONNECT_VERSION Connection Property on page 4

jConnect Sample Programs

Programmers Reference 159

jConnect Sample Programs

160 jConnect for JDBC

jConnect Sample Programs and Code

jConnect includes several sample programs that are intended to help you understand how
jConnect works with various JDBC classes and methods.

Sample Applications
When you install jConnect, you can also the install sample programs, which include the source
code so that you can review how jConnect implements various JDBC classes and methods.

See the jConnect for JDBC Installation Guide for complete instructions for installing the
sample programs.

Note: The jConnect sample programs are intended for demonstration purposes only.

The sample programs are installed in the sample2 subdirectory under your jConnect
installation directory. The file index.html in the sample2 subdirectory contains a
complete list of the samples that are available along with a description of each sample.
index.html also lets you view and run the sample programs as applets.

Running the Sample Applets
You can run some of the sample programs as applets in your Web browser, enabling you to
view the source code while you review the output results.

To run the sample programs as applets, enter http://localhost:8000/sample2/
index.html on a Web browser to start the Web server gateway.

Running the Sample Programs with SQL Anywhere
All of the sample programs are compatible with Adaptive Server, but only a limited number
are compatible with SQL Anywhere.

Refer to index.html in the sample2 subdirectory for a current list of the sample
programs that are compatible with SQL Anywhere.

To run the sample programs that are available for SQL Anywhere, you must install the
pubs2_any.sql script on your SQL Anywhere server. This script is located in the
sample2 subdirectory.

For Windows, go to DOS command window and enter:
java IsqlApp -U dba -P password
 -S jdbc:sybase:Tds:[hostname]:[port]
 -I %JDBC_HOME%\sample2\pubs2_any.sql -c go

For UNIX, enter:

jConnect Sample Programs and Code

Programmers Reference 161

java IsqlApp -U dba -P password
 -S jdbc:sybase:Tds:[hostname]:[port]
 -I $JDBC_HOME/sample2/pubs2_any.sql -c go

Sample Code
Review the sample code that illustrates how to invoke the jConnect driver, make a connection,
issue a SQL statement, and process results.

import java.io.*;
 import java.sql.*;

 public class SampleCode
 {
 public static void main(String args[])
 {
 try
 {
 /*
 * Open the connection. May throw a SQLException.
 */
 DriverManager.registerDriver(
 (Driver) Class.forName(
 "com.sybase.jdbc4.jdbc.SybDriver").newInstance());
 Connection con = DriverManager.getConnection(
 "jdbc:sybase:Tds:myserver:3767", "sa", "");
 /*
 * Create a statement object, the container for the SQL
 * statement. May throw a SQLException.
 */
 Statement stmt = con.createStatement();
 /*
 * Create a result set object by executing the query.
 * May throw a SQLException.
 */
 ResultSet rs = stmt.executeQuery("Select 1");
 /*
 * Process the result set.
 */

 if (rs.next())
 {
 int value = rs.getInt(1);
 System.out.println("Fetched value " + value);
 }
 rs.close()
 stmt.close()
 con.close()
 }//end try

jConnect Sample Programs and Code

162 jConnect for JDBC

 /*
 * Exception handling.
 */
 catch (SQLException sqe)
 {
 System.out.println("Unexpected exception : " +
 sqe.toString() + ", sqlstate = " +
 sqe.getSQLState());
 System.exit(1);
 }//end catch

 catch (Exception e)
 {
 e.printStackTrace();
 System.exit(1);
 }//end catch

 System.exit(0);
 }
 }

jConnect Sample Programs and Code

Programmers Reference 163

jConnect Sample Programs and Code

164 jConnect for JDBC

SQL Exception and Warning Messages

Review the SQL exception and warning messages that you may encounter when using
jConnect.

SQL state Message/Description/Action

010AF SEVERE WARNING: An assertion has failed, please use dev-
classes todetermine the source of this serious bug.
Message = _____.
Action: Use the devclasses debug classes to determine the reason for this message,
and report the problem to Sybase Technical Support.

010CP AutoCommit option has changed to true. All pending
statements on this transaction
(if any) are committed.

010DF Attempt to set database at login failed. Error mes-
sage:______.
Description: jConnect cannot connect to the database specified in the connection
URL.

Action: Be sure the database name in the URL is correct. Also, if you are connecting
to SQL Anywhere, use the SERVICENAME connection property to specify the
database.

010DP Duplicate connection property _____ ignored.
Description: A connection property is defined twice. It may be defined twice in the
driver connection properties list with different capitalization, for example “pass-
word” and “PASSWORD.” jConnect does not distinguish between property names
with the same name but different capitalization.

The connection property may also be defined both in the connection properties list,
and in the URL. In this case, the property value in the connection property list takes
precedence.

Action: Be sure your application defines the connection property only once. How-
ever, you may want your application to take advantage of the precedence of con-
nection properties defined in the property list over those defined in the URL. In this
case, you can safely ignore this warning.

010HA The server denied your request to use the high-availa-
bility feature. Please reconfigure your database, or do
not request a high-availability session.
Action: Reconfigure the server to support high availability failover or do not set
REQUEST_HA_SESSION to true

SQL Exception and Warning Messages

Programmers Reference 165

SQL state Message/Description/Action

010HD Sybase high-availability failover is not supported by
this type of database server.
Action: Connect only to database servers that support high availability failover.

010HN The client did not specify a SERVICE_PRINCIPAL_NAME Con-
nection property. Therefore, jConnect is using the host-
name
of _____ as the service principal name
Action: Explicitly specify a service principal name using the connection property.

010HT Hostname property truncated, maximum length is 30.
Action: No action is necessary, since this is just a warning to indicate that jConnect is
truncating the name to 30 bytes. However, if you wish to avoid this warning, you
should set the HOSTNAME to a string less than or equal to 30 bytes in length.

010KF The server rejected your Kerberos login attempt. Most
likely, this was because of a Generic Security Services
(GSS)exception. Please check your Kerberos environment
and configuration.
Action: Check your Kerberos environment, and make sure that you authenticated
properly to the KDC. See Security on page 109 for more information.

010MX Metadata accessor information was not found on this da-
tabase. Please install the required tables as mentioned
in the jConnect documentation. Error encountered while
attempting to retrieve metadata information: _____.
Description: The server may not have the necessary stored procedures for returning
metadata information.

Action: Be sure that stored procedures for providing metadata are installed on the
server. See Installing Stored Procedures in the jConnect for JDBC Installation
Guide.

010P4 An output parameter was received and ignored.
Description: The query you executed returned an output parameter but the applica-
tion result-processing code did not fetch it so it was ignored.

Action: If your application needs the output parameter data, rewrite the application so
it can get it. This may require using a CallableStatement to execute the query, and
adding calls to registerOutputParameter and getXXX. You can also prevent jConnect
from returning this warning, and possibly see performance improvement, by setting
the DISABLE_UNPROCESSED_PARAM_WARNINGS connection property to
true.

SQL Exception and Warning Messages

166 jConnect for JDBC

SQL state Message/Description/Action

010P6 A row was received and ignored.
Description: An unexpected object of type 0xD1 was encountered in the result set
being processed and has been ignored.

Action: Check the query that generated the result set and correct as required.

010PF One or more jars specified in the PRELOAD_JARS connec-
tion property could not be loaded.
Description: This happens when using the DynamicClassLoader with the
PRELOAD_JARS connection property set to a comma-delimited list of .jar file
names. When the DynamicClassLoader opens its connection to the server
from which the classes are to be loaded, it attempts to preload all the .jar files
mentioned in this connection property. If one or more of the .jar file names
specified does not exist on the server, the above error message results.

Action: Verify that every .jar file mentioned in the PRELOAD_JARS connec-
tion property for your application exists and is accessible on the server.

010PO Property LITERAL_PARAM has been reset to false because
DYNAMIC_PREPARE was set to true.
Description: To use precompiled dynamic statements, allow for parameters to be sent
to those statements (if the statements take parameters). Setting LITERAL_PAR-
AMS to true forces all parameters to be sent as literal values in the SQL that you send
to the server. Therefore, you cannot set both properties to true.

Action: To avoid this warning, do not set LITERAL_PARAMS to true when you
want to use dynamic SQL. See Performance Tuning for Prepared Statements in
Dynamic SQL on page 137.

010RC The requested ResultSet type and concurrency is not sup-
ported. They have been converted.
Description: See Use Cursors with Result Sets on page 55 for more information about
what result set types and concurrencies are available in jConnect

Action: Request a supported type and concurrency combination for the result set.

010SJ Metadata accessor information was not found on this da-
tabase. Please install the required tables as mentioned
in the jConnect documentation.
Description: The metadata information is not configured on the server.

Action: If your application requires metadata, install the stored procedures for re-
turning metadata that come with jConnect see Installing Stored Procedures in the
jConnect for JDBC Installation Guide. If you do not need metadata, set the
USE_METADATA property to false

SQL Exception and Warning Messages

Programmers Reference 167

SQL state Message/Description/Action

010SK Database cannot set connection option _____.
Description: Your application attempted an operation that the database you are con-
nected to does not support.

Action: Upgrade your database, or make sure that the latest version of metadata
information is installed on it.

010SL Out-of-date metadata accessor information was found on
this database. Ask your database administrator to load
the latest scripts.
Description: The metadata information on the server is old and needs to be updated.

Action: Install the stored procedures for returning metadata that come with jConnect.
See Installing Stored Procedures in the jConnect for JDBC Installation Guide.

010SM This database does not support the initial proposed set
of capabilities, retrying.
Description: Adaptive Server Enterprise versions 11.9.2 and lower had an issue that
caused them to reject logins from clients that requested capabilities that the servers
did not have. This warning indicates that jConnect has detected this condition and is
retrying the connection using the greatest number of capabilities that the server can
accept. When jConnect encounters this bug, it attempts to connect to the server twice.

Action: Clients can safely ignore this warning, but to eliminate the warning and
ensure that jConnect makes only one connection attempt, they can set the ELIM-
INATE_010SM connection property to true. Do net set this property to true when
connecting to Adaptive Server versions 12.0 and later.

010SN Permission to write to file was denied. File: _____. Er-
ror message: _____.
Description: Permission to write to a file specified in the PROTOCOL_CAPTURE
connection property is denied because of a security violation in the VM. This can
occur if an applet attempts to write to the specified file.

Action: If you are attempting to write to the file from an applet, make sure that the
applet has access to the target file system.

010SP File could not be opened for writing. File: _____. Error
message: _____.
Action: Make sure that the file name is correct and that the file is writable.

SQL Exception and Warning Messages

168 jConnect for JDBC

SQL state Message/Description/Action

010SQ The connection or login was refused, retrying connection
with the host/port address.
Description: The CONNECTION_FAILOVER connection property is set to true,
and jConnect cannot to connect to one of the database servers in the list of servers to
which to connect. Therefore, jConnect now tries to connect to the next server in the
list.

Action: No action is required, as long as jConnect can to connect to another database
server. However, determine why jConnect could not to connect to the particular
server that caused the connection warning to be issued.

010TP The connection’s initial character set,_____, could not
be converted by the server. The server’s proposed
character set,_____, will be used, with conversions per-
formed by jConnect.
Description: The server cannot use the character set initially requested by jConnect,
and has responded with a different character set. jConnect accepts the change, and
performs the necessary character-set conversions.

The message is strictly informational and has no further consequences.

Action: To avoid this message, set the CHARSET connection property to a character
set that the server supports.

010TQ jConnect could not determine the server's default char-
acter set. This is likely because
of a metadata problem. Please install the required ta-
bles as mentioned in the jConnect documentation.
The connection is defaulting to the ascii_7 character
set, which can handle only characters in the range from
0x00 through 0x7F.
Description: When this occurs, the only characters that are guaranteed to translate
properly are the first 127 ASCII characters. Therefore, jConnect reverts to 7-bit
ASCII. The message is strictly informational and has no further consequences.

Action: Install the stored procedures for returning metadata that comes with jCon-
nect. See Installing Stored Procedures in the jConnect for JDBC Installation Guide.

SQL Exception and Warning Messages

Programmers Reference 169

SQL state Message/Description/Action

010UF Attempt to execute use database command failed. Error
message:_____.
Description: jConnect cannot connect to the database specified in the connection
URL. Two possibilities are:

• The name was entered incorrectly in the URL.
• USE_METADATA is true (the default), but the stored procedures for returning

metadata are not installed. As a result, jConnect tried to execute the use database
command with the database in the URL, but the command failed. This may be
because you attempted to access a SQL Anywhere databases, which does not
support the use database command.

Action: Make sure the database name in the URL is correct. Make sure the stored
procedures for returning metadata are installed on the server. See Installing Stored
Procedures in the jConnect for JDBC Installation Guide and jConnect for JDBC
Release Bulletin. If you are attempting to access a SQL Anywhere database, either do
not specify a database name in the URL, or set USE_METADATA to false.

010UP Unrecognized connection property _____ ignored.
Description: You attempted to set a connection property in the URL that jConnect
does not currently recognize. jConnect ignores the unrecognized property.

Action: Check the URL definition in your application to make sure it references only
valid jConnect driver connection properties.

0100V The version of TDS protocol being used is too old. Ver-
sion: _____.
Description: jConnect requires version 5.0 or later.

Action: Use a server that supports the required version of TDS. See the System
Requirements in the jConnect Installation Guide.

01S07 Adaptive Server may round or truncate nanosecond values.
Description: A time value more precise than 1/300th of a second encountered. Be-
cause Adaptive Server does not support such precision, jConnect rejected the value.

Action: Make sure that time values are of precision up to 1/300th of a second.

01S08 This connection has been enlisted in a Global transac-
tion. All pending statements on the current local trans-
action (if any) have been rolled back.
Description: jConnect issues rollback to clear out any current local transactions. This
occurs when a global transaction has been enlisted, after issuing XARe-
source.start().

Action: Either commit or roll back active local transactions before issuing the
XAResource.start() method.

SQL Exception and Warning Messages

170 jConnect for JDBC

SQL state Message/Description/Action

01S09 The local transaction method ___________ cannot be used
while a global transaction is active on this connection.
Description: An example of a local operation is calling the commit() method on the
connection. Other operations that cannot be used include: rollback(),
rollback(Savepoint), setSavepoint(), setSave-
point(String), releaseSavepoint(Savepoint), and setAu-
toCommit().

Action: Keep local transactions separate from global transactions. Complete all local
transactions and their operations before starting the global transaction.

01S10 The local transaction method _____ cannot be used on a
pre-System 12 XAConnection.
Description: You have used a local transaction method that does not work with
versions earlier than Sybase SQL Anywhere version 12.

Action: Do not use the method.

01S11 WARNING: Your data might be truncated.
Description: The user-specified length of a stream or LOB is greater than the limit
(Integer.MAX_VALUE) in a ResultSet.updateXXX method.

Action: Make sure that the length is within the limit.

01S12 Unable to continue with HOMOGENEOUS_BATCH protocol,
falling back to normal batching.
Description: When DYNAMIC_PREPARE is set to false, Adaptive Server does not
send parameter metadata. When HOMOGENEOUS_BATCH is true, jConnect re-
quires this information for optimization. Thus, jConnect reverts to normal batching.

Action: Use optimized batching (HOMOGENEOUS_BATCH set to true) with pre-
compiled dynamic SQL prepared statements only (DYNAMIC_PREPARE set to
true).

01S13 Connected Adaptive Server server does not support the
set option 'logbulkcopy' needed for logging BCP.
Falling back to normal bulk load without logging which
is equivalent to setting ENABLE_BULK_LOAD=BCP.
Description: If the Adaptive Server is earlier than 15.7 ESD #1 and does not support
logged bulk loading, jConnect reverts to normal batching.

Action: Use ENABLE_BULK_LOAD=LOG_BCP setting only with Adaptive
Server 15.7 ESD #1 or later.

SQL Exception and Warning Messages

Programmers Reference 171

SQL state Message/Description/Action

01ZZZ Error code 4022:

Password has expired Please set the NEWPASSWORD property
with the new password or use sp_password to change pass-
words.
Action: Reset the password for connecting to Adaptive Server.

JZ001 User name property ‘_____’ too long. Maximum length is
30.
Action: Do not exceed the 30-byte maximum.

JZ002 Password property ‘_____’ too long. Maximum length is
30.
Action: Do not exceed the 30-byte maximum.

JZ003 Incorrect URL format. URL: _____.
Action: Verify the URL format. See URL connection property parameters on page
35.

If you are using the PROXY connection property, you may get a JZ003 exception
while trying to connect if the format for the PROXY property is incorrect.

• The PROXY format for the Cascade proxy is: ip_address:port_number
• The PROXY format for the TDS tunnelling servlet is: http[s]://host:port/tunnel-

ing_servlet_alias

JZ004 User name property missing in DriverManager.getConnec-
tion(..., Properties)
Action: Provide the required user property.

JZ006 Caught IOException: _____.
Description: An unexpected I/O error is detected from a lower layer. When such I/O
exceptions are caught, they are rethrown as SQL exceptions using the
ERR_IO_EXCEPTION JZ006 sqlstate. These errors are often the result of
network communication problems. If the I/O exception causes the database connec-
tion to be closed, jConnect chains a JZ0C1 exception to the JZ006. Client applica-
tions can look for the JZ0C1 exception in the chain to see if the connection is still
usable.

Action: Examine the text of the original I/O exception message, and proceed from
there.

SQL Exception and Warning Messages

172 jConnect for JDBC

SQL state Message/Description/Action

JZ008 Invalid column index value _____.
Description: You have requested a column index value of less than 1 or greater than
the highest available value.

Action: Verify the call to the getXXX method and the text of the original query, or
call rs.next.

JZ009 Error encountered in conversion. Error message: _____.
Description: Possibilities include:

• An attempt to convert between two incompatible datatypes, such as date to
int.

• An attempt to convert a string containing a nonnumeric character to a numeric
type.

• A formatting error, such as an incorrectly formatted time/date string.

Action: Make sure that the JDBC specification supports the attempted type conver-
sion. Make sure that strings are correctly formatted. If a string contains nonnumeric
characters, do not attempt to convert it to a numeric type.

JZ00A Invalid precision and scale specified for a numeric val-
ue.
Description: When using the setBigDecimal method, the BigDecimal value is
set to either a precision value of less than 1, a negative scale value, a precision less
than the scale value, or precision value greater than 127.

Action: Examine the query and correct to specify a legal precision/scale value.

JZ00B Numeric overflow.
Description: You tried to send a BigInteger as a TDS numeric, and the value was too
large, or you tried to send a Java long as an int and the value was too large.

Action: These values cannot be stored in Sybase. For long, consider using a
Sybase numeric. There is no solution for Bignum.

JZ00C The precision and scale specified cannot accommodate nu-
meric value _____.
Description: When using the setBigDecimal method, the BigDecimal value has a
precision or scale that exceeds the specified precision or scale.

Action: Make sure that the specified precision and scale can accommodate the Big-
Decimal value.

JZ00E Attempt to call execute() or executeUpdate() for a
statement where setCursorName()has been called.
Action: Use a separate statement to delete or update a cursor. See Use Cursors with
Result Sets on page 55.

SQL Exception and Warning Messages

Programmers Reference 173

SQL state Message/Description/Action

JZ00F Cursor name has already been set by setCursorName().
Action: Do not set the cursor name twice for a statement. Close the result set of the
current cursor statement.

JZ00G No column values were set for this row update.
Description: You attempted to update a row in which no column values were changed.

Action: Call updateXX methods before calling updateRow.

JZ00H The result set is not updatable. Use Statement.setRe-
sultSetConcurrencyType().
Action: To change a result set from read-only to updatable, use the State-
ment.setResultSetConcurrencyType method or add a for update

clause to your SQL select statement.

JZ00I Invalid scale. The specified scale must be >=0.
Description: The scale value must be greater than zero.

Action: Be sure the scale value is not negative.

JZ00L Login failed. Examine the SQLWarnings chained to this
exception for the reason(s).
Action: See message text; proceed according to the reason(s) given for the login
failure.

JZ00M Login timed out. Check that your database server is run-
ning on the host and port number you specified.
Also check the database server for other conditions
(such as a full tempdb) that might be causing it to hang.
Action: Follow the recommended actions in the error message.

JZ010 Unable to deserialize an Object value. Error text:
_____.
Action: Make sure that the Java object from the database implements the Seri-
alizable interface and is in your local CLASSPATH variable.

JZ011 Number format exception encountered while parsing numer-
ic connection property _____.
Description: A noninteger value was specified for a numeric connection property.

Action: Specify an integer value for the connection property.

JZ012 Internal Error. Please report it to Sybase technical
support. Wrong access type for connection property
_____.
Action: Contact Sybase Technical Support.

SQL Exception and Warning Messages

174 jConnect for JDBC

SQL state Message/Description/Action

JZ013 Error obtaining JNDI entry: _____.
Action: Correct the JNDI URL, or make a new entry in the directory service.

JZ014 You may not setTransactionIsolation(Connection.TRANSAC-
TION_NONE). This level cannot be set; it can only be re-
turned by a server.
Action: Check your application code, where it calls Connection.setTran-
sactionIsolation, and verify the value you are passing to the method.

JZ015 Illegal value set for the GSSMANAGER_CLASS connection
property.
The property value must be a String or an Object that
extends org.ietf.jgss.GSSManager.
Action: Check the value to which you set the GSSMANAGER_CLASS property.

JZ017 Savepoint is not valid.
Description: You have specified a nonexistent savepoint for rollback or release.

Action: Examine the query and correct to specify an existing savepoint.

JZ018 This method can not be applied to this type of save-
point.
Description: The getSavepointId() method does not work on named save-
points (which have no ID), and the getSavepointName() method does not
work on unnamed savepoints (which have no name).

Action: Examine the query and correct.

JZ019 Error obtaining SERVERNAME : _____.
Description: The URL set using jdbc:sybase:jndi:file does not specify either the
sql.ini file (Windows) or the interfaces file (UNIX) or a server name.

Action: Examine the URL command and correct.

JZ021 The Specified _____ file not found.
Description: The sql.ini file (Windows) or the interfaces file (UNIX)
specified in the connection URL is not found.

Action: Check the connection URL and correct.

JZ022 The Specified _____ file has an unknown format.
Description: The connection URL string in the sql.ini file (Windows) or the
interfaces file (UNIX) is not in the correct format.

Action: Check the connection URL string and correct.

SQL Exception and Warning Messages

Programmers Reference 175

SQL state Message/Description/Action

JZ024 The Specified Server : _____ has no entry in the inter-
faces/sql.ini file :_____.
Action: Check the connection URL string and correct.

JZ025 The TLI format for Specified Server in interfaces/
sql.ini is Invalid.
Action: Check the settings and correct.

JZ026 The Specified Protocol : _____ for Server : _____ in in-
terfaces/sql.ini file :_____ is not Supported.
Description: A protocol other than TLI, TCP, and NLWNSCK is specified in the
sql.ini file (Windows) or the interfaces file (UNIX).

Action: Specify a supported protocol.

JZ027 The Specified SECMECH entrys: _____ for Server : _____
in interfaces/sql.ini file :_____ are not Supported.
Description: An invalid value is specified in the Kerberos connection URL.

Action: Examine the URL and correct.

JZ028 Illegal value set for JCE_PROVIDER_CLASS connection
property. The property value must be a fully qualified
provider
class name passed as a String or an instance of java.se-
curity.Provider.
Action: Specify a legal value.

JZ029 Error looking up address for ALTERNATE_SERVER_NAME
_____,(_____).
Description: jConnect cannot locate the server specified with the ALTER-
NATE_SERVER_NAME property using the SQL Anywhere UDP discovery pro-
tocol.

Action: Check the server name specified with the ALTERNATE_SERVER_NAME
connection property and correct.

JZ030 The method _____ is not supported.

JZ031 Failed to unwrap the object of _____.
Description: jConnect cannot unwrap the object of a custom class because the custom
class is not in the classpath.

Action: Add the class to classpath.

SQL Exception and Warning Messages

176 jConnect for JDBC

SQL state Message/Description/Action

JZ032 A Date or Timestamp parameter exceeds the BigDateTime/
BigTime range. The server can only support
BigDateTime values between 0001/01/01 12:00:00:000000AM
to 9999/12/31 11:59:59.999999PM or BigTime values
between 12:00:00:000000AM to 11:59:59.999999PM.

JZ033 Unknown Blob type returned by the server.
Description: jConnect cannot map the Adaptive Server datatype of the column to a
BLOB datatype.

Action: Make sure that the Adaptive Server column is convertible to a BLOB data-
type.

JZ034 The connected server is not capable of handling Large
Objects [LOB].
Action: Use the regular stream methods to access LOB.

JZ035 To handle Large object [LOB], please set connection
property 'ENABLE_LOB_LOCATOR' to true.

JZ036 Reference to this Large Object [LOB] is no longer valid
in database. Check if you have called free() or
check if transaction ended.

JZ037 Value of offset/position/start should be in the range
[1, len] where len is the length of Large Object[LOB].

JZ038 Length of the object should be >= 0.

JZ040 _____ operation failed. The _____ has been closed al-
read.
Description: The read (write) operation has failed as input stream or LOB reader
(output stream or LOB writer) has already closed

Action: Check the application to locate the reason of the conflict and correct.

JZ041 _____ operation failed on the _____.
Description: The read(write)(available()) operation has failed as input stream or
reader (output stream or writer)(input stream) has already closed.

Action: Check the application to locate the reason of the conflict and correct.

JZ042 Large Object setters can not be mixed with other setters
when ENABLE_LOB_LOCATOR and HOMOGENEOUS_BATCH are set
to TRUE. java.sql.Types _____ was mixed with
java.sql.Types _____.

SQL Exception and Warning Messages

Programmers Reference 177

SQL state Message/Description/Action

JZ043 LOB objects are not supported for any of the possible
variants of 'ENABLE_BULK_LOAD property', but false.
Please consider using alternate setter APIs
to insert the data.

JZ044 Server-side locators can not be created within the batch
if,SEND_BATCHPARAMS_IMMEDIATE is TRUE. Try using client
side LOBs or set SEND_BATCHPARAMS_IMMEDIATE
to FALSE.

JZ0BD Out of range or invalid value used for method parameter.

JZ0BI setFetchSize: The fetch size should be set with the fol-
lowing restrictions – 0 <= rows <=
(maximum number of rows in the ResultSet).
Action: Verify that you are calling setFetchSize with the parameter falling within the
above range of values.

JZ0BJ The value set for the IMPLICIT_CURSOR_FETCH_SIZE connec-
tion property must be > 0.

JZ0BP Output parameters are not allowed in Batch Update State-
ments.

JZ0BR The cursor is not positioned on a row that supports the
_____ method.
Action: Do not attempt to call a ResultSet method that is invalid for the current row
position.

JZ0BS Batch Statements not supported.
Action: Install or update the jConnect metadata stored procedures on your database
with the latest versions.

JZ0BT The _____ method is not supported for ResultSets of type
_____.
Action: Do not attempt to call a ResultSet method that is invalid for the type of
ResultSet.

JZ0C0 Connection is already closed.
Action: Fix the code so that connection object references are nulled when a connec-
tion is closed.

SQL Exception and Warning Messages

178 jConnect for JDBC

SQL state Message/Description/Action

JZ0C1 An IOException occurred which closed the connection.
Description: The connection cannot be used for any further database activity. If this
exception occurs, it can always be found in an exception chain with the JZ006
Exception.

Action: Determine the cause of the IOException that disrupted the connection.

JZ0CL You must define the CLASS_LOADER property when using the
PRELOAD_JARS property.

JZ0D4 Unrecognized protocol in Sybase JDBC URL:_____.
Description: You specified a connection URL using a protocol other than TDS, which
is the only protocol currently supported by jConnect.

Action: Check the URL definition. If the URL specifies TDS as a subprotocol, make
sure that the entry uses the following format and capitalization:

jdbc:sybase:Tds:host:port

If the URL specifies JNDI as a subprotocol, make sure that it starts with:

jdbc:sybase:jndi:

JZ0D5 Error loading protocol _____.
Action: Check the settings for the CLASSPATH system variable.

JZ0D6 Unrecognized version number _____ specified in setVer-
sion. Choose one of the SybDriver.VERSION_* values,
and make sure that the version of jConnect that you are
using is at or beyond the version you specify.

JZ0D7 Error loading url provider _____. Error message: _____.
Action: Check the JNDI URL to make sure it is correct.

JZ0D8 Error initializing url provider: _____.
Action: Check the JNDI URL to make sure it is correct.

JZ0EM End of data.
Action: Please report this error to Sybase Technical Support.

JZ0F1 Sybase high-availability failover connection was reques-
ted but the companion server address is missing.
Description: When you set the REQUEST_HA_SESSION connection property to
true, you must also specify a failover server.

Action: You can specify the secondary server using the SECONDARY_SERV-
ER_HOSTPORT connection property, or you can set the secondary server using
JNDI.

SQL Exception and Warning Messages

Programmers Reference 179

SQL state Message/Description/Action

JZ0F2 Sybase high-availability failover has occurred. The cur-
rent transaction is aborted, but the connection is still
usable. Retry your transaction.
Description: The back-end database server to which you were connected stopped
responding, but because you failed over to a secondary server, the database connec-
tion is still usable.

Action: Client code should catch this exception, then restart the transaction from the
last committed point. Assuming you properly handle the exception, you can continue
executing JDBC calls on the same connection object.

JZ0FP Incorrect value passed for parameter ____.
Description: The value of the parameter specified for the state of the current result set
is invalid.

Action: Make sure the value is valid: CLOSE_CURRENT_RESULT, KEEP_CUR-
RENT_RESULT, CLOSE_ALL_RESULTS.

JZ0GC Error casting a ____ as a GSSManager. Please check the
value you are setting for the GSSMANAGER_CLASS
connection property. The value must be a String that
specifies the fully qualified class name of a GSSManager
implementation. Or, it must be an Object that extends
org.ietf.jgss.GSSManager.

JZ0GK The _____ array can not be null and has to contain only
one key.
Description: The autogenerated key column name/index array is either NULL or
contains more than one key. Only one key is allowed in the array since it relates to the
IDENTITY column.

Action: Check the query and correct.

JZ0GN Error instantiating the class ___ as a GSSManager. The
exception was ____. Please check your
CLASSPATH and make sure the GSSMANAGER_CLASS property
value refers to a fully qualified class name of a
GSSManager implementation.
Action: Make sure your CLASSPATH environment variable includes any .jar files
required by your third-party GSSManager implementation.

JZ0GS A Generic Security Services API exception occurred. The
major error code is ___. The major error message is ___.
The minor error code is ___. The minor error message is
____.
Action: Examine the major and minor error codes and messages. Check your Ker-
beros configuration. See Security on page 109.

SQL Exception and Warning Messages

180 jConnect for JDBC

SQL state Message/Description/Action

JZ0H0 Unable to start thread for event handler; event name =
_____.
Action: Report this error to Sybase Technical Support.

JZ0H1 An event notification was received but the event handler
was not found; event name = _____.
Action: Report this error to Sybase Technical Support.

JZ0HC Illegal character ‘_____’ encountered while parsing hex-
adecimal number.
Description: A string that is supposed to represent a binary value contains a character
that is not in the range (0–9, a–f) that is required for a hexadecimal number.

Action: Check the character values in the string to make sure they are in the required
range.

JZ0I3 Unknown property. This message indicates an internal
product problem. Report this error to Sybase Technical
support.
Action: Please report this error to Sybase Technical Support.

JZ0I5 An unrecognized CHARSET property was specified: _____.
Action: Enter a valid character-set code for the CHARSET connection property. See
jConnect Character-Set Converters on page 43.

JZ0I6 An error occurred converting UNICODE to the charset used
by the server. Error message: _____.
Action: Choose a different character set code for the CHARSET connection property
on the jConnect client that supports all the characters you need to send to the server.
You may need to install a different character set on the server, too. Also, if you are
using jConnect version 6.05 or later, and Adaptive Server Enterprise 12.5 or later, you
can send your data to the server as unichar/univarchar datatypes.

JZ0I7 No response from proxy gateway.
Description: The connection cannot be established as there is no response from proxy
gateway specified with the PROXY connection property.

Action: Check the PROXY setting and correct.

JZ0I8 Proxy gateway connection refused. Gateway response:
%1s.
Action: Check the proxy gateway settings.

SQL Exception and Warning Messages

Programmers Reference 181

SQL state Message/Description/Action

JZ0I9 This InputStream was closed.
Description: You tried to read an InputStream obtained from getAsciiStream,
getUnicodeStream, or getBinaryStream, but the InputStream was
already closed. The stream may have been closed because you moved to another
column or cancelled the result set and there were not enough resources to cache the
data.

Action: Increase the cache size or read columns in order.

JZ0IA Truncation error trying to send_____.
Description: There was a truncation error on character set conversion prior to sending
a string. The converted string is longer than the size allocated for it.

Action: Choose a different character-set code for the CHARSET connection property
on the jConnect client that supports all the characters you need to send to the server.
You may need to install a different character set on the server, too.

JZ0IB The server's default charset of _____ does not map to an
encoding that is available in the client Java environ-
ment.
Because jConnect will not be able to do client-side con-
version, the connection is unusable and is being
closed.
Try using a later Java version, or try including your
Java installation's i18n.jar or charsets.jar file in the
classpath.

JZ0IR getXXX may not be called on a column after it has been
updated in the result set with a java.io.Reader.
Action: Remove the getXXX call on the ResultSet column you updated using a
reader.

JZ0IS getXXXStream may not be called on a column after it has
been updated in the result set.
Description: After updating a column in a result set, you attempted to read the
updated column value using one of these SybResultSet methods: getAs-
ciiStream, getUnicodeStream, getBinaryStream. jConnect
does not support this usage.

Action: Do not attempt to fetch input streams from columns you are updating.

JZ0J0 Offset and/or length values exceed the actual text/image
length.

SQL Exception and Warning Messages

182 jConnect for JDBC

SQL state Message/Description/Action

JZ0LA Failed to instantiate Cipher object. Transformation %1s
is not implemented by any of the loaded JCE providers.
Action: Make sure that the implementation is specified correctly in the JCE_PRO-
VIDER_CLASS connection property of the CLASSPATH.

JZ0LC You cannot call the ____ method on a ResultSet which is
using a language cursor to fetch rows.
Try setting the LANGUAGE_CURSOR connection property to
false.
Description: The application tried to call one of the ResultSet cursor scrolling meth-
ods on a ResultSet which was created with a language cursor.

JZ0MD ResultSet metadata is not available.
Action: Install the metadata stored procedures.

JZ0NC wasNull called without a preceding call to get a column.
Description: You can only call wasNull after a call to get a column, such as getInt or
getBinaryStream.

Action: Change the code to move the call to wasNull.

JZ0NE Incorrect URL format. URL: _____. Error message: _____.
Action: In the URL, make sure that the port number consists only of numeric char-
acters.

JZ0NF Unable to load SybSocketFactory. Make sure that you have
spelled the class name correctly, that the package is
fully specified, that the class is available in your
class path, and that it has a public zero-argument con-
structor.

JZ0NK Generated keys are not available because either the
Statement.NO_GENERATED_KEYS was used or no keys were au-
tomatically generated.
Description: The getGeneratedKeys() method cannot return the autogen-
erated keys because the statement was executed with .NO_GENERATED_KEYS or
the statement produced no autogenerated keys.

Action: Use getGeneratedKeys() only on statements executed with .RE-
TURN_GENERATED_KEYS, or those that are expected to autogenerate keys.

JZ0NS The method ____ is not supported and should not be
called.

SQL Exception and Warning Messages

Programmers Reference 183

SQL state Message/Description/Action

JZ0P1 Unexpected result type.
Description: The database has returned a result that the statement cannot return to the
application, or that the application is not expecting at this point. This generally
indicates that the application is using JDBC incorrectly to execute the query or stored
procedure. If the JDBC application is connected to an Open Server application, it may
indicate an error in the Open Server application that causes the Open Server to send
unexpected sequences of results.

Action: Use the com.sybase.utils.Debug(true, “ALL”) debug-
ging tools to try to determine what unexpected result is seen, and to understand its
causes.

JZ0P4 Protocol error. This message indicates an internal prod-
uct problem. Report this error to Sybase technical sup-
port.

JZ0P7 Column is not cached; use RE-READABLE_COLUMNS property.
Description: With the REPEAT_READ connection property set to false, an attempt
was made to reread a column or read a column in the wrong order.

When REPEAT_READ is false, you can only read the column value for a row once,
and you can only read columns in ascending column-index order. For example, after
reading column 3 for a row, you cannot read its value a second time and you cannot
read column 2 for the row.

Action: Either set REPEAT_READ to true, or do not attempt to reread a column
value and be sure that you read columns in ascending column-index order.

JZ0P8 The RSMDA Column Type Name you requested is unknown.
Description: jConnect cannot determine the name of a column type in the Re-
sultSetMetaData.getColumnTypeName method.

Action: Be sure that your database has the most recent stored procedures for meta-
data.

JZ0P9 A COMPUTE BY query has been detected. That type of re-
sult is unsupported and has been cancelled.
Action: Change your query or stored procedure so it does not use COMPUTE BY.

JZ0PA The query has been cancelled and the same response dis-
carded.
Action: Check the chain of SQL exceptions and warnings on this and other statements
to determine the cause.

SQL Exception and Warning Messages

184 jConnect for JDBC

SQL state Message/Description/Action

JZ0PB The server does not support a requested operation.
Description: When jConnect creates a connection with a server, it informs the server
of capabilities it wants supported, and the server informs jConnect of the capabilities
that it supports. This error message is sent when an application requests an operation
that was denied in the original capabilities negotiation.

For example, if the database does not support precompilation of dynamic SQL state-
ments, and your code invokes SybConnection.prepareState-
ment(sql_stmt, dynamic), and dynamic is set to true, jConnect generates this mes-
sage.

Action: Modify your code so that it does not request an unsupported capability.

JZ0PC The number and size of parameters in your query require
wide table support. But either the server does not offer
such support, or it was not requested
during the login sequence. Try setting the JCONNECT_VER-
SION property to >=6 if you wish to request widetable
support.
Description: You are trying to execute a statement with a larger number of parameters
than the server is configured to handle. The number of parameters that can produce
this exception varies, depending on the datatypes of the data you are sending. You
never get this exception if you are sending 481 or fewer parameters.

Action: Run the query against an Adaptive Server 12.5 or later server. When you
connect to the database, set the JCONNECT_VERSION property to “6”.

JZ0PD The size of the query in your dynamic prepare is large
enough that you require widetable support.
But either the server does not offer such support, or it
was not requested during the login sequence.
Try setting the JCONNECT_VERSION property to >=6 if you
wish to request widetable support.
Description: You are trying to execute a dynamic prepared statement with larger
number of parameters than the server is configured to handle.

Action: Run the query against an Adaptive Server 12.5 or later server. When you
connect to the database, set the JCONNECT_VERSION property to “6”.

SQL Exception and Warning Messages

Programmers Reference 185

SQL state Message/Description/Action

JZ0PE The number of columns in your cursor declaration OR the
size of your cursor declaration itself are large enough
that you require widetable support. But either the serv-
er does not offer such support, or it was not requested
during the
login sequence. Try setting the JCONNECT_VERSION prop-
erty to >= 6 if you wish to request wide table support.
Description: This error can occur when your SELECT statement tries to return data
from more than 255 columns, or when the actual length of the SELECT statement is
very large (greater than approximately 65500 characters).

Action: Run the query against a version 12.5 or later Adaptive Server. When you
connect to the database, set the JCONNECT_VERSION property to “6”.

JZ0PN Specified port number of ____ was out of range.
Port numbers must meet the following conditions:
0<= portNumber <=65535.
Action: Check the port number that is specified in the database URL.

JZ0R0 Result set has already been closed.
Action: Fix the code so that ResultSet object references are set to null whenever
a result set is closed.

JZ0R1 Result set is IDLE as you are not currently accessing a
row.
Description: The application has called one of the ResultSet.getXXX col-
umn-data retrieval methods, but there is no current row; the application has not called
ResultSet.next, or ResultSet.nextreturned false to indicate that
there is no data.

Action: Verify that rs.next is set to true before calling rs.getXXX.

JZ0R2 No result set for this query.
Description: You used Statement.executeQuery, but the statement re-
turned no rows.

Action: Use executeUpdate for statements returning no rows.

JZ0R3 Column is DEAD. This is an internal error. Please report
it to Sybase technical support.

JZ0R4 Column does not have a text pointer. It is not a text/
image column or the column is NULL.
Action: Be sure that you are not trying to update or get a text pointer to a column that
does not support text/image data, and verify that you are not trying to update a text/
image column that is null. Insert data first, then make the update.

SQL Exception and Warning Messages

186 jConnect for JDBC

SQL state Message/Description/Action

JZ0R5 The ResultSet is currently positioned beyond the last
row. You cannot perform a get* operation to read data in
this state.
Action: Alter the code so that it does not attempt to read column data when the
ResultSet is positioned beyond the last row.

JZ0RD You cannot call any of the ResultSet.get* methods on a
row that has been deleted with the deleteRow() method.
Action: Alter the code so that the application does not attempt to retrieve data from a
deleted row.

JZ0RM refreshRow may not be called after updateRow or deleteR-
ow.
Description: After updating a row in the database with SybCursorRe-
sult.updateRow, or deleting it with SybCursorResult.deleteR-
ow, you used SybCursorResult.refreshRow to refresh the row from the
database.

Action: Do not attempt to refresh a row after updating it or deleting it from the
database.

JZ0S0 Statement state machine: Statement is BUSY.
Description: The only time this error is raised is from the Statement.set-
Cursorname method, if the application is trying to set the cursor name when the
statement is already in use and has noncursor results that need to be read.

Action: Set the cursor name on a statement before you execute any queries on it, or
call Statement.cancel before setting the cursor name, to make sure that the
statement is not busy.

JZ0S1 Statement state machine: Trying to FETCH on IDLE state-
ment.
Action: Close the statement and open another one.

JZ0S2 Statement object has already been closed.
Action: Fix the application so that statement object references are set to null when-
ever a statement is closed.

SQL Exception and Warning Messages

Programmers Reference 187

SQL state Message/Description/Action

JZ0S3 The inherited method _____ cannot be used in this sub-
class.
Description: PreparedStatement does not support execute-
Query(String), executeUpdate(String), orexe-
cute(String).

Action: To pass a query string, use Statement, not PreparedState-
ment.

JZ0S4 Cannot execute an empty (zero-length) query.
Action: Do not execute an empty query (““).

JZ0S5 The local transaction method ____ cannot be used while a
global transaction is active on this connection.
Description: This exception can occur when using distributed transactions.

Action: See Distributed Transaction Management Support on page 103.

JZ0S6 The local transaction method _____ cannot be used on a
pre-System 12 XAConnection.
Description: This exception can occur when using distributed transactions.

Action: See Distributed Transaction Management Support on page 103.

JZ0S8 An escape sequence in a SQL Query was malformed: ‘_____.
Action: Check JDBC documentation for correct syntax.

JZ0S9 Cannot execute an empty (zero-length) query.
Action: Do not execute an empty query (““).

JZ0SA Prepared Statement: Input parameter not set, index:
_____.
Action: Be sure that each input parameter has a value.

JZ0SB Parameter index out of range: _____.
Action: Check the number of parameters in your query.

JZ0SC Callable Statement: attempt to set the return status as
an InParameter.
Description: You have prepared a call to a stored procedure that returns a status, but
you are trying to set parameter 1, which is the return status.

Action: Parameters that you can set start at 2 with this type of call.

SQL Exception and Warning Messages

188 jConnect for JDBC

SQL state Message/Description/Action

JZ0SD No registered parameter found for output parameter.
Description: This indicates an application logic error. You attempted to call
getXXX or wasNull on a parameter, but you have not read any parameters yet, or
there are no output parameters.

Action: Check to make sure that the application has registered output parameters on
the CallableStatement, that the statement has been executed, and that the output
parameters were read.

JZ0SE Invalid object type specified for setObject().
Description: Illegal type argument passed to PreparedStatement.se-
tObject.

Action: Check the JDBC documentation. The argument must be a constant from
java.sql.Types.

JZ0SF No Parameters expected. Has query been sent?
Description: You tried to set a parameter on a statement with no parameters.

Action: Make sure the query has been sent before you set the parameters.

JZ0SG An RPC did not return as many output parameters as the
application had registered for it.
Description: This error occurs if you call CallableStatement.regis-
terOutParam for more parameters than you declared as OUTPUT parameters in
the stored procedure. See RPC Returns Fewer Output Parameters than Registered on
page 132.

Action: Check your stored procedures and registerOutParameter calls.
Make sure that you have declared all of the appropriate parameters as OUTPUT.
Look at the line of code that reads:

create procedure yourproc (@p1 int OUTPUT, ...
Note: If you receive this error while using SQL Anywhere, upgrade to SQL Any-
where version 5.5.04.

JZ0SH A static function escape was used, but the metadata ac-
cessor information was not found on this server.
Action: Install metadata accessor information before using static function escapes.

JZ0SI A static function escape _____ was used which is not
supported by this server.
Action: Do not use this escape.

SQL Exception and Warning Messages

Programmers Reference 189

SQL state Message/Description/Action

JZ0SJ Metadata accessor information was not found on this da-
tabase.
Action: Install metadata information before making metadata calls.

JZ0SK The oj escape is not supported for this type of database
server. Workaround: use server-specific outer join syn-
tax,
if supported. Consult server documentation.
Action: In addition to following the instructions in the message, also install the latest
version of the jConnect metadata.

JZ0SL Unsupported SQL type _____.
Action: If possible, declare the parameter to be of a type supported by jConnect. Do
not use Types.NULL or PreparedStatement.setObject
(null).

JZ0SM jConnect could not execute a stored procedure because
there was a problem sending the parameter(s).
This problem was likely caused because the server does
not support a specific datatype, or because jConnect did
not request
support for that datatype at connect time. Try setting
the JCONNECT_VERSION connection property to a higher
value.
Or, if possible, try sending your procedure execution
command as a language statement.

JZ0SN setMaxFieldSize: field size cannot be negative.

JZ0SO Invalid ResultSet concurrency type:_____.
Action: Check that your declared concurrency is either ResultSet.CON-
CUR_READ_ONLY or ResultSet.CONCUR_UPDATABLE.

JZ0SP Invalid ResultSet type:_____.
Action: Check that your declared ResultSet type is ResultSet.TYPE_FOR-
WARD_ONLY or ResultSet.TYPE_SCROLL_INSENSITIVE. jConnect
does not support the ResultSet.TYPE_SCROLL_SENSITIVE ResultSet
type.

JZ0SQ In valid UDT type ____.
Description: When calling the DatabaseMetaData.getUDTs method,
jConnect throws this exception if the user-defined type is not Types.JAVA_OB-
JECT, Types.STRUCT, or Types.DISTINCT.

Action: Use one of the three UDTs mentioned.

SQL Exception and Warning Messages

190 jConnect for JDBC

SQL state Message/Description/Action

JZ0SR setMaxRows: max rows cannot be negative.

JZ0SS setQueryTimeout:query timeout cannot be negative.

JZ0ST jConnect cannot send a Java object as a literal parame-
ter in a query. Make sure that your database server sup-
ports Java objects and that the LITERAL_PARAMS
connection property is set to false when you execute
this query.

JZ0SU A Date or Timestamp parameter was set with a year of
______, but the server can only support year values
between _____ and _______. If you’re trying to send data
to date or timestamp columns or parameters on Adaptive
Server Anywhere,
you may wish to send your data as Strings, and let the
server convert them.
Description: Adaptive Server Enterprise and SQL Anywhere have different allowa-
ble ranges for datetime and date values. datetime values must have years
greater or equal to 1753. The date datatype, however, can hold years greater or
equal to 1.

Action: Make sure that the date/timestamp value you are sending falls in the
acceptable range.

JZ0SV Combination of setting parameters by name and by index
is not allowed in the same CallableStatement.
Description: The CallableStatement has parameters specified by name and by index
(ordinal position). Mixed use is invalid.

Action: Specify parameters by name only or by index (ordinal position) only.

JZ0SW Invalid ResultSet holdability type: ____.
Description: You have specified an invalid value with the setHoldability() method.

Action: Use the legal values only: HOLD_CURSORS_OVER_COMMIT or
CLOSE_CURSORS_AT_COMMIT.

JZ0T2 Listener thread read error.
Action: Check your network communications.

JZ0T3 Read operation timed out.
Action: Increase the timeout period by calling Statement.setQueryTimeout.

JZ0T4 Write operation timed out. Timeout in milliseconds:
_____.
Action: Increase the timeout period by calling Statement.setQueryTimeout.

SQL Exception and Warning Messages

Programmers Reference 191

SQL state Message/Description/Action

JZ0T5 Cache used to store responses is full.
Action: Use default or larger value for the STREAM_CACHE_SIZE connection
property.

JZ0T6 Error reading tunneled TDS URL.
Description: The tunneled protocol failed while reading the URL header.

Action: Check the URL you defined for the connection.

JZ0T7 Listener thread read error -- caught ThreadDeath. Check
network connection.
Action: Check the network connections and try to run the application again. If the
threads continue to abort, please contact Sybase Technical Support.

JZ0T8 Data received for an unknown request. Please report this
error to Sybase Technical Support.

JZ0T9 Request to send not synchronized. Please report this er-
ror to Sybase Technical Support.

JZ0TC Attempted conversion between an illegal pair of types.
Description: Conversion between a Java type and a SQL type failed.

Action: Check the requested type conversion to make sure it is supported in the JDBC
specification.

JZ0TD Caught ThreadDeath.
Description: The calling application thread was killed while jConnect was perform-
ing a timed I/O operation.

Action: Check the application code to locate the conflict and correct.

JZ0TE Attempted conversion between an illegal pair of types.
Valid database types are: ‘_________'.
Description: The database column datatype and the datatype requested in the Re-
sultSet.getXXX call are not implicitly convertible.

Action: Use one of the valid datatypes listed in the error message.

SQL Exception and Warning Messages

192 jConnect for JDBC

SQL state Message/Description/Action

JZ0TI jConnect cannot make a meaningful conversion between the
database type of _________ and the requested type of
_________.
Description: This kind of exception can occur, for example, if an application tries to
call ResultSet.getObject(int, Types.DATE) on a time value
that is returned from the database.

Action: Make sure that the database datatype is implicitly convertible to the object
type you want to retrieve.

JZ0TO Read operation timed out.
Description: This exception occurs when there is a socket read timeout.

Action: Increase the timeout period by calling Statement.setQueryTi-
meout. Also, check the query or stored procedure you are executing to determine
why it is taking longer than expected.

JZ0TS Truncation error trying to send __________.
Description: The application specified a string that was longer than the length that the
application wanted to send. Therefore, the string is truncated to the declared length.

Action: Set the length properly to avoid truncation.

JZ0US The SybSocketFactory connection property was set, and
the PROXY connection property was set to the
URL of a servlet. The jConnect driver does not support
this combination. If you want to send secure HTTP from
an applet running within a browser, use a proxy URL be-
ginning with “https://”.

JZ0XC ____________ is an unrecognized transaction coordinator
type.
Description: The metadata information indicates that the server supports distributed
transactions, but jConnect does not support the protocol being used.

Action: Verify that you have installed the latest metadata scripts. If the error persists,
please contact Sybase Technical Support.

JZ0XS The server does not support XA-style transactions.
Please verify that the transaction
feature is enabled and licensed on this server.
Description: The server to which jConnect attempted a connection does not support
distributed transactions.

Action: Do not use XADataSource with this server, or upgrade or configure the
server for distributed transactions.

SQL Exception and Warning Messages

Programmers Reference 193

SQL state Message/Description/Action

JZ0XU Current user does not have permission to do XA-style
transactions. Be sure user has _______ role.
Description: The user connected to the database is not authorized to conduct dis-
tributed transactions, most likely because the user does not have the proper role.

Action: Grant the user the role shown in the error message, or have another user with
that role conduct the transaction.

JZBK1 SybBCP class is NOT initialized Please Re-Run MDA sqls
to update the MDA stored procedures.
Action: Install MDA stored procedures.

JZBK3 Bulk load table does not exists.
Action: Correct the table name.

JZBK4 Illegal usage of sql statements mixed with batches in
bcp/arrayinsert mode.
Description: During a batch operation, you are attempting to execute a nonbatch
operation.

Action: Wait for the batch operation to complete before attempting a nonbatch op-
eration.

JZBK5 autocommit should be set to true when running bulk load
in bcp mode.

JZBK6 Adaptive Server 15.7 or latter and 'allow wide dol rows'
DB option must be enabled to insert rows
with offsets greater than 8191.

JZBK7 Failed to insert data. Total data size (_____ bytes) ex-
ceeds the maximum row size (_____ bytes)allowed for the
table _____.

JZBKI Invalid value set for property ENABLE_BULK_LOAD.
Action: Set ENABLE_BULK_LOAD to one of the valid values only –AR-
RAYINSERT_WITH_MIXED_STATEMENTS, ARRAYINSERT, BCP, or
LOG_BCP.

JZNNA Column does not allow null values.
Description: You attempted to set a bit-type column to a NULL value using set-
Null() in a prepared statement.

Action: Examine the query and correct to set a value of 0 or 1 for bit-type columns.

SQL Exception and Warning Messages

194 jConnect for JDBC

SQL state Message/Description/Action

S0022 Invalid column name ‘_____’.
Action: Check the spelling of the column name, and that the named column exists.

ZZ00A The method _____ has not been completed and should not
be called.
Action: Check the release bulletin that came with your version of jConnect for further
information. You can also check the jConnect Web page to see whether a more recent
version of jConnect implements the method. If not, do not use the method.

SQL Exception and Warning Messages

Programmers Reference 195

http://www.sybase.com

SQL Exception and Warning Messages

196 jConnect for JDBC

Glossary

Glossary of terms used in jConnect™ for JDBC™.

• application program interface (API) – a source code based specification intended to be
used as an interface by software components to communicate with each other.

• Adaptive Server® Enterprise – a relational database management system (RDBMS)
from Sybase, Inc. that runs on Linux and other UNIX-based operating systems, Windows
NT and Windows 2000, and Mac OS.

• Certicom Security Builder GSE-J – a Java Cryptography Extension (JCE) software
cryptographic provider that supports FIPS 140-2 validated cryptographic algorithms.

• CyberSafe TrustBroker – a Generic Security Services (GSS) Manager that can be used
by jConnect.

• Database Server – the back-end system of a database application using client or server
architecture.

• datatype – a defining attribute that describes the type, values and operations that are legal
for a variable.

• deadlock – a situation that arises when two users, each having a lock on one piece of data,
attempt to acquire a lock on the other's piece of data.

• DirectConnect™ – the ECDA component that provides basic connectivity to non-Sybase
data sources. In particular, it provides access management, transaction management, and
remote systems management through DirectConnect Manager.

• distinguished name (DN) – a string that uniquely identifies an entry in the Directory
Server. A DN comprises of zero or more relative distinguished name (RDN) components
that identify the location of the entry in the directory information tree (DIT). A DN is
similar to an analog to an absolute path in a file system in that it specifies both the name and
hierarchical location.

• GSS library – a library that implements Generic Security Service Application Program
Interface (GSS-API).

• IETF – Internet Engineering Task Force. The main standards organization for the Internet.
A large open international community of network designers, operators, vendors, and
researchers concerned with the evolution of the Internet architecture and the smooth
operation of the Internet.

• jConnect driver – a JDBC driver for Sybase servers such as Adaptive Server Enterprise
that use Tabular Data Stream (TDS) communication protocol.

• Java Cryptography Extension (JCE) – an API that provides a uniform framework for
the implementation of security features in Java.

• JDBC – Java Database Connectivity. JDBC is a Java API that enables Java programs to
execute SQL statements.

• JDK – Java Development Kit . An SDK for producing Java programs.

Glossary

Programmers Reference 197

• Java Generic Security Services (GSS) Manager – provides a generic interface for
authentication and secure messaging.

• JNDI – Java Naming and Directory Interface. JNDI enables Java platform-based
applications to access multiple naming and directory services.

JNDI is an API from Oracle for connecting Java programs to naming and directory
services such as DNS, LDAP, and NDS.

• Java Runtime Environment (JRE) – part of the Java Development Kit (JDK), a set of
programming tools for developing Java applications. May be called Java Runtime.

• Java Transaction API (JTA) – an API that allows applications and J2EE servers to access
transactions.

• Java Transaction Service (JTS) – specifies the implementation of a transaction manager
that supports Java Transaction API (JTA) and implements the Java mapping of the Object
Management Group Object Transaction Service 1.1 specification at the level below the
API.

• Java Virtual Machine (JVM) – a virtual machine that provides a platform-independent
execution environment that converts Java bytecode into machine language and executes
it.

• J2EE – Java 2 Platform Enterprise Edition. J2EE is a platform-independent, Java-centric
environment from Sun for developing, building, and deploying Web-based enterprise
applications online.

• Kerberos – Kerberos is a secure method for authenticating a request for a service in a
computer network.

• key distribution center (KDC) – part of a single sign-on (SSO) setup that performs
authentication and ticket generation duties.

• large object (LOB) datatypes – typically large character objects (text) or binary objects
(image).

• large object (LOB) locator – contains a logical pointer to LOB data rather than the data
itself, reducing the amount of data that passes through the network between Adaptive
Server and its clients.

• LDAP – Lightweight Directory Access Protocol. LDAP is a software protocol for
enabling anyone to locate organizations, individuals, and other resources such as files and
devices in a network, whether on the public Internet, or on a corporate intranet.

• LDAP Data Interchange Format (LDIF) – a mechanism form representing directory
data in text form. The LDIF specification is contained in RFC 2849 and describes a format
not only for representing directory data but also a mechanism for making changes to that
data.

• native-protocol – the native protocol supported by the DBMS to exchange request or
response between clients and the server.

• net-protocol – a protocol used to exchange request or response between a middle tier
gateway that in turn communicates with the database.

Glossary

198 jConnect for JDBC

• object identifier (OID) – an identifier used to name an object. Structurally, an OID
consists of a node in a hierarchically-assigned namespace.

• primary server – in a high availability (HA) environment, primary server is the server
where the client should first attempt to connect.

• Replication Server® – maintains replicated data in multiple databases while ensuring the
integrity and consistency of the data. It provides clients using databases in the replication
system with local data access, thereby reducing load on the network and centralized
computer systems.

• relative distinguished name (RDN) – a single component within a distinguished name.
An RDN comprises of one or more name-value pairs, in which the name and the value are
separated by an equal sign (for example, for an RDN of "uid=ann", the name is "uid" and
the value is "ann"), and if there are multiple name-value pairs, they should be separated by
plus signs (for example, for an RDN of "cn=Jon Doe+employeeNumber=12345", the
name-value pairs are "cn=John Doe" and "employeeNumber=12345"). In practice, RDNs
containing multiple name-value pairs (called "multivalued RDNs") are rare, but they can
be useful at times when either there is no unique attribute in the entry or you want to ensure
that the entry's DN contains some useful identifying information.

• RPC – Remote Procedure Call. A protocol that one program can use to request a service
from a program located in another computer in a network without having to understand
network details. (A procedure call is also sometimes known as a function call or a
subroutine call.) RPC uses the client/server model. The requesting program is a client and
the service-providing program is the server. Like a regular or local procedure call, an RPC
is a synchronous operation requiring the requesting program to be suspended until the
results of the remote procedure are returned. However, the use of lightweight processes or
threads that share the same address space allows multiple RPCs to be performed
concurrently.

• RSA encryption – a highly secure cryptography method.
• secondary server – in a high availability (HA) environment, secondary server is the server

where client should attempt to connect if connection fails on the primary server.
• single-sign-on (SSO) – a session or user authentication process that permits a user to enter

one name and password in order to access multiple applications. The process authenticates
the user for all the applications they have been given rights to and eliminates further
prompts when they switch applications during a particular session.

• SQL Anywhere® – a fully-featured relational database and data management tool.
• SSL – Secure Sockets Layer. SSL is a commonly-used protocol for managing the security

of a message transmission on the Internet.
• Sybase® IQ – a high-performance decision-support server designed specifically for data

warehousing.

Sybase® IQ is part of the Sybase product family that includes Adaptive Server Enterprise
and SQL Anywhere®. Component Integration Services within Sybase® IQ provide direct
access to relational and nonrelational databases on mainframe, UNIX, or Windows
servers.

Glossary

Programmers Reference 199

• Tabular Data Stream (TDS) – TDS is an application-level protocol that describes the
transmission of data between two computers. TDS defines the types of messages that can
be sent, as well as the order in which they are sent. TDS relies on a connection-oriented
transport service.

• TDS-tunnelling servlet – A servlet that passes through a TDS stream via HTTP or
HTTPS packets.

• UCS-2 – Universal Character Set is an ISO/IEC format for coding character sets. ISO/IEC
10646 was synchronized with Unicode; however, Unicode adds additional constraints,
and compliance with 10646 does not guarantee compatibility with Unicode.

• UTF-16 – Unicode Transformation Format-16 (UTF-16) is a two-byte format in the
Unicode coding system.

• Wedgetail JCSI – a Generic Security Services (GSS) Manager that can be used by
jConnect.

Glossary

200 jConnect for JDBC

Index
A

Active Directory
KDC 119

Adaptive Server
cluster edition 77
euro symbol 48
features 77
wide table support 53

adjustments
multithreading 106

advanced
features 76, 94

autogenerated keys
retrieval 95

B

batch updates
stored procedures 67
support 66

BCP
insert 76

bigdatetime and bigtime datatype
usage 73

BigDecimal
rescaling 135

C

capture
limit size 131
TDS 130

Capture class 130
change

extensions 145
character set conversion

performance 45
character sets

mapping 47
supersede 47
supported 45
unsupported 47

character-sets
converters 43

Compute clause 65
configuration file 119
configure

custom socket 111
gateways 150
J2EE servers 7

connect
Adaptive Server 35
firewall 152
server 152

connection
enable 78
failover 77, 78
migration 77
URL 38

connection pooling 101
access by 103
interfaces 101
LDAP 102
middle-tier clients 103
overview 101
reference 101
related 101

connection properties 8
connection.isclosed

IS_CLOSED_TEST 105
connection.preparedstatement 140
ConnectKerberos.java 120
create 111
create cursors 56
current

connection settings 8
cursor close

release lock 61
cursors

performance 143
result sets 55

custom
JCE provider 86

D

database
issues 48
metadata 54

Index

Programmers Reference 201

datatypes 68
bigint 73
char 73
date and time 72
getbyte 73
numeric 68
other 73
text 73
unitext 74
unsigned int 74
varchar 73

date and time datatype
usage 72

debug 125
class 125, 147
methods 126
obtain instance 125
set classpath 126
turn off 126
turn on 125

delete row 61
DES encryption 120
deserialization 93
directory services 38

interfaces 36
sql.ini 36

distributed transaction
access by 104
background 103
configuration 104
interfaces 103
management 103
middle-tier 104
reference 103
related 103
requirements 103
support 103

DSURL
single 36
string 36

dynamic class
loader 91
loading 91

dynamic logging 127
dynamic statements

executed 139
infrequently 139

E

enable login
clear text password 85

encryption types 123
erorr

messages 80
errors

customize 82
example 83
fetch 133
handler 83
message 82, 83
message handler 83
numeric 80
retrieve 81
specific information 81
state 133
warnings 80

establish
connection 8

event
notification 78

event notification 79
execute

procedures 107
stored 107
TextPointer.SendData 71

extension change
example 146

F

failover 49
format

ssl 37

G

GSSMANAGER
create 116
examples 116
instance 116
pass 116
setup 115
string 116

Index

202 jConnect for JDBC

H

holdable cursor
support 96

homogeneous
batch 143
large objects 143

I

image column 71
image data

textpointer 68
updating a column with

TextPointer.sendData() 69
implement

custom socket 109
implementation

notes 66
improve

performance 135
insert row 61
install

servlet 154
internationalization 42
interoperability 122
invoke

driver 6
jdbc.drivers 6
servlet 155

IsqlApp 157

J

Java Cryptography Extension
provider 86

Java Database Connectivity
interfaces 1
JDBC 1

jConnect for JDBC 1
connection properties 9

JDBC 1.x
positioned updates 58

JDBC 2.0
optional package 97
support 97

JDBC 2.0 methods
deletes 59
updates 59

JDBC 3.0
specifications 95
support 95

JDBC 4.0
specifications 94
support 94

JDBC Web server
Adaptive Server 150

JNDI
access 99
access by client 101
adminitrator 98
client 99
configuration 100
context 40
database 97
interfaces 97
LDAP 98
naming 97
programmatic 100
reference 97
related 97
usage 98

K

Kerberos
Active Directory 119
configure 114
CyberSafe 117
environment 117
Microsoft 119
MIT 118
protocol 114
related documents 124
setup 117

L

large object
LOB 74
locator 75
support 74

localization 42
login

redirection 77

Index

Programmers Reference 203

M

manage
memory 132

metadata
retrieval 95

method names 146
migrate

applications 145
jConnect 7.x 145

modify
applet 153

multiple open
result set objects 96

O

optimized
batch 142

P

pass
callablestatement objects 96
unicode data 42

password encryption 85
enable 85
perform 86
RSA password 86

pause 130
performance

prepared statements 137
tuning 135, 137

performance tuning
prepared statements 138
stored procedures 138

preload
.jar files 94

prepared statements
applications 138
extensions 139
object 62
portable 138

primary server 49
programming information 3
property

CHARSET 44
CONNECTION_FAILOVER 40
DYNAMIC_PREPARE 140

ESCAPE_PROCESSING_DEFAULT 142
GSSMANAGER_CLASS 115
JCONNECT_VERSION 4
LANGUAGE_CURSOR 144
PROTOCOL_CAPTURE 130
REPEAT_READ 136

public methonds
textpointer 69

pureconverter 44

R

read
Index.html 152

receive
database 89
Java objects 89

remote procedure calls 52
resolve

connection errors 131
custom socket error 133
stored procedure errors 132

restrictions and interpretations
JDBC 104
standards 104

result sets
deletions 58
type_scroll_insensitive 63

resume 130
TDS session 156

ResusltSet.getCursorName 107
review

requirements 154
RPC

output parameters 132
registered 132
returns 132

run
sample applet 161
sample isql applet 153
sample programs 161

S

sample
applications 120, 161
code 161, 162
programs 157, 161

Index

204 jConnect for JDBC

savepoint
support 95

security
kerberos 109
restrictions 109
SSL 109

sending
database 88
Java objects 88

server connection
JNDI 37

service principal 119
set

connection properties 8
jConnect 3
version 3

SQL Anywhere 29
SQL Exception

warning messages 165
Statement.cancel() method 12
Statement.close

results 106
unprocessed 106

store
column data 87
Java object 87, 88
prerequisites 88

stored procedure
result set 67
unchained transaction 133

SunIoConverter
character-set 136
conversion 136

SybConnection.PreparedStatementsexecuted
method 141

SybDriver.setVersion
method 3

T
TDS

tunnelling 149
tunnelling servlet 153

terminate
TDS sessions 156

text
datatype 71

object 70
track

active TDS 155
sessions 155

Transact-SQL 65
troubleshooting 125

Kerberos 123
sample isql applet 153

truncationconverter 44

U

unsupported
JDBC 4.0 105
requirements 105

update
columns 59
database 59
support 62

URL connection
property parameters 35

usage
requirements 152

use
custom socket 110

use cursor 57
user accounts 119

V

variable-length
data-only 74
locked tables 74
rows 74

view
Index.html 152

W

Web server
Adaptive Server 150, 151
gateways 149
one host 150
separate hosts 151

Index

Programmers Reference 205

Index

206 jConnect for JDBC

	Programmers Reference
	Contents
	jConnect for JDBC
	Java Database Connectivity (JDBC)

	Programming Information
	jConnect Version Property
	SybDriver. setVersion Method
	JCONNECT_VERSION Connection Property

	Invoking the jConnect Driver
	Configuring jConnect for J2EE servers
	Establish a Connection
	Connection Properties
	Setting Connection Properties
	Current Connection Settings
	jConnect Connection Properties

	Connect to Adaptive Server
	URL Connection Property Parameters

	Use the sql.ini and Interfaces File Directory Services
	Connection String for Single DSURL for jConnect
	Format of sql.Ini and Interfaces Files for SSL

	Connecting to a Server Using JNDI
	Connection URL for Using JNDI
	Required Directory Service Information
	CONNECTION_FAILOVER Property
	Providing JNDI Context Information

	Internationalization and Localization
	Using jConnect to Pass Unicode Data
	jConnect Character Set Converters
	Selecting a Character Set Converter
	Setting the CHARSET Connection Property
	Improving Character Set Conversion Performance
	Supported Character Sets
	Unsupported Character Sets
	Supersede Default Character Set Mapping

	European Currency Symbol Support

	Database Issues
	Failover Support
	Implementing Failover in jConnect

	Server-to-Server Remote Procedure Calls
	Wide Table Support for Adaptive Server
	Accessing Database Metadata
	Use Cursors with Result Sets
	Cursors
	Creating and Using a Cursor

	JDBC 1.x Methods for Positioned Updates and Deletes
	JDBC 2.0 Methods for Positioned Updates and Deletes
	Updating Columns in Result Sets
	Methods for Updating a Database from a Result Set
	Deleting Rows from Result Sets
	Inserting Rows into Result Sets

	Release Locks at Cursor Close
	Select for Update Support
	Cursor with PreparedStatement Object
	TYPE_SCROLL_INSENSITIVE Result Sets in jConnect
	Transact-SQL Queries with COMPUTE Clause

	Support for Batch Updates
	Implementation Notes

	Updating a Database from a Result Set of a Stored Procedure
	Datatypes
	Numeric Datatype
	Image Datatype
	Public Methods in TextPointer Class
	TextPointer Object
	Executing the Update with TextPointer.sendData
	Updating an Image Column with TextPointer.sendData

	Text Datatype
	Date and Time Datatypes
	Date, Time, Datetime, and Smalldatetime Datatypes
	Bigdatetime and Bigtime Datatypes

	Char, Varchar, Text, and GetByte Datatypes
	Other Supported Datatypes
	Bigint Datatype
	Unitext Datatype
	Unsigned Int Datatypes

	Variable-Length Rows in Data-Only-Locked Tables
	Large Object (LOB) Support
	Large Object Locator Support
	Advanced Features in jConnect
	BCP Insert
	Supported Adaptive Server Cluster Edition Features
	Login Redirection
	Connection Migration
	Connection Failover
	Enabling Connection Failover

	Event Notification
	Event Notification Example

	Error Messages
	Numeric Errors Returned as Warnings
	Retrieve Sybase-Specific Error Information
	Customizing Error-Message Handling
	Installing an Error-Message Handler
	Error Message Handler Example

	Password Encryption
	Enabling Password Encryption
	Enabling Login Retry with Clear Text Password
	Setting Up the Java Cryptography Extension (JCE) Provider
	Using GSE-J to Perform RSA Password Encryption
	Specifying Custom JCE Provider

	Store Java Objects as Column Data in Table
	Prerequisites for Storing Java Objects as Column Data
	Sending Java Objects to Database
	Receive Java Objects from Database

	Dynamic Class Loading
	Using DynamicClassLoader
	Deserialization
	Preloading .jar Files
	Additional Dynamic Class Loading Features

	JDBC 4.0 Specifications Support
	JDBC 3.0 Specifications Support
	Savepoint Support
	Retrieval of Parameter Metadata
	Retrieval of Autogenerated Keys
	Multiple Open ResultSet Objects
	Pass Parameters to CallableStatement Objects by Name
	Holdable Cursor Support

	Support for JDBC 2.0 Optional Package Extensions
	JNDI for Naming Databases
	Reference
	Related Interfaces
	Usage
	Configuration by Administrator: LDAP
	Access by Client
	Programmatic Configuration
	Retrieve Datasource Object by Client

	Connection Pooling
	Reference
	Related Interfaces
	Overview
	Configuration by Administrator: LDAP
	Access by Middle-Tier Clients

	Distributed Transaction Management Support
	Reference
	Related Interfaces
	Background and System Requirements
	Configuration by Administrator LDAP
	Access by Middle-Tier Clients

	Restrictions and Interpretations of JDBC Standards
	Unsupported JDBC 4.0 Specification Requirements
	Use Connection.isClosed and IS_CLOSED_TEST
	Statement.close with Unprocessed Results
	Adjustments for Multithreading
	ResultSet.getCursorName
	Execute Stored Procedures

	Security
	Restrictions
	Implement Custom SSL Socket Plug-ins
	Using Custom Socket with jConnect
	Create and Configure a Custom Socket
	SSL Support in jConnect

	Kerberos
	Configuring Kerberos for jConnect
	GSSMANAGER_CLASS Connection Property
	Setting Up the GSSMANAGER_CLASS Property
	GSS Manager Examples
	Creating an Instance of GSSManager
	Passing String to GSSMANAGER_CLASS

	Kerberos Environment
	CyberSafe
	MIT
	Microsoft Active Directory
	Setting DES Encryption

	Sample Applications
	Running ConnectKerberos.java

	Interoperability
	Encryption Types

	Troubleshooting Kerberos

	Related Documents

	Troubleshooting
	Debugging with jConnect
	Obtaining an Instance of the Debug Class
	Turning On Debugging in an Application
	Turning Off Debugging in an Application
	Setting the CLASSPATH for Debugging
	Using the Debugging Methods

	Dynamic Logging
	Enabling Logging Dynamically in jConnect
	Enabling Logging Statically in jConnect

	Capture TDS Communication
	PROTOCOL_CAPTURE Connection Property
	Pause and Resume Methods in Capture Class
	Limiting Size of Capture File

	Resolve Connection Errors
	Manage Memory in jConnect Applications
	Resolve Stored Procedure Errors
	RPC Returns Fewer Output Parameters Than Registered
	Fetch/State Error
	Stored Procedure Executed in Unchained Transaction Mode

	Resolve Custom Socket Implementation Error

	Performance and Tuning
	Improve jConnect performance
	BigDecimal Rescaling
	REPEAT_READ Connection Property
	SunIoConverter Character-Set Conversion

	Performance Tuning for Prepared Statements in Dynamic SQL
	Choose Prepared Statements and Stored Procedures
	Prepared Statements in Portable Applications
	Prepared Statements with jConnect Extensions
	If Most Dynamic Statements Are Executed Infrequently
	If Most Dynamic Statements Executed Are Multiple Times in a Session

	Connection.PrepareStatement
	DYNAMIC_PREPARE Connection Property
	SybConnection.PrepareStatement Method
	ESCAPE_PROCESSING_DEFAULT Connection Property
	Optimized Batch in jConnect
	Homogeneous Batch with Large Object (LOB) Columns

	Cursor Performance
	LANGUAGE_CURSOR Connection Property

	Migrating jConnect Applications
	Migrating Applications to jConnect 7.x
	Change Sybase Extensions
	Extension Change Example
	Method Names
	Debug Class

	Web Server Gateways
	TDS tunnelling
	Configure jConnect and Gateways
	Web Server and Adaptive Server on One Host
	Dedicated JDBC Web Server and Adaptive Server on One Host
	Web Server and Adaptive Server on Separate Hosts
	Connect to Server Through Firewall

	Usage Requirements
	Viewing the Index.html File
	Running Sample Applet
	Modifying Applet Screen Dimensions

	TDS-Tunnelling Servlet
	Reviewing Requirements
	Installing and Setting Servlet Arguments
	Invoking the Servlet
	Tracking Active TDS Sessions
	Terminating TDS Sessions
	Resuming a TDS Session

	jConnect Sample Programs
	Running IsqlApp

	jConnect Sample Programs and Code
	Sample Applications
	Running the Sample Applets
	Running the Sample Programs with SQL Anywhere

	Sample Code

	SQL Exception and Warning Messages
	Glossary
	Index

