SYBASE

Company

Programmers Reference

jConnect™ for JDBC™
7.07

DOCUMENT ID: DC39001-01-0707-01
LAST REVISED: June 2012

Copyright © 2012 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or
translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of
Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http:/www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein aswell astheir respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries al over the world.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other countries.
Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

About This Book..........

CHAPTER 1

CHAPTER 2

Programmers Reference

.. vii
INEFOAUCTION et 1
WHAL IS IDBC? ..ttt 1
What iS JCONNECL? ...uvvivie et 3
Programming INfOrmationccccceeeviii i 5
Setting UP JCONNECT.......cuviiiieee e 5
Setting the JCONNECt VEISIONcvvviiiiiiiiiiiecc e 6
Invoking the JCoNNEeCt driVer..........ccccvvvvvee e, 8
Configuring jConnect for J2EE SEIVErSccccccoviiiiviieereeenninnns 9
Establishing a connNectioncccccooviiiiiiiiiiiiee e 10
CONNECLION PrOPEITIES ..vvvvieeiiiiiiiiiiiee ettt e e 10
Connecting to Adaptive SErVer........ccoovcvvvieeeieiniiiiiieeee e 30
Using the sql.ini and interfaces file directory services............. 32
Connecting to a server using JNDI.........cccccceeeniiiiiiieneeeeenns 33
Handling internationalization and localizationc......cecuvvveee.. 39
Using jConnect to pass Unicode datacccvvveeveeeeiiinvnnnen, 39
jConnect character-set CONVErterscccccceeeviicciiieeeee e 40
Working with databases..........ccccccceeiviiiiiiiii e 46
Implementing high availability failover support.............cc......... 47
Performing server-to-server remote procedure calls............... 52
Using wide table support for Adaptive Servercccvveee.. 53
Accessing database metadatac..ccooevvvviieiiieiiiiiiieeeen 54
Using cursors With result SetS..........cccvvevieeiiiniiiieeiee e, 55
Using Transact-SQL queries with COMPUTE clause 66
Support for batch updates ... 68
Updating a database from a result set of a stored procedure . 69
Working with datatypes ... 70
Variable-length rows in data-only locked tables...................... 77
Large object (LOB) SUPPOItccceeeiiiiiiiireeeeeeiiirreeeeeeessiennens 78
Large object locator SUPPOIt.......cccevevvvriieeeeeeeciiiiieee e e e e 78
Implementing advanced features...........cccccceeeeeviiciiieee e 79
iii

CHAPTER 3

CHAPTER 4

USING BCP INSEI ..uvviviiiiiciiiiiee et 80

Supported Adaptive Server Cluster Edition features................ 81
Using event Notification..........cccccoviviviiienee e 82
Handling error MESSAQES.ccceeviiviriiieeeeeeiiiiriee e e e e e sraaeaee s 85
Using password eNnCryption.............ccccuvuvereeeeeesiiinnereesessssennnns 91
Storing Java objects as column data in a table 94
Using dynamic class 10adingcoocvuviiiieeiiiniiiiiiieeeee s 98
JDBC 4.0 specifications SUPPOIt.........ceeeviriiviirieeeeernniiiiiieen 102
JDBC 3.0 specifications SUPPOIt........ccceeeirriiiirieeeeeeniiiiiiieen 103
JDBC 2.0 optional package extensions support...........c........ 106
Restrictions on and interpretations of JDBC standards................ 114
Unsupported JDBC 4.0 specification requirements............... 114
Using Connection.isClosed and IS_CLOSED_TEST 114
Using Statement.close with unprocessed results................... 115
Making adjustments for multithreadingccooecvvvveeeeenn. 116
Using ResultSet.getCursorName..........cccceeeeeevvvieeeeeeeeesinnn 117
Executing stored proCedures.........covvvieeeeeiiiiviieeeeeeessivneeens 117
SBCUTITY 1ttt e e e e e 121
OVEBIVIBW......ie ettt ettt ettt e e et e e s sntee e e s anbee s 121
RESTIICHONS ... 122
Implementing custom socket plug-iNsocccvvveeeeeiiiiiiiiieeneeen, 122
Creating and configuring a custom socket.............ccccveeerinnnns 123
KEIDEIOS ... 126
Configuring jConnect applications for Kerberos 127
GSSMANAGER_CLASS connection property........ccccccovvvuns 127
Setting up the Kerberos environmentooccvvvveveeeeniinns 130
Sample appliCationsS...........cccvvvieiiiei i 132
The krb5.conf configuration file..........ccccccoovviiiiiee e, 134
INteroperabilitycooviiiiiie 137
TroublesShOotiNgcccviiiiie e 138
Related dOCUMENTS.......cooiiiiiiiiiiie et 139
TroubleShOOtING ...uueeeiiiiieee e 141
Debugging with JCONNECL..........ccccoiiiiiiiiieie e 141
Obtaining an instance of the Debug class.............cccccevnininn. 141
Turning on debugging in your application.............cccvveeeeeenn. 142
Turning off debugging in your application.............cccccvvveeieenn. 142
Setting the CLASSPATH for debuggingcccvvveeveeiniiins 143
Using the Debug methodsccciviiiiieiiiiiii e 143
D)V aT= 10 1Tl (oo To 1oV PP PPPR 144
Capturing TDS COMMUNICALION........uuviieeeeeiiiiiriireeeeessiiieeeee e e e 146
PROTOCOL_CAPTURE connection property.........ccccceeeeennn. 146

jConnect for JDBC

Contents

pause and resume methods in the Capture class................. 147
ResO0IVING CONNECLION EITOIS.......uvviieeeeeeiiiiiiieee e e eeeiirree e e e e e eneeees 147
Gateway connection refused.........ccccoeccvvvvivieeeeicicciiiiiee e 147
Managing memory in jConnect applicationsccccccoeevvvveennnn. 148
Resolving stored procedure Errors........cccvvvveeeeiiecivieeeee e s 149
RPC returns fewer output parameters than registered.......... 149
Fetch/state errors when output parameters are returned...... 150
Stored procedure executed in unchained transaction mode . 150
Resolving a custom socket implementation errorccuuveee.. 150
CHAPTER 5 Performance and TUNING.......ooooiiiiiiiiiie e 151
Improving jConnect performanceccccuveveeeeiiiiiiiiiiiee e 151
BigDecimal rescaling...........uvvveieiiiiiiiiiiiieee e 152
REPEAT_READ connection propertyccccceeeeeeeeniivvvneen. 152
SunloConverter character-set CONVersion............cccevveeeeenee 153
Performance tuning for prepared statements in dynamic SQL 154
Choosing prepared statements and stored procedures 155
Prepared statements in portable applications........................ 155
Prepared statements with jConnect extensions 156
Connection.prepareStatemMentcccvvveveeeeeiiiccinieieee s 157
DYNAMIC_PREPARE connection propertyc.ccccoeeuvvveeen. 157
SybConnection.prepareStatementccccccovvvviiiieeiieeninnnns 159
ESCAPE_PROCESSING_DEFAULT connection property... 159
Optimized batching in JCONNECL..........cccvveevieeiniiiiiiieeee s 160
CUrsOr PerformManCecvvveiiiiiiiiiiiie e 161
LANGUAGE_CURSOR connection propertyccoocvvveee.. 161
CHAPTER 6 Migrating jConnect ApplicationScccccvveeeeevi e, 163
Migrating applications to JCONNECt 7.Xccvveevviiiiiieeeeeee e, 163
Changing Sybase eXtenSIONS...........cuuieeiiiiiiiiiiieeesicsiineeeaae e 164
Extension change examplecccovvevieeiiccciiieecee e, 164
Method NAMES........ooiiiiei e 165
DEDUQ ClIaSS......c.cuiiiiieeiiiiiiiee et 165
CHAPTER 7 WED Server GatEWaAY'Sc.oooeiiiiiiiiiiiiiieeeae e e et eeeae e 167
About Web server gatewaysccccvvvvevieei i 167
Using TDS tuNNelling......cccvvvviiieee e 167
Configuring jConnect and gateways........ccccccevvvvvvveereeenninnnns 168
USage reQUITEMENTSuuviieeiiiiiiiiieiee e sttt ee e e e e s sibbree e e e e s s senbeeeeas 172
Reading the index.html file ..., 173
Running the sample Isqgl applet........ccccoeeiiiiiiiieiniiiee, 173
Using the TDS-tunnelling servlet..........occvvvieeiiiiiiiii e, 174

Programmers Reference v

Contents

APPENDIX A

APPENDIX B

Vi

Reviewing reqUIrEMENtS.........ooviiiiiiiiieen i 175

Installing the Serviet..........cccccvviiiiiii e 176

INVOKINg the Servietccccoeviiiiii 1 177

Tracking active TDS SESSIONSuuvviieeiiiiiiiiiiiie e esiiieeeeen 177

Resuming a TDS SESSION........cccuviiiiiieeiiiiiiiiiie e 178

jConnect Sample Programs.......cccccveeiierieeieesieecciiiineeeeeeeeee e 179
RUNNING ISOIAPP c oottt 179

Running jConnect sample programs and codec......cccuvvveee.. 181

Sample appliCationsccccuvvvieeeeeiiiiiiie e 182

SaAMPIE COUE ... 183

SQL Exception and Warning MeSSagescccccvveeeeevieicicvnvvnnnnnns 185
... 213
... 219

jConnect for JDBC

About This Book

Audience

How to use this book

Related Documents

Programmers Reference

The Sybase jConnect for JDBC Programmers Reference describes the
jConnect™ for JIDBC™ product and explains how to useit to access data
stored in relational database management systems.

Thismanual is for database-application programmers who are familiar
with the Java programming language, JDBC, and Transact-SQL®, the
S\/base® version of Structured Query Language (SQL).

Theinformation in this book is organized as follows:

Chapter 1, “Introduction,” describes jConnect for JDBC concepts
and components.

Chapter 2, “ Programming Information,” describes jConnect for
JDBC programming requirements.

Chapter 3, “ Security,” describes the security mechanisms that you
can use with jConnect.

Chapter 4, “Troubleshooting,” describes solutions and workarounds
for problems you might encounter when using jConnect.

Chapter 5, “ Performance and Tuning,” describes how you can
enhance the performance of an application using jConnect.

Chapter 6, “Migrating jConnect Applications,” describes how you
can migrate your application to jConnect 7.X.

Chapter 7, “Web Server Gateways,” containsinformation about Web
server gateways and explains how you can use these gateways with
jConnect.

Chapter B, “SQL Exception and Warning Messages,” lists the SQL
exception and warning messages that you may encounter when using
jConnect.

Chapter A, “jConnect Sample Programs,” serves as a guide to the
jConnect sample programs.

See these books for more information:

Vii

Other sources of
information

Viii

The Sybase jConnect for JDBC Release Bulletin contains important |ast-
minute information about jConnect.

The Software Devel oper’s Kit Release Bulletin for your platform contains
important last-minute information about Software Developer’sKit (SDK).

The Software Devel oper’s Kit and Open Server Installation Guide
contains information about installing SDK and its jConnect for JDBC
component.

The Adaptive Server Enterprise Installation Guide contains information
about installing Adaptive Server.

The Adaptive Server Enterprise Release Bulletin for your platform
contains information about known problems and recent updates to the
Adaptive Server® Enterprise.

The javadoc documentation of jConnect extensions to JDBC. The Java
Development Kit (JDK) from Java Software contains a javadoc script for
extracting comments from source-code files. This script has been used to
extract documentation of jConnect packages, classes, and methods from
jConnect sourcefiles. Whenyouinstall jConnect using thefull installation
or javadocs option, the javadoc information is placed in the javadocs
directory Installation_directory/docs/en/javadocs.

Use the Sybase Getting Started CD, the SyBooks™ CD, and the Sybase
Product Manuals Web site to learn more about your product:

The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It isincluded with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using alink provided on the CD.

The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manualsin an easy-to-use, HTML -based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks I nstallation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

jConnect for JDBC

About This Book

The Sybase Product Manual s Web siteisan online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://lwww.sybase.com/support/manuals/.

Sybasecertifications Technical documentation at the Sybase Web site is updated frequently.

on the Web

[JFinding the latest information on product certifications

1

4

Point your Web browser to Technical Documents at
http://lwww.sybase.com/support/techdocs/.

Click Partner Certification Report.

In the Partner Certification Report filter select a product, platform, and
timeframe and then click Go.

Click aPartner Certification Report title to display the report.

[JFinding the latest information on component certifications

1

Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

Select Search to display the availability and certification report for the
selection.

[ICreating a personalized view of the Sybase Web site (including support
pages)
Set upaMySybase profile. MySybaseisafree servicethat allowsyouto create
apersonalized view of Sybase Web pages.

1

2

Programmers Reference

Point your Web browser to Technical Documents at
http://lwww.sybase.com/support/techdocs/.

Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

[IFinding the latest information on EBFs and software maintenance

1

Conventions

Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

Select a product.

Specify atime frame and click Go. A list of EBF/Maintenance releasesis
displayed.

Padlock iconsindicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Table 1: Syntax conventions

Key Definition
command Command names, command option names, utility names,
utility flags, and other keywords are in sans serif font.
variable Variables, or words that stand for values that you fill in, are
initalics.
{1} Curly bracesindicate that you choose at least one of the

enclosed options. Do not include the bracesin the command.

[Brackets mean choosing one or more of the enclosed itemsis
optional. Do not include the braces in the command.

() Parentheses are to be typed as part of the command.

| The vertical bar meansyou can select only one of the options
shown.

/ The comma means you can choose as many of the options
shown as you like, separating your choices with commas to
be typed as part of the command.

Accessibility This document is available in an HTML version that is specialized for

features

accessibility. You can navigate the HTML with an adaptive technology such as

ascreen reader, or view it with a screen enlarger.

jConnect for JDBC

About This Book

If you need help

Programmers Reference

jConnect for JDBC and the HTML documentation have been tested for
compliance with U.S. government Section 508 Accessibility requirements.
Documents that comply with Section 508 generally also meet non-U.S.
accessibility guidelines, such as the World Wide Web Consortium (W3C)
guidelines for Web sites.

The online help for this product is also provided in HTM, which you can
navigate using a screen reader.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT asinitials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manuals or online help, please havethe
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Xi

Xii

jConnect for JDBC

CHAPTER 1 Introduction

This chapter introduces you to jConnect for JIDBC and describesiits
concepts and components.

Topic Page
What is JDBC? 1
What is jConnect? 3

What is JDBC?

Java Database Connectivity (JDBC), from the Oracle Corporation, isa
specification for an application program interface (API) that allows Java
applications to access multiple database management systems using
Structured Query Language (SQL). The JDBC Driver Manager handles
multiple drivers that connect to different databases.

A set of interfacesisincluded in the standard JIDBC API and the JDBC
Standard Extension API so you can open connections to databases,
execute SQL commands, and processresults. Theinterfaces are described
in Table 1-1.

Programmers Reference 1

What is JDBC?

Table 1-1: JDBC interfaces

Interface

Description

java.sql.Driver

Locates the driver for a database URL

java.sqgl.Connection

Used to connect to a specific database

java.sql.Statement

Executes SQL statements

java.sql.PreparedStatement

Handles SQL statements with parameters

java.sql.CallableStatement

Handl es database stored procedure calls

java.sql.ResultSet

Gets the results of SQL statements

java.sql.DatabaseMetaData

Used to access information about a connection to a
database.

java.sql.ResultSetMetaData

javax.sgl.Rowset
javax.sql.DataSource

javax.sgl.ConnectionPoolData
Source

Used to accessinformation describing the attributes
of aResultSet.

Handles JDBC RowSet implementations.
Handles connection to a data source.
Handles connection pools.

Each relational database management system requires adriver to implement
these interfaces. There are four types of JDBC drivers:

Type 1 IDBC-ODBC bridge —translates JDBC callsinto ODBC callsand
passes them to an ODBC driver. Some ODBC software must reside on the
client machine. Some client database code may also reside on the client

machine.

Type 2 native-API partly-Java driver —converts JDBC callsinto database-
specific calls. Thisdriver, which communicates directly with the database
server, also requires some binary code on the client machine.

Type 3 net-protocol all-Java driver —communicatesto amiddle-tier server
using a DBM S-independent net protocol. A middle-tier gateway then
converts the request to a vendor-specific protocol.

Type 4 native-protocol all-Java driver — converts JDBC calls to the
vendor-specific DBM S protocol, alowing client applications direct
communication with the database server.

For more information about JDBC and its specification, see the Oracle

Technology Network for Java at

http://www.oracle.com/technetwork/java/index.html.

jConnect for JDBC

CHAPTER 1 Introduction

What is jConnect?

Programmers Reference

jConnect is the Sybase high-performance JDBC driver. jConnect is both:
e A native-protocol/all-Java driver, and
e A net-protocol/all-Java driver.

The protocol used by jConnect isTDS5.0 (Tabular Data Stream™, version 5),
the native protocol for Adaptive Server Enterprise and Open Server™
applications. jConnect implements the JIDBC standard to provide optimal
connectivity to the complete family of Sybase products, allowing access to
over 25 enterprise and legacy systems, including:

e Adaptive Server Enterprise
e SQL Anywhere®

¢ Sybase® IQ

e Replication Server®

» DirectConnect™

In addition, jConnect for JDBC can access Oracle, AS/400, and other data
sources using Sybase DirectConnect.

In some instances, the jConnect implementation of JDBC deviates from the
JDBC specifications. For more information, see “ Restrictions on and
interpretations of JDBC standards’ on page 114.

What is jConnect?

4 jConnect for JDBC

CHAPTER 2 Programming Information

This chapter describes the basic components and programming
reguirements that comprise jConnect for JDBC. It explains how to invoke
the jConnect driver, set connection properties, and connect to a database
server. It also contains information about using jConnect features.

The following topics are included in this chapter:

Topic Page
Setting up jConnect 5
Establishing a connection 10
Handling internationalization and localization 39
Working with databases 46
Implementing advanced features 79
Restrictions on and interpretations of JDBC standards 114

For information about JDBC programming, go to the resource page for
Java developers at the Oracle Technology Network for Java at
http://www.oracle.com/technetwork/java/index.html.

Setting up jConnect

This section describes the tasks you need to perform before you use
jConnect.

Programmers Reference 5

Setting up jConnect

Setting the jConnect version

Using SybDriver.
setVersion

Using JCONNECT _
VERSION

The jConnect version property JCONNECT _VERSION determines the
driver’s behavior and the features activated. For example, Adaptive Server
15.5 supports both jConnect 6.05 and 7.0, however, these two versions differ
in their handling of datetime and time data. When connecting to Adaptive
Server 15.5, jConnect 7.0, which supports microsecond granularity for time
data, uses bigdatetime or bigtime evenif thetarget Adaptive Server columns are
defined as datetime or time. jConnect 6.05, however, does not support
microsecond granularity and always transfers datetime or time data when
connecting to Adaptive Server 15.5.

You can set the jConnect version by using either the SybDriver.setVersion
method or the JCONNECT_VERSION connection property.

The setVersion method affects the jConnect default behavior for all
connections created by the SybDriver object. You can call setVersion multiple
times to change the version setting. New connections inherit the behavior
associated with the version setting at the time the connection is made.
Changing the version setting during a session does not affect current
connections. You can use the com.sybase.jdbcx.SybDriver.VERSION_LATEST
constant to ensure that you are always requesting the highest version value
possible for thejConnect driver you are using. However, by setting the version
to com.sybase.jdbcx.SybDriver.VERSION_LATEST, you may see behavior
changesif you replace your current jConnect driver with a newer one.

This code sample shows how to load the jConnect driver and set its version:

import java.sql.DriverManager;
import com.sybase.jdbcx.SybDriver;

SybDriver sybDriver = (SybDriver)
Class.forName ("com.sybase.jdbc4.jdbc.SybDriver")
.newInstance() ;

sybDriver.setVersion (com.sybase.jdbcx.SybDriver.
VERSION 7);

DriverManager.registerDriver (sybDriver) ;

You can use the JCONNECT _VERSION connection property to override the
SybDriver version setting and specify a different version setting for a specific
connection. Table 2-1 lists the valid JCONNECT_VERSION values and the
jConnect characteristics associated with these values.

jConnect for JDBC

CHAPTER 2 Programming Information

Table 2-1: jConnect version settings and their features

JCONNECT_
VERSION

Features

“7 0

jConnect 7.0 behaves in the same way as jConnect 6.05, except that in this version:

» jConnect requests support for the bigdatetime and bigtime SQL datatypes from the
server. Versionsof Adaptive Server earlier than 15.5 ignorethisrequest. See“ Using date
and time datatypes’ on page 75.

 jConnect supports JDBC 4.0. See “JDBC 4.0 specifications support” on page 102 and
“Restrictions on and interpretations of JDBC standards’ on page 114.

e Thevalid values of ENABLE_BULK_LOAD are Null (default),

ARRAYINSERT WITH_MIXED_STATEMENTS, ARRAY INSERT, BCP, and
LOG_BCP

“6.05"

jConnect 6.05 behavesin the same way as jConnect 6.0, except that in this version:
 jConnect supports computed columns, including their metadata information.

» jConnect supports large identifiers. With large identifiers, you can use identifiers or
object names with lengths of up to 255 bytes. The large identifier applies to most user-
defined identifiers, including table name, column name, and index name.

» jConnect supports JDBC 3.0. See “JDBC 3.0 specifications support” on page 103 and
“Restrictions on and interpretations of JDBC standards’ on page 114.

jConnect 6.0 behaves in the same way as jConnect 5.x, except that in this version:

» jConnect requests support for the date and time SQL datatypes. Versions of Adaptive
earlier than 12.5.1 ignore this request. See “Using date and time datatypes’ on page 75.

» jConnect requests support for the unichar and univarchar datatypes from the server.
Versions of Adaptive Server earlier than 12.5.1 ignore thisrequest. See* Using jConnect
to pass Unicode data’ on page 39.

» jConnect reguests support for wide tables from the server. Versions of Adaptive Server
earlier than 12.5.1 ignore this request. “Using wide table support for Adaptive Server”
on page 53.

* Thedefault value of DISABLE_UNICHAR_SENDING isfalse.

gy

jConnect 5.x behaves in the same way as jConnect 4.0.

g

jConnect 4.0 behaves in the same way as jConnect 3.0, except that in this version:
» Thedefault value of the LANGUAGE connection property is null.

» Thedefault behavior of Statement.cancel isto cancel only the Statement object on which
it isinvoked. This behavior is JIDBC-compliant.

Use CANCEL_ALL to set the behavior of Statement.cancel.

* You can use JDBC 2.0 methods to store and retrieve Java objects as column data. See
“ Storing Java objects as column datain atabl€e’ on page 94.

Programmers Reference

Setting up jConnect

JCONNECT_
VERSION Features
“3 jConnect 3.0 behaves in the same way as jConnect 2.0, except that in this version:
» If the CHARSET connection property does not specify acharacter set, jConnect usesthe
default character set of the database.
e Thedefault value for CHARSET _CONVERTER isthe CheckPureConverter class.
"2 » Thedefault value of the LANGUAGE connection property isus_english.

If the CHARSET connection property does not specify a character set, the default
character setisiso_1.

Thedefault valuefor CHARSET_CONVERTER isthe TruncationConverter class, unless
the CHARSET connection property specifiesamultibyte or 8-bit character set, in which
case the default CHARSET_CONVERTER is the CheckPureConverter class. See
“jConnect character-set converters’ on page 40.

The default behavior of Statement.cancel is to cancel the object it isinvoked on and any
other Statement objects that have begun to execute and are waiting for results. This
behavior is not IDBC-compliant.

Use CANCEL_ALL to set the behavior of Statement.cancel.

Invoking the jConnect driver

To register and invoke jConnect, add jConnect to the jdbc.drivers system

property. At initialization, the DriverManager class attemptsto load the drivers
listed in jdbc.drivers. Thisisless efficient than calling Class.forName. You can
list multiple driversin this property, separated with acolon (:). The following
code samples show how to add a driver to jdbc.drivers within a program:

Properties sysProps = System.getProperties();
String drivers = "com.sybase.jdbc4.jdbc.SybDriver";
String oldDrivers =
sysProps.getProperty ("jdbc.drivers") ;
if (oldDrivers != null)
drivers += ":" + oldDrivers;
sysProps.put ("jdbc.drivers", drivers.toString());

Note System.getProperties isnot allowed for Java applets. Use the
Class.forName method instead.

In Java 6 and JDBC 4, the instantiation of JDBC drivers has been simplified.
You can use the Java system property jdbc.drivers to specify driver classes, for
example:

jConnect for JDBC

CHAPTER 2 Programming Information

java -Djdbc.drivers=com.sybase.jdbc4.jdbc.SybDriver UseDriver

Thereis no need for the UseDriver program to load the driver explicitly:

public class UseDriver

{

public static void main(String[]

{

try {

args)

Connection conn = java.sqgl.DriverManager.getConnection
("jdbc:sybase:Tds:localhost :5000?USER=sa&PASSWORD=secret") ;

// more code to use connection

}

catch (SQLException se) {
System.out.println ("ERROR: SQLException "+se);

Configuring jConnect for J2EE servers

You can use the com.sybase.jdbc4.jdbc.SybConnectionPoolDataSource class to
configure connection poolsto an Adaptive Server server in application servers
such as EAServer. The com.sybase.jdbc4.jdbc.SybConnectionPoolDataSource
implementation of the javax.sqgl.ConnectionPoolDataSource interface provides
getter and setter methods for every connection property.

You can also configure jConnect programmatically, for example:

private DataSource getDataSource ()

{

SybConnectionPoolDataSource connectionPoolDataSource =

new

SybConnectionPoolDataSource () ;

connectionPoolDataSource.
connectionPoolDataSource.
connectionPoolDataSource.
connectionPoolDataSource.
connectionPoolDataSource.
connectionPoolDataSource.

setDatabaseName ("pubs2") ;
setNetworkProtocol ("Tds") ;
setServerName ("localhost") ;
setPortNumber (5000) ;
setUser ("sa") ;

setPassword (PASSWORD) ;

return connectionPoolDataSource;

}

private void work () throws SQLException
Connection conn = null;
Statement stmt = null;
DataSource ds = getDataSource() ;

Programmers Reference

Establishing a connection

try {
conn = ds.getConnection() ;
stmt = conn.createStatement () ;
/] ...
}
finally ({
if (stmt != null) {
try { stmt.close(); } catch (Exception ex) { /* ignore */ }
!
if (conn != null) {
try { conn.close(); } catch (Exception ex) { /* ignore */ }

}

Establishing a connection

This section describes how to establish a connection to an Adaptive Server or
SQL Anywhere database using jConnect.

Connection properties

Connection properties specify the information needed to log in to a server and
define expected client and server behavior. Connection property names are not
case sensitive,

Setting connection properties

Connection properties must be set before connecting to a server. You can set
connection propertiesin two ways.

¢ Usethe DriverManager.getConnection method in your application.

10 jConnect for JDBC

CHAPTER 2 Programming Information

e Set the connection properties when you define the URL.

Note Driver connection properties set in the URL do not override any
corresponding connection properties set in the application using the
DriverManager.getConnection method.

Following isasample code that uses the DriverManager.getConnection method.
The sampl e programs provided with jConnect al so contain examples of setting
these properties.

Properties props = new Properties();

props.put ("user", "userid");
props.put ("password", "user password") ;
/*

* If the program is an applet that wants to access
* a server that is not on the same host as the
* web server, then it uses a proxy gateway.
*/
props.put ("proxy", "localhost:port");
/*
* Make sure you set connection properties before
* attempting to make a connection. You can also
* set the properties in the URL.
*/
Connection con = DriverManager.getConnection
("jdbc:sybase:Tds: host:port", props);

Listing current connection settings

To list adriver’s current connection settings, use
Driver.getDriverPropertyInfo(String url, Properties props). This code returns an
array of DriverPropertylnfo objects containing:

» Driver properties
e Current settings on which the driver properties are based
e TheURL and properties passed in

List of jConnect connection properties

Table 2-2 lists the connection properties for jConnect and indicates their
default values. These properties are not case-sensitive.

Programmers Reference 11

Establishing a connection

You can dynamically set the values of those connection properties marked as
Dynamic using the getClientinfo() and setClientinfo() standard methods.

Table 2-2: Connection properties

Property

Default
Description value

Dynamic
or Static

ALTERNATE_
SERVER_NAME

Specifies the alternate server name used by the primary ~ Null
and secondary database in amirrored SQL Anywhere
environment. The primary and secondary database use

the same alternate server nameso that client applications

can connect to the current primary server without

knowing in advance which of the two serversisthe

primary server.

The JDBC URL syntax is till
jdbc:sybase:Tds:<hostnames:<port#>/databa
se?connection property=value;. However, when
ALTERNATE_SERVER_NAME is set, jConnect
ignores the values of the hostname and port variables.
Instead, jConnect uses the SQL Anywhere UDP
discovery protocol to determine the current primary
Server.

For information about database mirroring, see the SQL
Anywhere Server - Database Administration.

Note You can also use
ALTERNATE_SERVER_NAME with an SQL
Anywhere that is not mirrored. However, you will
always get the same host and port values from the
singleton server.

Static

APPLICATIONNAME

12

Specifies an application name. Thisis a user-defined Null
property. The server side can be programmed to
interpret the value given to this property.

Static

jConnect for JDBC

CHAPTER 2 Programming Information

Property

Default Dynamic
Description value or Static

BE_AS JDBC_
COMPLIANT_AS_
POSSIBLE

Adjusts other properties to ensure that jConnect False Static
methods respond in away that is as compliant as
possible with the JDBC 3.0 standard.

These propertiesare affected (and overridden) when this
property is set to "true":

e CANCEL_ALL (setto "false")

* LANGUAGE CURSOR (set to “false”)

e SELECT_OPENS_CURSOR (set to "true")

e FAKE_METADATA (set to "true")

« GET_BY_NAME_USES COLUMN_LABEL (set
to "false")

CACHE_COLUMN_
METADATA

Programmers Reference

If you repeatedly use PreparedStatement or Fase Static
CallableStatement objects that perform SELECT

queries, setting CACHE_COLUMN_METADATA to

true can improve performance. When set to true, the

statement remembers the ResultSet Metadata

information associated with the SELECT query results

from thefirst execution of the statement. On subsequent

executions, the metadatais re-used without having to be

reconstructed. This saves CPU time through the use of

additional memory.

Use the SUPPRESS ROW_FORMAT connection
property when connecting to Adaptive Server 15.7 ESD
#1 and later.

13

Establishing a connection

Property

Description

Default Dynamic
value or Static

CANCEL_ALL

14

Specifies the behavior of the Statement.cancel method:

» If CANCEL_ALL isfalse, invoking
Statement.cancel cancels only the Statement object
onwhichitisinvoked. Thus, if stmtA is a Statement
object, stmtA.cancel cancels the execution of the
SQL statement contained in stmtA in the database,
but no other statements are affected. stmtA is
canceled whether it isin cache waiting to execute or
has started to execute and is waiting for results.

« If CANCEL_ALL istrue, invoking Statement.cancel
cancelsnot only the object onwhichitisinvoked, but
also any other Statement objects on the same
connection that have executed and are waiting for
results.

Thefollowing example sets CANCEL_ALL to “false.”
propsis aProperties object for specifying connection
properties:

props.put("CANCEL_ALL", "false");

Note To cancel theexecution of all Statement objectson
a connection, regardless of whether or not they have
begun execution on the server, use the extension method
SybConnection.cancel.

3

True—for Static
JCONNEC
T_VERSIO
N<="3"

False—for

JCONNEC
T_VERSIO
N >=“4"

jConnect for JDBC

CHAPTER 2

Programming Information

Property

Description

Default
value

Dynamic
or Static

CAPABILITY_TIME

Used only when JCONNECT_VERSION >= 6. When
jConnect is connected to aserver that supportsthe TIME
datatype, and all parameters of type java.sql.Time or
escape literals {t ...} are processed as TIME.

Previous versions of jConnect treat such parameters as
DATETIME and prepend '1970-01-01' to the
java.sql.Time parameter. If the underlying datatype is
datetime or smalldatetime the date part also gets stored
in the database. In jConnect 6.0 or later, when TIME is
processed, the server converts time to the underlying
datatype and will prepend its own base year. This can
result in incompatibilities between old and new data. If
you are using datetime or smalldatetime datatypes for
java.sql.Time, then for backward compatibility you
should leave CAPABILITY_TIME as false. Leaving this
property as fal se forces jConnect to process
java.sql.Time parameters or escape literals {t ...} as
DATETIME regardless of the server capability of
handling TIME datatype.

Setting this property to true will cause jConnect to
processjava.sql.Time parametersas TIME datatypewhen
connected to Adaptive Server. Sybase recommends you
leave this property asfalseif you are using

smalldatetime or datetime columns to store time values.

False

Static

CAPABILITY_
WIDETABLE

Programmers Reference

If you do not require JIDBC ResultSetMetaData like
Column name as a performance improvement, you can
set thisto “false.” Theresult isthat lessdatais
exchanged over the network and increases performance.
Unless you are using EAServer, Sybase recommends
that you use the default setting. See “Using wide table
support for Adaptive Server” on page 53.

False

Static

15

Establishing a connection

Property

Description

Default Dynamic
value or Static

CHARSET

Specifies the character set for strings passed to the
database. If the CHARSET value is null, jConnect uses
the default character set of the server to send string data
to the server. If you specify a CHARSET, the database
must be able to handle charactersin that format. If the
database cannot do so, amessageisgenerated indicating
that character conversion cannot be properly compl eted.

Note If you are using jConnect 6.05 or later and the
DISABLE_UNICHAR_SENDING is set to false,
jConnect detects when aclient istrying to send
charactersto the server that cannot be represented in the
character set that is being used for the connection. When
that occurs, jConnect sends the character data to the
server as unichar data, which allows clients to insert
Unicode data into unichar/univarchar columns and
parameters.

Null Static

CHARSET _
CONVERTER_CLASS

Specifies the character-set converter class you want
jConnect to use. jConnect uses the version setting from
SybDriver.setVersion, or the version passed in with the
JCONNECT_VERSION property, to determine the
default character-set converter classto use. See
“Selecting a character-set converter” on page 41 for
details.

Version- Static
dependent. See
Table 2-1 on

page 7.

CLASS LOADER

A property you set to aDynamicClassL oader object that
you create. The DynamicClassLoader is used to load
Javaclassesthat are stored in the database but which are
not in the CLASSPATH at application start-up time.
See"Using dynamic classloading” on page 98 for more
information.

Null Static

CONNECTION_
FAILOVER

Used with the Java Naming and Directory Interface
(IJNDI). See“CONNECTION_FAILOVER connection
property” on page 36.

True Static

CRC

16

When this property is set to true, the update counts that
arereturned are cumulative counts that include updates
directly affected by the statement executed and any
triggers invoked as aresult of the statement being
executed.

fase Static

jConnect for JDBC

CHAPTER 2

Programming Information

Property

Description

Default
value

Dynamic
or Static

DATABASE

Use this property to specify the database name for a
connection when the connection information isobtained
from a Sybase interfacesfile. The URL of an interfaces
file cannot supply the database name.

null

Static

DEFAULT QUERY _
TIMEOUT

When this connection property is set, it is used as the
default query timeout for any statements created on this
connection.

0 (no timeout)

Dynamic

DELETE_WARNINGS
_FROM_EXCEPTION _
CHAIN

Specifieswhether to retain or remove SQLWarning from
the SQLException chain.

Values:

¢ True—jConnect removes SQLWarning objects from
the SQLException chain.

¢ Fase—jConnect retains the SQLWarning objectsin
the SQLException chain.

True

Static

DISABLE_UNICHAR_
SENDING

When aclient application sends unichar charactersto the
server (along with non-unichar characters), thereisa
dlight performance hit for any character data sent to the
database. This property defaults to false in jConnect
6.05 and later. Clients using older versions of jConnect
who wish to send unichar datato the database must set
this property to false. See “Using jConnect to pass
Unicode data” on page 39.

Version-
dependent

Static

DISABLE_
UNPROCESSED _
PARAM_WARNINGS

Disables warnings. During results processing for a
stored procedure, jConnect often reads return values
other than row data. If you do not process the return
value, jConnect raises awarning. To disable these
warnings (which can help performance), set this
property to "true.”

False

Static

DYNAMIC_PREPARE

Determines whether dynamic SQL prepared statements
are precompiled in the database. See
“DYNAMIC_PREPARE connection property” on page
157.

true

Dynamic

EARLY_BATCH_
READ_THRESHOLD

Programmers Reference

Specifiesthe threshold on number of rows after which a
reader thread should be started to drain out the server
responses for a batch.

Set thisvalueto -1if the early read is not ever required.

1

Static

17

Establishing a connection

Property

Description

Default
value

Dynamic
or Static

ENABLE_BULK_
LOAD

Specifies whether to use bulk load to insert rows to the
database. Values:

* Null —disables bulk load.

* ARRAYINSERT_WITH_MIXED_STATEMENTS
— enables bulk load with row-level logging and
allows your application to execute other statements
during the bulk load operation.

* ARRAYINSERT - enablesbulk |oad with row-level
logging, but your application cannot execute other
statements during the bulk load operation.

» BCP—enables bulk load with page-level logging;
your application cannot execute other statements
during the bulk load operation.

» LOG_BCP - same as BCP except the complete
transaction is dumped for possible full recovery.

Null

Dynamic

ENABLE_LOB_
LOCATORS

Specifies whether jConnect should create a client-side
materialized LOB or server side LOB Locator. Valid
values:

» False: Default value - jConnect uses client side
materialized LOBs. That is, the entire dataof LOB is
processed and cached on client side.

e True: Works only when autocommit is set to False,
otherwiseinternally, the value changes to False.
When set to true, the server locators are used instead
of storing the LOB data on client-side.

See “Large object locator support” on page 78.

False

Dynamic

ENABLE_SERVER_
PACKETSIZE

Specifiesif the connection packet sizeis set to thevalue
suggested by the server. If set to true, thedriver does not
use PACKETSIZE connection property and the server is
free to use any value between 512 and the maximum
packet size. If settofase, the PACKETSIZE connection
property is used.

True

Static

ENCRYPT_
PASSWORD

18

Allows asecurelogin. When this property is set to true,
both login and remote site passwords are encrypted
before being sent to the server. Passwords are no longer
sent in clear text.

ENCRY PT_PASSWORD has precedence over
RETRY_WITH_NO_ENCRY PTION. For more
information about password encryption, see“Using
password encryption” on page 91.

False

Static

jConnect for JDBC

CHAPTER 2 Programming Information

Default Dynamic
Property Description value or Static

ESCAPE_ Circumvents processing of JDBC function escapesin True Static
PROCESSING _ SQL statements. By default, jConnect parses all SQL
DEFAULT statements submitted to the database for valid JDBC

function escapes. If your application is not going to use

JDBC function escapesin its SQL calls, you can set this

connection property to “false” to avoid this processing.

This can provide a dight performance benefit.

Additionally, ESCAPE_PROCESSING_DEFAULT

helps with backend servers such as Sybase 1Q that use

curly braces as part of the SQL syntax.

EXECUTE_BATCH_ Specifies whether jConnect allows a batch update Fase Static
PAST_ERRORS operation to ignore nonfatal errors encountered while

executing individual statements and to complete the

batch update or aborts the batch update operation.

Values:

e True—alow abatch update operation to ignore
nonfatal errors encountered and to complete the
batch update.

e False—abort abatch update when anonfatal error is
encountered.

EXPIRESTRING Containsthelicense expiration date. Expirationissetto Never Static
Never except for evaluation copies of jConnect. Thisis
aread-only property.

FAKE_METADATA Returns phony metadata. When you call the False Static
ResultSetMetaData methods getCatalogName,
getSchemaName, and getTableName and this property
is set to "true," the call returns empty strings ("")
because the server does not supply useful metadata.

When this property is set to "false," caling these
methods throws a“Not Implemented” SQL Exception.

Note If you have enabled wide tables and are using an
Adaptive Server 12.5 or later, this property setting is
ignored because the server supplies useful metadata.

Programmers Reference 19

Establishing a connection

Property

Description value

Default

Dynamic
or Static

GET_BY_NAME_
USES COLUMN_
LABEL

Provides backward compatibility with versions of True
jConnect earlier than 6.0.

With Adaptive Server version 12.5 and later, jConnect
has access to more metadata than was previously
available. Prior to version 12.5, column name and
column alias meant the same thing. jConnect can now
differentiate between the two when used with a 12.5 or
later Adaptive Server with wide tables enabled.

To preserve backward compatibility, set this property to
"true."

If you want callsto getByte, getint, get* (String
columnName) to look at the actual name for the column,
set this property to “false.”

Static

GET_COLUMN_
LABEL_FOR NAME

Maintains backward compatibility with jConnect 5.50r False
earlier, whereacall to

ResultMetaData.getColumnName returns the column

label rather than the column name. Vaues:

» True— ResultMetaData.getColumnName returns
column label

» False — ResultMetaData.getColumnName returns
column name

Static

GSSMANAGER _
CLASS

Specifies a third-party implementation of the Null
org.ietf.jgss.GSSManager class.

This property can be set to a string or a GSSManager
object.

If the property is set to a string, the value should be the
fully qualified class name of the third-party
GSSManager implementation. If the property issettoan
object, the object must extend the
org.ietf.jgss.GSSManager class. See Chapter 3,
“Security” for more information.

Static

HOMOGENEOUS _
BATCH

20

Invokesthe new A SE optimized batching protocol to True
speed up batch operations for PreparedStatement
objects. Valid values:
» True— New optimized batching protocol is used.
» False—Old batching protocol is used even if
jConnect is connected to ASE that supports hew
optimized batching protocol.

See “Optimized batching in jConnect” on page 160.

Dynamic

jConnect for JDBC

CHAPTER 2 Programming Information

Default Dynamic
Property Description value or Static
HOSTNAME Identifies the name of the current host. None. Static
The max
lengthis 30
charactersand,
if exceeded, it
istruncated to
30.
HOSTPROC Identifies the application process on the host machine. None Static
IGNORE_DONE_IN_ Determinesthat intermediate updateresults (asinstored False Static
PROC procedures) are not returned, only the final result set.
IGNORE_WARNINGS Specifies whether or not to check for and generate Fase Static
warning messages. Currently, this property checks only
for warning regarding the loss of precision when storing
timestamp values into Adaptive Server date and time
datatypes, which have lower precision than the Java
timestamp.
Valid values:
¢ True—jConnect does not check for and generate
warning messages, thus improving performance.
¢ Fase—thedefault value, which directs jConnect to
check and generate warning messages.
Note Before setting IGNORE_WARNINGS to true,
thoroughly test the impact of such a configuration on
your application.
IMPLICIT_CURSOR_ Usethisproperty withthe SELECT_OPENS CURSOR 0 Static
FETCH_SIZE property to force jConnect to open aread-only cursor on
every select query that is sent to the database. The cursor
has a fetch size of the value set in this property, unless
overridden by the Statement.setFetchSize method.
INTERNAL_QUERY_ Usethis property to set the query timeout that will be 0 (notimeout) Dynamic
TIMEOUT used by statements internally created and executed by
jConnect. This may prevent application failuresif
internal commands do not complete in areasonable
time.
IS CLOSED_TEST Allows you to specify what query, if any, issent tothe Null Static
database when Connection.isClosed is called. For
additional information, see the “Using
Connection.isClosedand|S_CLOSED_TEST” on page
114.
Programmers Reference 21

Establishing a connection

Default Dynamic

Property Description value or Static

J2EE_TCK_ When this property is set to true, the jConnect driver false Static

COMPLIANT enables behavior that is compliant with the J2EE 1.4
technology compatibility kit (TCK) test suite, which
causes some loss of performance. Therefore, Sybase
recommends using the default value of false.

JAVA_CHARSET _ Specifies user-defined character set mapping - Static

MAPPING superseding the default Adaptive Server character
set mapping. See “Superceding default character set
mapping” on page 46.

JCE_PROVIDER_ Specifies the Java Cryptography Extension (JCE) The bundled Static

CLASS provider used in RSA encryption algorithms. JCE provider.

JCONNECT_VERSION Sets version-specific characteristics. See“Using 7 Static
JCONNECT_ VERSION” on page 6.

LANGUAGE Specifies the language in which messages from Version Static
jConnect and the server appear. The setting must match dependent. See
alanguagein syslanguages because server messagesare “Using
localized according to the language setting in your local JCONNECT _
environment. The languages supported are Chinese, VERSION” on
U.S. English, French, German, Japanese, Korean, page 6.

Polish, Portuguese, and Spanish.
LANGUAGE_ Determines that jConnect uses “language cursors’ False Static
CURSOR instead of “protocol cursors.”

See “Cursor performance” on page 161.

LITERAL_PARAMS When set to “true,” any parameters set by the setXXX False Static
methodsin the PreparedStatement interface areinserted
literally into the SQL statement when it is executed.

If set to “false,” parameter markers are left in the SQL
statement and the parameter values are sent to the server
separately.

NEWPASSWORD Specifiesthe new password used in password expiration Null Static
handling.

22 jConnect for JDBC

CHAPTER 2 Programming Information

Property

Description

Dynamic
or Static

OPTIMIZE_FOR_
PERFORMANCE

Specifies whether or not to enable jConnect
performance enhancing properties. Currently, this
property controls only the IGNORE_WARNINGS

property.

Valid values:

e True—jConnect runsin enhanced performance
mode.

¢ Fase—thedefault value, which meansthat jConnect
runs in normal mode.

Note Before setting
OPTIMIZE_FOR_PERFORMANCE to true,
thoroughly test the impact of such a configuration on
your application.

Static

OPTIMIZE_STRING_
CONVERSIONS

Specifies whether or not to enable string conversion
optimization.

This optimization behavior can improve jConnect
performance when a client uses character datatypesin
SQL prepared statement.

Values:

¢ 00— thedefault value; string conversion optimization
is not enabled.

¢ 1 — enable string conversion optimization when
jConnect uses utf8 or server default character set.

e 2 — enable string conversion optimization for all
cases.

Static

PACKETSIZE

Identifies the network packet size. If you are using
Adaptive Server 15.0 or later, Sybase recommends that
you do not set this property and allow jConnect and
Adaptive Server to select the network packet sizethat is
appropriate for your environment.

Static

PASSWORD

Programmers Reference

Identifies the login password.

Set automatically if using the getConnection(String,
String, String) method, or explicitly if using
getConnection(String, Props).

Static

23

Establishing a connection

Property

Description

Default
value

Dynamic
or Static

PRELOAD_JARS

Contains a comma-separated list of .jar file names that
are associated with the CLASS _LOADER that you
specify. These .jar files are loaded at connect time, and
are available for use by any other connection using the
same jConnect driver. See “Preloading .jar files” on
page 101 for more information.

Null

Static

PROMPT_FOR_
NEWPASSWORD

Specifies whether to perform atransparent password
change or to prompt for the new password. Values:

e True— promptsyou to manualy set the new

password.

» False—jConnect checks the value of
NEWPASSWORD and, if it isnot null, uses this
value to replace the expired password.

False

Static

PROTOCOL _
CAPTURE

Specifies afile for capturing TDS communication
between an application and an Adaptive Server.

Null

Dynamic

PROXY

Specifiesagateway address. For the HT TP protocol, the

URL is http://host:port.

To usethe HTTPS protocol that supports encryption, the
URL is https://host:port/serviet_dalias.

None

Static

QUERY_TIMEOUT _
CANCELS ALL

Forces jConnect to cancel al Statementson a
Connection when aread timeout is encountered. This
behavior can be used when aclient has calls execute()
and the timeout occurs because of a deadlock (for
example, trying to read from atable that is currently
being updated in another transaction).

False

Dynamic

RELEASE_LOCKS_

ON_CURSOR _
CLOSE

Specifies if Adaptive Server releases shared read-only
cursor locks at isolation levels 2 and 3 when acursor is

closed:

» False—doesnot enableshared cursor locksreleaseon

close.

» True— enables shared cursor locks release on close.
See “Releasing locks at cursor close” on page 62.

False

Static

REMOTEPWD

Contains remote server passwords for access through
server-to-server remote procedure calls. See
“Performing server-to-server remote procedure calls’

on page 52.

None

Static

REPEAT_READ

24

Determines whether the driver keeps copies of columns
and output parameters so that columns can be read out
of order or repeatedly. See “REPEAT_READ
connection property” on page 152.

True

Static

jConnect for JDBC

CHAPTER 2 Programming Information

Property

Description

Default
value

Dynamic
or Static

REQUEST HA_
SESSION

Indicates whether the connecting client wantstobegina False

high availability (HA) failover session. See
“Implementing high availability failover support” on
page 47.

You cannot reset the property once a connection has
been made. If you want more flexibility for requesting
failover sessions, code the client application to set
REQUEST_HA_SESSION at runtime.

Note Setting this property to “true” causes jConnect to
attempt afailover login. If you do not set this connection
property, afailover session does not start, even if the
server is configured for failover.

Static

REQUEST _
KERBEROS_SESSION

Determines whether jConnect uses Kerberos for
authentication. If thisproperty isset to "true," avaluefor
the SERVICE_PRINCIPAL_NAME property must also
be specified.

You may also wish to provide avalue for the
GSSMANAGER_CLASS property. See Chapter 3,
“Security,” for more information.

False

Static

RETRY_WITH_NO_
ENCRY PTION

Allows server to retry logging in using clear text
passwords.

When both ENCRY PT_PASSWORD and
RETRY_WITH_NO_ENCRYPTION properties are set
to true, jConnect first logs in using the encrypted
password. If login fails, jConnect logsin using the clear
text password. For more information about password
encryption, see “Using password encryption” on page
9l

False

Static

RMNAME

Setsthe Resource Manager namewhen using distributed
transactions (XA). This property overrides a Resource

Manager namethat may be setin an LDAP server entry.
See “ Distributed transaction management support” on

page 112 for more information.

Null

Static

SECONDARY _
SERVER_HOSTPORT

Programmers Reference

Sets the hostname and port for the secondary server
when the client is using an HA failover session. The
value for this property should be in the form of
hostName:portNumber. This property isignored unless
you have also set REQUEST_HA_SESSION to “true.”
See “Implementing high availability failover support”
on page 47 for more information.

Null

Static

25

Establishing a connection

Property

Description

Default
value

Dynamic
or Static

SELECT_OPENS
CURSOR

Determines whether calls to Statement.executeQuery
automatically generate a cursor when the query contains
aFOR UPDATE clause.

If you have previously called Statement.setFetchSize or
Statement.setCursorName on the same statement, a
setting of “true” for SELECT_OPENS_CURSOR has
no effect.

Note You may experience some performance
degradationwhen SELECT_OPENS _CURSORIissetto
“true.”

See “Using cursors with result sets’ on page 55 for
more information on using cursors with jConnect.

False

Static

SEND_BATCH_
IMMEDIATE

Specifieswhether jConnect sendsthe parametersfor the
current row immediately after invoking
PreparedStatement.addBatch() or only after invoking
PreparedStatement.executeBatch().

» True— jConnect sendsthe parametersfor the current
row immediately after invoking
PreparedStatement.addBatch().This minimizes
usage of client memory and gives the server more
time to process the batch parameters.

» False — jConnect sends the batch parameters only
after invoking PreparedStatement.executeBatchy().

False

Dynamic

SERIALIZE_
REQUESTS

Determines whether jConnect waits for responses from
the server before sending additional requests.

False

Static

SERVER _INITIATED_
TRANSACTIONS

Allowsthe server to control transactions. By default the
property is set to true and jConnect lets the server start
and control transactions by using the Transact-SQL
command set chained on. If set to false, the transactions
are started and controlled by jConnect by using the
Transact-SQL command begin tran. Sybase
recommends that you allow the server to control the
transactions.

True

Static

SERVICENAME

26

Indicates the name of a back-end database server that a
DirectConnect gateway serves. Also used to indicate
which database should be used upon connecting to SQL
Anywhere.

None

Static

jConnect for JDBC

CHAPTER 2

Programming Information

Property

Description

Default
value

Dynamic
or Static

SERVERTY PE

When connected to OpenSwitch set this property to
“OSW.” Thisallows jConnect to send certain
instructions to OpenSwitch that allows OpenSwitch to
remember initial connection settings for example,
isolation level, textsize, quoted identifier and
autocommit when OpenSwitch redirects aconnection to
adifferent server instance.

None

Static

SERVICE_
PRINCIPAL_NAME

Used when establishing a Kerberos connection to
Adaptive Server. The value of this property should
correspond both to the server entry in your Key
Distribution Center (KDC) and to the server name under
which your database is running.

The value of the SERVICE_PRINCIPAL_NAME
property isignored if the
REQUEST_KERBEROS_SESSION property is set to
“false.” See Chapter 3, “Security,” for more
information.

Null

Static

SESSION_ID

A TDS session ID. When this property is set, jConnect
assumes that an application is trying to resume
communication on an existing TDS session held open
by the TDS-tunnelling gateway. jConnect skips the
login negotiations and forwards all requests from the
application to the specified session ID.

Null

Static

SESSION_TIMEOUT

Specifiesthe amount of time (in seconds) that an HTTP-
tunnelled session (created using the jConnect TDS-
tunnelling servlet) remains dive while idle. After the
specified time, the connection is automatically closed.
For more information about the TDS-tunnelling servlet,
see “Using TDS tunnelling” on page 167.

Null

Static

SETMAXROWS _
AFFECTS SELECT
ONLY

Programmers Reference

Specifies whether setMaxRows limits only the rows
returned by select statementsto be consi stent with the
JDBC specification. Values:

¢ True — Statement.setMaxRows(int max) limits only
the number of rows returned as a result of the select
statements.

¢ Fase — Statement.setMaxRows(int max) limits the
number of rows returned as aresult of the select,
insert, update, and delete statements.

SETMAXROWS AFFECTS SELECT ONLY is
ignored when connected to Adaptive Server 15.5 or
earlier.

True

Static

27

Establishing a connection

Default Dynamic

Property Description value or Static
SQLINITSTRING Defines a set of commands to be passed to the database Null Static

server when aconnection isopened. These must be SQL

commands that can be executed using the

Statement.executeUpdate method.
STREAM_CACHE _ Specifies the maximum size used to cache statement Null Dynamic
SIZE response streams. (unlimited

cache size)

STRIP_BLANKS Forces the server to remove the preceding and trailing 0 Static

blanks in a string value before storing it in the table.

Values:

* 0—thedefault value; String values sent by the client

arestored ‘asis'.
e 1 — preceding and trailing blanks in a string value
are removed before storing it in the table.

SUPPRESS _ Suppresses control tokens. 0 Static
CONTROL_TOKEN values:

* 0 — thedefault value; control tokens are sent.

» 1 — control tokens are suppressed.
SUPPRESS PARAM_ When executing dynamic SQL prepared statements, 1 Static

FORMAT

28

jConnect client can use the

SUPPRESS PARAM_FORMAT connection string
property to suppress parameter format metadata. The
client sends less parameter metadata where possible for
better performance.

Values:

* 0 — parameter format metadatais not suppressed in
select, insert, and update operations.

e 1—thedefault value; parameter format metadatais
suppressed where possible.

jConnect for JDBC

CHAPTER 2 Programming Information

Property

Description

Default
value

Dynamic
or Static

SUPPRESS ROW _
FORMAT

In jConnect, client can use the

SUPPRESS _ROW_FORMAT connection string
property to force Adaptive Server to send

TDS ROWFMT or TDS_ROWFMT2 data only when
the row format changes for a dynamic SQL prepared
statement. Adaptive Server can send less datato the
client if possible, resulting in better performance.

Values:

¢ 0— TDS ROWFMT or TDS ROWFMT2 datais
sent, even if the row format has not changed.

* 1 — the default; forces the server to send
TDS ROWFMT or TDS_ROWFMT2 only whenthe
row format has changed.

1

Static

SUPPRESS ROW _
FORMAT?2

Specifies that Adaptive Server isto send data using the

TDS ROWFMT byte sequence where possible instead

of the TDS_ROWFMT2 byte sequence.

Values:

¢ 0-—thedefault value, TDS ROWFMT2 is not
suppressed.

e 1-forcesthe server to send datain TDS_ ROWFMT
where possible.

Note When connected to Adaptive Server 15.7 ESD #1
or later, use the SUPPRESS ROW_FORMAT
connection property instead.

Static

SYBSOCKET _
FACTORY

Programmers Reference

Enables jConnect to use your custom socket

implementation.

Set SYBSOCKET_FACTORY either to:

¢ The name of aclassthat implements
com.sybase.jdbcx.SybSocketFactory; or

« “DEFAULT,” which instantiates a new
java.net.Socket()

Use this property to make an SSL connection to your
database.

Null

Static

29

Establishing a connection

Default Dynamic
Property Description value or Static
TEXTSIZE Allows you to set the text size. By default Adaptive 2GB Static

Server and SQL Anywhere allow 32,627 bytes to be
read from an image or text column. If you have the
jConnect mdatables installed, jConnect changes that
valueto 2GB. However setting this value when
connected to OpenSwitch allows the connection to
remember the setting when OpenSwitch redirects a
connection to a different server instance.

USE_METADATA

Createsand initializesaDatabaseMetaData object when True Static
you establish a connection. The DatabaseMetaData
object is necessary to connect to a specified database.

jConnect uses DatabaseMetaData for some features,
including Distributed Transaction Management support
(JTA/JTS) and dynamic class loading (DCL).

If you receive error 010SJ, which indicates that your
application requires metadata, install the stored
procedures for returning metadata that come with
jConnect. See“Installing Stored Procedures” in Chapter
3 of the jConnect for JDBC Installation Guide.

USER

Specifiesthelogin ID. None Static
Set automatically if using the getConnection(String,

String, String) method, or explicitly if using

getConnection(String, Props).

VERSIONSTRING

Provides read-only version information for the JDBC jConnect Static
driver. driver version

Connecting to Adaptive Server

30

In your Java application, definea URL using the jConnect driver to connect to
an Adaptive Server. The basic format of the URL is:

jdbc:sybase:Tds: host:port
where;
e jdbc:sybase identifies the driver.

e Tds isthe Sybase communication protocol for Adaptive Server.

jConnect for JDBC

CHAPTER 2 Programming Information

Example

» host:port isthe Adaptive Server host name and listening port. See
$SYBASE/interfaces (UNIX) or %SYBASE%\ini\sql.ini (Windows) for the
entry that your database or Open Server application uses. Obtain the
host: port from the “ query” entry.

You can connect to a specific database using this format:

jdbc:sybase:Tds: host:port/database

Note To connect to a specific database using SQL Anywhere or
DirectConnect, use the SERVICENAME connection property to specify the
database name instead of “/database.”

The following code creates a connection to an Adaptive Server on host
“myserver” listening on port 3697:

SysProps.put ("user", "userid") ;

SysProps.put ("password", "user password") ;

String url = "jdbc:sybase:Tds:myserver:3697";

Connection _con =
DriverManager.getConnection (url, SysProps) ;

URL connection property parameters

Programmers Reference

You can specify the values for the jConnect driver connection propertieswhen
you definea URL.

Note Driver connection properties set in the URL do not override any
corresponding connection properties set in the application using the
DriverManager.getConnection method.

To set a connection property in the URL, append the property name and its
value to the URL definition. Use this syntax:

jdbc:sybase:Tds: host:port/database?
property name=value

To set multiple connection properties, append each additional connection
property and value, preceded by “&.” For example:

jdbc:sybase:Tds:myserver:1234/mydatabase?
LITERAL PARAMS=true&PACKETSIZE=512&HOSTNAME=myhost

31

Establishing a connection

If the value for one of the connection propertiescontains“ & ,” precedethe“&”
inthe connection property valuewith abackslash (\). For example, if your host
nameis"“a&bhost,” use this syntax:

jdbc:sybase:Tds:myserver:1234/mydatabase?
LITERAL_ PARAMS=true&PACKETSIZE=512&HOSTNAME=
a\&bhost

Do not use quotes for connection property values, even if they are strings. For
example, use:

HOSTNAME=myhost
not:

HOSTNAME="myhost"

Using the sql.ini and interfaces file directory services

You canusesgl.ini filefor Windowsand theinterfacesfilefor UNIX to provide
server information for jConnect for JDBC. By using the sgl.ini or interfaces
file, enterprises can centralize the information about the services availablein
the enterprise networks including Adaptive Server information.

Use the connection string to identify the sgl.ini or interfacesfile. On jConnect
for JDBC, you may only connect to asingle Directory Services URL
(DSURL).

Connection string for a single DSURL for jConnect

When connecting to a DSURL, you must specify the path to the sgl.ini or
interfaces file and the server name. Otherwise, jConnect will return an error.

This specifies the path to the sgl.ini file:
String url = "jdbc:sybase:jndi:file://D:/sybl252/ini/mysql.ini?myaseIS0O1”
where:
e server name = myasel SO1
e ggl.ini file path =file://D:/syb1252/ini/sql .ini
This specifies the path to the interfaces file:
String url = "jdbc:sybase:jndi:file:///work/sybase/interfaces?myase"

where;

32 jConnect for JDBC

CHAPTER 2 Programming Information

Sserver name = myase

interfaces file path = file:///work/sybase/interfaces

Format of the sql.ini and interfaces file for SSL

The following is the format for the sgl.ini file for S_:

[SYBSRV2]

master=nlwnsck,mangol, 4100, ssl
query=nlwnsck,mangol, 4100, ssl
query=nlwnsck,mangol, 5000, ssl

The format for the interfacesfileis:

sybsrv2

master tcp ether mangol 5000 ssl
query tcp ether mangol 4100 ssl
query tcp ether mangol 5000 ssl

Note jConnect supports multiple query entries under the same server namein
the sgl.ini or interfacesfile. jConnect attempts to connect to values for host or
port from the query entry in the sequence, asin the sql.ini or interfacesfile. If
jConnect findsa SSL inaquery entry, it will requirethe application to be coded
to handle SSL connections by specifying an application specific socket factory,
or the connection may fail.

Connecting to a server using JNDI

In jConnect, you can use the Java Naming and Directory Interface (JNDI) to
provide connection information, which offers:

Programmers Reference

A centralized location where you can specify host names and ports for
connecting to a server. You do not need to hard code a specific host and
port number in an application.

A centralized location where you can specify connection propertiesand a
default database for all applications to use.

The jConnect CONNECTION_FAILOVER property for handling
unsuccessful connection attempts. When CONNECTION_FAILOVERIs
setto "true," jConnect attemptsto connect to asequence of host/port server
addresses in the JNDI name space until one succeeds.

33

Establishing a connection

To use jConnect with INDI, you need to make sure that certain information is
available in any directory service that INDI accesses and that required
information is set in the javax.naming.Context class. This section coversthe
following topics:

e Connection URL for using JNDI
¢ Required directory service information
¢ CONNECTION_FAILOVER connection property

e Providing JNDI context information

Connection URL for using JNDI

To specify that jConnect should use JNDI to obtain connection information,
place“jndi” asthe URL protocol after “sybase”:

jdbc:sybase:jndi:protocol-information-for-use-with-JNDI

Anything that follows “jndi” in the URL is handled through JNDI. For
example, to use INDI with the Lightweight Directory Access Protocol
(LDAP), you might enter:

jdbc:sybase:jndi:1ldap://LDAP _hostname:port number/servername=
Sybasell, o=MyCompany, c=US

This URL tells INDI to obtain information from an LDAP server, gives the
host name and port number of the LDAP server to use, and provides the name
of adatabase server in an LDAP-specific form.

Required directory service information

When you use JINDI with jConnect, INDI needs to return the following
information for the target database server:

¢ A host name and port number to connect to
¢ The name of the database to use

e Any connection properties that individual applications are not alowed to
set on their own

34 jConnect for JDBC

CHAPTER 2 Programming Information

Programmers Reference

Thisinformation needsto be stored according to afixed format in any directory
service used for providing connection information. The required format
consists of anumerical object identifier (OID), which identifies the type of
information being provided (for example, the destination database), followed

by the formatted information.

Note You can use the alias name to reference the attribute instead of the OID.

Table 2-3 shows the required formatting.

Table 2-3: Directory service information for JNDI

Attribute description Alias OID (object_id)
Interfacesentry replacementin sybaseServer 1.3.6.1.4.1.897.4.1.1
LDAP directory services
Collection point for sybaseServer 1.3.6.1.4.1.897.4.2
sybaseServer LDAP attributes
Version Attribute sybaseVersion 1.3.6.1.4.1.897.4.2.1
Servername Attribute sybaseServer 1.3.6.1.4.1.897.4.2.2
Service Attribute sybaseService 1.3.6.1.4.1.897.4.2.3
Status Attribute sybaseStatus 1.3.6.1.4.1.897.4.2.4
Address Attribute sybaseAddress 1.3.6.1.4.1.897.4.2.5
Security Mechanism Attribute sybaseSecurity 1.3.6.1.4.1.897.4.2.6
Retry Count Attribute sybaseRetryCount 1.3.6.1.4.1.897.4.2.7
Loop Delay Attribute sybaseRetryDelay 1.3.6.1.4.1.897.4.2.8
jConnect Connection Protocol sybaseJconnectProtocol 1.3.6.1.4.1.897.4.29
jConnect Connection Property sybaseJconnectProperty 1.3.6.1.4.1.897.4.2.10
Database Name sybaseDatabasename 13.6.1.4.1.897.4.2.11
High Availability Failover sybaseHA servername 1.3.6.1.4.1.897.4.2.15
Servername Attribute
ResourceManager Name sybaseResourceManager 1.3.6.1.4.1.897.4.2.16
Name
ResourceManager Type sybaseResourceManager 1.3.6.1.4.1.897.4.2.17
Type
JDBCDataSource Interface sybaseJdbcDataSource- 1.3.6.1.4.1.897.4.2.18
Interface
ServerType sybaseServerType 1.3.6.1.4.1.897.4.2.19
Note Attributesin italics are required.
35

Establishing a connection

Thefollowing examples show connection information entered for the database
server “SYBASE11" under an LDAP directory service. Example 1 usesthe
attribute OID. Example 2 uses the attribute alias, which is not case sensitive.
You can use either the OID or the alias.

Example 1 dn: servername=SYBASEl1l, o=MyCompany, c=US
servername: SYBASE11
.3.6.1.4.1.897.4.2.5:TCP#l#giotto 1266
.897.4.2.5: TCP#1l#giotto 1337
.897.4.2.5: TCP#1#tstandbyl 4444
.897.4.2.10:REPEAT READ=false&
PACKETSIZE=1024
1.4.1.897.4.2.10:CONNECTION_FAILOVER=true
4.1.897.4.2.11:pubs2

4.1.897.4.2.9:Tds

1
1.3.6.
1.3.6.
1.3.6.

[
IS
[

1.3.6.
1.3.6.1.
1.3.6.1.
Example 2 dn: servername=SYBASEl1l, o=MyCompany, c=US
servername:SYBASE11l
sybaseAddress: TCP#1#giotto 1266
sybaseAddress: TCP#1#fgiotto 1337
sybaseAddress: TCP#1#standbyl 4444
sybaseJconnectProperty:REPEAT READ=false&
PACKETSIZE=1024
sybaseJconnectProperty: CONNECTION FAILOVER=true
sybaseDatabasename :pubs2
sybasedJconnectProtocol : Tds

In these examples, SYBASE11 can be accessed through either port 1266 or
port 1337 on host “giotto,” and it can be accessed through port 4444 on host
“standby1.” Two connection properties, REPEAT_READ and PACKETSIZE,
are set within one entry. The CONNECTION_FAILOVER connection
property is set as a separate entry. Applications connecting to SYBASE11 are
initially connected with the pubs2 database. You do not need to specify a
connection protocoal, but if you do, you must enter the attribute as “Tds”, not

TDS .

CONNECTION_FAILOVER connection property

CONNECTION_FAILOVER is aBoolean-valued connection property you
can use when jConnect uses JNDI to get connection information.

36 jConnect for JDBC

CHAPTER 2 Programming Information

If CONNECTION_FAILOVER is set to True, jConnect makes multiple
attempts to connect to a server. If one attempt to connect to a host and port
number associated with a server fails, jConnect uses JNDI to get the next host
and port number associated with the server and attempts to connect through
them. Connection attempts proceed sequentially through all the hosts and ports
associated with a server.

For example, if CONNECTION_FAILOVER is set to True, and a database
server isassociated with the following hosts and port numbers, asinthe earlier
LDAP example:

1.3.6.1.4.1.897.4.2.5:TCP#1l#fgiotto 1266
1.3.6.1.4.1.897.4.2.5:TCP#1l#fgiotto 1337
1.3.6.1.4.1.897.4.2.5:TCP#1l#tstandby 4444

To get a connection to the server, jConnect tries to connect to the host “ giotto”
at port 1266. If thisfails, jConnect tries port 1337 on “giotto.” If thisfails,
jConnect tries to connect to host “standby1” through port 4444.

The default for CONNECTION_FAILOVER is True.

If CONNECTION_FAILOVER isset to False, jConnect attemptsto connect to
an initial host and port number. If the attempt fails, jConnect throws a SQL
exception and does not try again.

Providing JNDI context information

Programmers Reference

To use jConnect with INDI, you should be familiar with the JNDI specification
from Oracle Technology Network for Java at
http://www.oracle.com/technetwork/java/jndi/index.html.

In particular, you need to make sure that required initialization properties are
set in javax.naming.directory.DirContext when JNDI and jConnect are used
together. These properties can be set either at the system level or at runtime.

Two key properties are:
e Context.INITIAL_CONTEXT_FACTORY

This property takes the fully qualified class name of theinitial context
factory for INDI to use. This determinesthe JNDI driver that is used with
the URL specified in the Context.PROVIDER_URL property.

» Context.PROVIDER_URL

This property takes the URL of the directory service that the driver (for
example, the LDAP driver) isto access. The URL should be astring, such
as “ldap://ldaphost: 427" .

37

Establishing a connection

Thefollowing exampl e shows how to set context propertiesat runtime and how
to get a connection using JINDI and LDAP. In the example, the
INITIAL_CONTEXT_FACTORY context property isset to invokethe Oracle
implementation of an LDAP service provider. The PROVIDER_URL context
property is set to the URL of an LDAP directory service located on the host
“Idap_serverl” at port 389.

Properties props = new Properties|() ;

/* We want to use LDAP, so INITIAL CONTEXT FACTORY is set to the

* class name of an LDAP context factory. In this case, the

* context factory is provided by Sun’s implementation of a

* driver for LDAP directory service.

*/

props.put (Context.INITIAL CONTEXT FACTORY,
"com.sun.jndi.ldap.LdapCtxFactory") ;

/* Now, we set PROVIDER URL to the URL of the LDAP server that
* is to provide directory information for the connection.

*/

props.put (Context.PROVIDER URL, "ldap://ldap serverl:389");

/* Set up additional context properties, as needed. */
props.put ("user", "xyz");
props.put ("password", "123");

/* get the connection */

Connection con = DriverManager.getConnection
("jdbc:sybase:jndi:1ldap://ldap_serverl:389" +
"/servername=Sybasell, o=MyCompany, c=US",props) ;

The connection string passed to getConnection contains L DAP-specific
information, which the devel oper must provide.

When JNDI properties are set at runtime, as in the preceding example,
jConnect passes them to INDI to be used in initializing a server, asin the
following jConnect code:

javax.naming.directory.DirContext ctx =
new javax.naming.directory.InitialDirContext (props) ;

jConnect then obtains the connection information it needs from JNDI by
invoking DirContext.getAtributes, as in the following example, where ctxisa
DirContext object:

javax.naming.directory.Attributes attrs =
ctx.getAttributes("ldap://ldap_serverl:389/servername=" +
"Sybasell", SYBASE SERVER_ATTRIBUTES) ;

38 jConnect for JDBC

CHAPTER 2 Programming Information

Inthe example, SYBASE _SERVER _ATTRIBUTES s an array of strings
defined within jConnect. The array values are the OIDs for the required
directory information listed in Table 2-3.

Handling internationalization and localization

This section discusses internationalization and localization issues relevant to
jConnect.

Using jConnect to pass Unicode data

Programmers Reference

In Adaptive Server version 12.5 and | ater, database clients can take advantage
of the unichar and univarchar datatypes. The two datatypes allow for the
efficient storage and retrieval of Unicode data.

Quoting from the Unicode Standard, version 2.0:

“The Unicode Standard is a fixed-width, uniform encoding scheme for
encoding charactersand text. Therepertoire of thisinternational character code
for information processing includes characters for the major scripts of the
world, aswell astechnical symbolsin common. The Unicode character
encoding treats al phabetic characters, ideographic characters, and symbols
identically, which means they can be used in any mixture and with equal
facility. The Unicode Standard is model ed on the ASCI| character set, but uses
a 16-bit encoding to support full multilingual text.”

Thismeansthat the user can designate database table columnsto store Unicode
data, regardless of the default character set of the server.

Note In Adaptive Server version 12.5 through 12.5.0.3, the server had to have
adefault character set of utf-8 in order to use the Unicode datatypes. However,
in Adaptive Server 12.5.1 and | ater, database users can use unichar and
univarchar without having to consider the default character set of the server.

When the server accepts unichar and univarchar data, jConnect behaves as
follows:

39

Handling internationalization and localization

e For al character datathat a client wishes to send to the server—for
example, using PreparedStatement.setString (int column, String value)—
jConnect determinesif the string can be converted to the default character
set of the server.

e If jConnect determines that the characters cannot be converted to the
character set of the server (for example, some characters cannot be
represented in the character set of the server), it sendsthe datato the server
encoded as unichar/univarchar data.

For example, if aclient attempts to send a Unicode Japanese character to an
Adaptive Server 12.5.1 that hasiso_1 asthe default character set, jConnect
detects that the Japanese character cannot be converted to aniso_1 character.
jConnect then sends the string as Unicode data.

There is a performance penalty when a client sends unichar/univarchar data to
aserver. Thisis because jConnect must perform character-to-byte conversion
twice for al strings and characters that do not map directly to the default
character set of the server.

If you are using ajConnect version that is earlier than 6.05 and you wish to use
the unichar and univarchar datatypes, you must perform the following tasks:

1 Setthe JCONNECT_VERSION = 6 or later. See “Using JCONNECT _
VERSION” on page 6 for more information.

2 You need to set the DISABLE_UNICHAR_SENDING connection
property to false. Starting with jConnect 6.05 this property is set to false
by default. See “ Setting connection properties’ on page 10 for more
information.

Note For more information on support for unichar and univarchar datatypes,
see the Adaptive Server Enterprise manuals.

jConnect character-set converters

jConnect uses specia classes for all character-set conversions. By selecting a
character-set converter class, you specify how jConnect handles single-byte
and multibyte character-set conversions, and what performance impact the
conversions have on your applications.

40 jConnect for JDBC

CHAPTER 2 Programming Information

There are two character-set conversion classes. The conversion class that
jConnect usesis based on the JCONNECT VERSION, CHARSET, and
CHARSET_CONVERTER_CLASS connection properties.

e The TruncationConverter class works only with single-byte character sets
that use ASCII characters such asiso_1 and cp850. It does not work with
multibyte character sets or single-byte character sets that use non-ASCl|
characters. The TruncationConverter classis the default converter when
JCONNECT_VERSION is set to 2.

Using the TruncationConverter class, jConnect 7 handles character setsin
the same manner asjConnect version 2.2. The TruncationConverter classis
the default converter when the JCONNECT_VERSION = 2.

e ThePureConverter classis a pure Java, multibyte character-set converter.
jConnect uses this class if the JCONNECT_VERSION = 4 or |ater.
jConnect also uses this converter when JCONNECT_VERSION = 2 if it
detectsacharacter set specifiedinthe CHARSET connection property that
is not compatible with the TruncationConverter class.

Although it enables multibyte character-set conversions, the
PureConverter class may negatively impact jConnect driver performance.
If driver performance is a concern, see “Improving character-set
conversion performance” on page 42.

Selecting a character-set converter

Programmers Reference

jConnect uses the JCONNECT_VERSION to determine the default
character-set converter classto use. For JCONNECT_VERSION = 2 or higher,
the default is PureConverter the default is TruncationConverter. For
JCONNECT_VERSION = 4 or higher, the default is PureConverter.

You can also set the CHARSET _CONVERTER_CLASS connection property
to specify which character-set converter you want jConnect to use. Thisis
useful if you want to use a character-set converter other than the default for
your jConnect version.

For example, if you set JCONNECT_VERSION = 4 or later but want to use
the TruncationConverter class rather than the multibyte PureConverter class,
you can set CHARSET_CONVERTER_CLASS:

props.put ("CHARSET CONVERTER CLASS",
"com.sybase.jdbc4.utils.TruncationConverter")

41

Handling internationalization and localization

Setting the CHARSET connection property

You can specify the character set to usein your application by setting the
CHARSET driver property. If you do not set the CHARSET property:

e For JCONNECT_VERSION = 2, jConnect usesiso_1 as the default
character set.

e For JCONNECT _VERSION = 3, and later, jConnect uses the default
character set of the database, and adjusts automatically to perform any
necessary conversions on the client side.

¢ For jConnect versions starting with 6.05, if jConnect cannot successfully
convert the user data to the negotiated charset, it will send unconverted
unicode characters to the server, if the server supports the unicode
characters, elseit will throw an exception.

You can also use the -J char set command line option for the IsqlApp application
to specify acharacter set.

To determine which character setsareinstalled on your Adaptive Server, issue
the following SQL query on your server:

select name from syscharsets
go

For the PureConverter class, if the designated CHARSET does not work with
the client Java Virtual Machine (VM), the connection fails with a
SQLException, indicating that you must set CHARSET to acharacter set that is
supported by both Adaptive Server and the client.

When the TruncationConverter class is used, character truncation is applied
regardless of whether the designated CHARSET is 7-bit ASCII or not.
Therefore, if your application needs to handle non-ascii data (for instance any
asian languages), you should not use TruncationConverter, as this causes data
corruption.

Improving character-set conversion performance

42

If you use multibyte character sets and need to improve driver performance,
you can use the SunloConverter class provided with the jConnect samples. See
“SunloConverter character-set conversion” on page 153 for details.

In addition, you can use TruncationConverter to improve performance if your
application deals with only 7-bit ASCII data.

jConnect for JDBC

CHAPTER 2 Programming Information

Supported character sets

Table 2-4 lists the Sybase character sets that are supported by jConnect. The
table also lists the corresponding JDK byte converter for each supported
character set.

Although jConnect supports UCS-2, currently no Sybase databases or Open
Servers support UCS-2.

Programmers Reference 43

Handling internationalization and localization

44

Adaptive Server versions 12.5 and later support a version of Unicode known

asthe UTF-16 encoding.

Table 2-4: Supported Sybase character sets

SybCharset name

JDK byte converter

ascii_7 ASCII
bigs Big5
bigshk (for JDK 1.3 and above) Bigs HKSCS
cp037 Cp037
cp437 Cp437
cp500 Cp500
cp850 Cp850
cp852 Cp852
cp855 Cp855
cp857 Cp857
cp860 Cp860
cp863 Cp863
cp864 Cp864
cp866 Cp866
cp869 Cp869
cp874 Cp874
cp932 MS932
cp936 GBK
cp949 Cp949
cp950 Cp950
cp1250 Cp1250
cpl251 Cpl1251
cpl252 Cpl252
cpl253 Cpl1253
cpl254 Cpl254
cpl255 Cp1255
cpl256 Cpl1256
cpl257 Cpl257
cpl258 Cp1258
deckanji EUC_JP
eucgb EUC_CN
eucjis EUC_JP
eucksc EUC KR

jConnect for JDBC

CHAPTER 2 Programming Information

SybCharset name

JDK byte converter

gb18030 GB18030
ibm420 Cp420
ibm918 Cp918
iso_1 1S08859_1
iS088592 1S08859-2
1088595 1S08859_5
iS088596 1S08859_6
is088597 1S08859_7
is088598 1S08859_8
iS088599 1S08859_9
iso15 1S08859_15 FDIS
koi8 KOI8 R
mac MacRoman
mac_cyr MacCyrillic
mac_ee MacCentral Europe
macgreek MacGreek
macturk MacTurkish
gis MS932
tis620 MS874
ucs2 Unicode
utf8 UTF8

Handling unsupported character sets

Programmers Reference

Thefollowing Sybase character sets are not supported in jConnect because no
JDK byte converters are anal ogous to the Sybase character sets:

cpl047
eucens
greek8
roman8
roman9
turkish8

You can use these character sets with the TruncationConverter class aslong as
the application uses only the 7-bit ASCII subsets of these characters.

45

Working with databases

Superceding default character set mapping

Use the JAVA_CHARSET_MAPPING connection property to supersede the
default Adaptive Server character set mapping.

Example 1 Mapsthe server character set cp949 to ms949:

props.put ("CHARSET", "cp949"); /* Server character set */
props.put ("JAVA CHARSET MAPPING", "ms949"); /* Java character set mapping */

Most of the Adaptive Server character sets have the same name as the Java
character setsthat they are mapped to. See Table 2-4 on page 44 for those
character setsthat are mapped to a Java character set with a different name.

European currency symbol support

jConnect supports the use of the European currency symbol, or “euro,” and its
conversion to and from UCS-2 Unicode.

The euro has been added to the following Sybase character sets: cp1250,
cpl251, cpl252, cpl253, cpl254, cpl255, cpl256, cpl257, cpl258, cp874,
is0885915, and utf8.

To use the euro symbol:

¢ Usethe PureConvertor or CheckPureConverter class, pure Java, multibyte
character-set converter. See “jConnect character-set converters’ on page
40 for more information.

¢ Veify that the new character sets are installed on the server.
The euro symbol is supported on Adaptive Server and SQL Anywhere.

e Select the appropriate character set on the client. See “ Setting the
CHARSET connection property” on page 42 for more information.

Working with databases

This section discusses database issues rel evant to jConnect and includes these
topics:

¢ Implementing high availability failover support
e Performing server-to-server remote procedure calls

e Using wide table support for Adaptive Server

46 jConnect for JDBC

CHAPTER 2 Programming Information

Accessing database metadata

Using cursors with result sets

Using Transact-SQL queries with COMPUTE clause
Support for batch updates

Updating a database from aresult set of a stored procedure
Working with datatypes

Variable-length rows in data-only locked tables

Large object (LOB) support

Large object locator support

Implementing high availability failover support
jConnect supports the Adaptive Server failover feature.

Overview

Programmers Reference

Note Sybase failover in ahigh availability system is a different feature than
connection failover. Sybase strongly recommends that you read this section
very carefully if you want to use both.

Sybase failover allows you to configure two Adaptive Servers as companions.
If the primary companion fails, the devices, databases, and connectionsfor that
server can be taken over by the secondary companion.

You can configure a high availability system either asymmetrically or
symmetrically:

An asymmetric configuration includes two Adaptive Serversthat are
physically located on different machines but are connected so that if one
of the serversis brought down, the other assumes its workload. The
secondary Adaptive Server acts as a“hot standby” and does not perform
any work until failover occurs.

47

Working with databases

¢ A symmetric configuration also includestwo Adaptive Serversrunning on
separate machines. However, if failover occurs, either Adaptive Server
can act as a primary or secondary companion for the other Adaptive
Server. Inthis configuration, each Adaptive Server isfully functional with
its own system devices, system databases, user databases, and user logins.

In either setup, the two machines are configured for dual access, which makes
the disks visible and accessible to both machines.

You can enable failover in jConnect and connect aclient application to an
Adaptive Server configured for failover. If the primary server fails over to the
secondary server, the client application also automatically switches to the
second server and reestablishes network connections.

Note Refer to Adaptive Server Enterprise Using Sybase Failover in High
Availability Systems Manual for Adaptive Server for more detailed
information.

Requirements, dependencies, and restrictions

¢ You must have two Adaptive Servers configured for failover.

e Only changes that were committed to the database before failover are
retained when the client fails over.

e You must set the REQUEST_HA_SESSION jConnect connection
property to “true” (see “Connection properties’ on page 10).

« jConnect event notification does not work when failover occurs. See
“Using event notification” on page 82.

¢ Closedl statements when they are no longer used. jConnect stores
information on statementsto enablefailover. Unclosed statementsresultin
memory leaks.

Implementing failover in jConnect

48

Implement failover support in jConnect using one of the following two
methods:

e Usethe two connection properties, REQUEST HA_ SESSION and
SECONDARY_SERVER_HOSTPORT, and set the following:

e Set REQUEST_HA_SESSION to "true."

jConnect for JDBC

CHAPTER 2 Programming Information

e Setthe SECONDARY_SERVER HOSTPORT to the host name and
port number where your secondary server islistening. See
“Connection properties’ on page 10, and the
'SECONDARY_SERVER_HOSTPORT' connection property.

e Use JINDI to connect to the server. See “ Connecting to a server using
JNDI”. Include an entry for the primary server and a separate entry for the
secondary server in the directory service information file required by
JNDI. The primary server entry has an attribute (the HA OID) that refers
to the entry for the secondary server.

Using LDAP as the service provider for INDI, there are three possible
formsthat this HA attribute can have:

a Relative Distinguished Name (RDN) — this form assumes that the
search base (typically provided by the java.naming.provider.url
attribute) combined with the value of this attribute is enough to
identify the secondary server. For example, assumethe primary server
isat “hostname:4200” and the secondary server is at
“hostname:4202":

dn: servername=haprimary, o=Sybase, c¢=US
1.3.6.1.4.1.897.4.2.5: TCP#l#hostname 4200
1.3.6.1.4.1.897.4.2.15: servername=hasecondary
objectclass: sybaseServer

dn: servername=hasecondary, o=Sybase, c=US
1.3.6.1.4.1.897.4.2.5: TCP#l#hostname 4202
objectclass: sybaseServer

b Distinguished Name (DN) — this form assumes that the value of the
HA attribute uniquely identifiesthe secondary server, and may or may
not duplicate values found in the search base. For example:

dn: servername=haprimary, o=Sybase, c¢=US

1.3.6.1.4.1.897.4.2.5: TCP#l#hostname 4200

1.3.6.1.4.1.897.4.2.15: servername=hasecondary,
o=Sybase, c¢=US ou=Accounting

objectclass: sybaseServer

dn: servername=hasecondary, o=Sybase, c¢=US, ou=Accounting
1.3.6.1.4.1.897.4.2.5: TCP#l#hostname 4202
objectclass: sybaseServer

Notice that hasecondary islocated in adifferent branch of the tree
(see the additional ou=aAccount ing qualifier).

Programmers Reference 49

Working with databases

50

H R R RP R

W W wwwww..

¢ Full LDAP URL - this form assumes nothing about the search base.
The HA attribute is expected to be a fully-qualified LDAP URL that
is used to identify the secondary (it may even point to a different
LDAP server). For example:

dn: servername=hafailover, o=Sybase, c=US

1.3.6.1.4.1.897.4.2.5: TCP#l#hostname 4200

1.3.6.1.4.1.897.4.2.15: ldap://ldapserver: 386/servername=secondary,
o=Sybase, c¢=US ou=Accounting

objectclass: sybaseServer

dn: servername=secondary, o=Sybase, c¢=US, ou=Accounting
1.3.6.1.4.1.897.4.2.5: TCPH#l#hostname 4202
objectclass: sybaseServer

d Inthedirectory service information file required by JNDI, set the
REQUEST_ HA_SESSION connection property to "true" to enable a
failover session every time you make a connection.

Use the REQUEST _HA_SESSION connection property to indicate
that the connecting client wants to begin a failover session with
Adaptive Server that is configured for failover. Setting this property
to true instructs jConnect to attempt afailover login. If you do not set
this connection property, afailover session does not start, even if the
server is configured correctly. The default value for
REQUEST_HA_SESSION isfalse.

Set the connection property like any other connection property. You
cannot reset the property once a connection has been made.

If you want more flexibility for requesting failover sessions, code the
client application to set REQUEST _HA_SESSION at runtime.

The following example shows connection information entered for the
database server “SYBASE11" under an LDAP directory service, where
“tahiti” isthe primary server, and “moorea’ isthe secondary companion
server:

servername=SYBASE11l, o=MyCompany, c=US

6.1.4.1.897.4.2.5:TCP#1#ftahiti 3456
6.1.4.1.897.4.2.10:REPEAT READ=false&PACKETSIZE=1024
6.1.4.1.897.4.2.10:CONNECTION_ FAILOVER=false
6.1.4.1.897.4.2.11:pubs2

6.1.4.1.897.4.2.9:Tds
6.1.4.1.897.4.2.15:servername=SECONDARY
6.1.4.1.897.4.2.10:REQUEST HA SESSION=true

jConnect for JDBC

CHAPTER 2 Programming Information

dn:servername=SECONDARY, o=MyCompany, c=US
1.3.6.1.4.1.897.4.2.5:TCP#1#fmoorea 6000

e Reguest aconnection using INDI and LDAP:

e jConnect usesthedirectory of the LDAP server to determinethe name
and location of the primary and secondary servers:

/* get the connection */

Connection con = DriverManager.getConnection
("jdbc:sybase:jndi:1ldap://ldap_serverl:389" +
"/servername=Sybasell, o=MyCompany, c=US", props) ;

or
e Specify asearchbase:
props.put (Context.PROVIDER URL,
"ldap://ldap_serverl:389/ o=MyCompany, c=US");

Connection con=DriverManager.getConnection
("jdbc:sybase:jndi:servername=Sybasell", props) ;

Logging in to the primary server
If an Adaptive Server is not configured for failover or cannot grant afailover
session, the client cannot log in, and the following warning displays:

'The server denied your request to use the high-
availability feature.

Please reconfigure your database, or do not request a

high-availability session.'

Failing over to the secondary server
When failover occurs, the SQL exception JZ0F2 is thrown:

‘Sybase high-availability failover has occurred. The
current transaction is aborted, but the connection is

still usable. Retry your transaction.’

Theclient then automatical ly reconnectsto the secondary database using INDI.

Note that:

e Theidentity of the database to which the client was connected and any
committed transactions are retained.

« Partialy read result sets, cursors, and stored procedure invocations are
lost.

Programmers Reference 51

Working with databases

« Whenfailover occurs, your application may need to restart a procedure or
go back to the last completed transaction or activity.

Failing back to the primary server

At some point, the client fails back from the secondary server to the primary
server. When failback occursis determined by the System Administrator who
issues sp_failback on the secondary server. Afterward, the client can expect the
same behavior and results on the primary server as documented in “Failing
over to the secondary server” on page 51.

Performing server-to-server remote procedure calls

A Transact-SQL language command or stored procedure running on one server
can execute a stored procedure located on another server. The server to which
an application has connected logsin to theremote server, and executes a server-
to-server remote procedure call.

An application can specify a*“universal” password for server-to-server
communication, that is, a password used in all server-to-server connections.
Once the connection is open, the server uses this password to log in to any
remote server. By default, jConnect uses the password of the current
connection as the default password for server-to-server communications.

However, if the passwords are different on two servers for the same user, and
that user is performing server-to-server remote procedure cals, the application
must explicitly define passwords for each server it plansto use.

jConnect includes a property that enables you to set auniversal “remote’
password or different passwords on severa servers. jConnect allowsyou to set
and configure the property using the setRemotePassword method in the
SybDriver class:

Properties connectionProps = new Properties();
public final void setRemotePassword (String serverName,
String password, Properties connectionProps)

To use this method, the application must import the SybDriver class, then call
the method:

import com.sybase.jdbcx.SybDriver;
SybDriver sybDriver = (SybDriver)

Class.forName ("com.sybase.jdbc4.jdbc.SybDriver") .n
ewInstance () ;

52 jConnect for JDBC

CHAPTER 2 Programming Information

sybDriver.setRemotePassword
(serverName, password, connectionProps) ;

Note To set different remote passwords for various servers, repeat the
preceding call for each server.

This call adds the given server name-password pair to the given Properties
object, which can be passed by the application to DriverManager in
DriverManager.getConnection (Server_url, props).

If serverName isnull, the universal password is set to password for subsequent
connectionsto all serversexcept the ones specifically defined by previouscalls
to setRemotePassword.

When an application setsthe REMOTEPWD property, jConnect no longer sets
the default universal password.

Using wide table support for Adaptive Server

Programmers Reference

Adaptive Server offers limits and parameters that are larger than in previous
versions of the database server. For example:

e Tablescan contain 1024 columns.
e Varchar and varbinary columns can contain more than 255 bytes of data.

e You can send and retrieve up to 2048 parameters when invoking stored
procedures or as parameters to PreparedStatement.

* When connected to Adaptive Server 15.7 ESD #1 and later, you can send
and retrieve up to 32767 parameters to PreparedStatement.

To ensure that jConnect requests wide table support from the database, the
default setting of JCONNECT_VERSION must be 6 or |ater.

Note jConnect continues to work with an Adaptive Server version 12.5 and
later if you set JCONNECT_VERSION to earlier than 6. However, if you try
selecting from atable that requires wide table support to fully retrieve the data,
you may encounter unexpected errors or data truncation.

You can also set JCONNECT_VERSION to 6 or later when you access data
from a Sybase server that does not support wide tables. In this case, the server
simply ignores your request for wide table support.

53

Working with databases

In addition to the larger number of columnsand parameters, wide tabl e support
provides extended result set metadata. For example, in versions of jConnect
earlier than 6.0, the ResultSetMetaData methods getCatalogName,
getSchemaName, and getTableName all returned “ Not Implemented”

SQL Exceptions because that metadata was not supplied by the server. When
you enable widetable support, the server now sends back thisinformation, and
the three methods return useful information.

Accessing database metadata

54

To support JDBC DatabaseMetaData methods, Sybase provides a set of stored
procedures that jConnect can call for metadata about a database. These stored
procedures must be installed on the server for the JDBC metadata methods to
work.

If the stored procedures for providing metadata are not aready installed in a
Sybase server, you can install them using stored procedure scripts provided
with jConnect:

e ggl_server.sgl installs stored procedures on Adaptive Server databases of
versions earlier than 12.0.

e gl _server12.sgl installs stored procedures on Adaptive Server databases
of version 12.0.x.

e gyl _server12.5.sq installs stored procedures on Adaptive Server
datsabases of version 12.5.x.

e ggl_server15.0.sql installs stored procedures for Adaptive Server 15.0
through 15.5.

e ggl_server15.7.sql installs stored procedures for Adaptive Server 15.7 or
later.2

e gl _server15.7.0.2.sql installs stored procedures for Adaptive Server 15.7
ESD #2 or later.

e gl_asa.sgl —installs stored procedures on the SQL Anywhere 9.x
database

¢ gl_asall.sgl —ingtalls stored procedures on the SQL Anywhere 10.x
database

e gl_asall.sgl —installs stored procedures on the SQL Anywhere 11.x
database

jConnect for JDBC

CHAPTER 2 Programming Information

e sgl_asal2.sgl —installs stored procedures on the SQL Anywhere 12.x
database

Note The most recent versions of these scriptsare compatiblewith all versions
of jConnect.

See the Sybase jConnect for JDBC Installation Guide and Sybase jConnect for
JDBC Release Bulletin for complete instructions on installing stored
procedures.

In addition, to use the metadata methods, you must set the USE_ METADATA
connection property to "true” (its default value) when you establish a
connection.

You cannot get metadata about temporary tables in a database.

Note The DatabaseMetaData.getPrimaryKeys method finds primary keys
declared in atable definition (CREATE TABLE) or with alter table (ALTER
TABLE ADD CONSTRAINT). It does not find keys defined using sp_primarykey.

Using cursors with result sets

jConnect implements many JDBC 2.0 cursor and update methods. These
methods make it easier to use cursors and to update rows in atable based on
valuesin aresult set.

In IDBC 2.0, ResultSets are characterized by their type and their concurrency.
Thetypeand concurrency valuesare part of thejava.sql.ResultSet interface and
are described in its javadocs.

Table 2-5identifiesthe characteristics of java.sql.ResultSet that are availablein
jConnect. When requested, j Connect opens server side scrollable cursorswhen
the server is Adaptive Server 15.0 or later.

Table 2-5: java.sql.ResultSet options available in jConnect

Type

TYPE_FORWARD_ TYPE_SCROLL_ TYPE_SCROLL_
Concurrency ONLY INSENSITIVE SENSITIVE
CONCUR_READ_ONLY Supported Supported Not available
CONCUR_UPDATABLE Supported Not available Not available

Programmers Reference

55

Working with databases

Creating a cursor

56

This section includes the following topics:

e Creating a cursor

e Using JDBC 1.x methods for positioned updates and deletes

e Using JDBC 2.0 methods for positioned updates and deletes

e Using acursor with a PreparedStatement object

e Using TYPE_SCROLL_INSENSITIVE result setsin jConnect

There are two methods for creating a cursor using jConnect:
* SybStatement.setCursorName

Use SybStatement.setCursorName, to explicitly assign the cursor aname.
The signature for SybStatement.setCursorName is:

void setCursorName(String name) throws SQLException;

e SybStatement.setFetchSize

Use SybStatement.setFetchSize to create a cursor and specify the number
of rows returned from the database in each fetch. The signature for
SybStatement.setFetchSize is:

void setFetchSize(int rows) throws SQLEXxception;

When you use setFetchSize to create a cursor, the jConnect driver names
the cursor. To get the name of the cursor, use ResultSet.getCursorName.

Another way you can create cursorsisto specify thekind of ResultSet you want
returned by the statement, using the following JDBC method on the
connection:

Statement createStatement (int resultSetType, int
resultSetConcurrency) throws SQL Exception

The type and concurrencies correspond to the types and concurrencies found
on the ResultSet interface listed in Table 2-5. If you request an unsupported
ResultSet, a SQL warning is chained to the connection. When the returned
Statement is executed, you receive the kind of ResultSet that is most like the
oneyou requested. Seethe JDBC specification for more detail son the behavior
of this method.

If you do not use createStatement, the default types of ResultSet are:

jConnect for JDBC

CHAPTER 2 Programming Information

If you call only Statement.executeQuery, then the ResultSet returned isa
SybResultSet that is TYPE_FORWARD_ONLY and
CONCUR_READ_ONLY.

If you call setCursorName, then the ResultSet returned from executeQuery
is a SybCursorResultSet that is TYPE_FORWARD_ONLY and
CONCUR_UPDATABLE.

If you call setFetchSize, then the ResultSet returned from executeQuery is
a SybCursorResultSet that is TY PE_FORWARD_ONLY and
CONCUR_READ_ONLY.

To verify that the kind of ResultSet object iswhat you intended, use the
following two ResultSet methods:

int getConcurrency () throws SQLException;
int getType () throws SQLException;

[ICreating and using a cursor

Programmers Reference

1

Create the cursor using Statement.setCursorName or
SybStatement.setFetchSize.

Invoke Statement.executeQuery to open the cursor for a statement and
return a cursor result set.

Invoke ResultSet.next to fetch rows and position the cursor in the result
Set.

The following example uses each of the two methods for creating cursors
and returning a result set. It also uses ResultSet.getCursorName to get the
name of the cursor created by SybStatement.setFetchSize.

// With conn as a Connection object, create a

// Statement object and assign it a cursor using
// Statement.setCursorName () .

Statement stmt = conn.createStatement () ;

stmt .setCursorName ("author cursor") ;

// Use the statement to execute a query and return
// a cursor result set.
ResultSet rs = stmt.executeQuery ("SELECT au_id,
au_lname, au_fname FROM authors
WHERE city = 'Oakland'");
while (rs.next ())

{

57

Working with databases

// Create a second statement object and use

// SybStatement.setFetchSize()to create a cursor
// that returns 10 rows at a time.

SybStatement syb stmt = conn.createStatement () ;
syb stmt.setFetchSize (10) ;

// Use the syb stmt to execute a query and return

// a cursor result set.

SybCursorResultSet rs2 =
(SybCursorResultSet) syb stmt.executeQuery
("SELECT au_id, au_lname, au_fname FROM

authors
WHERE city = 'Pinole'");

while (rs2.next())

{

// Get the name of the cursor created through the
// setFetchSize () method.
String cursor name = rs2.getCursorName () ;

// For jConnect 6.0, create a third statement

// object using the new method on Connection,

// and obtain a SCROLL_INSENSITIVE ResultSet.

// Note: you no longer have to downcast the

// Statement or the ResultSet.

Statement stmt = conn.createStatement (
ResultSet .TYPE SCROLL INSENSITIVE,
ResultSet.CONCUR_READ ONLY) ;

ResultSet rs3 = stmt.executeQuery

("SELECT ... [whatever]");

// Execute any of the JDBC 2.0 methods that

// are valid for read only ResultSets.

rs3.next () ;

rs3.previous () ;

rs3.relative(3) ;

rs3.afterLast () ;

58 jConnect for JDBC

CHAPTER 2 Programming Information

Using JDBC 1.x methods for positioned updates and deletes

The following example shows how to use methodsin JDBC 1.x to do a
positioned update. The example creates two Statement objects, one for
selecting rows into a cursor result set, and the other for updating the database
from rows in the result set.

// Create two statement objects and create a cursor
// for the result set returned by the first
// statement, stmtl. Use stmtl to execute a query
// and return a cursor result set.
Statement stmtl = conn.createStatement () ;
Statement stmt2 = conn.createStatement ()
stmtl.setCursorName ("author cursor") ;
ResultSet rs = stmtl.executeQuery ("SELECT
au_id,au_lname, au_fname
FROM authors WHERE city = 'Oakland'
FOR UPDATE OF au_ lname") ;

7

// Get the name of the cursor created for stmtl so
// that it can be used with stmt2.
String cursor = rs.getCursorName () ;

// Use stmt2 to update the database from the
// result set returned by stmtl.

String last name = new String("Smith");
while (rs.next ())

{

if (rs.getString(l) .equals("274-80-9391"))

{

stmt2.executeUpdate ("UPDATE authors "+
"SET au_lname = "+last name +
"WHERE CURRENT OF " + cursor) ;

Deletions in a result set

The following example uses Statement object stmt2, from the preceding code,
to perform a positioned deletion:

stmt2.executeUpdate ("DELETE FROM authors
WHERE CURRENT OF " + cursor) ;

Programmers Reference 59

Working with databases

Using JDBC 2.0 methods for positioned updates and deletes

This section discusses JDBC 2.0 methods for updating columns in the current
cursor row and updating the database from the current cursor row in aresult

set. Each isfollowed by an example.

Updating columns in aresult set

JDBC 2.0 specifies a number of methods for updating column values from a
result set in memory, on the client. The updated values can then be used to
perform an update, insert, or del ete operation on the underlying database. All
of these methods are implemented in the SybCursorResultSet class.

Examples of some of the JIDBC 2.0 update methods available in jConnect are:

void updateAsciiStream(String columnName, java.io.InputStream x,

throws SQLException;

int length)

void updateBoolean (int columnIndex, boolean x) throws SQLException;

void updateFloat (int columnIndex, float x) throws SQLException;
void updatelInt (String columnName, int x) throws SQLException;
void updatelInt (int columnIndex, int x) throws SQLException;

void updateObject (String columnName, Object x) throws SQLException;

Methods for updating the database from a result set

JDBC 2.0 specifiestwo methods for updating or deleting rowsin the database,
based on the current values in aresult set. These methods are simpler in form
than Statement.executeUpdate in JDBC 1.x and do not require a cursor name.

They are implemented in SybCursorResultSet:

void updateRow() throws SQLException;
void deleteRow() throws SQLException;

Note The concurrency of the result set must be CONCUR_UPDATABLE.
Otherwise, the above methods raise an exception. For insertRow, all table

columns that require non-null entries must be specified.

M ethods provided on DatabaseMetaData dictate when these changes are

visible.

Example The following example creates a single Statement object that is used to return
acursor result set. For each row in the result set, column values are updated in
memory and then the database is updated with the new column values for the

row.

// Create a Statement object and set fetch size to

60

jConnect for JDBC

CHAPTER 2 Programming Information

// 25. This creates a cursor for the Statement
// object Use the statement to return a cursor
// result set.

SybStatement syb stmt =

(SybStatement) conn.createStatement (ResultSet.TYPE SCROLL_ INSENSITIVE,

ResultSet.CONCUR_UPDATABLE) ;
syb stmt.setFetchSize (25) ;
SybCursorResultSet syb rs =
(SybCursorResultSet) syb stmt.executeQuery (
"SELECT * from Tl WHERE ...")

// Update each row in the result set according to
// code in the following while loop. jConnect

// fetches 25 rows at a time, until fewer than 25
// rows are left. Its last fetch takes any

// remaining rows.

while (syb_rs.next())

{

// Update columns 2 and 3 of each row, where
// column 2 is a varchar in the database and
// column 3 is an integer.

syb rs.updateString(2, "xyz");
syb_rs.updateInt (3,100);

//Now, update the row in the database.
syb_rs.updateRow () ;
!

// Create a Statement object using the
// JDBC 2.0 method implemented in jConnect 6.0
Statement stmt = conn.createStatement
(ResultSet .TYPE FORWARD ONLY, ResultSet.CONCUR_ UPDATABLE) ;
// In jConnect 6.0, downcasting to SybCursorResultSet is not
// necessary. Update each row in the ResultSet in the same
// manner as above
while (rs.next())
{
rs.updateString (2, “xyz”);
rs.updateInt (3,100) ;

rs.updateRow () ;
// Use the Statement to return an updatable ResultSet
ResultSet rs = stmt.executeQuery (“SELECT * FROM Tl WHERE...”);

}

Deleting a row from a ResultSet

To delete arow from a cursor result set, you can use
SybCursorResultSet.deleteRow as follows:

Programmers Reference

61

Working with databases

while (syb rs.next())

{
int col3 = getInt(3);
if (col3 >100)

{

syb_rs.deleteRow() ;

}

Inserting arow into a ResultSet

The following example illustrates how to do inserts using the JDBC 2.0 API.
There is no need to downcast to a SybCursorResultSet.

// prepare to insert

rs.moveToInsertRow () ;

// populate new row with column values
rs.updateString(l, "New entry for col 1");
rs.updateInt (2, 42);

// insert new row into db

rs.insertRow() ;

// return to current row in result set
rs.moveToCurrentRow () ;

Releasing locks at cursor close

Adaptive Server 15.7 extends the declare cursor syntax to include the
release_locks_on_close option, which releases shared cursor locks at isolation
levels 2 and 3 when a cursor is closed. jConnect accordingly supports the

rel ease-lock-on-close semantics.

To apply on ajConnect connection, set the
RELEASE LOCKS ON_CURSOR_CL OSE connection property totrue. The
default RELEASE_LOCKS ON_CURSOR_CLOSE vaueisfalse.

This setting takes effect only when connected to a server that supports
release_locks_on_close.

For information about release_locks_on_close, see the Adaptive Server
Enterprise Reference Manual: Commands.

62 jConnect for JDBC

CHAPTER 2 Programming Information

select for update support

Adaptive Server 15.7 supports select for update, which can lock rows for
subsequent updates within the same transaction, and supports exclusive locks
for updatable cursors. See Chapter 2, "Queries. Selecting Data from a Table"
in the Adaptive Server Enterprise Transact-SQL Users Guide.

This functionality is automatically available to clients when the for update
clause is added to a select statement and to any updatable cursors opened
within the clients.

Using a cursor with a PreparedStatement object

Programmers Reference

Onceyou create a PreparedStatement object, you can useit multipletimeswith
the same or different values for itsinput parameters. If you use acursor with a
PreparedStatement object, you must close the cursor after each use and then
reopen the cursor to use it again. A cursor is closed when you close its result
set (ResultSet.close). It is opened when you execute its prepared statement
(PreparedStatement.executeQuery).

The following example shows how to create a PreparedStatement object,
assign it acursor, and execute the PreparedStatement object twice, closing and
then reopening the cursor.

// Create a prepared statement object with a
// parameterized query.

PreparedStatement prep stmt =
conn.prepareStatement (

"SELECT au_id, au lname, au fname "+

"FROM authors WHERE city = ? "+

"FOR UPDATE OF au_lname") ;

//Create a cursor for the statement.
prep_ stmt.setCursorName ("author cursor");

// Assign the parameter in the query a value.
// Execute the prepared statement to return a
// result set.

prep stmt.setString(l, "Oakland") ;

ResultSet rs = prep stmt.executeQuery () ;

//Do some processing on the result set.
while (rs.next())

{
}

63

Working with databases

// Close the result, which also closes the cursor.
rs.close () ;

// Execute the prepared statement again with a new
// parameter value.

prep stmt.setString(l, "San Francisco") ;

rs = prep_stmt.executeQuery() ;

// reopens cursor

Using TYPE_SCROLL_INSENSITIVE result sets in jConnect

64

jConnect supports only TYPE_SCROLL_INSENSITIVE result sets.

jConnect uses the Tabular Data Stream (TDS)—the Sybase proprietary
protocol—to communicate with Sybase database servers. Adaptive Server 15.0
or later supports TDS scrollable cursors. For servers that do not support TDS
scrollable cursors, jConnect caches the row data on demand, on the client, on
each call to ResultSet.next. However, when the end of the result set isreached,
the entire result set is stored in the client memory. Because this may cause a
performance strain, Sybase recommends that you use
TYPE_SCROLL_INSENSITIVE result setsonly with Adaptive Server 15.0 or
when the result set is reasonably small.

Note Whenyouuse TYPE_SCROLL_INSENSITIVE ResultSets injConnect,
and the server does not support TDS scrollable cursors, you can only call the
isLast method after the last row of the ResultSet has been read. Calling isLast
before the last row is reached causes an UnimplementedOperationException to
be thrown.

jConnect provides the ExtendResultSet in the sample2 directory; this sample
providesalimited TYPE_SCROLL_INSENSITIVE ResultSet using JDBC 1.0
interfaces.

This implementation uses standard JDBC 1.0 methods to produce a scroll-
insensitive, read-only result set, that is, astatic view of the underlying datathat
isnot sensitiveto changes made whilethe result set is open. ExtendedResultSet
caches all of the ResultSet rows on the client. Be cautious when you use this
class with large result sets.

The sample.ScrollableResultSet interface:

¢ Isanextension of JDBC 1.0 java.sgl.ResultSet.

jConnect for JDBC

CHAPTER 2 Programming Information

« Definesadditional methodsthat have the same signatures asthe JDBC 2.0
java.sgl.ResultSet.

e Doesnot contain all of the JDBC 2.0 methods. The missing methods deal
with modifying the ResultSet.

The methods from the JIDBC 2.0 APl are:

boolean previous() throws SQLException;
boolean absolute (int row) throws SQLException;
boolean relative (int rows) throws SQLException;
boolean first() throws SQLException;

boolean last() throws SQLException;

void beforeFirst () throws SQLException;

void afterLast () throws SQLException;

boolean isFirst () throws SQLException;
boolean isLast () throws SQLException;
boolean isBeforeFirst () throws SQLException;

boolean isAfterLast () throws SQLException;

int getFetchSize () throws SQLException;

void setFetchSize (int rows) throws SQLException;
int getFetchDirection() throws SQLException;
void setFetchDirection (int direction) throws
SQLException;

int getType () throws SQLException;

int getConcurrency () throws SQLException;

int getRow() throws SQLException;

To use the sample classes, create an ExtendedResultSet using any JDBC 1.0
java.sql.ResultSet. Below are the relevant pieces of code (assumeaJaval.l
environment):

// import the sample files
import sample.*;
//import the JDBC 1.0 classes
import java.sqgl.*;
// connect to some db using some driver;
// create a statement and a query;
// Get a reference to a JDBC 1.0 ResultSet
ResultSet rs = stmt.executeQuery(query);
// Create a ScrollableResultSet with it
ScrollableResultSet srs = new ExtendedResultSet (rs) ;
// invoke methods from the JDBC 2.0 API
srs.beforeFirst () ;
// or invoke methods from the JDBC 1.0 API
if (srs.next())

String columnl = srs.getString(l) ;

Programmers Reference 65

Working with databases

Figure 2-1 is a class diagram that shows the relationships between the sample
classes and the IDBC API.

Figure 2-1: Class diagram

/java.sqI.ResuItSet
K(.}DBC 1.0 API)

extends

sample.ScrollableResultSet
(adds some methods
from JDBC 2.0 API)

implements

(e.lfxtendedResultSet

(wrapper for
java.sql.ResultSet)

Seethe JDBC 2.0 API at http://www.oracle.com/technetwork/javaljavase/jdbc
for more details.

Using Transact-SQL queries with COMPUTE clause

jConnect for JDBC supports Transact-SQL queries that include a COMPUTE
clause. A COMPUTE clause allows you to display detail and summary results
inoneselect statement. The summary row appearsfollowing the detail rows of
a specific group. For example:

select type, price, advance

66 jConnect for JDBC

CHAPTER 2 Programming Information

from titles
order by type
compute sum(price), sum(advance) by type

NULL NULL
type price advance
business 2.99 10,125.00
business 11.95 5,000.00
business 19.99 5,000.00
business 19.99 5,000.00

Compute Result:

54.92 25,125.00

(24 rows affected)

When jConnect executes a select statement that includes a COMPUTE clause,
jConnect returns multiple result sets to the client, the number of result sets
depends on the number of unique groupings available. Each group containsone
result set for the detail rows and oneresult set for the summary. The client must
process all result setsto fully processthe rowsreturned; if it does not, only the
detail rows of thefirst group of data are included in the first result set returned.

For more information about the COMPUTE clause, see the Adaptive Server
Enterprise Transact-SQL UsersGuide. For moreinformation about processing
multiple result sets, see the IDBC API documentation found on the Oracle
Technology Network for Java Web site.

Programmers Reference 67

Working with databases

Support for batch updates

Batch updates allow a Statement object to submit multiple statements as one
unit (batch) to an underlying database for processing together. Any statement
added to a batch must return only an update count and must not return a
ResultSet.

Implementation notes

68

See BatchUpdates.java in the sample2 subdirectories for an example of using
batch updates with Statement, PreparedStatement, and CallableStatement.

jConnect also supports dynamic PreparedStatements in batch.

jConnect implements batch updates as specified in the JIDBC 2.0 API, except
as described here:

The EXECUTE_BATCH_PAST ERRORS connection property controls
how failures are handled in batch execution.

By default, EXECUTE_BATCH_PAST_ERRORSis set to false and
jConnect stops processing after thefirst failure.
BatchUpdateException.getUpdateCounts returns an int[] array with length
of M <N, indicating that thefirst M statementsin the batch succeeded, that
the M+1 statement failed, and M+2..N statements were not executed.
Here, "N" equals the total statements in the batch.

When EXECUTE_BATCH_PAST_ERRORS s set to true, jConnect
continues processing in the presence of nonfatal failures.
BatchUpdateException.getUpdateCounts returns an int[] array with length
of N, where"N" equalsthe total statements in the batch. Examine the
individual update counts to determine execution status of each statement.

To call stored procedures in batch (unchained) mode, you must create the
stored procedure in unchained mode. For more information, see “ Stored
procedure executed in unchained transaction mode” on page 150.

If Adaptive Server encounters afatal error during batch execution,
BatchUpdateException.getUpdateCounts returns only an int[] length of
zero. The entire transaction is rolled back if afatal error is encountered,
resulting in zero successful rows.

Batch updates in databases that do not support batch updates: jConnect
carries out batch updates in an executeUpdate |oop even if your database
does not support batch updates. This allows you to use the same batch
code, regardless of the database to which you are pointing.

jConnect for JDBC

CHAPTER 2 Programming Information

For details on batch updates see the JDBC API documentation at
http://www.oracle.com/technetwork/java/index.html.

Updating a database from a result set of a stored procedure

jConnect includes update and delete methods that allow you to get a cursor on
the result set returned by a stored procedure. You can then use the position of
the cursor to update or delete rows in the underlying table that provided the
result set. The methods are in SybCursorResultSet:

void updateRow(String tableName) throws SQLEXxception;
void deleteRow(String tableName) throws SQLException;

The tableName parameter identifies the database table that provided the result
set.

To get acursor on theresult set returned by a stored procedure, you need to use
either SybCallableStatement.setCursorName or
SybCallableStatement.setFetchSize before you execute the callable statement
that contains the procedure. The following example shows how to create a
cursor ontheresult set of astored procedure, update valuesin theresult set, and
then update the underlying table using the SybCursorResultSet.update method:

// Create a CallableStatement object for executing the stored
// procedure.
CallableStatement sproc_stmt =
conn.prepareCall ("{call update titles}",
ResultSet.TYPE FORWARD ONLY, ResultSet.CONCUR_UPDATABLE) ;

// Set the number of rows to be returned from the database with
// each fetch. This creates a cursor on the result set.
(SybCallableStatement) sproc_stmt.setFetchSize (10) ;

//Execute the stored procedure and get a result set from it.
SybCursorResultSet sproc result = (SybCursorResultSet)
sproc_stmt.executeQuery () ;

// Move through the result set row by row, updating values in the
// cursor’s current row and updating the underlying titles table
// with the modified row values.
while (sproc_result.next())
{

sproc_result.updateString(...);

sproc_result.updateInt(...);

Programmers Reference 69

Working with databases

sproc_result.updateRow(titles) ;

Working with datatypes

This section documents use of numeric, image, text, date, time, and char data.

Sending numeric data

The SybPreparedStatement extension supports the way Adaptive Server
handles the NUMERIC datatype where precision (total digits) and scale (digits
after the decimal) can be specified.

The corresponding datatype in Java—java.math.BigDecimal—is slightly
different, and these differences can cause problems when jConnect
applications use the setBigDecimal method to control values of an input/output
parameter. Specifically, there are cases where the precision and scale of the
parameter must precisely match that precision and scale of the corresponding
SQL object, whether it is a stored procedure parameter or a column.

The SybPreparedStatement extension used with the following method gives
jConnect applications more control over setBigDecimal:

public void setBigDecimal (int parameterIndex, BigDecimal X, int scale,

70

int precision)

throws SQLException

See the SybPrepExtension.java sample in the /sample2 subdirectories under
your jConnect installation directory for more information.

jConnect for JDBC

CHAPTER 2 Programming Information

Updating image data in the database

jConnect has a TextPointer class with sendData methods for updating an image
column in an Adaptive Server or SQL Anywhere database. In earlier versions
of jConnect, you had to send image data using the setBinaryStream method in
java.sql.PreparedStatement. Now the TextPointer.sendData methods use
java.io.InputStream and greatly improve performance when you send image
data to an Adaptive Server database.

Warning! Using the TextPointer class with sendData() method may affect the
application as TextPointer is not a standard JDBC form.

Sybase recommends you use PreparedStatement.setBinaryStream(int
paramindex, InputStream image) or utilize the LOB locator support, both
standard JDBC forms to send image data. However, setBinaryStream() may
consume much more memory on procedure cache than the TextPointer class
when large image datais handled.

Until areplacement for the TextPointer class isimplemented, Sybase will
continue supporting it.

To obtaininstances of the TextPointer class, you can use either of two getTextPtr
methods in SybResultSet:

public TextPointer getTextPtr(String columnName)
public TextPointer getTextPtr(int columnindex)

Public methods in the TextPointer class

Thecom.sybase.jdbcx package containsthe TextPointer class. Its public method
interfaceis:

public void sendData(InputStream is, boolean log)
throws SQLEXxception

public void sendData(InputStream is, int length,
boolean log) throws SQLEXxception

public void sendData(InputStream is, int offset,
int length, boolean log) throws SQLException

public void sendData(byte[] bytelnput, int offset,
int length, boolean log) throws SQLEXception

where;

« sendData(InputStream is, boolean log) updates animage column with data
in the specified input stream.

Programmers Reference 71

Working with databases

¢ sendData(InputStream is, int length, boolean log) updates an image column
with datain the specified input stream. length isthe number of bytesbeing
sent.

e sendData(InputStream is, int offset, int length, boolean log) updates an
image column with datain the specified input stream, starting at the byte
offset given in the offset parameter and continuing for the number of bytes
specified in the length parameter.

e sendData(byte[] bytelnput, int offset, int length, boolean log) updates a
column with image data contained in the byte array specified in the
bytel nput parameter. The update starts at the byte offset given in the offset
parameter and continues for the number of bytes specified in the length
parameter.

¢ logisaparameter for each method that specifies whether image dataisto
be fully logged in the database transaction log. If the log parameter is set
to "true," the entire binary image is written into the transaction log. If the
log parameter is set to "false," the update islogged, but theimageitself is
not included in the log.

[1Updating an image column with TextPointer.sendData

Getting a TextPointer
object

72

To update a column with image data:
1 Get aTextPointer object for the row and column that you want to update.
2 Use TextPointer.sendData to execute the update.

The next two sectionsiillustrate these steps with an example. In the example,
image datafrom thefile Anne_Ringer.gif is sent to update the pic column of the
au_pix tablein the pubs2 database. The update is for the row with author ID
899-46-2035.

text and image columns contain timestamp and page-location information that
is separate from their text and image data. When datais selected from atext or
image column, this extrainformation is“hidden” as part of the result set.

A TextPointer object for updating an image column requires this hidden
information but does not need the image portion of the column data. To get this
information, you need to sel ect the column into a ResultSet object and then use
SybResultSet.getTextPtr, which extracts text-pointer information, ignores
image data, and creates a TextPointer object. See the following code for an
example.

jConnect for JDBC

CHAPTER 2 Programming Information

When a column contains a significant amount of image data, selecting the
column for one or more rows and waiting to get all the dataiis likely to be
inefficient, since the datais not used. To shortcut this process, use the set
textsize command to minimize the amount of data returned in a packet. The
following code example for getting a TextPointer object includes the use of set
textsize for this purpose.

/*
* Define a string for selecting pic column data for author ID
* 899-46-2035.
*/

String getColumnData = "select pic from au pix where au_id = '899-46-2035'";

/*

* Use set textsize to return only a single byte of column data
* to a Statement object. The packet with the column data will
* contain the "hidden" information necessary for creating a

* TextPointer object.

*/

Statement stmt= connection.createStatement () ;

stmt .executeUpdate ("set textsize 1");

/*

* Select the column data into a ResultSet object--cast the

* ResultSet to SybResultSet because the getTextPtr method is

* in SybResultSet, which extends ResultSet.

*/

SybResultSet rs = (SybResultSet)stmt.executeQuery(getColumnData) ;

/*

* Pogsition the result set cursor on the returned column data
* and create the desired TextPointer object.

*/

rs.next () ;

TextPointer tp = rs.getTextPtr ("pic");

/*

* Now, assuming we are only updating one row, and won’t need

* the minimum textsize set for the next return from the server,
* we reset textsize to its default value.

*/

stmt .executeUpdate ("set textsize 0");

Programmers Reference 73

Working with databases

Exgcuting rt]he The following code uses the TextPointer object from the preceding section to
update wit i Pt i i i i
TextPointer sendData update the pic column with image datain the file Anne_Ringer.gif.
/ *
*First, define an input stream for the file.
*/

FileInputStream in = new FileInputStream("Anne Ringer.gif");

/*

* Prepare to send the input stream without logging the image data
* in the transaction log.

*/

boolean log = false;

/*

* Send the image data in Anne Ringer.gif to update the pic
* column for author ID 899-46-2035.

*/

tp.sendData(in, log);

See the TextPointers.java sample in the sample2 subdirectories under your
jConnect installation directory for more information.

Using text data

In earlier versions, jConnect used a TextPointer class with sendData methods
for updating atext column in an Adaptive Server or SQL Anywhere database.

The TextPointer class has been deprecated, that is, it isno longer recommended
and may cease to exist in afuture version of Java.

If your data server is Adaptive Server or SQL Anywhere, use the standard
JDBC form to send text data:

PreparedStatement.setAsciiStream(int paramIndex,
InputStream text, int length)

or

PreparedStatement.setUnicodeStream(int paramIndex,
InputStream text, int length)

or

PreparedStatement.setCharacterStream(int paramIndex,
Reader reader, int length)

74 jConnect for JDBC

CHAPTER 2 Programming Information

Using date and time datatypes

jConnect for JIDBC supports the Adaptive Server datetime, smalldatetime,
bigdatetime, bigtime, date, and time datatypes:

Usage (date, time,
datetime, and
smalldatetime)

Programmers Reference

datetime can hold dates between January 1, 1753 and December 31, 9999
that are accurate to 1/300 second on platforms that support this level of
granularity..

smalldatetime can hold dates from January 1, 1900 to June 6, 2079, with
accuracy to the minute.

bigdatetime indicates the number of microseconds that have passed since
January 1, 0000 0:00:00.000000. The range of legal bigdatetime valuesis
from January 1, 0001 00:00:00.000000 to December 31, 9999
23:59:59.999999.

bigtime indicates the number of microseconds that have passed since the
beginning of the day. The range of legal bigtime valuesis from
00:00:00.000000 to 23:59:59.999999.

date can hold dates from January 1, 0001 to December 31, 9999, exactly
matching the allowable values in java.sgl.Date. A direct mapping exists
between java.sql.Date and the date datatype.

time can hold time between 00:00:00:000 and 23:59:59:990. A direct
mapping exists between java.sql. Time and the time datatype.

If you select from atable that contains adate or time column, and you have
not enabled date/time support in jConnect (by setting the version), the
server triesto convert the date or time to adatetime value before returning
it. This can cause problemsif the date to be returned is prior to 1/1/1753.
Inthat case, aconversion error occurs, and the databaseinformsyou of the
error.

SQL Anywhere supports a date and time datatype, but the date and time
datatypes are not yet directly compatible with those in Adaptive Server
version 12.5.1 and later. Using jConnect, you should continue to use the
datetime and smalldatetime datatypes when communicating with SQL
Anywhere.

The maximum value in adatetime column in SQL Anywhereis 1-1-7911
00:00:00.

Using jConnect, you receive conversion errors if you attempt to insert
dates prior to 1/1/1753 into datetime columns or parameters.

75

Working with databases

Usage (bigdatetime
and bigtime)

« Refer to the Adaptive Server manuals for more information on the date
and time datatypes; of special note is the section on allowable implicit
conversions.

e If you use getObject with an Adaptive Server date, time, Or datetime
column, the value returned is, respectively, ajava.sqgl.Date, java.sql.Time,
or java.sgl.Timestamp datatype.

¢ When connecting to Adaptive Server 15.5 and later, jConnect for JDBC
transfers data using the bigdatetime and bigtime datatypes even if the
receiving Adaptive Server columns are defined as datetime and time.

This means that Adaptive Server may silently truncate the values from
jConnect for IDBC to fit Adaptive Server columns. For example, abigtime
value of 23:59:59.999999 is saved as 23:59:59.996 in an Adaptive Server
column with datatype time.

e When connecting to Adaptive Server 15.0.x and earlier, jConnect for
JDBC transfers data using the datetime and time datatypes.

Using char/varchar/text datatypes and getByte

Do not users.getByte on achar, univarchar, unichar, varchar, or text field unless
the datais hex, octal, or decimal.

Other Datatypes supported

Bigint datatype

76

jConnect supports the following Adaptive Server datatypes:

e bigint — An exact numeric datatype designed to be used when the range of
the existing int types isinsufficient.

e unsigned int — Unsigned versions of the exact numeric integer datatypes:
unsignedsmallint, unsignedint, and unsignedbigint.

e unitext — A variable-length datatype for Unicode characters.

Sybase supports bigint, which is a 64-bit integer datatype that is supported asa
native Adaptive Server datatype. In Java, this datatype maps to java datatype
long. To use this as a parameter, you can call PreparedStatement.setLong(int
index, long value) and jConnect sends the data as bigint to Adaptive Server.
When retrieving from a bigint column, you can use the ResultSet.getLong(int
index) method.

jConnect for JDBC

CHAPTER 2 Programming Information

Unitext datatypes

Unsigned int datatypes

There are no API changesin jConnect for using the unitext datatype. jConnect
can internally handle storage and retrieval of datafrom Adaptive Server when
unitext columns are used.

Adaptive Server supportsunsigned bigint, unsigned int, and unsigned smallint
as native Adaptive Server datatypes. Because, there are no corresponding
unsigned datatypesin Java, you must set and get the next higher integer if you
want to process the data correctly. For example, if you areretrieving datafrom
an unsigned int, using the Java datatypeint istoo small to contain positive large
values, and asaresult, ResultSet.getint (int index) might return incorrect dataor
throw an exception. To process the data correctly, you should get the next
higher integer value ResultSet.getLong(). You can usethefollowing tableto set
or get data.

Adaptive Server

datatype Java datatype
unsigned smallint | setint(), getint()
unsigned int setL.ong(), getLong()

unsigned bigint setBigDecimal (), getBigDecimal ()

Variable-length rows in data-only locked tables

Programmers Reference

Versions of Adaptive Server earlier than 15.7 configured for 16K logical page
sizescould not create data-only locked (DOL) tableswith variable-length rows
if avariable-length column began more than 8191 bytes after the start of the
row. This limitation has been removed starting in Adaptive Server 15.7. See
Chapter 2, "Data Storage” in the Adaptive Server Enterprise Performance and
Tuning Series: Physical Database Tuning.

JDBC clients do not need special configuration to use this feature. When
connected to Adaptive Server version 15.7 that has been configured to receive
wide DOL rows, these clients automatically insert records using the wide
offset. An error message is received if a client attempts to send awide DOL
row to an earlier version of Adaptive Server, or to a 15.7 Adaptive Server for
which the wide DOL row option is disabled.

77

Working with databases

Large object (LOB) support

jConnect supports using large object (LOB) datatypes — text, unitext, and
image as

L OB columns with in-row storage

In Adaptive Server, LOB columnsthat are marked for in-row are stored in-
row when there is adequate memory to hold the entire row. When the size
of arow increases over itsdefined limit due to an update to any columnin
it, the LOB columns which are stored in-row are moved off-row to bring
it within the limits. See Chapter 21, "In-Row Off-Row LOB" in the
Adaptive Server Enterprise Transact-SQL Users Guide.

The bulk insert routines in jConnect support the in-row and off-row
storage of text, image, and unitext LOB columns in Adaptive Server. Bulk
insert routines from earlier client versions always store L OB columns off-
row.

L OB objects as parameters of stored procedures

jConnect supports using text, unitext, and image as input parametersin
stored procedures and as parameter marker datatypes.

Large object locator support

jConnect supports large object (LOB) locators. A LOB locator contains a
logical pointer to LOB data rather than the dataitself, reducing the amount of
data that passes through the network between Adaptive Server and its clients.
Server support for LOB locators has been introduced since Adaptive Server
15.7.

78

jConnect for JDBC

CHAPTER 2 Programming Information

Implementing

Programmers Reference

jConnect accesses L OB data using server-side locators when connected to an
Adaptive Server that supports LOB locators and autocommit is turned off.
Otherwise, jConnect materializes LOB data at the client side. You can use the
complete LOB API with client-side materialized LOB data, however, dueto
larger data, API performance may be different than when used with LOB
locators.

Note When you are using LOB locators, retrieving a large result set that
includes LOB data on each row may impact your application's performance.
Adaptive Server returns a LOB locator as part of the result set and, to obtain
L OB data, jConnect must cache the remaining result set. Sybase recommends
that you keep result sets small, or that you enable cursor support to limit the
size of datato be cached.

To enable LOB locator support, establish a connection to Adaptive Server with
the ENABLE_LOB_LOCATORS connection property set to true. When
enabled, client applications can access the locators using the Blob, Clob, and
NClob classes from the java.sgl package.

Note When both LOB locators and autocommit are enabled, jConnect
automatically switchesthe LOB locatorsto client-side-materialized LOB even
if the Adaptive Server is capable of supporting LOB locators. Thisincreases
the memory used by the client and may degrade performance. Therefore, itis
advisable to use LOB locators with autocommit off.

For information about the Blob, Clob, and NClob classes, see the Java
documentation.

advanced features

This section describes how to use advanced jConnect features and containsthe
following topics:

e Using BCPinsert
e Supported Adaptive Server Cluster Edition features
e Using event notification

e Handling error messages

79

Implementing advanced features

Using BCP insert

Using password encryption

Storing Java objects as column datain atable
Using dynamic class loading

JDBC 4.0 specifications support

JDBC 3.0 specifications support

JDBC 2.0 optional package extensions support

jConnect supports large insertions of rows to Adaptive Server version 12.5.2
and later using bulk load inserts. Although thisfeature does not require special
configuration on the server, alarger page size, network packet size, and max
memory size significantly improves performance. Depending on the client
memory, use of larger batches also improves performance.

To enablethisfeature, set ENABLE BULK_LOAD to any of thevalid values:

ARRAYINSERT _WITH_MIXED_STATEMENTS — enables bulk load
with row-level logging and allows your application to execute other
statements during the bulk load operation.

ARRAY INSERT — enables bulk load with row-level logging, but your
application cannot execute other statements during the bulk load
operation.

BCP —enables bulk load with page-level logging; your application cannot
execute other statements during the bulk load operation.

LOG_BCP-enablesthebulk load with page-level logging using A SE fast
log BCP feature; your application cannot execute other statements during
the bulk load operation.

When you use prepared statements and ENABLE BULK _LOAD issettoa
valid value, jConnect usesthe BULK routinesto insert abatch of recordsto the
Sybase databases.

80

jConnect for JDBC

CHAPTER 2 Programming Information

Supported Adaptive Server Cluster Edition features

Login redirection

jConnect supports the Adaptive Server Cluster Edition environment, where

multiple Adaptive Servers connect to a shared set of disks and a high-speed

private interconnection. This allows Adaptive Server to scale using multiple
physical and logical hosts.

For more information about Cluster Edition, see the Adaptive Server
Enterprise Users Guide to Clusters.

At any given time, some servers within a Cluster Edition environment are
usually more loaded with work than others. When a client application attempts
to connect to abusy server, the login redirection feature hel ps balance the |oad
of the servers by allowing the server to redirect the client connection to less
busy servers within the cluster. The login redirection occurs during the login
sequence and the client application does not receive natification that it was
redirected. Login redirectionisenabled automatically when aclient application
connects to a server that supports this feature.

Note When aclient application connects to a server that is configured to
redirect clients, the login time may increase because the login processis
restarted whenever a client connection is redirected to another server.

Connection migration

Programmers Reference

The connection migration feature allows a server in a Cluster Edition
environment to dynamically distributeload, and seamlessly migrate an existing
client connection and its context to another server within the cluster. This
feature enables the Cluster Edition environment to achieve optimal resource
utilization and decrease computing time. Because migration between serversis
seaml ess, the connection migration feature also helps create ahighly available,
zero-downtime environment. Connection migration is enabled automatically
when aclient application connects to a server that supports this feature.

Note Command execution time may increase during server migration. Sybase
recommends that you increase the command timeouts accordingly.

81

Implementing advanced features

Connection failover

Connection failover allows a client application to switch to an aternate
Adaptive Server if the primary server becomes unavailable due to an
unplanned event, like power outage or a socket failure. In a cluster
environment, client applications can fail over numerous times to multiple
servers using dynamic failover addresses.

With high availability option enabled, the client application does not need to be
configured to know the possible failover targets. Adaptive Server keeps the
client updated with the best failover list based on cluster membership, logical
cluster usage, and load distribution. During failover, the client refersto the
ordered failover list while attempting to reconnect. If the driver successfully
connectsto a server, the driver internally updates the list of host values based
on the list returned. Otherwise, the driver throws a connection failure
exception.

Enabling connection failover

You can use the connection string to enable connection failover by setting
REQUEST_HA_SESSION to true. For example:

URL="jdbc:sybase:Tds:serverl:portl, server2:port2, ...,
serverN:portN/mydb?REQUEST HA SESSION=true"

where serverl:portl, server2:port2, ..., serverN:portN is the ordered failover
list.

In establishing a connection, jConnect attempts to connect to the first host and
port specified in the failover list. If unsuccessful, goes through the list until a
connection is established or until the end of thelist is reached.

Note Thelist of alternate servers specified in the connection string isused only
duringinitial connection. After the connection isestablished with any available
instance, and if the client supports high availability, the client receives an
updated list of the best possible failover targets from the server. This new list
overrides the specified list.

Using event notification

82

You can use the jConnect event notification feature to have your application
notified when an Open Server procedure is executed.

jConnect for JDBC

CHAPTER 2 Programming Information

Programmers Reference

To use thisfeature, you must use the SybConnection class, which extends the
Connection interface. SybConnection contains aregWatch method for turning
event notification on and aregNowWatch method for turning event notification
off.

Your application must also implement the SybEventHandler interface. This
interface contains one public method, void event(String proc_name, ResultSet
params), which is called when the specified event occurs. The parameters of
the event are passed to event, which tells the application how to respond.

To use event natification in your application, call SybConnection.regwatch() to
register your application in the notification list of aregistered procedure. Use
this syntax:

SybConnection.regWatch(proc_name,eventHdIr,option)
where;

e proc_nameisastring that is the name of the registered procedure that
generates the notification.

e eventHdler isan instance of the SybEventHandler class that you
implement.

e optioniseither NOTIFY_ONCE or NOTIFY_ALWAYS. Use
NOTIFY_ONCE if you want the application to be notified only the first
time a procedure executes. Use NOTIFY _ALWAY Sif you want the
application to be notified every time the procedure executes.

Whenever an event with the designated proc_name occurs on the Open Server,
jConnect callseventHdIr.event from aseparate thread. The event parametersare
passed to eventHdIr.event when it is executed. Because it is a separate thread,
event notification does not block execution of the application.

If proc_nameis not aregistered procedure, or if Open Server cannot add the
client to the notification list, the call to regwatch throws a SQL exception.

To turn off event notification, use this call:

SybConnection.regNoWatch (proc name)

Warning! When you use Sybase event notification extensions, the application
needs to call the close method on the connection to remove a child thread
created by thefirst call to regwatch. Failing to do so may cause the Virtual
Machine to hang when exiting the application.

83

Implementing advanced features

Event notification example

The following example shows how to implement an event handler and then
register an event with an instance of your event handler, once you have a

connection:

public class MyEventHandler implements SybEventHandler

{

84

// Declare fields and constructors, as needed.

public MyEventHandler (String eventname)

{
}

// Implement SybEventHandler.event.
public void event (String eventName, ResultSet params)

{

try

{

}

// Check for error messages received prior to event
// notification.

SQLWarning sglw = params.getWarnings () ;

if sglw != null

{

// process errors, if any

}

// process params as you would any result set with
// one row.
ResultSetMetaData rsmd = params.getMetaData() ;

int numColumns = rsmd.getColumnCount () ;
while (params.next()) // optional
for (int 1 = 1; 1 <= numColumns; i++)

{
System.out.println(rsmd.getColumnName (i) + " =
" + params.getString(i));

}

// Take appropriate action on the event. For example,

// perhaps notify application thread.

}

catch (SQLException sge)

{

// process errors, if any

jConnect for JDBC

CHAPTER 2 Programming Information

}
}
}

public class MyProgram

{

// Get a connection and register an event with an instance
// of MyEventHandler.

Connection conn = DriverManager.getConnection(...);
MyEventHandler myHdlr = new MyEventHandler ("MY EVENT") ;

// Register your event handler.
((SybConnection) conn) .regWatch ("MY EVENT", myHdlr,
SybEventHandler .NOTIFY ALWAYS) ;

conn.regNoWatch ("MY EVENT") ;

conn.close () ;

}

Handling error messages

jConnect providestwo classesfor returning Sybase-specific error information,
SybSQLException and SybSQLWarning, as well as a SybMessageHandler
interface that allows you to customize the way jConnect handles error
messages received from the server.

Handling numeric errors returned as warnings

Programmers Reference

In Adaptive Server12.0 through 12.5, numeric errors are handled by default as
severity 10. A severity-level 10 message is classified as a status information
message, not as an error, and its content is transferred in a SQLWarning object.
The following code excerpt illustrates this processing:

static void processWarnings (SQLWarning warning)

{

if (warning != null)
{
System.out.println ("\n -- Warning received -- \n");
}//end if
while (warning != null)
{
System.out.println ("Message: " +

85

Implementing advanced features

warning.getMessage ()) ;

System.out.println ("SQLState: " +
warning.getSQLState()) ;
System.out.println ("ErrorCode: " +

warning.getErrorCode ()) ;
System.out.println ("------------—---—--——————_—- "
warning = warning.getNextWarning() ;

}//end while

}//end processWarnings

When anumeric error occurs, the ResultSet object returned contains no result
set data, and the relevant information concerning the error must be obtained
from the SQLWarning. Therefore, in aJDBC application, the code that checks
for and processes a SQLWarning should not depend on there being aresult set.
For example, the following code checks for and processes SQLWarning data
both inside and outside the result set processing while loop:

while (rs.next())

{

String value = rs.getString(1l);
System.out.println ("Fetched value: " + value);

// Check for SQLWarning on the result set.
processWarnings (rs.getWarnings()) ;

}//end while
// Check for SQLWarning on the result set.
processWarnings (rs.getWarnings()) ;

Here the code checks for SQLWarning even if there is no result set data
(rs.next() isfalse). The following exampleis output for a program properly
written to detect and report numeric errors. The error isadivision by zero:

-- Warning received --

Message: Divide by zero occurred.
SQLState: 01012
ErrorCode: 3607

Retrieving Sybase-specific error information

jConnect provides an Eedinfo interface that specifies methods for obtaining
Sybase-specific error information. The Eedinfo interface isimplemented in
SybSQLException and SybSQLWarning, which extend the SQLException and
SQLWarning classes.

86 jConnect for JDBC

CHAPTER 2 Programming Information

SybSQLException and SybSQLWarning contain the following methods:

* public ResultSet getEedParams, which returns a one-row result set
containing any parameter values that accompany the error message.

e public int getStatus, which returnsa“1” if there are parameter values,
returnsa“ 0" if there are no parameter values in the message.

e public int getLineNumber, which returns the line number of the stored
procedure or query that caused the error message.

e public String getProcedureName, which returns the name of the procedure
that caused the error message.

* public String getServerName, which returns the name of the server that
generated the message.

e public int getSeverity, which returns the severity of the error message.

e public int getState, which returns information about the internal source of
the error message in the server. (For use by Sybase Technical Support

only.)

e public int getTranState, which returns one of the following transaction
states:

e 0 Theconnectionis currently in an extended transaction.
e« 1 The previous transaction committed successfully.
e 3 Theprevioustransaction aborted.

Some error messages can be SQLException or SQLWarning messages without
being SybSQLException or SybSQLWarning messages. Your application should
check the type of exception it is handling before it downcasts to
SybSQLException or SybSQLWarning.

Customizing error-message handling

Programmers Reference

You can use the SybMessageHandler interface to customize the way jConnect
handles error messages generated by the server. Implementing
SybMessageHandler in your own classfor handling error messages can provide
the following benefits:

e “Universal” error handling

Error-handling logic can be placed in your error-message handler, instead
of being repeated throughout your application.

e “Universal” error logging

87

Implementing advanced features

Your error-message handler can contain the logic for handling al error
logging.
« Remapping of error-message severity, based on application requirements

Your error-message handler can contain logic for recognizing specific
error messages, and downgrading or upgrading their severity based on
application considerations rather than the severity rating of the server. For
exampl e, during acleanup operation that del etes old rows, you might want
to downgradethe severity of amessagethat arow doesnot exist. However,
you may want to upgrade the severity in other circumstances.

Note Error-message handlersimplementing the SybMessageHandler interface
only receive server-generated messages. They do not handle messages
generated by jConnect.

When jConnect receives an error message, it checksto seeif a
SybMessageHandler class has been registered for handling the message. If so,
jConnect invokesthe messageHandler method, which acceptsa SQL exception
asits argument. jConnect then processes the message based on what value is
returned from messageHandler. The error-message handler can:

¢ Return the SQL exception asis.
¢ Return anull. Asaresult, jConnect ignores the message.

¢ CreateaSQL warning from aSQL exception, and returnit. Thisresultsin
the warning being added to the warning-message chain.

e Iftheoriginating messageisaSQL warning, messageHandler can evaluate
the SQL warning as urgent and create and return a SQL exception to be
thrown once control is returned to jConnect.

Installing an error-message handler

88

You caninstall an error-message handler implementing SybMessageHandler by
calling the setMessageHandler method from SybDriver, SybConnection, or
SybStatement. If you install an error-message handler from SybDriver, all
subsequent SybConnection objects inherit it. If you install an error-message
handler from aSybConnection object, it isinherited by all SybStatement objects
created by that SybConnection.

jConnect for JDBC

CHAPTER 2 Programming Information

This hierarchy only applies from the time the error-message handler object is
installed. For example, if you create a SybConnection object called
“myConnection,” and then call SybDriver.setMessageHandler to install an
error-message handler object, “myConnection” cannot use that object.

To return the current error-message handler object, use
getMessageHandler.

Error-message-handler example

import java.io.*;

import java.sql.*;

import com.sybase.jdbcx.SybMessageHandler;
import com.sybase.jdbcx.SybConnection;
import com.sybase.jdbcx.SybStatement;
import java.util.*;

public class MyApp

{

static
static
static
static
static
static
static

public

{

try

{

SybConnection conn = null;
SybStatement stmt = null
ResultSet rs = null;

String user = "guest";
String password = "sybase";
String server = "jdbc:sybase:Tds:192.138.151.39:4444";

final int AVOID SQLE = 20001;

My2App ()

Class.forName ("com. sybase.jdbc4.jdbc.SybDriver") .newInstance () ;
Properties props = new Properties();

props.put ("user", user) ;

props.put ("password", password) ;

conn = (SybConnection)

DriverManager.getConnection (server, props) ;
conn.setMessageHandler (new NoResultSetHandler()) ;

stmt =(SybStatement) conn.createStatement () ;

stmt .executeUpdate ("raiserror 20001 'your error'");

for (SQLWarning sgw = _stmt.getWarnings() ;
sgw != null;
sgw = sgw.getNextWarning()) ;

{

if (sgw.getErrorCode() == AVOID SQLE) ;

Programmers Reference 89

Implementing advanced features

{

System.out.println ("Error" + sgw.getErrorCode ()+
" was found in the Statement’s warning list.");
break;

stmt.close () ;

conn.close() ;

}

catch (Exception e)

{
System.out.println(e.getMessage()) ;
e.printStackTrace () ;

}
}

class NoResultSetHandler implements SybMessageHandler

{

public SQLException messageHandler (SQLException sge)
{
int code = sge.getErrorCode () ;
if (code == AVOID SQLE)
{
System.out.println("User " + user + " downgrading " +
AVOID SQLE + " to a warning") ;
sge = new SQLWarning (sge.getMessage (),
sge.getSQLState (), sge.getErrorCode ()) ;
}

return sqge;

}
}

public static void main(String args|[])

{

new MyApp () ;

}

90 jConnect for JDBC

CHAPTER 2 Programming Information

Using password encryption

By default, jConnect for JDBC sends plain text passwords over the network to
Adaptive Server for authentication. However, jConnect also supports
symmetrical and asymmetrical password encryption and can encrypt
passwords before they are sent over the network. The symmetrical encryption
mechani sm uses the same key to encrypt and decrypt the password whereas an
asymmetrical encryption mechanism uses one key (the public key) to encrypt
the password and another key (the private key) to decrypt the password.
Because the private key is not shared across the network, asymmetrical
encryption is considered more secure than symmetrical encryption. When
password encryption is enabled, and the server supports asymmetric
encryption, this format is used instead of symmetric encryption.

Note To use the asymmetric password encryption feature, you must have a
server that supports password encryption, such as Adaptive Server 15.0.2.

Enabling password encryption

The ENCRY PT_PASSWORD connection property specifies whether the
password is transmitted in encrypted format. This same property is used to
enable asymmetric key encryption. When password encryption is enabled and
the server supports asymmetric key encryption, thisformat is used instead of
the symmetric key encryption.

Set the ENCRY PT_PASSWORD connection property to true to enable
password encryption. The default valueis false.

Note If the server is configured to require clients to use an encrypted
password, entering a plain text password causes user login to fail.

Enabling login retry with a clear text password

Programmers Reference

Server login fails when the ENCRY PT_PASSWORD property is set to True,
and the server does not support password encryption. To use a clear text
password for servers that do not support password encryption, set the
RETRY_WITH_NO_ENCRYPTION connection property to True.

91

Implementing advanced features

When both ENCRY PT_PASSWORD and
RETRY_WITH_NO_ENCRYPTION properties are set to True, jConnect first
logs in using the encrypted password. I login fails, jConnect logsin using the
clear text password.

Setting up the Java Cryptography Extension (JCE) provider

The asymmetric password encryption mechanism uses RSA encryption
algorithms to encrypt the password being transmitted. To perform this RSA
encryption, configure your JRE with a suitable Java Cryptography Extension
(JCE) provider. The configured JCE provider should be capable of supporting
the “RSA/NONE/OAEPWIthSHA1AndM GF1Padding” transformation.

The JCE provider included with your JRE may not be capable of handling the
“RSA/NONE/OAEPWIthSHA 1ANndM GF1Padding” transformation. To use
the extended password encryption feature in this case, configure an external
JCE provider that includes support for this transformation. If the JCE cannot
handl e the required transformation, you receive an error message at login.

You can usethe JCE_PROVIDER_CLASS connection property to specify the
JCE provider. There are a number of commercial and open source JCE
providersthat you can choose from. For example, the “Bouncy Castle Crypto
APIsfor Java’ isapopular open source Java JCE provider. If you choose not
to specify the JCE_PROVIDER_CLASS property, jConnect attempts to use
any bundled JCE.

Using GSE-J to perform RSA password encryption

You can use the Certicom Security Builder GSE-J to perform RSA password
encryption. Certicom Security Builder GSE-Jis a FIPS 140-2 compliant JCE
provider that isincluded in the jConnect driver. This provider contains two
JAR files, EccpressoFIPSjar and EccpressoFIPSJca.jar, that are both
accessible from the $JDBC_HOME/classes and the
$IDBC_HOME/devclasses directories.

92 jConnect for JDBC

CHAPTER 2 Programming Information

To use the Certicom Security Builder GSE-J provider, set the value of
JCE_PROVIDER_CLASS connection property to
“com.certicom.ecc.jcae.Certicom”.

Note If you enable password encryption by setting the

ENCRY PT_PASSWORD connection property but not the
JCE_PROVIDER_CLASS connection property, jConnect attempts to locate
and load the Certicom Security Builder GSE-J provider. This succeeds only if
EccpressoFIPSjar and EccpressoFIPSIca.jar are located in the same
directory asthe jConnect JAR file—jconnd.jar or jconndd.jar— in use.

Specifying custom JCE provider

Programmers Reference

To specify a custom JCE provider:

e Setthe JCE_PROVIDER_CLASS property to the fully qualified class
name of the provider you want to use. For example, to use the Bouncy
Castle JCE:

String url = "jdbc:sybase:Tds:myserver:3697";
Properties props = new Properties();

props.put ("ENCRYPT PASSWORD ", “true”);

props.put ("JCE_PROVIDER CLASS",
"org.bouncycastle.jce.provider.BouncyCastleProvider

")

/* Set up additional connnection properties as
needed */

props.put ("user", "xyz");

props.put ("password", "123");

/* get the connection */
Connection con = DriverManager.getConnection (url,

props) ;
e Configurethe JCE provider beforeusingit. Thiscan be done by one of two
ways:
e Copy the JCE provider jar fileinto the JRE standard extension
directory:

e For UNIX platforms:
${JAVA_HOME}/jreflib/ext

e For Windows:
%JAVA HOME%\jrellib\ext

93

Implementing advanced features

e If you cannot copy the JCE jar file to the appropriate directory, refer
to the JCE Reference Guide at
http://docs.oracle.com/javase/1.4.2/docs/guide/security/jce/JCERefGuide.ht
ml for instructions on setting up an external JCE provider.

If jConnect cannot use the specified JCE provider, it attempts to use the JCE
providers configured in the JRE security profile. If no other JCE providersare
configured, or if configured providers do not support the required
transformation and password encryption is enabled, the connection fails.

Storing Java objects as column data in a table

94

Some database products enable you to directly store Java objects as column
datain adatabase. In such databases, Java classes are treated as datatypes, and
you can declare a column with a Java class as its datatype.

jConnect supports storing Java objects in a database by implementing the
setObject methods defined in the PreparedStatement interface and the getObject
methods defined in the CallableStatement and ResultSet interfaces. Thisallows
you to use jConnect with an application that uses native JDBC classes and
methods to directly store and retrieve Java objects as column data.

Note To use getObject and setObject, set the jConnect version to
com.sybase.jdbcx.SybDriver.VERSION_4 or later. See“Using JCONNECT _
VERSION” on page 6.

The following sections describe the requirements and procedures for storing
objectsin atable and retrieving them using JDBC with jConnect:

* Prerequisites for storing java objects as column data
¢ Sending Java objects to a database

¢ Receiving Java objects from the database

Note Adaptive Server version 12.0 and later and SQL Anywhereversion 6.0.x
and later can store Java objects in atable, with some limitations. See the
jConnect for JIDBC Release Bulletin for more information.

jConnect for JDBC

CHAPTER 2 Programming Information

Prerequisites for storing java objects as column data

To store Java objects belonging to a user-defined Java classin a column, three
reguirements must be met:

e Theclassmustimplement thejava.io.Serializable interface. Thisisbecause
jConnect uses native Java serialization and deserialization to send objects
to a database and receive them back from the database.

e Theclassdefinition must be installed in the destination database, or you
must be using the DynamicClassLoader (DCL) to load aclassdirectly from
an SQL Anywhere or an Adaptive Server server and use it asif it were
present in the local CLASSPATH. See “Using dynamic classloading” on
page 98 for more information.

e Theclient system must have the class definition in a.classfilethat is
accessible through the local CLASSPATH environment variable.

Sending Java objects to a database

To send an instance of a user-defined class as column data, use one of the
following setObject methods, as specified in the PreparedStatement interface:

void setObject (int parameterIndex, Object x, int targetSqglType,
int scale) throws SQLException;

void setObject (int parameterIndex, Object x, int targetSqglType)
throws SQLException;

void setObject (int parameterIndex, Object x) throws SQLException;

In jConnect, to send a Java object, you can use the
java.sql.Types.JAVA_OBJECT target sgl.Type, Or you can use
java.sql.Types.OTHER.

The following example defines an Address class, shows the definition of a
Friends table that has an Address column whose datatype is the Address class,
and inserts arow into the table.

public class Address implements Serializable
{

public String streetNumber;

public String street;

public String apartmentNumber;

public String city;

public int zipCode;

//Methods

Programmers Reference 95

Implementing advanced features

/*
* %
* %
* %
* %

* %

*/
//

This code assumes a table with the following structure
Create table Friends:
(firstname varchar (30) ,
lastname wvarchar (30),
address Address,
phone varchar (15))

Connect to the database containing the Friends table.

Connection conn =

//

DriverManager.getConnection ("jdbc:sybase:Tds:localhost:5000",

"username", "password") ;

Create a Prepared Statement object with an insert statement

//for updating the Friends table.
PreparedStatement ps = conn.prepareStatement ("INSERT INTO

//
//

ps.

/7

ps.

Friends values (?,?,?,?)");

Now, set the values in the prepared statement object, ps.
set firstname to "Joan."
setString (1, "Joan");

Set last name to "Smith."
setString (2, "Smith") ;

Assuming that we already have "Joan address" as an instance
of Address, use setObject (int parameterIndex, Object x) to
set the address column to "Joan address."

.setObject (3, Joan_ address) ;

Set the phone column to Joan’s phone number.

.setString (4, "123-456-7890");

Perform the insert.

.executeUpdate () ;

Receiving Java objects from the database

A client JDBC application can receive a Java object from the database in a
result set or as the value of an output parameter returned from a stored

procedure.

If aresult set contains a Java object as column data, use one of the following
getObject methods in the ResultSet interface to retrieve the object:

Object getObject (int columnIndex) throws SQLException;

96

jConnect for JDBC

CHAPTER 2 Programming Information

Object getObject (String columnName) throws SQLException;

If an output parameter from a stored procedure contains a Java object, use the
following getObject method in the CallableStatement interface to retrieve the
object:

Object getObject (int parameterIndex) throws SQLException;

/-k
* %
* %
* %

* %

*/

The following example illustrates the use of

ResultSet.getObject(int parameterindex) to assign an object received in aresult
set to a class variable. The example uses the Address class and Friends table
used in the previous section and presents a simple application that prints a
name and address on an envelope.

This application takes a first and last name, gets the
specified person’s address from the Friends table in the
database, and addresses an envelope using the name and
retrieved address.

public class Envelope

{

Connection conn = null;
String firstName = null;
String lastName = null;
String street = null;
String city = null;
String zip = null;

public static void main(String[] args)

{

if (args.length < 2)

{

System.out.println ("Usage: Envelope <firstNames>
<lastName>") ;

System.exit (1) ;

}

// create a 4" x 10" envelope

Envelope e = new Envelope (4, 10);

try

{
// connect to the database with the Friends table.
conn = DriverManager.getConnection (

"jdbc:sybase:Tds:localhost:5000", "username",
"password") ;

// look up the address of the specified person
firstName = args|[0];

Programmers Reference 97

Implementing advanced features

lastName = args[1];

PreparedStatement ps = conn.prepareStatement (
"SELECT address FROM friends WHERE " +
"firstname = ? AND lastname = ?");

ps.setString(l, firstName) ;

ps.setString (2, lastName) ;

ResultSet rs = ps.executeQuery() ;

if (rs.next())

{
Address a = (Address) rs.getObject(1l);
// set the destination address on the envelope
e.setAddress (firstName, lastName, a);

}

conn.close() ;

}

catch (SQLException sge)
{
sge.printStackTrace () ;
System.exit (2) ;
}
// if everything was successful, print the envelope
e.print () ;

}

private void setAddress (String fname, String lname, Address a)
street = a.streetNumber + " " + a.street + " " +
a.apartmentNumber;
city = a.city;
zip = "" + a.zipCode;

}

private void print ()

{

// Print the name and address on the envelope.

You can find a more detailed example of HandleObject.java in the sample2
subdirectory under your jConnect installation directory.

Using dynamic class loading

98

SQL Anywhere and Adaptive Server alow you to specify Java classes as:
¢ Datatypes of SQL columns

jConnect for JDBC

CHAPTER 2 Programming Information

« Datatypes of Transact-SQL variables
» Default values for SQL columns

In earlier versions, only classes that appeared in the jConnect CLASSPATH
were accessible, that is, if ajConnect application attempted to access an
instance of a class that was not in the local CLASSPATH, a
java.lang.ClassNotFound exception would result.

jConnect version 6.05 and later implements DynamicClassLoader (DCL) to
load aclassdirectly from an SQL Anywhere or Adaptive Server server and use
itasif it were present in the local CLASSPATH.

All security features present in the superclass are inherited. The loader
delegation model implemented in Java 2 is followed—first jConnect attempts
toload arequested classfrom the CLASSPATH; if that fails, jConnect triesthe
DynamicClassLoader.

See Java in Adaptive Server for more detailed information about using Java
and Adaptive Server.

Using DynamicClassLoader
To use DCL functionality:

1 Create and configure a class |oader. The code for your jConnect
application should look similar to this:

Properties props = new Properties() ;

// URL of the server where the classes live.
String classesUrl = "jdbc:sybase:Tds:myase:1200";

// Connection properties for connecting to above server.
props.put ("user", "grinch");
props.put ("password", "meanone") ;

// Ask the SybDriver for a new class loader.
DynamicClassLoader loader = driver.getClassLoader (classesUrl, props);

2 Usethe CLASS LOADER connection property to make the new class
loader available to the statement that executes the query. Once you create
the class |oader, pass it to subsequent connections as shown (continuing
from the code example in step 1):

// Stash the class loader so that other connection(s)
// can know about it.
props.put ("CLASS LOADER", loader) ;

Programmers Reference 99

Implementing advanced features

100

// Additional connection properties
props.put ("user", "joeuser");
props.put ("password", "joespassword") ;

// URL of the server we now want to connect to.
String url = "jdbc:sybase:Tds:jdbc.sybase.com:4446";

// Make a connection and go.
Connection conn = DriverManager.getConnection (url, props) ;

Assume the Java class definition is as follows:

class Addr {
String street;
String city;
String state;

}

Assume the SQL table definition is as follows:

create table employee (char(100) name, int empid, Addr address)

3 Usethefollowing client-side code in the absence of an Addr classin the

client application CLASSPATH:

Statement stmnt = conn.createStatement () ;
// Retrieve some rows from the table that has a Java class
// as one of its fields.

ResultSet rs = stmnt.executeQuery (
"select * from employee where empid = ‘19'");
if (rs.next() {

// Even though the class is not in our class path,
// we should be able to access its instance.
Object obj = rs.getObject ("address") ;

// The class has been loaded from the server, so let's take a look.

Class ¢ = obj.getClass() ;

// Some Java Reflection can be done here to access the fields of obj.

TheCLASS_L OADER connection property providesaconvenient mechanism

for sharing one class loader among several connections.

jConnect for JDBC

CHAPTER 2 Programming Information

You should ensurethat sharing aclass|oader across connections does not result
in class conflicts. For example, if two different, incompatible instances of class
org.foo.Bar exist in two different databases, problems can arise if you use the
same | oader to access both classes. The first classis loaded when examining a
result set from the first connection. When it istimeto examine aresult set from
the second connection, the class is already |oaded. Consequently, the second
classis never loaded, and there is no direct way for jConnect to detect this
situation.

However, Java has a built-in mechanism for ensuring that the version of aclass
matches the version information in a deserialized object. The above situation
is at least detected and reported by Java.

Classes and their instances do not need to reside in the same database or server,
but there is no reason why both the loader and subsequent connections cannot
refer to the same database or server.

Using deserialization

Thefollowing exampleillustrates how to deserialize an object fromalocal file.
The serialized object is an instance of a class that resides on a server and does
not exist in the CLASSPATH.

SybResultSet.getObject() makes use of DynamicObjectinputStream, whichisa
subclass of ObjectinputStream that loads a class definition from
DynamicClassLoader, rather than the default system (“boot”) class |oader.

// Make a stream on the file containing the

//serialized object.

FileInputStream fileStream = new FileInputStream("serFile");
// Make a "deserializer" on it. Notice that, apart

//from the additional parameter, this is the same

//as ObjectInputStreamDynamicObjectInputStream

stream = new DynamicObjectInputStream(fileStream, loader) ;
// As the object is deserialized, its class is

//retrieved through the loader from our server.

Object obj = stream.readObject () ;stream.close() ;

Preloading .jar files

jConnect version 6.05 or later has a connection property called
PRELOAD_JARS. When defined asacomma-delimited list of .jar file names,
the .jar files areloaded in their entirety. In this context, “JAR” refersto the
“retained JARname” used by the server. Thisisthe .jar file name specified in
the install Java program, for example:

Programmers Reference 101

Implementing advanced features

install java new jar 'myJarName' from file '/tmp/mystuff.jar’'

Advanced features

If you set PRELOAD_JARS, the .jar files are associated with the class | oader,
so it is unnecessary to preload them with every connection. You should only
specify PRELOAD_JARSfor one connection. Subsequent attemptsto preload
the same .jar files may result in performance problems asthe .jar file datais
retrieved from the server unnecessarily.

Note SQL Anywhere cannot return a.jar file as one entity, so jConnect
iteratively retrieves each classin turn. However, Adaptive Server retrieves the
entire .jar file and loads each class that it contains.

There are various public methods in DynamicClassLoader. For more
information, see the javadocs information in JDBC_HOME/docs/en/javadocs.

Additional features include the ahility to keep the database connection of a
loader “alive” when a series of class|oads is expected, and to explicitly load a
single class by name.

Public methods inherited from java.lang.ClassLoader can also be used.
Methods in java.lang.Class that deal with loading classes are also available;
however, use these methods with caution because some of them make
assumptions about which class loader gets used. In particular, you should use
the 3-argument version of Class.forName, otherwise the system (“boot”) class
loader is used. See “Handling error messages’ on page 85.

JDBC 4.0 specifications support

102

These JDBC 4.0 specifications are supported:
¢ Connection management

e Automatic SQL driver loading

» Database metadata

e National character set conversion

e Wrapper pattern

jConnect for JDBC

CHAPTER 2 Programming Information

* Scalar functions CHAR_LENGTH, CHARACTER_LENGTH,
CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP,
EXTRACT, and OCTET_LENGTH, POSITION

See the Oracle Technology Network for Java at
http://www.oracle.com/technetwork/index.html for information about the JDBC
4.0 specifications.

JDBC 3.0 specifications support

Savepoint support

Using Savepoints in
your transactions

Setting and rolling
back to a Savepoint

Releasing a Savepoint

Programmers Reference

This section describesthe JDBC 3.0 featuresthat are supported in the current release of
jConnect 7.0.

Adds the Savepoint interface, which contains methods to set, release, or roll
back atransaction to designated savepoints.

The transaction support in JDBC 2.0 allowed you to have control over a
transaction and roll back every change in atransaction. In JDBC 3.0, you are
given more control with savepoints: the Savepoint interface allows you to
partition a transaction into logical breakpoints, providing control over how
much of the transaction gets rolled back.

The JDBC 3.0 API adds the method Connection.setSavepoint, which setsa
savepoint within the current transaction and returns a Savepoint object. The
Connection.rollback method is overloaded to take a Savepoint object argument.

The Connection.releaseSavepoint method takes a Savepoint object as a
parameter and removes it from the current transaction. After a Savepoint has
beenreleased, if youtry toreferenceit in arollback operation, a SQL Exception
occurs.

Any savepoints that you create in a transaction are automatically released and
become invalid when the transaction is committed or when the entire
transaction isrolled back. If you roll atransaction back to a savepoint, it
automatically releases and invalidates any other savepoints that were created
after the savepoint in question.

Note You can use the DatabaseMetaData.supportsSavepoints method to
determine whether a JDBC API implementation supports savepoints.

103

Implementing advanced features

Retrieval of parameter metadata

Addstheinterface ParameterMetaData, which describes the number, type, and
properties of parameters to prepared statements, and supports the new and
modified DatabaseMetaData methods.

Retrieval of auto-generated keys

Determine the value
of a generated key

Adds away to retrieve values from columns that contain automatically
generated values. JDBC 3.0 addresses the common need to obtain the value of
an auto-generated or auto-incremented key.

Toinform the driver that you want to retrieve the auto-generated keys, passthe
congtant Statement.RETURN_GENERATED_KEYS as the second parameter of
the Statement.execute() method. After you have executed the statement, call
Statement.getGeneratedKeys() to retrievethe generated keys. Theresult set will
contain arow for each generated key retrieved.

Note Adaptive Server cannot return aresult set of generated keys. If you
execute a batch of insert commands, invoking Statement.getGeneratedKeys()
will return the value of the last generated key only.

For moreinformation about retrieving auto-generated keys, including asample
code, search for “retrieving automatically generated keys’ on the Oracle Java
Web site.

Ability to have multiple open ResultSet objects

104

Adds getMoreResults(int), which takes an argument that specifies whether
ResultSet objects returned by a Statement object should be closed before
returning any subsequent ResultSet objects.

As apart of the changes, the JIDBC 3.0 specification allows the Statement
interface to support multiple open ResultSets, which removes the limitation of
the JDBC 2 specification that statements returning multiple results must have
only one ResultSet open at any given time. To support multiple open results,
the Statement interface adds an overloaded version of the method
getMoreResults(). The getMoreResults(int) method takes an integer flag that
specifiesthe behavior of previously opened ResultSets when the getResultSet()
method is called. The interface defines the flags as follows:

e CLOSE ALL_RESULTS-all previously opened ResultSet objects are
closed when calling getMoreResults().

jConnect for JDBC

CHAPTER 2 Programming Information

e CLOSE _CURRENT_RESULT —the current ResultSet object are closed
when calling getMoreResults().

e« KEEP_CURRENT_RESULT - the current ResultSet object is not closed
when calling getMoreResults().

Passing parameters to CallableStatement objects by name

Adds methods to allow a string to identify the parameter to be set for a
CallableStatement object.

You can use the CallableStatement interface to specify parameters by their
names and not the previous method of specifying the parameter'sindex. You
will find this useful when a procedure has many parameters with default
values. You can use named parameters to specify only the values that have no
default value.

Holdable cursor support

Programmers Reference

Adds the ahility to specify the holdability of a ResultSet object. A holdable
cursor, or result, is one that does not automatically close when the transaction
that contains the cursor is committed. JDBC 3.0 adds support for specifying
cursor holdability. For you to specify the holdability of your ResultSet, you
must do so when you prepare a statement using the createStatementy(),
prepareStatement(), or prepareCall() methods. The holdability may be one of
the following constants:

e HOLD_CURSORS OVER COMMIT — ResultSet objects (cursors) are
not closed; they are held open when a commit operation isimplicitly or
explicitly performed.

e CLOSE CURSORS AT _COMMIT — ResultSet objects (cursors) are
closed when a commit operation isimplicitly or explicitly performed.

If you close acursor when atransaction iscommitted, it usually resultsin better
performance. Unless you require the cursor after the transaction, it is
recommended that you close the cursor when the commit operation is carried
out. Because the specification does not define the default holdability of a
ResultSet, its behavior will depend on the implementation.

105

Implementing advanced features

JDBC 2.0 optional package extensions support

The JDBC 2.0 Optional Package (formerly the JDBC 2.0 Sandard Extension
API) defined several featuresthat JDBC 2.0 drivers could implement. jConnect
version 6.05 and later have implemented the following optional package
extension features:

¢ JINDI for naming databases
(works with any Sybase DBM S supported by jConnect)

¢ Connection pooling
(works with any Sybase DBM S supported by jConnect)

« Distributed transaction management support works only with Adaptive
Server.

Note Sybase recommends that you use JNDI 1.2, which is compatible with
Java1.1.6 and later.

JNDI for naming databases

Reference

Related interfaces

106

The JDBC 2.0 Optional Package (formerly the JDBC 2.0 Sandard Extension
API), Chapter 5, “INDI and the JDBC API.”

* javax.sqgl.DataSource
* javax.naming.Referenceable
* javax.naming.spi.ObjectFactory

Thisfeature provides JDBC clientswith an alternativeto the standard approach
for obtaining database connections. Instead of invoking Class.forName
(“com.sybase.jdbc4.jdbc.SybDriver”), then passing a JDBC URL to the
DriverManager's getConnection() method, clients can access aJNDI name
server using alogical name to retrieve ajavax.sql.DataSource object. This
object is responsible for loading the driver and establishing the connection to
the physical database it represents. The client code is simpler and reusable
because the vendor-specific information has been placed within the
DataSource object.

jConnect for JDBC

CHAPTER 2 Programming Information

Usage

la. Configuration by
administrator: LDAP

The Sybase implementation of the DataSource object is
com.sybase.jdbcx.SybDataSource (See the javadocs for details). This
implementation supports the following standard properties using the design
pattern for JavaBean components:

e databaseName

e dataSourceName
* description

* networkProtocol
e password

e portNumber

* serverName

® user

Note roleName is not supported.

jConnect provides an implementation of the javax.naming.spi.ObjectFactory
interface so the DataSource object can be constructed from the attributes of a
name server entry. When given ajavax.naming.Reference, or a
javax.naming.Name and a javax.naming.DirContext, this factory can construct
com.sybase.jdbcx.SybDataSource objects. To use this factory, set the
java.naming.object.factory system property to include
com.sybase.jdbc4.SybObjectFactory.

You can use DataSource in different ways, in different applications. All options
are presented in the following subsections with some code examples to guide
you through the process. For more information, see the JDBC 2.0 Optional
Package (formerly the JDBC 2.0 Sandard Extension API), and the JNDI
documentation on the Oracle Java Web site.

jConnect has supported LDAP connectivity since version 4.0. As aresult, the
recommended approach, which requires no custom software, is to configure
DataSources as LDAP entries using the LDAP Data Interchange Format
(LDIF). For example:

dn:servername:myASE, o=MyCompany, c=US
1.3.6.1.4.1.897.4.2.5:TCP#1# mymachine 4000
1.3.6.1.4.1.897.4.2.10:PACKETSIZE=1024&user=me&password=secret

Programmers Reference

107

Implementing advanced features

1.3.6.1.4.1.897.4.2.11:userdb

1b. Access by client Thisisthe typical JDBC client application. The only differenceisthat you
access the name server to obtain areference to a DataSource object, instead of
accessing the DriverManager and providing aJDBC URL. Once you obtain the
connection, theclient codeisidentical to any other JDBC client code. The code
isvery generic and references Sybase only when setting the object factory
property, which can be set as part of the environment.

The jConnect installation contains the sample program
sample2/SmpleDataSource.java to illustrate the use of DataSource. This
sampleisprovided for reference only, that is, you cannot run the sample unless
you configure your environment and edit the sample appropriately.
SmpleDataSource.java contains the following critical code:

import javax.naming.*;
import javax.sqgl.*;
import java.sqgl.*;

// set necessary JNDI properties for your environment (same as above)
Properties jndiProps = new Properties();

// used by JNDI to build the SybDataSource
jndiProps.put (Context .OBJECT FACTORIES,
"com.sybase.jdbc4.jdbc.SybObjectFactory") ;

// nameserver that JNDI should talk to
jndiProps.put (Context .PROVIDER URL, "ldap: some_ ldap server:238/" +
"o=MyCompany, c=Us") ;

// used by JNDI to establish the naming context
jndiProps.put (Context . INITIAL CONTEXT FACTORY,
"com.sun.jndi.ldap.LdapCtxFactory") ;

// obtain a connection to your name server

Context ctx = new InitialContext (jndiProps) ;

DataSource ds = (DataSource) ctx.lookup ("servername=myASE") ;

// obtains a connection to the server as configured earlier.

// in this case, the default username and password will be used

Connection conn = ds.getConnection() ;

// do standard JDBC methods

108 jConnect for JDBC

CHAPTER 2 Programming Information

Explicitly passing the Properties to the InitialContext constructor isnot required
if the properties have already been defined within the virtual machine, that is,
passed when Java was either set as part of the browser properties, or by using
the following:

java -Djava.naming.object.factory=com.sybase.jdbc4.jdbc.SybObjectFactory

See your Java VM documentation for more information about setting
environment properties.

2a. Programmatic This phase is typically done by the person who performs database system

configuration administration or application integration for their company. The purposeisto
define a data source, then deploy it under alogical name to a name server. If
the server needs to be reconfigured (for example, moved to another machine,
port, and so on), then the administrator runsthis configuration utility (outlined
as follows) and reassigns the logical name to the new data source
configuration. Asaresult, the client code does not change, since it knows only
the logical name.

import javax.sqgl.*;
import com.sybase.jdbcx.*;

// create a SybDataSource, and configure it

SybDataSource ds = new com.sybase.jdbc4.jdbc.SybDataSource() ;

ds.setUser ("my username") ;

ds.setPassword ("my password") ;

ds.setDatabaseName ("my favorite db");

ds.setServerName ("db_machine") ;

ds.setPortNumber (4000) ;

ds.setDescription ("This DataSource represents the Adaptive Server
Enterprise server running on db machine at port 2638. The default
username and password have been set to 'me' and 'mine' respectively.
Upon connection, the user will access the my favorite db database on
this server.");

Properties props = newProperties()

props.put ("REPEAT READ", "false");

props.put ("REQUEST HA SESSION", "true");

ds.setConnectionProperties (props) ;

// store the DataSource object. Typically this is

// done by setting JNDI properties specific to the

// type of JNDI service provider you are using.

// Then, initialize the context and bind the object.

Context ctx = new InitialContext () ;

ctx.bind("java:comp/env/jdbc/myASE", ds);

Programmers Reference 109

Implementing advanced features

2b. Access by client

Onceyou set up your DataSource, you decide where and how you want to store
the information. To assist you, SybDataSource is both java.io.Serializable and
javax.naming.Referenceable, but it is still up to the administrator to determine
how the datais stored, depending on what service provider you are using for
JNDI.

The client retrieves the DataSource object by setting its INDI properties the
same way the DataSource was deployed. The client needs to have an object
factory available that can transform the object asit is stored (for example,
serialized) into a Java object.

Context ctx = new InitialContext () ;

DataSource ds =
Connection conn

Connection pooling

Reference

Related interfaces

Overview

110

(DataSource) ctx.lookup ("java:comp/env/jdbc/myASE") ;
= ds.getConnection() ;

The JDBC 2.0 Optional Package (formerly the JDBC 2.0 Sandard Extension
API), Chapter 6, “Connection Pooling.”

e javax.sgl.ConnectionPoolDataSource

e javax.sqgl.PooledConnection

Traditional database applications create one connection to a database that you
use for each session of an application. However, a Web-based database
application may need to open and close a new connection several times when
using the application.

An efficient way to handle Web-based database connectionsisto use
connection pooling, which maintains open database connections and manages
connection sharing across different user requests to maintain performance and
to reduce the number of idle connections. On each connection request, the
connection pool first determines if there is an idle connection in the pooal. If
thereis, the connection pool returns that connection instead of making a new
connection to the database.

jConnect for JDBC

CHAPTER 2 Programming Information

Programmers Reference

The com.sybase.jdbc4.jdbc.ConnectionPoolDataSource classis provided to
interact with connection pooling implementations. When you use
ConnectionPoolDataSource, pool implementations listen to the
PooledConnection. The implementation is notified when you close the
connection, or if you have an error that destroys the connection. At this point,
the pool implementation decides what to do with the PooledConnection.

Without connection pooling, atransaction:
Creates a connection to the database.
Sends the query to the database.

Gets back the result set.

Displays the result set.

g h W N P

Destroys the connection.

With connection pooling, the sequence looks more like this;

Sees if an unused connection exists in the “pool” of connections.
If so, usesit; otherwise creates a new connection.

Sends the query to the database.

Gets back the result set.

Displays the result set.

o o0~ WN P

Returnsthe connection to the “pool.” The user still calls“close()”, but the
connection remains open, and the pooal is notified of the close request.

It isless costly to reuse a connection than to create a new one every time a
client needs to establish a connection to a database.

To enable athird party to implement the connection pool, the jConnect
implementation has the ConnectionPoolDataSource interface produce
PooledConnections, similar to the way the DataSource interface produces
Connections.

The pool implementation creates “real” database connections, using the
getPooledConnection() methods of ConnectionPoolDataSource. Then, the pool
implementation registersitself as alistener to the PooledConnection.

Currently, when a client requests a connection, the pool implementation
invokes getConnection() on an available PooledConnection. When the client
finisheswith the connection and callsclose, the pool implementationisnotified
through the ConnectionEventListener interface that the connection is free and
available for reuse.

111

Implementing advanced features

Configuration by
administrator: LDAP

The pool implementation is also notified through the ConnectionEventListener
interface if the client somehow corrupts the database connection, so that the
pool implementation can remove that connection from the pool.

For more information, refer to Appendix B in the JDBC 2.0 Optional Package
(formerly the JDBC 2.0 Sandard Extension API).

This approach is the same as “ 1a. Configuration by administrator: LDAP”
described in “INDI for naming databases,” except that you enter an additional
line to your LDIF entry. In the following example, the added line of code is
bolded for your reference.

dn:servername=myASE, o=MyCompany, c=US

1

R R

Access by middle-tier
clients

.3.6.1.4.1.897.4.2.5: TCP#1# mymachine 4000
.3.6.1.4.1.897.4.2.10:PACKETSIZE=1024&user=me&password=secret
.3.6.1.4.1.897.4.2.11:usexrdb
.3.6.1.4.1.897.4.2.18:ConnectionPoolDataSource

Thisprocedureinitializesthree properties (INITIAL_CONTEXT_FACTORY,
PROVIDER_URL, and OBJECT_FACTORIES as shown on page 78), and
retrieves a ConnectionPoolDataSource object. For a more complete code
exampl e, see sample2/S mpleConnectionPool.java. The fundamental
differenceis:

ConnectionPoolDatabase cpds = (ConnectionPoolDataSource)
ctx.lookup ("servername=myASE") ;
PooledConnection pconn = cpds.getPooledConnection() ;

Distributed transaction management support

Reference

Related interfaces

112

This feature provides a standard Java API for performing distributed
transactions with either Adaptive Server.

Note Thisfeatureisdesigned for usein alarge multitier environment.

See Chapter 7, “ Distributed Transactions,” in the JDBC 2.0 Optional Package
(formerly the JDBC 2.0 Sandard Extension API).

e javax.sql.XADataSource

jConnect for JDBC

CHAPTER 2 Programming Information

* javax.sgl.XAConnection

* javax.transaction.xa.XAResource

Background and system requirements

» BecausejConnect is communicating directly with the resource manager
within Sybase Adaptive Server version 12.0 and later, theinstall ation must
have Distributed Transaction Management support.

e Any user who wants to participate in a distributed transaction must have
the “dtm_tm_rol€” granted, or the transactions fail.

* To usedistributed transactions, you must install the stored proceduresin
the /sp directory. Refer to “Installing Stored Procedures’ in Chapter 1 of
the jConnect for JDBC Installation Guide.

Figure 2-2: Distributed transaction management
support with version 12.x

Middle-tier
components
JTA
i TDS
Client _ ASE 12.x
application jConnect
DTM
Configuration by This approach is the same as “ 1a. Configuration by administrator: LDAP”
administrator: LDAP described in “INDI for naming databases’ on page 106, except that you enter

an additional lineto the LDIF entry. In the following example, the added line
of codeisdisplayed in bold.

dn:servername:myASE, o=MyCompany, c=US

.1.4.1.897.4.2.5:TCP#1# mymachine 4000
.1.4.1.897.4.2.10:PACKETSIZE=1024&user=me&password=secret
.1.4.1.897.4.2.11:usexdb

.1.4.1.897.4.2.18:XADataSource

Access by middle-tier Thisprocedureinitializesthree properties (INITIAL_CONTEXT_FACTORY,
clients PROVIDER_URL, and OBJECT_FACTORIES), and retrieves a
XADataSource object. For example:

R
W www
o o o o

XADataSource xads = (XADatasource) ctx.lookup ("servername=myASE") ;
XAConnection xaconn = xads.getXAConnection() ;

Programmers Reference 113

Restrictions on and interpretations of JDBC standards

or override the default settings for the user name and password:

XADataSource xads = (XADatasource) ctx.lookup ("servername=myASE") ;
XAConnection xaconn = xads.getXAConnection ("my username","my password");

Restrictions on and interpretations of JDBC standards

This section discusses how the jConnect implementation of JDBC deviates
from the JDBC standards. The following topics are covered:

e Unsupported JDBC 4.0 specification requirements

e Using Connection.isClosed and IS CLOSED_TEST
e Using Statement.close with unprocessed results

¢ Making adjustments for multithreading

e Using ResultSet.getCursorName

* Executing stored procedures

Unsupported JDBC 4.0 specification requirements
These are not supported in this release:
e javasgl.RowlID
e XML APIsintroduced in JDBC 4.0

Using Connection.isClosed and IS CLOSED_TEST
According to section 11.1 of the JIDBC 2.1 specification:

“The Connection.isClosed method is only guaranteed to return true after
Connection.close has been called. Connection.isClosed cannot be called, in
general, to determine if a database connection isvalid or invalid. A typical
client can determine that a connection isinvalid by catching the exception that
is thrown when an operation is attempted.”

114 jConnect for JDBC

CHAPTER 2 Programming Information

jConnect offers adefault interpretation of the isClosed method that is different
from the behavior that is defined in the spec. When you call
Connection.isClosed, jConnect first verifies that Connection.close has been
called on this connection. If close has been called, jConnect returns true for
isClosed.

However, if Connection.close has not been called, jConnect next tries to
execute the sp_mda stored procedure on the database. The sp_mda stored
procedure is part of the standard metadata that jConnect users must install
when they use jConnect with a database.

The purpose of calling sp_mda is so that jConnect can try to execute a
procedure that is known (or at |east, expected) to reside on the database server.
If the stored procedure executes normally, then jConnect returns false for
isClosed because we have verified that the database connection isvalid and
working. However, if the call to sp_mda resultsin a SQLException being
thrown, jConnect catches the exception and returnstrue for isClosed because it
appears that there is something wrong with the connection.

If you intend to force jConnect to more closely follow the standard JDBC
behavior for isClosed(), you can do so by setting the IS CLOSED_TEST
connection property to the special value“INTERNAL.” The INTERNAL
setting means that jConnect returns true for isClosed only when
Connection.close has been called, or when jConnect has detected an

| OException that has disabled the connection.

You can al so specify aquery other than sp_mda to use when isClosed is called.
For example, if you intend for jConnect to attempt aselect 1 whenisClosed is
called, you can set the IS CLOSED_TEST connection property to select 1.

Using Statement.close with unprocessed results

The JDBC specification is somewhat vague on how a driver should behave
when you call Statement.execute and later call close on that same statement
object without processing all of the results (update counts and ResultSets)
returned by the Statement.

Programmers Reference 115

Restrictions on and interpretations of JDBC standards

For example, assume that thereis a stored procedure on the database that does
seven row inserts. An application then executes that stored procedure using a
Statement.execute. In this case, a Sybase database returns seven update counts
(onefor each inserted row) to the application. In normal JDBC application
logic, you would process those update countsin aloop using the
getMoreResults, getResultSet and getUpdateCount methods. These are clearly
explained on the Java SE documentation at
http://www.oracle.com/technetwork/java/index.html in the javadocs for the
java.sgl.* package.

However, an application programmer might incorrectly choose to call
Statement.close before reading through all of the returned update counts. Inthis
case, jConnect sends a cancel to the database, which can have unexpected and
unwanted side effects.

In this particular example, if the application calls Statement.close before the
database has completed the inserts, the database might not execute al of the
inserts. It might stop, for example, after only fiverows areinserted because the
cancel is processed on the database before the stored procedure compl etes.

The missing inserts would not be reported to you in this case. Future releases
of jConnect may throw aSQLException when you try to closea Statement when
there are still unprocessed results, but until then, jConnect programmers are
strongly advised to adhere to the following guidelines:

¢ Whenyou call Statement.close, acancel is sent to the server if not all the
results (update counts and ResultSets) have been compl etely processed by
you. In cases where you only executed select statements, thisisfine.
However, in caseswhereyou executed insert/update/delete operations, this
can result in not all of those operations compl eting as expected.

e Therefore, you should never call close with unprocessed results when you
have executed anything but pure select statements.

¢ Instead, if you call Statement.execute, be sure your code processes all the
results by using the getUpdateCount, getMoreResults and getResultSet
methods.

Making adjustments for multithreading

116

If several threads simultaneoudly call methods on the same Statement instance,
CallableStatement, or PreparedStatement—which Sybase does not
recommend— you must manually synchronize the calls to the methods on the
Statement; jConnect does not do this automatically.

jConnect for JDBC

CHAPTER 2 Programming Information

For example, if you have two threads operating on the same Statement
instance—one thread sending a query and the other thread processing
warnings—you must synchronize the calls to the methods on the Statement or
conflicts may occur.

Using ResultSet.getCursorName

Some JDBC drivers generate a cursor name for any SQL query so that astring
can aways be returned. However, jConnect does not return a name when
ResultSet.getCursorName is called, unless you either:

e Cadlled setFetchSize or setCursorName on the corresponding Statement, or

e Setthe SELECT _OPENS CURSOR connection property to “true,” and
your query was in the form of SELECT... FOR UPDATE. For example:

select au_id from authors for update

If you do not call setFetchSize or setCursorName on the corresponding
Statement, or set the SELECT_OPENS_CURSOR connection property to
“true,” null is returned.

According to the IDBC 2.0 API documentation (see Chapter 11,
“Clarifications”), al other SQL statements do not need to open a cursor and
return aname.

For more information on how to use cursorsin jConnect, see “Using cursors
with result sets’ on page 55.

Executing stored procedures

Programmers Reference

If you execute a stored procedure in a CallableStatement object that represents
parameter values as question marks, you get better performancethanif you use
both question marks and literal valuesfor parameters. Also, if you mix literals
and question marks, you cannot use output parameters with a stored procedure.

The following example creates sp_stmt as a CallableStatement object for
executing the stored procedure MyProc:

CallableStatement sp stmt = conn.prepareCall (
"{call MyProc(?,?)}");

The two parameters in MyProc are represented as question marks. You can
register one or both of them as output parameters using the
registerOutParameter methods in the CallableStatement interface.

117

Restrictions on and interpretations of JDBC standards

118

In the following example, sp_stmt2 is a CallableStatement object for executing
the stored procedure MyProc2.

CallableStatement sp_stmt2 = conn.prepareCall (
{"call MyProc2(?,'javelin')}");

In sp_stmt2, one parameter value is given as aliteral value and the other asa
question mark. You cannot register either parameter as an output parameter.

To execute stored procedures with RPC commands using name-binding for
parameters, use either of the following procedures:

¢ Uselanguage commands, passing input parametersto them directly from
Javavariables using the PreparedStatement class. Thisisillustrated in the
following code fragment:

// Prepare the statement

System.out.println("Preparing the statement...");

String stmtString = "exec " + procname + " @p3=?, @pl=?";
PreparedStatement pstmt = con.preparedStatement (stmtString) ;

// Set the values
pstmt.setString (1, "xyz");
pstmt.setInt (2, 123);

// Send the query
System.out.println("Executing the query...");

ResultSet rs

= pstmt.executeQuery () ;

e With jConnect version 6.05 and later, use the
com.sybase.jdbcx.SybCallableStatement interface, illustrated in this
example:

import com.sybase.jdbcx. *;

// prepare the call for the stored procedure to execute as an RPC
String execRPC = "{call " + procName + " (?, ?)}";
SybCallableStatement scs = (SybCallableStatement)

con.prepareCall (execRPC) ;

// set the values and name the parameters
// also (optional) register for any output parameters
scs.setString(1l, "xyz");

scs.setParameterName (1, "@p3") ;
scs.setInt (2, 123);
scs.setParameterName (2, "@pl");

// execute the RPC

jConnect for JDBC

CHAPTER 2 Programming Information

// may also process the results using getResultSet ()
// and getMoreResults ()

// see the samples for more information on processing results
ResultSet rs = scs.executeQuery () ;

Programmers Reference 119

Restrictions on and interpretations of JDBC standards

120 jConnect for JDBC

CHAPTER 3

Overview

Programmers Reference

Security

This chapter describes security issues for jConnect.

Topic Page
Overview 121
Implementing custom socket plug-ins 122
Kerberos 126

jConnect provides the following options for securing client-server

communications;

eSS —UseSSL to encrypt communications, including the login

exchange, between client and server applications.

» Kerberos—Use Kerberosto authenti cate Java applications or users of
Java applications to Adaptive Server without sending user names or
passwords over anetwork. Also use Kerberosto set up aSingle Sign-
On (SSO) environment and provide mutual authentication between
the digital identity of a Java application and that of Adaptive Server

Enterprise.

Note Kerberosmay be used to encrypt communications and provide
dataintegrity checking, but these have not been implemented for

jConnect.

Kerberos and SSL may also be used together, providing the advantage of
both SSO and encryption of data transferred between client and server

applications.

121

Implementing custom socket plug-ins

Restrictions

Kerberosand SSL can be used with Adaptive Server; SQL Anywhere does not
currently support either SSL or Kerberos security.

Sybase recommends that you read related documentation about SSL and
Kerberos before attempting to use either with jConnect. Theinformationinthis
chapter assumes that the servers you intend to use have been configured to
work properly with SSL, with Kerberos, or with both.

For further information on Kerberos, SSL, and configuring Adaptive Server
Enterprise, see“ Related documents” on page 139. Also, seethewhite paper on
setting up Kerberos. The URL for this document can be found in the jConnect
for JDBC Release Bulletin.

Implementing custom socket plug-ins

* Ok ok kX F kX

This section discusses how to plug a custom socket implementation into an
application to customize the communication between a client and server.
javax.net.ssl.SSLSocket is an example of a socket that you could customize to
enable encryption.

com.sybase.jdbcx.SybSocketFactory is a Sybase extension interface that
contains the createSocket(String, int, Properties) method that returns a
java.net.Socket. To use a custom socket factory in jConnect, an application
must implement this interface by defining the createSocket() method.

jConnect uses the new socket for its subsequent input/output operations.
Classesthat implement SybSocketFactory create sockets and provide ageneral
framework for the addition of public socket-level functionality, as shown:

*

Returns a socket connected to a ServerSocket on the named host,
at the given port.

@param host the server host

@param port the server port

@param props Properties passed in through the connection
@returns Socket

@exception IOException, UnknownHostException

*/

public java.net.Socket createSocket (String host, int port, Properties props)

throws IOException, UnknownHostException;

122 jConnect for JDBC

CHAPTER 3 Security

Passing in properties allows instances of SybSocketFactory to use connection
properties to implement an intelligent socket.

When you implement SybSocketFactory to produce a socket, the same
application code can use different kinds of sockets by passing the different
kinds of factories or pseudo-factories that create sockets to the application.

You can customize factories with parameters used in socket construction. For
example, you can customize factories to return sockets with different
networking timeouts or security parameters already configured. The sockets
returned to the application can be subclasses of java.net.Socket to directly
expose new APIs for features such as compression, security, record marking,
statistics collection, or firewall tunnelling (javax.net.SocketFactory).

Note SybSocketFactory isintended to be an overly simplified
javax.net.SocketFactory, enabling applications to bridge from java.net.* to
javax.net.*

[1Using a custom socket with jConnect

1 ProvideaJavaclassthat implements com.sybase.jdbcx.SybSocketFactory.
See “Creating and configuring a custom socket” on page 123.

2 Setthe SYBSOCKET_FACTORY connection property so that jConnect
can use your implementation to obtain a socket.

To use a custom socket with jConnect, set the SYBSOCKET _FACTORY
connection property to one of the following:

e The class name that implements com.sybase.jdbcx.SybSocketFactory
e DEFAULT (thisinstantiates a new java.net.Socket)

See “Connection properties’ on page 10 for instructions on how to set
SYBSOCKET_FACTORY.

Creating and configuring a custom socket

Programmers Reference

OncejConnect obtains acustom socket, it usesthe socket to connect to aserver.
Any configuration of the socket must be completed before jConnect obtainsit.

This section explains how to plug in an SSL socket implementation, such as
javax.net.ssl.SSLSocket, with jConnect.

123

Implementing custom socket plug-ins

The following example shows how an implementation of SSL can create an
instance of SSLSocket, configure it, and then return it. In the example, the
MySSLSocketFactory class implements SybSocketFactory and extends
javax.net.ssl.SSLSocketFactory to implement SSL. It containstwo createSocket
methods—one for SSLSocketFactory and one for SybSocketFactory—that:

¢ Create an SSL socket

¢ Invoke SSLSocket.setEnableCipherSuites to specify the cipher suites
available for encryption

¢ Return the socket to be used by jConnect

Example

public class MySSLSocketFactory extends SSLSocketFactory

{

implements SybSocketFactory

/**

* Create a socket, set the cipher suites it can use, return

* the socket.

* Demonstrates how cither suites could be hard-coded into the
* implementation.

*

* See javax.net.SSLSocketFactory#createSocket

*/

public Socket createSocket (String host, int port)

{

}

throws IOException, UnknownHostException

// Prepare an array containing the cipher suites that are to
// be enabled.
String enableThese[] =
{
"SSL_DH DSS EXPORT WITH DES40 CBC_ SHA",
"SSL_RSA EXPORT WITH RC2 CBC_40_MD5",
"SSL_DH RSA EXPORT WITH DES40 CBC SHA"
}
Socket s =
SSLSocketFactory.getDefault () .createSocket (host, port);
((SSLSocket) s) .setEnabledCipherSuites (enableThese) ;
return s;

/**

*

*

Return an SSLSocket.
Demonstrates how to set cipher suites based on connection

124 jConnect for JDBC

CHAPTER 3 Security

* properties like:

* Properties props = new Properties();

* Set other url, password, etc. properties.

* props.put (("CIPHER SUITES 1",

* "SSL, DH_DSS_EXPORT WITH DES40 CBC_SHA");
* _props.put ("CIPHER SUITES 2",

* "SSL,_RSA EXPORT WITH RC2 CBC_ 40 MD5") ;

* props.put ("CIPHER SUITES 3",

* "SSL DH RSA_EXPORT WITH DES40 CBC_SHA") ;
* conn = _driver.getConnection(url, props);
*
*
*

See com.sybase.jdbcx.SybSocketFactory#createSocket
/

public Socket createSocket (String host, int port,
Properties props)
throws IOException, UnknownHostException

// check to see if cipher suites are set in the connection
// properites
Vector cipherSuites = new Vector() ;
String cipherSuitevVal = null;
int cipherIndex = 1;
do
{
if ((cipherSuiteVal = props.getProperty ("CIPHER SUITES "
+ cipherIndex++)) == null)
{

if (cipherIndex <= 2)

{
// No cipher suites available
// return what the object considers its default
// SSLSocket, with cipher suites enabled.
return createSocket (host, port) ;

}

else
// we have at least one cipher suite to enable
// per request on the connection
break;

}

else

}

// add to the cipher suit Vector, so that
// we may enable them together
cipherSuites.addElement (cipherSuiteVval) ;

Programmers Reference 125

Kerberos

}

while (true) ;

// lets you create a String[] out of the created vector
String enableThese[] = new String[cipherSuites.size()];
cipherSuites.copyInto (enableThese) ;

Socket s =

SSLSocketFactory.getDefault () .createSocket
(host, port);
// enable the cipher suites
((SSLSocket) s) .setEnabledCipherSuites (enableThese) ;
// return the SSLSocket

return s;

}

// other methods

}

Kerberos

126

Because jConnect requires no information about the kind of socket it is, you
must complete any configuration before you return a socket.

For additional information, see:

EncryptASE.java — located in the sample2 subdirectory of your jConnect
installation, this sample shows you how to use the SybSocketFactory
interface with jConnect applications.

MySS. SocketFactoryASE.java —also located in the sample2 subdirectory
of your jConnect installation, thisis a sample implementation of the
SybSocketFactory interface that you can plug in to your application and
use.

Kerberosis a network authentication protocol that uses encryption for
authentication of client-server applications. Kerberos provides advantages for
users and system administrators, including the following:

A Kerberos database can serve as a centralized storehouse for users.

Kerberosfacilitatesthe single-sign-on (SSO) environment, in which auser
system login provides the credential s necessary to access a database.

Kerberosisan IETF standard. Interoperability is possible between
different implementations of Kerberos.

jConnect for JDBC

CHAPTER 3 Security

Configuring jConnect applications for Kerberos

Before attempting to configure Kerberos for jConnect, make sure you havethe
following:

* JDK 6or later
* A Java Generic Security Services (GSS) Manager:

a
b

Cc

d

The default GSS Manager, which is part of the JDK, or
Wedgetail JCS| Kerberos version 2.6 or later, or

CyberSafe TrustBroker Application Security Runtime Library
version 3.1.0 or later, or

A GSS Manager implementation from another vendor.

A KDC that is supported and interoperable at the server side with your
GSS library and at the client side with your GSSManager.

To enable Kerberos login with jConnect, use the following procedure.

[IConfiguring Kerberos for jConnect
1 Setthe REQUEST_KERBEROS SESSION property to "true."

2 Setthe SERVICE_PRINCIPAL_NAME property to the name that your
Adaptive Server Enterprise is running under. In general, thisis the name
set with the -s option when the server isstarted. The service principal name
must also be registered with the KDC. If you do not set avalue for the
SERVICE_PRINCIPAL_NAME property, jConnect defaults to using the
host name of the client machine.

3 Optionally, set the GSSMANAGER_CLASS property.

For more information on the REQUEST KERBEROS SESSION and
SERVICE_PRINCIPAL_NAME properties, see Chapter 2, “Programming
Information.” For more information on the GSSMANAGER_CLASS
property, see “GSSMANAGER_CLASS connection property.”

GSSMANAGER_CLASS connection property

When using Kerberos, jConnect relies on several Java classes that implement
the Generic Security Services (GSS) API. Much of thisfunctionality is
provided by the org.ietf.jgss.GSSManager class.

Programmers Reference

127

Kerberos

Vendor implementations

Javaallowsvendorsto provide their own implementati ons of the GSSManager
class. Examples of vendor-supplied GSSManager implementations are those
provided by Wedgetail Communications and CyberSafe Limited. Users can
configure avendor-written GSSManager classtowork in aparticular Kerberos
environment. Vendor-supplied GSSManager classes may also offer more
interoperability with Windows than the standard Java GSSManager class
provides.

Before using a vendor-supplied implementation of GSSManager, be sureto
read the vendor documentation. Vendors use system property settings other
than the standard Java system properties used for Kerberos and may locate
realm names and Key Distribution Center (KDC) entries without using
configuration files.

Setting GSSMANAGER_CLASS

128

You can use avendor implementation of GSSManager with jConnect by setting
the GSSMANAGER_CLASS connection property. There are two ways to set
this property:

¢ Createaninstance of GSSManager, and set thisinstance asthe value of the
GSSMANAGER_CLASS property.

e Set thevalue of the GSSMANAGER_CLASS property asa string
specifying the fully qualified class name of the GSSManager object.
jConnect usesthis string to call class. forName () .newInstance ()
and casts the returned object as a GSSManager class.

In either case, the application CLASSPATH variable must include the location
of the classes and .jar files for the vendor implementation.

Note If you do not set the GSSMANAGER_CLASS connection property,
jConnect uses the org.ietf.jgss.GSSManager.getinstance method to load the
default Java GSSManager implementation.

When you use the GSSMANAGER_CLASS connection property to passin a
fully qualified class name, jConnect calls the no-argument constructor for the
GSSManager. Thisinstantiates a GSSManager that isin the default
configuration for the vendor implementation, so you do not have control over
the exact configuration of the GSSManager object. If you create your own
instance of GSSManager, you can use constructor arguments to set
configuration options.

jConnect for JDBC

CHAPTER 3 Security

How jConnect uses GSSMANAGER_CLASS
First, jConnect checks the value of GSSMANAGER_CLASSfor a
GSSManager class object to use in Kerberos authentication.

If the value of GSSMANAGER_CLASS has been set to a string instead of a
classobject, jConnect usesthe string to create an instance of the specified class
and uses the new instance in Kerberos authentication.

If the value of GSSMANAGER_CLASS is set to something that is neither a
GSSManager class object nor a string, or if jConnect encounters a
ClassCastException, jConnect throws a SQLException indicating the problem.

Examples

The following examples illustrate how to create your own instance of
GSSManager and how to let jConnect create a GSSManager object when the
GSSMANAGER_CLASS connection property is set to afully qualified class
name. Both examples use the Wedgetail GSSManager.

[_IExample: Creating your own instance of GSSManager
1 Instantiate a GSSManager in your application code. For example:
GSSManager gssMan = new com.dstc.security.kerberos.gssapi.GSSManager () ;

Thisexample usesthe default constructor with no arguments. You can use
other vendor-supplied constructors, which allow you to set various
configuration options.

2 Passthe new GSSManager instance into the GSSMANAGER_CLASS
connection property. For example:

Properties props = new Properties();
props.put ("GSSMANAGER CLASS", gssMan) ;

3 Usethese connection properties, including GSSMANAGER_CLASS, in
your connection. For example:

Connection conn = DriverManager.getConnection (url, props);

[IExample: Passing a string to GSSMANAGER_CLASS

1 Inyour application code, create astring specifying thefully qualified class
name of the GSSManager object. For example:

String gssManClass = "com.dstc.security.kerberos.gssapi.GSSManager";
2 Passthe string to the GSSMANAGER_CLASS connection property. For
example:

Programmers Reference 129

Kerberos

Properties props = new Properties();
props.put ("GSSMANAGER CLASS", gssManClass) ;

3 Usethese connection properties, including GSSMANAGER_CLASS, in
your connection. For example,

Connection conn = DriverManager.getConnection (url, props);

Setting up the Kerberos environment

CyberSafe
Encryption keys

Address mapping and
realm information

130

This section provides suggestions for setting up the environment to use
jConnect with three different implementations of Kerberos:

e CyberSafe
e MIT

¢ Microsoft Active Directory

Note Before reading this section, see the Kerberos white paper at
http://lwww.sybase.com/detail?id=1029260

Specify a Data Encryption Standard (DES) key when creating aprincipal to be
used by Javain the CyberSafe KDC. The Java reference implementation does
not support Triple Data Encryption Standard (3DES) keys.

Note You can use 3DESkeysif you are using CyberSafe GSSManager with a
CyberSafe KDC and have set the GSSMANAGER_CLASS property.

CyberSafe Kerberos does not use a krb5.conf configuration file. By default,
CyberSafe uses DNS records to locate KDC address mapping and realm
information. Alternately, CyberSafe locates KDC address mapping and realm
information in the krb.conf and krb.realms files, respectively. Refer to
CyberSafe documentation for more information.

If you are using the standard Java GSSManager implementation, you must still
create akrb5.conf filefor use by Java. The CyberSafe krb.conf fileisformatted
differently from the krb5.conf file. Create a krb5.conf file as specified in the
Java SE documentation or in the MIT documentation. You do not need a
krb5.conf fileif using the CyberSafe GSSManager.

jConnect for JDBC

CHAPTER 3 Security

Solaris

MIT
Encryption keys

For examples of the krb5.conf file, see white paper on setting up Kerberos. The
URL for this document can be found in the jConnect for JDBC Release
Bulletin.

When using CyberSafe client libraries on Solaris, make sure your library
search path includes the CyberSafe libraries before any other Kerberos
libraries.

Specify a DES key when creating a principal to be used by Javain the MIT
KDC. The Java reference implementation does not support 3DES keys.

If you plan to use only the standard Java GSSManager implementation, specify
an encryption key of type des-cbc-crc Of des-cbe-mds. Specify the
encryption type as follows:

des-cbc-crc:normal

Herenormal isthe type of key salt. It may be possible to use other salt types.

Note If you are using Wedgetail GSSManager, you can create principalsin an
MIT KDC of type des3-cbc-shal-kd.

Microsoft Active Directory

User accounts and
service principal

Encryption

Make sure that you have set up accountsin Active Directory for your user
principals (the users) and service principals (the accounts that represent your
database servers). Your user principals and service principals should both be
created as 'Users within Active Directory.

If youintend to usethe Javareference GSS M anager implementation, you must
use DES encryption for both user and service principals.

[ISetting DES encryption

Programmers Reference

1 Right-click on the specific user principal or service principal namein the
Active Directory Userslist.

2 Select Properties.
3 Click the Account tab. The Account Options list appears.

4 For both the user principal and service principal, specify that DES
encryption types should be used.

131

Kerberos

Client machines

Configuration file

If you plan to use the Java reference implementation to set up an SSO
environment, you may need to modify the Windows Registry according to
instructions specified at the Microsoft support site at
http://support.microsoft.com/.

On Windows, the Kerberos configuration file is called krb5.ini. Javalooks for
krb5.ini by default at C:\WINNT\krb5.ini. Java alows you to specify the
location of thisfile. The format of krb5.ini isidentical to that of krb5.conf.

For examples of the krb5.conf file, see white paper on setting up Kerberos. The
URL for this document can be found in the jConnect for JDBC Release
Bulletin.

For more information on Kerberos for Microsoft Active Directory, see the
Microsoft Developer Network at http://msdn.microsoft.com.

Sample applications

The following two commented code samples are provided in the jConnect-
7_O/sample2 directory to illustrate how to establish a Kerberos connection to
Adaptive Server Enterprise:

e ConnectKerberosjava— A simple Kerberos login to Adaptive Server
Enterprise

e ConnectKerberosJAASjava — A more detailed sample showing how a
Kerberos login might be implemented within application-server code

ConnectKerberos.java

132

To run the ConnectKerberos.java sample application, use the following
procedure.

[IRunning ConnectKerberos.java

1 Make sure your machine has valid K erberos credentials. Thistask varies
depending on your machine and environment.

Windows — You can establish Kerberos credentials for amachine in an
Active Directory environment by successfully logging in using Kerberos
authentication.

jConnect for JDBC

CHAPTER 3 Security

Programmers Reference

UNIX or Linux — You can establish Kerberos credentials for aUNIX or
Linux machine using thekinit utility for your Kerberosclient. If you do not
obtain an initial credential using kinit, you are prompted for a user name
and password when you attempt to run the sample application.

Note Typically the GSSManager provider implementation provided by
standard JDK can use only the DES CBC_MD5 and DES CBC _CRC
encryption types. You may be able to use other encryption types by using
third-party software and setting the GSSMANAGER_CLASS property.

Determine the location of the credentials for your machine.

Windows — For a machine running in an Active Directory environment,
Kerberos credentials are stored in an in-memory ticket cache.

UNIX or Linux —For aUNIX or Linux machine using the JRE supplied,
CyberSafe, Solaris, or MIT implementations of Kerberos, kinit places
credentials by default in /tmp/krb5cc_{user_id_number}, where
{user_id_number} is unique to your user name.

If the credentials are placed el sewhere, you must specify that location in
the sample2/exampleLogin.conf file by setting the ticketCache property.

Specify to the Java reference implementation the default realm and host
name of the KDC machine. Java may obtain this information from the
krb5.conf or krb5.ini configuration files or from Java System properties. If
you use avendor GSS Manager implementation, that implementation may
obtain host and realm information from DNS SRV records.

Sybase recommends that you use a Kerberos configuration file, which
allowsfor more control of the Kerberos environment, including the ability
to specify to Javathe type of encryption to request during authentication.

Note OnLinux, the Javareferenceimplementation looksfor the Kerberos
configuration file in /etc/krb5.conf.

If you do not use a Kerberos configuration file, and your Kerberos
configuration is not set up to use DNS SRV records, you can specify the
realm and KDC using the java.security.krb5.realm and
java.security.krb5.kdc System properties.

Edit ConnectKerberos.java so that the connection URL pointsto your
database.

Compile ConnectKerberos.java.

133

Kerberos

Ensure that you are using JDK version 6 or later. Read through the source
code comments, and ensure thejconnd.jar from your jConnect installation
is specified in your CLASSPATH environment variable.

Execute ConnectKerberos.class:
java ConnectKerberos

Ensure that you are using java version 6 executable. The sample
application output explains that a successful connection has been
established and executes the following SQL :

select 1

« Toexecutethesamplewithout using a Kerberosconfigurationfile, use
the following command:

java -Djava.security.krb5.realm=your realm
-Djava.security.krb5.kdc=your kdc
ConnectKerberos

where your_realmis your default realm, and your_kdc is your KDC.

e If necessary, you can run the sample application in debug modeto see
debug output from the Java Kerberos layer:

java -Dsun.security.krb5.debug=true
ConnectKerberos

You can also make a K erberos connection using IsqglApp, the Java version
of isgl, located in the jConnect-7_0/classes directory:

java IsqlApp -S jdbc:sybase:Tds:hostName: portNum
-K service principal name
-F path to JAAS login module config file

For details on using IsqlApp, see

The krb5.conf configuration file

CyberSafe or MIT KDC

Thisis an example of akrb5.conf file a client might use with a CyberSafe or
MIT KDC.

134

The following are examples of krb5.conf files.

Please note that customers must alter the

jConnect for JDBC

CHAPTER 3 Security

Programmers Reference

default realm, [realms] and [doamin realm]

information to reflect their Kerberos environment.

Customers should *not* attempt to use this file as is.
#

[libdefaults]
default realm = ASE
default tgs enctypes = des-cbc-crc
default tkt enctypes = des-cbc-crc
kdc_req checksum type = 2
ccache type = 2

[realms]

ASE = {
kdc = kdchost
admin_server = kdchost

}

[domain realm]
.sybase.com = ASE
sybase.com = ASE

[logging]
default = FILE:/var/krb5/kdc.log
kdc = FILE:/var/krb5/kdc.log
kdc_rotate = {

+H

How often to rotate kdc.log. Logs will get rotated
no more often than the period, and less often if the
KDC is not used frequently.

+H

period = 1d

how many versions of kdc.log to keep around

(kdc.log.0, kdc.log.l, ...)
versions = 10

}

[appdefaults]

kinit = {

renewable = true
forwardable= true

}

135

Kerberos

Active Directory KDC

Thisisan example of akrb5.conf file aclient might use with Active Directory
asthe KDC.

Please note that customers must alter the

default realm, [realms] and [domain realm]

information to reflect their Kerberos environment.

Customers should *not* attempt to use this file as is.

#

[libdefaults]
default realm = W2K.SYBASE.COM
default tgs enctypes = des-cbc-crc
default_tkt_ enctypes = des-cbc-crc
kdc_req checksum type = 2
ccache type = 2

[realms]

W2K.SYBASE.COM = {
kde = 1.2.3.4:88
admin_server = adserver

}

[domain realm]
.sybase.com = W2K.SYBASE.COM
sybase.com = W2K.SYBASE.COM

[logging]
default = FILE:/var/krb5/kdc.log
kdc = FILE:/var/krb5/kdc.log
kdc_rotate = {

How often to rotate kdc.log. Logs will get rotated no
more often than the period, and less often if the KDC
is not used frequently.

H H#*

period = 1d

how many versions of kdc.log to keep around
(kdc.log.0, kdc.log.l, ...)

versions = 10

}

[appdefaults]

136 jConnect for JDBC

CHAPTER 3 Security

Interoperability

kinit = {
renewable = true
forwardable= true

}

Table 3-1 shows combinations of KDCs, GSS libraries, and platforms on
which Sybase has successfully established a connection to Adaptive Server
Enterprise. The absence of any particular combination does not indicate that a
connection cannot be established with that combination. You can find the most
recent status at the jConnect for JDBC Web site at
http://www.sybase.com/products/allproductsa-z/softwaredeveloperkit/jconnect:

Table 3-1: Interoperability combinations

Client platform KDC GSSManager GSS C libraries? ASE platform
Solaris 8° CyberSafe Java GSS CyberSafe Solaris 8
Solaris 8 Active Directory®© Java GSS CyberSafe Solaris 8
Solaris 8 MIT Java GSS CyberSafe Solaris 8
Solaris 8 MIT Wedgetail GSSY MIT Solaris 8
Solaris 8 CyberSafe Wedgetail GSS® CyberSafe Solaris 8
Windows 2000 Active Directory Java GSS CyberSafe Solaris 8
Windows XP Active Directory Java GSS' CyberSafe Solaris 8

a. These are the libraries that Adaptive Server Enterpriseis using for its GSS functionality.

b. All Solaris 8 platforms in this table are 32-hit.

c. All Active Directory entriesin the table refer to an Active Directory server running on Windows 2000. For Kerberos
interoperability, Active Directory users must be set to “Use DES encryption types for this account.”

d. Used Wedgetail JCSI Kerberos 2.6. The encryption type was 3DES.

e. Used Wedgetail JCS| Kerberos 2.6. The encryption type was DES.

f. Java 1.4.x has abug which requiresthat clientsuse System. setProperty ("os.name", "Windows 2000") ; to
ensure that Java can find the in-memory credential on Windows XP clients.

Encryption types

Programmers Reference

Sybase recommends that you use the | atest versions of these libraries. Contact
thevendor if you intend to use older versionsor if you have problemswith non-
Sybase products.

The standard Java GSS implementation provided by typical JREs supports
only DES encryption. If you intend to use the 3DES, RC4-HMAC, AES-256,
or AES-128 encryption standards, you must use the CyberSafe or Wedgetail
GSSManagers.

137

Kerberos

Troubleshooting

Kerberos

138

Refer to the respective documentation for more information about Wedgetail
and CyberSafe.

This section documents issues to consider when troubleshooting K erberos
security.

Consider the following when troubleshooting problems with Kerberos
security:

The Java reference implementation supports only the DES encryption
type. You must configureyour Active Directory and KDC principalsto use
DES encryption.

The value of the SERVICE_PRINCIPAL_NAME property must be set to
the same name you specify with the -s option when you start your data
server.

Check the krb5.conf and krb5.ini files. For CyberSafe clients, check the
krb.conf and krb.realms files or DNS SRV records.

You can set the debug property to “true” in the JAAS login configuration
file.

You can set the debug property to “true” at the command line:
-Dsun.security.krb5.debug=true

The JAAS login configuration file provides several options that you can
set for your particular needs. For information about JAAS and the Java
GSS AP, refer to:

* JAAS login configuration file at
http://docs.oracle.com/javase/1.4.2/docs/guide/security/jgss/tutorials/Lo
ginConfigFile.html

e Class Krb5LoginModule at
http://docs.oracle.com/javase/1.4.2/docs/guide/security/jaas/spec/com/
sun/security/auth/module/Krb5LoginModule.html

* Troubleshooting JGSS at
http://docs.oracle.com/javase/1.4.2/docs/guide/security/jgss/tutorials/Tr
oubleshooting.html

jConnect for JDBC

CHAPTER 3 Security

Related documents

Programmers Reference

These documents provide additional information on Kerberos security.

Java tutorial on JAAS and the Java GSS API at
http://docs.oracle.com/javase/1.4.2/docs/guide/security/jgss/tutorials/index.h
tml

MIT Kerberos documentation and download site at
http://web.mit.edu/kerberos/www/index.html

CyberSafe Limited at http://www.cybersafe.ltd.uk

CyberSafe Limited document on Windows-Kerberos interoperability at
http://lwww.cybersafe.ltd.uk/docs_cybersafe/Kerberos%20Interoperability%2
0-%20Microsoft%20W2k%20&%20Active TRUST.pdf

Description of how Windows implements authentication, including information
about Active Directory Kerberos at
http://www.windowsitlibrary.com/Content/617/06/1.html

Kerberos RFC 1510 at http://www.linuxdig.com/rfc/individual/1510.php

139

Kerberos

140 jConnect for JDBC

CHAPTER 4 Troubleshooting

This chapter describes solutions and workaroundsfor problemsyou might
encounter when using jConnect.

Topic Page
Debugging with jConnect 141
Dynamic logging 144
Capturing TDS communication 146
Resolving connection errors 147
Managing memory in jConnect applications 148
Resolving stored procedure errors 149
Resolving a custom socket implementation error 150

Debugging with jConnect

jConnect includes a Debug class that contains a set of debugging
functions. The Debug methodsinclude avariety of assert, trace, and timer
functions that let you define the scope of the debugging process and the
output destination for the debugging results.

The jConnect installation also includes a compl ete set of debug-enabled
classes. These classes are located in the devclasses subdirectory under
your jConnect installation directory. For debugging purposes, you must
redirect your CLASSPATH environment variable to reference the debug
mode runtime classes (devclasses/jconndd.jar), rather than the standard
jConnect classes directory. You can also do this by explicitly providing a
-classpath argument to the java command when you run a Java program.

Obtaining an instance of the Debug class

To use the jConnect debugging feature, your application must import the
Debug interface and obtain an instance of the Debug class by calling the
getDebug method on the SybDriver class.

Programmers Reference 141

Debugging with jConnect

import com.sybase.jdbcx.Debug;
//
SybDriver sybDriver = (SybDriver)

Class.forName ("com. sybase.jdbc4.jdbc.SybDriver") .newInstance () ;
Debug sybdebug = sybDriver.getDebug() ;

Turning on debugging in your application

To usethe debug method on the Debug object to turn on debugging within your
application, add this call:

sybdebug.debug (true, [classes], [printstream]) ;

The classes parameter is a string that lists the specific classes you want to
debug, separated by colons. For example:

sybdebug.debug (true, "MyClass")
and
sybdebug.debug (true, "MyClass:YourClass")

Using “STATIC" in the class string turns on debugging for all static methods
in jConnect in addition to the designated classes. For example:

sybdebug.debug (true, "STATIC:MyClass")
You can specify “ALL” to turn on debugging for all classes. For example:
sybdebug.debug (true, "ALL") ;

The printstream parameter is optional. If you do not specify a printstream, the
debug output goes to the output file you specified with
DriverManager.setLogStream.

Turning off debugging in your application
To turn off debugging, add this call:

sybdebug.debug (false) ;

142 jConnect for JDBC

CHAPTER 4 Troubleshooting

Setting the CLASSPATH for debugging

Before you run your debug-enabled application, replace the optimized
jConnect driver jar file jconnd.jar with the debug version jconndd.jar, which
you can find in the devclasses subdirectory under your jConnect installation
directory.

If you use the CLASSPATH environment variable:

For UNIX, replace $IDBC_HOME/classes/jconnd.jar with
$IDBC_HOME/devclasses/jconndd jar.

For Windows, replace %JDBC_HOME%\classes\jconn4.jar with
%JDBC_HOME%Y\devclasses\jconnd4d.jar.

Using the Debug methods

To customize the debugging process, you can add calls to other Debug
methods.

Programmers Reference

In these methods, the first (object) parameter is usually this to specify the
calling object. If any of these methods are static, use null for the object
parameter.

printin

Use this method to define the message to print in the output log if
debugging is enabled and the object isincluded in the list of classesto
debug. The debug output goes to the file you specified with
sybdebug.debug.

The syntax is:
sybdebug.println (object,message string) ;
For example:
sybdebug.println(this, "Query: "+ query) ;
produces a message similar to this in the output log:
myApp (thread[x,y,z]): Query: select * from authors
assert

Use this method to assert a condition and throw a runtime exception when
the condition is not met. You can also define the message to print in the
output log if the condition is not met. The syntax is:

143

Dynamic logging

sybdebug.assert (object,boolean condition,message
string) ;

For example:

sybdebug.assert (this, amount<=buf.length, amount+"
too big!");

produces a message similar to thisin the output log if “amount” exceeds
the value of buf.length:

java.lang.RuntimeException:myApp (thread([x,y,z]) :
Assertion failed: 513 too big!

at jdbc.sybase.utils.sybdebug.assert (
sybdebug.java:338)

at myApp.myCall (myApp.java:xxx)

at more stack:

e startTimer
stopTimer

Use these methods to start and stop atimer that measures the milliseconds
that elapse during an event. The method keeps one timer per object, and
one for all static methods. The syntax to start the timer is:

sybdebug.startTimer (object) ;
The syntax to stop the timer is:

sybdebug. stopTimer (object, message string) ;
For example:

sybdebug.startTimer (this) ;
stmt .executeQuery (query) ;
sybdebug.stopTimer (this, "executeQuery") ;

produces a message similar to thisin the output log:

myApp (thread [x,y, z]) :executeQuery elapsed time =
25ms

Dynamic logging

Starting with 15.7 ESD #4, jConnect for JDBC supports|ogging mechanism by
implementing standard Java Logger mechanism. Now, the application can get
handle of jConnect's logger and turn logging on or off as and when required.

144 jConnect for JDBC

CHAPTER 4 Troubleshooting

Example

Programmers Reference

try

{

// Get logger for all classes present in
//"com.sybase.jdbc4.jdbc" package

Logger LOG = Logger.getLogger ("com.sybase.jdbc4.jdbc") ;

// To log class-specific log message,

// provide complete class name, for example:
//Logger.getLogger ("com. sybase.jdbc4 . jdbc.
//SybConnection") ;

//Get handle as per user's requirement
Handler handler = new ConsoleHandler () ;

//Set logging level
handler.setLevel (Level .ALL) ;

//Added user specific handler to logger object

LOG.addHandler (handler) ;

//Set logging level
LOG.setLevel (Level .ALL) ;

Class.forName ("com.sybase.jdbc4.jdbc.SybDriver") ;

Properties properties = new Properties();
properties.put ("USER", USER NAME) ;
properties.put ("PASSWORD", PASSWORD) ;
Connection con =

DriverManager.getConnection ("jdbc:sybase:Tds:" +

HOST PORT, properties);
Statement stmt = con.createStatement () ;
stmt.execute ("select @@version") ;

//Dynamically turn off logging mechanism
LOG.setLevel (Level .OFF) ;
con.close() ;

Note Currently, only public APIs are logged with Level.FINE; no statements

are logged with Level .INFO, Level . FINER, and Level .[FINEST.

145

Capturing TDS communication

Capturing TDS communication

Tabular Data Stream (TDS) is the Sybase proprietary protocol for handling
communication between a client application and Adaptive Server. jConnect
includes a PROTOCOL _CAPTURE connection property that allows you to
capture raw TDS packetsto afile.

If you are having problems with an application that you cannot resolve within
either the application or the server, you can use PROTOCOL_CAPTURE to
capture the communi cation between the client and the server in afile. You can
then send the file, which contains binary data and is not directly interpretable,
to Sybase Technical Support for analysis.

Note The captured TDS protocol data saved to afile contains sensitive user
authentication information and may contain confidential company or customer
data. To protect this confidential data from unauthorized or accidental
disclosure, the files containing captured data must be properly protected using
file permissions or encryption

PROTOCOL_CAPTURE connection property

146

Use the PROTOCOL _CAPTURE connection property to specify afile for
receiving the TDS packets exchanged between an application and an Adaptive
Server. PROTOCOL _CAPTURE takeseffectimmediately sothat TDS packets
exchanged during connection establishment are written to the specified file. All
packets continue to be written to the file until Capture.pause isexecuted or the
session is closed.

The following example shows the use of PROTOCOL_CAPTURE to send
TDS datato thefiletds data:

props.put ("PROTOCOL_ CAPTURE", '"tds data")

Connection conn = DriverManager.getConnection (url,
props) ;

whereurl isthe connection URL, and propsisaProperties object for specifying
connection properties.

jConnect for JDBC

CHAPTER 4 Troubleshooting

pause and resume methods in the Capture class

The Capture classis contained inthe com.sybase.jdbcx package. It containstwo
public methods:

* public void pause
* public void resume

Capture.pause stopsthe capture of raw TDS packetsinto afile; Capture.resume
restarts the capture.

The TDS capture file for an entire session can become very large. If you want
to limit the size of the capture file, and you know where in an application you
want to capture TDS data, you can perform the following.

[TTo limit the size of the capture file

1 Immediately after you have established a connection, get the Capture
object for the connection and use the pause method to stop capturing TDS
data:

Capture cap = ((SybConnection)conn) .getCapture () ;
cap.pause() ;

2 Place cap.resume just before the point where you want to start capturing
TDSdata

3 Placecap.pause just after the point where you want to stop capturing data.

Resolving connection errors

This section addresses problemsthat may arisewhen you aretrying to establish
aconnection or start a gateway.

Gateway connection refused

Gateway connection refused:
HTTP/1.0 502 Bad Gateway|Restart Connection

This error message indicates that something is wrong with the hostname or
port# used to connect to your Adaptive Server. Check the [query] entry in
$SYBASE/interfaces (UNIX) or in %SYBASE%\ini\sgl.ini (Windows).

Programmers Reference 147

Managing memory in jConnect applications

If the problem persists after you have verified the hostname and port#, you can
learn more by starting the HTTP server using the “verbose” system property.

For Windows, go to a DOS prompt and enter:
httpd -Dverbose=1 > filename
For UNIX, enter:

sh httpd.sh -Dverbose=1 > filename &

where filename is the debug messages output file.

Your Web server probably does not support the connect method. Applets can
connect only to the host from which they were downloaded.

The HTTP gateway and your Web server must run on the same host. In this
scenario, your applet can connect to the same machine/host through the port
controlled by the HTTP gateway, which routes the request to the appropriate
database.

To see how thisis accomplished, review the source of Isgl.java and
gateway.html in the sample2 subdirectory under the jConnect installation
directory. Search for “proxy.”

Managing memory in jConnect applications

148

The following situations and their solutions may be helpful if you notice
increased memory use in jConnect applications.

¢ InjConnect applications, you should explicitly close al Statement objects
and subclasses (for example, PreparedStatement, CallableStatement) after
their last useto prevent statements from accumulating in memory. Closing
only the ResultSet is not sufficient.

For example, the following statement causes problems:
ResultSet rs = conn.prepareCall(query) .execute();
rs.close() ;

Instead, use the following:

PreparedStatement ps = conn.prepareCall(query) ;
ResultSet rs = ps.executeQuery() ;

rs.close () ;

jConnect for JDBC

CHAPTER 4 Troubleshooting

ps.close();

Native support for Scrollable or Updatable Scrollable cursors may not be
available depending on the version of Adaptive Server or SQL Anywhere
database you are connecting to. To support scrollable or updatable
scrollable cursors when not supported natively by the backend server,
jConnect caches the row data on demand, on the client, on each call to
ResultSet.next. However, when the end of the result set is reached, the
entire result set is stored in client memory. Because this may cause a
performance strain, Sybase recommends that you use
TYPE_SCROLL_INSENSITIVE result sets only when the result set is
reasonably small. With this release, jConnect determinesif the Adaptive
Server connection supports native scrollable cursor functionality and uses
it instead of client-side caching. Asaresult, most applications can expect
significant performance gain in accessing out-of-order rows and reduction
in client-side memory requirements.

Resolving stored procedure errors

This section addresses problems that may arise when you are trying to use
jConnect and stored procedures.

RPC returns fewer output parameters than registered

Programmers Reference

SQLState: JZ0SG - An RPC did not return as many output
parameters as the application had registered for it.

This error occursif you call CallableStatement.registerOutParam for more
parameters than you have declared as“OUTPUT” parameters in the stored
procedure. Make sure that you have declared all of the appropriate parameters
as“OUTPUT.” Look at the line of code that reads:

create procedure yourproc (@pl int OUTPUT,

Note If you receive this error while using SQL Anywhere, upgrade to SQL
Anywhere version 5.5.04 or later.

149

Resolving a custom socket implementation error

Fetch/state errors when output parameters are returned

If aquery does not return row data, then it should use the
CallableStatement.executeUpdate or execute methods rather than the
executeQuery method.

Asrequired by the JIDBC standards, jConnect throws a SQL exception if
executeQuery has no result sets.

Stored procedure executed in unchained transaction mode

Sybase Error 7713 - Stored Procedure can only be
executed in unchained transaction mode.

This error occurs when JDBC attempts to put the connection in
autocommit(true) mode. The application can change the connection to chained
mode using Connection.setAutoCommit(false) or by using a “set chained on”
language command. This error occurs if the stored procedure was not created
in a compatible mode.

To fix the problem, use:

sp_procxmode procedure_name,"anymode"

Resolving a custom socket implementation error

You may receive an exception similar to the following whiletrying to set up an
SSL socket when calling
sun.security.ssl.SSLSocketImpl.setEnabledCipherSuites:

java.lang.IllegalArgumentException:
SSL_SH anon EXPORT WITH RC4 40 MDS

Verify that the SSL libraries are in the system library path.

150 jConnect for JDBC

CHAPTER 5

Performance and Tuning

This chapter describes how to fine-tune or improve performance when
working with jConnect.

Topic Page
Improving jConnect performance 151
Performance tuning for prepared statements in dynamic SQL 154
Cursor performance 161

Improving jConnect performance

There are anumber of ways to optimize the performance of an application
using jConnect:

Programmers Reference

Use TextPointer.sendData methods to send text and image datato an
Adaptive Server database. See“ Updating image datain the database”

on page 71.

Create precompiled PreparedStatement objects for dynamic SQL

statements that are used repeatedly during a session. See

“Performance tuning for prepared statementsin dynamic SQL” on

page 154.

Use batch updates to improve performance by reducing network
traffic; specificaly, al queriesare sent to the server in one group and
all responsesreturned to theclient are sent in one group. See* Support

for batch updates’ on page 68.

For sessions that are likely to move image data, large row sets, and
lengthy text data, use the PACKETSIZE connection property to set

the maximum feasible packet size.

For TDStunneled HTTP, set the maximum TDS packet size and
configure your Web server to support the HTTP1.1 Keep-Alive
feature. Also, set the SkipDoneProc servlet argument to "true.”

151

Improving jConnect performance

e Useprotocol cursors, the default setting of the LANGUAGE_CURSOR
connection property. See“ LANGUAGE_CURSOR connection property”
on page 161 for more information.

e Ifyouuse TYPE _SCROLL_INSENSITIVE result sets, use them only
when the result set is reasonably small. See“Using
TYPE_SCROLL_INSENSITIVE result setsin jConnect” on page 64 for
more information.

Additional considerations for improving performance are described in the
following sections.

BigDecimal rescaling

The JDBC 1.0 specification requires a scale factor with getBigDecimal. Then,
when aBigDecimal object isreturned from the server, it must be rescaled using
the original scale factor you used with getBigDecimal.

To eliminate the processing time required for rescaling, use the JDBC 2.0
getBigDecimal method, which jConnect implements in the SybResultSet class
and does not require a scale value:

public BigDecimal getBigDecimal(int columnindex)
throws SQLException

For example:

SybResultSet rs =
(SybResultSet) stmt .executeQuery ("SELECT
numeric column from T1");

while (rs.next())

{

BigDecimal bd rs.getBigDecimal (
"numeric_ column") ;

REPEAT_READ connection property

You can improve performance on retrieving a result set from the database if
you set the REPEAT _READ connection property to "false." However, when
REPEAT_READ is"fase"

152 jConnect for JDBC

CHAPTER 5 Performance and Tuning

e Youmust read column valuesin order, according to column index. Thisis
difficult if you want to access columns by name rather than column
number.

* You cannot read a column value in arow more than once.

SunloConverter character-set conversion

Programmers Reference

If you are using multibyte character sets and need to improve driver
performance, you can use the SunloConverter class provided with the jConnect
samples. This converter is based on the sun.io classes provided by Oracle
Corporation.

The SunloConverter classisnot apure Javaimplementation of the character-set
converter feature and, therefore, is not integrated with the standard jConnect
product. However, Sybase has provided this converter classfor your reference,
and you can useit with the jConnect driver to improve character-set conversion
performance.

Note Based on Sybase testing, the SunloConverter class improved
performance on all VMsonwhich it wastested. However, Oracle Corporation
reservesthe right to remove or change the sun.io classes with future rel eases of
the JDK. Therefore, this SunloConverter class may not be compatiblewith later
JDK releases.

To use the SunloConverter class, you must install the jConnect sample
applications. Once the samples are installed, set the
CHARSET_CONVERTER_CLASS connection property to reference the
SunloConverter class in the sample2 subdirectory under your jConnect
installation directory. Seethe Sybase jConnect for JDBC Installation Guidefor
completeinstructionson installing jConnect and its components, including the
sample applications.

If you are using a database with its default character set asiso_1, or if you are
using only the first 7 bits of ASCII, you can gain significant performance
benefits by using the TruncationConverter. See “jConnect character-set
converters’ on page 40.

153

Performance tuning for prepared statements in dynamic SQL

Performance tuning for prepared statements in

dynamic SQL

154

In Embedded SQL ™, dynamic statements are SQL statements that need to be
compiled at runtime, rather than statically. Typically, dynamic statements
contain input parameters, although thisis not arequirement. In SQL, the
prepare command isused to precompile adynamic statement and saveit so that
it can be executed repeatedly without being recompiled during a session.

If astatement is used multiple timesin a session, precompiling it provides
better performance than sending it to the database and compiling it for each
use. The more complex the statement, the greater the performance benefit.

If astatement islikely to be used only afew times, precompiling it may be
inefficient because of the overhead involved in precompiling, saving, and later
deallocating it in the database.

Precompiling adynamic SQL statement for execution and saving it in memory
uses time and resources. If astatement is not likely to be used multiple times
during a session, the costs of doing a database prepare may outweigh its
benefits. Another consideration isthat once a dynamic SQL statement is
prepared in the database, it isvery similar to astored procedure. In some cases,
it may be preferable to create stored procedures and have them reside on the
server, rather than defining prepared statements in the application. Thisis
discussed under “ Choosing prepared statements and stored procedures’ on
page 155.

You can use jConnect to optimize the performance of dynamic SQL statements
on a Sybase database as follows:

« Create PreparedStatement objects that contain precompiled statementsin
cases where a statement is likely to be executed several timesin asession.

¢ Create PreparedStatement objects that contain uncompiled SQL
statements in cases where a statement is used very few timesin a session.

As described in the following sections, the optimal way to set the
DYNAMIC_PREPARE connection property and create PreparedStatement
objects can depend on whether your application needs to be portable across
JDBC drivers or whether you are writing an application that allows jConnect-
specific extensions to JDBC.

jConnect provides performance tuning features for dynamic SQL statements.

jConnect for JDBC

CHAPTER 5 Performance and Tuning

Choosing prepared statements and stored procedures

If you create a PreparedStatement object containing a precompiled dynamic
SQL statement, once the statement is compiled in the database, it effectively
becomes a stored procedure that isretained in memory and attached to the data
structure associated with your session. In deciding whether to maintain stored
procedures in the database or to create PreparedStatement objects containing
compiled SQL statementsin your application, resource demands and database
and application maintenance are important considerations:

Once a stored procedure is compiled, it is globally available across all
connections. In contrast, adynamic SQL statement in aPreparedStatement
object needs to be compiled and deallocated in every session that usesit.

If your application accesses multiple databases, using stored procedures
means that the same stored procedures need to be available on all target
databases. This can create a database maintenance problem. If you use
PreparedStatement objects for dynamic SQL statements, you avoid this
problem.

If your application creates CallableStatement objects for invoking stored
procedures, you can encapsulate SQL code and table referencesin the
stored procedures. You can then modify the underlying database or SQL
code without have to change the application.

Prepared statements in portable applications

If your application runs on databases from different vendors and you want
some PreparedStatement objects to contain precompiled statements and others
to contain uncompiled statements, proceed as follows:

Programmers Reference

When you access a Sybase database, make sure that the
DYNAMIC_PREPARE connection property is set to "true.”

To return PreparedStatement objects containing precompiled statements,
use Connection.prepareStatement in the standard way:

PreparedStatement ps precomp =
Connection.prepareStatement (sql string) ;

To return PreparedStatement objects containing uncompiled statements,
use Connection.prepareCall.

Connection.prepareCall returns a CallableStatement object, but because
CallableStatement is a subclass of PreparedStatement, you can upcast a
CallableStatement object to a PreparedStatement object, as follows:

155

Performance tuning for prepared statements in dynamic SQL

PreparedStatement ps_uncomp =
Connection.prepareCall (sql string) ;

The PreparedStatement object ps_uncomp is guaranteed to contain an
uncompiled statement, because only Connection.prepareStatement is
implemented to return PreparedStatement objects containing precompiled
statements.

Prepared statements with jConnect extensions

If you are not concerned about portability across drivers, you can write code
that uses SybConnection.prepareStatement to specify whether a
PreparedStatement object contains precompiled or uncompiled statements. In
this case, how you code prepared statements can depend on whether most of
the dynamic statementsin an application are likely to be executed many times
or only afew times during a session.

If most dynamic statements are executed infrequently

For an application in which most dynamic SQL statements are likely to be
executed only once or twice in a session:

e Set the connection property DYNAMIC_PREPARE to "false."

e To return PreparedStatement objects containing uncompiled statements,
use Connection.prepareStatement in the standard way:

PreparedStatement ps_uncomp =
Connection.prepareStatement (sql string) ;

e To return PreparedStatement objects containing precompiled statements,
use SybConnection.prepareStatement with dynamic set to "true," as shown:

PreparedStatement ps precomp =
(SybConnection) conn.prepareStatement (sql string, true);

If most dynamic statements are executed many times in a session

If most of the dynamic statementsin an application are likely to be executed
many times in the course of a session, proceed as follows:

e Set the connection property DYNAMIC_PREPARE to "true."

e To return PreparedStatement objects containing precompiled statements,
use Connection.prepareStatement in the standard way:

156 jConnect for JDBC

CHAPTER 5 Performance and Tuning

PreparedStatement ps_precomp = Connection.prepareStatement (sql string) ;

« To return PreparedStatement objects containing uncompiled statements,
you can use either Connection.prepareCall (see Prepared statementsin
portable applications) or SybConnection.prepareStatement, with dynamic
set to “false”:

PreparedStatement ps uncomp =
(SybConnection) conn.prepareStatement (sql string, false);

PreparedStatement ps_uncomp = Connection.prepareCall (sgl string) ;

Connection.prepareStatement

jConnect implements Connection.prepareStatement SO you can set it to return
either precompiled SQL statements or uncompiled SQL statementsin
PreparedStatement objects. If you set Connection.prepareStatement to return
precompiled SQL statements in PreparedStatement objects, it sends dynamic
SQL statements to the database to be precompiled and saved exactly as they
would be under direct execution of the prepare command. If you set
Connection.prepareStatement to return uncompiled SQL statements, it returns
them in PreparedStatement objects without sending them to the database.

The type of SQL statement that Connection.prepareStatement returnsis
determined by the connection property DYNAMIC_PREPARE, and applies
throughout a session.

For Sybase-specific applications, jConnect 6.05 or later provides a
prepareStatement method under the jConnect SybConnection class.
SybConnection.prepareStatement allows you to specify whether an individual
dynamic SQL statement isto be precompiled, independent of the session-level
setting of the DY NAMIC_PREPARE connection property.

DYNAMIC_PREPARE connection property

DYNAMIC_PREPARE is aBoolean-valued connection property for enabling
dynamic SQL prepared statements:

 |If DYNAMIC_PREPARE is set to "true," every invocation of
Connection.prepareStatement during a session attempts to return a
precompiled statement in a PreparedStatement object.

Programmers Reference 157

Performance tuning for prepared statements in dynamic SQL

In this case, when a PreparedStatement is executed, the statement it
containsis aready precompiled in the database, with place holders for
dynamically assigned values, and the statement needs only to be executed.

If DYNAMIC PREPARE is set to "false" for a connection, the
PreparedStatement object returned by Connection.prepareStatement does
not contain a precompiled statement.

In this case, each time a PreparedStatement is executed, the dynamic SQL
statement it contains must be sent to the database to be both compiled and
executed.

The default value for DYNAMIC_PREPARE is"true."

In the following example, DYNAMIC_PREPARE is set to "false" to disable
precompilation of dynamic SQL statements. In the example, props isa
Properties object for specifying connection properties.

props.put ("DYNAMIC PREPARE", "false")
= DriverManager.getConnection (url, props);

When DYNAMIC_PREPARE is set to "true," note that:

Connection conn

158

Not al dynamic statements can be precompiled under the prepare
command. The SQL-92 standard places some restrictions on the
statements that can be used with the prepare command, and individual
database vendors may have their own constraints.

If the database generates an error because it is unable to precompile and
save astatement sent to it through Connection.prepareStatement, jConnect
traps the error and returns a PreparedStatement object containing an
uncompiled dynamic SQL statement. Each time the PreparedStatement
object is executed, the statement is re-sent to the database to be compiled
and executed.

A precompiled statement resides in memory in the database and persists
either to the end of a session or until its PreparedStatement object is
explicitly closed. Garbage collection on a PreparedStatement object does
not remove the prepared statement from the database.

Asageneral rule, you should explicitly close every PreparedStatement object
after itslast use to prevent prepared statements from accumulating in server
memory during a session and slowing performance.

jConnect for JDBC

CHAPTER 5 Performance and Tuning

SybConnection.prepareStatement

If your application allows jConnect-specific extensionsto JDBC, you can use
the SybConnection.prepareStatement extension method to return dynamic SQL
statements in PreparedStatement objects:

PreparedStatement SybConnection.prepareStatement (String sqgl stmt,
boolean dynamic) throws SQLException

SybConnection.prepareStatement can return PreparedStatement objects
containing either precompiled or uncompiled SQL statements, depending on
the setting of the dynamic parameter. If dynamic is "true,”
SybConnection.prepareStatement returns a PreparedStatement object with a
precompiled SQL statement. If dynamic is"false," it returnsa
PreparedStatement object with an uncompiled SQL statement.

The following example shows the use of
SybConnection.prepareStatement to return a PreparedStatement object
containing a precompiled statement:

PreparedStatement precomp stmt = ((SybConnection) conn) .prepareStatement
("SELECT * FROM authors WHERE au_fname LIKE ?", true);

In the example, the connection object connis cast to aSybConnection object to
allow the use of SybConnection.prepareStatement. The SQL string passed to
SybConnection.prepareStatement is precompiled in the database, even if the
connection property DYNAMIC_PREPARE is“fase.”

If the database generates an error becauseit is unableto precompile a statement
sent to it through SybConnection.prepareStatement, jConnect throws a
SQLException, and the call fails to return a PreparedStatement object. Thisis
unlike Connection.prepareStatement, which traps SQL errors and, in the event
of an error, returns a PreparedStatement object containing an uncompiled
Statement.

ESCAPE_PROCESSING_DEFAULT connection property

By default, jConnect parses all SQL statements submitted to the database for
valid JDBC function escapes. If your application is not going to use JDBC
function escapesinits SQL calls, you can set this connection property to
"false" to circumvent this parsing. This may give adlight performance benefit.

Programmers Reference 159

Performance tuning for prepared statements in dynamic SQL

Optimized batching in jConnect

jConnect implements an internal algorithm to speed up batch operations for
PreparedStatement objects. This algorithm isinvoked when the
HOMOGENEOUS BATCH connection property is set to true.

Note Homogeneous batching isavailable only when your client applicationis
connected to a server that supports this feature. Adaptive Server Enterprise
15.7 introduces support for homogeneous batching.

This exampleillustrates a PreparedStatement batching operation using the
addBatch and executeBatch methods:

String sgl = "update members set lastname = ? where
member id = ?";

prep stmt = connection.prepareStatement (sql) ;
prep stmt.setString(l, "Forrester");
prep_stmt.setLong (2, 45129);

prep stmt.addBatch() ;

prep stmt.setString(l, "Robinson");

prep stmt.setLong (2, 45130);
prep_stmt.addBatch() ;

prep stmt.setString(l, "Servo");

prep stmt.setLong (2, 45131);

prep stmt.addBatch() ;
prep_stmt.executeBatch() ;

Where connection isaconnection instance, prep_stmt isaprepared
statement instance, and » denotes parameter placeholders for the prepared
statement.

Homogeneous batching with large object (LOB) columns

160

When the HOMOGENEOUS BATCH and ENABLE_LOB_L OCATORS
properties are set to true, the client application cannot mix LOB and non-L OB
prepared statement setter methods in the same batch. For example, thisis
invalid:

String sgl = "update members SET catchphrase = ? WHERE
member id = ?";
prep stmt = connection.prepareStatement (sql) ;

prep stmt.setString(l, "Push the button, Frank!");

jConnect for JDBC

CHAPTER 5 Performance and Tuning

prep stmt.setLong (2, 45129);
prep stmt.addBatch() ;

Clob myclob = con.createClob() ;
myclob.setString (1, "Hi-keebal!");
prep stmt.setClob(l, myclob) ;
prep stmt.setLong (2, 45130);

prep stmt.addBatch() ;

pstmt.executeBatch () ;

Where catchphrase is a column of type text. This code fails because the
setString method and the setClob method are used in the same batch for the
same column.

Cursor performance

When you use the Statement.setCursorName method or the setFetchSize()
method in the SybCursorResultSet class, jConnect creates a cursor in the
database. Other methods cause jConnect to open, fetch, and update a cursor.

jConnect creates and manipul ates cursors either by sending SQL statementsto
the database or by encoding cursor commands as tokens within the TDS
communication protocol. Cursors of the first type are “language cursors;”
cursors of the second type are “ protocol cursors.”

Protocol cursors provide better performance than language cursors. In
addition, not all databases support language cursors. For example, SQL
Anywhere databases do not support language cursors.

In jConnect, the default conditionisfor all cursorsto be protocol cursors.
However, the LANGUAGE_CURSOR connection property gives you the
option of having cursors created and mani pul ated through language commands
in the database.

LANGUAGE_CURSOR connection property

LANGUAGE_CURSOR isaBoolean-val ued connection property in jConnect
that allows you to determine whether cursors are created as protocol cursors or
language cursors:

Programmers Reference 161

Cursor performance

162

If LANGUAGE _CURSOR is set to "false," all cursors created during a
session are protocol cursors, which provide better performance. jConnect
creates and manipulates the cursors by sending cursor commands as
tokensin the TDS protocoal.

By default, LANGUAGE_CURSOR is set to "false.”

If LANGUAGE _CURSOR is set to "true," all cursors created during a
session are language cursors. j Connect creates and mani pul atesthe cursors
by sending SQL statements to the database for parsing and compilation.

Thereisno known advantageto setting LANGUAGE_CURSORto "true,"
but the option is provided in case an application displays unexpected
behavior when LANGUAGE_CURSOR is"fase."

jConnect for JDBC

CHAPTER 6 Migrating jConnect Applications

This chapter explains how to migrate applications from jConnect 5.x and
6.x to jConnect 7.x.

Topic Page
Migrating applicationsto jConnect 7.x 163
Changing Sybase extensions 164

Migrating applications to jConnect 7.x
Use the following procedure to upgrade to jConnect 7.x.

[IMigrating to jConnect 7.x

1 If your code uses Sybase extensions, or if you explicitly import any
jConnect classin your code, change package import statements as

needed.
For exampl e, change import statements such as
import com.sybase.jdbc.*
and
import com.sybase.jdbc2.jdbc.*
to

import com.sybase.jdbcx.*

For information on using the Sybase extension APIs, see “ Changing
Sybase extensions’ on page 164.

2 Set IDBC_HOME to the top directory of the jConnect driver you
installed:

JDBC_HOME=jConnect-7_0

3 Change your CLASSPATH environment variable to reflect the new
installation. Your classpath must include the following:

Programmers Reference 163

Changing Sybase extensions

JDBC_HOME/classes/jconn4.jar

4 Change the source code where the driver isloaded, and recompile the
application to use the new driver:

Class.forName ("com.sybase.jdbc4.jdbc.SybDriver") ;

5 Verify that the jConnect 7.0 driver isthefirst jConnect driver specified in
your CLASSPATH environment variable.

Changing Sybase extensions

jConnect version 4.1 and later include the package com.sybase.jdbcx that
contains all of the Sybase extensionsto JDBC. In versions of jConnect
previousto 4.1, these extensions were available in the com.sybase.jdbc and
com.sybase.utils packages.

The com.sybase.jdbcx package provides a consistent interface across different
versions of jConnect. All of the Sybase extensions are defined as Java
interfaces, which allow the underlying implementations to change without
affecting applications built using these interfaces.

When you develop new applications that use Sybase extensions, use
com.sybase.jdbcx. The interfaces in this package alow you to upgrade
applications to versions of jConnect that follow version 4.0 with minimal
changes.

Some of the Sybase extensions have been changed to accommodate the
com.sybase.jdbcx interface.

Extension change example

164

If an application uses the SybMessageHandler, the code differences would be:
e jConnect 4.0 code:

import com.sybase.jdbc.SybConnection;
import com.sybase.jdbc.SybMessageHandler;

Connection con = DriverManager.getConnection (url, props) ;
SybConnection sybCon = (SybConnection) con;
sybCon.setMessageHandler (new ConnectionMsgHandler()) ;

jConnect for JDBC

CHAPTER 6 Migrating jConnect Applications

jConnect 6.0 code:

import com.sybase.jdbcx.SybConnection;
import com.sybase.jdbcx.SybMessageHandler;

Connection con = DriverManager.getConnection (url, props);
SybConnection sybCon = (SybConnection) con;
sybCon.setSybMessageHandler (new ConnectionMsgHandler()) ;

Method names

Debug class

Programmers Reference

See the samples provided with jConnect for more examples of how to use
Sybase extensions.

Table 6-1 lists how methods have been renamed in the new interface.

Table 6-1: Method name changes

Class Old name New name
SybConnection getCapture() createCapture()
SybConnection setMessageHandler() setSybMessageHandler()
SybConnection getMessageHandler() getSybMessageHandler()
SybStatement setMessageHandler() setSybMessageHandler()
SybStatement getMessageHandler() getSybMessageHandler()

Direct static references to the Debug class are no longer supported, but exist in
deprecated form in the com.sybase.utils package. To use jConnect debugging
facilities, use the getDebug method of the SybDriver classto obtain areference
to the Debug class. For example:

import com.sybase.jdbcx.SybDriver;
import com.sybase.jdbcx.Debug;

SybDriver sybDriver =
SybDriver) Class.forName
("com.sybase.jdbc4.jdbc.SybDriver") newlInstance() ;
Debug sybDebug = sybDriver.getDebug() ;
sybDebug.debug (true, "ALL", System.out);

165

Changing Sybase extensions

A completelist of Sybase extensionsisin the jConnect javadoc documentation
located in the docs/ directory of your jConnect installation directory.

166 jConnect for JDBC

CHAPTER 7

Web Server Gateways

This chapter describesWeb server gatewaysand explains how to usethem
with jConnect.

Topic Page
About Web server gateways 167
Usage requirements 172
Using the TDS-tunnelling servlet 174

About Web server gateways

If your database server runs on adifferent host than your Web server, or if
you are devel oping Internet applications that must connect to a secure
database server through afirewall, you need a gateway to act as a proxy,
providing a path to the database server.

To connect to servers using the Secure Sockets Layer (SSL) protocol,
jConnect provides a Java servlet that you can install on any Web server
that supports the javax.servlet interfaces. This servlet enables jConnect to
support encryption using the Web server as the gateway.

Note jConnect includes support for SSL on the client system. For more
information, see “Implementing custom socket plug-ins’ on page 122.

Using TDS tunnelling

Programmers Reference

jConnect uses TDS to communicate with database servers. HTTP-
tunnelled TDSisuseful for forwarding requests. Requestsfrom aclient to
aback-end server that go through the gateway contain TDSin the body of
the request. The request header indicates the length of the TDS included
in the request packet.

167

About Web server gateways

TDS s aconnection-oriented protocol, whereas HTTP is not. To support
security features such as encryption for Internet applications, jConnect uses a
TDS-tunnelling servlet to maintain alogical connection acrossHT TP requests.
The servlet generates a session ID during the initial login request, and the
session ID isincluded in the header of every subsequent request. Using session
IDs lets you identify active sessions and even resume a session, aslong asthe
servlet has an open connection using that specific session ID.

Thelogica connection provided by the TDS-tunnelling servlet enables
jConnect to support encrypted communication between two systems; for
example, ajConnect client with the CONNECT_PROTOCOL connection
property set to “https’ can connect to aWeb server running the TDS-tunnelling
servlet.

Configuring jConnect and gateways

There are several options for setting up your Web servers and Adaptive
Servers. The following examples are four common configurations that show
where to install the jConnect driver and when to use a gateway with the
TDS-tunnelling servlet.

Web server and Adaptive Server on one host

In this two-tier configuration, the Web server and Adaptive Server are both
installed on the same host:

¢ Install jConnect on the Web server host.
¢ No gateway isrequired.

168 jConnect for JDBC

CHAPTER 7 Web Server Gateways

Figure 7-1: Web server and Adaptive Server on one host

Client Host
Browser URL
(Web
Downloaded server
applets and Download applets and
jConnect applets and i
J driver jpgonnect Connect
|
\ Adaptive
TDS 5.0 Server

Dedicated JDBC Web server and Adaptive Server on one host

In this configuration, you have a separate host for your main Web server. A
second host is shared by a Web server specifically for Adaptive Server access
and the Adaptive Server. Links from the main server send requests requiring
SQL access to the dedicated Web server. Install on a second host:

e Install jConnect on the second (Adaptive Server) host.

Programmers Reference

* No gateway is required.

169

About Web server gateways

Figure 7-2: Dedicated JDBC Web server and Adaptive Server on one

host

Client

Host A

Browser

URL

Main Web
» Server

Web server and Adaptive Server on separate hosts

In thisthree-tier configuration, the Adaptive Server is on a separate host from
the Web server. jConnect requires a gateway to act as a proxy to the Adaptive

170

Server.

e Install jConnect on the Web server host.

Downloaded non-SQL
applets and applets
jConnect
driver Host B
URL
'\ \
Download A Web
applets and~_| server
jConnect
applets and
jConnect
TDS 5.0

* Ingtall aTDS-tunnelling servlet or a different gateway.

jConnect for JDBC

CHAPTER 7 Web Server Gateways

Figure 7-3: Web server and Adaptive server on separate hosts

Host A

Client
Browser
URL
Downloaded \¢— Download —
applets and applets and
jConnect jConnect
driver
L
HTTP
tunneled
TDS
TDS 5.0

Main Web
server

jConnect

Connecting to a server through a firewall

To connect to aserver protected by afirewall, you must use a Web server with
the TDS-tunnelling servlet to support transmission of database request
responses over the Internet.

Programmers Reference

Install jConnect on the Web server host.

Requires a Web server that supports the javax.servlet interfaces.

applets and

171

Usage requirements

Figure 7-4: Connecting to a server through a firewall

|
Client | Host A
URL
Browser i
| Download
Downloaded T applets and | Web Ser_ver
applets and | iConnect _Supportlng
jConnect | avax.servlet
; HTTP/HTTPS
driver 1N
T tunneled | °
| TDS
| » applets and
| jConnect
Firewall |
|
| Host B
: TDS 5.0
| >
|
|

Usage requirements

The following sections describe use requirements for Web server gateways.

172 jConnect for JDBC

CHAPTER 7 Web Server Gateways

Reading the index.html file

Use your Web browser to view theindex.html filein your jConnect installation
directory. index.html provideslinksto thejConnect documentation and sample
code.

Note If you use Netscape on the same machine where you have installed
jConnect, be surethat your browser does not have accessto your CLASSPATH
environment variable. See “Restrictions on Setting CLASSPATH When You
Use Netscape” in Chapter 3 of the Sybase jConnect for JDBC Installation
Guide and Release Bulletin.

[TITo view the index.html file

1
2

Open your Web browser.

Enter the URL that matches your setup. For example, if your browser and
the Web server are running on the same host, enter:

http://localhost:8000/index.html
If the browser and the Web server are running on different hosts, enter:
http://host:port/index.html

where host isthe name of the host on which the Web server isrunning, and
port isthe listening port.

Running the sample Isqgl applet

After loading the index.html file in your browser:

[TTo run the sample applet

1

Programmers Reference

Click “Run Sample JDBC Applets.”
This takes you to the jConnect Sample Programs page.

Move down the Sample Programs page to find the table under “ Executable
Samples.”

Locate “Isgl.java’ in the table and click Run at the end of the row.

173

Using the TDS-tunnelling servlet

Troubleshooting

The sample Isql.java applet prompts for a simple query on a sample database
and displays the results. The applet displays a default Adaptive Server host
name, port number, user name (guest), password (sybase), database, and query.
Using the default values, the applet connects to the Sybase demonstration
database. It returns results after you click Go.

On UNIX, if the applet does not appear as expected, you can modify the appl et
screen dimensions:

[TTo modify the applet screen dimensions
1 Useatext editor to edit the following:
$IDBC_HOME/sample2/gateway.html

2 Change the height parameter in line 7 to 650. You can experiment with
different height settings.

3 Reload the Web page on your browser.

Using the TDS-tunnelling servlet

174

To use the TDS-tunnelling servlet, you need a Web server that supports the
javax.servlet interfaces, such asthe Oracle Corporation Java Web server. When
you install the Web server, include the jConnect TDS-tunnelling servlet in the
list of active servlets. You can also set servlet parameters to define connection
timeouts and maximum packet size.

With the TDS-tunnelling servlet, requests from a client to the back-end server
that go through the gateway includeaGET or POST command, the TDS session
ID (after theinitial request), back-end address, and status of the request.

TDSisinthe body of the request. Two header fields indicate the length of the
TDS stream and the session |D assigned by the gateway.

When the client sends arequest, the Content-L ength header field indicates the
size of the TDS content, and the request command isPOST. If thereisno TDS
datain the request because the client is either retrieving the next portion of the
response data from the server, or closing the connection, the request command
ISGET.

jConnect for JDBC

CHAPTER 7 Web Server Gateways

Thefollowing exampleillustrateshow information is passed between the client
and an HTTPS gateway using the TDS-tunneled HTTPS protocol; it shows a
connection to a back-end server named “DBSERVER” with a port number of
“1234"

Table 7-1: Client to gateway login request. No session ID.

Query POST/tds?ServerHost=dbserver& ServerPort=1234&
Operation=more HTTP/1.0

Header Content-Length: 605

Content Login request
(TDS)

Table 7-2: Gateway to client. Header contains session ID
assigned by the TDS servlet.

Query 200 SUCCESSHTTP/1.0

Header Content-Length: 210
TDS-Session: TDS00245817298274292

Content L ogin acknowledgment
(TDS) EED

Table 7-3: Client to gateway. Headers for all subsequent requests
contain the session ID.

Query POST/tds?TDS-
Session=TDS00245817298274292& Operation=more HTTP/1.0
Header Content-Length: 32

Content Query “SELECT * from authors”
(TDS)

Table 7-4: Gateway to client. Headers for all subsequent responses
contain the session ID.

Query 200 SUCCESSHTTP/1.0
Header Content-Length: 2048
TDS-Session: TDS00245817298274292

Content Row format and some rows from query response
(TDS)

Reviewing requirements
To use the jConnect servlet for TDS-tunneled HTTR, you need:

e A Web server that supports javax.servlet interfaces. To install the server,
follow the instructions that are provided with it.

Programmers Reference 175

Using the TDS-tunnelling servlet

Installing the servlet

Your jConnect installation includes a gateway?2 subdirectory under the classes
directory. The subdirectory contains files required for the TDS-tunnelling
servlet.

Copy the jConnect gateway package to a gateway?2 subdirectory under the
serviets directory of your Web server. After you have copied the servlets,
activate the servlets by following the instructions for your Web server.

Setting servlet arguments

When you add the servlet to your Web server, you can enter optional arguments
to customize performance:

SipDoneProc [truelfalse] — Sybase databases often return row count
information while intermediate processing steps are performed during the
execution of aquery. Usually, client applicationsignore this data. If you
set SkipDoneProc to "true," the servlet removes this extrainformation
from responses “on the fly,” which reduces network usage and processing
requirements on the client. Thisis particularly useful when using
HTTPS/SSL, because the unwanted data does not get encrypted/decrypted
beforeit isignored.

TdsResponseSize — set the maximum TDS packet size for the tunneled
HTTPS. A larger TdsResponseSizeismore efficient if you have only afew
users with alarge volume of data. Use a smaller TdsResponseSize if you
have many users making smaller transactions.

TdsSessionldleTimeout — define the amount of time (in milliseconds) that
the server connection can remain idle before the connection is
automatically closed. The default TdsSessionldleTimeout is 600,000 (10
minutes).

If you have interactive client programsthat may beidlefor long periods of
time and you do not want the connections broken, increase the
TdsSessionl dleTimeout.

You can also set the connection timeout value from the jConnect client
using the SESSION_TIMEOUT connection property. Thisisuseful if you
have specific applications that may beidlefor longer periods. In this case,
set alonger timeout for those connectionswith the SESSION_TIMEOUT
connection property, rather than setting it for the servlet.

Debug —turn on debugging. See“ Debugging with jConnect” on page 141.

Enter the servlet arguments in a comma-delimited string. For example:

176

jConnect for JDBC

CHAPTER 7 Web Server Gateways

TdsResponseSize=[size] ,TdsSessionIdleTimeout=
[timeout] , Debug=true

Refer to your Web server documentation for compl ete instructions on entering
servlet arguments.

Invoking the servlet

jConnect determines when to use the gateway where the TDS-tunnelling
servlet isinstalled based on the path extension of the proxy connection
property. jConnect recognizes the servlet path extension to the proxy and
invokes the servlet on the designated gateway.

Define the connection URL using this format:
http://host:port/TDS-serviet-path

jConnect invokes the TDS-tunnelling serviet on the Web server to tunnel TDS
through HTTP. The servlet path must bethe path you defined inthe servlet alias
list for your Web server.

Tracking active TDS sessions

You can view information about active TDS sessions, including the server
connectionsfor each session. Useyour Web browser to open the administrative
URL:

http://host:port/TDS-serviet-path?Operation=1list

For example, if your server is“myserver” and the TDS servlet path is /tds,
enter:

http://myserver:8080/tds?Operation=1ist

Thisshowsyou alist of active TDS sessions. You can click on asession to see
more information, including the server connection.

Terminating TDS sessions

You can use the URL described above to terminate any active TDS session.
Click on an active session from the list of sessions on thefirst page, then click
Terminate This Session.

Programmers Reference 177

Using the TDS-tunnelling servlet

Resuming a TDS session

You can set the SESSION_ID connection property so that, if necessary, you
can resume an existing open connection. When you specify a SESSION_1D,
jConnect skipsthelogin phase of the protocol and resumesthe connection with
the gateway using the designated session ID. If the session ID you specified
does not exist on the servlet, jConnect throws a SQL exception the first time
you attempt to use the connection.

178 jConnect for JDBC

arpenpix o JCoOnnect Sample Programs

This appendix is a guide to jConnect sample programs:

Topic Page
Running IsglApp 179
Running jConnect sample programs and code 181

Running IsqlApp

IsqlApp allows you to issue isgl commands from the command line, and
run jConnect sample programs.

The syntax for IsglApp is:

IsqglApp [-U usernamel
[-P password]
[-S servername]
[-G gateway]

-p {http|https}]

-D debug class list]

s,

-I input command file]

-c command_ terminator]

-C charset]

-L language]

-K service principal namel]

-F JAAS login config file pathl]
-T sessionID]
-V <version {2,3,4,5}>]

L T e B e T e M e B e B e B e B e B

Parameter Description

-U Thelogin ID with which you want to connect to a server.
-P The password for the specified login ID.

-S The name of the server to which you want to connect.

Programmers Reference 179

Running IsglApp

Parameter

Description

-G

The gateway address. For the HTTP protocal, the URL is: http://host: port.

To use the HTTPS protocol that supports encryption, the URL is
https://host:port/serviet_alias.

P

Specifies whether you want to use the HTTP protocol or the HTTPS protocol that
supports encryption.

Turns on debugging for all classes or for just the ones you specify, separated by a
comma. For example,

-DALL

displays debugging output for all classes.

-D SybConnection, Tds

displays debugging output only for the SybConnection and Tds classes.

-V

Turns on verbose output for display or printing.

Causes IsglApp to take commands from afile instead of the keyboard.

After the parameter, you specify the name of thefile to use for the IsqlApp input. The
file must contain command terminators (“go” by default).

-C

Letsyou specify akeyword (for example, “go”) that, when entered on aline by itself,
terminates the command. This lets you enter multiline commands before using the
terminator keyword. If you do not specify a command terminator, each new line
terminates a command.

-C

Specifies the character set for strings passed through TDS.
If you do not specify a character set, IsqlApp uses the default charset of the server.

Specifies the language in which to display error messages returned from the server
and for jConnect messages.

Indicates the user wantsto make aKerberoslogin to Adaptive Server. This parameter
sets the service principa name. For example:

-K myASE
Thisexampleindicatesthat you wish to perform aKerberos|ogin and that the service
principal name for your server is myASE.

See Chapter 3, “ Security” for more information.

Specifies the path to the JAAS login configuration file. You must set this property if
you use the -K option. For example:

-F /foo/bar/exampleLogin.conf
See the ConnectKerberos.java sample in the sample2 directory of your jConnect
installation. For more information, see Chapter 3, “ Security”.

180

When this parameter is set, jConnect assumes that an application istrying to resume
communication on an existing TDS session held open by the TDS-tunnelling
gateway. jConnect skips the login negotiations and forwards all requests from the
application to the specified session ID.

jConnect for JDBC

APPENDIX A jConnect Sample Programs

Parameter Description

-V Enables the use version-specific characteristics. See“Using JCONNECT _
VERSION” on page 6.

Note You must enter a space after each option flag.

To obtain afull description of the command-line options, enter:
java IsqglApp -help

The following example shows how to connect to a database on a host named
“myserver” through port “3756”, and run an isqgl script named “ myscript”:

java IsglApp -U sa -P sapassword
-S jdbc:sybase:Tds:myserver:3756
-I $JDBC_HOME/sp/myscript -c run

Note An applet that provides GUI accessto isql commandsis available as:
$IDBC_HOME/sample2/gateway.html (UNIX)
%JDBC_HOME%\sample2\gateway.html (Windows)

Running jConnect sample programs and code

jConnect includes several sample programs that illustrate many of the topics
covered in this chapter and that are intended to help you understand how
jConnect works with various JDBC classes and methods. In addition, this
section includes a sample code fragment for your reference.

Programmers Reference 181

Running jConnect sample programs and code

Sample applications

When you ingtall jConnect, you can also the install sample programs. These
samples include the source code so that you can review how jConnect
implements various JDBC classes and methods. See the jConnect for JDBC
Installation Guide for complete instructions for installing the sample
programs.

Note ThejConnect sample programs are intended for demonstration purposes
only.

The sample programs are installed in the sample2 subdirectory under your
jConnect installation directory. Thefileindex.html in the sample2 subdirectory
contains a complete list of the samples that are available along with a
description of each sample. index.html also lets you view and run the sample
programs as appl ets.

Running the sample applets

Using your Web browser, you can run some of the sample programs as applets.
This enables you to view the source code while viewing the output results.

Enter http://local host:8000/sample2/index.html on a Web browser to start the
Web server gateway if you want to run the sample programs as applets.

Running the sample programs with SQL Anywhere

182

All of the sample programs are compatible with Adaptive Server, but only a
limited number are compatible with SQL Anywhere. Refer to index.html inthe
sample2 subdirectory for a current list of the sample programsthat are
compatible with SQL Anywhere.

To run the sample programs that are available for SQL Anywhere, you must
install the pubs2_any.sqgl script on your SQL Anywhere server. This script is
located in the sample2 subdirectory.

For Windows, go to DOS command window and enter:

java IsglApp -U dba -P password
-S jdbc:sybase:Tds: [hostname] : [port]
-I $JDBC_HOMES%\sample2\pubs2 any.sql -c go

For UNIX, enter:

java IsqlApp -U dba -P password

jConnect for JDBC

APPENDIX A jConnect Sample Programs

-S jdbc:sybase:Tds: [hostname] : [port]
-I $JDBC_HOME/sample2/pubs2 any.sql -c go

Sample code

Thefollowing sample codeillustrates how to invoke the jConnect driver, make
aconnection, issue a SQL statement, and process results.

import java.io.*;
import java.sql.*;

public class SampleCode

{

public static void main(String argsl|[])
try
/-k
* Open the connection. May throw a SQLException.
*/
DriverManager.registerDriver (
(Driver) Class.forName (
"com.sybase.jdbc4 . jdbc.SybDriver") .newInstance ()) ;

Connection con = DriverManager.getConnection (
"jdbc:sybase:Tds:myserver:3767", "sa", "");
/*
* Create a statement object, the container for the SQL
* statement. May throw a SQLException.
*/
Statement stmt = con.createStatement () ;
/-k
* Create a result set object by executing the query.
* May throw a SQLException.

*/
ResultSet rs = stmt.executeQuery("Select 1");
/-k
* Process the result set.
*/

if (rs.next())

{

int value = rs.getInt(1l);
System.out.println ("Fetched value " + value);

Programmers Reference 183

Running jConnect sample programs and code

rs.close ()
stmt.close()
con.close ()

}//end try
/*
* Exception handling.
*/
catch (SQLException sge)
{
System.out.println ("Unexpected exception : " +
sge.toString() + ", sglstate = " +

sge.getSQLState()) ;
System.exit (1) ;
}//end catch

catch (Exception e)

{

e.printStackTrace() ;
System.exit (1) ;
}//end catch

System.exit (0) ;

184 jConnect for JDBC

appenDix 8 SQL Exception and Warning

Messages

The following table lists the SQL exception and warning messages that
you may encounter when using jConnect.

SQL state Message/description/action

010AF SEVERE WARNING: An assertion has failed, please use devclasses to
determine the source of this serious bug. Message =
Description: Aninternal assertion in the jConnect driver has failed.
Action: Usethe devclasses debug classesto determine the reason for this message and report the
problem to Sybase Technical Support.

010CP AutoCommit option has changed to true. All pending statements on this
transaction (if any) are committed.
Action: See message text.

010DF Attempt to set database at login failed. Error message:
Description: jConnect cannot connect to the database specified in the connection URL.
Action: Besurethe database nameinthe URL iscorrect. Also, if connecting to SQL Anywhere,
use the SERVICENAME connection property to specify the database.

010DP Duplicate connection property _ ignored.
Description: A connection property is defined twice. It may be defined twice in the driver
connection properties list with different capitalization, for example “ password” and
“PASSWORD.” Connection property names are not case-sensitive; therefore, jConnect does not
distinguish between property names with the same name but different capitalization.
The connection property may also be defined both in the connection propertieslist, and in the
URL. Inthis case, the property value in the connection property list takes precedence.
Action: Be sureyour application defines the connection property only once. However, you may
want your application to take advantage of the precedence of connection properties defined in
the property list over those defined in the URL. In this case, you can safely ignore this warning.

010HA The server denied your request to use the high-availability feature.

Please reconfigure your database, or do not request a high-
availability session.

Description: The server to which jConnect attempted an HA-enabled connection did not alow
the connection.

Action: Reconfigure the server to support high availability failover or do not set
REQUEST_HA_SESSION to "true."

Programmers Reference 185

SQL state Message/description/action

010HD Sybase high-availability failover is not supported by this type of
database server.
Description: The database to which jConnect attempted a connection does not support high
availability failover.
Action: Connect only to database servers that support high availability failover.

010HN The client did not specify a SERVICE PRINCIPAL NAME Connection
property. Therefore, jConnect is using the hostname of as the
service principal name
Action: Make sureto explicitly specify a service principal name using the connection property.

O10HT Hostname property truncated, maximum length is 30.
Description: You provided a string greater than 30 characters for the HOSTNAME connection
property, or the host machine on which the jConnect application is running has a name longer
than 30 bytesin length.
Action: No action is necessary, sincethisisjust awarning to indicate that jConnect istruncating
the name to 30 bytes. However, if you wish to avoid this warning, you should set the
HOSTNAME to astring less than or equal to 30 bytesin length.

010KF The server rejected your Kerberos login attempt. Most likely, this
was because of a Generic Security Services (GSS) exception. Please
check your Kerberos environment and configuration.
Action: Check your Kerberos environment, and make sure that you authenticated properly to the
KDC. See Chapter 3, “ Security” for more information.

010MX Metadata accessor information was not found on this database. Please
install the required tables as mentioned in the jConnect
documentation. Error encountered while attempting to retrieve
metadata information:
Description: The server may not have the necessary stored procedures for returning metadata
information.
Action: Be sure that stored procedures for providing metadata are installed on the server. See
“Installing Stored Procedures’ in Chapter 3 of the jConnect for JDBC Installation Guide.

010P4 An output parameter was received and ignored.
Description: The query you executed returned an output parameter but the application result-
processing code did not fetch it so it was ignored.
Action: If your application needs the output parameter data, you must rewrite the application so
it can get it. Thismay require using a CallableStatement to execute the query, and adding callsto
registerOutputParameter and getXXX. You can aso prevent jConnect from returning this
warning, and possibly get a performance improvement, by setting the
DISABLE_UNPROCESSED_PARAM_WARNINGS connection property to “true.”

186 jConnect for JDBC

APPENDIX B SQL Exception and Warning Messages

SQL state Message/description/action

010P6 A row was received and ignored.

Description: An unexpected object of type 0xD1 was encountered in the result set being
processed and was ignored.

Action: Check the query that generated the result set and correct as required.

010PF One or more jars specified in the PRELOAD JARS connection property
could not be loaded.

Description: This happens when using the DynamicClassLoader with the PRELOAD_JARS
connection property set to acomma-delimited list of .jar file names. When the
DynamicClassLoader opensits connection to the server from which the classes are to be loaded,
it attemptsto “preload” al the .jar files mentioned in this connection property. If one or more of
the jar file names specified does not exist on the server, the above error message resullts.

Action: Verify that every .jar file mentioned in the PRELOAD_JARS connection property for
your application exists and is accessible on the server.

010PO Property LITERAL PARAM has been reset to "false" because
DYNAMIC_PREPARE was set to "true".

Description: If you wish to use precompiled dynamic statements, then you must allow for
parameters to be sent to those statements (if the statements take parameters). Setting
LITERAL_PARAMSto "true" forces all parameters to be sent as literal valuesin the SQL that
you send to the server. Therefore, you cannot set both properties to "true.”

Action: To avoid thiswarning, do not set LITERAL_PARAMS to “true” when you wish to use

dynamic SQL. See* Performance tuning for prepared statementsin dynamic SQL” on page 154
for more information.

010RC The requested ResultSet type and concurrency is not supported. They
have been converted.
Description: You requested atype and concurrency combination for the result set that is not
supported. The requested values had to be converted. See “Using cursors with result sets’ on
page 55 for more information about what result set types and concurrencies are available in
jConnect

Action: Request atype and concurrency combination for the result set that is supported.

01083 Metadata accessor information was not found on this database. Please
install the required tables as mentioned in the jConnect
documentation.

Description: The metadatainformation is not configured on the server.

Action: If your application requires metadata, install the stored procedures for returning
metadata that come with jConnect (see “Installing Stored Procedures” in Chapter 3 of the
jConnect for JDBC Installation Guide). If you do not need metadata, set the USE_ METADATA
property to "false.”

Programmers Reference 187

SQL state

Message/description/action

010SK

Database cannot set connection option

Description: Your application attempted an operation that the database you are connected to
does not support.

Action: You may need to upgrade your database or make sure that the latest version of metadata
information isinstalled on it.

010SL

Out-of-date metadata accessor information was found on this database.
Ask your database administrator to load the latest scripts.

Description: The metadata information on the server is old and needs to be updated.

Action: Install the stored procedures for returning metadata that come with jConnect (see
“Installing Stored Procedures’ in Chapter 3 of the jConnect for JDBC Installation Guide).

010SM

This database does not support the initial proposed set of
capabilities, retrying.

Description: Adaptive Server Enterprise versions 11.9.2 and lower had a bug that caused them
toreject loginsfrom clientsthat requested capabilitiesthat the serversdid not have. Thiswarning
indicates that jConnect has detected this condition and is retrying the connection using the
greatest number of capabilities that the server can accept. When jConnect encountersthisbug, it
attempts to connect to the server twice.

Action: Clients can safely ignore thiswarning, but if they wish to eliminate the warning and
ensure that jConnect makes only one connection attempt, they can set the ELIMINATE_010SM
connection property to "true." Please note that this property should not be set to "true" when
connecting to Adaptive Server versions 12.0 and | ater.

010SN

Permission to write to file was denied. File: . Error message:
Description: Permission to write to afile specified in the PROTOCOL_CAPTURE connection
property is denied because of asecurity violationinthe VM. Thiscan occur if an applet attempts
to write to the specified file.

Action: If you are attempting to write to the file from an applet, make sure that the applet has
access to the target file system.

010SP

File could not be opened for writing. File: . Error message:

Action: Make sure that the file nameis correct and that the file is writable.

010SQ

188

The connection or login was refused, retrying connection with the
host/port address.

Description: The CONNECTION_FAILOVER connection property is set to "true," and
jConnect was unable to connect to one of the database serversin thelist of serversto which to
connect. Therefore, jConnect now tries to connect to the next server in the list.

Action: No actionisrequired, aslong asjConnect is able to connect to another database server.
However, you should determine why jConnect was unable to connect to the particular server that
caused the connection warning to be issued.

jConnect for JDBC

APPENDIX B SQL Exception and Warning Messages

SQL state Message/description/action
010TP The connection’s initial character set, , could not be converted
by the server. The server’s proposed character set, , will be

used, with conversions performed by jConnect.

Description: The server cannot use the character set initially requested by jConnect, and has
responded with a different character set. jConnect accepts the change, and performs the
necessary character-set conversions.

The message is strictly informational and has no further consequences.

Action: To avoid thismessage, set the CHARSET connection property to acharacter set that the
server supports.

010TQ jConnect could not determine the server's default character set. This
is likely because of a metadata problem. Please install the required
tables as mentioned in the jConnect documentation. The connection is
defaulting to the ascii_7 character set, which can handle only
characters in the range from 0x00 through 0x7F.
Description: jConnect could not determine the server's default character set. When this occurs,
the only characters that are guaranteed to translate properly are the first 127 ASCII characters.
Therefore, jConnect revertsto 7-bit ASCII inthis case. The messageis strictly informational and
has no further consequences.
Action: Install the stored procedures for returning metadata that comes with jConnect (see
“Installing Stored Procedures’ in Chapter 3 of the jConnect for JDBC Installation Guide).

010UF Attempt to execute use database command failed. Error message:

Description: jConnect cannot connect to the database specified in the connection URL. Two
possibilities are:

¢ The name was entered incorrectly in the URL.

« USE_METADATA is"true" (the default condition), but the stored procedures for returning
metadata have not been installed. As aresult, jConnect tried to execute the use database
command with the database in the URL, but the command failed. This may be because you
attempted to access an Adaptive Anywhere database. SQL Anywhere databases do not
support the use database command.

Action: Make surethe database namein the URL iscorrect. Make sure that the stored procedures

for returning metadata are installed on the server (see“Installing Stored Procedures’ in Chapter

3 of the jConnect for JDBC Installation Guide and jConnect for JDBC Release Bulletin). If you

are attempting to access a SQL Anywhere database, either do not specify a database namein the

URL, or set USE_ METADATA to “false.”

010UP Unrecognized connection property ignored.
Description: You attempted to set a connection property in the URL that jConnect does not
currently recognize. jConnect ignores the unrecognized property.
Action: Check the URL definition in your application to make sure it references only valid
jConnect driver connection properties.

Programmers Reference 189

SQL state

Message/description/action

0100V

The version of TDS protocol being used is too old.

Version:
Description: The server does not support the required version of the TDS protocol. jConnect
requires version 5.0 or later.

Action: Use a server that supports the required version of TDS. See the system requirements
section in the jConnect installation guide for details.

01807

Adaptive Server may round or truncate nanosecond values

Description: A timevalueof precision better than 1/300th of asecond was encountered. Because
Adaptive server does not support such precision, jConnect rejected the value.

Action: Make sure that time values are of precision up to 1/300th of a second.

01S08

This connection has been enlisted in a Global transaction. All
pending statements on the current local transaction (if any) have
been rolled back.

Description: jConnect issues rollback to clear out any current local transactions. This occurs
when Global transaction has been enlisted, after issuing XAResource.start().

Action: If you haveloca transactionsactive prior to issuing the XAResource.start() method, you
need to either commit or rollback the local transactions.

01S09

The local transaction method cannot be used while a
global transaction is active on this connection

Description: Warns that alocal operation is being performed in the global transaction. An
example of alocal operation is calling the commit() method on the connection. Other operations
that can't be used: rollback(), rollback(Savepoint), setSavepoint(), setSavepoint(String),

rel easeSavepoint(Savepoint), and setAutoCommit().

Action: Local transactions need to be kept separated from global transactions. Make sureto
complete all local transactions and their operations prior to starting the Global transaction.

01S10

The local transaction method cannot be used on a pre-System 12
XAConnection.

Description: You have used alocal transaction method that does not work with versions earlier
than Sybase SQL Anywhere version 12.

Action: Do not use the method.

01S11

190

WARNING: Your data might be truncated.

Description: The user-specified length of a stream or LOB is greater than the limit
(Integer.MAX_VALUE) in a ResultSet.updateXXX method.

Action: Make sure that the length is within the limit.

jConnect for JDBC

APPENDIX B SQL Exception and Warning Messages

SQL state Message/description/action

01S12 Unable to continue with HOMOGENEOUS BATCH protocol, falling back to
normal batching.
Description: When DYNAMIC_PREPARE is set to false, ASE does not send parameter
metadata. When HOMOGENEOUS BATCH is set to true, jConnect requires thisinformation
for optimization. Thus, jConnect reverts to normal batching.
Action: Use optimized batching (HOMOGENEOUS_BATCH set to true) with precompiled
dynamic SQL prepared statements only (DY NAMIC_PREPARE st to true).

01S13 Connected ASE server does not support the set option 'logbulkcopy'
needed for logging BCP. Falling back to normal bulk load without
logging which is equivalent to setting ENABLE BULK LOAD=BCP.
Description: The connected ASE isof aversion (version earlier than 15.7 ESD #1) that does not
support logged bulk load. Hence, jConnect has reverted to normal batching.
Action: Use ENABLE _BULK_LOAD=LOG_BCP setting with the correct version of ASE
(15.7 ESD #1 or later.)

0127z Password has expired Please set the NEWPASSWORD property with the new
password or use sp_password to change passwords.
Description: Password for connecting to ASE has expired.
Action: Set the password again.

Jz001 User name property ' ' too long. Maximum length is 30.
Action: Do not exceed the 30-byte maximum.

Jz002 Password property ' too long. Maximum length is 30.
Action: Do not exceed the 30-byte maximum.

Jz003 Incorrect URL format. URL:
Action: Verify the URL format. See “URL connection property parameters’ on page 31.
If you are using the PROXY connection property, you may get a JZ003 exception while trying
to connect if the format for the PROXY property isincorrect.
The PROXY format for the Cascade proxy is:

ip_address:port_number
The PROXY format for the TDS tunnelling serviet is:
http[s]://host:port/tunneling_serviet_alias
JZ004 User name property missing in DriverManager.getConnection(...,

Properties)

Action: Provide the required user property.

Programmers Reference 191

SQL state Message/description/action
JZ006 Caught IOException:

Description: An unexpected I/O error was detected from alower layer. When such I/0
exceptions are caught, they are rethrown as SQL exceptions using the ERR_IO_EXCEPTION
JZ006 sqlstate. These errors are often the result of network communication problems. If the I/O
exception causes the database connection to be closed, jConnect chains aJZ0C1 exception to the
JzZ006. Client applications can look for the JZ0C1 exception in the chain to seeif the connection
isdtill usable.

Action: Examine the text of the original 1/0 exception message, and proceed from there.

Jz008 Invalid column index value

Description: You have requested a column index value of lessthan 1 or greater than the highest
available value.

Action: Check call to the getxXX method and the text of the original query, or be sure to call
rs.next.

JzZ009 Error encountered in conversion. Error message:
Description: Some of the possibilities are:
« A conversion between two incompatible datatypes was attempted, such as date to int.
¢ Therewas an attempt to convert a string containing anonnumeric character to anumeric type.
« Therewasaformatting error, such as an incorrectly formatted time/date string.

Action: Make sure that the JDBC specification supports the attempted type conversion. Make
sure that strings are correctly formatted. If a string contains non-numeric characters, do not
attempt to convert it to anumeric type.

JZ00A Invalid precision and scale specified for a numeric value.

Description: When using the setBigDecimal method, the BigDecimal value is set to either a
precision value of lessthan 1, a negative scale value, a precision less than the scale value, or
precision value greater than 127.

Action: Examine the query and correct to specify alegal precision/scale value.

Jz00B Numeric overflow.

Description: You tried to send a Biginteger as a TDS numeric, and the value was too large, or
you tried to send a Javalong as an int and the value was too large.

Action: These values cannot be stored in Sybase. For long, consider using a Sybase numeric.
Thereis no solution for Bignum.

Jz00C The precision and scale specified cannot accommodate numeric value

Description: When using the setBigDecimal method, the BigDecimal value has a precision or
scale that exceeds the specified precision or scale.

Action: Make sure that the specified precision and scale can accommodate the BigDecimal
value.

192 jConnect for JDBC

APPENDIX B SQL Exception and Warning Messages

SQL state

Message/description/action

JZOOE

Attempt to call execute() or executeUpdate() for a statement where
setCursorName () has been called.

Action: Do not try to call execute or executeUpdate on a statement that has a cursor name set.

Use a separate statement to delete or update a cursor. See “Using cursors with result sets” on
page 55 for more information

JZOOF

Cursor name has already been set by setCursorName () .

Action: Do not set the cursor nametwicefor astatement. Close theresult set of the current cursor
statement.

JZ00G

No column values were set for this row update.
Description: You attempted to update arow in which no column val ues were changed.
Action: To change column valuesin arow, call updateXX methods before calling updateRow.

JZ00H

The result set is not updatable. Use
Statement .setResultSetConcurrencyType () .
Action: To change aresult set from read-only to updatable, use the

Statement.setResultSetConcurrencyType method or add afor update clause to your SQL select
statement.

Jz00l

Invalid scale. The specified scale must be >=0.
Description: The scale value must be greater than zero.
Action: Be sure the scale value is not negative.

JZ00L

Login failed. Examine the SQLWarnings chained to this exception for
the reason(s).

Action: See message text; proceed according to the reason(s) given for the login failure.

JZ0OM

Login timed out. Check that your database server is running on the
host and port number you specified. Also check the database server
for other conditions (such as a full tempdb) that might be causing
it to hang.

Action: Follow the recommended actions in the error message.

Jz010

Unable to deserialize an Object value. Error text:

Action: Make sure that the Java object from the database implements the Serializable interface
and isinyour local CLASSPATH variable.

Jz011

Number format exception encountered while parsing numeric connection
property

Description: A noninteger value was specified for a numeric connection property.
Action: Specify an integer value for the connection property.

Jz012

Internal Error. Please report it to Sybase technical support. Wrong
access type for connection property

Action: Contact Sybase Technical Support.

Jz013

Error obtaining JNDI entry:

Action: Correct the INDI URL, or make anew entry in the directory service.

Programmers Reference 193

SQL state Message/description/action

Jz014 You may not setTransactionIsolation (Connection.TRANSACTION NONE) .
This level cannot be set; it can only be returned by a server.
Action: Check your application code, whereit calls Connection.setTransactionlsolation, and
verify the value you are passing to the method.

JZ015 Illegal value set for the GSSMANAGER CLASS connection property. The
property value must be a String or an Object that extends
org.ietf.jgss.GSSManager.

Action: Check the value to which you set the GSSMANAGER_CLASS property.

Jz017 Savepoint is not wvalid
Description: You have specified a nonexistent savepoint for rollback or release.

Action: Examine the query and correct to specify an existing savepoint.

JZ018 This method can not be applied to this type of savepoint.

Description: The getSavepointld() method does not work on named savepoints (which have no
ID) and the getSavepointName() method does not work on unnhamed savepoints (which have no
name).

Action: Examine the query and correct.

Jz019 Error obtaining SERVERNAME .

Description: The URL set using jdbc:sybase:jndi:file does not specify either the sgl.ini file
(Windows) or the interfaces file (UNIX) or a server name.
Action: Examine the URL command and correct.

Jz021 The Specified file not found.

Description: Thesgl.ini file (Windows) or theinterfacesfile (UNIX) specified in the connection
URL is not found.
Action: Check the connection URL and correct.

Jz022 The Specified file has an unknown format.

Description: The connection URL string in the sql.ini file (Windows) or the interfaces file
(UNIX) is not in the correct format.
Action: Check the connection URL string and correct.

JZ024 The Specified Server : has no entry in the interfaces/sgl.ini
file
Description: The server name specified in connection URL has no corresponding entry in the
sgl.ini file (Windows) or the interfaces file (UNIX).

Action: Check the connection URL string and correct.

Jz025 The TLI format for Specified Server in interfaces/sqgl.ini is Invalid.

Description: The server detailsin the TLI format interfaces file (UNIX) isincorrect.
Action: Check the settings and correct.
194 jConnect for JDBC

APPENDIX B SQL Exception and Warning Messages

SQL state

Message/description/action

JZ026

The Specified Protocol : for Server : in

interfaces/sqgl.ini file : is not Supported.

Description: An unsupported protocol (other thantli, tcp, and nlwnsck) is specifiedin the sgl.ini
file (Windows) or the interfaces file (UNIX).

Action: Specify a supported protocol only.

Jz027

The Specified SECMECH entrys: for Server : in
interfaces/sgl.ini file : are not Supported.

Description: Aninvalid valueis specified in the Kerberos connection URL.
Action: Examine the URL and correct.

Jz028

Illegal value set for JCE_PROVIDER CLASS connection property. The
property value must be a fully qualified provider class name passed
as a String or an instance of java.security.Provider.

Action: Specify alegal value.

Jz029

Error looking up address for ALTERNATE SERVER_ NAME ,).

Description: jConnect is unable to locate the server specified with the
ALTERNATE_SERVER_NAME property using the SQL Anywhere UDP discovery protocol.

Action: Check the server name specified with the ALTERNATE_SERVER_NAME connection
property and correct.

Jz030

The method is not supported.
Description: You are using apublic API that is currently not supported.

Jz031

Failed to unwrap the object of

Description: jConnect cannot unwarp the object of a custom class because the custom classis
not in the classpath.

Action: Add the class to classpath.

Jz032

A Date or Timestamp parameter exceeds the BigDateTime/BigTime range.
The server can only support BigDateTime values between 0001/01/01
12:00:00:000000AM to 9999/12/31 11:59:59.999999PM or BigTime values
between 12:00:00:000000AM to 11:59:59.999999PM.

Action: See message text.

Jz033

Unknown Blob type returned by the server.
Description: jConnect is unable to map the ASE datatype of the column to a BLOB datatype.
Action: Make sure that the ASE column is convertible to a BLOB datatype.

Jz034

The connected server is not capable of handling Large Objects [LOB].
Description: The version of the connected ASE does not support LOB methods.
Action: Use the regular stream methods to access L OB.

Jz035

To handle Large object [LOB], please set connection property
'ENABLE_LOB_LOCATOR' to true.

Action: See message text.

Programmers Reference 195

SQL state

Message/description/action

JZ036

Reference to this Large Object [LOB] is no longer valid in database.
Check if you have called free() or check if transaction ended.

Action: See message text.

Jz037

Value of offset/position/start should be in the range [1, len] where
len is the length of Large Object [LOB].

Action: See message text.

Jz038

Length of the object should be >= 0.

Description: The size specified in an operation (getBytes, truncate, getSubString) on aLOB
object is negative

Action: Specified a nonnegative value only.

Jz040

operation failed. The has been closed already.

Description: Theread (write) operation hasfailed asinput stream or LOB reader (output stream
or LOB writer) has aready closed.

Action: Check the application to locate the reason of the conflict and correct.

Jz041

operation failed on the

Description: The read(write)(available()) operation has failed asinput stream or reader (output
stream or writer)(input stream) has already closed.

Action: Check the application to locate the reason of the conflict and correct.

Jz042

Large Object setters can not be mixed with other setters when
ENABLE LOB_LOCATOR and HOMOGENEOUS BATCH are set to TRUE.
java.sql.Types was mixed with java.sqgl.Types

Action: See message text.

Jz043

LOB objects are not supported for any of the possible variants of
'"ENABLE_BULK_LOAD property', but false. Please consider using
alternate setter APIs to insert the data.

Action: See message text.

Jz044

Server-side locators can not be created within the batch
if, SEND BATCHPARAMS IMMEDIATE is TRUE. Try using client side LOBs or
set SEND_BATCHPARAMS IMMEDIATE to FALSE.

Action: See message text.

JZ0BD

Out of range or invalid value used for method parameter.

Action: Verify that the parameter value in the method is correct.

JZ0BI

196

Message: setFetchSize: The fetch size should be set with the following
restrictions - 0 <= rows <= (maximum number of rows in the ResultSet) .

Description: The client application hastried to call setFetchSize with an invalid number of
rows.

Action: Verify that you are calling setFetchSize with the parameter falling within the above
range of values.

jConnect for JDBC

APPENDIX B SQL Exception and Warning Messages

SQL state

Message/description/action

JZ0BJ

Message: The value set for the IMPLICIT CURSOR FETCH SIZE connection
property must be > 0.

Action: See message text.

JZ0BP

Output parameters are not allowed in Batch Update Statements.

Action: Examine your application code and check that you did not try to declare an output
parameter in your batch.

JZOBR

The cursor is not positioned on a row that supports the method.

Description: You attempted to call aResultSet method that isinvalid for the current row position
(for example, caling insertRow when the cursor is not on the insert row).

Action: Do not attempt to call a ResultSet method that isinvalid for the current row position.

JZ0BS

Batch Statements not supported.

Action: Install or update the jConnect metadata stored procedures on your database with the
latest versions.

JZOBT

The method is not supported for ResultSets of type
Description: You attempted to call aResultSet method that isinvalid for the type of ResultSet.
Action: Do not attempt to call a ResultSet method that isinvalid for the type of ResultSet.

JZ0CO

Connection is already closed.
Description: The application has already called Connection.close on this connection object; it
cannot be used any more.

Action: Fix the code so that connection object references are nulled out when a connection is
closed.

JZ0C1

An IOException occurred which closed the connection.

Description: An unrecoverable |OException occurred that caused the connection to be closed.
The connection cannot be used for any further database activity. If this exception occurs, it can
aways be found in an exception chain with the 32006 Exception (explained earlier).

Action: Determine the cause of the |OException that disrupted the connection.

JZOCL

You must define the CLASS LOADER property when using the PRELOAD_ JARS
property.

Action: Be sureto specify aCLASS LOADER when setting PRELOAD_JARSto a

non-null value.

JZ0D4

Unrecognized protocol in Sybase JDBC URL:

Description: You specified aconnection URL using aprotocol other than TDS, whichisthe only
protocol currently supported by jConnect.

Action: Check the URL definition. If the URL specifies TDS as a subprotocol, make sure that
the entry uses the following format and capitalization:

jdbc:sybase: Tds:host:port
If the URL specifies INDI as a subprotocol, make sure that it starts with:
jdbc:sybase:jndi:

Programmers Reference 197

SQL state Message/description/action

JZ0D5 Error loading protocol .

Action: Check the settings for the CLASSPATH system variable.

JZ0D6 Unrecognized version number specified in setVersion. Choose one
of the SybDriver.VERSION_ * values, and make sure that the version of
jConnect that you are using is at or beyond the version you specify.
Action: See message text.

JZ0D7 Error loading url provider . Error message:

Action: Check the INDI URL to make sureit is correct.

JZ0D8 Error initializing url provider:

Action: Check the INDI URL to make sureiit is correct.

JZO0EM End of data.

Action: Please report this error to Sybase Technical Support.

JZOF1 Sybase high-availability failover connection was requested but the
companion server address is missing.

Description: When you set the REQUEST_HA_SESSION connection property to "true," you
must also specify afailover server.

Action: You can specify the secondary server using the SECONDARY _SERVER_HOSTPORT
connection property, or you can set the secondary server using JINDI (see “Implementing high
availability failover support” on page 47).

JZOF2 Sybase high-availability failover has occurred. The current
transaction is aborted, but the connection is still usable. Retry
your transaction.

Description: The back-end database server to which you were connected has gone down, but
you have failed over to a secondary server. The database connection is still usable.

Action: Client code should catch this exception, then restart the transaction from the last
committed point. Assuming you properly handle the exception, you can continue executing
JDBC calls on the same connection object.

JZOFP Incorrect value passed for parameter
Description: The value of the parameter specified for the state of the current resultset isinvalid.
Action: Make sure that the valueisalegal valid (CLOSE_CURRENT_RESULT,
KEEP_CURRENT_RESULT, CLOSE _ALL_RESULTS)

JZ0GC Error casting a as a GSSManager. Please check the value you are
setting for the GSSMANAGER CLASS connection property. The value must
be a String that specifies the fully qualified class name of a
GSSManager implementation. Or, it must be an Object that extends
org.ietf.jgss.GSSManager.

Action: See message text.
198 jConnect for JDBC

APPENDIX B SQL Exception and Warning Messages

SQL state

Message/description/action

JZOGK

The array can not be null and has to contain only one key.

Description: Theauto-generated key column name/index array iseither NULL or contains more
than one key. Only one key isalowed in the array since it relates to the IDENTITY column.

Action: Check the query and correct.

JZOGN

Error instantiating the class __ as a GSSManager. The exception was
. Please check your CLASSPATH and make sure the GSSMANAGER_CLASS
property value refers to a fully qualified class name of a GSSManager
implementation.

Action: Make sure your CLASSPATH environment variable includes any .jar files required by
your third-party GSSManager implementation.

JZ0GS

A Generic Security Services API exception occurred. The major error
code is . The major error message is . The minor error code is
The minor error message is

Action: Examine the major and minor error codes and messages. Check your Kerberos
configuration. See Chapter 3, “ Security” for more information.

JZOHO

Unable to start thread for event handler; event name =

Action: Please report this error to Sybase Technical Support.

JZ0H1

An event notification was received but the event handler was not
found; event name = .

Action: Please report this error to Sybase Technical Support.

JZOHC

Illegal character ’ encountered while parsing hexadecimal
number.

Description: A string that is supposed to represent abinary value contains a character that isnot
in the range (0-9, af) that is required for a hexadecimal number.

Action: Check the character values in the string to make sure they are in the required range.

JZ013

Unknown property. This message indicates an internal product problem.
Report this error to Sybase Technical support.

Action: Indicates an internal product problem. Please report this error to Sybase Technical
Support.

JZ015

An unrecognized CHARSET property was specified:

Description: You specified an unsupported character set code for the CHARSET connection
property.

Action: Enter avalid character-set code for the connection property. See “jConnect character-
set converters’ on page 40.

Programmers Reference 199

SQL state

Message/description/action

Jz016

An error occurred converting UNICODE to the charset used by the
server. Error message:

Action: Choose a different character set code for the CHARSET connection property on the
jConnect client that can support all the characters you need to send to the server. You may need
toinstall adifferent character set on the server, too. Also, if you are using jConnect version 6.05
or later, and Adaptive Server Enterprise 12.5 or later, you can send your data to the server as
unichar/univarchar datatypes. Please see “ Using jConnect to pass Unicode data” on page 39.

Jzoi7

No response from proxy gateway.

Description: The connection cannot be established asthereis no response from proxy gateway
specified with the PROXY connection property.

Action: Check the PROXY setting and correct.

Jz018

Proxy gateway connection refused. Gateway response: %1s.
Description: The proxy gateway connection was refused due to the specified reason.
Action: Check the proxy gateway settings.

Jz019

This InputStream was closed.

Description: Youtriedto read an InputStream obtained from getAsciiStream, getUnicodeStream,
or getBinaryStream, but the InputStream was aready closed. The stream may have been closed
because you moved to another column or cancelled the result set and there were not enough
resources to cache the data.

Action: Increase the cache size or read columns in order.

JZOIA

Truncation error trying to send

Description: There was atruncation error on character set conversion prior to sending a string.
The converted string is longer than the size allocated for it.

Action: Choose a different character-set code for the CHARSET connection property on the
jConnect client that can support all the characters you need to send to the server. You may need
to install adifferent character set on the server, too.

Jz0IB

The server's default charset of does not map to an encoding
that is available in the client Java environment. Because jConnect
will not be able to do client-side conversion, the connection is
unusable and is being closed. Try using a later Java version, or try
including your Java installation's il18n.jar or charsets.jar file in
the classpath.

Action: See message text.

JZOIR

200

getXXX may not be called on a column after it has been updated in the
result set with a java.io.Reader.

Action: Remove the getxxX call on the ResultSet column which you updated using a Reader.

jConnect for JDBC

APPENDIX B SQL Exception and Warning Messages

SQL state

Message/description/action

NVAVRS

getXXXStream may not be called on a column after it has been updated
in the result set.

Description: After updating acolumn in aresult set, you attempted to read the updated column
value using one of the following SybResultSet methods: getAsciiStream, getUnicodeStream,
getBinaryStream. jConnect does not support this usage.

Action: Do not attempt to fetch input streams from columns you are updating.

Jz0J0

Offset and/or length values exceed the actual text/image length.
Action: Verify that the offset and/or length values you used are correct.

JZOLA

Failed to instantiate Cipher object. Transformation %$1s is not
implemented by any of the loaded JCE providers.

Description: Theimplementation of the JCE provider specified with the
JCE_PROVIDER_CLASS connection property is not in the classpath.

Action: Make sure that the implementation is in the classpath.

Jz0LC

You cannot call the method on a ResultSet which is using a
language cursor to fetch rows. Try setting the LANGUAGE_ CURSOR
connection property to false.

Description: The application tried to call one of the ResultSet cursor scrolling methods on a
ResultSet which was created with alanguage cursor.

Action: Seethe error message.

JZOMD

ResultSet metadata is not available

Description: The J2EE_ TCK_COMPLIANT property is set and the resultset metadata is not
available.

Action: Install the metadata stored procedures.

JZONC

wasNull called without a preceding call to get a column.

Description: You can only call wasNull after acall to get a column, such as getint or
getBinaryStream.

Action: Change the code to move the call to wasNull.

JZONE

Incorrect URL format. URL: . Error message:

Action: Check the format of the URL. Make sure that the port number consists only of numeric
characters.

JZONF

Unable to load SybSocketFactory. Make sure that you have spelled the
class name correctly, that the package is fully specified, that the
class is available in your class path, and that it has a public zero-
argument constructor.

Action: See message text.

Programmers Reference 201

SQL state Message/description/action

JZONK Generated keys are not available because either the
Statement .NO_GENERATED KEYS was used or no keys were automatically
generated.
Description: The getGeneratedKeys() method is unable to return the auto-generated keys
because the statement was executed with .NO_GENERATED_KEYS or the statement produced
no auto-generated keys.
Action: Use getGeneratedKeys() only on statements executed with
.RETURN_GENERATED_KEYS or those that are expected to auto-generate keys.

JZONS The method is not supported and should not be called.
Action: See message text.

JZ0P1 Unexpected result type.
Description: The database has returned a result that the statement cannot return to the
application, or that the application is not expecting at this point. This generaly indicates that the
application isusing JDBC incorrectly to execute the query or stored procedure. If the JDBC
application is connected to an Open Server application, it may indicate an error in the Open
Server application that causes the Open Server to send unexpected sequences of results.
Action: Use the com.sybase.utils.Debug(true, “ALL") debugging toolsto try to determine what
unexpected result is seen, and to understand its causes.

JZ0OP4 Protocol error. This message indicates an internal product problem.
Report this error to Sybase technical support.
Action: See message text.

JZ0P7 Column is not cached; use RE-READABLE COLUMNS property.
Description: With the REPEAT_READ connection property set to "false," an attempt was made
to reread a column or read a column in the wrong order.
When REPEAT_READ is"false," you can only read the column value for arow once, and you
can only read columns in ascending column-index order. For example, after reading column 3
for arow, you cannot read its value a second time and you cannot read column 2 for the row.
Action: Either set REPEAT_READ to "true," or do not attempt to reread a column value and be
sure that you read columns in ascending column-index order.

JZ0P8 The RSMDA Column Type Name you requested is unknown.
Description: jConnect cannot determine the name of acolumn typein the
ResultSetMetaData.getColumnTypeName method.
Action: Be sure that your database has the most recent stored procedures for metadata.

JZ0P9 A COMPUTE BY query has been detected. That type of result is
unsupported and has been cancelled.
Description: The query you executed returned COMPUTE results, which are not supported by
jConnect.
Action: Change your query or stored procedure so it does not use COMPUTE BY.

202 jConnect for JDBC

APPENDIX B SQL Exception and Warning Messages

SQL state Message/description/action

JZOPA The query has been cancelled and the same response discarded.
Description: A cancel was probably issued by another statement on the connection.

Action: Check the chain of SQL exceptions and warnings on this and other statements to
determine the cause.

JZ0OPB The server does not support a requested operation.

Description: When jConnect creates a connection with a server, it informs the server of
capabilitiesit wants supported, and the server informs jConnect of the capabilities that it
supports. This error message is sent when an application requests an operation that was denied
in the original capabilities negotiation.

For example, if the database does not support precompilation of dynamic SQL statements, and
your code invokes SybConnection.prepareStatement(sgl_stmt, dynamic), and dynamic is set to
"true," jConnect generates this message.

Action: Modify your code so that it does not request an unsupported capability.

JZOPC The number and size of parameters in your query require wide table
support. But either the server does not offer such support, or it was
not requested during the login sequence. Try setting the
JCONNECT_VERSION property to >=6 if you wish to request widetable
support.

Description: You are trying to execute a statement with alarge number of parameters, and the
server is not configured to handle that many parameters. The number of parameters that can
produce this exception varies, depending on the datatypes of the datayou are sending. You never
get this exception if you are sending 481 or fewer parameters.

Action: You must run this query against an Adaptive Server 12.5 or later server. When you
connect to the database, set the JCONNECT _VERSION property to “6”.

JZOPD The size of the query in your dynamic prepare is large enough that

you require widetable support. But either the server does not offer
such support, or it was not requested during the login sequence. Try
setting the JCONNECT_VERSION property to >=6 if you wish to request
widetable support.

Description: You are trying to execute a dynamic prepared statement with alarge number of
parameters, and the server is not configured to handle that many parameters.

Action: You must run this query against an Adaptive Server 12.5 or later server. When you
connect to the database, set the JCONNECT_VERSION property to “6”.

Programmers Reference 203

SQL state Message/description/action

JZOPE The number of columns in your cursor declaration OR the size of your
cursor declaration itself are large enough that you require widetable
support. But either the server does not offer such support, or it was
not requested during the login sequence. Try setting the
JCONNECT VERSION property to >= 6 if you wish to request wide table
support.

Description: Thiserror can occur when your SELECT statement tries to return data from more
than 255 columns, or when the actual length of the SELECT statement is very large (greater than
approximately 65500 characters).

Action: You must run this query against aversion 12.5 or later Adaptive Server. When you
connect to the database, set the JCONNECT_VERSION property to “6".

JZOPN Specified port number of was out of range. Port numbers must

meet the following conditions: O<= portNumber <=65535.
Action: Check the port number that is specified in the database URL.
JZORO Result set has already been closed.

Description: The ResultSet.close method has already been called on the result set object; you
cannot use the result set for anything else.

Action: Fix the code so that ResultSet object references are set to null whenever aresult setis
closed.

JZ0R1 Result set is IDLE as you are not currently accessing a row.

Description: The application has called one of the ResultSet.getXXX column-data retrieval
methods, but there is no current row; the application has not called ResultSet.next, or
ResultSet.next returned "false" to indicate that there is no data.

Action: Verify that rs.next is set to "true" before calling rs.getXXX.
JZOR2 No result set for this query.

Description: You used Statement.executeQuery, but the statement returned no rows.
Action: Use executeUpdate for statements returning no rows.

JZOR3 Column is DEAD. This is an internal error. Please report it to Sybase

technical support.

Action: See message text.

JZ0R4 Column does not have a text pointer. It is not a text/image column
or the column is NULL.
Description: You cannot update atext/image columniif itisnull. A null text/image column does
not contain atext pointer.
Action: Be sure that you are not trying to update or get atext pointer to a column that does not
support text/image data. Be surethat you are not trying to update atext/image column that isnull.
Insert datafirst, then make the update.

204 jConnect for JDBC

APPENDIX B SQL Exception and Warning Messages

SQL state

Message/description/action

JZOR5

The ResultSet is currently positioned beyond the last row. You cannot
perform a get* operation to read data in this state.

Description: The application has moved the ResultSet row pointer beyond the last row. In this
position, thereis no data to read, so any get* operationsareillegal.

Action: Alter the code so that it does not attempt to read column data when the ResultSet is
positioned beyond the last row.

JZORD

You cannot call any of the ResultSet.get* methods on a row that has
been deleted with the deleteRow() method.

Description: An application istrying to retrieve datafrom arow that has been deleted. Thereis
no valid data to be retrieved.

Action: Alter the code so that the application does not attempt to retrieve datafrom adel eted row.

JZORM

refreshRow may not be called after updateRow or deleteRow.

Description: After updating arow in the database with SybCursorResult.updateRow, or deleting
it with SybCursorResult.deleteRow, you used SybCursorResult.refreshRow to refresh the row
from the database.

Action: Do not attempt to refresh arow after updating it or deleting it from the database.

JZ0S0

Statement state machine: Statement is BUSY.

Description: Theonly timethiserror israised is from the Statement.setCursorname method, if
the application istrying to set the cursor name when the statement is already in use and has
noncursor results that need to be read.

Action: Set the cursor name on a statement before you execute any queries on it, or call
Statement.cancel before setting the cursor name, to make sure that the statement is not busy.

JZ0S1

Statement state machine: Trying to FETCH on IDLE statement.
Description: An internal error occurred on the statement.
Action: Close the statement and open another one.

JZ0S2

Statement object has already been closed.

Description: The Statement.close method has already been called on the statement object; you
cannot use the statement for anything else.

Action: Fix the application so that statement object references are set to null whenever a
statement is closed.

JZ0S3

The inherited method cannot be used in this subclass.

Description: PreparedStatement does not support executeQuery(String), executeUpdate(String),
or execute(String).

Action: To pass a query string, use Statement, ot PreparedStatement.

JZ04

Cannot execute an empty (zero-length) query.

Action: Do not execute an empty query (““).

Programmers Reference 205

SQL state

Message/description/action

JZ0S5

The local transaction method cannot be used while a global
transaction is active on this connection.
Description: This exception can occur when using distributed transactions.

Action: SeeChapter 7, “ Distributed Transactions,” in the JIDBC 2.0 Optional Package (formerly
the JDBC 2.0 Sandard Extension API) for more information on diagnosing the problem.

JZ0S6

The local transaction method cannot be used on a pre-System 12
XAConnection.

Description: This exception can occur when using distributed transactions.

Action: See Chapter 7, “Distributed Transactions,” in the JDBC 2.0 Optional Package(formerly
the JDBC 2.0 Standard Extension API) for more information on diagnosing the problem.

JZ0S8

’

An escape sequence in a SQL Query was malformed:
Description: This error results from bad escape syntax.
Action: Check JDBC documentation for correct syntax.

JZ0S9

Cannot execute an empty (zero-length) query.

Action: Do not execute an empty query (““).

JZ0SA

Prepared Statement: Input parameter not set, index:

Action: Be sure that each input parameter has avalue.

JZ0SB

Parameter index out of range:

Description: You have attempted to get, set, or register a parameter that goes beyond the
maximum number of parameters.

Action: Check the number of parametersin your query.

JZ0SC

Callable Statement: attempt to set the return status as an
InParameter.

Description: You have prepared a call to a stored procedure that returns a status, but you are
trying to set parameter 1, which isthe return status.

Action: Parameters that you can set start at 2 with thistype of call.

JZ0SD

No registered parameter found for output parameter.

Description: Thisindicates an application logic error. You attempted to call getXXX or wasNull
on a parameter, but you have not read any parameters yet, or there are no output parameters.

Action: Check to make sure that the application has registered output parameters on the
CallableStatement, that the statement has been executed, and that the output parameters were
read.

JZOSE

Invalid object type specified for setObject().
Description: Illegal type argument passed to PreparedStatement.setObject.
Action: Check the JDBC documentation. The argument must be a constant from java.sqgl. Types.

JZOSF

206

No Parameters expected. Has query been sent?
Description: You tried to set a parameter on a statement with no parameters.
Action: Make sure the query has been sent before you set the parameters.

jConnect for JDBC

APPENDIX B SQL Exception and Warning Messages

SQL state

Message/description/action

JZ0SG

An RPC did not return as many output parameters as the application
had registered for it.

Description: Thiserror occursif you call CallableStatement.registerOutParam for more
parameters than you declared as“OUTPUT” parameters in the stored procedure. See “RPC
returns fewer output parameters than registered” on page 149 for more information.

Action: Check your stored procedures and registerOutParameter calls. Make sure that you have
declared dl of the appropriate parameters as “OUTPUT.” Look at the line of code that reads:

create procedure yourproc (@pl int OUTPUT,

Note If you receive this error while using SQL Anywhere, upgrade to SQL Anywhere version
5.5.04.

JZ0SH

A static function escape was used, but the metadata accessor
information was not found on this server.

Action: Install metadata accessor information before using static function escapes.

NVAS

A static function escape was used which is not supported by
this server.

Action: Do not use this escape.

JZ0SJ

Metadata accessor information was not found on this database.

Action: Install metadata information before making metadata calls.

JZ0SK

The oj escape is not supported for this type of database server.
Workaround: use server-specific outer join syntax, if supported.
Consult server documentation.

Action: Read the error message. Also, install the latest version of the jConnect metadata.

JZOSL

Unsupported SQL type

Description: The application has declared a parameter to be of atype that jConnect does not
support.

Action: If possible, try declaring the parameter to be of adifferent type. Do hot use Types.NULL
or PreparedStatement.setObject (null).

JZ0SM

jConnect could not execute a stored procedure because there was a
problem sending the parameter(s). This problem was likely caused
because the server does not support a specific datatype, or because
jConnect did not request support for that datatype at connect time.
Try setting the JCONNECT_VERSION connection property to a higher
value. Or, if possible, try sending your procedure execution command
as a language statement.

JZOSN

setMaxFieldSize: field size cannot be negative.

Action: Use apositive vaue or zero (unlimited) when calling setMaxFieldSize.

Programmers Reference 207

SQL state Message/description/action

JZ0SO Invalid ResultSet concurrency type:

Action: Check that your declared concurrency is either ResultSet. CONCUR_READ_ONLY or
ResultSet. CONCUR_UPDATABLE.

JZ0OSP Invalid ResultSet type:

Action: Check that your declared ResultSet type is ResultSet. TYPE_FORWARD_ONLY or
ResultSet. TYPE_SCROLL_INSENSITIVE. jConnect does not support the
ResultSet. TYPE_SCROLL_SENSITIVE ResultSet type.

JZ0SQ In valid UDT type
Description: When calling the DatabaseMetaData.getUDTs method, jConnect throws this
exception if the user-defined type is not either Types.JAVA_OBJECT, Types.STRUCT or
Types.DISTINCT.

Action: Use one of the three UDTs mentioned above.

JZOSR setMaxRows: max rows cannot be negative.

Action: Use apositive value or zero (unlimited) when calling setMaxRows.

JZ0SS setQueryTimeout: query timeout cannot be negative.

JZOST jConnect cannot send a Java object as a literal parameter in a query.
Make sure that your database server supports Java objects and that
the LITERAL_ PARAMS connection property is set to false when you
execute this query.

JZ0osuU A Date or Timestamp parameter was set with a year of , but the
server can only support year values between and . If
you’re trying to send data to date or timestamp columns or parameters
on Adaptive Server Anywhere, you may wish to send your data as
Strings, and let the server convert them.

Description: Adaptive Server Enterpriseand SQL Anywhere havedifferent allowablerangesfor
datetime and date values. datetime values must have years greater or equal to 1753. The date
datatype, however, can hold years greater or equal to 1.

Action: Make sure that the date/timestamp value you are sending falls in the acceptable range.

JZosv Combination of setting parameters by name and by index is not allowed
in the same CallableStatement.
Description: The CallableStatement has parameters specified by name and by index (ordinal
position). Mixed useisinvalid.
Action: Specify parameters by name only or by index (ordinal position) only.

JZOSW Invalid ResultSet holdability type:
Description: You have specified an invalid value with the setHoldability() method.
Action: Usethelegal valuesonly - HOLD_CURSORS OVER_COMMIT or
CLOSE_CURSORS _AT_COMMIT.

Jz0T2 Listener thread read error.
Action: Check your network communications.

208 jConnect for JDBC

APPENDIX B SQL Exception and Warning Messages

SQL state

Message/description/action

Jz0T3

Read operation timed out.
Description: The time allotted to read the response to a query was exceeded.
Action: Increase the timeout period by calling Statement.setQueryTimeout.

JZ0T4

Write operation timed out. Timeout in milliseconds:
Description: The time allotted to send a request was exceeded.
Action: Increase the timeout period by calling Statement.setQueryTimeout.

JZ0T5

Cache used to store responses is full.

Action: Use default or larger value for the STREAM_CACHE_SIZE connection property.

JZ0T6

Error reading tunneled TDS URL.
Description: The tunneled protocol failed while reading the URL header.
Action: Check the URL you defined for the connection.

JZ0T7

Listener thread read error -- caught ThreadDeath. Check network
connection.

Action: Check the network connections and try to run the application again. If the threads
continue to be aborted, please contact Sybase Technical Support.

Jz0T8

Data received for an unknown request. Please report this error to
Sybase Technical Support.

Jz0T9

Request to send not synchronized. Please report this error to Sybase
Technical Support.

Action: See message text.

JzoTC

Attempted conversion between an illegal pair of types.
Description: Conversion between a Javatype and a SQL type failed.

Action: Check the requested type conversion to make sureiit is supported in the JIDBC
specification.

JZOTD

Caught ThreadDeath.

Description: The calling application thread was killed while jConnect was performing atimed
10 operation.

Action: Check the application code to locate the conflict and correct.

JZO0TE

Attempted conversion between an illegal pair of types. Valid database

’

types are:

Description: The database column datatype and the datatype requested in theResultSet.getXXX
call are not implicitly convertible.

Action: Use one of the valid datatypes listed in the error message.

Programmers Reference 209

SQL state

Message/description/action

JzZOTI

jConnect cannot make a meaningful conversion between the database
type of and the requested type of .

Description: Thiskind of exception can occur, for example, if an application tries to call
ResultSet.getObject(int, Types.DATE) on atime value that is returned from the database.

Action: Make sure that the database datatype isimplicitly convertible to the Object type you
wish to retrieve.

JZ0TO

Read operation timed out.
Description: This exception occurs when there is a socket read timeout.

Action: Increase the timeout period by calling Statement.setQueryTimeout. Also, check the
query or stored procedure you are executing to determine why it is taking longer than expected.

JZOTS

Truncation error trying to send

Description: The application specified a string that was Ionger than the length that the
application wanted to send. Therefore, the string is truncated to the declared length.

Action: Set the length properly to avoid truncation.

JZOUS

The SybSocketFactory connection property was set, and the PROXY
connection property was set to the URL of a servlet. The jConnect
driver does not support this combination. If you want to send secure
HTTP from an applet running within a browser, use a proxy URL
beginning with “https://”.

Action: See message text.

JZOXC

is an unrecognized transaction coordinator type.

Description: The metadata information indicates that the server supports distributed
transactions, but jConnect does not support the protocol being used.

Action: Verify that you have installed the latest metadata scripts. If the error persists, please
contact Sybase Technical Support.

JZ0XS

The server does not support XA-style transactions. Please verify that
the transaction feature is enabled and licensed on this server.
Description: The server to which jConnect attempted a connection does not support distributed
transactions.

Action: Do not use XADataSource with this server, or upgrade or configure the server for
distributed transactions.

JZOXU

210

Current user does not have permission to do XA-style transactions.
Be sure user has role.

Description: The user connected to the database is not authorized to conduct distributed
transactions, most likely because the user does not have the proper role (shown in the blank).

Action: Grant the user the role shown in the error message, or have another user with that role
conduct the transaction.

jConnect for JDBC

APPENDIX B SQL Exception and Warning Messages

SQL state Message/description/action
JZBK1 SybBCP class is NOT initialized Please Re-Run MDA sqgls to update the
MDA stored procedures.
Action: Install MDA stored procedures.
JZBK3 Bulk load table does not exists.
Description: The table specified with BCP does not exist in the database.
Action: Correct the table name.
JZBK4 Illegal usage of sqgl statements mixed with batches in bcp/arrayinsert
mode.
Description: During a batch operation, you are attempting to execute a nonbatch operation.
Action: Wait for the batch operation to complete before attempting a nonbatch operation.
JZBK5 autocommit should be set to true when running bulk load in bcp mode.
Action: See message text.
JZBK6 ASE 15.7 or latter and 'allow wide dol rows' DB option must be enabled
to insert rows with offsets greater than 8191.
Action: See message text.
JZBK7 Failed to insert data. Total data size (__ bytes) exceeds the
maximum row size (_ bytes)allowed for the table
Action: See message text.
JZBKI Invalid value set for property ENABLE BULK LOAD.
Action: Set ENABLE_BULK_LOAD to one of the valid values only —
ARRAYINSERT_WITH_MIXED_STATEMENTS, ARRAYINSERT, BCP, or LOG_BCP.
JZNNA Column does not allow null values.
Description: You attempted to set a Bit-type column to aNULL value using setNull() in a
prepared statement.
Action: Examine the query and correct to set avalue of 0 or 1 for Bit-type columns.
S0022 Invalid column name ‘' ‘.
Description: You attempted to reference a column by name and there is no column with that
name.
Action: Check the spelling of the column name.
ZZ00A The method = has not been completed and should not be called.

Description: You attempted to use a method that is not implemented.

Action: Check the release bulletin that came with your version of jConnect for further
information. You can also check thejConnect Web page at http://www.sybase.com to see whether
amore recent version of jConnect implements the method. If not, do not use the method.

Programmers Reference 211

212 jConnect for JDBC

Glossary

JDBC
jConnect driver

J2EE server

Tabular Data Stream
(TDS)

Distributed Transaction
Management support
(JTANTS)

SSL

Java Naming and
Directory Interface
(IJNDI)

Lightweight Directory
Access Protocol (LDAP)

Programmers Reference

Java Database Connectivity (JDBC) isaJava APl that enables Java
programs to execute SQL statements.

A JDBC Driver for Sybase servers such as Adaptive Server Enterprisethat
use Tabular Data Stream (TDS) communication protocol.

Java 2 Platform Enterprise Edition (J2EE) is a platform-independent,
Java-centric environment from Sun for devel oping, building and
deploying Web-based enterprise applications online.

Tabular Data Stream (TDS) is an application level protocol that describes
the transmission of data between two computers. TDS definesthe types of
messages that can be sent as well as the order in which the messages can
be sent in. TDS relies on a connection-oriented transport service.

Java Transaction Service (JTS) specifies the implementation of a
transaction manager that supports Java Transaction APl (JTA) and
implements the Java mapping of the Object Management Group Object
Transaction Service 1.1 specification at the level below the API.

Java Transaction APl (JTA) isan API that allows applications and J2EE
servers to access transactions.

The Secure Sockets Layer (SSL) is a commonly-used protocol for
managing the security of a message transmission on the Internet.

JavaNaming and Directory Interface (JNDI) enables Java platform-based
applications to access multiple naming and directory services.

JNDI isan API from Oracle for connecting Java programs to naming and
directory services such as DNS, LDAP and NDS.

Lightweight Directory Access Protocol (LDAP) isasoftware protocol for
enabling anyone to locate organizations, individuals, and other resources
such as files and devices in a network, whether on the public Internet or
on a corporate intranet.

213

Glossary

object identifier
(OID)

Java Virtual Machine

(VM)

ASCII

JDK

UCS-2

UTF-16

Relative
Distinguished Name
(RDN)

Distinguished Name
(DN)

Java Cryptography
Extension (JCE)

214

An object identifier (OID) isanidentifier used to name an object. Structurally,
an OID consists of anode in a hierarchically-assigned namespace.

Java Virtual Machine (JVM) isavirtual machine that provides a platform-
independent execution environment that converts Java bytecode into machine
language and executesiit.

American Standard Code for Information Interchange (ASCII) is a code for
representing English characters as numbers, with each | etter assigned anumber
from 0 to 127. For example, the ASCII code for uppercase M is 77. Most
computers use ASCII codes to represent text, which makesit possible to
transfer data from one computer to another.

Java Development Kit (JDK) is a software development kit (SDK) for
producing Java programs.

Universal Character Set isan |SO/IEC format for coding character sets.

I SO/IEC 10646 was synchronized with Unicode; however, Unicode adds
additional constraints, and compliance with 10646 does not guarantee
compatibility with Unicode.

Unicode Transformation Format-16 (UTF-16) is a two-byte format in the
Unicode coding system.

A relative distinguished name (RDN) is a single component within a
distinguished name. It is comprised of one or more name-value pairs, inwhich
the name and the value are separated by an equal sign (for example, for an RDN
of "uid=ann", the nameis"uid" and the valueis"ann"), and if there are
multiple name-value pairs then they should be separated by plus signs (for
example, for an RDN of "cn=Jon Doe+ employeeNumber=12345", the name-
value pairs are "cn=John Doe" and "employeeNumber=12345"). In practice,
RDNSs containing multiple name-value pairs (called "multivalued RDNs') are
rare, but they can be useful at times when either there is no unique attribute in
the entry or you want to ensure that the entry's DN contains some useful
identifying information.

A distinguished name (DN) isastring that uniquely identifies an entry in the
Directory Server. It is comprised of zero or more relative distinguished name
(RDN) components that identify the location of the entry in the Directory
Information Tree (DIT). An entry's distinguished name can be thought of asa
kind of an analog to an absolute path in afilesystem in that it specifies both the
name and hierarchical location.

The Java Cryptography Extension (JCE) isan API that provides auniform
framework for the implementation of security featuresin Java.

jConnect for JDBC

Glossary

RSA encryption

Java Runtime
Environment (JRE)

Certicom Security
Builder GSE-J

LDAP Data
Interchange Format
(LDIF)

datatype

GSS library

large object (LOB)
datatypes

large object (LOB)
locators

SSL

Kerberos

single-sign-on (SSO)

IETF

Java Generic
Security Services
(GSS) Manager

Programmers Reference

A highly secure cryptography method.

The Java Runtime Environment (JRE), also known as Java Runtime, is part of
the Java Development Kit (JDK), a set of programming tools for developing
Java applications.

A Java Cryptography Extension (JCE) software cryptographic provider that
supports FIPS 140-2 validated cryptographic a gorithms.

The LDAP Data Interchange Format (L DIF) isamechanism form representing
directory datain text form. The LDIF specification is contained in RFC 2849
and describes aformat not only for representing directory data but also a
mechanism for making changes to that data.

A defining attribute that describesthetype, values and operationsthat arelegal
for avariable.

A library that implements Generic Security Service Application Program
Interface (GSS-API).

L OB datatypes are typically large character objects (text) or binary objects
(image).

A LOB locator containsalogical pointer to LOB datarather than the dataitself,
reducing the amount of datathat passes through the network between Adaptive
Server and its clients.

Secure Sockets Layer (SSL) is a secure protocol developed for sending
information securely over the Internet.

Kerberosis a secure method for authenticating a request for aservicein a
computer network.

Single sign-on (SSO)isasession/user authentication processthat permitsauser
to enter one name and password in order to access multiple applications. The
process authenticates the user for al the applications they have been given
rightsto and eliminates further prompts when they switch applications during
aparticular session.

Internet Engineering Task Force (IETF) isthe main standards organization for
the Internet. The IETF is alarge open international community of network
designers, operators, vendors, and researchers concerned with the evol ution of
the Internet architecture and the smooth operation of the Internet.

The Java Generic Security Service (JGSS) provides a generic interface for
authenti cation and secure messaging.

215

Glossary

Wedgetail JCSI

CyberSafe
TrustBroker

Key Distribution
Center (KDC)

TDS-tunnelling
servlet

RPC

Deadlock

primary server

secondary server

application program
interface (API)

Database server

net-protocol

native-protocol

Adaptive Server

Enterprise

216

A Generic Security Services (GSS) Manager that can be used by jConnect.
A Generic Security Services (GSS) Manager that can be used by jConnect.

Key Distribution Center (KDC) is part of a Single Sign-on (SSO) setup that
performs authentication and ticket generation duties.

A servlet that isused to passthrough TDS stream viaHTTP or HTTPS packets.

Remote Procedure Call (RPC) isaprotocol that one program can use to request
aservice from a program located in another computer in a network without
having to understand network details. (A procedure call is also sometimes
known as afunction call or a subroutine call.) RPC uses the client/server
model. The requesting program is a client and the service-providing program
isthe server. Like aregular or local procedure call, an RPC is a synchronous
operation requiring the requesting program to be suspended until the results of
the remote procedure are returned. However, the use of lightweight processes
or threads that share the same address space alows multiple RPCs to be
performed concurrently.

A situation that arises when two users, each having alock on one piece of data,
attempt to acquire alock on the other's piece of data.

Inahigh availability (HA) environment, primary server isthe server wherethe
client should first attempt to connect.

In ahigh availability (HA) environment, secondary server is the server where
client should attempt to connect if connection fails on the primary server.

An application programming interface (API) is a source code based
specification intended to be used as an interface by software componentsto
communicate with each other.

Database server is the term used to refer to the back-end system of a database
application using client/server architecture.

A protocol used to exchange request / response between amiddle tier gateway
that in turn communicates with the database.

The native protocol supported by the DBM S to exchange request / response
between Clients and the Server.

Adaptive Server Enterprise (ASE) isarelational database management system
(RDBMS) from Sybase, Inc. that runson Linux and other Unix based operating
systems, Windows NT and Windows 2000, and Mac OS.

jConnect for JDBC

Glossary

SQL Anywhere®

Sybase® I1Q

Replication Server®

DirectConnect™

Programmers Reference

Sybase SQL Anywhere® is afully-featured relational database and data
management tool.

Sybase® 1Q is a high-performance decision-support server designed
specifically for data warehousing.

Sybase® 1Q is part of the Sybase product family that includes Adaptive Server
Enterprise and SQL Anywhere®. Component Integration Services within
Sybase® 1Q provide direct accessto relational and nonrelational databases on
mainframe, UNIX, or Windows servers.

Replication Server® maintains replicated data in multiple databases while
ensuring the integrity and consistency of the data. It provides clients using
databasesin the replication system with local data access, thereby reducing
load on the network and centralized computer systems.

DirectConnect is the ECDA component that provides basic connectivity to
non-Sybase data sources. In particular, it provides access management,
transaction management, and remote systems management through
DirectConnect Manager.

217

Glossary

218 jConnect for JDBC

Index

Symbols
Jar files
preloading 106

A

Adaptive Server
connectingto 11
connection example 31
Adaptive Server Anywhere
euro symbol 46
sending imagedata 71, 74
SERVICENAME connection property 31
storing and retrieving Javaobjects 94
advanced features 79
ALTERNATE_SERVER_NAME connection property
12
applets 172
APPLICATIONNAME connection property 12
applications
turning off debuggingin 142
turning on debuggingin 142
ASE dadatypes
date, time, and datetime 75
audience vii

B

batch updates 69

stored procedures 68
BE_AS JDBC_COMPLIANT_ 13
BigDecimal rescaling

improving driver performance 152
bigint

datatypes supported 76

Programmers Reference

C

CACHE_COLUMN_METADATA connection property
13
CANCEL_ALL connection property 14
CAPABILITY_TIME connection property 15
CAPABILITY_WIDETABLE connection property 15
capturing TDS communication 146
character sets
converter classes 40
setting 42
supported 43
character-set conversion
improving driver performance 153
improving performance 42
character-set converter classes
PureConverter 41
sdecting 41
TruncationConverter 41
CHARSET connection property 16
setting 42
CHARSET_CONVERTER_CLASS connection
property 16, 41
CLASS_LOADER connection property 16
CLASSPATH
setting for debugging 143
columns
deletionsin cursor result sets 59
updating in cursor result sets 60
connecting to
aserver using JINDI 33
Adaptive Server 11
connection
errors 147
pooling 110
connection properties
ALTERNATE_SERVER_NAME 12
APPLICATIONNAME 12
BE_AS JDBC_COMPLIANT_ 13
CACHE_COLUMN_METADATA 13

219

Index

CANCEL_ALL 14 SERVICE_PRINCIPAL_NAME 27

CAPABILITY_TIME 15 SERVICENAME 26

CAPABILITY_WIDETABLE 15 SESSION_ID 27

CHARSET 16 SESSION_TIMEOUT 27

CHARSET_CONVERTER_CLASS 16,41 setting 10

CLASS LOADER 16 settinginURL 31

CONNECTION_FAILOVER 16, 33 SQLINITSTRING 28

DISABLE_UNICHAR_SENDING 17 STREAM_CACHE_SIZE 28

DISABLE_UNPROCESSED_PARAM_WARNINGS SUPPRESS PARAM_FORMAT 28
17 SUPPRESS ROW_FORMAT 29

DYNAMIC _PREPARE 17,18,25 SUPPRESS ROW_FORMAT2 29

ENABLE_BULK_LOAD 18 SYBSOCKET_FACTORY 29

ENABLE_LOB_LOCATORS 18 TEXTSIZE 30

ESCAPE_PROCESSING_DEFAULT 19, 159 USE_METADATA 30

EXPIRESTRING 19 user 30

FAKE_METADATA 19 VERSIONSTRING 30

GET_BY_NAME_USES COLUMN_LABEL 20 CONNECTION_FAILOVER connectionproperty 16,

GSSMANAGER_CLASS 20 33

HOSTNAME 21 connections

HOSTPROC 21 gateway connection refused 147

IGNORE_DONE_IN_PROC 21 creating acursor 56

IGNORE_WARNINGS 21 currency symbol, euro 46

IS CLOSED_TEST 21 cursor performance 161

JCONNECT_VERSION 6,22 and the LANGUAGE_CURSOR connection

LANGUAGE 22 property 161

LANGUAGE_CURSOR 22,161 cursor result sets

LANGUAGE_CURSOR and cursor performance 161 deletingarow 61

LITERAL_PARAMS 22 deletions 59

OPTIMIZE_FOR_PERFORMANCE 23 insertingarow 61

PACKETSIZE 23 methods for updating the database 60

password 23 positioned updates 59

PRELOAD_JARS 24 positioned updates and deletes using JDBC 1.x

PROMPT_FOR_NEWPASSWORD 22,24 methods 58

PROTOCOL_CAPTURE 24 positioned updates and deletes using JDBC 2.0

PROXY 24 methods 59

QUERY_TIMEOUT_CANCELS ALL 24 updating columns 60

REMOTEPWD 24 cursors 55

REPEAT_READ 24,152 creating 56

REQUEST_HA_SESSION 25 using with a PreparedStatement 63

REQUEST_KERBEROS SESSION 25

RMNAME 25

SECONDARY_SERVER_HOSTPORT 25

SELECT OPENS CURSOR 26 D

SERIALIZE_REQUESTS 26 data

SERVER_INITIATED_TRANSACTIONS 26 image 71

SERVERTYPE 27 databases

220 jConnect for JDBC

JNDI for naming 106
storing Javaobjects ascolumn datain atable 94
datatypes
ASE date, time, and datetime 75
JDBC date, time, and timestamp datatypes 75
unichar and univarchar 39
datatypes supported 76
Debugclass 141
Debug servlet argument 176
debugging 141
methods 143
obtaining an instance of the Debug class 141
setting CLASSPATH 143
turning off in your application 142
turning oninyour application 142
deserialization 101
deviations from JDBC standards 114
DISABLE_UNICHAR_SENDING connection
property 17
DISABLE_UNPROCESSED_PARAM_WARNINGS
connection property 17
distributed transaction support 112

driver
JDBCtypes 2
properties 11

dynamic classloading 98
DYNAMIC_PREPARE connection property 17, 18,
25

E

ENABLE_BULK_LOAD connection property 18
ENABLE_LOB_ LOCATORS connection property
18
EncryptPassword 91
€rror messages
cutomizing handling 87
error-message handler example 89
handling 85
installing an error-message-handler 88
SQL exception and warning 185
Sybase-specific 85
errors
connection 147
stored procedure 149

Programmers Reference

Index

ESCAPE_PROCESSING_DEFAULT connection
property 159

ESCAPE_PROCESSING_DEFAULT property 19

euro currency symbol 46

event notification 82

example 84

EXECUTE _BATCH_PAST_ERRORS 19

EXPIRESTRING connection property 19

extension changes, Sybase 164

F

FAKE_METADATA connection property 19

G

gateways 167
configuration 168
connection refused 147
GET_BY_NAME_USES COLUMN_LABEL
connection property 20
GSSMANAGER_CLASS connection property 20

H

handling

error messages 85
high availability (HA) support 47
HOSTNAME connection property 21
HOSTPROC connection property 21
HTTP 167

IGNORE_DONE_IN_PROC connection property 21
IGNORE_WARNINGS connection property 21
image data

executing the update with TextPointer.sendData

73

getting a TextPointer object 72

public methods in the TextPointer class 71

sending 71

221

Index

updating a column with TextPointer.sendData() 72
installing
an error-message-handler 88
the TDS servlet 176
interfaces, JDBC 1
internationalization 39
invoking jConnect 8
IS CLOSED_TEST connection property 21
isgl applet
running thesample 173
IsglApp utility 179

J

Java objects
storing and retrieving in ASA 6.0 94
storing ascolumn datain atable 94
jConnect
debugging 141
definition 3
gateways 167
improving performance 151
invoking 8
memory problemsin applications 148
sample programs 181
setting connection properties 10
settingup 5
using cursors 55
JCONNECT_VERSION connection property 6, 22
JDBC
definition 1
driver types 2
interfaces 1
restrictions, limitations, and deviations 114
JDBC 2.0
optional package extensions support 106
standard extensions 106
JDBC datatypes
date, time, and timestamp 75
JDBC drivers
JDBC-ODBC bridge 2
native-APl/partly-Java 2
native-protocol/all-Java 2
net-protocol/all-Java 2
jdbc.drivers 8

222

JINDI
context information 37
for naming databases 106
using 33

L

LANGUAGE connection property 22
LANGUAGE_CURSOR 161
LANGUAGE_CURSOR connection property 22
Lightweight Directory Access Protocol (LDAP) 34
LITERAL_PARAMS connection property 22
localization 39

M

memory problemsin jConnect applications 148
metadata

accessing 54

USE_METADATA 30
migrating jConnect applications

jConnect applications, migrating 163
multibyte character sets

converter classes 40

supported 43
multithreading

making adjustments 114

N

native-APl/partly-Javadriver 2
native-protocol/all-Javadriver 2
net-protocol/all-Javadriver 2

O

OPTIMIZE_FOR_PERFORMANCE connection
property 23

jConnect for JDBC

P

PACKETSIZE connection property 23
password 23
password encryption 91
performance, improving 151

BigDecimal rescaling 152

character-set conversion 153

cursors 161

tuning for prepared statementsin Dynamic SQL

154

pooling connections 110
positioned updates and deletes

using JDBC 1.x methods 58

using JDBC 2.0 methods 59
PRELOAD_JARS connection property 24
preloading .jar files 106
PreparedStatement

using with cursors 63
PROMPT_FOR_NEWPASSWORD connection

property 22,24

properties

driver 11
PROTOCOL_CAPTURE connection property 24
PROXY connection property 24
PureConverter class 41

QUERY_TIMEOUT_CANCELS ALL connection
property 24
R

related documents vii
RELEASE LOCKS ON_CURSOR_CLOSE 24
remote procedure calls (RPCs)
server-to-server 52
REMOTEPWD connection property 24
REPEAT_READ 152
REPEAT_READ connection property 24
REQUEST_HA_SESSION 25
REQUEST_KERBEROS _SESSION 25
resuming
TDSsessions 178

Programmers Reference

Index

RMNAME connection property 25
rows
deleting from acursor result set 61
inserting in acursor result set 61
rs.getByte() 76

S

sample programs 181
SECONDARY_SERVER_HOSTPORT connection
property 25
SELECT_OPENS_CURSOR connection property 26
selecting a character-set converter class 41
SEND_BATCH_ IMMEDIATE 26
sendingimagedata 71
SERIALIZE_REQUESTS connection property 26
SERVER_INITIATED_TRANSACTIONS connection
property 26
server-to-server remote procedure calls 52
SERVERTY PE connection property 27
SERVICE_PRINCIPAL_NAME connection property
27

SERVICENAME connection property 26
servlet arguments

Debug 176

SkipDoneProc 176

TdsResponseSize 176

TdsSessionldieTimeout 176
servlets 167

TDS 167
SESSION_ID connection property 27
SESSION_TIMEOQOUT connection property 27
setRemotePassword() 52
setting

jConnect connection properties 10

TDSservlet arguments 176
setting up

jConnect 5
SkipDoneProc servlet argument 176
SQL Anywhere 26
SQL exception and warning messages 185
SQLINITSTRING connection properties 28
Statement.cancel () method 14
stored procedures

errors 149

223

Index

executing 117

updating the database from the result set 69
storing Java objects as column datain atable 94

prerequisites 95

receiving Java objects from the database 96

sending Java objectsto adatabase 95
STREAM_CACHE_SIZE connection property 28
SUPPRESS PARAM_FORMAT connection property 28
SUPPRESS ROW_FORMAT connection property 29
SUPPRESS ROW_FORMAT?2 connection property 29
Sybase extension changes 164
SybEventHandler 82
SybMessageHandler 87
SYBSOCKET_FACTORY connection property 29
system properties

jdbc.drivers 8

T

TDS 3

capturing communication 146

installing serviets 176

resuming sessions 178

servlet system requirements 175

servlets 167

setting servlet arguments 176

tracking sessions 177

tunnelling 167
TdsResponseSize servlet argument 176
TdsSessionldleTimeout servlet argument 176
TEXTSIZE 30
tracking TDS sessions 177
troubleshooting 141
TruncationConverter class 41, 45
tunnelling

TDS 167
turning off debugging in your application 142
turning on debugging in your application 142
TYPE_SCROLL_INSENSITIVE limitations 64

U

unichar and univarchar datatypes 39
unitext 76

224

unsigned int
datatypes supported 76
updating
database from the result set of a stored procedure
69
URL
connection property parameters 31
syntax 30
USE_METADATA connection property 30
user 30
utilities
IsglApp 179

Vv

VERSIONSTRING connection property 30

w

Web server gateways 167
widetables 53

X

XAServer 112

jConnect for JDBC

	Programmers Reference
	About This Book
	CHAPTER 1 Introduction
	What is JDBC?
	What is jConnect?

	CHAPTER 2 Programming Information
	Setting up jConnect
	Setting the jConnect version
	Invoking the jConnect driver
	Configuring jConnect for J2EE servers

	Establishing a connection
	Connection properties
	Setting connection properties
	Listing current connection settings
	List of jConnect connection properties

	Connecting to Adaptive Server
	URL connection property parameters

	Using the sql.ini and interfaces file directory services
	Connection string for a single DSURL for jConnect
	Format of the sql.ini and interfaces file for SSL

	Connecting to a server using JNDI
	Connection URL for using JNDI
	Required directory service information
	CONNECTION_FAILOVER connection property
	Providing JNDI context information

	Handling internationalization and localization
	Using jConnect to pass Unicode data
	jConnect character-set converters
	Selecting a character-set converter
	Setting the CHARSET connection property
	Improving character-set conversion performance
	Supported character sets
	European currency symbol support

	Working with databases
	Implementing high availability failover support
	Overview
	Requirements, dependencies, and restrictions
	Implementing failover in jConnect

	Performing server-to-server remote procedure calls
	Using wide table support for Adaptive Server
	Accessing database metadata
	Using cursors with result sets
	Creating a cursor
	Using JDBC 1.x methods for positioned updates and deletes
	Using JDBC 2.0 methods for positioned updates and deletes
	Releasing locks at cursor close
	select for update support
	Using a cursor with a PreparedStatement object
	Using TYPE_SCROLL_INSENSITIVE result sets in jConnect

	Using Transact-SQL queries with COMPUTE clause
	Support for batch updates
	Implementation notes

	Updating a database from a result set of a stored procedure
	Working with datatypes
	Sending numeric data
	Updating image data in the database
	Using text data
	Using date and time datatypes
	Using char/varchar/text datatypes and getByte
	Other Datatypes supported

	Variable-length rows in data-only locked tables
	Large object (LOB) support
	Large object locator support

	Implementing advanced features
	Using BCP insert
	Supported Adaptive Server Cluster Edition features
	Login redirection
	Connection migration
	Connection failover

	Using event notification
	Event notification example

	Handling error messages
	Handling numeric errors returned as warnings
	Retrieving Sybase-specific error information
	Customizing error-message handling
	Installing an error-message handler
	Error-message-handler example

	Using password encryption
	Enabling password encryption
	Enabling login retry with a clear text password
	Setting up the Java Cryptography Extension (JCE) provider

	Storing Java objects as column data in a table
	Prerequisites for storing java objects as column data
	Sending Java objects to a database
	Receiving Java objects from the database

	Using dynamic class loading
	Using DynamicClassLoader
	Using deserialization
	Preloading .jar files
	Advanced features

	JDBC 4.0 specifications support
	JDBC 3.0 specifications support
	Savepoint support
	Retrieval of parameter metadata
	Retrieval of auto-generated keys
	Ability to have multiple open ResultSet objects
	Passing parameters to CallableStatement objects by name
	Holdable cursor support

	JDBC 2.0 optional package extensions support
	JNDI for naming databases
	Connection pooling
	Distributed transaction management support

	Restrictions on and interpretations of JDBC standards
	Unsupported JDBC 4.0 specification requirements
	Using Connection.isClosed and IS_CLOSED_TEST
	Using Statement.close with unprocessed results
	Making adjustments for multithreading
	Using ResultSet.getCursorName
	Executing stored procedures

	CHAPTER 3 Security
	Overview
	Restrictions

	Implementing custom socket plug-ins
	Creating and configuring a custom socket
	Example

	Kerberos
	Configuring jConnect applications for Kerberos
	GSSMANAGER_CLASS connection property
	Vendor implementations
	Setting GSSMANAGER_CLASS
	Examples

	Setting up the Kerberos environment
	CyberSafe
	MIT
	Microsoft Active Directory

	Sample applications
	ConnectKerberos.java

	The krb5.conf configuration file
	CyberSafe or MIT KDC
	Active Directory KDC

	Interoperability
	Encryption types

	Troubleshooting
	Kerberos

	Related documents

	CHAPTER 4 Troubleshooting
	Debugging with jConnect
	Obtaining an instance of the Debug class
	Turning on debugging in your application
	Turning off debugging in your application
	Setting the CLASSPATH for debugging
	Using the Debug methods

	Dynamic logging
	Capturing TDS communication
	PROTOCOL_CAPTURE connection property
	pause and resume methods in the Capture class

	Resolving connection errors
	Gateway connection refused

	Managing memory in jConnect applications
	Resolving stored procedure errors
	RPC returns fewer output parameters than registered
	Fetch/state errors when output parameters are returned
	Stored procedure executed in unchained transaction mode

	Resolving a custom socket implementation error

	CHAPTER 5 Performance and Tuning
	Improving jConnect performance
	BigDecimal rescaling
	REPEAT_READ connection property
	SunIoConverter character-set conversion

	Performance tuning for prepared statements in dynamic SQL
	Choosing prepared statements and stored procedures
	Prepared statements in portable applications
	Prepared statements with jConnect extensions
	If most dynamic statements are executed infrequently
	If most dynamic statements are executed many times in a session

	Connection.prepareStatement
	DYNAMIC_PREPARE connection property
	SybConnection.prepareStatement
	ESCAPE_PROCESSING_DEFAULT connection property
	Optimized batching in jConnect
	Homogeneous batching with large object (LOB) columns

	Cursor performance
	LANGUAGE_CURSOR connection property

	CHAPTER 6 Migrating jConnect Applications
	Migrating applications to jConnect 7.x
	Changing Sybase extensions
	Extension change example
	Method names
	Debug class

	CHAPTER 7 Web Server Gateways
	About Web server gateways
	Using TDS tunnelling
	Configuring jConnect and gateways
	Web server and Adaptive Server on one host
	Dedicated JDBC Web server and Adaptive Server on one host
	Web server and Adaptive Server on separate hosts
	Connecting to a server through a firewall

	Usage requirements
	Reading the index.html file
	Running the sample Isql applet
	Troubleshooting

	Using the TDS-tunnelling servlet
	Reviewing requirements
	Installing the servlet
	Setting servlet arguments

	Invoking the servlet
	Tracking active TDS sessions
	Terminating TDS sessions

	Resuming a TDS session

	APPENDIX A jConnect Sample Programs
	Running IsqlApp
	Running jConnect sample programs and code
	Sample applications
	Running the sample applets
	Running the sample programs with SQL Anywhere

	Sample code

	APPENDIX B SQL Exception and Warning Messages
	Glossary
	Index

