
Customizing and Extending
PowerDesigner

PowerDesigner® 16.5

Windows

DOCUMENT ID: DC38628-01-1650-01
LAST REVISED: January 2013
Copyright © 2013 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

CHAPTER 1: PowerDesigner Resource Files1
Opening Resource Files in the Editor3
Navigating and Searching in Resource Files5
Editing Resource Files ..6
Saving Changes ...6
Sharing and Embedding Resource Files6
Creating and Copying Resource Files7
Comparing Resource Files ...7
Merging Resource Files ..8

CHAPTER 2: Extension Files11
Creating an Extension File ..12
Attaching Extensions to a Model12
Exporting an Embedded Extension File for Sharing14
Extension File Properties ..14
Example: Adding a New Attribute from a Property Sheet

...15
Example: Creating Robustness Diagram Extensions16

Creating New Objects with Stereotypes18
Specifying Custom Symbols for Robustness Objects ...19
Example: Creating Custom Checks on Instance Links

..21
Example: Defining Templates to Extract Message

Descriptions ..27
Example: Creating a Generated File for the Message

Information ...29
Example: Testing the Robustness Extensions30

Metaclasses (Profile) ...33
Extended Objects, Sub-Objects, and Links (Profile)36

Customizing and Extending PowerDesigner iii

Stereotypes (Profile) ..37
Promoting a Stereotype to Metaclass Status39

Criteria (Profile) ..40
Extended Attributes (Profile) ..41

Creating an Extended Attribute Type45
Specifying Icons for Attribute Values46
Linking Objects Through Extended Attributes48

Extended Collections and Compositions (Profile)48
Calculated Collections (Profile) ..50
Dependency Matrices (Profile) ...52

Specifying Advanced Dependencies54
Forms (Profile) ...55

Adding Extended Attributes and Other Controls to
Your Form ...57

Example: Creating a Property Sheet Tab61
Example: Including a Form in a Form64
Example: Opening a Dialog from a Property Sheet67

Custom Symbols (Profile) ...70
Custom Checks (Profile) ...71

Example: PDM Custom Check73
Example: PDM Autofix ..74

Event Handlers (Profile) ..75
Methods (Profile) ...79
Menus (Profile) ...81

Example: Opening a Dialog Box from a Menu82
Templates (Profile) ...84
Generated Files (Profile) ...85

Example: JavaGenerated File and Templates87
Generating Your Files in a Standard or Extended

Generation ..89
Transformations (Profile) ..92

Transformation Profiles (Profile)94
Developing Transformation Scripts95

XML Imports (Profile) ..96
XML Import Mappings ..97

Contents

iv PowerDesigner

Metamodel Mapping Properties100
Metamodel Object Properties101

Object Generations (Profile) ...102
Model-to-Model Generation Mappings103

Global Script (Profile) ..105

CHAPTER 3: Object, Process, and XML Language
Definition Files ...107

Settings Category: Process Language109
Settings Category: Object Language110
Settings Category: XML Language112
Generation Category ...112

Example: Adding a Generation Option113
Example: Adding a Generation Command and Task ..114

Profile Category (Definition Files)117

CHAPTER 4: DBMS Definition Files119
Triggers Templates, Trigger Template Items, and

Procedure Templates ..120
Database Generation and Reverse Engineering120

Script Generation ..121
Extending Generation with Before and After

Statements ..122
Script Reverse Engineering ..124
Live Database Generation ..125
Live Database Reverse Engineering125

Creating Queries to Retrieve Additional
Attributes ...128

Calling Sub-Queries with the EX Keyword128
Live Database Reverse Engineering Physical

Options ..129
Live Database Reverse Engineering Function-

based Index ...131
Live Database Reverse Engineering Qualifiers . 132

Contents

Customizing and Extending PowerDesigner v

Generating and Reverse-Engineering PDM Extended
Objects ...133

Adding Scripts Before or After Generation and
Reverse Engineering ..133

General Category (DBMS) ...134
Script/Sql Category (DBMS) ...135

Syntax Category ...135
Format Category ...136

Date and Time Format137
File Category ..138
Keywords Category ..140

Script/Objects Category (DBMS)142
Common Object Items ..144
Table ..148
Column ..152

Working with Null Values159
Index ..160
Pkey ...163
Key ...164
Reference ..166
View ...169
Tablespace ...171
Storage ..171
Database ...172
Domain ..173
Abstract Data Type ...174
Abstract Data Type Attribute176
User ..177
Rule ..177
Procedure ...180
Trigger ...181
DBMS Trigger ...184
Join Index ...185
Qualifier ..185
Sequence ..186

Contents

vi PowerDesigner

Synonym ...187
Group ..187
Role ..188
DB Package .. 189
DB Package Sub-objects .. 190
Parameter ...191
Privilege ..191
Permission ..192
Default ..193
Web Service and Web Operation194
Web Parameter ...195
Result Column ..195
Dimension ..196
Extended Object ...197

Script/Data Type Category (DBMS)197
Profile Category (DBMS) ...200

Using Extended Attributes During Generation200
Modifying the Estimate Database Size Mechanism202

Calling the GetEstimatedSize Event Handler on
Another Metaclass ...205

Formatting the Database Size Estimation
Output ..205

ODBC Category (DBMS) ..206
Physical Options (DBMS) ..207

Simple Physical Options ...207
Composite Physical Options209
Adding DBMS Physical Options to Your Forms210

PDM Variables and Macros ...212
Testing Variable Values with the [] Operators213
Formatting Variable Values ...215
Variables for Tables and Views216
Variables for Columns, Domains, and Constraints217
Variables for Keys ...219
Variables for Indexes and Index Columns220
Variables for References and Reference Columns 220

Contents

Customizing and Extending PowerDesigner vii

Variables for Triggers and Procedures222
Variables for Rules ..223
Variables for Sequences ...224
Variables for Synonyms ..224
Variables for Tablespaces and Storages224
Variables for Abstract Data Types224
Variables for Join Indexes (IQ)227
Variables for ASE & SQL Server227
Variables for Database Synchronization227
Variables for DB Packages and Their Child Objects ...228
Variables for Database Security230
Variables for Defaults ..231
Variables for Web Services ...231
Variables for Dimensions ..232
Variables for Extended Objects233
Variables for Reverse Engineering234
Variables for Database, Triggers, and Procedures

Generation ..234
.AKCOLN, .FKCOLN, and .PKCOLN Macros235
.ALLCOL Macro ..236
.DEFINE Macro ...236
.DEFINEIF Macro ...237
.ERROR Macro ...237
.FOREACH_CHILD Macro ...238
.FOREACH_COLUMN Macro239
.FOREACH_PARENT Macro240
.INCOLN Macro ..240
.JOIN Macro ..241
.NMFCOL Macro ...242
.CLIENTEXPRESSION and .SERVEREXPRESSION

Macros ..242
.SQLXML Macro ...243

CHAPTER 5: Customizing Generation with GTL245

Contents

viii PowerDesigner

Creating a Template and a Generated File245
Extracting Object Properties ..246
Accessing Collections of Sub-Objects or Related

Objects ...247
Formatting Your Output ..248

Controlling Line Breaks in Head and Tail Strings250
Conditional Blocks ..250
Accessing Global Variables ..251
GTL Operators ..252
Translation Scope ..255
Shortcut Translation ..256
Escape Sequences ..256
Calling Templates ..257

Inheritance and Polymorphism257
Passing Parameters to a Template260
Recursive Templates ..262

GTL-Specific Metamodel Extensions262
GTL Macro Reference ..264

.abort_command Macro ..265

.block Macro ...265

.bool Macro ...266

.break Macro ...266

.change_dir and .create_path Macros266

.comment and .// Macro ..267

.convert_name and .convert_code Macros267

.delete and .replace Macros268

.error and .warning Macros ...269

.execute_command Macro ..269

.execute_vbscript Macro ...270

.foreach_item Macro ...271

.foreach_line Macro ..273

.foreach_part Macro ..274

.if Macro ..275

.log Macro ...277

.lowercase and .uppercase Macros277

Contents

Customizing and Extending PowerDesigner ix

.object and .collection Macros278

.set_interactive_mode Macro278

.set_object, .set_value, and .unset Macros279

.unique Macro ...281

.vbscript Macro ...281
GTL Syntax and Translation Errors283

CHAPTER 6: Translating Reports with Report
Language Files ..287

Opening a Report Language File288
Creating a Report Language File for a New Language . .289
Report Language File Properties290

Values Mapping Category ..291
Example: Creating a Mapping Table, and

Attaching It to a Specific Model Object292
Report Titles Category ...294

Example: Translating the HTML Report Previous
Button ..295

All Report Titles Tab ..297
Object Attributes Category ...298

All Classes Tab ..299
All Attributes and Collections Tab300

Profile/Linguistic Variables Category300
Profile/Report Item Templates Category303

CHAPTER 7: Scripting PowerDesigner305
Running Scripts in PowerDesigner307

VBScript File Samples ..309
Manipulating Models, Collections, and Objects

(Scripting) ..312
Creating and Opening Models (Scripting)313
Browsing and Modifying Collections (Scripting)314
Accessing and Modifying Objects and Properties

(Scripting) ...316

Contents

x PowerDesigner

Creating Objects (Scripting) ..318
Displaying, Formatting, and Positioning Symbols

(Scripting) ...320
Deleting Objects (Scripting) ..321
Creating an Object Selection (Scripting)321
Controlling the Workspace (Scripting)322

Creating Shortcuts (Scripting) ...323
Creating Mappings Between Objects (Scripting)324
Creating and Generating Reports (Scripting)325
Manipulating the Repository (Scripting)325
Generating a Database (Scripting)326
Reverse Engineering a Database (Scripting)328
Creating and Accessing Extensions (Scripting)329
Accessing Metadata (Scripting)330
OLE Automation and Add-Ins ...332

Creating an ActiveX Add-in ...334
Creating an XML File Add-in335

Launching Scripts and Add-Ins from Menus338
Adding Commands to the Tools Menu339

CHAPTER 8: The PowerDesigner Public Metamodel
...343

Navigating in the Metamodel ..344
Using the Metamodel Objects Help File347
PowerDesigner Model File Format348

Example: Simple OOM XML File351

Index ...355

Contents

Customizing and Extending PowerDesigner xi

Contents

xii PowerDesigner

CHAPTER 1 PowerDesigner Resource Files

The PowerDesigner® modeling environment is powered by XML-format resource files,
which define the objects available in each model along with the methods for generating and
reverse-engineering them. You can view, copy, and edit the provided resource files and create
your own in order to customize and extend the behavior of the environment.

The following types of resource files, based on or extending the PowerDesigner public
metamodel are provided:

• Definition file: customize the metamodel to define the objects available for a specific
DBMS or language:
• DBMS definition files (.xdb) - define a specific DBMS in the PDM (see Chapter 4,

DBMS Definition Files on page 119).
• Process, object, and XML language definition files (.xpl, .xol, and .xsl) – define a

specific language in the BPM, OOM, or XSM (see Chapter 3, Object, Process, and
XML Language Definition Files on page 107).

• Extension files (.xem) – extend the standard definitions of target languages to, for
example, specify a persistence framework or server in an OOM. You can create or attach
one or more XEMs to a model (see Chapter 2, Extension Files on page 11).

• Report templates (.rtp) - specify the structure of a report. Editable within the Report
Template Editor (see Core Features Guide > Storing, Sharing and Reporting on Models >
Reports).

• Report language files (.xrl) – translate the headings and other standard text in a report (see
Chapter 6, Translating Reports with Report Language Files on page 287).

• Impact and lineage analysis rule sets (.rul) - specify the rules defined for generating impact
and lineage analyses (see Core Features Guide > Linking and Synchronizing Models >
Impact and Lineage Analysis).

• Object permission profiles (.ppf) - customize the PowerDesigner interface to hide models,
objects, and properties (see Core Features Guide > Administering PowerDesigner >
Customizing the PowerDesigner Interface > Using Profiles to Control the PowerDesigner
Interface).

• User profiles (.upf) - store preferences for model options, general options, display
preferences, etc (see Core Features Guide > Modeling with PowerDesigner > Customizing
Your Modeling Environment > User Profiles).

• Model category sets (.mcc) - customize the New Model dialog to guide model creation (see
Core Features Guide > Administering PowerDesigner > Customizing the PowerDesigner
Interface > Customizing the New Model Dialog).

• Conversion tables (.csv) - define conversions between the name and code of an object (see
Core Features Guide > Modeling with PowerDesigner > Objects > Naming
Conventions).

Customizing and Extending PowerDesigner 1

You can review all the available resource files from the lists of resource files, available by
selecting Tools > Resources > type.

Note: To comply with recent Microsoft recommendations, PowerDesigner no longer allows
you to save resource files inside the Program Files folder, and will propose an alternative
location if you try to do so, adding the selected directory to the list of paths for that type of
resource file. Resource files previously saved inside Program Files may no longer be
available, as Windows Vista or Windows 7 actually store them in a virtual mirror at, for
example, C:\Users\username\AppData\Local\VirtualStore\Program
Files\Sybase\PowerDesigner 16\Resource Files\DBMS. To restore these
files to your lists, optionally move them to a more convenient path, and add their location to
your list using the Path tool.

The following tools are available on each resource file list:

Tool Description

Properties - Opens the resource file in the Resource Editor.

New - Creates a new resource file using an existing file as a model (see Creating and
Copying Resource Files on page 7).

Save - Saves the selected resource file.

Save All - Saves all the resource files in the list.

Path - Specifies the directories that contain resource files to populate this list and other
places in the PowerDesigner interface where resources of this type can be selected. By
default, only the directory containing the resource files delivered in the PowerDesigner
installation is specified, but you can add as many additional directories as necessary.

If you plan to modify the delivered resource files or create your own, we recommend that
you store these files in a directory outside the PowerDesigner installation directory.

The root of the library belonging to your most recent repository connection is implicitly
included at the head of the list, and is scanned recursively (see Core Features Guide >
Administering PowerDesigner > Deploying an Enterprise Glossary and Library).

Note: In rare cases, when seeking resource files to resolve broken references in models, the
directories in the list are scanned in order, and the first matching instance of the required
resource is used.

Compare - Selects two resource files for comparison.

Merge - Selects two resource files for merging.

Check In - [if the repository is installed] Checks the selected resource file into the reposi-
tory. For information about storing your resource files in the repository, see Core Features
Guide > Administering PowerDesigner > Deploying an Enterprise Glossary and Library.

CHAPTER 1: PowerDesigner Resource Files

2 PowerDesigner

Tool Description

Update from Repository - [if the repository is installed] Checks out a version of the selected
file from the repository to your local machine.

Compare with Repository - [if the repository is installed] Compares the selected file with a
resource file stored in the repository.

Opening Resource Files in the Editor
When working with a BPM, PDM, OOM, or XSM, you can open the definition file that
controls the objects available in your model in the Resource Editor for viewing and editing.
You can also open and edit any extension files currently attached to or embedded in your
model or access the appropriate list of resource files and open any PowerDesigner resource
file.

To open the definition file currently used by your model:

• In a PDM, select Database > Edit Current DBMS.
• In a BPM, select Language > Edit Current Process Language.
• In an OOM, select Language > Edit Current Object Language.
• In an XSM, select Language > Edit Current Language.

To open any extension file currently attached to your model, double-click its entry inside the
Extensions category in the Browser.

To open any other resource file, select Tools > Resources > Type to open the relevant
resource file list, select a file in the list, and then click the Properties tool.

In each case, the file opens in the Resource Editor, in which you can review and edit the
structure of the resource. The left-hand pane shows a tree view of the entries contained within
the resource file, and the right-hand pane displays the properties of the currently-selected
element:

CHAPTER 1: PowerDesigner Resource Files

Customizing and Extending PowerDesigner 3

Note: You should never modify the resource files shipped with PowerDesigner. If you want to
modify a file, create a copy using the New tool (see Creating and Copying Resource Files on
page 7).

Each entry is a part of the definition of a resource file, and entries are organized into logical
categories. For example, the Script category in a DBMS language file collects together all the
entries relating to database generation and reverse engineering.

You can drag and drop categories or entries in the tree view of the resource editor and also
between two resource editors of the same type (for example two XOL editors).

Note: Some resource files are delivered with "Not Certified" in their names. Sybase® will
perform all possible validation checks, however we do not maintain specific environments to
fully certify these resource files. We will support them by accepting bug reports and providing
fixes as per standard policy, with the exception that there will be no final environmental
validation of the fix. You are invited to assist us by testing fixes and reporting any continuing
inconsistencies.

CHAPTER 1: PowerDesigner Resource Files

4 PowerDesigner

Navigating and Searching in Resource Files
The tools at the top of the Resource Editor help you to navigate through and search in the
resource file.

Tool Description

Back (Alt+Left) - Go to the previous visited entry or category. Click the down arrow to
directly select from your history.

Forward (Alt+Right) - Go to the next visited entry or category. Click the down arrow to
directly select from your history.

Lookup (Enter) - Go to the item named in the text box to the left of the tool. If more than one
item is found, they are listed in a results dialog and you should double-click on the desired
item or select it and click OK to go to it.

Click the down arrow to set lookup options:

• [extension type] - select the type of extension to search, for example you can search only
stereotypes

• Allow wildcard - Enables the use of the characters * to match any string and ? to match
any single character. For example, type is* to retrieve all extensions called
is....

• Match case - Search with case sensitivity.

Save (Ctrl+Shift+S) – Save the current resource file. Click the down arrow to save the
current resource file under a new name.

Find In Items (Ctrl+Shift+F) - Search for text in entries.

Replace In Items (Ctrl+Shift+H) - Search for and replace text in entries.

Note: To jump to the definition of a template from a reference in another template (see
Templates (Profile) on page 84) or other extension, place your cursor between the percent
signs and press F12. If an extension overrides another item, right-click it and select Go to
super-definition to go to the overriden item.

CHAPTER 1: PowerDesigner Resource Files

Customizing and Extending PowerDesigner 5

Editing Resource Files
You can add items in the resource editor by right-click a category or an entry in the tree view.

The following editing options are available:

Edit option Description

New Adds a user-defined entry or category .

Add items... Opens a selection dialog box to allow you select one or more of the predefined
metamodel categories or entries to add to the present node. You cannot edit the
names of these items but you can change their comments and values by selecting
their node.

Remove Deletes the selected category or entry.

Restore Comment Restores the default comment for the selected category or entry.

Restore value Restores the default value for the selected entry.

Note: You can rename a category or an entry directly from the resource file tree by selecting it
and pressing the F2 key.

Saving Changes
If you make changes to a resource file and then click OK to close the resource editor without
having clicked the Save tool, the changes are saved in memory, the editor is closed and you
return to the list of resource files. When you click Close in the list of resource files, a
confirmation box is displayed asking you if you really want to save the modified resource file.
If you click Yes, the changes are saved in the resource file itself. If you click No, the changes
are kept in memory until you close the PowerDesigner session.

The next time you open any model that uses the customized resource file, the model will take
modifications into account. However, if you have previously modified the same options
directly in the model, the values in the resource file do not change these options.

Sharing and Embedding Resource Files
Resource files can be shared and referenced by multiple models or copied to and embedded in
a single model. Any modifications that you make to a shared resource are available to all
models using the resource, while modifications to an embedded resource are available only to
the model in which it is embedded. Embedded resource files are saved as part of their model
and not as a separate file.

CHAPTER 1: PowerDesigner Resource Files

6 PowerDesigner

Note: You should never modify the original extensions shipped with PowerDesigner. To
create a copy of the file to modify, open the List of Extensions, click the New tool, specify a
name for the new file, and then select the .xem that you want to modify in the Copy from
field.

The File Name field displays the location of the resource file you are modifying is defined.
This field is empty if the resource file is embedded.

Creating and Copying Resource Files
You can create a new resource file in the appropriate resource file list. To create a copy of an
existing resource file, select it in the Copy from field of the New... dialog.

Warning! Since each resource file has a unique id, you should only copy resource files within
PowerDesigner, and not in Windows Explorer.

1. Select Tools > Resources > Type to open the appropriate resource file list.

2. Click the New tool, enter a name for the new file and select an existing file to copy. Select
the <Default template> item to create a minimally completed resource file.

3. Click OK to create the new resource file, and then specify a filename and click Save to
open it in the Resource Editor.

Note: You can create an extension file directly in your model from the List of Extensions.
For more information, see Creating an Extension File on page 12.

Comparing Resource Files
You can select two resource files and compare them to highlight the differences between
them.

1. Select Tools > Resources > Type to open the appropriate resource file list.

2. Select the first resource file you want to compare in the list, and then click the Compare
tool to open a selection dialog.

The selected file is displayed in the second comparison field.

3. Select the other resource file to compare in the first comparison field.

If the resource file you want to compare is not in the list, click the Select Path tool and
browse to its directory.

CHAPTER 1: PowerDesigner Resource Files

Customizing and Extending PowerDesigner 7

4. Click OK to open the Compare... dialog, which allows you to review all the differences
between the files.

For detailed information about this window, see Core Features Guide > Modeling with
PowerDesigner > Comparing and Merging Models.

5. Review the differences and then click Close to close the comparison window and return to
the list.

Merging Resource Files
You can select two resource files of the same kind and merge them. Merge is performed from
left to right, the resource file in the right pane is compared to the resource file in the left pane,
differences are highlighted and merge actions are proposed in the right hand resource file.

1. Select Tools > Resources > Type to open the appropriate resource file list.

2. Select the resource file in which you want to make merge changes in the list, and then click
the Merge tool to open a selection dialog.

The selected file is displayed in the To field.

3. Select the resource file from which you want to merge in the From field.

If the resource file you want to merge is not in the list, click the Select Path tool and browse
to its directory.

4. Click OK to open the Merge... dialog, which allows you to review all the merge actions
before you complete them.

For detailed information about this window, see Core Features Guide > Modeling with
PowerDesigner > Comparing and Merging Models.

CHAPTER 1: PowerDesigner Resource Files

8 PowerDesigner

5. Select or reject the proposed merge actions as necessary, and then click OK to perform the
merge.

CHAPTER 1: PowerDesigner Resource Files

Customizing and Extending PowerDesigner 9

CHAPTER 1: PowerDesigner Resource Files

10 PowerDesigner

CHAPTER 2 Extension Files

Extensions files (*.xem) allow you to customize and extend the PowerDesigner metamodel
to support your exact modeling needs. You can define additional properties for existing
objects or specify entirely new types of objects, modify the PowerDesigner interface
(reorganizing and adding property sheet tabs, Toolbox tools and menu items), and define
additional generation targets and options.

Extension files have an .xem extension and are located in install_dir/Resource
Files/Extende Model Definitions. To view the list of extensions, select Tools >
Resources > Extensions > model type. For information about the tools available in resource
file lists, see Chapter 1, PowerDesigner Resource Files on page 1.

Each extension file contains two first-level categories:

• Generation - used to develop or complement the default PowerDesigner object generation
(for BPM, OOM, and XSM models) or for separate generation. For more information, see
Generation Category on page 112.

• Profile - used for extending the metaclasses in the PowerDesigner metamodel. You can:
• Create or sub-classify new kinds of objects:

• Metaclasses – drawn from the metamodel as a basis for extension.
• Stereotypes [for metaclasses and stereotypes only] – sub-classify metaclasses by

stereotype.
• Criteria – sub-classify metaclasses by evaluating conditions.

• Add new properties and collections to objects and display them:
• Extended attributes – to add metadata.
• Extended collections and compositions – to enable manual linking between

objects.
• Calculated collections – to automate linking between objects.
• Dependency matrices – to show dependencies between two types of objects.
• Forms – to modify property sheets and add custom dialogs.
• Custom symbols – to change the appearance of objects in diagrams.

• Add constraints and validation rules to objects:
• Custom checks – to test the validity of your models on demand
• Event handlers – to perform validation or invoke methods automatically.

• Execute commands on objects:
• Methods – VBScripts to be invoked by menus or form buttons.
• Menus [for metaclasses and stereotypes only] – to add commands to

PowerDesigner menus.
• Generate objects in new ways:

Customizing and Extending PowerDesigner 11

• Templates – to extract text from object properties.
• Generated Files - to assemble templates for preview and generation of files
• Transformations – to automate changes to objects at generation or on demand.

• Map correspondences between different metamodels:
• Object generations - to define mappings between different modules in the

PowerDesigner metamodel for model-to-model generation.
• XML imports - to define mappings between an XML schema and a PowerDesigner

module to import XML files as models.

Note: Since you can attach several resource files to a model (for example, a target language
and one or more extension files) you can create conflicts, where multiple extensions with
identical names (for example, two different stereotype definitions) are defined on the same
metaclass in separate resource files. In case of such conflicts, the extension file extension
usually prevails. When two XEMs are in conflict, priority is given to the one highest in the List
of Extensions.

Creating an Extension File
You can create an extension file from the list of extension files or directly embedded in your
model.

Note: For information about creating an extension file from the list of extension files, see
Creating and Copying Resource Files on page 7.

1. Open your model, and then select Model > Extensions to open the List of Extensions.

2. Click the Add a Row tool and enter a name for the new extension file.

3. Click the Properties tool to open the new extension file in the Resource Editor, and create
any appropriate extensions.

4. When you have finished, click OK to save your changes and return to the List of
Extensions.

The new XEM is initially embedded in your model, and cannot be shared with any other
model. For information about exporting your extensions and making them available for
sharing, see Exporting an Embedded Extension File for Sharing on page 14.

Attaching Extensions to a Model
Extensions can be in independent *.xem files that are attached to models or can be embedded
in model files. Independent extension files can be referenced by multiple models, and any
changes made to such a file are shared by all models that attach it. Changes made to extensions
embedded in a model file affect only that model.

Note: You should never modify the original extensions shipped with PowerDesigner. To
create a copy of the file to modify, open the List of Extensions, click the New tool, specify a

CHAPTER 2: Extension Files

12 PowerDesigner

name for the new file, and then select the .xem that you want to modify in the Copy from
field.

You can attach an extension file (.xem) to your model at the creation of the model by clicking
the Select Extensions button on the New Model dialog. You can subsequently attach an
extension file to your model at any time from the List of Extensions.

1. Select Model > Extensions to open the List of Extensions.

2. Click the Attach an Extension tool to open the Select Extensions dialog.

3. Review the different sorts of extensions available by clicking the sub-tabs and select one or
more to attach to your model.

By default, PowerDesigner creates a link in the model to the specified file. To copy the
contents of the extension file and save it in your model file, click the Embed Resource in
Model button in the toolbar. Embedding a file in this way enables you to make changes
specific to your model without affecting any other models that reference the shared
resource.

4. Click OK to return to the List of Extensions.

Extension files listed in grey are attached to the model, while those in black are embedded
in the model.

Note: If you embed an extension file in the model, the name and code of the extension may
be modified in order to make it respect the naming conventions of the Other Objects
category in the Model Options dialog.

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 13

Exporting an Embedded Extension File for Sharing
If you export an XEM created in a model, it becomes available in the List of Extensions, and
can be shared with other models. When you export an XEM, the original remains embedded in
the model.

1. Select Model > Extensions to open the List of Extensions.

2. Select an extension in the list.

3. Click the Export an Extension tool.

4. Type a name and select a directory for the extension file.

5. Click Save.

The extension can now be accessed by and attached to or embedded in other models.

Extension File Properties
All extension files have the same basic category structure.

The root node of each file contains the following properties:

Property Description

Name / Code Specify the name and code of the extension file, which must be unique in a model.

File Name [read-only] Specifies the path to the extension file. If the XEM has been copied to
your model, this field is empty.

Family / Sub-
family

Restricts the availability of the XEM to a particular target family and subfamily.
For example, when an XEM has the family Java, it is available only for use with
targets in the Java object language family. EJB 2.0 is a sub-family of Java.

Auto-attach Specifies that the XEM will be automatically attached to new models with a target
belonging to the specified family.

Category Groups XEMs by type for generation and in the Select Extensions dialog. Ex-
tensions having the same category cannot be generated simultaneously. If you do
not specify a category, the XEM is displayed in the General Purpose category and
is treated as a generation target.

Enable Trace
Mode

Lets you preview the templates used during generation (see Templates (Profile) on
page 84). Before starting the generation, click the Preview page of the relevant
object, and click the Refresh tool to display the templates.

When you double-click on a trace line from the Preview page, the Resource Editor
opens to the corresponding template definition.

CHAPTER 2: Extension Files

14 PowerDesigner

Property Description

Complement
language genera-
tion

Specifies that the XEM is used to complement the generation of an DBMS or
language definition, so that items to be generated for the language are merged with
those of the XEM before generation, and all generated files specified by both the
language definition and the XEMs are generated (see Generated Files (Profile) on
page 85). If two generated files have identical names, the file in the XEM
overrides the one defined in the target.

Note: PowerBuilder does not support XEMs for complementary generation.

Comment Provides a descriptive comment for the XEM.

The following categories are also available:

• Generation - Contains Generation commands, options, and tasks to define and activate a
generation process (see Generation Category on page 112).

• Transformation Profile - Groups transformations for application at model generation time
or on demand (see Transformations (Profile) on page 92).

Example: Adding a New Attribute from a Property Sheet
In this example, we will quickly add a new attribute directly from the property sheet of an
object. PowerDesigner will manage the creation of the extension file and creation of all the
necessary extensions.

1. Click on the Property Sheet Menu button at the bottom-left of the property sheet, to the
right of the More/Less button, and select New Attribute.

2. In the New Attribute dialog, enter Latency in the Name field, select String for the
data type.

3. Click the ellipsis button to the right of the List of values field, enter the following list of
predefined values, and then click OK:

• Batch
• Real-Time
• Scheduled

4. [optional] Select Scheduled in the Default value field.

5. [optional] Click Next to specify the property sheet page where you want the new attribute
to appear. Here, we'll leave the default, so its inserted on the General tab.

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 15

Example: Creating Robustness Diagram Extensions
In this example, we will recreate the Robustness extension file delivered with PowerDesigner
to extend the OOM communication diagram to enable robustness analysis. Robustness
diagrams sit between use case and sequence diagram analysis, and allow you to bridge the gap
between what the system has to do, and how it is actually going to accomplish it.

In order to support the robustness diagram, we will need to define new objects by applying
stereotypes to a metaclass, specify custom tools and symbols for them, as well as defining
custom checks for instance links and producing a file to output a description of messages
exchanged between objects.

Creating the robustness extensions will enable us to verify use cases like the following, which
represents a basic Web transaction:

CHAPTER 2: Extension Files

16 PowerDesigner

A customer wants to know the value of his stocks in order to decide to sell or not, and sends a
stock value query from his Internet Browser, which is transferred from his browser to the
database server via the application server.

The first step in defining extensions, is to create an extension file (.xem) to keep them in:

1. Create or open an OOM and select Model > Extensions to open the list of extensions
attached to the model.

2. Click the Add a Row tool to create a new extension file, and then click the Properties tool
to open it in the Resource Editor.

3. Enter Robustness Analysis Extensions in the Name field, and clear the
Complement language generation check box, as these extensions do not belong to any
object language family and will not be used to complement any object language
generation.

4. Expand the Profile category, in which we will create the extensions:

For detailed information about creating extension files, see Creating an Extension File on
page 12.

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 17

Creating New Objects with Stereotypes
To implement robustness analysis in PowerDesigner, we need to create three new types of
objects (boundary, entity, and control objects), which we will define in the Profile category by
extending the UMLObject metaclass through stereotypes.

1. Right-click the Profile category and select Add Metaclasses to open the Metaclass
Selection dialog.

2. Select UMLObject on the PdOOM tab and click OK to add this metaclass to the
extension file.

Note: Click the Find in Metamodel Objects Help tool to the right of the Name field (or
click Ctrl+F1) to obtain information about this metaclass and see where it is situated in the
PowerDesigner metamodel.

3. Right-click the UMLObject category and select New > Stereotype to create a stereotype
to extend this metaclass.

4. Enter Boundary in the Name field, and Boundary objects are used by
actors when communicating with the system; they can be
windows, screens, dialog boxes or menus. in the Comment field.

5. Select the Use as metaclass check box to promote the object type in the interface so that it
has its own object list and Browser category.

6. Click the Select Icon tool to open the PowerDesigner image library dialog, select the
Search Images tab, enter boundary in the Search for field, and click the Search button.

7. Select the Boundary.cur image in the results, and click OK to assign it to represent
boundary objects in the Browser and other interface elements. Click the Toolbox custom
tool check box to create a tool with the same icon for creating the new object in the
Toolbox.

8. Repeat these steps to create the following stereotypes and icons:

Stereo-
type

Comment Image file

Entity Entity objects represent stored data like a database, data-
base tables, or any kind of transient object such as a search
result.

entity.cur

Control Control objects are used to control boundary and entity
objects, and represent transfer of information.

control.cur

CHAPTER 2: Extension Files

18 PowerDesigner

9. Click Apply to save your changes before continuing.

For detailed information about creating stereotypes, see Stereotypes (Profile) on page
37.

Specifying Custom Symbols for Robustness Objects
We will specify diagram symbols for each of our new robustness diagram objects by adding
custom symbols to our new stereotypes.

1. Right-click Boundary stereotype and select New > Custom Symbol to create a custom
symbol under the stereotype.

2. Click the Modify button to open the Symbol Format dialog, and select the Custom Shape
tab.

3. Select the Enable custom shape check box, and select Boundary Object in the Shape
name list.

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 19

4. Click OK to complete the definition of the custom symbol and return to the Resource
Editor.

5. Repeat these steps for the other stereotypes:

Stereotype Shape Name

Entity Entity Object

Control Control Object

CHAPTER 2: Extension Files

20 PowerDesigner

6. Click Apply to save your changes.

For detailed information about creating custom symbols, see Custom Symbols (Profile) on
page 70.

Example: Creating Custom Checks on Instance Links
We will now create three custom checks on the instance links that will connect the various
robustness objects. These checks, which are written in VB, do not prevent users from creating
diagrams not supported by the robustness methodology, but define rules that will be verified
when you check your model.

1. Right-click the Profile category, select Add Metaclasses to open the Metaclass Selection
dialog, select InstanceLink on the PdOOM tab and click OK to add it to the extension
file.

2. Right-click the InstanceLink category and select New > Custom Check to create a
check under the metaclass.

3. Enter the following values for the properties on the General tab:

Field Value

Name Incorrect Actor Collaboration
Comment This check verifies if actors are linked to boundary

objects. Linking actors to control or entity objects
is not allowed in the robustness analysis.

Help message This check ensures that actors only communicate with
boundary objects.

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 21

Field Value

Output mes-
sage

The following instance links are incorrect:

Default severi-
ty

Error

Execute the
check by de-
fault

[selected]

4. Select the Check Script tab and enter the following script in the text field:
Function %Check%(link)
 ' Default return is True
 %Check% = True

 ' The object must be an instance link
 If link is Nothing then
 Exit Function
 End if
 If not link.IsKindOf(PdOOM.cls_InstanceLink) then
 Exit Function
 End If

 ' Retrieve the link extremities
 Dim src, dst
 Set src = link.ObjectA
 Set dst = link.ObjectB

 ' Source is an Actor
 ' Call CompareObjectKind() global function defined in Global
Script pane
 If CompareObjectKind(src, PdOOM.Cls_Actor) Then
 ' Check if destination is an UML Object with "Boundary"
Stereotype
 If not CompareStereotype(dst, PdOOM.Cls_UMLObject,
"Boundary") Then
 %Check% = False
 End If
 ElseIf CompareObjectKind(dst, PdOOM.Cls_Actor) Then
 ' Check if source is an UML Object with "Boundary" Stereotype
 If not CompareStereotype(src, PdOOM.Cls_UMLObject,
"Boundary") Then
 %Check% = False
 End If
 End If
End Function

Note: For more information on VBS, see Chapter 7, Scripting PowerDesigner on page
305.

5. Select the Global Script tab (where you store functions and static attributes that may be
reused among different functions) and enter the following script in the text field:

CHAPTER 2: Extension Files

22 PowerDesigner

' This global function check if an object is of given kind
' or is a shortcut of an object of given kind
Function CompareObjectKind(Obj, Kind)
 ' Default return is false
 CompareObjectKind = False

 ' Check object
 If Obj is Nothing Then
 Exit Function
 End If
 ' Shortcut specific case, ask to it's target object
 If Obj.IsShortcut() Then
 CompareObjectKind = CompareObjectKind(Obj.TargetObject,
Kind)
 Exit Function
 End If
 If Obj.IsKindOf(Kind) Then
 ' Correct object kind
 CompareObjectKind = True
 End If
End Function

' This global function check if an object is of given kind
' and compare it's stereotype value
Function CompareStereotype(Obj, Kind, Value)
 ' Default return is false
 CompareStereotype = False

 ' Check object
 If Obj is Nothing then
 Exit Function
 End If
 if (not Obj.IsShortcut() and not
Obj.HasAttribute("Stereotype")) Then
 Exit Function
 End If
 ' Shortcut specific case, ask to it's target object
 If Obj.IsShortcut() Then
 CompareStereotype = CompareStereotype(Obj.TargetObject,
Kind, Value)
 Exit Function
 End If
 If Obj.IsKindOf(Kind) Then
 ' Correct object kind
 If Obj.Stereotype = Value Then
 ' Correct Stereotype value
 CompareStereotype = True
 End If
 End If
End Function

' This global function copy the standard attribute
' from source to target
Function Copy (src, trgt)
 trgt.name = src.name
 trgt.code = src.code

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 23

 trgt.comment = src.comment
 trgt.description = src.description
 trgt.annotation = src.annotation
 Dim b, d
 for each b in src.AttachedRules
 trgt.AttachedRules.insert -1,b
 next
 for each d in src.RelatedDiagrams
 trgt.RelatedDiagrams.insert -1,d
 next
 output " "
 output trgt.Classname & " " & trgt.name & " has been created."
 output " "
End Function

6. Repeat these steps to create a second check by entering the following values:

Field Value

Name Incorrect Boundary to Boundary Link
Help message This check ensures that an instance link is not de-

fined between two boundary objects.
Output message The following links between boundary objects are

incorrect:
Default severity Error
Execute the check
by default

[selected]

CHAPTER 2: Extension Files

24 PowerDesigner

Field Value

Check Script Function %Check%(link)
 ' Default return is True
 %Check% = True

 ' The object must be an instance link
 If link is Nothing then
 Exit Function
 End if
 If not link.IsKindOf(PdOOM.cls_InstanceLink) then
 Exit Function
 End If

 ' Retrieve the link extremities
 Dim src, dst
 Set src = link.ObjectA
 Set dst = link.ObjectB

 ' Error if both extremities are 'Boundary' objects
 If CompareStereotype(src, PdOOM.Cls_UMLObject, "Boun-
dary") Then
 If CompareStereotype(dst, PdOOM.Cls_UMLObject,
"Boundary") Then
 %Check% = False
 End If
 End If
End Function

7. Repeat these steps to create a third check by entering the following values:

Field Value

Name Incorrect Entity Access
Help Message This check ensures that entity objects are accessed

only from control objects.
Output Message The following links are incorrect:
Default Severity Error
Execute the check
by default

[selected]

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 25

Field Value

Check Script Function %Check%(link)
 ' Default return is True
 %Check% = True

 ' The object must be an instance link
 If link is Nothing then
 Exit Function
 End if
 If not link.IsKindOf(PdOOM.cls_InstanceLink) then
 Exit Function
 End If

 ' Retrieve the link extremities
 Dim src, dst
 Set src = link.ObjectA
 Set dst = link.ObjectB

 ' Source is and UML Object with "Entity" stereotype?
 ' Call CompareStereotype() global function defined in
Global Script pane
 If CompareStereotype(src, PdOOM.Cls_UMLObject, "Enti-
ty") Then
 ' Check if destination is an UML Object with "Con-
trol" Stereotype
 If not CompareStereotype(dst, PdOOM.Cls_UMLObject,
"Control") Then
 %Check% = False
 End If
 ElseIf CompareStereotype(dst, PdOOM.Cls_UMLObject,
"Entity") Then
 ' Check if source is an UML Object with "Control"
Stereotype
 If not CompareStereotype(src, PdOOM.Cls_UMLObject,
"Control") Then
 %Check% = False
 End If
 End If
End Function

CHAPTER 2: Extension Files

26 PowerDesigner

8. Click Apply to save your changes before continuing.

For detailed information about creating custom checks, see Custom Checks (Profile) on
page 71.

Example: Defining Templates to Extract Message Descriptions
We are going to generate a textual description of the messages in the diagram, giving for each
message, the names of the sender, message, and receiver. To do so, we will need to define
PowerDesigner Generation Template Language (GTL) templates to extract the information
and a generated file to contain and display the extracted information.

To generate this textual description, we will need to extract information from the Message
metaclass (to extract the message sequence number, name, sender, and receiver) and the
CommunicationDiagram (to gather all the messages from each diagram and sort them)

1. Right-click the Profile category, select Add Metaclasses to open the Metaclass Selection
dialog, select CommunicationDiagram and Message on the PdOOM tab and click
OK to add them to the extension file.

2. Right-click the Message category and select New > Template to create a template under
the metaclass.

3. Enter description in the Name field, and then enter the following GTL code in the
text area:

.set_value(_tabs, "", new)

.foreach_part(%SequenceNumber%, '.')
 .set_value(_tabs, " %_tabs%")
.next
%_tabs%%SequenceNumber%) %Sender.ShortDescription% sends message
"%Name%" to %Receiver.ShortDescription%

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 27

The first line of the template initializes the _tabs variable, and the foreach_part
macro calculates an appropriate amount of indentation by looping through each sequence
number, and adding 3 spaces whenever a dot is found. The last line uses this variable to
indent, format, and display information extracted for each message.

4. Right-click the CommunicationDiagram category and select New > Template to
create a template under the metaclass.

5. Enter compareCbMsgSymbols in the Name field, and then enter the following GTL
code in the text area:

.bool (%Item1.Object.SequenceNumber% >=
%Item2.Object.SequenceNumber%)

This template resolves to a boolean value to determine if one message number is greater
than another, and the result will be used in a second template.

6. Right-click the CommunicationDiagram category and select New > Template to
create a second template, enter description in the Name field, and then enter the
following GTL code in the text area:

Collaboration Scenario %Name%:
\n
.foreach_item(Symbols,,, %ObjectType% ==
CollaborationMessageSymbol, %compareCbMsgSymbols%)
 %Object.description%
.next(\n)

The first line of this template generate the title of the scenario from the name of the
communication diagram. Then the .foreach_item macro loops on each message
symbol, and calls on the other templates to format and output the message information.

CHAPTER 2: Extension Files

28 PowerDesigner

7. Click Apply to save your changes before continuing.

For detailed information about templates and GTL, see Templates (Profile) on page 84
and Chapter 5, Customizing Generation with GTL on page 245.

Example: Creating a Generated File for the Message Information
Having created templates to extract information about the messages in the model, we need to
create a generated file to contain and display them on the Preview tab of the diagram property
sheet. We will define the file on the BasePackage metaclass, which is the common class for
all packages and models, and will have it loop through all the communication diagrams in the
model to evaluate the template description defined on the CommunicationDiagram
metaclass.

1. Right-click the Profile category, select Add Metaclasses to open the Metaclass Selection
dialog, click the Modify Metaclass Filter tool, select Show Abstract Modeling
Metaclasses, and click the PdCommon tab.

2. Select BasePackage and click OK to add it to the extension file.

3. Right-click the BasePackage category and select New > Generated File to create a file
under the metaclass.

4. Enter the following values for the file properties:

Field Value

Name Communications Textual Descriptions
File name %Name% Communication Description.txt
Encoding ANSI
Use package
hierarchy as
file path

[unselected]

5. Enter the following code in the text box:

.foreach_item(CollaborationDiagrams)
 %description%
.next(\n\n)

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 29

6. Click Apply to save your changes, and then OK to close the resource editor.

7. Click OK to close the List of Extensions.

For detailed information about creating generated files, see Generated Files (Profile) on
page 85.

Example: Testing the Robustness Extensions
To test the extensions we have created, we will create a small robustness diagram to analyze
our use case.

1. Right-click your model node in the Browser, and select New > Communication
Diagram.

In addition to the standard Toolbox, a custom toolbox is provided with tools you have
defined to create boundary, control, and entity objects.

2. Drag the Customer actor from the Actors category in the Browser into the diagram to
create a shortcut. Then create one each of the boundary, control and entity objects, and
name them Internet Browser, Application Server, and Database
Server respectively.

3. Use the Instance Link tool in the standard Toolbox to connect the Customer to the
Internet Browser to the Application Server, to the Database
Server.

4. Create the following messages on the Messages tabs of the instance links property sheets:

CHAPTER 2: Extension Files

30 PowerDesigner

Direction Message name Sequence
number

Customer - Internet Browser Stock value query 1

Internet Browser - Application Server Ask value to app server 2

Application Server - Database Server Ask value to db 3

Database Server - Application Server Return value from db 4

Application Server - Internet Browser Return value from app server 5

Internet Browser - Customer Return value 6

5. Select Tools > Check Model to display the Check Model Parameters dialog box, in which
the custom checks we have created appear in the Instance Link category:

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 31

Click OK to test the validity of the instance links we have created.

6. Right-click the model node in the Browser and select Properties to open the model
property sheet. Click the Preview tab to review messages sent for our use case:

CHAPTER 2: Extension Files

32 PowerDesigner

Metaclasses (Profile)
Metaclasses are defined in the PowerDesigner metamodel and provide the basis for your
extensions. You add a metaclass to the Profile category when you want to extend it in some
way by modifying its behavior, adding new properties, changing its property sheet or symbol,
or even excluding it from your models.

You can either make extensions to an existing type of object or create an entirely new kind of
modeling object by adding the ExtendedObject, ExtendedSubObject or
ExtendedLink metaclass (see Extended Objects, Sub-Objects, and Links (Profile) on page
36).

In the following example, the FederationController is an entirely new type of object
created by adding the ExtendedObject metaclass and defining a stereotype on it. Various
specializations of the Table metaclass are defined through criteria and stereotypes:

Extensions are inherited, so that any extensions made to a metaclass
are available to its stereotyped children, and those that are subject to
criteria. The various extended attributes defined under the table met-
aclass will be available to table instances according to the following
rules:

• SecurityLevel - All tables.

• EncryptionKey - Tables for which the SecureTable
criterion evaluates to true.

• ReplicationPath - Tables for which both the SecureT-
able and Replicated criteria evaluate to true.

• ExternalLogin - Tables bearing either the Federa-
tedTable or PriorityTable stereotype.

• Availability - Tables bearing the PriorityTable
stereotype.

For example, a table bearing the FederatedTable stereotype,

and for which the SecureTable criteria evaluates to true, would

display the SecurityLevel, EncryptionKey, and Ex-
ternalLogin attributes, while a table bearing the Priori-
tyTable stereotype, and for which both the SecureTable and

Replicated criteria evaluate to true, would display these attrib-

utes and, additionally, the ReplicationPath and Availa-
bility attributes.

1. Right-click the Profile category and select Add Metaclasses:

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 33

2. Select one or more metaclasses to add to the profile. The sub-tabs list metaclasses
belonging to the present module (for example, the OOM), and standard metaclasses
belonging to the PdCommon module.

[optional] Use the Modify Metaclass Filter tool to display:
• All metaclasses
• Concrete metaclasses - for object types that can be created in a model, such as Class

or Interface.

• Abstract metaclasses -which are never instantiated but are used to define common
extensions. For example, add the Classifier metaclass to your profile to define
extensions that will be inherited by both classes and interfaces.

Note: For information about viewing and navigating among metaclasses in the
metamodel, see Chapter 8, The PowerDesigner Public Metamodel on page 343.

3. Click OK to add the selected metaclasses to your profile:

CHAPTER 2: Extension Files

34 PowerDesigner

4. [optional] Enter the following properties as appropriate:

Property Description

Name [read-only] Specifies the name of the metaclass. Click the button to the right
of this field to open the Metamodel Objects Help for the metaclass.

Parent [read-only] Specifies the parent of the metaclass. Click the button to the right
of this field to go to the parent. If the parent is not present in the profile, a
message invites you to add it.

Code naming
convention

[concrete metaclasses in target files] Specifies the default format to initialize
the name to code conversion script for instances of the metaclass. The fol-
lowing formats are available:
• firstLowerWord - First word in lowercase, then other first letters of

other words in uppercase
• FirstUpperChar - First character of all words in uppercase

• lower_case - All words in lowercase and separated by an underscore

• UPPER_CASE - All words in uppercase and separated by an underscore

For more information on conversion scripts and naming conventions, see Core
Features Guide > Modeling with PowerDesigner > Objects > Naming Con-
ventions.

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 35

Property Description

Illegal characters [concrete metaclasses in target files] Specifies a list of illegal characters that
may not be used in code generation for the metaclass. The list must be placed
between double quotes, for example:

"/!=<>""'()"
When working with an OOM, this object-specific list overrides any values
specified in the IllegalChar property for the object language (see Set-
tings Category: Object Language on page 110).

Enable selection
in file generation

Specifies that instances of the metaclass will appear in the Selection tab of the
extended generation dialog box.

Exclude from
model

[concrete metaclasses only] Prevents the creation of instances of the meta-
class and removes all references to the metaclass from the menus, Toolbox,
property sheets and so on, to simplify the interface. For example, if you do not
use business rules, select this check box for the BusinessRule metaclass
to hide them in your models.

When several resource files are attached to a model, the metaclass is excluded
if at least one file excludes it and the others do not explicitly enable it. For
models that already have instances of this metaclass, the objects will be
preserved but it will not be possible to create new ones.

Comment Documents the reason for the presence of the metaclass in this profile.

Extended Objects, Sub-Objects, and Links (Profile)
Extended objects, sub-objects, and links are special metaclasses that are designed to allow you
to add completely new types of objects to your models, rather than basing them on existing
PowerDesigner objects. These objects do not appear, by default, in models other than the free
model unless you add them to an extension or other resource file.

• Extended objects – define new types of objects that can be created anywhere.
• Extended sub-objects – define new types of child objects that can only be created in the

property sheet of their parent via an extended composition (see Extended Collections and
Compositions (Profile) on page 48).

• Extended links – define new types of links between objects.

1. Right-click the Profile category, select Add Metaclasses, and click the PdCommon sub-
tab in the dialog to display the list of objects common to all models.

2. Select one or more of ExtendedLink, ExtendedSubObject, and
ExtendedObject and click OK to add them to your profile.

Note: To make the tools for creating extended objects and extended links available in the
Toolbox of models other than the free model, you must add them via the customization
dialog available at Tools > Customize Menus and Tools.

CHAPTER 2: Extension Files

36 PowerDesigner

3. [optional] To create your own object add a stereotype (see Stereotypes (Profile) on page
37 and define appropriate extensions under the stereotype. To have your object appear in
the PowerDesigner interface as a standard metaclass, with its own tool, Browser category
and model list, select Use as metaclass in the stereotype definition (see Promoting a
Stereotype to Metaclass Status on page 39).

4. Click Apply to save the changes.

Stereotypes (Profile)
Stereotypes subclassify metaclasses so that extensions are applied to objects only if they bear
the stereotype. Stereotypes can be promoted to the status of metaclasses with a specific list,
Browser category and custom symbol and Toolbox tool.

Note: You can define more than one stereotype for a given metaclass, but you can only apply a
single stereotype to each instance. Like other extensions, stereotypes support inheritance, so
extensions to a parent stereotype are inherited by child stereotypes.

1. Right-click a metaclass, criterion, or stereotype, and select New > Stereotype.

2. Enter the following properties as appropriate:

Property Description

Name Specifies the internal name of the stereotype, which is used for scripting.

Label Specifies the display name of the stereotype, which will appear in the PowerDe-
signer interface.

Parent Specifies a parent stereotype of the stereotype. You can select a stereotype defined
in the same metaclass or in a parent metaclass. Click the Properties button to go to
the parent stereotype in the tree and display its properties.

Abstract Specifies that the stereotype cannot be applied to metaclass instances. The ster-
eotype will not appear in the stereotype list in the object property sheet, and can
only be used as a parent of other child stereotypes. Disables the Use as metaclass
property.

Use as meta-
class

Promotes the stereotype to the same status as standard PowerDesigner meta-
classes, to give it its own list of objects, Browser category, and its own tab in
multi-pane selection boxes such as those used for generation (see Promoting a
Stereotype to Metaclass Status on page 39).

No Symbol [available when Use as metaclass is selected] Specifies that instances of the
stereotyped metaclass cannot be displayed in a diagram and are visible only in the
Browser. Disables the Toolbox custom tool.

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 37

Property Description

Icon Specifies an icon for stereotyped instances of the metaclass. Click the tools to the
right of this field in order to browse for .cur or .ico files.

Note: The icon is used to identify objects in the Browser and elsewhere in the
interface, but not as a diagram symbol. To specify a custom diagram symbol, see
Custom Symbols (Profile) on page 70.

Toolbox cus-
tom tool

[available for objects supporting symbols] Specifies a Toolbox tool to enable you
to create objects in a diagram. If you do not select this option, users are only able to
create objects bearing the stereotype from the Browser or Model menu. Custom
tools appear in a separate Toolbox group named after the resource file in which
they are defined.

Note: If you have not specified an icon, the tool will use a hammer icon by default.

Plural label [available when Use as metaclass is selected] Specifies the plural form of the
display name that will appear in the PowerDesigner interface.

Default
name

[available when Use as metaclass or Toolbox Custom Tool is selected] Specifies
a default name for objects created. A counter will be automatically appended to
the name specified to generate unique names.

A default name can be useful when designing for a target language or application
with strict naming conventions. Note that the default name does not prevail over
model naming conventions, so if a name is not correct it is automatically modified.

Comment Provides a description or additional information about the stereotype.

CHAPTER 2: Extension Files

38 PowerDesigner

Promoting a Stereotype to Metaclass Status
You can create new types of objects that behave as standard PowerDesigner metaclasses by
selecting Use as Metaclass in the stereotype property page.

You can use such stereotypes to:

• Create new kinds of objects that share much of the behavior of an existing object type, such
as business transactions and binary collaborations in a BPM for ebXML.

• Have objects with identical names but different stereotypes in the same namespace (a
metaclass stereotype creates a sub-namespace in the current metaclass).

Note: Stereotypes defined on sub-objects (such as table columns or entity attributes), cannot
be promoted to metaclass status.

1. In the Stereotype property page, select Use as metaclass.

2. [optional] Specify an icon and tool to create instances of the metaclass stereotype.

3. Click Apply to save the changes and then add extended attributes and other appropriate
extensions under the stereotype.

In your model, the stereotypes has:
• A separate list in the Model menu after the parent metaclass list (and the parent

metaclass list will not display objects with the metaclass stereotype). Objects created

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 39

in the new list bear the new metaclass stereotype by default. If you change the
stereotype, the object will be removed from the list the next time it is opened.

• A separate Browser folder and command under New, when you right-click the model
or a package.

• Property sheet titles based on the metaclass label.
• Its own tab in multi-pane selection boxes such as those used for generation.

Criteria (Profile)
Criteria subclassify metaclasses so that extensions are applied to objects only if they satisfy
conditions. You can test an object instance against multiple criteria, and for sub-criteria, its
condition and any conditions specified by its parents must be met for its extensions to be
applied to the instance.

1. Right-click a metaclass and select New > Criterion.

2. Enter the following properties as appropriate:

Property Description

Name Specifies the name of the criterion.

Condition Specifies the condition which instances must meet in order to access the criterion
extensions. You can use any expressions valid for the PowerDesigner GTL .if
macro (see .if Macro on page 275). You can reference any extended attributes
defined at the metaclass level in the condition, but not those defined under the
criterion itself.

For example, in a PDM, you can customize the symbols of fact tables by creating a
criterion that will test the type of the table using the following condition:

(%DimensionalType% == "1")
%DimensionalType% is an attribute of the BaseTable object, which
has a set of defined values, including "1", which corresponds to "fact". For
more information, select Help > Metamodel Objects Help, and navigate to
Libraries > PdPDM > Abstract Classes > BaseTable.

Parent Specifies the parent criterion of the criterion. To move the criterion to under
another parent, select the parent in the list. Click the Properties tool to open the
parent and view its properties.

Comment Specifies additional information about the criterion.

CHAPTER 2: Extension Files

40 PowerDesigner

3. Click Apply to save your changes.

Extended Attributes (Profile)
Extended attributes define additional metadata to capture for object instances. You can specify
a default value, allow users to freely enter numeric, string, or other types of data (or select
objects), provide an open or closed list of possible values, or calculate a value.

Note: Extended attributes are listed on a generic Extended Attributes tab in the object
property sheet, unless you insert them into forms (see Forms (Profile) on page 55). If all the
extended attributes are allocated to forms, the generic page will not be displayed.

1. Right-click a metaclass, stereotype, or criterion in the Profile category and select New >
Extended Attribute.

2. Specify the following properties as appropriate:

Property Description

Name Specifies the internal name of the attribute, which can be used for scripting.

Label Specifies the display name of the attribute, which will appear in the PowerDe-
signer interface.

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 41

Property Description

Comment Provides additional information about the extended attribute.

Data type Specifies the form of the data to be held by the extended attribute. You can choose
from:
• Boolean - TRUE or False.

• Color - xxx xxx xxx where x is an integer between 0-255.

• Date or Time - your local format as specified in your Windows regional
settings

• File or Path - cannot contain /// or any of the following charac-
ters: ?"<>|.

• Integer or Float - the appropriate local format.
• Hex - a hexadecimal.
• Font - font name,font type,font size.

• Font Name or Font Style - a 1-50 character string.
• Font Size - an integer between 1-400.
• Object - an object of the correct type and, if appropriate, with the correct

stereotype. When selecting this type you must specify an Object type and, if
appropriate, an Object stereotype, and you can also specify an Inverse
collection name (see Linking Objects Through Extended Attributes on page
48).

• Password - no restrictions.
• String (single line) or Text (multi-line) - no restrictions.
Select the Validate check box to the right of the list to enforce validation of the
values entered for the attribute.

To create your own data type, click the Create Extended Attribute Type tool to
the right of the field (see Creating an Extended Attribute Type on page 45).

Computed Specifies that the extended attribute is calculated from other values using
VBScript on the Get Method Script, Set Method Script, and Global Script
tabs. When you select this checkbox, you must choose between:
• Read/Write (Get+Set methods)
• Read only (Get method)

In the following example script, the FileGroup computed extended attribute
gets its value from and sets the value of the filegroup physical option of the
object:

Function %Get%(obj)
%Get% = obj.GetPhysicalOptionValue("on/<filegroup>")
End Function

Sub %Set%(obj, value)
obj.SetPhysicalOptionValue "on/<filegroup>", value
End Sub

CHAPTER 2: Extension Files

42 PowerDesigner

Property Description

Default value [if not computed] Specifies a default value for the attribute. You can specify
the value in any of the following ways:
• Enter the value directly in the list.
• [predefined data types] Click the Ellipsis button to open a dialog listing

possible values. For example, if the data type is set to Color, the Ellipsis
button opens a palette window.

• [user-defined data types] Select a value from the list.

Template [if not computed] Specifies that the value of the attribute is to be evaluated as a
GTL template at generation time. For example, if the value of the attribute is set
to %Code%, it will be generated as the value of the code attribute of the relevant
object.

By default (when this checkbox is not selected), the attribute is evaluated liter-
ally, and a value of %Code% will be generated as the string %Code%.

List of values Specifies a list of possible values for the attribute in one of the following ways:
• Enter a static list of semi-colon-delimited values directly in the field.
• Use the tools to the right of the list to create or select a GTL template to

generate the list dynamically.
If the attribute type is Object, and you do not want to filter the list of
available objects in any way, you can leave this field blank.
To perform a simple filter of the list of objects, use the .collection
macro (see .object and .collection Macros on page 278). In the following
example, only tables with the Generated attribute set to true will be
available for selection:

.collection(Model.Tables, %Generated%==true)
For more complex filtering, use the foreach_item macro (see .fore-
ach_item Macro on page 271):

.foreach_item (Model.Tables)
 .if %Generated%
 .// (or more complex criteria)
 %ObjectID%
 .endif
.next (\n)

If the attribute is based on an extended attribute type (see Creating an Extended
Attribute Type on page 45), this field is unavailable since the values of the
extended attribute type will be used.

Complete Specifies that all possible values for the attribute are defined in the List of values,
and that the user may not enter any other value.

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 43

Property Description

Edit method [if not Complete] Specifies a method to override the default action associated
with the tool to the right of the field.

This method is often used to apply a filter defined in the List of values field in the
object picker. In the following example, only tables with the Generated
attribute set to true will be available for selection:

Sub %Method%(obj)

 Dim Mdl
 Set Mdl = obj.Model

 Dim Sel
 Set Sel = Mdl.CreateSelection

 If not (Sel is nothing) Then
 Dim table
 For Each table in Mdl.Tables
 if table.generated then
 Sel.Objects.Add table
 end if
 Next

 ' Display the object picker on the selection
 Dim selObj
 set selObj = Sel.ShowObjectPicker
 If Not (selObj is Nothing) Then
 obj.SetExtendedAttribute "Storage-For-Each",
selObj
 End If

 Sel.Delete
 End If

End Sub

Icon Set Specifies a set of icons to display on object symbols in place of extended attribute
values (see Specifying Icons for Attribute Values on page 46).

Text format [for Text data types only] Specifies the language contained within the text
attribute. If you select any value other than plain Text, then an editor toolbar
and (where appropriate) syntax coloring are provided in the associated form
fields.

Object type [for Object data types only] Specifies the type of the object that the attribute
contains (for example, User, Table, Class).

Object stereo-
type

[for Object data types only] Specifies the stereotype that objects of this type
must bear to be selectable.

CHAPTER 2: Extension Files

44 PowerDesigner

Property Description

Inverse col-
lection name

[for Object data types only, if not computed] Specifies the name under
which the links to the object will be listed on the Dependencies tab of the target
object.

An extended collection with the same name as the extended attribute, which
handles these links, is automatically created for all non-computed extended
attributes of the Object type, and is deleted when you delete the extended at-
tribute, change its type, or select the Computed checkbox.

Physical op-
tion

[for [Physical Option] data types only] Specifies the physical option with which
the attribute is associated. Click the ellipsis to the right of this field to select a
physical option. For more information, see Adding DBMS Physical Options to
Your Forms on page 210.

3. Click Apply to save your changes.

Creating an Extended Attribute Type
You can create extended attribute types to define the data type and authorized values of
extended attributes. Creating extended attribute types allows you to reuse the same list of
values for several extended attributes without having to write code.

1. Right-click the Profile\Shared category and select New > Extended Attribute
Type.

2. Enter the appropriate properties, including a list of values and a default value.

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 45

3. Click Apply to save your changes.

The new shared type is available to any extended attribute in the Data Type field. You can
also define a list of values for a given extended attribute directly in this field (see Extended
Attributes (Profile) on page 41).

Specifying Icons for Attribute Values
You can specify icons to display on object symbols in place of extended attribute values by
creating an attribute icon set with individual attribute value icons for each possible value.

1. Create an extended attribute (see Extended Attributes (Profile) on page 41).

2. Select a standard data type or an extended attribute type (see Creating an Extended
Attribute Type on page 45).

3. If appropriate, specify a list of possible values and a default value.

4. Click the Create tool to the right of the Icon set list to create a new icon set

A new icon set is created at Profile > Shared > Attribute Icon Sets initialized with the
possible values and an empty icon which matches any value for which another icon has not
been defined (=*).

5. For each value in the list, double-click it, and click the Icon tool to select an icon to
represent this value on object symbols:

CHAPTER 2: Extension Files

46 PowerDesigner

Note: By default, the Filter operator field is set to =, and each icon matches exactly one
possible value. To have a single icon match multiple values, use the Between or another
operator together with a suitable Filter value. For example, in an icon set paired with a
progress attribute for which the user can enter any value between 0 and 100% progress,
you could use three icons:
• Not Started - = 0
• In Progress - Between 1,99
• Completed - = 100

6. If appropriate, add the attribute to a form (see Forms (Profile) on page 55), to enable
users to modify its value.

7. Click OK to save your changes and return to the model.

8. To enable the display of the icon on your object symbol, select Tools > Display
Preferences, select your object type, and click the Advanced button to add your attribute
to the symbol. For detailed information about working with display preferences, see Core
Features Guide > Modeling with PowerDesigner > Diagrams, Matrices, and Symbols >
Display Preferences.

Your attribute is now displayed on object symbols. In the following example, the
Employee entity is In Progress, while the Customer entity is Completed:

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 47

Linking Objects Through Extended Attributes
Specify the [Object] data type to allow users to select another object as the value of the
attribute. You must specify an Object type (metaclass) to link to, and can optionally specify an
Object stereotype to filter the objects available for selection and an Inverse collection name,
which will be displayed on the Dependencies tab on the referenced object property sheet.

For example, under the Table metaclass, I create an extended attribute called Owner, select
[Object] in the Data type field, and User in the Object type field. I name the inverse
collection Tables owned. When I set the Owner property of a table, the table will be listed
on the Dependencies tab of the user property sheet, under the inverse collection name of
Tables owned.

Extended Collections and Compositions (Profile)
Extended collections define the possibility to associate an object instance with a group of
other objects of the specified type. Extended compositions define a parent-child connection
between an object instance and a group of sub-objects derived from the
ExtendedSubObject metaclass.

For extended collections, the association between the parent and child objects is relatively
weak, so that if you copy or move the parent object, the related objects are not copied or
moved, but the connection is maintained (using shortcuts if necessary). For example, you
could associate documents containing use case specifications with the different packages of a
model by creating an extended collection under the Package metaclass and specifying
FileObject as the target metaclass.

For extended compositions, the association is stronger. Sub-objects can only be created within
the parent object and are moved, copied, and/or deleted along with their parent.

The collection or composition is displayed as a new tab in the object instance property sheet.
The property sheets of objects referenced in a collection show the object instance owning the
collection on their Dependencies tab.

1. Right-click a metaclass, stereotype, or criterion and select New > Extended Collection or
Extended Composition.

CHAPTER 2: Extension Files

48 PowerDesigner

Note: If you define the collection or composition under a stereotype or criterion, its tab is
displayed only if the metaclass instance bears the stereotype or meets the criterion.

2. Enter the following properties as appropriate:

Property Description

Name Specifies the name of the extended collection or composition.

Label Specifies the display name of the collection, which will appear as the name of the
tab associated with the collection in the parent object property sheet.

Comment [optional] Describes the extended collection.

Inverse
Name

[extended collection only] Specifies the name to appear in the Dependencies tab
of the target metaclass. If you do not enter a value, an inverse name is automati-
cally generated.

Target Type Specifies the metaclass whose instances will appear in the collection.

For extended collections, the list displays only metaclasses that can be directly
instantiated in the current model or package, such as classes or tables, and not
sub-objects such as class attributes or table columns. Click the Select a Metaclass
tool to the right of this field to choose a metaclass from another type of model.

For extended compositions, only the ExtendedSubObject is available, and you
must specify a stereotype for it.

Target Ster-
eotype

[required for extended compositions] Specifies a stereotype to filter the target
type. You can select an existing stereotype from the list or click the Create tool to
the right of this field to create a new one.

List Col-
umns

Specifies the property columns that will be displayed by default in the parent
object property sheet tab associated with the collection. Click the Customize
Default Columns tool to the right of this field to add or remove columns.

3. Click Apply to save your changes.

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 49

You can view the tab associated with the collection by opening the property sheet of a
metaclass instance. The tab contains an Add Objects (and, if the metaclass belongs to the
same type of model, Create an Object) tool, to populate the collection.

Note: When you open a model containing extended collections or compositions and
associate it with a resource file that does not support them, the collections are still visible in
the different property sheets in order to let you delete objects in the collections no longer
supported.

Calculated Collections (Profile)
Calculated collections define a read-only connection between an object instance and a group
of other objects of the specified type. The logic of the collection is defined using VBScript.

Calculated collections, unlike extended collections (see Extended Collections and
Compositions (Profile) on page 48) cannot be modified by the user.

You can create calculated collections to:

• Display user-defined dependencies for a selected object. The calculated collection is
displayed in the Dependencies tab of the object property sheet.

• Fine-tune impact analysis by creating your own calculated collections in order to be able to
better evaluate the impact of a change. For example, in a model where columns and

CHAPTER 2: Extension Files

50 PowerDesigner

domains can diverge, you can create a calculated collection on the domain metaclass that
lists all the columns that use the domain and have identical data type.

• Improve your reports. You can drag and drop any book or list item under any other report
book and modify its default collection in order to document a specific aspect of the model
(see Core Features Guide > Storing, Sharing and Reporting on Models > Reports > The
Report Editor > Adding Items to a Report > Modifying the Collection of an Item).

• Improve GTL generation since you can loop on user-defined calculated collections.

For example, in an OOM, you may need to create a list of sequence diagrams using an
operation, and can create a calculated collection on the operation metaclass that retrieves this
information. In a BPM, you could create a calculated collection on the process metaclass that
lists the CDM entities created from data associated with the process.

1. Right-click a metaclass, stereotype, or criterion and select New > Calculated
Collection.

2. Enter the following properties as appropriate:

Property Description

Name Specifies the name of the calculated collection for use in scripts.

Label Specifies the display name of the collection, which will appear as the name of
the tab associated with the collection in the parent object property sheet.

Comment [optional] Describes the calculated collection.

Target Type Specifies the metaclass whose instances will appear in the collection. The list
displays only metaclasses that can be directly instantiated in the current model
or package, such as classes or tables, and not sub-objects such as class attrib-
utes or table columns.

Click the Select a Metaclass tool to the right of this field to choose a metaclass
from another type of model.

Target Stereo-
type

[optional] Specifies a stereotype to filter the target type. You can select an
existing stereotype from the list or enter a new one.

List Columns Specifies the columns displayed by default on the collection property sheet
tab.

3. Click the Calculated Collection Script tab and enter a script that will calculate which
objects will form the collection.

If appropriate, you can reuse functions on the Global Script tab, which is used for sharing
library functions and static attributes in the resource file. You can declare global variables
on this tab, but you should be aware that they will not be reinitialized each time the
collection is calculated, and keep their value until you modify the resource file, or the
PowerDesigner session ends. This may cause errors, especially when variables reference
objects that can be modified or deleted. Make sure you reinitialize the global variable if
you do not want to keep the value from a previous run.

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 51

For more information on defining a script and using the Global Script tab, see Example:
PDM Custom Check on page 73 and Global Script (Profile) on page 105.

4. Click Apply to save your changes.

You can view the tab associated with the collection by opening the property sheet of a
metaclass instance.

Dependency Matrices (Profile)
Dependency matrices allow you to review and create links between any kind of objects. You
specify one metaclass for the matrix rows, and the same or another metaclass for the columns.
The contents of the cells are then calculated from a collection or link object.

For example, you could create dependency matrices that show links between:

• OOM Classes and Classes – connected by Association link objects
• PDM Tables and Users – connected by the Owner collection

CHAPTER 2: Extension Files

52 PowerDesigner

• PDM Tables and OOM Classes – connected by extended dependencies

1. Right-click the Profile category and select Add Dependency Matrix to add the
DependencyMatrix metaclass to the profile and create a stereotype under it, in which
you will define the matrix properties.

2. On the General tab, enter a name for the matrix (for example Table Owners
Matrix) along with a label and plural label for use in the PowerDesigner interface, as
well as a default name for the matrices that users will create based on this definition.

3. Click the Definition tab to specify the rows and columns of your matrix and how they are
associated using the following properties.

Property Description

Rows Specifies the object type with which to populate your matrix rows.

Columns Specifies the object type with which to populate your matrix columns. Click the
Select Metaclass button to the right of the list to select a metaclass from another
model type.

Matrix Cells Specifies how the rows and columns of your matrix will be associated. You must
specify a Dependency from the list, which includes all the collections and links
available to the object.

Click the Create button to the right of the list to create a new extended collection
(see Extended Collections and Compositions (Profile) on page 48) connecting
your objects, or the Advanced button to specify a complex dependency path (see
Specifying Advanced Dependencies on page 54).

For certain dependencies, the Object type on which the dependency is based will
be displayed, and you can select an Object attribute to display in the matrix cells
along with the No value symbol, which is displayed if that attribute is not set in
any particular instance.

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 53

4. Click OK to save your matrix and close the resource editor.

You can now create instances of the matrix in your model as follows:
• Select View > Diagram > New Diagram > Matrix Name.
• Right-click a diagram background and select Diagram > New Diagram > Matrix

Name.
• Right-click the model in the browser and select New > Matrix Name.

Note: For information about using dependency matrices, see Core Features Guide >
Modeling with PowerDesigner > Diagrams, Matrices, and Symbols > Dependency
Matrices.

Specifying Advanced Dependencies
You can examine dependencies between two types of objects that are not directly associated
with each other, using the Dependency Path Definition dialog, which is accessible by clicking
the Advanced button on the Definition tab, and which allows you to specify a path passing
through as many intermediate linking objects as necessary.

Each line in this dialog represents one step in a dependency path:

CHAPTER 2: Extension Files

54 PowerDesigner

Property Description

Name Specifies a name for the dependency path. By default, this field is populated with
the origin and destination object types.

Dependency Specifies the dependency for this step in the path. The list is populated with all the
possible dependencies for the previous object type.

Object Type Specifies the specific object type that is linked to the previous object type by the
selected dependency. This field is autopopulated if only one object type is available
through the selected dependency.

In the following example, a path is identified between business functions and roles, by passing
from the business function through the processes it contains, to the role linked to it by a role
association:

Forms (Profile)
Forms present standard and extended attributes and collections as property sheet tabs or can be
used to create dialog boxes launched from menus or property sheet buttons.

Note: Unless you add them to a form, extended attributes are listed alphabetically on the
Extended Attributes tab of the object's property sheet. By creating your own form, you can
make these attributes more visible and easy to use, by organizing them logically, grouping
related ones, and emphasizing those that are most important. If you associate all of your
extended attributes with a form, the Extended Attributes tab is not displayed.

1. Right-click a metaclass, stereotype or criterion and select New > Form to create an empty
form.

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 55

Note: If you define a property tab under a stereotype or criterion, it is displayed only when
the metaclass instance bears the stereotype or meets the criterion.

2. Enter the appropriate following properties:

Proper-
ty

Description

Name Specifies the internal name of the form, which can be used for scripting.

Label Specifies the display name of the form, which will display in the tab of the property
tab or in the title bar of the dialog box.

Comment Provides additional information about the form.

CHAPTER 2: Extension Files

56 PowerDesigner

Proper-
ty

Description

Help file Enables the display of a Help button and specifies an action that will be performed
when the button is clicked or F1 is pressed when in the context of the form.

The action can be the display of a help file (.hlp, .chm or .html), and can specify a
specific topic. For instance:

C:\PD1500\pddoc15.chm 26204
If no help file extension is found, the string will be treated as a shell command to
execute. For instance, you could instruct PowerDesigner to open a simple text file:

notepad.exe C:\Temp\Readme.txt

Type Specifies the kind of form. You can choose from the following:
• Dialog Box – creates a dialog box that can be launched from a menu or via a form

button
• Property Tab – creates a new tab in the property sheet of the metaclass, stereotype

or criterion
• Replace <standard> Tab – replaces a standard tab in the property sheet of the

metaclass, stereotype or criterion. If your form is empty, it will be filled with the
standard controls from the tab that you are replacing.

Add to fa-
vorite tabs

[property tabs only] Specifies that the tab is displayed by default in the object prop-
erty sheet.

3. Insert controls as necessary in your form using the toolbar on the Form tab (see Adding
Extended Attributes and Other Controls to Your Form on page 57).

4. Click the Preview button to review the layout of your form and, when satisfied, click
Apply to save your changes.

Adding Extended Attributes and Other Controls to Your Form
You insert controls into your form using the tools in the Form tab toolbar. You can reorder
controls in the form control tree by dragging and dropping them. To place a control inside a
container control (group box or horizontal or vertical layout), drop it onto the container. For
example, if you want the extended attributes GUID, InputGUID, and OutputGUID to be
displayed in a GUI group box, you should create a group box, name it GUI and drag and drop
all three extended attributes under the GUI group box.

The following tools are available:

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 57

Tool Description

Add Attribute / Collection – opens a selection box in which you select standard or
extended attributes or collections belonging to the metaclass to insert into the form. If you
do not enter a label, the attribute or collection name is used as its form label. If you have
entered a comment, it is displayed as a tooltip.

The type of control associated with an attribute depends on its type: booleans are asso-
ciated with check boxes, lists with combo boxes, text fields with multi-line edit boxes,
and so on. Collections are displayed as standard grids with all the appropriate tools.

Add Group Box - inserts a group box, intended to contain other controls within a named
box.

Add Tab Window - inserts a sub-tab layout, in which each child control appears, by
default, in its own sub-tab. To place multiple controls on a single sub-tab, use a horizontal
or vertical layout.

 Add Horizontal / Vertical Layout - inserts a horizontal or vertical layout. To arrange
controls to display side by side, drag them onto a horizontal layout in the list. To arrange
attributes to display one under the other, drag them onto a vertical layout in the list.
Vertical and horizontal layouts are often used together to provide columns of controls.

Include Another Form - inserts a form defined on this or another metaclass in the
present form (see Example: Including a Form in a Form on page 64).

Add Method Push Button - opens a selection box in which you select one or more
methods belonging to the metaclass to associate with the form via buttons. Clicking the
button invokes the method. If you do not enter a label, the method name is used as the
button label. If you have entered a comment, it is displayed as a tooltip.

 Add Edit / Multi-Line Edit Field [dialog boxes only] inserts an edit or multi-line edit
field.

Add Combo Box / List Box / Check Box [dialog boxes only] - inserts a combo box, list
box, or check box.

Add Text / Separator Line / Spacer - inserts the appropriate decorative control. The
separator line is vertical when its parent control is a vertical layout.

Delete – deletes the currently selected control.

Select a control to specify properties to control its format and contents:

Property Definition

Name Internal name of the control. This name must be unique within the form. The name
can be used in scripts to get and set dialog box control values (see Example: Opening
a Dialog Box from a Menu on page 82).

CHAPTER 2: Extension Files

58 PowerDesigner

Property Definition

Label Specifies a label for the control on the form. If this field is left blank, the name of the
control is used. If you enter a space, then no label is displayed. You can insert line
breaks with \n.

To create keyboard shortcuts to navigate among controls, prefix the letter that will
serve as the shortcut with an ampersand. If you do not specify a shortcut key,
PowerDesigner will choose one by default. To display an ampersand in a label, you
must escape it with a second ampersand (for example: &Johnson && Son will

display as Johnson & Son.

Attribute [included forms] Specifies the object on which the form to be included is defined.
The list is populated with all attributes of type object and the following objects:

• <None> - the present metaclass

• Generation Origin - for example, the CDM entity from which a PDM table was
generated

• Model - the parent model

• Parent - the immediate parent object for sub-objects (for example, the table
containing a column

• Parent Folder - the immediate parent object for composite objects (for example
BPM processes that contain other processes)

• Parent Package - the immediate parent package

Form name [included forms] Specifies the name of the form that will be included. You can:

• Select a standard property sheet tab name from the list.

• Enter the name of a custom form defined in the extension file.

• Enter the name of a GTL template to generate XML to define the form.

Indentation [container controls] Specifies the space in pixels between the left margin of the
container (form, group box, or horizontal or vertical layout) and the beginning of the
labels of its child controls.

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 59

Property Definition

Label space [container controls] Specifies the space in pixels reserved for displaying the labels of
child controls between the indentation of the container and the control fields.

To align controls with the controls in a previous container, enter a negative value. For
example, if you have two group boxes, and want all controls in both to be aligned
identically, set an appropriate indentation in the first group box and set the inden-
tation of the second group box to -1.

If a child control label is larger than the specified value, the label space property is
ignored; to display this label, you need to type a number of pixels greater than 50.

Show control
as label

[group boxes] Use the first control contained within the group box as its label.

Show Hidden
Attribute

[extended attributes] Displays controls that are not valid for a particular form
(because they do not bear the relevant stereotype, or do not meet the criteria) as
greyed. If this option is not set, irrelevant options are hidden.

Value [dialog box entry fields] Specifies a default value for the control. For extended
attributes, default values must be specified in the attribute's properties (see Extended
Attributes (Profile) on page 41).

List of Values [combo and list boxes] Specifies a list of possible values for the control. For ex-
tended attributes, lists of values must be specified in the attribute's properties (see
Extended Attributes (Profile) on page 41).

Exclusive [combo boxes] Specifies that only the values defined in the List of values can be
entered in the combo box.

CHAPTER 2: Extension Files

60 PowerDesigner

Property Definition

Minimum Size
(chars)

Specifies the minimum width (in characters) to which the control may be reduced
when the window is resized.

Minimum
Line Number

Specifies the minimum number of lines to which a multiline control may be reduced
when the window is resized.

Horizontal /
Vertical Resize

Specifies that the control may be resized horizontally or, for multiline controls,
vertically, when the property sheet or dialog is resized.

Read-Only [included forms and dialog box entry fields] Specifies that the control is read-only,
and will be greyed in the form.

Left Text [booleans] Places the label text to the left of the checkbox.

Display [booleans and methods] Specifies the form in which the boolean options or method
button are displayed.

For booleans, you can choose between a check box or vertical or horizontal radio
buttons, while for methods, you can choose from a range of standard icons or Text,
which prints the text specified in the Label field on the button.

Width/ Height [spacers] Specify the width and height, in pixels, of the spacer.

Example: Creating a Property Sheet Tab
In this example, we will create a new property tab for the EAM Person metaclass to display
extended attributes we define to store personal information.

1. Create a new extension file (see Creating an Extension File on page 12) in an EAM, add the
Person metaclass (see Metaclasses (Profile) on page 33), and define five extended
attributes (see Extended Attributes (Profile) on page 41) to contain home contact details:

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 61

2. Right-click the Person metaclass and select New > Form, enter Personal Details
in the Name field, select Property Tab in the Type list, and click the Add Attribute
tool to select all the new extended attributes for inclusion in the form:

3. Click OK to add the attributes to the form, and arrange them in a group box, using
horizontal layouts to align them neatly. Here, I'm using the Label field to overide the
default name of the attribute in the form for brevity:

CHAPTER 2: Extension Files

62 PowerDesigner

4. Click OK to save your changes and return to the model. When you next open the property
sheet of a person, a new Personal Details tab is available containing the extended
attributes:

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 63

Example: Including a Form in a Form
In this example, we will replace the General tab of the EAM Person metaclass by a form which
includes properties from the person and from the site to which she is assigned by including a
form defined on the Site metaclass as a read-only control in a form defined on the Person
metaclass.

This example builds on the extension file created in Example: Creating a Property Sheet Tab
on page 61.

1. Add the Site metaclass and create a form called Site Address. Select Property
Tab from the Type list and unselect the Add to favorite tabs option (as we do not want
this form, which duplicates standard site properties displayed in site property sheets).

2. Populate the form with standard attributes to display the complete address of the site:

CHAPTER 2: Extension Files

64 PowerDesigner

3. Create a form under the Person metaclass, select Replace General tab from the
Type list, and change the name to Contact Details.

4. Delete unwanted attributes from the list, and arrange the remaining attributes you want to
display, including the Site attribute (which is of type Object, and which will enable us
to pull in the appropriate properties from the associated site form) using horizontal and
vertical layouts.

5. Click the Include Another Form tool, select Site in the Attribute field, and enter Site
Address in the Form name field. Select the Read-Only check box to prevent editing of
the included form from the person's property sheet:

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 65

6. Click OK to save the extensions, and return to your model. When you next open the
property sheet of a person, the General tab is replaced by the custom Contact Details tab,
and when the person is assigned to a site, the site's address details are displayed as read-
only in the lower part of the form:

CHAPTER 2: Extension Files

66 PowerDesigner

Example: Opening a Dialog from a Property Sheet
In this example, we will add a button to a property sheet tab, to open a dialog box, allowing you
to enter additional personal details for a person.

This example builds on the extension file developed in Example: Including a Form in a Form
on page 64.

1. Open the Personal Details form under the Person metaclass, and select Dialog
Box in the Type field, to transform it from a property sheet tab into an independent dialog:

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 67

2. Right-click the Person metaclass and select New > Method. Enter the name
ShowPersonalDetails, and then click the Method Script tab and enter the
following script:
Sub %Method%(obj)
 ' Show custom dialog for advanced extended attributes
 Dim dlg
 Set dlg = obj.CreateCustomDialog("%CurrentTargetCode%.Personal
Details")
 If not dlg is Nothing Then
 dlg.ShowDialog()
 End If
End Sub

3. Select the Contact Details form, and click the Add Method Push Button tool,
select the ShowPersonalDetails method, and then click OK to add it to the form.
Here, I use a horizontal layout and spacer to align the button with the right edge of the
form:

CHAPTER 2: Extension Files

68 PowerDesigner

4. Enter Personal... in the Label field, and then click OK to save your changes and
return to the model. Now when you open the property sheet of a person, the Contact
Details tab contains a Personal... button which opens the Personal Information dialog:

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 69

Custom Symbols (Profile)
Custom symbols modify the appearance of object symbols in diagrams along with the content
displayed on them. You can choose to enforce certain aspects of the symbol format and
content, while allowing users some liberty to change others.

1. Right-click a metaclass, stereotype, or criterion and select New > Custom Symbol.

2. Specify a default Width and Height for the symbol and then click the Modify button to
open the Symbol Format dialog, and set appropriate properties on the various tabs.

Note: If you customize the line style and arrows of a link symbol (such as a PDM
reference), your styles will override those selected in the Display Preferences dialog, and
may cause confusion and inconsistency in the model. To ensure coherence in a model
governed by a notation, select Notation for the Style and Arrows properties on the Line
Style tab.

For more information on the Symbol Format dialog (including the custom symbol options
that let you control the default format options for the symbol, and whether users can edit
them, on a per-tab basis) see Core Features Guide > Modeling with PowerDesigner >
Diagrams, Matrices, and Symbols > Symbols > Symbol Format Properties.

3. Click OK to return to the resource editor and view your changes in the Preview field.

CHAPTER 2: Extension Files

70 PowerDesigner

4. Click Apply to save your changes.

Custom Checks (Profile)
Custom checks define additional rules to validate the content of your models. The logic of the
check is defined using VBScript. Custom checks appear alongside standard checks in the
Check Model dialog.

Custom checks appear with standard model checks in the Check Model Parameters dialog
(see Core Features Guide > Modeling with PowerDesigner > Objects > Checking Models).

1. Right-click a metaclass, stereotype, or criterion, and select New > Custom Check.

2. Enter the following properties as appropriate:

Parameter Description

Name Specifies the name of the custom check, which is displayed under the
selected object category in the Check Model Parameters dialog. This
name is also used (concatenated) in the check function name to uniquely
identify it.

Comment Provides a description of the custom check.

Help Message Specifies text to display in the message box that opens when the user
right-clicks the check and selects Help.

Output message Specifies text to display in the Output window during check execution.

Default severity Specifies whether the check is designated by default as an error (major
problem that stops generation) or a warning (minor problem or just
recommendation).

Execute the check by
default

Specifies that the check is selected by default in the Check Model Pa-
rameters dialog.

Enable automatic cor-
rection

Specifies that an autofix is available for the check (see Example: PDM
Autofix on page 74).

Execute the automatic
correction by default

Specifies that the autofix is executed by default.

3. Click the Check Script tab and enter your script (see Example: PDM Custom Check on
page 73. You can access shared library functions and static attributes defined for reuse in
the resource file from the Global Script tab (see Global Script (Profile) on page 105).

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 71

4. If you want to define an autofix, click the Autofix Script tab and enter your script (see
Example: PDM Autofix on page 74.

5. Click Apply to save your changes.

All custom checks defined in any resource files attached to the model are merged and all
the functions for all the custom checks are appended to build one single script. You custom
checks are displayed in the Check Model Parameters dialog box alongside the standard
model checks. If there are errors in your custom check scripts, the user will be prompted
with the following options:
• Ignore- Skip the problematic script and continue with the other checks.
• Ignore All - Skip this and any future scripts with problems and continue with the other

checks.
• Abort - Stop the model checking.
• Debug - Stop the model checking and open the Resource Editor on the script line with

the problem.

CHAPTER 2: Extension Files

72 PowerDesigner

Example: PDM Custom Check
You enter the script of the custom check in the Check Script tab using VBScript. In this
example, we will write a script to verify that Sybase IQ indexes of type HG, HNG, CMP, or LF
are not linked with columns with a data type of VARCHAR with a length higher than 255.

The script is initialized with the following line, which must not be altered:
Function %Check%(obj)

At run-time the variable %Check% is replaced by concatenating the names of the resource file,
metaclass, any stereotypes or criteria, and the name of the check itself from the General tab,
with any spaces replaced by an underscore. The parameter obj contains the object being
checked.

We begin by defining a certain number of variables after the default function definition:
Dim c 'temporary index column
Dim col 'temporary column
Dim position
Dim DT_col

Next, we enter the function body, which starts by setting the %Check% to true (meaning that
the object passes the test) and then iterates over each of the columns associated with the index
and tests their datatype. If a column has a varchar longer than 255, the script outputs a message
and sets the check to false (the object fails the test:
%Check%= True

if obj.type = "LF" or obj.type = "HG" or obj.type = "CMP" or obj.type
="HNG" then
 for each c in obj.indexcolumns
 set col = c.column

 position = InStr(col.datatype,"(")
 if position <> 0 then
 DT_col = left(col.datatype, position -1)
 else
 DT_col = col.datatype
 end if
if ucase(DT_col) = "VARCHAR" and col.length > 255 then
 output "Table " & col.parent.name & " Column " & col.name & " :
Data type is not compatible with Index " & obj.name & " type " &
obj.type
 %Check% = False
 end if

For more information about using VBScript in PowerDesigner, see Chapter 7, Scripting
PowerDesigner on page 305.

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 73

Example: PDM Autofix
If the custom check you have defined supports an automatic correction, you enter its script on
the Autofix Script tab using VBScript. In this example, we will write a script to fix a Sybase
IQ index linked with columns with an invalid data type.

The script is initialized with the following line, which must not be altered:
Function %Fix%(obj, outmsg)

At run-time the variable %Fix% is replaced by the name of the fix. The parameter obj
contains the object being checked and outmsg, the message to be output.

We begin by defining a certain number of variables after the default function definition:
Dim c 'temporary index column
Dim col 'temporary column
Dim position
Dim DT_col

Next, we enter the function body, which starts by setting the %Fix% to false (meaning that it
does nothing) and then iterates over each of the columns associated with the index and tests
their datatype. If a column has a varchar longer than 255, the script outputs a message, deletes
the column from the collection of columns associated with the index, and sets the fix to true (it
has made a correction):
%Fix% = False
 If obj.type = "LF" or obj.type = "HG" or obj.type = "CMP" or obj.type
="HNG" Then
 For Each c In obj.IndexColumns
 Set col = c.column
 position = InStr(col.datatype,"(")
 If position <> 0 Then
 DT_col = Left(col.datatype, position -1)
 Else
 DT_col = col.datatype
 End If
 If (Ucase(DT_col) = "VARCHAR") And (col.length > 255) Then
 outmsg = "Automatic correction has removed column " & col.Name & "
from index."
 c.Delete
 %Fix% = True
 End If
 Next
 End If

CHAPTER 2: Extension Files

74 PowerDesigner

Event Handlers (Profile)
Event handlers define validation rules or other scripts to run when an event occurs on an
object. The logic of the event handler is defined using VBScript. Criteria do not support event
handlers.

1. Right-click a metaclass or a stereotype and select New > Event Handler to open a
selection box, listing the available types of event handlers:

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 75

Event handler Description

CanCreate Implements a validation rule to prevent objects from being created in an
invalid context. For example, in a BPM for ebXML, a process with a
Business Transactions stereotype can only be created under a process with
a Binary Collaboration stereotype. The script of the CanCreate event han-
dler associated with the Business Transaction process stereotype is the
following:

Function %CanCreate%(parent)
 if parent is Nothing or
 parent.IsKindOf(PdBpm.Cls_Process) then
 %CanCreate% = False
 else
 %CanCreate% = True
 end if
End Function
If the event handler returns True on a stereotype, then you can use the
custom tool to create the stereotyped object and the stereotype is available
in the Stereotype list on the object property sheet. If it returns True on a
metaclass, then you can create the object from the Toolbox, from the
Browser or in a list.

Note: CanCreate event handlers are ignored during model import or
reverse-engineering, since they could modify the model and make it di-
verge from the source.

CHAPTER 2: Extension Files

76 PowerDesigner

Event handler Description

Initialize Instantiates objects with a predefined template. For example, in a BPM, a
Business Transaction must be a composite process with a predefined sub-
graph. The script of the Initialize event handler associated with the Busi-
ness Transaction process stereotype contains all the functions needed to
create the sub-graph. The following script fragment is from the Initialize
event handler for a Business Transaction.

...
' Search for an existing requesting activity
 symbol
 Dim ReqSym
 Set ReqSym = Nothing
 If Not ReqBizAct is Nothing Then
 If ReqBizAct.Symbols.Count > 0 Then
 Set ReqSym = ReqBizAct.Symbols.Item(0)
 End If
 End If

 ' Create a requesting activity if not found
 If ReqBizAct is Nothing Then
 Set ReqBizAct =
 BizTrans.Processes.CreateNew
 ReqBizAct.Stereotype =
 "RequestingBusinessActivity"
 ReqBizAct.Name = "Request"
 End If
...
If the event handler returns True on a stereotype, then the initialization
script will be launched whenever the stereotype is assigned, either with a
custom tool in the Toolbox, or from the object property sheet. If it returns
True on a metaclass, then it will be launched when you create a new object
from the Toolbox, from the Browser, in a list or in a property sheet. If it
returns true on a model, then it will be launched when you assign a target
(DBMS or object, process, or schema language) to the model at creation
time, when you change the target of the model, or when you attach an
extension to the model.

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 77

Event handler Description

Validate Validates changes to object properties or triggers cascade updates when
you change tabs or click OK or Apply in an object property sheet. You can
define an error message to appear when the condition is not satisfied by
filling the message variable and setting the %Validate% variable to
False.

In this example, the event handler verifies that a comment is added to the
definition of an object:

Function %Validate%(obj, ByRef message)
 if obj.comment = "" then
 %Validate% = False
 message = "Comment cannot be empty"
 else
 %Validate% = True
 end if
End Function

CanLinkKind [link objects] Validates the kind and stereotype of the objects that can be
linked together as the source and destination extremities when you create a
link with a Toolbox tool or modify link ends in a property sheet. The
sourceStereotype and destinationStereotype pa-
rameters are optional.

In this example, the source of the extended link must be a start object:

Function %CanLinkKind%(sourceKind, sourceStereo-
type,
 destinationKind, destina-
tionStereotype)
 if sourceKind = cls_Start Then
 %CanLinkKind% = True
 end if
End Function

OnModelOpen, On-
ModelSave, and
OnModelClose

[models] Run immediately after a model is opened, saved, or closed.

OnLanguageChan-
geRequest, OnLan-
guageChanging,
and OnLanguage-
Changed

[models] Run immediately:
• Before the model's DBMS or language definition file is changed. If the

event handler returns false, then the language change is canceled.
• After the language change, but before any transformations are applied

to objects to make them conform with the new language definition.
• After the model's DBMS or language definition file is changed and the

object transformations are applied.

OnNewFromTem-
plate

[models] Runs immediately after a model or a project is created from a
model or project template.

CHAPTER 2: Extension Files

78 PowerDesigner

Event handler Description

BeforeDatabase-
Generate, AfterDa-
tabaseGenerate, Be-
foreDatabaseRever-
seEngineer, and Af-
terDatabaseRever-
seEngineer

[PDM models] Run immediately before or after generating or reverse-
engineering a database (see Adding Scripts Before or After Generation and
Reverse Engineering on page 133).

GetEstimatedSize [PDM only] Runs when the Estimate Database Size mechanic is called (see
Modifying the Estimate Database Size Mechanism on page 202).

2. Select one or more event handlers and click OK to add them.

3. Enter a name and comment to identify and document the event handler.

4. Click the Event Handler Script tab and enter a script to define the event handler. You can
access shared library functions and static attributes defined for reuse in the resource file
from the Global Script tab (see Global Script (Profile) on page 105).

5. Click Apply to save your changes.

Methods (Profile)
Methods are written in VBScript and perform actions on objects when they are invoked by
other extensions, such as menu items or form buttons.

1. Right-click a metaclass, stereotype, or criterion and select New > Method.

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 79

2. Enter the following properties as appropriate:

Property Description

Name Specifies the name of the method.

Comment Provides additional information about the method.

3. Click the Method Script tab, and enter the VBscript. If appropriate, you can reuse
functions on the Global Script tab.

For more information on defining a script and using the Global Script tab, see Example:
PDM Custom Check on page 73 and Global Script (Profile) on page 105.

The following example, created under the Class metaclass, converts classes into
interfaces by copying basic class properties and operations, deleting the class (to avoid
namespace problems), and creating the new interface.

Sub %Mthd%(obj)
 ' Convert class to interface

 ' Copy class basic properties
 Dim Folder, Intf, ClassName, ClassCode
 Set Folder = obj.Parent
 Set Intf = Folder.Interfaces.CreateNew
 ClassName = obj.Name
 ClassCode = obj.Code
 Intf.Comment = obj.Comment

 ' Copy class operations
 Dim Op
 For Each Op In obj.Operations
 ' ...
 Output Op.Name
 Next

 ' Destroy class
 obj.Delete

 ' Rename interface to saved name
 Intf.Name = ClassName
 Intf.Code = ClassCode
End Sub

Note: This script does not deal with other class properties, or with interface display, but a
method can be used to launch a custom dialog box to ask for end-user input before
performing its action (see Example: Opening a Dialog Box from a Menu on page 82).

4. Click Apply to save your changes.

CHAPTER 2: Extension Files

80 PowerDesigner

Menus (Profile)
Menus specify commands to appear in the standard PowerDesigner File, Tools, and Help
menus or in contextual menus.

1. Right-click a metaclass, stereotype, or criterion and select New > Menu.

2. Enter the following properties as appropriate:

Property Description

Name Specifies the internal name of the menu. This name will not appear in the menu

Comment Provides a description of the menu.

Location [model and diagram only] Specifies where the menu will be displayed. You can
choose between:
• File > Export menu
• Help menu
• Object Contextual Menu
• Tools menu
Menus created on other metaclasses are only available on the contextual menu,
and do not display a Location field.

3. Use the tools on the Menu sub-tab to create the items in your menu:

Tool Function

Add Command - Opens a selection dialog listing methods (see Methods (Profile) on
page 79) and transformations (see Transformations (Profile) on page 92) defined in
the current metaclass and its parents to add to the menu as commands. Select one or
more and click OK.

The items are added to your menu in the format:

MenuEntry (Method/TransformationName)
You can modify the MenuEntry (and define a shortcut key by adding an ampersand
before the shortkey letter) but you must not edit the Method/TransformationName.

Note: If you modify the name of a method or transformation, you must update any
commands using the method or transformation by hand, because the name is not au-
tomatically synchronized. You can use the Replace in Items tool to locate and update
these commands.

Add Separator -Creates a menu separator under the selected item.

Add Submenu - Creates a submenu under the selected item.

Delete - Deletes the selected item.

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 81

You can reorder items in the menu tree by dragging and dropping them. To place an item
inside a submenu item, drop it onto the submenu.

4. [optional] Click the XML sub-tab to review the XML generated from the Menu sub-tab.

5. Click Apply to save your changes.

Example: Opening a Dialog Box from a Menu
In this example, we will create a menu command to export object properties to an XML file via
a dialog box.
1. Create a new extension file (see Creating an Extension File on page 12) in a PDM and add

the Table metaclass (see Metaclasses (Profile) on page 33).

2. Right-click the Table metaclass and select New > Form. Enter Export in the Name
field, and select Dialog Box from the Type list.

3. Click the Edit Field tool to add an edit field control, and call it Filename.

4. Right-click the Table metaclass and select New > Method. Enter Export in the Name
field, click the Method Script tab and enter the following code:
Sub %Method%(obj)
' Exports an object to a file

CHAPTER 2: Extension Files

82 PowerDesigner

' Create a dialog to input the export file name
Dim dlg
Set dlg = obj.CreateCustomDialog("%CurrentTargetCode%.Export")
 If not dlg is Nothing Then
 ' Initialize filename control value
 dlg.SetValue "Filename", "c:\temp\MyFile.xml"

 ' Show dialog
 If dlg.ShowDialog() Then
 ' Retrieve customer value for filename control
 Dim filename
 filename = dlg.GetValue("Filename")

 ' Process the export algorithm...
 ' (Actual export code not included in this example)

 Output "Exporting object " + obj.Name + " to file " +
filename
 End If

 ' Free dialog object
 dlg.Delete
 Set dlg = Nothing
End If
End Sub

5. Right-click the Table metaclass and select New > Menu. Enter Export in the Name
field, and then click the Add Command tool and select the Export method:

6. Click OK to save your changes and return to your model. When you next right-click a table
in a diagram or the browser, the Export command is available in the contextual menu.

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 83

Templates (Profile)
GTL templates extract text from PowerDesigner property values for use in generated files or
other contexts.

1. Right-click a metaclass, a stereotype, or a criterion (or the Shared category, if the
template applies to all metaclasses) and select New > Template to create a template.

2. Enter a name for the template. You should not use spaces in the name and, by convention,
templates are named in headless camelcase (for example myTemplate).

3. [optional] Enter a comment to explain the use of the template.

4. Enter GTL code (see Chapter 5, Customizing Generation with GTL on page 245) in the
text box.

In this example, myTemplate is defined on the Class metaclass, and will generate the
name of the class followed by a list of its attributes:

CHAPTER 2: Extension Files

84 PowerDesigner

Generated Files (Profile)
Generated files assemble GTL templates for generation as files or for previewing on the object
property sheet Preview tab.

1. Right-click a metaclass, stereotype, or criterion, and select New > Generated File.

Only objects, such as tables or classes, support file generation. However, you can still
create generated files for sub-objects, such as columns and attributes, to preview code
generated for them on their property sheet Preview tab.

2. Enter the following properties as appropriate:

Property Description

Name Specifies a name for the generated file item in the resource editor.

If an extension attached to the model contains a generated file name identical to
one defined in the main resource file, then only the extension generated file will
be generated.

File Name Specifies the name of the file that will be generated. This field can contain GTL
variables. For example, to generate an XML file with the code of the object for
its name, you would enter %code%.xml.

If you leave this field empty, then no file will be generated, but you can view the
code produced in the object's Preview tab.

If this field contains a recognized extension, the code is displayed with the
corresponding language editor and syntactic coloring.

Type Specifies the type of file to provide appropriate syntax coloring in the Preview
window.

Encoding Specifies the encoding format for the file. Click the ellipsis tool to the right of
the field to choose an alternate encoding from the Text Output Encoding For-
mat dialog, where you can specify the following options:
• Encoding - Encoding format of the generated file
• Abort on character loss - Specifies to stop generation if characters cannot

be identified and are to be lost in current encoding

Comment Specifies additional information about the generated file.

Use package hi-
erarchy as file
path

Specifies that the package hierarchy should be used to generate a hierarchy of
file directories.

3. Enter GTL code (see Chapter 5, Customizing Generation with GTL on page 245) or the
name of a template to populate the file in the text zone.

In the following example, a generated file is defined for OOM classes. A file will be
generated for each class in the model with a name derived from the class %Name%, and

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 85

containing the contents generated from the %myTemplate% template (see Templates
(Profile) on page 84):

4. Click OK to save your changes and close the resource editor.

The file is immediately available as a sub-tab on the Preview tab of the object property
sheet:

CHAPTER 2: Extension Files

86 PowerDesigner

Example: JavaGenerated File and Templates
Templates contain GTL code used to generate text fragments from PowerDesigner property
values, while generated files are used to assemble templates for generation as files or for
previewing on the object property sheet Preview tab.

In this example, a generated file called Java Source is defined for classifiers. A file will be
generated for each classifier in the model with a name derived from the %sourceFilename
% template specified in the File name field, and containing the contents generated from the
%source% template:

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 87

Note: If you position your cursor between the percent signs surrounding this or any other
template name and press F12, you will either jump directly to the referenced template or, if
several templates share the same name, to a Results dialog in which you select the template to
navigate to.

The referenced template, source, contains GTL code, including references to further
templates called %isSourceGenerated%, %sourceHeader%, %package%, and
%imports%:

CHAPTER 2: Extension Files

88 PowerDesigner

Generating Your Files in a Standard or Extended Generation
You can use generated files to extend the standard generation for objects from OOMs, BPMs,
and XSMs or to create a separate extended generation for any type of model. For extended
generations, you can define a custom menu command.

To extend the standard BPM, OOM, or XSM generation from the Resource Editor:

1. Select the Complement language generation property in the root of the extension file
(see Extension File Properties on page 14) to have the extension file appear for selection on
the Generation dialog Targets tab.

2. Define generated files as appropriate.
3. [optional] Define options in Generation\Options (see Example: Adding a

Generation Option on page 113) to have them appear on the Generation dialog Options
tab.

4. [optional] Define commands in Generation\Commands and reference these
commands in tasks (see Example: Adding a Generation Command and Task on page 114)
to have them appear on the Generation dialog Tasks tab.

Alternatively, to define separate file generations apart from the standard language generation
for a PDM or any type of model and make them available via the Tools > Extended
Generation command

1. [OOM, BPM, and XSM only] Deselect the Complement language generation property
in the root of the extension file (see Extension File Properties on page 14).

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 89

2. Define generated files as appropriate.
The generation is immediately available on the Targets tab of the Generation dialog when
you select Tools > Extended Generation.

3. [optional] Create a command in the Tools menu to directly access your extended
generation in its own dialog:
a. Create a method in Profile\Model with the name you want to give to your

command, and enter the following code (where extension is the code of the
extension file):
Sub %Method%(obj)

 Dim selection ' as ObjectSelection

 ' Create a new selection
 set selection = obj.CreateSelection

 ' Add object of the active selection in the created selection
 selection.AddActiveSelectionObjects

 ' Generate scripts for specific target
 InteractiveMode = im_Dialog
 obj.GenerateFiles "", selection, "extension"

End Sub

For more information about methods, see Methods (Profile) on page 79.
b. Create a menu in Profile\Model and select the Tools menu in the Location list

(see Menus (Profile) on page 81).
c. Add the method to the menu using the Add Command tool:

CHAPTER 2: Extension Files

90 PowerDesigner

d. Select the command specified (for example, Tools > My Generation) to open a
custom Generation dialog, which does not have a Targets tab:

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 91

Transformations (Profile)
Transformations define sets of actions to modify objects either before or after a model
generation or on request. Transformations are commonly grouped together in transformation
profiles.

Transformations can be used to:

• Implement Model Driven Architecture (MDA), which uses UML modeling to describe an
application at different levels of detail. PowerDesigner allows you to create an initial
platform-independent model (PIM) (modeling the basic business logic and functionality)
and refine it progressively in different models containing increasing levels of
implementation and technology-dependent information through to a platform-specific
model (PSM). You can define transformations that will generate a more refined version of
a model, based on the desired target platform, and changes made to the PIM can be
cascaded down to the generated models.

• Apply design patterns to your model objects.
• Modify objects for a special purpose. For example, you can create a transformation in an

OOM that converts <<control>> classes into components.

CHAPTER 2: Extension Files

92 PowerDesigner

• Modify objects in a reversible way for round-trip engineering. For example, if you
generate a PDM from an OOM in order to create O/R mappings, and the source OOM
contains components, you can pre-transform components into classes for easy mapping to
PDM tables. When you update the source OOM from the generated PDM, you can use a
post-transformation to recreate the components from the classes.

Transformations can be invoked:

• On demand, by selecting Tools > Apply Transformations.
• Before or after model generation (see Core Features Guide > Linking and Synchronizing

Models > Generating Models and Model Objects).
• Via a user-defined menu command (see Menus (Profile) on page 81).

1. Right-click a metaclass or stereotype, and select New > Transformation.

2. Enter an appropriate Name and, optionally, a Comment to explain its purpose.

3. On the Transformation Script tab, enter a VBscript to perform the transformation.

In this example, which is created in an extension attached to a CDM under the DataItem
metaclass, the script tests to see whether the data item has a list of values defined and, if this
is the case (and a domain with this same list of values does not already exist in the CDM),
creates a new domain with the list of values:
Sub %Transformation%(obj, trfm)

 Dim list
 list = obj.ListOfValues
 if not list = "" then
 output "transforming " & cstr(obj)

 ' Check if such a domain already exist
 Dim domn, found
 found = false
 for each domn in obj.Model.Domains
 if domn.ListOfValues = list then
 found = true
 end if
 next

 ' Create a new domain
 if not found then
 set domn = obj.Model.Domains.CreateNew()
 domn.SetNameAndCode obj.Name, obj.Code
 domn.ListOfValues = list
 end if
 end if

End Sub

This transformation can be added to a transformation profile as a:

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 93

• Pre-generation transformation - The transformation is called from the Generation
Options dialog. The domains are created temporarily in the CDM before generation
and then are generated to the target model (for example, to a PDM).

• Post-generation transformation - The transformation can be called from the
Generation Options dialog (for a CDM-CDM generation). The domains are created in
the target CDM after generation. Alternatively, the transformation can be called at any
time by selecting Tools > Apply Transformations to create the domains in the
existing model.

4. [optional] Review the Global Script tab (see Global Script (Profile) on page 105), which
provides access to definitions shared by all VBscript functions defined in the profile, and
the Dependencies tab, which lists the transformation profiles in which the transformation
is used.

Transformation Profiles (Profile)
A transformation profile groups transformations together, and makes them available during
model generation or by selecting Tools > Apply Transformations.

1. [if the Transformation Profiles category is not present] Right-click the root node, select
Add Items, select Transformation Profiles, and click OK to create this folder.

2. Right click the Transformation Profiles folder, and select New to create a
transformation profile.

3. Enter the following properties as appropriate:

Property Description

Name / Com-
ment

Specify the name of the transformation profile and provide an explanation of what
it is intended to do.

Model Type /
Family / Sub-
family

[optional] Specify the type of model with which the transformation profile can be
used during generation and (if the type supports a language definition file) the
family and subfamily. If one or more of these fields is completed, the profile will
only be displayed if the model to be generated conforms to them. For example, if
you define the transformation in a PDM or PDM extension and specify Ob-
ject-Oriented Model and Java, then the profile will only be available
when you select to generate the PDM into a Java OOM.

4. Click the Pre-generation tab and click the Add Transformations tool to add
transformations to perform prior to generation.

These transformations are executed before generation on the objects in your source model.
If objects are created by these transformations then they are automatically added to the list
of objects to be generated. Any changes to existing objects or new objects created by these
transformations are reversed after generation, so that your model returns to its previous
state.

5. Click the Post-generation tab and click the Add Transformations tool to add
transformations to perform after generation. Transformations added on this tab are also

CHAPTER 2: Extension Files

94 PowerDesigner

made available to apply outside of the context of a generation by selecting Tools > Apply
Transformations.

These transformations are executed on the objects generated in your target model.

6. Click Apply to save your changes.

Developing Transformation Scripts
Transformation scripts are written in VBScript using a certain number of special methods.
Transformation scripts do not require as many checks as standard scripts, because they are
always implemented in a new, empty, temporary model, which is merged with the generation
target model.

Since a source object can be transformed and have several targets, you may have problems
identifying the origin of an object, especially in the merge dialog box. The following
mechanism is used to help identify the origin of an object:

• If the source object is transformed into a single object, the transformation is used as an
internal identifier of the target object.

• If the source object is transformed into several objects, you can define a specific tag to
identify the result of transformation. You should use only alphanumeric characters, and we
recommend that you use a "stable" value such as a stereotype, which will not be modified
during repetitive generations.

The following methods are available when writing a transformation script:

• CopyObject(source [,tag])

Duplicates an existing object, sets a source for the duplicated object, and returns a copy of
the new object.

• SetSource(source, target [,tag])

Sets the source object of a generated object. It is recommended to always set the source
object to keep track of the origin of a generated object.

• GetSource(target [,tag])

Retrieves the source object of a generated object.
• GetTarget(source [,tag])

Retrieves the target object of a source object.

Internal transformation objects are preserved when the transformations are used via the Apply
Transformations or a custom menu command, so that they can be re-executed if you
subsequently update (regenerate) the model. For example, you generate a CDM entity A to an
OOM class B and then apply a transformation to class B in order to create class C. If you make
changes to entity A and repeat the generation to update the OOM, class B is updated and the
transformation is automatically reapplied to update class C.

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 95

XML Imports (Profile)
XML imports allow you to define mappings between an XML schema and the PowerDesigner
metamodel (and any extensions) to enable the import of XML files complying with the
schema. You can specify initialization and post-processing scripts to manage complexities in
the import.

For an overview of creating, deploying, and using XML imports, see Core Features Guide >
Modeling with PowerDesigner > Objects > Importing Objects from XML Files.

1. [if the XML Imports category is not present] Right-click the root node, select Add
Items, select XML Imports, and click OK to create this folder.

2. Right click the XML Imports folder, and select New to create an XML import.

3. Enter the following properties as appropriate:

Property Description

Name Specifies the name of the import, which will be used as the name of the import
command under File > Import.

First diagram Specifies the first diagram that should be initialized in the model created from the
imported file.

Create default
symbols

Specifies to create symbols for the imported objects in the diagram.

File extension Specifies the file extension that identifies XML documents that conform to the
schema.

Comment Provides an explanation of the import or other additional information.

4. Click the Schema tab and click the Import tool to copy the schema, with any imports and
includes resolved, to the extension file for mapping.

Warning! If the selected schema is too permissive and allows for too many possible object
hierarchies it may not be possible to display it fully in the Mapping Editor. If you have an
example XML data file to import, you can import this in place of the schema by clicking
the Import from Sample tool and PowerDesigner will deduce a partial schema from it.
Note that while a schema obtained in this way may successfully import the sample data
file, other documents based on the same schema may not be complete if they contain other
types of objects (or attributes or collections) that, though valid for the schema, were not in
the first document.

You can click the View as Model tool to open the schema as an XML schema model.

5. [optional] Click the Extensions tab and select extension files containing extensions to the
standard PowerDesigner metamodel to provide additional metaclasses (see Extended
Objects, Sub-Objects, and Links (Profile) on page 36), attributes (see Extended Attributes

CHAPTER 2: Extension Files

96 PowerDesigner

(Profile) on page 41), and collections (see Extended Collections and Compositions
(Profile) on page 48) to map your XML schema to.
Attaching extension files in this way allow you to reuse previously defined extensions in
your imports or to share extensions between imports. You can also define extensions under
the Profile category in the resource file containing the XML import definition, or create
them dynamically when creating your import mappings.

6. [optional] Click the Initialization tab and enter VBScript to run at model creation time
before the importing of any objects. You can access shared library functions and static
attributes defined for reuse in the resource file from the Global Script tab (see Global
Script (Profile) on page 105).

7. [optional] Click the Post-Process tab and enter VBScript to run after all the objects have
been imported.

8. Click the General tab and click the Mappings button to define mappings from the
metaclasses identified in your XML schema to those in the PowerDesigner metamodel in
the Mapping Editor (see XML Import Mappings on page 97).

9. Click Apply to save your changes.

XML Import Mappings
You control how elements defined in an XML schema are imported by mapping them and their
attributes, compositions, and aggregations to objects in the PowerDesigner metamodel. The
XML schema is analyzed and presented as a list of metaclasses on the left side of the Mapping
Editor and the PowerDesigner metamodel (and any extensions) are displayed on the right
side.

Note: It is not necessary to map all metaclasses (or all their contents), but only those with
which you want to work. If the PowerDesigner metamodel does not contain appropriate
metaclasses, attributes, compositions, or aggregations to map against, you can create them
dynamically here or save any existing mappings, close the Mapping Editor, define or attach
appropriate extensions, and then reopen the Mapping Editor to map to them.
1. Drag and drop an external metaclass to a PowerDesigner metaclass to create an import

mapping. Any external attributes and collections are automatically mapped to
PowerDesigner attributes with which they share a name:

By default, the Mapping Editor lists the standard attributes and collections of metaclasses,
which are normally displayed in object property sheets. To display all available properties,

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 97

click the Filter Properties tool, and select Show All Properties. You can also filter
the tree by using the Filter Mappings and Filter Objects tools.

Note: If no suitable metaclass exists, to create and map to a new extended metaclass based
on the ExtendedObject metaclass, drag and drop the external metaclass onto the
PowerDesigner metamodel root.

2. Drag and drop additional attributes under the metaclass to PowerDesigner attributes with
compatible data types to create mappings for them. Attributes are contained in a folder
under the metaclass and represent individual properties such as Name, Size,
DimensionalType, which have boolean, textual, numeric, or object ID values:

PowerDesigner identifies sub-object metaclasses in the schema that are limited to a single
instance and displays a 1 overlay on their icons. Attributes under such metaclasses are
treated as belonging to the parent metaclass and can be mapped to attributes under the
PowerDesigner object with which the parent is mapped:

Note: If no suitable attribute exists, to create and map to a new extended attribute, drag and
drop the external attribute onto the PowerDesigner metaclass to which its parent is
mapped.

3. Drag and drop external sub-object metaclasses (compositions) under the metaclass to
PowerDesigner compositions to create mappings between them:

Any attributes under the sub-object metaclass are automatically mapped to
PowerDesigner attributes with which they share a name. Map other sub-object attributes as
necessary.

Note: In certain circumstances, it may be appropriate to map an external sub-object
metaclass to a PowerDesigner object metaclass, and so such mappings are also permitted.

CHAPTER 2: Extension Files

98 PowerDesigner

4. Drag and drop external collections (aggregations) under the metaclass to PowerDesigner
collections to create mappings between them:

5. In certain schemas, it may be necessary to identify attributes as references and identifiers
to link one metaclass to another through aggregation:

a) Right-click an attribute and select Declare as Object Reference to specify that it acts
as a pointer to another object. Such attributes often have a type of GUID, Token, or
NCName (PowerDesigner automatically identifies attributes of type IDRef as
references). A rounded arrow overlay is added to the attribute icon:

b) Open the metaclass that the object reference points to, select its identifying attribute,
right-click it, and select Declare as Unique Identifier. A key overlay is added to the
attribute icon:

c) The object reference attribute can now be mapped to a PowerDesigner attribute of type
object (which also bears a rounded arrow overlay):

6. [optional] Select a metaclass and enter an initialization or post-processing script to modify
the objects at or after creation (see Metamodel Mapping Properties on page 100).

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 99

7. [optional] Click the target model (root node) to display the global list of mappings in the
Mappings pane at the bottom of the dialog and use the arrows at the bottom of the list to
change the order in which objects are imported to ensure that dependencies are respected.

Note: To control the order in which attributes, compositions, and aggregations are
imported within objects, select the target metaclass to display its mappings in the
Mappings pane, and use the arrows at the bottom of the lists on the Attribute Mappings,
Collection Mappings, and Sub-Object Mappings sub-tabs.

8. Click Apply to save your changes.

Metamodel Mapping Properties
Metamodel mappings are mappings between metamodel objects, which control how objects
are imported or generated. Metamodel mappings are sub-objects of the PowerDesigner
metamodel object on which they are defined.

To open a metamodel mapping property sheet, select the mapping from the list at the top of the
Mapping Editor Mappings pane or parent object property sheet Mapping tab and click the
Properties tool.

The tabs available on a particular mapping property sheet depend on the objects being
mapped. The General tab contains the following properties:

Property Description

Source object Specifies the metamodel object being mapped to the target object.

Target object Specifies the metamodel object being mapped from the source object. This object is
the parent of the mapping itself.

CHAPTER 2: Extension Files

100 PowerDesigner

Property Description

Transforma-
tion script

[metaattribute mappings] Specifies a script to set the value of the attribute. In the
following example, from an XML import, the notnullable attribute is imported

to the Mandatory attribute and, because the sense of the attributes is reversed, the

boolean value imported is set to the opposite of the source value:

Sub %Set%(obj, sourceValue)
 obj.SetAttribute "Mandatory", not sourceValue
End Sub

In the following example, from an object generation, the NumberID attribute is

generated to the Comment attribute and a text string is prepended to make clear the

origin of the value:

Function %AdjustValue%(sourceValue, sourceObject, tar-
getObject)
 Dim targetValue
 targetValue = "The original process NumberID is "
+cstr(sourceValue)
 %AdjustValue% = targetValue
End Function

The following tabs are also available for metaclass mappings:

• Initialization - Specifies a script to initialize the metaclass to be created. In the following
example, the value of the Stereotype attribute is set to SimpleType:
Sub %Initialize%(obj)
 obj.Stereotype = "SimpleType"
End Sub

• Attribute Mappings - Lists the mappings of attributes under the metaclass. Select a
mapping and click the Properties tool to open its property sheet. To control the order in
which attributes are created, in order to respect dependencies between them, use the
arrows at the bottom of the list.

• Collection Mappings - Lists the mappings of collections under the metaclass.
• Post-Process - Specifies a script to modify the metaclass after creation and execution of

mappings. In the following example, the value of the Code attribute is copied to the Name
attribute:
Sub %PostProcess%(obj)
 ' Copy code into name
 obj.Name = obj.Code
End Sub

Metamodel Object Properties
To view the properties of metaclasses, metaattributes, and metacollections displayed in the
Mapping Editor, double-click the object node in the Mapping Editor or right-click the node
and selecting Properties.

The General tab contains the following properties:

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 101

Property Description

Parent [metaattributes and metacollections] Specifies the metaclass to which the metaobject
belongs.

Parent collec-
tion

[sub-objects/compositions] Specifies the name of the composition collection that
contains the sub-objects under the parent object.

Name Specifies the name of the metaclass in the PowerDesigner metamodel or XML sche-
ma.

Data type [metaattributes] Specifies the data type of the attribute.

Identifier [metaattributes] Specifies that the attribute is used to identify the metaclass for ref-
erencing by another metaclass.

Reference /
Reference
path

[metaattributes and metacollections] Specifies that the attribute or collection is used
to point to another metaclass to form an aggregation.

Singleton [metaclasses] Specifies that only one instance of the metaclass is possible under each
parent object.

Comment Provides additional information about the metaobject.

The following tabs are also available for metaclasses:

• Attributes - Lists the metaattributes belonging to the metaclass. Select an attribute in the
list and click the Properties tool to open its property sheet.

• Collections - Lists the metacollections belonging to the metaclass. Select a collection in
the list and click the Properties tool to open its property sheet.

Object Generations (Profile)
Object generations allow you to define mappings between one PowerDesigner model type and
another based on the two metamodels (and any extensions) to enable the generation of one or
more object types.

For an overview of creating, deploying, and using object generations, see Core Features Guide
> Linking and Synchronizing Models > Generating Models and Model Objects > Generating
Model Objects > Defining Advanced Object Generations.

1. [if the Object Generations category is not present] Right-click the root node, select
Add Items, select Object Generations, and click OK to create this folder.

2. Right click the Object Generations folder, and select New to create an object
generation.

CHAPTER 2: Extension Files

102 PowerDesigner

3. Enter the following properties as appropriate:

Property Description

Target model
type

Specifies the type of model that will be created or updated by the generation.

Menu com-
mand name

Specifies the name of the command that will appear in the interface under Tools >
Generate Objects. This field is initialized when you select a target model type.

Comment Provides a description of the generation or other additional information.

4. [optional] Click the Source Extensions and/or Target Extensions tab and select
extension files containing extended attributes, collections, or metaclasses to reference in
your mappings.

Attaching extension files in this way allow you to reuse previously defined extensions in
your generations or to share extensions between generations. You can also define
extensions as appropriate under the Profile category in the resource file containing the
generation definition.

5. Click the Mappings button to define mappings from your source to target metaclasses in
the Mapping Editor (see Model-to-Model Generation Mappings on page 103).

6. Click Apply to save your changes.

Model-to-Model Generation Mappings
You control how metaclasses from one PowerDesigner model type will be generated to
metaclasses in another model type by mapping them and their attributes and collections in the
Mapping Editor. Any extensions defined for the source or target metamodels are displayed
and available for mapping.

Note: It is not necessary to map all metaclasses (or all their contents), but only those with
which you want to work. If the PowerDesigner metamodel does not contain appropriate
metaclasses, attributes, compositions, or aggregations to map against, you should save any
existing mappings, close the Mapping Editor, define or attach appropriate extensions, and
then reopen the Mapping Editor to map to them.

1. Drag and drop a metaclass from the source pane on the left to a metaclass in the Target pane
on the right. Any source attributes are automatically mapped to target attributes with which
they share a name:

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 103

Note: By default, the Mapping Editor lists the standard attributes and collections of
metaclasses, which are displayed, by default, in object property sheets. To display all
available properties, click the Filter Properties tool, and select Show All
Properties. You can also filter the tree by using the Filter Mappings and Filter
Objects tools.

2. Drag and drop additional source attributes under the metaclass to target attributes with
compatible data types to map them. Attributes are contained in a folder under the
metaclass and represent individual properties such as Name, Size, DimensionalType,
containing boolean, textual, numeric, or object ID values:

3. Drag and drop source sub-object metaclasses (compositions) under the metaclass to target
compositions to create mappings between them:

Any attributes under the source sub-object metaclass are automatically mapped to target
attributes with which they share a name. Map other sub-object attributes as necessary.

Note: In certain circumstances, it may be appropriate to map a source sub-object metaclass
to a target object metaclass, and so such mappings are also permitted.

4. Drag and drop source collections (aggregations) under the metaclass to target collections
to create mappings between them:

5. [optional] Select a metaclass and enter an initialization or post-processing script to modify
the objects at or after creation (see Metamodel Mapping Properties on page 100).

6. [optional] Click the target model (root node) to display the global list of mappings in the
Mappings pane at the bottom of the dialog and use the arrows at the bottom of the list to
change the order in which objects are generated to ensure that dependencies are respected.

Note: To control the order in which attributes, compositions, and aggregations are
generated, select the target metaclass to display its mappings in the Mappings pane, and
use the arrows at the bottom of the lists on the Attribute Mappings, Collection
Mappings, and Sub-Object Mappings sub-tabs.

7. Click Apply to save your changes.

CHAPTER 2: Extension Files

104 PowerDesigner

Global Script (Profile)
The profile contains a global script, which you can use to store functions and variables to be
reused in your scripts defined for extensions.

For example, we could imagine writing a function for obtaining the data type of an item and
reusing it in the scripts for both the custom check and autofix examples (see Custom Checks
(Profile) on page 71.

The new DataTypeBase function is entered on the Global Script tab as follows:

Function DataTypeBase(datatype)
 Dim position
 position = InStr(datatype, "(")
 If position <> 0 Then
 DataTypeBase = Ucase(Left(datatype, position -1))
 Else
 DataTypeBase = Ucase(datatype)
 End If
End Function

The script for the check (see Example: PDM Custom Check on page 73 can be rewritten to call
the function as follows:
Function %Check%(obj)
Dim c 'temporary index column
 Dim col 'temporary column
 Dim position
 %Check%= True
 If obj.type = "LF" or obj.type = "HG" or obj.type = "CMP" or obj.type
="HNG" then
 For Each c In obj.IndexColumns
 Set col = c.column
 If (DataTypeBase(col.datatype) = "VARCHAR") And (col.length > 255)
Then
 Output "Table " & col.parent.name & " Column " & col.name & " :
Data type is not compatible with Index " & obj.name & " type " &
obj.type
 %Check% = False
 End If
 Next
 End If
End Function

Note: Variables defined on the Global Script tab are reinitialized each time they are
referenced in another script.

CHAPTER 2: Extension Files

Customizing and Extending PowerDesigner 105

CHAPTER 2: Extension Files

106 PowerDesigner

CHAPTER 3 Object, Process, and XML
Language Definition Files

Language definition files provide PowerDesigner with the information necessary to model,
reverse-engineer, and generate for a particular object-oriented, business process, or XML
language. PowerDesigner provides definition files for many popular languages. You select a
language when you create an OOM, BPM, or XSM.

Language definition files have an .xol, .xpl, or .xsl extension and are located in
install_dir/Resource Files. To view the list of languages, select Tools >
Resources > Object Languages > , Process Languages, or XML Languages. For
information about the tools available in resource file lists, see Chapter 1, PowerDesigner
Resource Files on page 1.

Note: The PDM uses a different form of definition file (see Chapter 4, DBMS Definition Files
on page 119), and other model types do not have definition files but can be extended with
extension files (see Chapter 2, Extension Files on page 11).

All target languages have the same basic category structure, but the detail and values of entries
differs for each language:

• Settings - contains data types, constants, namings, and events categories used to customize
and manage generation features. The types of items in this category differ depending on
the type of resource file.

• Generation - contains generation commands, options, and task.
• Profile - contains extensions on metaclasses.

Customizing and Extending PowerDesigner 107

The root node of each file contains the following properties:

Property Description

Name / Code Specify the name and code of the language definition file.

File Name [read-only] Specifies the path to the language definition file. If the target language
has been copied to your model, this field is empty.

Version [read-only] Specifies the repository version if the resource is shared via the re-
pository.

Family / Sub-
family

Specifies the family and subfamily of the language, which may enable certain
non-default features in the model. For example, object languages of the Java,
XML, IDL and PowerBuilder® families support reverse engineering.

Enable Trace
Mode

Lets you preview the templates used during generation (see Templates (Profile) on
page 84). Before starting the generation, click the Preview page of the relevant
object, and click the Refresh tool to display the templates.

When you double-click on a trace line from the Preview page, the Resource Editor
opens to the corresponding template definition.

Comment Specifies additional information about the target language.

CHAPTER 3: Object, Process, and XML Language Definition Files

108 PowerDesigner

Settings Category: Process Language
The Settings category contains the following items used to control the data types, constants,
namings, and events categories used to customize and manage BPM generation features:

• Implementation – [executable BPM only] Gathers options that influence the process
implementation possibilities. The following constants are defined by default:
• LoopTypeList - This list defines the type of loop supported by the language. The value

must be an integer
• OperationTypeList - This list defines the type of operation supported by the language.

An unsupported operation type cannot be associated with a process. The value must be
an integer

• EnableEmissionCorrelation - enables the definition of a correlation for an emitted
message

• EnableProcessReuse - allows a process to be implemented by another process
• AutomaticInvokeMode - indicates if the action type of a process implemented by an

operation can be automatically deducted from the operation type. You can specify:
• 0 (default) - the action type cannot be deduced and must be specified
• 1 - the language enforces a Request-Response and a One-Way operation to be

received by the process and a Solicit-Response and a Notification operation to be
invoked by the process

• 2 the language ensures that a Solicit-Response and a Notification operation are
always received by the process while Request-Response and One-Way operations
are always invoked by the process

CHAPTER 3: Object, Process, and XML Language Definition Files

Customizing and Extending PowerDesigner 109

• DataHandling - [executable BPM only] Gathers options for managing data in the
language. The following constant values are defined by default:
• EnableMessageOnFlow - indicates if a message format can be associated to a flow or

not. The default value is Yes
• EnableMessageVariable - enables a variable object to store the whole content of a

message format. In this case, the message format objects will appear in the data type
combo box of the variable

• Choreography - Gathers objects that allow the design of the graph of activities (start, end,
decision, synchronization, transition...) Contains the following constant values defined by
default:
• EnableMultipleStarts - When set to No, ensures that no more than one start is defined

under a composite process
• EnableTopLevelChoreography - When set to No, ensures that no flow or choreography

object (start, end, decision...) is defined directly under the model or a package. These
objects can be defined only under a composite process

Settings Category: Object Language
The Settings category contains the following items used to control the data types, constants,
namings, and events categories used to customize and manage OOM generation features:

• Data Types - Tables for mapping internal data types with object language data types. The
following data types values are defined by default:

CHAPTER 3: Object, Process, and XML Language Definition Files

110 PowerDesigner

• BasicDataTypes – lists the most commonly-used data types. The Value column
indicates the conceptual data type used for CDM and PDM model generations.

• ConceptualDataTypes – lists internal PowerDesigner data types. The Value column
indicates the object language data type used for CDM and PDM model generations.

• AdditionalDataTypes – lists additional data types added to data type lists. Can be used
to add or change data types of your own. The Value column indicates the conceptual
data type used for CDM and PDM model generations.

• DefaultDataType – specifies the default data type.

• Constants - contains mapping between the following constants and their default values:
Null, True, False, Void, Bool.

• Namings - contains parameters that influence what will be included in the files that you
generate from an OOM:
• GetterName - Name and value for getter operations
• GetterCode - Code and value for getter operations
• SetterName - Name and value for setter operations
• SetterCode - Code and value for setter operations
• IllegalChar - lists illegal characters for the object language. This list populates the

Invalid characters field in Tools > Model Options > Naming Convention. For
example, "/!=<>""'()"

• Events - defines standard events on operations. This category may contain default existing
events such as constructors and destructors, depending on the object language. An event is
linked to an operation, and the contents of the Events category is displayed in the Event list

CHAPTER 3: Object, Process, and XML Language Definition Files

Customizing and Extending PowerDesigner 111

in operation property sheets to describe the events that can be used by an operation. In
PowerBuilder for example, the Events category is used to associate operations with
PowerBuilder events.

Settings Category: XML Language
The Settings category contains the Data types category that shows a mapping of internal data
types with XML language data types.

The following data types values are defined by default:

• ConceptualDataTypes - The Value column indicates the XML language data type used for
model generations. Conceptual data types are the internal data types of PowerDesigner,
and cannot be modified.

• XsmDataTypes- Data types for generations from the XML model.

Generation Category
The Generation category contains categories and entries to define and activate a generation
process.

The following sub-categories are available:

• Commands - contains generation commands, which can be executed at the end of the
generation process, after the generation of all files. Commands are written in GTL (see
Chapter 5, Customizing Generation with GTL on page 245), and must be included within
tasks to be evoked.

• Options – contains options, available on the Options tab of the Generation dialog, the
values of which can be tested by generation templates or commands. You can create
options that take boolean, string, or list values. The value of an option may be accessed in a
template using the following syntax:
%GenOptions.option%

CHAPTER 3: Object, Process, and XML Language Definition Files

112 PowerDesigner

For example, for a boolean option named GenerateComment,
%GenOptions.GenerateComment% will evaluate to either true or false in a
template, depending on the value specified in the Generation dialog Options tab.

• Tasks – contains tasks, available on the Tasks tab of the Generation dialog, and which
contain lists of generation commands. When a task is selected, the commands included in
it are retrieved and their templates evaluated and executed.

Example: Adding a Generation Option
In this example, we will add a generation option to the Java object language.

1. Select Language > Edit Current Object Language to open the Java resource file.

2. Expand the Generation category, and then right-click the Options category and select
New:

3. Click OK to save your changes and return to the model. Then select Language >
Generate Java code to open the Generation dialog, and click the Options tab. The new
option is listed on the tab under its comment (or its name, if no comment has been
provided):

CHAPTER 3: Object, Process, and XML Language Definition Files

Customizing and Extending PowerDesigner 113

Note: For detailed information about creating and modifying generation templates, see
Chapter 5, Customizing Generation with GTL on page 245.

Example: Adding a Generation Command and Task
In this example, we will add a generation command and associated task to the Java object
language

1. Create a new OOM for Java, and then select Language > Edit Current Object
Language.

2. Expand the Generation category, and then right-click the Commands category and select
New.

3. Name the command DoCommand and enter an appropriate template:

CHAPTER 3: Object, Process, and XML Language Definition Files

114 PowerDesigner

4. Right-click the Tasks category and select New. Name the task Execute, click the Add
Commands tool, select DoCommand from the list, and then click OK to add it to the new
task:

CHAPTER 3: Object, Process, and XML Language Definition Files

Customizing and Extending PowerDesigner 115

5. Click OK to save your changes and return to the model. Then select Language >
Generate Java code to open the Generation dialog, and click the Tasks tab. The new task
is listed on the tab under its comment (or its name, if no comment has been provided):

CHAPTER 3: Object, Process, and XML Language Definition Files

116 PowerDesigner

Profile Category (Definition Files)
The language definition file Profile category can contain Stereotypes, Extended attributes,
Methods and so on, to extend the metaclasses defined in the PowerDesigner metamodel.

In object languages, the Shared/Extended Attribute Types category contains
various attributes used to control object language support within PowerDesigner. The Object
Container variable specifies the default container for implementing associations. This
attribute has an editable list of possible values for each object language, from which you can
select a default value for your language. You can, if necessary, override this default using the
Default association container model option.

For detailed information about working with the Profile category, see Chapter 2, Extension
Files on page 11.

CHAPTER 3: Object, Process, and XML Language Definition Files

Customizing and Extending PowerDesigner 117

CHAPTER 3: Object, Process, and XML Language Definition Files

118 PowerDesigner

CHAPTER 4 DBMS Definition Files

DBMS definition file provide PowerDesigner with the information necessary to model,
reverse-engineer, and generate for a particular DBMS. PowerDesigner provides definition
files for most popular DBMSs. You select a DBMS when you create a PDM.

DBMS definition files have an .xdb extension and are located in install_dir/
Resource Files/DBMS. To view the list of DBMSs, select Tools > Resources > DBMS.
For information about the tools available in resource file lists, see Chapter 1, PowerDesigner
Resource Files on page 1.

You can consult or modify the DBMS definition file attached to your PDM in the Resource
Editor by selecting Database > Edit current DBMS. When you select a category or an item in
the left-hand pane, the name, value, and related comment appear in the right side of the dialog
box.

Warning! We strongly recommend that you make a back up of the resource files delivered
with PowerDesigner before editing them.

Each DBMS file has the following structure:

• General - contains general information about the database, without any categories (see
General Category (DBMS) on page 134). All items defined in the General category apply
to all database objects.

• Script - used for generation and reverse engineering. Contains the following sub-
categories:
• SQL - contains the following sub-categories, each of which contains items whose

values define general syntax for the database:
• Syntax - general parameters for SQL syntax (see Syntax Category on page 135)
• Format - parameters for allowed characters (see Format Category on page 136)
• File - header, footer and usage text items used during generation (see File Category

on page 138)
• Keywords - the list of SQL reserved words and functions (see Keywords Category

on page 140)
• Objects - contains commands to create, delete or modify all the objects in the database.

Also includes commands that define object behavior, defaults, necessary SQL queries,
reverse engineering options, and so on (see Script/Objects Category (DBMS) on page
142).

• Data Type - contains the list of valid data types for the specified DBMS and the
corresponding types in PowerDesigner (see Script/Data Type Category (DBMS) on
page 197).

Customizing and Extending PowerDesigner 119

• Customize - Retrieves information from PowerDesigner Version 6 DBMS definition
files. It is not used in later versions.

• ODBC - present only if the DBMS does not support standard statements for generation. In
this case the ODBC category contains additional items necessary for live database
connection generation .

• Transformation Profiles – contains group of transformations used during model
generation when you need to apply changes to objects in the source or target models (see
Transformations (Profile) on page 92).

• Profile - allows you to define extended attribute types and extended attributes for database
objects (see Profile Category (DBMS) on page 200).

The following properties are available on the root of a DBMS definition file:

Property Description

Name / Code Name and code of the DBMS.

File Name [read only] Path and name of the DBMS file.

Family Used to classify a DBMS, and to establish a link between different database resource
files. For example, Sybase AS Anywhere, and Sybase AS Enterprise belong to the
SQL Server family.

Triggers are retained when you change target within the same family.

Merge interface allows to merge models from the same family.

Comment Additional information about the DBMS

Triggers Templates, Trigger Template Items, and Procedure
Templates

The DBMS Trigger templates, Trigger template items, and Procedure templates are accessible
via the tabs in the Resource Editor window. In addition, for Oracle, there is a tab for database
package templates.

Templates for stored procedures are defined under the Procedure category in the DBMS tree
view.

For more information, see Data Modeling > Building Data Models > Triggers and Procedures

Database Generation and Reverse Engineering
PowerDesigner supports generation and reverse engineering of databases through scripts and
live connections via SQL statements and queries stored in the Script/Objects category.
Generation and reverse-engineering of scripts and generation to a live connection all use the
same statements, while reverse-engineering from a live connection uses separate queries.

CHAPTER 4: DBMS Definition Files

120 PowerDesigner

PowerDesigner performs generation and reverse-engineering as follows:

• Generation/Update Database - Each model object selected is applied to the statements in
the Script/Objects category.

• Reverse engineering:
• Script - PowerDesigner parses the script and identifies object creation statements by

comparing them with the statements in the Script/Objects category.

• Live connection - PowerDesigner uses the queries in the Script/Objects
category to retrieve information from the database system tables. Each column of a
query result set is associated with a variable. The query header specifies the association
between the columns of the resultset and the variable. The values of the returned
records are stored in these variables which are then committed as object attributes.

Script Generation
PowerDesigner can generate a SQL script from a PDM to create or modify a database. The
statements that control script generation are available in the Script/Objects category.

When generating a SQL script, PowerDesigner takes each object to be created in turn, and
applies the appropriate Create or other statement to create or modify the object:

• Create - Creates a new object.

• Alter / Modify - Modifies the attributes of an existing object.

• Add - Creates a new sub-object. If keys are defined inside a table, they will be created with
an Add statement, but if they are created outside the table, then they will be created with a
table Modify statement.

• Rename - Renames an object.

• Drop - Drops an object (for use when an Alter statement is not possible).

• ObjectComment - Adds a comment on the object.

• Options - Defines the physical options of an object.

• ConstName - Defines the constraint name template for object checks.

For example, in Sybase ASE 15.7, the Create statement in the Table category is the
following:
create table [%QUALIFIER%]%TABLE%
(
 %TABLDEFN%
)
[%OPTIONS%]

This statement contains the parameters for creating the table together with its owner and
physical options using variables (see Variables for Tables and Views on page 216) that extract
the necessary information from the object's properties. The %TABLDEFN% variable collects
the Add items in the Column, PKey, Key, and Reference categories, and the
AddTableCheck item in the Table category.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 121

Other statements in the object categories are used to customize the PowerDesigner interface
and behavior according to database features, such as Maxlen, Permission,
EnableOwner, and AllowedADT.

Extending Generation with Before and After Statements
You can extend script generation statements to complement generation using the extension
statements. The extension mechanism allows you to generate statements immediately before
or after Create, Drop, and Modify statements, and to retrieve these statements during reverse
engineering.

Extension statements are written in GTL (see Chapter 5, Customizing Generation with GTL
on page 245). During generation, the statements and variables are evaluated and the result is
added to the global script.

Note: We recommend that you avoid using GTL macros (other than .if) in generation
scripts, as they may not be resolvable when reverse engineering by script. Generating and
reverse engineering via a live database connection are not subject to this limitation.

Example - Adding an AfterCreate Statement
The extension statement AfterCreate is defined in the Table category to complement the
table Create statement by adding partitions to the table if the value of the partition extended
attribute requires it:
.if (%ExtTablePartition% > 1)
%CreatePartition%
go
.endif

The .if macro evaluates variable %ExtTablePartition%, which is an extended
attribute that contains the number of table partitions. If the value is higher than 1, then
%CreatePartition%, defined in the Table category, will be generated as follows:

alter table [%QUALIFIER%]%TABLE%
 partition %ExtTablePartition%

This item generates the statement for creating the number of table partitions specified in
%ExtTablePartition%.

Example - Adding a BeforeCreate Statement
The extension statement BeforeCreate is defined in the User category to create the login
of a user before the user Create statement is executed:

sp_addlogin %Name% %Password%
go

The automatically generated login will have the same name as the user, and its password. The
BeforeCreate statement is displayed before the user creation statement in the Preview:

CHAPTER 4: DBMS Definition Files

122 PowerDesigner

Example - Modify Statements
You can also add BeforeModify and AfterModify statements to standard Modify
statements.

Modify statements are executed to synchronize the database with the schema created in the
PDM. By default, the modify database feature does not take into account extended attributes
when it compares changes performed in the model from the last generation. You can bypass
this rule by adding extended attributes in the ModifiableAttributes list item.
Extended attributes defined in this list will be taken into account in the merge dialog box
during database synchronization.

To detect that an extended attribute value has been modified you can use the following
variables:

• %OLDOBJECT% - to access an old value of the object

• %NEWOBJECT% - to access a new value of the object

For example, you can verify that the value of the extended attribute ExtTablePartition
has been modified using the following GTL syntax:
.if (%OLDOBJECT.ExtTablePartition% != %NEWOBJECT.ExtTablePartition%)

If the extended attribute value was changed, an extended statement will be generated to update
the database. In the Sybase ASE syntax, the ModifyPartition extended statement is the
following because in case of partition change you need to delete the previous partition and
then recreate it:

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 123

.if (%OLDOBJECT.ExtTablePartition% != %NEWOBJECT.ExtTablePartition%)
 .if (%NEWOBJECT.ExtTablePartition% > 1)
 .if (%OLDOBJECT.ExtTablePartition% > 1)
%DropPartition%
 .endif
%CreatePartition%
 .else
%DropPartition%
 .endif
.endif

Script Reverse Engineering
PowerDesigner can reverse engineer SQL scripts into a PDM. The statements that control
script generation are available in the Script/Objects category.

When reverse-engineering a SQL script into a PDM, PowerDesigner compares each statement
in turn with all of the Create statements defined in the DBMS definition file and when it
finds a match, extracts all of the available information to create or update PDM objects.

The statements used in script reverse engineering are the same as those for script generation
(see Script Generation on page 121).

For example, in Sybase IQ v15.2, the Create statement in the Table category is the
following:
create[%ExtGlobalTemporaryTable%? global temporary] table
[%QUALIFIER%]%TABLE% (
 %TABLDEFN%
)[.Z:[[%R%?[.O:[in][on]] %DBSpace%:[%DBSpace%?
 in %DBSpaceGeneratedName%]]][
 on commit %OnCommit%][%NotTransactional%? not transactional][
 at %.q:At%][%R%?partition by range %RevPartition%:[%PartitionKey
%?[%hasLifecycle%?:
 partition by range (%PartitionKey.Code%)
 (
 %PartitionDef%
)]]]
]

This statement contains the parameters for creating the table together with its owner and
physical options using variables (see Variables for Tables and Views on page 216) that extract
the necessary information from the object's properties.

If you are using the extension mechanism for script generation, you have to declare statements
in the list item ReversedStatements (one statement per line) for them to be properly
reversed.

For example, the extension statement AfterCreate uses CreatePartition, which
must be declared in ReversedStatements to be properly reverse engineered:

CHAPTER 4: DBMS Definition Files

124 PowerDesigner

Live Database Generation
PowerDesigner can generate or modify a database from a PDM to a live connection. The
statements that control live generation are available in the Script/Objects category,
except when the DBMS does not support standard SQL syntax. For example, MS Access,
which needs VB scripts to create database objects, has special generation statements defined
in the ODBC category.

When generating to a live connection, PowerDesigner takes each object to be created in turn,
and applies the appropriate Create or other statement to create or modify the object.

The statements used in live generation are the same as those for script generation (see Script
Generation on page 121).

Live Database Reverse Engineering
PowerDesigner can reverse engineer from a live database connection into a PDM. The queries
that control live reverse engineering are available in the Script/Objects category.

The following queries are used in live reverse engineering:

• SqlListQuery - Retrieves a list of available objects to populate the Database Reverse
Engineering dialog. This query is memory intensive, and should retrieve the smallest

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 125

number of columns possible. If it is not defined, then SqlAttrQuery will be used to
populate the dialog.

• SqlAttrQuery - Retrieves the object attributes to be reverse-engineered. This query is
not necessary if the object has few attributes, and the SqlListQuery can retrieve all
necessary information, as is the case for tablespaces in Sybase SQL Anywhere.

• SqlOptsQuery - Retrieves the physical options to be reverse-engineered.

• SqlListChildrenQuery - Retrieves lists of child objects (such as columns of an
index or key or joins of a reference) to be reverse-engineered.

• SqlSysIndexQuery - Retrieves system indexes created by the database.

• SqlChckQuery - Retrieves object check constraints.

• SqlPermQuery - Retrieves object permissions.

Note: You can also create your own queries (see Creating Queries to Retrieve Additional
Attributes on page 128).

Each type of query has the same basic structure comprised of a comma-separated list of
PowerDesigner variables enclosed in curly braces { } followed by a select statement to extract
values to populate these variables. The values of the returned records are stored in these
variables, which are then committed as object attribute values.

For example, the SqlListQuery in the View category of Oracle 11g R1 extracts values for
eight variables:
{OWNER, VIEW, VIEWSTYLE, ExtObjViewType,
 ExtObjOIDList, ExtObjSuperView, XMLSCHEMA EX, XMLELEMENT EX}

select
 v.owner,
 v.view_name,
 decode (v.view_type, 'XMLTYPE', 'XML', 'View'),
 v.view_type,
 v.oid_text,
 v.superview_name,
 decode (v.view_type, 'XMLTYPE', '%SqlXMLView.'||v.owner||
v.view_name||'1%', ''),
 decode (v.view_type, 'XMLTYPE', '%SqlXMLView.'||v.owner||
v.view_name||'2%', '')
from sys.all_views v
[where v.owner = %.q:SCHEMA%]

Each comma-separated part of the header may contain the following:

• Name of variable - [required] can be any standard PDM variable (see PDM Variables and
Macros on page 212), metamodel public name (see Navigating in the Metamodel on page
344) or the name of an extended attribute defined under the metaclass in the Profile (see
Profile Category (DBMS) on page 200).

• ID - [optional] the variable is part of the identifier.

CHAPTER 4: DBMS Definition Files

126 PowerDesigner

• ... - [optional] the variable must be concatenated for all the lines returned by the SQL
query that have the same values for the ID columns. The ID and ... (ellipsis) keywords
are mutually exclusive.

• Value pairs - [optional] lists conversions between retrieved values and PowerDesigner
values in the following format (where * means all other values):

(value1 = PDvalue1, value2 = PDvalue2, * = PDvalue3)

Example: Using ID to Define the Identifier
In this script, the identifier is defined as TABLE + ISKEY+ CONSTNAME through the use of
the ID keyword:

{TABLE ID, ISPKEY ID, CONSTNAME ID, COLUMNS ...}
select
 t.table_name,
 1,
 null,
 c.column_name + ', ',
 c.column_id
from
 systable t,
 syscolumn c
where
etc..

In the resulting lines returned by the SQL script, the values of the fourth field are concatenated
in the COLUMNS field as long as these ID values are identical.

SQL Result set
Table1,1,null,'col1,'
Table1,1,null,'col2,'
Table1,1,null,'col3,'
Table2,1,null,'col4,'
In PowerDesigner memory
Table1,1,null,'col1,col2,col3'
Table2,1,null,'col4'

In the example, COLUMNS will contain the list of columns separated by commas, and
PowerDesigner will process the contents to remove the last comma.

Example: Converting Value Pairs
In this example, when the SQL query returns the value 25 or 26, it is replaced by JAVA in the
TYPE variable:

{ADT, OWNER, TYPE(25=JAVA , 26=JAVA)}
SELECT t.type_name, u.user_name, t.domain_id
FROM sysusertype t, sysuserperms u
WHERE [u.user_name = '%SCHEMA%' AND]
(domain_id = 25 OR domain_id = 26) AND
t.creator = u.user_id

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 127

Creating Queries to Retrieve Additional Attributes
You can create queries to retrieve additional attributes. These attributes could be added to
SqlAttrQuery, but retrieving them in a separate query helps to avoid overloading that
item. User-created queries are only called during reverse-engineering if their names are added
to the ReversedQueries item.

To create a new query in a category, right-click the category and select New > Text Item. Enter
an appropriate name, and then add the name to the ReversedQueries item.

For example, in the Oracle family of DBMSs, SqlColnListQuery is defined in the View
category:
{OWNER ID, VIEW ID, VIEWCOLN ...}

select
 c.owner,
 c.table_name,
 c.column_name||', '
from
 sys.all_tab_columns c
where 1 = 1
 [and c.owner=%.q:OWNER%]
 [and c.table_name=%.q:VIEW%]
order by
 1, 2, c.column_id

This query retrieves view columns, and is enabled by adding it to ReversedQueries in the
View category.

Note: Subqueries that are called with the EX keyword from within SqlAttrQuery or other
queries (see Calling Sub-Queries with the EX Keyword on page 128) do not need to be added
to ReversedQueries.

Calling Sub-Queries with the EX Keyword
DBMS system tables may store information to be reversed in columns with LONG, BLOB,
TEXT and other incompatible data types, which PowerDesigner cannot directly concatenate
into strings.

You can bypass this limitation by using the EX keyword and creating user-defined queries and
variables in the existing reverse engineering queries with the syntax:
%UserDefinedQueryName.UserDefinedVariableName%

These user-defined variables are evaluated by sub-queries that you write.

In the following example, the value of OPTIONS is marked as containing a user-defined
query, and we see in the body of the query that the 'global partition by range' option contains a
user-defined query called :'SqlPartIndexDef', which seeks values for the variables 'i.owner'
and 'i.index_name':

CHAPTER 4: DBMS Definition Files

128 PowerDesigner

{OWNER, TABLE, CONSTNAME, OPTIONS EX}

select
 c.owner,
 c.table_name,
 c.constraint_name,
 ...
 'global partition by range
 (%SqlPartIndexDef.'||i.owner||i.index_name||'%)',
 ...

Note: Extended queries are not be added to the ReversedQueries item.

1. A query is executed to evaluate variables in a set of string statements. If the EX keyword is
present in the query header, PowerDesigner searches for user-defined queries and
variables to evaluate. You can create user-defined queries in any live database reverse
engineering query. Each query must have a unique name.

2. The execution of the user-defined query generates a resultset containing pairs of user-
defined variable names (without %) and variable value for each of the variables as needed.
For example, in the following resultset, the query returns 3 rows and 4 columns by row:

Variable 1 1 Variable 2 2

Variable 3 3 Variable 4 4

Variable 5 5 Variable 6 6

3. These values replace the user-defined variables in the original query.

Live Database Reverse Engineering Physical Options
During reverse engineering, physical options are concatenated in a single string statement.
However, when the system tables of a database are partitioned (like in Oracle) or fragmented
(like in Informix), the partitions/fragments share the same logical attributes but their physical
properties like storage specifications, are stored in each partition/fragment of the database.
The columns in the partitions/fragments have a data type (LONG) that allows storing larger
amount of unstructured binary information.

Since physical options in these columns cannot be concatenated in the string statement during
reverse engineering, SqlOptsQuery (Tables category in the DBMS) contains a call to a
user-defined query that will evaluate these physical options.

In Informix SQL 9, SqlOptsQuery is delivered by default with the following user-defined
queries and variables (the following is a subset of SqlOptsQuery):

select
 t.owner,
 t.tabname,
 '%SqlFragQuery.FragSprt'||f.evalpos||'% %FragExpr'||f.evalpos||'%
in %FragDbsp'||f.evalpos||'% ',
 f.evalpos
from
 informix.systables t,

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 129

 informix.sysfragments f
where
 t.partnum = 0
 and t.tabid=f.tabid
[and t.owner = '%SCHEMA%']
[and t.tabname='%TABLE%']

After the execution of SqlOptsQuery, the user-defined query SqlFragQuery is
executed to evaluate FragDbsp n, FragExpr n, and FragSprt n. n stands for
evalpos which defines fragment position in the fragmentation list. n allows to assign unique
names to variables, whatever the number of fragment defined in the table.

FragDbsp n, FragExpr n, and FragSprt n are user-defined variables that will be
evaluated to recover information concerning the physical options of fragments in the database:

User-defined variable Physical options

FragDbsp n Fragment location for fragment number n

FragExpr n Fragment expression for fragment number n

FragSprt n Fragment separator for fragment number n

SqlFragQuery is defined as follows:

{A, a(E="expression", R="round robin", H="hash"), B, b, C, c, D,
d(0="", *=",")}
select
 'FragDbsp'||f.evalpos, f.dbspace,
 'FragExpr'||f.evalpos, f.exprtext,
 'FragSprt'||f.evalpos, f.evalpos
from
 informix.systables t,
 informix.sysfragments f
where
 t.partnum = 0
 and f.fragtype='T'
 and t.tabid=f.tabid
[and t.owner = '%SCHEMA%']
[and t.tabname='%TABLE%']

The header of SqlFragQuery contains the following variable names.

{A, a(E="expression", R="round robin", H="hash"), B, b, C, c, D,
d(0="", *=",")}

Only the translation rules defined between brackets will be used during string concatenation:
"FragSprt0", which contains 0 (f.evalpos), will be replaced by " ", and "FragSprt1", which
contains 1, will be replaced by ","

SqlFragQuery generates a numbered resultset containing as many pairs of user-defined
variable name (without %) and variable value as needed, if there are many variables to
evaluate.

CHAPTER 4: DBMS Definition Files

130 PowerDesigner

The user-defined variable names are replaced by their values in the string statement for the
physical options of fragments in the database.

Live Database Reverse Engineering Function-based Index
In Oracle 8i and later versions, you can create indexes based on functions and expressions that
involve one or more columns in the table being indexed. A function-based index precomputes
the value of the function or expression and stores it in the index. The function or the expression
will replace the index column in the index definition.

An index column with an expression is stored in system tables with a LONG data type that
cannot be concatenated in a string statement during reverse engineering.

To bypass this limitation, SqlListQuery (Index category in the DBMS) contains a call to
the user-defined query SqlExpression used to recover the index expression in a column
with the LONG data type and concatenate this value in a string statement (the following is a
subset of SqlListQuery):

select
 '%SCHEMA%',
 i.table_name,
 i.index_name,
 decode(i.index_type, 'BITMAP', 'bitmap', ''),
 decode(substr(c.column_name, 1, 6), 'SYS_NC',
'%SqlExpression.Xpr'||i.table_name||i.index_name||
c.column_position||'%', c.column_name)||' '||c.descend||', ',
 c.column_position
from
 user_indexes i,
 user_ind_columns c
where
 c.table_name=i.table_name
 and c.index_name=i.index_name
[and i.table_owner='%SCHEMA%']
[and i.table_name='%TABLE%']
[and i.index_name='%INDEX%']

The execution of SqlListQuery calls the execution of the user-defined query
SqlExpression.

SqlExpression is followed by a user-defined variable defined as follow:

{VAR, VAL}

select
 'Xpr'||table_name||index_name||column_position,
 column_expression
from
 all_ind_expressions
where 1=1
[and table_owner='%SCHEMA%']
[and table_name='%TABLE%']

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 131

The name of the user-defined variable is unique, it is the result of the concatenation of "Xpr",
table name, index name, and column position.

Live Database Reverse Engineering Qualifiers
A qualifier allows the use of the object qualifier that is displayed in the dropdown list box in the
upper left corner of the Database Reverse Engineering dialog box. You use a qualifier to select
which objects are to be reverse engineered.

You can add a qualifier section when you customize your DBMS. This section must contain
the following items:

• enable: YES/NO
• SqlListQuery (script) : this item contains the SQL query that is executed to retrieve the

qualifier list. You should not add a Header to this query

The effect of these items are shown in the table below:

Enable SqlListQuery
present?

Result

Yes Yes Qualifiers are available for selection. Select one as required.
You can also type the name of a qualifier. SqlListQuery is
executed to fill the qualifier list

No Only the default (All qualifiers) is selected. You can also type
the name of a qualifier

No No Dropdown list box is grayed.

CHAPTER 4: DBMS Definition Files

132 PowerDesigner

Example
In Adaptive Server Anywhere 7, a typical qualifier query is:

.Qualifier.SqlListQuery :
select dbspace_name from sysfile

Generating and Reverse-Engineering PDM Extended Objects
Some DBMSs have objects that are not present in the standard PowerDesigner metamodel,
and that must be represented as extended objects. PDM extended objects are defined in the
Profile category, but their generation and reverse-engineering is controlled by statements
and queries defined in the Script/Objects category.

Note: Before following this procedure, you must create an extended object in the Profile
category (see Extended Objects, Sub-Objects, and Links (Profile) on page 36).

1. Right-click the Script/Objects category, select Add Items, select your new
extended object in the list, and then click OK to add it to the list of objects

2. Right-click the new object entry, and select Add Items to add the necessary script items to
it. As a minimum, to enable the generation and reverse engineering of the object, you must
add the following items:

• Create
• Drop
• AlterStatementList
• SqlAttrQuery
• SqlListQuery

3. Click OK to add these script items to your object, and enter the appropriate SQL
statements and queries. You will need to enter values for each of these items. For guidance
on syntax, see Common Object Items on page 144.

4. [optional] To control the order in which this and other objects will be generated, use the
Generation Order item (see Script/Objects Category (DBMS) on page 142).

Adding Scripts Before or After Generation and Reverse Engineering
You can specify scripts to be used before or after database generation or reverse engineering.

1. Open the Profile folder. If there is no entry for Model, then right-click the Profile folder and
select Add Metaclasses.

2. On the PdPDM sub-tab, select Model and then click OK to add the Model item to the
Profile folder.

3. Right-click the Model item, and select New > Event Handler (see Event Handlers
(Profile) on page 75).

4. Select one or more of the following event handlers depending on where you want to add a
script:

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 133

• BeforeDatabaseGenerate
• AfterDatabaseGenerate
• BeforeDatabaseReverseEngineer
• AfterDatabaseReverseEngineer

5. Click OK to add the selected event handlers to the Model item.

6. Select each of the event handlers in turn, click its Event Handler Script tab, and enter the
desired script.

7. Click OK to confirm your changes and return to the model.

General Category (DBMS)
The General category is located directly beneath root, and contains high-level items that
define the basic behavior of the DBMS.

Item Description

EnableCheck Specifies whether the generation of check parameters is authorized. The fol-
lowing settings are available. If this item is set to No, no variables linked to
check parameters will be evaluated during generation and reverse-engineering.

EnableConstName Specifies whether constraint names are supported by the DBMS. If this item is
set to Yes, table and column constraint names are generated in addition to the
constraints themselves.

EnableIntegrity Specifies whether integrity constraints are supported by the DBMS. If this item
is set to Yes, primary, alternate, and foreign key check boxes are available for
database generation and modification

EnableMultiCheck Specifies whether the generation of multiple check parameters for tables and
columns is supported by the DBMS. If this item is set to Yes, multiple check
parameters are generated, with the first constraint concatenating all the vali-
dation business rules, and additional constraints generated for each constraint
business rules attached to the object. If this item is set to No, all business rules
(validation and constraint) are concatenated into a single constraint expression.

SchemaStereotype Specifies the user stereotype to be used to indicate a schema (object owner).

SqlSupport Specifies whether SQL syntax is supported by the DBMS. If this item is set to
Yes, SQL syntax is supported and the SQL Preview is available.

UniqConstName Specifies whether unique constraint names for objects are required by the
DBMS. If this item is set to Yes, all constraint names (including index names)
must be unique in the database. Otherwise constraint names must be unique
only at the object level.

UserStereotype Specifies the user stereotype to be used to indicate a user (permissions grantee).

CHAPTER 4: DBMS Definition Files

134 PowerDesigner

Script/Sql Category (DBMS)
The SQL category is located in the Root > Script category and contains sub-categories that
define the SQL syntax for the DBMS.

Syntax Category
The Syntax category is located in the Root > Script > SQL category, and contains the
following items that define the DBMS-specific syntax:

Item Description

BlockComment Specifies the character used to enclose a multi-line commentary.

Example:

/* */

BlockTerminator Specifies the end of block character, which is used to end expressions for
triggers and stored procedures.

Delimiter Specifies the field separation character.

IdentifierDelimiter Specifies the identifier delimiter character. When the beginning and end de-
limiters are different, they must be separated by a space character.

LineComment Specifies the character used to enclose a single line commentary.

Example:

%%

Quote Specifies the character used to enclose string values.

Note that the same quote must be used in the check parameter tab to enclose
reserved words used as default.

SqlContinue Specifies the continuation character. Some databases require a continuation
character when a statement is longer than a single line. For the correct char-
acter, refer to your DBMS documentation. This character is attached to each
line just prior to the linefeed.

Terminator Specifies the end of statement character, which is used to terminate create table,
view, index, or the open/close database, and other statements.

If empty, BlockTerminator is used instead.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 135

Item Description

UseBlockTerm Specifies the use of BlockTerminator. The following settings are
available:

• Yes - BlockTerminator is always used

• No - BlockTerminator is used for triggers and stored procedures
only

Format Category
The Format category is located in the Root > Script > SQL category, and contains the
following items that define script formatting:

Item Description

AddQuote Specifies that object codes are systematically enquoted during the generation.
The following settings are available:

• Yes – Quotes are systematically added to object codes during generation
• No - Object codes are generated without quotes

CaseSensitivityU-
singQuote

Specifies if the case sensitivity for identifiers is managed using double quotes.
Enable this option if the DBMS you are using needs double quotes to preserve
the case of object codes.

Date and Time for-
mats

See Date and Time Format on page 137.

EnableOwnerPre-
fix / Enable-
DtbsPrefix

Specifies that object codes can be prefixed by the object owner (%OWNER%),
the database name (%DBPREFIX%), or both (%QUALIFIER%). The fol-
lowing settings are available:

• Yes – enables the Owner Prefix and/or Database Prefix options in the
Database Generation dialog to require one or both prefixes for objects.

• No - The Owner Prefix and Database Prefix options are unavailable

Note: EnableOwnerPrefix enables the Ignore identifying owner
model option for tables and views.

CHAPTER 4: DBMS Definition Files

136 PowerDesigner

Item Description

IllegalChar [generation only] Specifies invalid characters for names. If there is an illegal
character in a Code, the code is set between quotes during generation.

Example:

+-*/!=<>'"()
If the name of the table is "SALES+PROFITS", the generated create statement
will be:

CREATE TABLE "SALES+PROFITS"
Double quotes are placed around the table name to indicate that an invalid
character is used. During reverse engineering, any illegal character is consid-
ered as a separator unless it is located within a quoted name.

LowerCaseOnly /
UpperCaseOnly

When generating a script, all objects are generated in lowercase or uppercase
independently of the model Naming Conventions and the PDM codes. The
following settings are available:

• Yes - Forces all generated script characters to lowercase or uppercase.
• No - Generates all scripts unchanged from the way objects are written in the

model.

Note: These items are mutually exclusive. If both are enabled, the script is
generated in lowercase.

MaxScriptLen Specifies the maximum length of a script line.

Date and Time Format
You can customize the date and time format for test data generation to a script or live database
connection using DBMS items in the Format category.

PowerDesigner uses the PhysDataType map item in the script\data types category to
convert the physical data types of columns to conceptual data types because the DBMS items
are linked with conceptual data types.

Example for Sybase AS Anywhere 7:

Physical da-
ta type

Conceptual
data type

DBMS entry used
for SQL

DBMS entry used for live
connection

datetime DT DateTimeFormat OdbcDateTimeFormat

timestamp TS DateTimeFormat OdbcDateTimeFormat

date D DateFormat OdbcDateFormat

time T TimeFormat OdbcTimeFormat

If you want to customize the date and time format of your test data generation, you have to
verify the data type of the columns in your DBMS, then find the corresponding conceptual

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 137

data type in order to know which item to customize in your DBMS. For example, if the
columns use the datetime data type in your model, you should customize the DateTimeFormat
item in your DBMS.

The default date and time format is the following:

• SQL: 'yyyy-mm-dd HH:MM:SS'
• Live connection: {ts 'yyyy-mm-dd HH:MM:SS'}
Where:

Format Description

yyyy Year on 4 digits

yy Year on 2 digits

mm Month

dd Day

HH Hour

MM Minute

SS Second

For example, you can define the following value for the DateTimeFormat item for SQL: yy-
mm-dd HH:MM. For live database connections, this item should have the following value:
{ts 'yy-mm-dd HH:MM'}.

File Category
The File category is located in the Root > Script > SQL category, and contains the following
items that define script formatting:

Item Description

AlterHeader Specifies header text for a modify database script.

AlterFooter Specifies footer text for a modify database script.

CHAPTER 4: DBMS Definition Files

138 PowerDesigner

Item Description

EnableMultiFile Specifies that multiple scripts are allowed. The following settings are available:

• Yes – enables the One File Only check box in the Generate database,
Generate Triggers and Procedures, and Modify Database parameters win-
dows. If you deselect this option, a separate script is created for each table
(named after the table, and with the extension defined in the TableExt
item), and a global script summarizes all the single table script items.

• The One File Only check box is unavailable, and a single script includes all
the statements.

The file name of the global script is customizable in the File Name field of the
generation or modification windows and has the extension specified in the
ScriptExt item.

The default name for the global script is CREBAS for database generation,
CRETRG for triggers and stored procedures generation, and ALTER for da-
tabase modification.

Footer Specifies the text for the database generation script footer.

Header Specifies the text for the database generation script header.

ScriptExt Specifies the default script extension when you generate a database or modify a
database for the first time.

Example:

sql

StartCommand Specifies the statement for executing a script. Used inside the header file of a
multi-file generation to call all the other generated files from the header file.

Example (Sybase ASE 11):

isql %NAMESCRIPT%
Corresponds to the %STARTCMD% variable (see PDM Variables and Macros
on page 212).

TableExt Specifies the extension of the scripts used to generate each table when the
EnableMultiFile item is enabled and the "One File Only" check box is not
selected in the Generate or Modify windows.

Example:

sql

TrgFooter Specifies footer text for a triggers and procedures generation script.

TrgHeader Header script for triggers and procedures generation.

TrgUsage1 [when using a single script] Specifies text to display in the Output window at
the end of trigger and procedure generation.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 139

Item Description

TrgUsage2 [when using multiple scripts] Specifies text to display in the Output window at
the end of trigger and procedure generation.

TriggerExt Specifies the main script extension when you generate triggers and stored
procedures for the first time.

Example:

trg

Usage1 [when using a single script] Specifies text to display in the Output window at
the end of database generation.

Usage2 [when using multiple scripts] Specifies text to display in the Output window at
the end of database generation.

Keywords Category
The Keywords category is located in the Root > Script > SQL category, and contains the
following items that reserve keywords.

The lists of SQL functions and operators are used to populate the PowerDesigner SQL editor
to propose lists of available functions to help in entering SQL code.

Item Description

CharFunc Specifies a list of SQL functions to use with characters and strings.

Example:

char()
charindex()
char_length() etc

Commit Specifies a statement for validating the transaction by live connection.

ConvertAnyTo-
String

Specifies a function to convert any type to a string.

ConvertDateTo-
Month, ConvertDa-
teToQuarter, Con-
vertDateToYear

Specifies a function to extract the relevant period from a date.

ConvertFunc Specifies a list of SQL functions to use when converting values between hex
and integer and handling strings.

Example:

convert()
hextoint()
inttohex() etc

CHAPTER 4: DBMS Definition Files

140 PowerDesigner

Item Description

DateFunc Specifies a list of SQL functions to use with dates.

Example:

dateadd()
datediff()
datename() etc

GroupFunc Specifies a list of SQL functions to use with group keywords.

Example:

avg()
count()
max() etc

ListOperators Specifies a list of SQL operators to use when comparing values, boolean, and
various semantic operators.

Example:

=
!=
not like etc

NumberFunc Specifies a list of SQL functions to use with numbers.

Example:

abs()
acos()
asin() etc

OtherFunc Specifies a list of SQL functions to use when estimating, concatenating and
SQL checks.

Example:

db_id()
db_name()
host_id() etc

Reserved Default Specifies a list of keywords that may be used as default values. If a reserved
word is used as a default value, it will not be enquoted.

Example (SQL Anywhere® 10) - USER is a reserved default value:

Create table CUSTOMER (
Username varchar(30) default USER
)
When you run this script, CURRENT DATE is recognized as a reserved default
value.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 141

Item Description

ReservedWord Specifies a list of reserved keywords. If a reserved word is used as an object
code, it is enquoted during generation (using quotes only in DBMS > Script >
SQL > Syntax > Quote).

StringConcatena-
tionOperator

Specifies the operator used to concatenate two strings.

Script/Objects Category (DBMS)
The Objects category is located in the Root > Script > SQL category (and, possibly within
Root > ODBC > SQL), and contains the following items that define the database objects that
will be available in your model.

The following items are located in the Root > Script > Objects and Root > ODBC > Objects
categories, and apply to all objects:

• MaxConstLen - Specifies the maximum constraint name length supported by the target
database for tables, columns, primary and foreign keys. This value is used during model
checking and returns an error if the code exceeds the defined value. The constraint name is
also truncated at generation time.

Note: PowerDesigner has a maximum length of 254 characters for constraint names. If
your database supports longer constraint names, you must define the constraint names to
fit in 254 characters or less.

• EnableOption - Specifies that physical options are supported by the target DBMS for the
model, tables, indexes, alternate keys, and other objects and enables the display of the
Options tab in object property sheets. For more information, see Physical Options
(DBMS) on page 207.

• GenerationOrder - Specifies the generation order of database objects. Drag and drop
entries in the Ordered List tab to adjust the order in which objects will be created.

CHAPTER 4: DBMS Definition Files

142 PowerDesigner

Note: If an object does not appear on the list, it will still be generated, but after the listed
objects. You can add and remove items using the tools on the tab. Sub-objects, such as
Sequence::Permissions, can be placed directly below their parent object in the list
(where they will be indented to demonstrate their parentage) or separately, in which case
they will be displayed without indentation. Extended objects (see Generating and Reverse-
Engineering PDM Extended Objects on page 133) cannot be added to this list, and are
generated after all other objects.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 143

Common Object Items
The following items are available in various objects located in the Root > Script > Objects
category.

Item Description

Add Specifies the statement required to add the object inside the creation statement
of another object.

Example (adding a column):

%20:COLUMN% %30:DATATYPE% [default %DEFAULT%]
[%IDENTITY%?identity:[%NULL%][%NOTNULL%]]
[[constraint %CONSTNAME%] check (%CONSTRAINT%)]

AfterCreate/ After-
Drop/ AfterModify

Specify extended statements executed after the main Create, Drop or Modify
statements. For more information, see Script generation on page 121.

Alter Specifies the statement required to alter the object.

AlterDBIgnored Specifies a list of attributes that should be ignored when performing a com-
parison before launching an update database.

AlterStatementList Specifies a list of attributes which, when changed, should give rise to an alter
statement. Each attribute in the list is mapped to the alter statement that should
be used.

BeforeCreate/ Befor-
eDrop/ BeforeModi-
fy

Specify extended statements executed before the main Create, Drop or Mod-
ify statements. For more information, see Script generation on page 121.

ConstName Specifies a constraint name template for the object. The template controls how
the name of the object will be generated.

The template applies to all the objects of this type for which you have not
defined an individual constraint name. The constraint name that will be ap-
plied to an object is displayed in its property sheet.

Examples (ASE 15):

• Table: CKT_%.U26:TABLE%
• Column: CKC_%.U17:COLUMN%_%.U8:TABLE%
• Primary Key: PK_%.U27:TABLE%

Create [generation and reverse] Specifies the statement required to create the object.

Example:

create table %TABLE%

CHAPTER 4: DBMS Definition Files

144 PowerDesigner

Item Description

DefOptions Specifies default values for physical options (see Physical Options (DBMS)
on page 207) that will be applied to all objects. These values must respect
SQL syntax.

Example:

in default_tablespace

Drop Specifies the statement required to drop the object.

Example (SQL Anywhere 10):

if exists(select 1 from sys.systable
 where table_name=%.q:TABLE%
 and table_type in ('BASE', 'GBL TEMP')[%QUALIFIER
%?
 and creator=user_id(%.q:OWNER%)]
) then drop table [%QUALIFIER%]%TABLE%
end if

Enable Specifies whether an object is supported.

EnableOwner Enables the definition of owners for the object. The object owner can differ
from the owner of the parent table. The following settings are available:

• Yes - The Owner list is enabled in the object's property sheet.
• No – Owners are not supported for the object.

Note that, in the case of index owners, you must ensure that the Create state-
ment takes into account the table and index owner. For example, in Oracle 9i,
the Create statement of an index is the following:

create [%UNIQUE%?%UNIQUE% :[%INDEXTYPE%]]index
[%QUALIFIER%]%INDEX% on [%CLUSTER%?cluster C_%TABLE
%:[%TABLQUALIFIER%]%TABLE% (
 %CIDXLIST%
)]
[%OPTIONS%]
Where %QUALIFIER% refers to the current object (index) and %TABL-
QUALIFIER% refers to the parent table of the index.

EnableSynonym Enables support for synonyms on the object.

Footer / Header Specify the object footer and header. The contents are inserted directly after or
before each create object statement.

MaxConstLen Specifies the maximum constraint name length supported for the object in the
target database, where this value differs from the default specified in Max-
ConstLen (see .Script/Objects Category (DBMS) on page 142).

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 145

Item Description

MaxLen Specifies the maximum code length for an object. This value is used when
checking the model and produces an error if the code exceeds the defined
value. The object code is also truncated at generation time.

Modifiable Attrib-
utes

Specifies a list of extended attributes that will be taken into account in the
merge dialog during database synchronization. For more information, see
Script generation on page 121.

Example (ASE 12.5):

ExtTablePartition

Options Specifies physical options (see Physical Options (DBMS) on page 207)
available to apply when creating an object.

Example (ASA 6):

in %s : category=tablespace

Permission Specifies a list of available permissions for the object. The first column is the
SQL name of permission (SELECT for example), and the second column is
the shortname that is displayed in the title of grid columns.

Example (table permissions in ASE 15):

SELECT / Sel
INSER / Ins
DELETE / Del
UPDATE / Upd
REFERENCES / Ref

Reversed Queries Specifies a list of additional attribute queries to be called during live database
reverse engineering. For more information, see Live database reverse engi-
neering on page 125.

Reversed Statements Specifies a list of additional statements that will be reverse engineered. For
more information, see Script reverse engineering on page 124.

SqlAttrQuery Specifies a SQL query to retrieve additional information on objects reversed
by SQLListQuery.

Example (Join Index in Oracle 10g):

{OWNER ID, JIDX ID, JIDXWHERE ...}
select index_owner, index_name,
outer_table_owner || '.' || outer_table_name || '.'
|| outer_table_column || '=' || inner_table_owner
|| '.' || inner_table_name || '.' || inner_ta-
ble_column || ','
from all_join_ind_columns
where 1=1
[and index_owner=%.q:OWNER%]
[and index_name=%.q:JIDX%]

CHAPTER 4: DBMS Definition Files

146 PowerDesigner

Item Description

SqlListQuery Specifies a SQL query for listing objects in the reverse engineering dialog.
The query is executed to fill header variables and create objects in memory.

Example (Dimension in Oracle 10g):

{ OWNER, DIMENSION }
select d.owner, d.dimension_name
from sys.all_dimensions d
where 1=1
[and d.dimension_name=%.q:DIMENSION%]
[and d.owner=%.q:SCHEMA%]
order by d.owner, d.dimension_name

SqlOptsQuery Specifies a SQL query to retrieve physical options from objects reversed by
SqlListQuery. The result of the query will fill the variable %OPTIONS
% and must respect SQL syntax.

Example (Table in SQL Anywhere 10):

{OWNER, TABLE, OPTIONS}
select u.user_name, t.table_name,
 'in '+ f.dbspace_name
from sys.sysuserperms u
 join sys.systab t on (t.creator = u.user_id)
 join sys.sysfile f on (f.file_id = t.file_id)
where f.dbspace_name <> 'SYSTEM'
 and t.table_type in (1, 3, 4)
[and t.table_name = %.q:TABLE%]
[and u.user_name = %.q:OWNER%]

SqlPermQuery Specifies a SQL query to reverse engineer permissions granted on the object.

Example (Procedure in SQL Anywhere 10):

{ GRANTEE, PERMISSION}
select
u.user_name grantee, 'EXECUTE'
from sysuserperms u, sysprocedure s, sysprocperm p
where (s.proc_name = %.q:PROC%) and
(s.proc_id = p.proc_id) and
(u.user_id = p.grantee)

Default Variable
In a column, if the type of the default variable is text or string, the query must retrieve the value
of the default variable between quotes. Most DBMS automatically add these quotes to the
value of the default variable. If the DBMS you are using does not add quotes automatically,
you have to specify it in the different queries using the default variable.

For example, in IBM DB2 UDB 8 for OS/390, the following line has been added in
SqlListQuery in order to add quotes to the value of the default variable:

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 147

...
 case(default) when '1' then '''' concat defaultvalue concat ''''
when '5' then '''' concat defaultvalue concat '''' else defaultvalue
end,
...

Table
The Table category is located in the Root > Script > Objects category, and can contain the
following items that define how tables are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for tables:

• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• ConstName
• Create, Drop
• Enable, EnableSynonym
• Header, Footer
• Maxlen, MaxConstLen
• ModifiableAttributes
• Options, DefOptions
• Permission
• ReversedQueries, ReversedStatements
• SqlAttrQuery, SqlListQuery, SqlOptsQuery, SqlPermQuery

For a description of each of these common items, see Common object items on
page 144.

AddTableCheck Specifies a statement for customizing the script to modify the table constraints
within an alter table statement.

Example (SQL Anywhere 10):

alter table [%QUALIFIER%]%TABLE%
 add [constraint %CONSTNAME%]check (%.A:CON-
STRAINT%)

AllowedADT Specifies a list of abstract data types on which a table can be based. This list
populates the Based On field of the table property sheet.

You can assign an abstract data type to a table, the table will use the properties
of the type and the type attributes become table columns.

Example (Oracle 10g):

OBJECT

CHAPTER 4: DBMS Definition Files

148 PowerDesigner

Item Description

AlterTable Footer Specifies a statement to be placed after alter table statements (and
before the terminator).

Example:

AlterTableFooter = /* End of alter statement */

AlterTable Header Specifies a statement to be placed before alter table statements. You
can place an alter table header in your scripts to document or perform initi-
alization logic.

Example:

AlterTableHeader = /* Table name: %TABLE% */

DefineTable Check Specifies a statement for customizing the script of table constraints (checks)
within a create table statement.

Example:

check (%CONSTRAINT%)

DropTable Check Specifies a statement for dropping a table check in an alter table
statement.

Example:

alter table [%QUALIFIER%]%TABLE%
 delete check

InsertIdentityOff Specifies a statement for enabling insertion of data into a table containing an
identity column.

Example (ASE 15):

set identity_insert [%QUALIFIER%]%@OBJTCODE% off

InsertIdentityOn Specifies a statement for disabling insertion of data into a table containing an
identity column.

Example (ASE 15):

set identity_insert [%QUALIFIER%]%@OBJTCODE% on

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 149

Item Description

Rename [modify] Specifies a statement for renaming a table. If not specified, the
modify database process drops the foreign key constraints, creates a new table
with the new name, inserts the rows from the old table in the new table, and
creates the indexes and constraints on the new table using temporary tables.

Example (Oracle 10g):

rename %OLDTABL% to %NEWTABL%
The %OLDTABL% variable is the code of the table before renaming, and the
%NEWTABL% variable is the new code.

SqlChckQuery Specifies a SQL query to reverse engineer table checks.

Example (SQL Anywhere 10):

{OWNER, TABLE, CONSTNAME, CONSTRAINT}
select u.user_name, t.table_name,
 k.constraint_name,
 case(lcase(left(h.check_defn, 5))) when 'check'
then substring(h.check_defn, 6) else h.check_defn
end
from sys.sysconstraint k
 join sys.syscheck h on (h.check_id = k.con-
straint_id)
 join sys.systab t on (t.object_id = k.table_ob-
ject_id)
 join sys.sysuserperms u on (u.user_id = t.creator)
where k.constraint_type = 'T'
 and t.table_type in (1, 3, 4)
[and u.user_name = %.q:OWNER%]
[and t.table_name = %.q:TABLE%]
order by 1, 2, 3

CHAPTER 4: DBMS Definition Files

150 PowerDesigner

Item Description

SqlListRefr Tables Specifies a SQL query used to list the tables referenced by a table.

Example (Oracle 10g):

{OWNER, TABLE, POWNER, PARENT}
select c.owner, c.table_name, r.owner,
 r.table_name
from sys.all_constraints c,
 sys.all_constraints r
where (c.constraint_type = 'R' and c.r_con-
straint_name = r.constraint_name and c.r_owner =
r.owner)
[and c.owner = %.q:SCHEMA%]
[and c.table_name = %.q:TABLE%]
union select c.owner, c.table_name,
 r.owner, r.table_name
from sys.all_constraints c,
 sys.all_constraints r
where (r.constraint_type = 'R' and r.r_con-
straint_name = c.constraint_name and r.r_owner =
c.owner)
[and c.owner = %.q:SCHEMA%]
[and c.table_name = %.q:TABLE%]

SqlListSchema Specifies a query used to retrieve registered schemas in the database. This
item is used with tables of XML type (a reference to an XML document stored
in the database).

When you define an XML table, you need to retrieve the XML documents
registered in the database in order to assign one document to the table, this is
done using the SqlListSchema query.

Example (Oracle 10g):

SELECT schema_url FROM dba_xml_schemas

SqlStatistics Specifies a SQL query to reverse engineer column and table statistics. See
SqlStatistics in Column on page 152.

SqlXMLTable Specifies a sub-query used to improve the performance of SqlAttrQuery (see
Common object items on page 144).

TableComment [generation and reverse] Specifies a statement for adding a table comment. If
not specified, the Comment check box in the Tables and Views tabs of the
Database Generation box is unavailable.

Example (Oracle 10g):

comment on table [%QUALIFIER%]%TABLE% is
%.q:COMMENT%
The %TABLE% variable is the name of the table defined in the List of Tables,
or in the table property sheet. The %COMMENT% variable is the comment
defined in the Comment textbox of the table property sheet.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 151

Item Description

TypeList Specifies a list of types (for example, DBMS: relational, object, XML) for
tables. This list populates the Type list of the table property sheet.

The XML type is to be used with the SqlListSchema item.

UniqConstraint
Name

Specifies whether the same name for index and constraint name may be used
in the same table. The following settings are available:

• Yes – The table constraint and index names must be different, and this will
be tested during model checking

• No - The table constraint and index names can be identical

Column
The Column category is located in the Root > Script > Objects category, and can contain the
following items that define how columns are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for columns:

• Add
• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• ConstName
• Create, Drop
• Enable
• Maxlen, MaxConstLen
• ModifiableAttributes
• Options, DefOptions
• Permission
• ReversedQueries, ReversedStatements
• SqlAttrQuery, SqlListQuery, SqlOptsQuery, SqlPermQuery

For a description of each of these common items, see Common object items on
page 144.

AddColnCheck Specifies a statement for customizing the script for modifying column con-
straints within an alter table statement.

Example (Oracle 10g):

alter table [%QUALIFIER%]%TABLE%
 add [constraint %CONSTNAME%] check (%.A:CONSTRAINT
%)

CHAPTER 4: DBMS Definition Files

152 PowerDesigner

Item Description

AlterTableAdd De-
fault

Specifies a statement for defining the default value of a column in an alter
statement.

Example (SQL Server 2005):

[[constraint %ExtDeftConstName%] default %DEFAULT
%]for %COLUMN%

AltEnableAdd
ColnChk

Specifies if a column check constraint, built from the check parameters of the
column, can or cannot be added in a table using an alter table state-
ment. The following settings are available:

• Yes - AddColnChck can be used to modify the column check con-
straint in an alter table statement.

• No - PowerDesigner copies data to a temporary table before recreating the
table with the new constraints.

See also AddColnChck.

AltEnableTS Copy Enables timestamp columns in insert statements.

Bind Specifies a statement for binding a rule to a column.

Example (ASE 15):

[%R%?[exec]][execute]sp_bindrule [%R%?['[%QUALI-
FIER%]%RULE%'][[%QUALIFIER%]%RULE%]:['[%QUALIFIER
%]%RULE%']], '%TABLE%.%COLUMN%'

CheckNull Specifies whether a column can be null.

Column Comment Specifies a statement for adding a comment to a column.

Example:

comment on column [%QUALIFIER%]%TABLE%.%COLUMN% is
%.q:COMMENT%

DefineColn Check Specifies a statement for customizing the script of column constraints
(checks) within a create table statement. This statement is called if
the create, add, or alter statements contain %CONSTDEFN%.

Example:

[constraint %CONSTNAME%] check (%CONSTRAINT%)

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 153

Item Description

DropColnChck Specifies a statement for dropping a column check in an alter table
statement. This statement is used in the database modification script when the
check parameters have been removed on a column.

If DropColnChck is empty, PowerDesigner copies data to a temporary
table before recreating the table with the new constraints.

Example (SQL Anywhere 10):

alter table [%QUALIFIER%]%TABLE%
 drop constraint %CONSTNAME%

DropColnComp Specifies a statement for dropping a column computed expression in an alter
table statement.

Example (SQL Anywhere 10):

alter table [%QUALIFIER%]%TABLE%
 alter %COLUMN% drop compute

DropDefault Con-
straint

Specifies a statement for dropping a constraint linked to a column defined
with a default value

Example (SQL Server 2005):

[%ExtDeftConstName%?alter table [%QUALIFIER%]%TA-
BLE%
 drop constraint %ExtDeftConstName%]

EnableBindRule Specifies whether business rules may be bound to columns for check param-
eters. The following settings are available:

• Yes - The Create and Bind entry of Rule are generated
• No - The check is generated inside the column Add order

Enable Computed-
Coln

Specifies whether computed columns are permitted.

CHAPTER 4: DBMS Definition Files

154 PowerDesigner

Item Description

EnableDefault Specifies whether predefined default values are permitted. The following
settings are available:

• Yes - The default value (if defined) is generated for columns. It can be
defined in the check parameters for each column. The %DEFAULT%
variable contains the default value. The Default Value check box for
columns must be selected in the Tables & Views tabs of the Database
Generation box

• No - The default value can not be generated, and the Default Value check
box is unavailable.

Example (AS IQ 12.6):

EnableDefault is enabled and the default value for the column employee
function EMPFUNC is Technical Engineer. The generated script is:

create table EMPLOYEE
(
 EMPNUM numeric(5) not null,
 EMP_EMPNUM numeric(5) ,
 DIVNUM numeric(5) not null,
 EMPFNAM char(30) ,
 EMPLNAM char(30) not null,
 EMPFUNC char(30)
 default 'Technical Engineer',
 EMPSAL numeric(8,2) ,
 primary key (EMPNUM)
);

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 155

Item Description

EnableIdentity Specifies whether the Identity keyword is supported. Identity columns are
serial counters maintained by the database (for example Sybase and Microsoft
SQL Server). The following settings are available:

• Yes - Enables the Identity check box in the column property sheet.
• No - The Identity check box is not available.

When the Identity check box is selected, the Identity keyword is generated in
the script after the column data type. An identity column is never null, and so
the Mandatory check box is automatically selected. PowerDesigner ensures
that:

• Only one identity column is defined per table
• A foreign key cannot be an identity column
• The Identity column has an appropriate data type. If the Identity check

box is selected for a column with an unsupported data type, the data type is
changed to numeric. If the data type of an identity column is changed to an
unsupported type, an error is displayed.

Note that, during generation, the %IDENTITY% variable contains the value
"identity" but you can easily change it, if needed, using the following syn-
tax :

[%IDENTITY%?new identity keyword]

EnableNotNull
WithDflt

Specifies whether default values are assigned to columns containing Null
values. The following settings are available:

• Yes - The With Default check box is enabled in the column property sheet.
When it is selected, a default value is assigned to a column when a Null
value is inserted.

• No - The With Default check box is not available.

ModifyColn Chck Specifies a statement for modifying a column check in an alter table
statement. This statement is used in the database modification script when the
check parameters of a column have been modified in the table.

If AddColnChck is empty, PowerDesigner copies data to a temporary
table before recreating the table with the new constraints.

Example (AS IQ 12.6):

alter table [%QUALIFIER%]%TABLE%
 modify %COLUMN% check (%.A:CONSTRAINT%)
The %COLUMN% variable is the name of the column defined in the table
property sheet. The % CONSTRAINT % variable is the check constraint built
from the new check parameters.

AltEnableAddColnChk must be set to YES to allow use of this state-
ment.

CHAPTER 4: DBMS Definition Files

156 PowerDesigner

Item Description

ModifyColn Comp Specifies a statement for modifying a computed expression for a column in an
alter table.

Example (ASA 6):

alter table [%QUALIFIER%]%TABLE%
 alter %COLUMN% set compute (%COMPUTE%)

ModifyColnDflt Specifies a statement for modifying a column default value in an alter
table statement. This statement is used in the database modification script
when the default value of a column has been modified in the table.

If ModifyColnDflt is empty, PowerDesigner copies data to a tempo-
rary table before recreating the table with the new constraints.

Example (ASE 15):

alter table [%QUALIFIER%]%TABLE%
 replace %COLUMN% default %DEFAULT%
The %COLUMN% variable is the name of the column defined in the table
property sheet. The %DEFAULT% variable is the new default value of the
modified column.

ModifyColnNull Specifies a statement for modifying the null/not null status of a column in an
alter table statement.

Example (Oracle 10g):

alter table [%QUALIFIER%]%TABLE%
 modify %COLUMN% %MAND%

ModifyColumn Specifies a statement for modifying a column. This is a different statement
from the alter table statement, and is used in the database modifica-
tion script when the column definition has been modified.

Example (SQL Anywhere 10):

alter table [%QUALIFIER%]%TABLE%
 modify %COLUMN% %DATATYPE% %NOTNULL%

NullRequired Specifies the mandatory status of a column. This item is used with the
NULLNOTNULL column variable, which can take the "null", "not null" or
empty values. For more information, see Working with Null values on page
159.

Rename Specifies a statement for renaming a column within an alter table
statement.

Example (Oracle 10g):

alter table [%QUALIFIER%]%TABLE%
 rename column %OLDCOLN% to %NEWCOLN%

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 157

Item Description

SqlChckQuery Specifies a SQL query to reverse engineer column check parameters. The
result must conform to proper SQL syntax.

Example (SQL Anywhere 10):

{OWNER, TABLE, COLUMN, CONSTNAME, CONSTRAINT}
select u.user_name, t.table_name,
 c.column_name, k.constraint_name,
 case(lcase(left(h.check_defn, 5))) when 'check'
then substring(h.check_defn, 6) else h.check_defn
end
from sys.sysconstraint k
 join sys.syscheck h on (h.check_id = k.con-
straint_id)
 join sys.systab t on (t.object_id = k.table_ob-
ject_id)
 join sys.sysuserperms u on (u.user_id = t.creator)
 join sys.syscolumn c on (c.object_id = k.ref_ob-
ject_id)
where k.constraint_type = 'C'
[and u.user_name=%.q:OWNER%]
[and t.table_name=%.q:TABLE%]
[and c.column_name=%.q:COLUMN%]
order by 1, 2, 3, 4

SqlStatistics Specifies a SQL query to reverse engineer column and table statistics.

Example (ASE 15):

[%ISLONGDTTP%?{ AverageLength }
select [%ISLONGDTTP%?[%ISSTRDTTP%?
avg(char_length(%COLUMN%)):avg(datalength(%COLUMN
%))]:null] as average_length
from [%QUALIFIER%]%TABLE%
:{ NullValuesRate, DistinctValues, AverageLength }
select
[%ISMAND%?null:(count(*) - count(%COLUMN%)) * 100 /
count(*)] as null_values,
[%ISMAND%?null:count(distinct %COLUMN%)] as dis-
tinct_values,
[%ISVARDTTP%?[%ISSTRDTTP%?avg(char_length(%COLUMN
%)):avg(datalength(%COLUMN%))]:null] as aver-
age_length
from [%QUALIFIER%]%TABLE%]

Unbind Specifies a statement for unbinding a rule to a column.

Example (ASE 15):

[%R%?[exec]][execute]sp_unbindrule '%TABLE%.%COL-
UMN%'

CHAPTER 4: DBMS Definition Files

158 PowerDesigner

Working with Null Values
The NullRequired item specifies the mandatory status of a column. This item is used with the
NULLNOTNULL column variable, which can take the "null", "not null" or empty values. The
following combinations are available

When the Column Is Mandatory
"not null" is always generated whether NullRequired is set to True or False as shown in the
following example:

create domain DOMN_MAND char(33) not null;
create domain DOMN_NULL char(33) null;

create table TABLE_1
(
 COLN_MAND_1 char(33) not null,
 COLN_MAND_2 DOMN_MAND not null,
 COLN_MAND_3 DOMN_NULL not null,
);

When the Column Is not Mandatory

• If NullRequired is set to True, "null" is generated. The NullRequired item should be used
in ASE for example, where nullability is a database option, and the "null" or "not null"
keywords are required.
In the following example, all "null" values are generated:

create domain DOMN_MAND char(33) not null;
create domain DOMN_MAND char(33) null;

create table TABLE_1
(
 COLN_NULL_1 char(33) null,
 COLN_NULL_2 DOMN_NULL null,
 COLN_NULL_3 DOMN_MAND null
)

• If NullRequired is set to False, an empty string is generated. However, if a column attached
to a mandatory domain becomes non-mandatory, "null" will be generated.
In the following example, "null" is generated only for COLUMN_NULL3 because this
column uses the mandatory domain, the other columns generate an empty string:

create domain DOMN_MAND char(33) not null;
create domain DOMN_NULL char(33) null;

create table TABLE_1
(
 COLUMN_NULL1 char(33) ,
 COLUMN_NULL2 DOMN_NULL ,
 COLUMN_NULL3 DOMN_MAND null
);

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 159

Index
The Index category is located in the Root > Script > Objects category, and can contain the
following items that define how indexes are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for indexes:

• Add
• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• Create, Drop
• Enable, EnableOwner
• Header, Footer
• Maxlen
• ModifiableAttributes
• Options, DefOptions
• ReversedQueries
• ReversedStatements
• SqlAttrQuery, SqlListQuery, SqlOptsQuery

For a description of each of these common items, see Common object items on
page 144.

AddColIndex Specifies a statement for adding a column in the Create Index state-
ment. This parameter defines each column in the column list of the Create
Index statement.

Example (ASE 15):

%COLUMN%[%ASC%]
%COLUMN% is the code of the column defined in the column list of the
table. %ASC% is ASC (ascending order) or DESC (descending order) de-
pending on the Sort radio button state for the index column.

AlterIgnoreOrder Specifies that changes in the order of the collection should not provoke a
modify database order.

Cluster Specifies the value to be assigned to the Cluster keyword. If this parameter is
empty, the default value of the %CLUSTER% variable is CLUSTER.

CreateBefore Key Controls the generation order of keys and indexes. The following settings are
available:

• Yes – Indexes are generated before keys.
• No – Indexes are generated after keys.

CHAPTER 4: DBMS Definition Files

160 PowerDesigner

Item Description

DefIndexType Specifies the default type of an index.

Example (DB2):

Type2

DefineIndex Column Specifies the column of an index.

EnableAscDesc Enables the Sort property in Index property sheets, which allows sorting in
ascending or descending order. The following settings are available:

• Yes – The Sort property is enabled for indexes, with Ascending selected
by default. The variable %ASC% is calculated, and the ASC or DESC
keyword is generated when creating or modifying the database

• No – Index sorting is not supported.

Example (SQL Anywhere 10):

A primary key index is created on the TASK table, with the PRONUM column
sorted in ascending order and the TSKNAME column sorted in descending
order:

create index IX_TASK on TASK (PRONUM asc, TSKNAME
desc);

EnableCluster Enables the creation of cluster indexes. The following settings are available:

• Yes - The Cluster check box is enabled in index property sheets.
• No – Cluster indexes are not supported.

EnableFunction Enables the creation of function-based indexes. The following settings are
available:

• Yes - You can define expressions for indexes.
• No – Function-based indexes are not supported.

IndexComment Specifies a Statement for adding a comment to an index.

Example (SQL Anywhere 10):

comment on index [%QUALIFIER%]%TABLE%.%INDEX% is
%.q:COMMENT%

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 161

Item Description

IndexType Specifies a list of available index types.

Example (IQ 12.6):

CMP
HG
HNG
LF
WD
DATE
TIME
DTTM

MandIndexType Specifies whether the index type is mandatory for indexes. The following
settings are available:

• Yes – The index type is mandatory.
• No - The index type is not mandatory.

MaxColIndex Specifies the maximum number of columns that may be included in an index.
This value is used during model checking.

SqlSysIndex Query Specifies a SQL query used to list system indexes created by the database.
These indexes are excluded during reverse engineering.

Example (AS IQ 12.6):

{OWNER, TABLE, INDEX, INDEXTYPE}
select u.user_name, t.table_name, i.index_name,
i.index_type
from sysindex i, systable t, sysuserperms u
where t.table_id = i.table_id
and u.user_id = t.creator
and i.index_owner != 'USER'
[and u.user_name=%.q:OWNER%]
[and t.table_name=%.q:TABLE%]
union
select u.user_name, t.table_name, i.index_name,
i.index_type
from sysindex i, systable t, sysuserperms u
where t.table_id = i.table_id
and u.user_id = t.creator
and i.index_type = 'SA'
[and u.user_name=%.q:OWNER%]
[and t.table_name=%.q:TABLE%]

UniqName Specifies whether index names must be unique within the global scope of the
database. The following settings are available:

• Yes – Index names must be unique within the global scope of the database.
• No – Index names must be unique per object

CHAPTER 4: DBMS Definition Files

162 PowerDesigner

Pkey
The Pkey category is located in the Root > Script > Objects category, and can contain the
following items that define how primary keys are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for primary keys:

• Add
• ConstName
• Create, Drop
• Enable
• Options, DefOptions
• ReversedQueries

For a description of each of these common items, see Common object items on
page 144.

EnableCluster Specifies whether clustered constraints are permitted on primary keys.

• Yes - Clustered constraints are permitted.
• No - Clustered constraints are not permitted.

PkAutoIndex Determines whether a Create Index statement is generated for every
Primary key statement. The following settings are available:

• Yes - Automatically generates a primary key index with the primary key
statement. If you select the primary key check box under create index
when generating or modifying a database, the primary key check box of
the create table will automatically be cleared, and vice versa.

• No - Primary key indexes are not automatically generated. Primary key
and create index check boxes can be selected at the same time.

PKeyComment Specifies a statement for adding a primary key comment.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 163

Item Description

UseSpPrimKey Specifies the use of the Sp_primarykey statement to generate primary
keys. For a database that supports the procedure to implement key definition,
you can test the value of the corresponding variable %USE_SP_PKEY% and
choose between the creation key in the table or launching a procedure. The
following settings are available:

• Yes - The Sp_primarykey statement is used to generate primary
keys.

• No - Primary keys are generated separately in an alter table
statement.

Example (ASE 15):

If UseSpPrimKey is enabled the Add entry for Pkey contains:

UseSpPrimKey = YES
Add entry of

[%USE_SP_PKEY%?[execute] sp_primarykey %TABLE%,
%PKEYCOLUMNS%
:alter table [%QUALIFIER%]%TABLE%
 add [constraint %CONSTNAME%] primary key [%IsClus-
tered%] (%PKEYCOLUMNS%)
 [%OPTIONS%]]

Key
The Key category is located in the Root > Script > Objects category, and can contain the
following items that define how keys are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for keys:

• Add
• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• ConstName
• Create, Drop
• Enable
• MaxConstLen
• ModifiableAttributes
• Options, DefOptions
• ReversedQueries, ReversedStatements
• SqlAttrQuery, SqlListQuery, SqlOptsQuery

For a description of each of these common items, see Common object items on
page 144.

CHAPTER 4: DBMS Definition Files

164 PowerDesigner

Item Description

AKeyComment Specifies a statement for adding an alternate key comment.

AllowNullable Coln Specifies whether non-mandatory columns are permitted. The following set-
tings are available:

• Yes - Non mandatory columns are permitted.
• No - Non mandatory column are not permitted.

AlterIgnoreOrder Specifies that changes in the order of the collection should not provoke a
modify database order.

EnableCluster Specifies whether clustered constraints are permitted on alternate keys.

• Yes - Clustered constraints are permitted.
• No - Clustered constraints are not permitted.

SqlAkeyIndex Specifies a reverse-engineering query for obtaining the alternate key indexes
of a table by live connection.

Example (SQL Anywhere 10):

select distinct i.index_name
from sys.sysuserperms u
 join sys.systable t on
 (t.creator=u.user_id)
 join sys.sysindex i on
 (i.table_id=t.table_id)
where i."unique" not in ('Y', 'N')
[and t.table_name = %.q:TABLE%]
[and u.user_name = %.q:SCHEMA%]

UniqConstAuto In-
dex

Determines whether a Create Index statement is generated for every
key statement. The following settings are available:

• Yes - Automatically generates an alternate key index within the alternate
key statement. If you select the alternate key check box under create index
when generating or modifying a database, the alternate key check box of
the create table will automatically be cleared, and vice versa.

• No - Alternate key indexes are not automatically generated. Alternate key
and create index check boxes can be selected at the same time.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 165

Reference
The Reference category is located in the Root > Script > Objects category, and can contain
the following items that define how references are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for references:

• Add
• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• ConstName
• Create, Drop
• Enable
• MaxConstLen
• ModifiableAttributes
• ReversedQueries, ReversedStatements
• SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object items on
page 144.

CheckOn Commit Specifies that referential integrity testing is performed only after the COM-
MIT. Contains the keyword used to specify a reference with the CheckOn-
Commit option.

Example:

CHECK ON COMMIT

DclDelIntegrity Specifies a list of declarative referential integrity constraints allowed for
delete. The list can contain any or all of the following values, which control the
availability of the relevant radio buttons on the Integrity tab of reference
property sheets:

• RESTRICT
• CASCADE
• SET NULL
• SET DEFAULT

CHAPTER 4: DBMS Definition Files

166 PowerDesigner

Item Description

DclUpdIntegrity Specifies a list of declarative referential integrity constraints allowed for
update. The list can contain any or all of the following values, which control
the availability of the relevant radio buttons on the Integrity tab of reference
property sheets:

• RESTRICT
• CASCADE
• SET NULL
• SET DEFAULT

DefineJoin Specifies a statement to define a join for a reference. This is another way of
defining the contents of the create reference statement, and corre-
sponds to the %JOINS% variable.

Usually the create script for a reference uses the %CKEYCOLUMNS%
and %PKEYCOLUMNS% variables, which contain the lists of child and
parent columns separated by commas.

If you use %JOINS%, you can refer to each paired parent and child columns
separately. A loop is executed on Join for each paired parent and child col-
umns, allowing to have a syntax mix of PK and FK.

Example (Access 2000):

P=%PK% F=%FK%

EnableChange Join-
Order

Specifies whether, when a reference is linked to a key as shown in the Joins tab
of reference properties, the auto arrange join order check box and features are
available. The following settings are available:

• Yes - The join order can be established automatically, using the Auto
arrange join order check box. Selecting this check box sorts the list ac-
cording to the key column order. Clearing this check box allows manual
sorting of the join order with the move buttons.

• No - The auto arrange join order property is unavailable.

EnableCluster Specifies whether clustered constraints are permitted on foreign keys.

• Yes - Clustered constraints are permitted.
• No - Clustered constraints are not permitted.

EnablefKey Name Specifies the foreign key role allowed during database generation. The fol-
lowing settings are available:

• Yes - The code of the reference is used as role for the foreign key.
• No - The foreign key role is not allowed.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 167

Item Description

FKAutoIndex Determines whether a Create Index statement is generated for every
foreign key statement. The following settings are available:

• Yes - Automatically generates a foreign key index with the foreign key
statement. If you select the foreign key check box under create index when
generating or modifying a database, the foreign key check box of the
create table will automatically be cleared, and vice versa.

• No – Foreign key indexes are not automatically generated. Foreign key
and create index check boxes can be selected at the same time.

FKeyComment Specifies a statement for adding an alternate key comment.

SqlListChildren
Query

Specifies a SQL query used to list the joins in a reference.

Example (Oracle 10g):

{CKEYCOLUMN, FKEYCOLUMN}
[%ISODBCUSER%?select
 p.column_name, f.column_name
from sys.user_cons_columns f,
 sys.all_cons_columns p
where f.position = p.position
 and f.table_name=%.q:TABLE%
[and p.owner=%.q:POWNER%]
 and p.table_name=%.q:PARENT%
 and f.constraint_name=%.q:FKCONSTRAINT%
 and p.constraint_name=%.q:PKCONSTRAINT%
order by f.position
:select p.column_name, f.column_name
from sys.all_cons_columns f,
 sys.all_cons_columns p
where f.position = p.position
 and f.owner=%.q:SCHEMA%
 and f.table_name=%.q:TABLE%
[and p.owner=%.q:POWNER%]
 and p.table_name=%.q:PARENT%
 and f.constraint_name=%.q:FKCONSTRAINT%
 and p.constraint_name=%.q:PKCONSTRAINT%
order by f.position]

UseSpFornKey Specifies the use of the Sp_foreignkey statement to generate a foreign
key. The following settings are available:

• Yes - The Sp_foreignkey statement is used to create references.

• No - Foreign keys are generated separately in an alter table state-
ment using the Create order of reference.

See also UseSpPrimKey (Pkey on page 163).

CHAPTER 4: DBMS Definition Files

168 PowerDesigner

View
The View category is located in the Root > Script > Objects category, and can contain the
following items that define how views are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for views:

• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• Create, Drop
• Enable, EnableSynonym
• Header, Footer
• ModifiableAttributes
• Options
• Permission
• ReversedQueries, ReversedStatements
• SqlAttrQuery, SqlListQuery, SqlOptsQuery, SqlPermQuery

For a description of each of these common items, see Common object items on
page 144.

EnableIndex Specifies a list of view types for which a view index is available.

Example (Oracle 10g):

MATERIALIZED

SqlListSchema Specifies a query used to retrieve registered schemas in the database. This
item is used with views of XML type (a reference to an XML document stored
in the database).

When you define an XML view, you need to retrieve the XML documents
registered in the database in order to assign one document to the view, this is
done using the SqlListSchema query.

Example (Oracle 10g):

SELECT schema_url FROM dba_xml_schemas

SqlXMLView Specifies a sub-query used to improve the performance of SqlAttrQuery.

TypeList Specifies a list of types (for example, DBMS: relational, object, XML) for
views. This list populates the Type list of the view property sheet.

The XML type is to be used with the SqlListSchema item.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 169

Item Description

ViewCheck Specifies whether the With Check Option check box in the view property
sheet is available. If the check box is selected and the ViewCheck param-
eter is not empty, the value of ViewCheck is generated at the end of the
view select statement and before the terminator.

Example (SQL Anywhere 10):

If ViewCheck is set to with check option, the generated script is:

create view TEST as
select CUSTOMER.CUSNUM, CUSTOMER.CUSNAME, CUSTOM-
ER.CUSTEL
from CUSTOMER
with check option;

ViewComment Specifies a statement for adding a view comment. If this parameter is empty,
the Comment check box in the Views groupbox in the Tables and Views tabs
of the Generate Database box is unavailable.

Example (Oracle 10g):

[%VIEWSTYLE%=view? comment on table [%QUALIFIER%]
%VIEW% is
%.q:COMMENT%]

ViewStyle Specifies a view usage. The value defined is displayed in the Usage list of the
view property sheet.

Example (Oracle 10g):

materialized view

CHAPTER 4: DBMS Definition Files

170 PowerDesigner

Tablespace
The Tablespace category is located in the Root > Script > Objects category, and can contain
the following items that define how tablespaces are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for tablespaces:

• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• Create, Drop
• Enable
• ModifiableAttributes
• Options, DefOptions
• ReversedQueries, ReversedStatements
• SqlAttrQuery, SqlListQuery, SqlOptsQuery

For a description of each of these common items, see Common object items on
page 144.

Tablespace Com-
ment

Specifies a statement for adding a tablespace comment.

Storage
The Storage category is located in the Root > Script > Objects category, and can contain the
following items that define how storages are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for storages:

• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• Create, Drop
• Enable
• ModifiableAttributes
• Options, DefOptions
• ReversedQueries, ReversedStatements
• SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object items on
page 144.

Storage Comment Specifies a statement for adding a storage comment.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 171

Database
The Database category is located in the Root > Script > Objects category, and can contain the
following items that define how databases are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for databases:

• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• Create, Drop
• Enable
• ModifiableAttributes
• Options, DefOptions
• Permission
• ReversedQueries, ReversedStatements
• SqlAttrQuery, SqlListQuery, SqlOptsQuery, SqlPermQuery

For a description of each of these common items, see Common object items on
page 144.

BeforeCreate Data-
base

Controls the order in which databases, tablespaces, and storages are gener-
ated. The following settings are available:

• Yes – [default] Create Tablespace and Create Storage statements are gen-
erated before the Create Database statement.

• No - Create Tablespace and Create Storage statements are generated after
the Create Database statement

CloseDatabase Specifies the command for closing the database. If this parameter is empty, the
Database/Close option on the Options tab of the Generate Database box is
unavailable.

EnableMany Data-
bases

Enables support for multiple databases in the same model.

OpenDatabase Specifies the command for opening the database. If this parameter is empty,
the Database/Open option on the Options tab of the Generate Database box is
unavailable.

Example (ASE 15):

use %DATABASE%
The %DATABASE% variable is the code of the database associated with the
generated model.

CHAPTER 4: DBMS Definition Files

172 PowerDesigner

Domain
The Domain category is located in the Root > Script > Objects category, and can contain the
following items that define how domains are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for domains:

• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• Create, Drop
• Enable, EnableOwner
• Maxlen
• ModifiableAttributes
• ReversedQueries, ReversedStatements
• SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object items on
page 144.

Bind Specifies the syntax for binding a business rule to a domain.

Example (ASE 15):

[%R%?[exec]][execute]sp_bindrule [%R%?['[%QUALI-
FIER%]%RULE%'][[%QUALIFIER%]%RULE%]:['[%QUALIFIER
%]%RULE%']], %DOMAIN%

EnableBindRule Specifies whether business rules may be bound to domains for check param-
eters. The following settings are available:

• Yes - The Create and Bind entry of Rule are generated
• No - The check inside the domain Add order is generated

EnableCheck Specifies whether check parameters are generated.

This item is tested during column generation. If User-defined Type is selected
for columns in the Generation dialog box, and EnableCheck is set to Yes for
domains, then the check parameters are not generated for columns, since the
column is associated with a domain with check parameters. When the checks
on the column diverge from those of the domain, the column checks are
generated.

The following settings are available:

• Yes - Check parameters are generated
• No - Variables linked to check parameters are not evaluated during gen-

eration and reverse

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 173

Item Description

EnableDefault Specifies whether default values are generated. The following settings are
available:

• Yes - Default values defined for domains are generated. The default value
can be defined in the check parameters. The %DEFAULT% variable
contains the default value

• No - Default values are not generated

SqlListDefault
Query

Specifies a SQL query to retrieve and list domain default values in the system
tables during reverse engineering.

UddtComment Specifies a statement for adding a user-defined data type comment.

Unbind Specifies the syntax for unbinding a business rule from a domain.

Example (ASE 15):

[%R%?[exec]][execute]sp_unbindrule %DOMAIN%

Abstract Data Type
The Abstract Data Type category is located in the Root > Script > Objects category, and can
contain the following items that define how abstract data types are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for abstract data types:

• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• Create, Drop
• Enable
• ModifiableAttributes
• Permission
• ReversedQueries, ReversedStatements
• SqlAttrQuery, SqlListQuery, SqlPermQuery

For a description of each of these common items, see Common object items on
page 144.

ADTComment Specifies a statement for adding an abstract data type comment.

AllowedADT Specifies a list of abstract data types which can be used as data types for
abstract data types.

Example (Oracle 10g):

OBJECT
TABLE
VARRAY

CHAPTER 4: DBMS Definition Files

174 PowerDesigner

Item Description

Authorizations Specifies a list of those users able to invoke abstract data types.

CreateBody Specifies a statement for creating an abstract data type body.

Example (Oracle 10g):

create [or replace]type body [%QUALIFIER%]%ADT%
[.O:[as][is]]
 %ADTBODY%
end;

EnableAdtOn Coln Specifies whether abstract data types are enabled for columns. The following
settings are available:

• Yes - Abstract Data Types are added to the list of column types provided
they have the valid type.

• No - Abstract Data Types are not allowed for columns.

EnableAdtOn Domn Specifies whether abstract data types are enabled for domains. The following
settings are available:

• Yes - Abstract Data Types are added to the list of domain types provided
they have the valid type

• No - Abstract Data Types are not allowed for domains

Enable Inheritance Enables inheritance for abstract data types.

Install Specifies a statement for installing a Java class as an abstract data class (in
ASA, abstract data types are installed and removed rather than created and
deleted). This item is equivalent to a create statement.

Example (SQL Anywhere 10):

install JAVA UPDATE from file %.q:FILE%

JavaData Specifies a list of available instantiation mechanisms for SQL Java abstract
data types.

Remove Specifies a statement for installing a Java class as an abstract data class.

Example (SQL Anywhere 10):

remove JAVA class %ADT%

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 175

Abstract Data Type Attribute
The Abstract Data Types Attribute category is located in the Root > Script > Objects
category, and can contain the following items that define how abstract data type attributes are
modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for abstract data type
attributes:

• Add
• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• Create, Drop, Modify
• ModifiableAttributes
• ReversedQueries, ReversedStatements
• SqlListQuery

For a description of each of these common items, see Common object items on
page 144.

AllowedADT Specifies a list of abstract data types which can be used as data types for
abstract data type attributes.

Example (Oracle 10g):

OBJECT
TABLE
VARRAY
If you select the type OBJECT for an abstract data type, an Attributes tab
appears in the abstract data type property sheet, allowing you to specify the
attributes of the object data type.

CHAPTER 4: DBMS Definition Files

176 PowerDesigner

User
The User category is located in the Root > Script > Objects category, and can contain the
following items that define how users are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for users:

• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• Create, Drop
• Enable
• Maxlen
• ModifiableAttributes
• Options, DefOptions
• ReversedQueries, ReversedStatements
• SqlAttrQuery, SqlListQuery, SqlOptsQuery, SqlPermQuery

For a description of each of these common items, see Common object items on
page 144.

UserComment Specifies a statement for adding a user comment.

Rule
The Rule category is located in the Root > Script > Objects category, and can contain the
following items that define how rules are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for rules:

• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• Create, Drop
• Enable
• Maxlen
• ModifiableAttributes
• ReversedQueries, ReversedStatements
• SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object items on
page 144.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 177

Item Description

ColnDefault Name Specifies the name of a default for a column. This item is used with DBMSs
that do not support check parameters on columns. When a column has a
specific default value defined in its check parameters, a name is created for
this default value.

The corresponding variable is %DEFAULTNAME%.

Example (ASE 15):

D_%.19:COLUMN%_%.8:TABLE%
The EMPFUNC column of the EMPLOYEE table has a default value of
Technical Engineer. The D_EMPFUNC_EMPLOYEE column
default name is created:

create default D_EMPFUNC_EMPLOYEE
as 'Technical Engineer'
go
execute sp_bindefault D_EMPFUNC_EMPLOYEE, "EMPLOY-
EE.EMPFUNC"
go

ColnRuleName Specifies the name of a rule for a column. This item is used with DBMSs that
do not support check parameters on columns. When a column has a specific
rule defined in its check parameters, a name is created for this rule.

The corresponding variable is %RULE%.

Example (ASE 15):

R_%.19:COLUMN%_%.8:TABLE%
The TEASPE column of the Team table has a list of values - Industry, Military,
Nuclear, Bank, Marketing - defined in its check parameters:

The R_TEASPE_TEAM rule name is created and associated with the TEA-
SPE column:

create rule R_TEASPE_TEAM
as @TEASPE in ('Industry','Military','Nu-
clear','Bank','Marketing')
go
execute sp_bindrule R_TEASPE_TEAM, "TEAM.TEASPE"
go

MaxDefaultLen Specifies the maximum length that the DBMS supports for the name of the
column Default name

RuleComment Specifies a statement for adding a rule comment.

CHAPTER 4: DBMS Definition Files

178 PowerDesigner

Item Description

UddtDefault Name Specifies the name of a default for a user-defined data type. This item is used
with DBMSs that do not support check parameters on user-defined data types.
When a user-defined data type has a specific default value defined in its check
parameters, a name is created for this default value.

The corresponding variable is %DEFAULTNAME%.

Example (ASE 15):

D_%.28:DOMAIN%
The FunctionList domain has a default value defined in its check
parameters: Technical Engineer. The following SQL script will
generate a default name for that default value:

create default D_FunctionList
as 'Technical Engineer'
go

UddtRuleName Specifies the name of a rule for a user-defined data type. This item is used with
DBMSs that do not support check parameters on user-defined data types.
When a user-defined data type has a specific rule defined in its check param-
eters, a name is created for this rule.

The corresponding variable is %RULE%.

Example (ASE 15):

R_%.28:DOMAIN%
The Domain_speciality domain has to belong to a set of values. This
domain check has been defined in a validation rule. The SQL script will
generate the rule name following the template defined in the item Udd-
tRuleName:

create rule R_Domain_speciality
as (@Domain_speciality in ('Industry','Mili-
tary','Nuclear','Bank','Marketing'))
go
execute sp_bindrule R_Domain_speciality, T_Do-
main_speciality
go

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 179

Procedure
The Procedure category is located in the Root > Script > Objects category, and can contain
the following items that define how procedures are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for procedures:

• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• Create, Drop
• Enable, EnableOwner, EnableSynonym
• Maxlen
• ModifiableAttributes
• Permission
• ReversedQueries, ReversedStatements
• SqlAttrQuery, SqlListQuery, SqlPermQuery

For a description of each of these common items, see Common object items on
page 144.

CreateFunc Specifies the statement for creating a function.

Example (SQL Anywhere 10):

create function [%QUALIFIER%]%FUNC%[%PROCPRMS%?
([%PROCPRMS%])] %TRGDEFN%

CustomFunc Specifies the statement for creating a user-defined function, a form of pro-
cedure that returns a value to the calling environment for use in queries and
other SQL statements.

Example (SQL Anywhere 10):

create function [%QUALIFIER%]%FUNC% (<arg> <type>)
RETURNS <type>
begin
end

CustomProc Specifies the statement for creating a stored procedure.

Example (SQL Anywhere 10):

create procedure [%QUALIFIER%]%PROC% (IN <arg>
<type>)
begin
end

CHAPTER 4: DBMS Definition Files

180 PowerDesigner

Item Description

DropFunc Specifies the statement for dropping a function.

Example (SQL Anywhere 10):

if exists(select 1 from sys.sysprocedure where
proc_name = %.q:FUNC%[and user_name(creator) =
%.q:OWNER%]) then
 drop function [%QUALIFIER%]%FUNC%
end if

EnableFunc Specifies whether functions are allowed. Functions are forms of procedure
that return a value to the calling environment for use in queries and other SQL
statements.

Function Comment Specifies a statement for adding a function comment.

ImplementationType Specifies a list of available procedure template types.

MaxFuncLen Specifies the maximum length of the name of a function.

Procedure Comment Specifies a statement for adding a procedure comment.

Trigger
The Trigger category is located in the Root > Script > Objects category, and can contain the
following items that define how triggers are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for triggers:

• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• Create, Drop
• Enable, EnableOwner
• Maxlen
• ModifiableAttributes
• ReversedQueries, ReversedStatements
• SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object items on
page 144.

DefaultTrigger
Name

Specifies a template to define default trigger names.

Example (SQL Anywhere 10):

%TEMPLATE%_%.L:TABLE%

EnableMulti Trigger Enables the use of multiple triggers per type.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 181

Item Description

Event Specifies a list of trigger event attributes to populate the Event list on the
Definition tab of Trigger property sheets.

Example:

Delete
Insert
Update

EventDelimiter Specifies a character to separate multiple trigger events.

ImplementationType Specifies a list of available trigger template types.

Time Specifies a list of trigger time attributes to populate the Time list on the
Definition tab of Trigger property sheets.

Example:

Before
After

Trigger Comment Specifies a statement for adding a trigger comment.

UniqName Specifies whether trigger names must be unique within the global scope of the
database. The following settings are available:

• Yes – Trigger names must be unique within the global scope of the data-
base.

• No – Trigger names must be unique per object

CHAPTER 4: DBMS Definition Files

182 PowerDesigner

Item Description

UseErrorMsg Table Specifies a macro for accessing trigger error messages from a message table in
your database.

Enables the use of the User-defined radio button on the Error Messages tab of
the Trigger Rebuild dialog box (see Data Modeling > Building Data Models >
Triggers and Procedures > Generating Triggers and Procedures > Creating
User-Defined Error Messages).

If an error number in the trigger script corresponds to an error number in the
message table, the default error message of the .ERROR macro is replaced
your message.

Example (ASE 15):

begin
 select @errno = %ERRNO%,
 @errmsg = %MSGTXT%
 from %MSGTAB%
 where %MSGNO% = %ERRNO%
 goto error
end
Where:

• %ERRNO% - error number parameter to the .ERROR macro
• %ERRMSG% - error message text parameter to the .ERROR macro
• %MSGTAB% - name of the message table
• %MSGNO% - name of the column that stores the error message number
• %MSGTXT% - name of the column that stores the error message text

See also UseErrorMsgText.

UseErrorMsg Text Specifies a macro for accessing trigger error messages from the trigger tem-
plate definition.

Enables the use of the Standard radio button on the Error Messages tab of the
Trigger Rebuild dialog box.

The error number and message defined in the template definition are used.

Example (ASE 15):

begin
 select @errno = %ERRNO%,
 @errmsg = %MSGTXT%
 goto error
end
See also UseErrorMsgTable.

ViewTime Specifies a list of available times available for trigger on view.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 183

DBMS Trigger
The DBMS Trigger category is located in the Root > Script > Objects category, and can
contain the following items that define how DBMS triggers are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for DBMS triggers:

• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• Create, Drop
• Alter, AlterStatementList, AlterDBIgnored
• Enable, EnableOwner
• Header, Footer
• Maxlen
• ModifiableAttributes
• ReversedQueries, ReversedStatements
• SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object items on
page 144.

EventDelimiter Specifies a character to separate multiple trigger events.

Events_scope Specifies a list of trigger event attributes to populate the Event list on the
Definition tab of Trigger property sheets for the selected scope, for example,
schema, database, server.

Scope Specifies a list of available scopes for the DBMS trigger. Each scope must
have an associated Events_scope item.

Time Specifies a list of trigger time attributes to populate the Time list on the
Definition tab of Trigger property sheets.

Example:

Before
After

Trigger Comment Specifies a statement for adding a trigger comment.

CHAPTER 4: DBMS Definition Files

184 PowerDesigner

Join Index
The Join Index category is located in the Root > Script > Objects category, and can contain
the following items that define how join indexes are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for join indexes:

• Add
• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• Create, Drop
• Enable, EnableOwner
• Header, Footer
• Maxlen
• ModifiableAttributes
• Options, DefOptions
• ReversedQueries, ReversedStatements
• SqlAttrQuery, SqlListQuery, SqlOptsQuery

For a description of each of these common items, see Common object items on
page 144.

AddJoin Specifies the SQL statement used to define joins for join indexes.

Example:

Table1.coln1 = Table2.coln2

EnableJidxColn Enables support for attaching multiple columns to a join index. In Oracle 9i,
this is called a bitmap join index.

JoinIndex Comment Specifies a statement for adding a join index comment.

Qualifier
The Qualifier category is located in the Root > Script > Objects category, and can contain the
following items that define how qualifiers are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for qualifiers:

• Enable
• ReversedQueries
• SqlListQuery

For a description of each of these common items, see Common object items on
page 144.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 185

Item Description

Label Specifies a label for <all> in the qualifier selection list.

Sequence
The Sequence category is located in the Root > Script > Objects category, and can contain the
following items that define how sequences are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for sequences:

• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• Create, Drop
• Enable, EnableOwner, EnableSynonym
• Maxlen
• ModifiableAttributes
• Options, DefOptions
• Permission
• ReversedQueries, ReversedStatements
• SqlAttrQuery, SqlListQuery, SqlPermQuery

For a description of each of these common items, see Common object items on
page 144.

Rename Specifies the command for renaming a sequence.

Example (Oracle 10g):

rename %OLDNAME% to %NEWNAME%

Sequence Comment Specifies a statement for adding a sequence comment.

CHAPTER 4: DBMS Definition Files

186 PowerDesigner

Synonym
The Synonym category is located in the Root > Script > Objects category, and can contain the
following items that define how synonyms are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for synonyms:

• Create, Drop
• Enable, EnableSynonym
• Maxlen
• ReversedQueries
• SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object items on
page 144.

EnableAlias Specifies whether synonyms may have a type of alias.

Group
The Group category is located in the Root > Script > Objects category, and can contain the
following items that define how groups are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for groups:

• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• Create, Drop
• Enable
• Maxlen
• ModifiableAttributes
• ReversedQueries, ReversedStatements
• SqlAttrQuery, SqlListQuery, SqlPermQuery

For a description of each of these common items, see Common object items on
page 144.

Bind Specifies a command for adding a user to a group.

Example (SQL Anywhere 10):

grant membership in group %GROUP% to %USER%

Group Comment Specifies a statement for adding a group comment.

ObjectOwner Allows groups to be object owners.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 187

Item Description

SqlListChildren
Query

Specifies a SQL query for listing the members of a group.

Example (ASE 15):

{GROUP ID, MEMBER}
select g.name, u.name
from
 [%CATALOG%.]dbo.sysusers u, [%CATALOG%.]dbo.sysus-
ers g
where
 u.suid > 0 and
 u.gid = g.gid and
 g.gid = g.uid
order by 1, 2

Unbind Specifies a command for removing a user from a group.

Example (SQL Anywhere 10):

revoke membership in group %GROUP% from %USER%

Role
The Role category is located in the Root > Script > Objects category, and can contain the
following items that define how roles are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for roles:

• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• Create, Drop
• Enable
• Maxlen
• ModifiableAttributes
• ReversedQueries, ReversedStatements
• SqlAttrQuery, SqlListQuery, SqlPermQuery

For a description of each of these common items, see Common object items on
page 144.

Bind Specifies a command for adding a role to a user or to another role.

Example (ASE 15):

grant role %ROLE% to %USER%

CHAPTER 4: DBMS Definition Files

188 PowerDesigner

Item Description

SqlListChildren
Query

Specifies a SQL query for listing the members of a group.

Example (ASE 15):

{ ROLE ID, MEMBER }
SELECT r.name, u.name
FROM
 master.dbo.sysloginroles l,
 [%CATALOG%.]dbo.sysroles s,
 [%CATALOG%.]dbo.sysusers u,
 [%CATALOG%.]dbo.sysusers r
where
 l.suid = u.suid
 and s.id =l.srid
 and r.uid = s.lrid

Unbind Specifies a command for removing a role from a user or another role.

DB Package
The DB Package category is located in the Root > Script > Objects category, and can contain
the following items that define how database packages are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for database packages:

• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• Create, Drop
• Enable, EnableSynonym
• Maxlen
• ModifiableAttributes
• Permission
• ReversedQueries, ReversedStatements
• SqlAttrQuery, SqlListQuery, SqlPermQuery

For a description of each of these common items, see Common object items on
page 144.

Authorizations Specifies a list of those users able to invoke database packages.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 189

Item Description

CreateBody Specifies a template for defining the body of the database package. This
statement is used in the extension statement AfterCreate.

Example (Oracle 10g):

create [or replace]package body [%QUALIFIER%]
%DBPACKAGE% [.O:[as][is]][%IsPragma% ? pragma seri-
ally_reusable]
 %DBPACKAGEBODY%
[begin
 %DBPACKAGEINIT%
]end[%DBPACKAGE%];

DB Package Sub-objects
The following categories are located in the Root > Script > Objects category:

• DB Package Procedure
• DB Package Variable
• DB Package Type
• DB Package Cursor
• DB Package Exception
• DB Package Pragma

Each contains many of the following items that define how database packages are modeled for
your DBMS.

Item Description

[Common items] The following common object items may be defined for database packages:

• Add
• ReversedQueries

For a description of each of these common items, see Common object items on
page 144.

DBProcedure Body [database package procedures only] Specifies a template for defining the body
of the package procedure in the Definition tab of its property sheet.

Example (Oracle 10g):

begin
end

CHAPTER 4: DBMS Definition Files

190 PowerDesigner

Item Description

ParameterTypes [database package procedures and cursors only] Specifies the available types
for procedures or cursors.

Example (Oracle 10g: procedure):

in
in nocopy
in out
in out nocopy
out
out nocopy

Parameter
The Parameter category is located in the Root > Script > Objects category, and can contain
the following items that define how parameters are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for database packages:

• Add
• ReversedQueries

For a description of each of these common items, see Common object items on
page 144.

Privilege
The Privilege category is located in the Root > Script > Objects category, and can contain the
following items that define how privileges are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for privileges:

• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• Create, Drop
• Enable
• ModifiableAttributes
• ReversedQueries, ReversedStatements

For a description of each of these common items, see Common object items on
page 144.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 191

Item Description

GrantOption Specifies the grant option for a privileges statement.

Example (Oracle 10g):

with admin option

RevokeInherited Allows you to revoke inherited privileges from groups and roles.

RevokeOption Specifies revoke option for a privileges statement.

System Specifies a list of available system privileges.

Example (ASE 15):

CREATE DATABASE
CREATE DEFAULT
CREATE PROCEDURE
CREATE TRIGGER
CREATE RULE
CREATE TABLE
CREATE VIEW

Permission
The Permission category is located in the Root > Script > Objects category, and can contain
the following items that define how permissions are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for permissions:

• Create, Drop
• Enable
• ReversedQueries
• SqlListQuery

For a description of each of these common items, see Common object items on
page 144.

GrantOption Specifies the grant option for a permissions statement.

Example (ASE 15):

with grant option

RevokeInherited Allows you to revoke inherited permissions from groups and roles.

RevokeOption Specifies the revoke option for a permissions statement.

Example (ASE 15):

cascade

CHAPTER 4: DBMS Definition Files

192 PowerDesigner

Default
The Default category is located in the Root > Script > Objects category, and can contain the
following items that define how defaults are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for defaults:

• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• Create, Drop
• Enable, EnableOwner
• Maxlen
• ModifiableAttributes
• ReversedQueries, ReversedStatements
• SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object items on
page 144.

Bind Specifies the command for binding a default object to a domain or a column.

When a domain or a column use a default object, a binddefault statement is
generated after the domain or table creation statement. In the following ex-
ample, column Address in table Customer uses default object CITYDFLT:

create table CUSTOMER (
 ADDRESS char(10) null
)
sp_bindefault CITYDFLT, 'CUSTOMER.ADDRESS'
If the domain or column use a default value directly typed in the Default list,
then the default value is declared in the column creation line:

ADDRESS char(10) default 'StdAddr' null

PublicOwner Enables PUBLIC to own public synonyms.

Unbind Specifies the command for unbinding a default object from a domain or a
column.

Example (ASE 15):

[%R%?[exec]][execute]sp_unbindefault
%.q:BOUND_OBJECT%

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 193

Web Service and Web Operation
The Web Service and Web Operation categories are located in the Root > Script > Objects
category, and can contain the following items that define how web services and web
operations are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for web services and web
operations:

• AfterCreate, AfterDrop, AfterModify
• Alter
• BeforeCreate, BeforeDrop, BeforeModify
• Create, Drop
• Enable, EnableOwner
• Header, Footer
• MaxConstLen (web operations only)
• Maxlen
• ModifiableAttributes
• ReversedQueries, ReversedStatements
• SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object items on
page 144.

Enable Namespace Specifies whether namespaces are supported.

EnableSecurity Specifies whether security options are supported.

OperationType List [web operation only] Specifies a list of web service operation types.

Example (DB2 UDB 8.x CS):

query
update
storeXML
retrieveXML
call

ServiceTypeList [web service only] Specifies a list of web service types.

Example (SQL Anywhere 10):

RAW
HTML
XML
DISH

UniqName Specifies whether web service operation names must be unique in the data-
base.

CHAPTER 4: DBMS Definition Files

194 PowerDesigner

Item Description

WebService Com-
ment/ WebOperation
Comment

Specifies the syntax for adding a comment to web service or web service
operation.

Web Parameter
The Web Parameter category is located in the Root > Script > Objects category, and can
contain the following items that define how web parameters are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for web parameters:

• Add
• Enable

For a description of each of these common items, see Common object items on
page 144.

EnableDefault Allows default values for web service parameters.

ParameterDttp List Specifies a list of data types that may be used as web service parameters.

Result Column
The Result Column category are located in the Root > Script > Objects category, and can
contain the following items that define how web services and web operations are modeled for
your DBMS.

Item Description

ResultColumn
DttpList

Specifies a list of data types that may be used for result columns.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 195

Dimension
The Dimension category is located in the Root > Script > Objects category, and can contain
the following items that define how dimensions are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for dimensions:

• AfterCreate, AfterDrop, AfterModify
• Alter
• BeforeCreate, BeforeDrop, BeforeModify
• Create, Drop
• Enable
• Header, Footer
• Maxlen
• ReversedQueries
• SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object items on
page 144.

AddAttr Hierarchy Specifies the syntax for defining a list of hierarchy attributes.

Example (Oracle 10g):

child of %DIMNATTRHIER%

AddAttribute Specifies the syntax for defining an attribute.

Example (Oracle 10g):

attribute %DIMNATTR% determines [.O:[(%DIMNDEPCOLN-
LIST%)][%DIMNDEPCOLN%]]

AddHierarchy Specifies the syntax for defining a dimension hierarchy.

Example (Oracle 10g):

hierarchy %DIMNHIER% (
%DIMNATTRHIERFIRST% %DIMNATTRHIERLIST%)

AddJoin Hierarchy Specifies the syntax for defining a list of joins for hierarchy attributes.

Example (Oracle 10g):

join key [.O:[(%DIMNKEYLIST%)][%DIMNKEYLIST%]] references
%DIMNPARENTLEVEL%

CHAPTER 4: DBMS Definition Files

196 PowerDesigner

Item Description

AddLevel Specifies the syntax for dimension level (attribute).

Example (Oracle 10g):

level %DIMNATTR% is [.O:[(%DIMNCOLNLIST%)][%DIMNTABL%.
%DIMNCOLN%]]

Extended Object
The Extended Object category is located in the Root > Script > Objects category, and can
contain the following items that define how extended objects are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for extended objects:

• AfterCreate, AfterDrop, AfterModify
• BeforeCreate, BeforeDrop, BeforeModify
• Create, Drop
• EnableSynonym
• Header, Footer
• ModifiableAttributes
• ReversedQueries, ReversedStatements
• SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object items on
page 144.

AlterStatement List Specifies a list of text items representing statements modifying the corre-
sponding attributes

Comment Specifies the syntax for adding a comment to an extended object.

Script/Data Type Category (DBMS)
The Data Type category provides mappings to allow PowerDesigner to handle DBMS-
specific data types correctly.

The following variables are used in many of the entries:

• %n - Length of the data type

• %s - Size of the data type

• %p - Precision of the data type

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 197

Item Description

AmcdAmcd-
Type

Lists mappings to convert from specialized data types (such as XML, IVL, ME-
DIA, etc) to standard PowerDesigner data types. These mappings are used to help
conversion from one DBMS to another, when the new DBMS does not support
one or more of these specialized types. For example, if the XML data type is not
supported, TXT is used.

AmcdDataType Lists mappings to convert from PowerDesigner (Internal) data types to DBMS
(Physical Model) data types.

These mappings are used during CDM to PDM generation and with the Change
Current DBMS command.

Examples (ASE 15):

• The PowerDesigner A%n datatype is converted to a char(%n) for ASE
15.

• The PowerDesigner VA%n datatype is converted to a varchar(%n) for
ASE 15.

PhysDataType Lists mappings to convert from DBMS (Physical Model) data types to Power-
Designer (Internal) data types.

These mappings are used during PDM to CDM generation and with the Change
Current DBMS command.

Examples (ASE 15):

• The ASE 15 sysname datatype is converted to a VA30 for PowerDesigner.

• The ASE 15 integer datatype is converted to a I for PowerDesigner.

PhysDttpSize Lists the storage sizes of DBMS data types. These values are used when estimat-
ing the size of a database.

Examples (ASE 15):

• The ASE 15 smallmoney requires 8 bytes of space.

• The ASE 15 smalldatetime requires 4 bytes of space.

OdbcPhysData
Type

Lists mappings to convert from live database (ODBC) data types to DBMS
(Physical Model) data types during database reverse engineering.

These mappings are used when data types are stored differently in the database
(often due to the inclusion of a default size) than in the DBMS notation.

Examples (ASE 15):

• A float(8) in an ASE 15 database is reversed as a float.

• A decimal(30,6) in an ASE 15 database is reversed as a decimal.

CHAPTER 4: DBMS Definition Files

198 PowerDesigner

Item Description

PhysOdbcData
Type

Lists mappings of DBMS (Physical Model) data types to database (ODBC) data
types for use when updating and reverse engineering a database.

These mappings are used when data types that are functionally equivalent but
different to those specified in the PDM are found in an existing database to avoid
the display of unnecessary and irrelevant differences in the Merge dialog.

Examples (ASE 15):

• A unichar is treated as equivalent to a unichar(1) in an ASE 15
database.

• A float(1) is treated as equivalent to a float(4) in an ASE 15
database.

PhysLogADT
Type

Lists mappings to convert from DBMS (Physical Model) abstract data types to
PowerDesigner (Internal) abstract data types.

These mappings are used to populate the Type field and display the appropriate
properties in abstract data type property sheets and with the Change Current
DBMS command.

Examples (Oracle 11g):

• The Oracle 11g VARRAY abstract data type is converted to an Array for
PowerDesigner.

• The Oracle 11g SQLJ_OBJECT datatype is converted to a JavaObject
for PowerDesigner.

LogPhysADT
Type

Lists mappings to convert from PowerDesigner (Internal) abstract data types to
DBMS (Physical Model) abstract data types.

These mappings are used with the Change Current DBMS command.

Examples (Oracle 11g):

• The PowerDesigner List abstract data type is converted to a TABLE for
Oracle 11g.

• The PowerDesigner Object abstract data type is converted to an OBJECT
for Oracle 11g.

AllowedADT Lists the abstract data types that may be used as types for columns and domains in
the DBMS.

Example (ASE 15):

• JAVA

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 199

Item Description

HostDataType Lists mappings to convert from DBMS data types (Physical Model) to data types
permitted as procedure parameters (Trigger).

These mappings are used to populate the Data type field in ADT procedure
parameter property sheets

Examples (Oracle 11g):

• The Oracle 11g DEC data type is converted to a number.

• The Oracle 11g SMALLINT datatype is converted to an integer.

Profile Category (DBMS)
The Profile category is used to extend standard PowerDesigner objects. You can refine the
definition, behavior, and display of existing objects by creating extended attributes,
stereotypes, criteria, forms, symbols, generated files, etc, and add new objects by creating and
stereotyping extended objects and sub-objects.

You can add extensions in either:

• your DBMS definition file - you should save a backup of this file before editing it.
• a separate extension file - which you attach to your model.

For detailed information about working with profiles, including adding extended attributes
and objects, see Chapter 2, Extension Files on page 11.

Using Extended Attributes During Generation
Extended attributes can be taken into account during generation. Each extended attribute
value can be used as a variable that can be referenced in the scripts defined in the Script
category.

Some DBMSs include predefined extended attributes. For example in PostgreSQL, domains
include default extended attributes used for the creation of user-defined data types.

CHAPTER 4: DBMS Definition Files

200 PowerDesigner

You can create as many extended attributes as you need, for each DBMS supported object.

Note: PowerDesigner variable names are case sensitive. The variable name must be an exact
match of the extended attribute name.

Example
For example, in DB2 UDB 7 OS/390, the extended attribute WhereNotNull allows you to
add a clause enforcing the uniqueness of index names if they are not null.

In the Create index order, WhereNotNull is evaluated as follows:

create [%INDEXTYPE%][%UNIQUE% [%WhereNotNull%?where not
null]]index [%QUALIFIER%]%INDEX% on [%TABLQUALIFIER%]%TABLE% (
 %CIDXLIST%
)
[%OPTIONS%]

If the index name is unique, and if you set the type of the WhereNotNull extended attribute
to True, the "where not null" clause is inserted in the script.

In the SqlListQuery item:

{OWNER, TABLE, INDEX, INDEXTYPE, UNIQUE, INDEXKEY, CLUSTER,
WhereNotNull}

select
 tbcreator,
 tbname,

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 201

 name,
 case indextype when '2' then 'type 2' else 'type 1' end,
 case uniquerule when 'D' then '' else 'unique' end,
 case uniquerule when 'P' then 'primary' when 'U' then 'unique' else
'' end,
 case clustering when 'Y' then 'cluster' else '' end,
 case uniquerule when 'N' then 'TRUE' else 'FALSE' end
from
 sysibm.sysindexes
where 1=1
[and tbname=%.q:TABLE%]
[and tbcreator=%.q:OWNER%]
[and dbname=%.q:CATALOG%]
order by
 1 ,2 ,3

Modifying the Estimate Database Size Mechanism
By default, the Estimate Database Size mechanism uses standard algorithms to calculate the
sizes of tablespaces, tables, columns, and indexes and adds them together to provide an
indication of the size that the database will require. You can override the algorithm for one or
more of these types of objects or include additional objects in the calculation by adding the
GetEstimatedSize event handler to the appropriate object in the Profile category and
entering a script to calculate its size.

1. Select Database > Edit Current DBMS to open the DBMS definition file, and expand the
profile category.

2. Right-click the metaclass for which you want to provide a script to calculate the object
size, select New > Event Handler to open a selection dialog, select the
GetEstimatedSize event handler, and then click OK to add it under the metaclass.

3. Click the Event Handler Script tab in the right pane and enter appropriate code to
calculate the size of your chosen object.

CHAPTER 4: DBMS Definition Files

202 PowerDesigner

In the following example, we look at extracts of a GetEstimatedSize event handler
defined on the Table metaclass to estimate the size of the database by calculating the size
of each table as the total size of all its columns plus the total size of all its indexes.

Note: For examples of the GetEstimatedSize event handler in use on the Table and
other metaclasses, see the Sybase IQ v15.2 and HP Neoview R2.4 DBMS definition files.

In this first extract from the script, the GetEstimatedSize function opens and the size
of each table is obtained by looping through the size of each of its columns. The actual
work of calculating the column size is done by the line:
ColSize = C.GetEstimatedSize(message, false)

, which calls the GetEstimatedSize event handler on the Column metaclass (see
Calling the GetEstimatedSize Event Handler on Another Metaclass on page 205):
Function %GetEstimatedSize%(obj, ByRef message)

' First compute global database setting variable we will need.

' Get table size and keep column size for future use
 Dim ColSizes, TblSize, ColSize, C
 Set ColSizes = CreateObject("Scripting.Dictionary")

 TblSize = 0 ' May be changed to take into account table
definition initial size.

 for each C in obj.Columns

 ' Start browsing table columns and use event handler defined
on column metaclass (if it exists).
 ColSize = C.GetEstimatedSize(message, false)

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 203

 ' Store column size in the map for future use in indexes.
 ColSizes.Add C, ColSize

 ' Increase the table global size.
 TblSize = TblSize + ColSize
 next
 Dim RawDataSize
 RawDataSize = BlockSize * int(obj.Number * TblSize / BlockSize)
 ' At this point, the RawDataSize is the size of table in
database.

Next the size of the table indexes is calculated directly in the script without making a call to
an event handler on the Index metaclass, the line outputting index sizes is formatted and
the size of the indexes added to the total database size:
' Now calculate index sizes. Set up variables to store indexes
sizes.
 Dim X, XMsg, XDataSize
 XMsg = ""
 for each X in obj.Indexes
 XDataSize = 0
 ' Browsing index columns and get their size added in
XDataSize
 For each C in X.IndexColumns
 XDataSize = XDataSize + ColSizes.Item(C.Column)
 next
 XDataSize = BlockSize * int(obj.Number * XDataSize /
BlockSize)

 ' Format the display message in order to get size
information in output and result list.
 XMsg = XMsg & CStr(XDataSize) & "|" & X.ObjectID & vbCrLf

 ' Add the index size to table size.
 RawDataSize = RawDataSize + XDataSize
 next

Finally the size information is formatted for output (see Formatting the Database Size
Estimation Output on page 205). Each table is printed on a separate line in both the Output
and Result List windows, and its total size including all columns and indexes is given:
 ' set the global message to table size and all indexes
(separate with carriage return).
 message = CStr(RawDataSize) & "||" & obj.ShortDescription &
vbCrLf & XMsg

 %GetEstimatedSize% = RawDataSize

End Function

Once all the tables have been processed, PowerDesigner calculates and prints the total
estimated size of the database.

CHAPTER 4: DBMS Definition Files

204 PowerDesigner

Calling the GetEstimatedSize Event Handler on Another Metaclass
You can call a GetEstimatedSize event handler defined on another metaclass to use this
size in your calculation. For example, you may define GetEstimatedSize on the Table
metaclass, and make a call to GetEstimatedSize defined on the Column and Index
metaclasses to use these sizes to calculate the total size of the table.

The syntax of the function is as follows, where message is the name of your variable
containing the results to print:
GetEstimatedSize(message[,true|false])

In general, we recommend that you use the function in the folllowing form:
GetEstimatedSize(message, false)

The use of the false parameter (which is the default, but which is shown here for clarity)
means that we call the GetEstimatedSize event handler on the other metaclass, and use
the default mechanism only if the event handler is not available.

Setting the parameter to true will force the use of the default mechanism for calculating the
size of objects (only possible for tables, columns, and join indexes):
GetEstimatedSize(message, true)

Formatting the Database Size Estimation Output
You can format the output for your database size estimation. Sub-objects (such as columns and
indexes) contained in a table are offset, and you can print additional information after the
total.

The syntax for the output is as follows:
[object-size][:compartment]|[ObjectID][|label]

where:

• object-size - is the size of the object.
• compartment - is a one-digit number, which indicates that the size of the object should be

excluded from the total size of the database and should be printed after the database size
has been calculated. For example, you may include the size of individual tables in your
calculation of the database size and print the sizes of tablespaces separately after the
calculation.

• ObjectID - is unneccessary for objects, such as tables, but required for sub-objects if
you want to print them to the Result List.

• label - is any appropriate identifying string, and is generally set to
ShortDescription, which prints the type and name of the selected object.

For example, in the event handler defined on the Table metaclass (having calculated and
stored the size of a table, the size of all the columns of type LONG contained in the table, and
the size of each index in the table), we create a message variable to print this information. We
begin by printing a line giving the size of a table:

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 205

message = CStr(TableSize) & "||" & objTable.ShortDescription & vbCrLf

We then add a line printing the total size of all the columns of type LONG in the table:
message = message & CStr(LongSize) & "||Columns of type LONG" &
vbCrLf

We then add a line printing the size of each index in the table:
message = message & CStr(IndexSize) & "|" & objIndex.ObjectID &
vbCrLf

In the event handler defined on the Tablespace metaclass (having calculated and stored the
size of a tablespace), we create a message variable to print this information after the database
size calculation has been printed.

We begin by overriding the default introduction to this second compartment:
message = ":1||Tables are allocated to the following tablespaces:"

We then add a line printing the size of each tablespace in the table
message = message + CStr(tablespaceSize) & ":1||" &
objTablespace.ShortDescription

The result gives the following output:
Estimate of the size of the Database "Sales"...

 Number Estimated size Object
------- -------------- ------------------------------------

 10,000 6096 KB Table 'Invoices'
 Columns of type LONG (35 KB)
 Index 'customerFKeyIndex' (976 KB)
 Index 'descriptionIndex' (1976 KB)

 [...etc...]

 Tables are allocated to the following tablespaces:

 Estimated size Object
 -------------- ------------------------------------
 6096 KB Tablespace 'mainStorage'

 [...etc...]

ODBC Category (DBMS)
The ODBC category contains items for live database generation when the DBMS does not
support the generation statements defined in the Script category.

For example, data exchange between PowerDesigner and MSACCESS works with VB scripts
and not SQL, this is the reason why these statements are located in the ODBC category. You

CHAPTER 4: DBMS Definition Files

206 PowerDesigner

have to use a special program (access.mdb) to convert these scripts into MSACCESS database
objects.

Physical Options (DBMS)
For some DBMSs, additional options are used to specify how an object is optimized or stored
in a database. In PowerDesigner, these options are called physical options and are displayed
on the Physical Options and Physical Options (Common) tabs of object property sheets.

To appear on the Physical Options tab, an option must be defined in the Script\Objects
\object\Options item (see Common Object Items on page 144). Default values can be
stored in Options or in DefOptions. To appear on the Physical Options (Common) tab
(or any other property sheet tab), the physical option must, additionally be associated with an
extended attribute (see Adding DBMS Physical Options to Your Forms on page 210).

During generation, the options selected in the model for each object are stored as a SQL string
in the %OPTIONS% variable, which must appear at the end of the Create statement of the
object, and cannot be followed by anything else. The following example uses the correct
syntax:

create table
[%OPTIONS%]

During reverse engineering by script, the section of the SQL query determined as being the
physical options is stored in %OPTIONS%, and will then be parsed when required by an
object property sheet.

During live database reverse engineering, the SqlOptsQuery SQL statement is executed to
retrieve the physical options which is stored in %OPTIONS% to be parsed when required by
an object property sheet.

You can use PowerDesigner variables (see PDM Variables and Macros on page 212) to set
physical options for an object. For example, in Oracle, you can set the following variable for a
cluster to make the cluster take the same name as the table.

Cluster %TABLE%

For information about setting physical options, see Data Modeling > Building Data Models >
Physical Implementation > Physical Options.

Simple Physical Options
Simple physical options must contain a name, and may contain a %d, %s, or other variable to
let the user specify a value, and keywords to specify permitted values and defaults.

Simple physical options are specified on a single line using the following syntax:

name [=] %s|%d|%variable% [: keywords]

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 207

Everything entered before the colon is generated in scripts. The name is required by
PowerDesigner, but you can place it between carets (<name>) if you need to exclude it from
the final script. The %d or %s variables require a numeric or string value, and you can also use a
PowerDesigner variable or GTL snippet.

Physical Option Generates As

max_rows_per_page=%d max_rows_per_page=value
for instance %s for instance string
<Partition-name> %s name

You can insert a colon followed by comma-separated keywords to control your options:

Keyword Value and result

catego-
ry=meta-
class

Allows the user to associate the object with an object of the specified kind. The
following settings are available:

• tablespace
• storage

Note: In Oracle, the storage composite physical option is used as a
template to define all the storage values in a storage entry to avoid having to
set values independently each time you need to re-use them same values in a
storage clause. For this reason, the Oracle physical option does not include the
storage name (%s).

• qualified metaclass collection - For example: Model.Tables or Ta-
ble.Columns

on %s : category=storage
{

list=val-
ue|value

Specifies a list of pipe-separated values permitted for the option.

de-
fault=val-
ue

Specifies a default value for the option.

dquo-
ted=yes and
squo-
ted=yes

Specifies that the value is enclosed in double or single quotes.

CHAPTER 4: DBMS Definition Files

208 PowerDesigner

Keyword Value and result

multi-
ple=yes

Specifies that the option is displayed with a <*> suffix in the left pane of the
Physical Options tab and can be added to the right pane as many times as nec-
essary. If the option is selected in the right pane and you click the same option in
the left pane to add it, a message box asks you if you want to reuse the selected
option. If you click No, a second instance of the option is added to the right pane.

enable-
dbpre-
fix=yes

Specifies that the database name is inserted as a prefix (see tablespace options in
DB2 OS/390).

pre-
vmand=yes
and next-
mand=yes

Specifies that the previous or next physical option is required for the present
option and that if the present option is added to the right pane, then the previous or
next option is also added.

Examples

Physical Option Generates As

ccsid %s : list=ascii|ebcdic|
unicode, default=ascii

ccsid ascii

table=%s : category=Model.Ta-
bles, dquoted=yes

table="table"

<flashback_archive> %s string

Composite Physical Options
Composite physical options are specified over multiple lines, and contain one or more
dependent options. If you add the composite option to the right pane of the Physical Options
tab, all the dependant options are added with it. If you add a dependant option, the composite
option is added as well to contain it.

Composite physical options are defined with the following syntax:

name [=] [%s|%d|%variable%] : composite=yes[, keywords]
{
sub-option
[sub-option...]
}

Everything entered before the colon is generated in scripts. The name is required by
PowerDesigner, but you can place it between carets (<name>) if you need to exclude it from
the final script. The %d or %s variables require a numeric or string value, and you can also use a
PowerDesigner variable or GTL snippet.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 209

The composite=yes keyword is required for composite options, and can be used in
conjunction with any of the simple physical option keywords or any of the following:

Keyword Value and result

compo-
site=yes

Specifies that the option is a composite option containing dependant options
surround by curly braces.

separa-
tor=yes

Specifies that the dependant options are separated by commas.

parenthe-
sis=yes

Specifies that the ensemble of dependant objects are contained between paren-
theses.

chldmand=ye
s

Specifies that at least one of the dependant options must be set.

Examples

Physical Option Generates As

<list> : composite=yes, multi-
ple=yes
 {
 <frag-expression> %s
 in %s : category=storage
 }

 frag-expression
 in storage

frag-expression2
 in storage2
etc

<using_block> : compo-
site=yes,parenthesis=yes
{
 using vcat %s
 using stogroup %s : catego-
ry=storage, composite=yes
 {
 priqty %d : default=12
 secqty %d
 erase %s : default=no, list=yes
| no
 }

(using vcat string
 using stogroup storage
 priqty value
 secqty value
 erase no)

Adding DBMS Physical Options to Your Forms
Many DBMSs use physical options as part of the definition of their objects. The most
commonly-used physical options are displayed on a form, Physical Options (Common),

CHAPTER 4: DBMS Definition Files

210 PowerDesigner

defined under the appropriate metaclass. You can edit this form, or add physical options to
your own forms.

Note: PowerDesigner displays all of the available options for an object (defined at Script/
Objects/object/Options category) on the Physical Options tab (see Physical
Options (DBMS) on page 207).

For a physical option to be displayed in a form, it must be associated with an extended attribute
with the type physical option.

1. Right-click the metaclass and select New Extended Attribute from Physical Options to
open the Select Physical Options dialog:

Note: This dialog will be empty if no physical options are defined at Script/
Objects/object/Options.

2. Select the physical option required and click OK to create an extended attribute associated
with it.

3. Specify any other appropriate properties.

4. Select the form in which you want to insert the physical option and click the Add Attribute
tool to insert it as a control (see Adding Extended Attributes and Other Controls to Your
Form on page 57).

Note: To change the physical option associated with an extended attribute, click the ellipsis to
the right of the Physical Options field in the Extended Attribute property sheet.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 211

PDM Variables and Macros
The SQL queries recorded in the DBMS definition file items make use of various PDM
variables, which are written between percent signs. These variables are replaced with values
from your model when the scripts are generated, and are evaluated to create PowerDesigner
objects during reverse engineering.

For example, in the following query, the variable %TABLE% will be replaced by the code of the
table being created:
CreateTable = create table %TABLE%

Note: You can use these variables freely in your own queries, but you cannot change the
method of their evaluation (ie, %TABLE% can only ever evaluate to the code of the table). You
can alternately, access any object properties using GTL (see Chapter 5, Customizing
Generation with GTL on page 245) and the public names available through the
PowerDesigner metamodel (see Chapter 8, The PowerDesigner Public Metamodel on page
343).

The evaluation of variables depends on the parameters and context. For example, the
%COLUMN% variable cannot be used in a Create Tablespace query, because it is only
valid in a column context.

These variables can be used for all objects supporting these concepts:

Variable Comment

%COMMENT% Comment of Object or its name (if no comment defined)

%OWNER% Generated code of User owning Object or its parent. You should not use
this variable for queries on objects listed in live database reverse dialog
boxes, because their owner is not defined yet

%DBPREFIX% Database prefix of objects (name of Database + '.' if database defined)

%QUALIFIER% Whole object qualifier (database prefix + owner prefix)

%OPTIONS% SQL text defining physical options for Object

%OPTIONSEX% The parsed SQL text defining physical options of the object

%CONSTNAME% Constraint name of Object

%CONSTRAINT% Constraint SQL body of Object. Ex: (A <= 0) AND (A >= 10)

%CONSTDEFN% Column constraint definition. Ex: constraint C1 checks (A>=0) AND
(A<=10)

%RULES% Concatenation of Server expression of business rules associated with
Object

CHAPTER 4: DBMS Definition Files

212 PowerDesigner

Variable Comment

%NAMEISCODE% True if the object (table, column, index) name and code are identical
(AS 400 specific)

%TABLQUALIFIER% Parent table qualifier (database prefix + owner prefix)

%TABLOWNER% The generated code of the user owning the parent table

Testing Variable Values with the [] Operators
You can use square brackets [] to test for the existence or value of a variable.

You can use square brackets to

• Include optional strings and variables, or lists of strings and variables in the syntax of SQL
statements: [%variable%]

• Test the value of a variable and insert or reconsider a value depending of the result of the
test: [%variable%? true : false]

• Test the content of a variable [%variable%=constant? true : false]

Variable Generation

[%variable%] Tests for the existence of the variable.

Generation: Generated only if variable exists and is not assigned NO
or FALSE.

Reverse: Evaluated if the parser detects a SQL statement corre-
sponding to the variable and it is not assigned NO or FALSE.

[%variable%?
true : false]

Tests for the existence of the variable and allows conditional output.

Generation: true is generated if variable exists and is not assigned
NO or FALSE. Otherwise, false is generated.

Reverse: If the parser detects variable and it is not assigned NO or
FALSE, true is reversed. Otherwise, false is reversed. variable is set
to True or False as appropriate.

[%variable%=con-
stant? true :
false]

Tests the value of the variable and allows conditional output.

Generation: If variable equals constant, true is generated. Otherwise,
false is generated.

Reverse: If the parser detects thatvariable equals constant, true is
reversed. Otherwise, false is reversed.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 213

Variable Generation

[.Z: [item1]
[item2]...]

Specifies that the items do not have a significant order.

Generation: .Z is ignored

Reverse: The items can be reversed in any order they are encoun-
tered.

[.O: [item1]
[item2]...]

Specifies that the items are synonyms, only one of which should be
output.

Generation: Only the first item listed is generated.

Reverse: The reverse parser must find one of the items to validate the
full statement.

Examples

• [%OPTIONS%]

If %OPTIONS% (physical options for the objects visible in the object property sheet) exists
and is not assigned NO or FALSE, it is generated to the value of %OPTIONS%.

• [default %DEFAULT%]

If the statement default 10 is found during reverse engineering, %DEFAULT% is
assigned the value 10, but the statement is not mandatory and reversing continues even if it
is absent. In script generation, if %DEFAULT% has a value of 10, it is generated as
default 10 otherwise nothing is generated for the block.

• [%MAND%? not null : null]

If %MAND% is evaluated as true or contains a value other than False or NO, it is generated
as not null. Otherwise it is generated as null.

• [%DELCONST%=RESTRICT?:[on delete %DELCONST%]]

If %DELCONST% contains the value RESTRICT, it is generated as on delete
RESTRICT.

• %COLUMN% %DATATYPE%[.Z: [%NOTNULL%][%DEFAULT%]]

Because of the presence of the .Z variable, both of the following statements will be
reversed correctly even though the column attributes are not in the same order:
• Create table abc (a integer not null default 99)
• Create table abc (a integer default 99 not null)

• [.O:[procedure][proc]]

This statement will generate procedure. During reverse engineering, the parser will
match either procedure or proc keywords.

• Note: A string between square brackets is always generated. For reverse engineering,
placing a string between square brackets means that it is optional and its absence will not
cancel the reversing of the statement.

CHAPTER 4: DBMS Definition Files

214 PowerDesigner

create [or replace] view %VIEW% as %SQL%

A script containing either create or create or replace will be correctly reversed
because or replace is optional.

Formatting Variable Values
You can specify a format for variable values. For example, you can force values to lowercase
or uppercase, truncate the length of values, or place values between quotes.

You embed formatting options in variable syntax as follows:

%[[?][-][x][.[-]y][options]:]variable%

The variable formatting options are the following:

Option Description

? Mandatory field, if a null value is returned the translate call fails

[-][x].[-]y[M] Extracts the first y characters or, for -y, the last y characters.

If x is specified, and y is lower than x, then blanks or zeros are added to
the right of the extracted characters to fill the width up to x. For -x, the
blanks or zeros are added to the left and the output is right-justified.

If the M option is appended, then the first x characters of the variable are
discarded and the next y characters are output.

Thus, for an object named abcdefghijklmnopqrstuvwxyz
(with parentheses present simply to demonstrate padding):

Template Output
(%.3:Name%) gives (abc)
(%.-3:Name%) gives (xyz)
(%10.3:Name%) gives (abc)
(%10.-3:Name%) gives (xyz)
(%-10.3:Name%) gives (abc)
(%-10.-3:Name%) gives (xyz)
(%10.3M:Name%) gives (jkl)

L[F], U[F], and c Converts the output to lowercase or uppercase. If F is specified, only the
first character is converted. c is equivalent to UF.

q and Q Surrounds the variable with single or double quotes.

T Trims leading and trailing whitespace from the variable.

H Converts number to hexadecimal.

You can combine format codes. For example, the template (%12.3QMFU:Name%) applied
to object abcdefghijklmnopqrstuvwxyz generates ("Lmn").

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 215

Variables for Tables and Views
PowerDesigner can use variables in the generation and reverse-engineering of tables and
views.

The following variables are available for tables:

Variable Comment

%TABLE% Generated code of Table

%TNAME% Name of Table

%TCODE% Code of Table

%TLABL% Comment of Table

%PKEYCOLUMNS% List of primary key columns. Ex: A, B

%TABLDEFN% Complete body of Table definition. It contains definition of
columns, checks and keys

%CLASS% Abstract data type name

%CLASSOWNER% Owner of the class object

%CLASSQUALIFIER% Qualifier of the class object

%CLUSTERCOLUMNS% List of columns used for a cluster

%INDXDEFN% Table indexes definition

%TABLTYPE% Table type

The following variables are available for views:

Variable Comment

%VIEW% Generated code of View

%VIEWNAME% View name

%VIEWCODE% View code

%VIEWCOLN% List of columns of View. Ex: "A, B, C"

%SQL% SQL text of View. Ex: Select * from T1

%VIEWCHECK% Contains Keyword "with check option" if this option is selected in View

%SCRIPT% Complete view creation order. Ex: create view V1 as select * from T1

%VIEWSTYLE% Style of view: view, snapshot, materialized view

CHAPTER 4: DBMS Definition Files

216 PowerDesigner

Variable Comment

%ISVIEW% True is it is a view (and not a snapshot)

%USAGE% Read-only=0, Updatable=1, Check option=2

The following variables are available for tables and views:

Variable Comment

%XMLELEMENT% Element contained in the XML schema

%XMLSCHEMA% XML schema

Variables for Columns, Domains, and Constraints
PowerDesigner can use variables in the generation and reverse-engineering of columns,
domains, and constraints. Parent table variables are also available.

The following variables are available for columns:

Variable Comment

%COLUMN% Generated code of Column

%COLNNO% Position of Column in List of columns of Table

%COLNNAME% Name of Column

%COLNCODE% Code of Column

%PRIMARY% Contains Keyword "primary" if Column is primary key column

%ISPKEY% TRUE if Column is part of a primary key

%ISAKEY% TRUE if Column is part of an alternate key

%FOREIGN% TRUE if Column is part of a foreign key

%COMPUTE% Compute constraint text

%PREVCOLN% Code of the previous column in the list of columns of the table

%NEXTCOLN% Code of the next column in the list of columns of the table

%NULLNOTNULL% Mandatory status of a column. This variable is always used with Null-
Required item, see Working with Null Values on page 159

%PKEYCLUSTER% CLUSTER keyword for the primary key when it is defined on the same
line

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 217

Variable Comment

%AKEYCLUSTER% CLUSTER keyword for the alternate key when it is defined on the
same line

%AVERAGELENGTH% Average length

%ISVARDTTP% TRUE if the column datatype has a variable length

%ISLONGDTTP% TRUE if the column datatype is a long datatype but not an image or a
blob

%ISBLOBDTTP% TRUE if the column datatype is an image or a blob

%ISSTRDTTP% TRUE if the column datatype contains characters

The following variables are available for domains:

Variable Comment

%DOMAIN% Generated code of Domain (also available for columns)

%DEFAULTNAME% Name of the default object associated with the domain (SQL Server
specific)

The following variables are available for constraints:

Variable Comment

%UNIT% Unit attribute of standard check

%FORMAT% Format attribute of standard check

%DATATYPE% Data type. Ex: int, char(10) or numeric(8, 2)

%DTTPCODE% Data type code. Ex: int, char or numeric

%LENGTH% Data type length. Ex: 0, 10 or 8

%PREC% Data type precision. Ex: 0, 0 or 2

%ISRDONLY% TRUE if Read-only attribute of standard check has been selected

%DEFAULT% Default value

%MINVAL% Minimum value

%MAXVAL% Maximum value

%VALUES% List of values. Ex: (0, 1, 2, 3, 4, 5)

CHAPTER 4: DBMS Definition Files

218 PowerDesigner

Variable Comment

%LISTVAL% SQL constraint associated with List of values. Ex: C1 in (0, 1, 2, 3, 4,
5)

%MINMAX% SQL constraint associated with Min and max values. Ex: (C1 <= 0)
AND (C1 >= 5)

%ISMAND% TRUE if Domain or column is mandatory

%MAND% Contains Keywords "null" or "not null" depending on Mandatory at-
tribute

%NULL% Contains Keyword "null" if Domain or column is not mandatory

%NOTNULL% Contains Keyword "not null" if Domain or column is mandatory

%IDENTITY% Keyword "identity" if Domain or Column is identity (Sybase specific)

%WITHDEFAULT% Keyword "with default" if Domain or Column is with default

%ISUPPERVAL% TRUE if the upper-case attribute of standard check has been selected

%ISLOWERVAL% TRUE if the lower-case attribute of standard check has been selected

%UPPER% SQL constraint associated with upper only values

%LOWER% SQL constraint associated with lower only values

%CASE% SQL constraint associated with cases (upper, lower, first word capital,
etc)

Variables for Keys
PowerDesigner can use variables in the generation and reverse-engineering of keys.

Variable Comment

%COLUMNS% or %COLNLIST% List of columns of Key. Ex: "A, B, C"

%ISPKEY% TRUE when Key is Primary key of Table

%PKEY% Constraint name of primary key

%AKEY% Constraint name of alternate key

%KEY% Constraint name of the key

%ISMULTICOLN% True if the key has more than one column

%CLUSTER% Cluster keyword

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 219

Variables for Indexes and Index Columns
PowerDesigner can use variables in the generation and reverse-engineering of indexes and
index columns.

The following variables are available for indexes:

Variable Comment

%INDEX% Generated code of index

%TABLE% Generated code of the parent of an index, can be a table or a query table
(view)

%INDEXNAME% Index name

%INDEXCODE% Index code

%UNIQUE% Contains Keyword "unique" when index is unique

%INDEXTYPE% Contains index type (available only for a few DBMS)

%CIDXLIST% List of index columns with separator, on the same line. Example: A asc, B
desc, C asc

%INDEXKEY% Contains keywords "primary", "unique" or "foreign" depending on index
origin

%CLUSTER% Contains keyword "cluster" when index is cluster

%INDXDEFN% Used for defining an index within a table definition

The following variables are available for index columns:

Variable Comment

%ASC% Contains keywords "ASC" or "DESC" depending on sort order

%ISASC% TRUE if index column sort is ascending

Variables for References and Reference Columns
PowerDesigner can use variables in the generation and reverse-engineering of references and
reference columns.

The following variables are available for references:

Variable Comment

%REFR% Generated code of reference

%PARENT% Generated code of parent table

CHAPTER 4: DBMS Definition Files

220 PowerDesigner

Variable Comment

%PNAME% Name of parent table

%PCODE% Code of parent table

%PQUALIFIER% Qualifier of parent table. See also QUALIFIER.

%CHILD% Generated code of child table

%CNAME% Name of child table

%CCODE% Code of child table

%CQUALIFIER% Qualifier of child table. See also QUALIFIER.

%REFRNAME% Reference name

%REFRCODE% Reference code

%FKCONSTRAINT% Foreign key (reference) constraint name

%PKCONSTRAINT% Constraint name of primary key used to reference object

%CKEYCOLUMNS% List of parent key columns. Ex: C1, C2, C3

%FKEYCOLUMNS% List of child foreign key columns. Ex: C1, C2, C3

%UPDCONST% Contains Update declarative constraint keywords "restrict", "cas-
cade", "set null" or "set default"

%DELCONST% Contains Delete declarative constraint keywords "restrict", "cascade",
"set null" or "set default"

%MINCARD% Minimum cardinality

%MAXCARD% Maximum cardinality

%POWNER% Parent table owner name

%COWNER% Child table owner name

%CHCKONCMMT% TRUE when check on commit is selected on Reference (ASA 6.0
specific)

%REFRNO% Reference number in child table collection of references

%JOINS% References joins.

The following variables are available for reference columns:

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 221

Variable Comment

%CKEYCOLUMN% Generated code of parent table column (primary key)

%FKEYCOLUMN% Generated code of child table column (foreign key)

%PK% Generated code of primary key column

%PKNAME% Primary key column name

%FK% Generated code of foreign key column

%FKNAME% Foreign key column name

%AK% Alternate key column code (same as PK)

%AKNAME% Alternate key column name (same as PKNAME)

%COLTYPE% Primary key column data type

%COLTYPENOOWNER
%

Primary column owner

%DEFAULT% Foreign key column default value

%HOSTCOLTYPE% Primary key column data type used in procedure declaration. For ex-
ample: without length

Variables for Triggers and Procedures
PowerDesigner can use variables in the generation and reverse-engineering of triggers and
procedures.

The following variables are available for triggers:

Variable Comment

%ORDER% Order number of Trigger (in case DBMS support more than one trigger of
one type)

%TRIGGER% Generated code of trigger

%TRGTYPE% Trigger type. It contains Keywords "beforeinsert", "afterupdate", ...etc.

%TRGEVENT% Trigger event. It contains Keywords "insert", "update", "delete"

%TRGTIME% Trigger time. It contains Keywords NULL, "before", "after"

%REFNO% Reference order number in List of references of Table

%ERRNO% Error number for standard error

%ERRMSG% Error message for standard error

CHAPTER 4: DBMS Definition Files

222 PowerDesigner

Variable Comment

%MSGTAB% Name of Table containing user-defined error messages

%MSGNO% Name of Column containing Error numbers in User-defined error table

%MSGTXT% Name of Column containing Error messages in User-defined error table

%SCRIPT% SQL script of trigger or procedure.

%TRGBODY% Trigger body (only for Oracle live database reverse engineering)

%TRGDESC% Trigger description (only for Oracle live database reverse engineering)

%TRGDEFN% Trigger definition

%TRGSCOPE% Trigger scope (keywords: database, schema, all server)

%TRGSCOPEOWNER
%

Trigger scope owner

%TRGSCOPEQUALI-
FIER%

Trigger scope owner plus dot

The following variables are available for procedures:

Variable Comment

%PROC% Generated code of Procedure (also available for trigger when Trigger is imple-
mented with a procedure)

%FUNC% Generated code of Procedure if Procedure is a function (with a return value)

%PROCPRMS% List of parameters of the procedure

Variables for Rules
PowerDesigner can use variables in the generation and reverse-engineering of rules.

Variable Comment

%RULE% Generated code of Rule

%RULENAME% Rule name

%RULECODE% Rule code

%RULECEXPR% Rule client expression

%RULESEXPR% Rule server expression

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 223

Variables for Sequences
PowerDesigner can use variables in the generation and reverse-engineering of sequences.

Variable Comment

%SQNC% Name of sequence

%SQNCOWNER% Name of the owner of the sequence

Variables for Synonyms
PowerDesigner can use variables in the generation and reverse-engineering of synonyms.

Variable Comment

%SYNONYM% Generated code of the synonym

%BASEOBJECT% Base object of the synonym

%BASEOWNER% Owner of the base object

%BASEQUALIFIER% Qualifier of the base object

%VISIBILITY% Private (default) or public

%SYNMTYPE% Synonym of alias (DB2 only)

%ISPRIVATE% True for a private synonym

%ISPUBLIC% True for a public synonym

Variables for Tablespaces and Storages
PowerDesigner can use variables in the generation and reverse-engineering of tablespaces and
storages.

Variable Comment

%TABLESPACE% Generated code of Tablespace

%STORAGE% Generated code of Storage

Variables for Abstract Data Types
PowerDesigner can use variables in the generation and reverse-engineering of abstract data
types and their child objects.

The following variables are available for abstract data types:

Variable Comment

%ADT% Generated code of Abstract data type

CHAPTER 4: DBMS Definition Files

224 PowerDesigner

Variable Comment

%TYPE% Type of Abstract data type. It contains keywords like "array", "list", ...

%SIZE% Abstract data type size

%FILE% Abstract data type Java file

%ISARRAY% TRUE if Abstract data type is of type array

%ISLIST% TRUE if Abstract data type is of type list

%ISSTRUCT% TRUE if Abstract data type is of type structure

%ISOBJECT% TRUE if Abstract data type is of type object

%ISJAVAOBJECT% TRUE if Abstract data type is of type JAVA object

%ISJAVA% TRUE if Abstract data type is of type JAVA class

%ADTDEF% Contains Definition of Abstract data type

%ADTBODY% Abstract data type body

%SUPERADT% Abstract data type supertype

%ADTNOTFINAL
%

Abstract data type final

%ADTABSTRACT
%

Abstract data type instantiable

%ADTHEADER% Abstract data type body with ODBC

%ADTTEXT% Abstract data type spec with ODBC

%SUPERQUALIFI-
ER%

Abstract data type supertype qualifier

%SUPEROWNER% Abstract data type supertype owner

%ADTAUTH% Abstract data type authorization

%ADTJAVANAME
%

Abstract data type JAVA name

%ADTJAVADATA
%

Abstract data type JAVA data

%ADTATTRDEF% Attributes part of abstract data type definition

%ADTMETHDEF
%

Methods part of abstract data type definition

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 225

The following variables are available for abstract data type attributes:

Variable Comment

%ADTATTR% Generated code of Abstract data type attribute

%ATTRJAVA-
NAME%

Abstract data type attribute JAVA name

The following variables are available for abstract data type procedures:

Variable Comment

%ADTPROC% Procedure code

%PROCTYPE% Procedure type (constructor, order, map)

%PROCFUNC% Procedure type (procedure, function)

%PROCDEFN% Procedure body (begin... end)

%PROCRETURN
%

Procedure return type

%PARAM% Procedure parameters

%PROCNOTFI-
NAL%

Procedure final

%PROCSTATIC% Procedure member

%PROCAB-
STRACT%

Procedure instantiable

%SUPERPROC% Procedure super-procedure

%ISCONSTRUC-
TOR%

True if the procedure is a constructor

%PROCJAVA-
NAME%

Procedure JAVA name

%ISJAVAVAR% True if procedure is mapped to a static JAVA variable

%ISSPEC% True in specifications, undefined in body

CHAPTER 4: DBMS Definition Files

226 PowerDesigner

Variables for Join Indexes (IQ)
PowerDesigner can use variables in the generation and reverse-engineering of IQ join indexes.

Variable Comment

%JIDX% Generated code for join index

%JIDXDEFN% Complete body of join index definition

%REFRLIST% List of references (for live database connections)

%RFJNLIST% List of reference joins (for live database connections)

%FACTQUALIFIER% Qualifier for the fact table

%JIDXFACT% Fact (base table)

%JIDXCOLN% List of columns

%JIDXFROM% From clause

%JIDXWHERE% Where clause

Variables for ASE & SQL Server
PowerDesigner can use variables in the generation and reverse-engineering of objects for ASE
and SQL Server.

Variable Comment

%RULENAME% Name of Rule object associated with Domain

%DEFAULTNAME% Name of Default object associated with Domain

%USE_SP_PKEY% Use sp_primary key to create primary keys

%USE_SP_FKEY% Use sp_foreign key to create foreign keys

Variables for Database Synchronization
PowerDesigner can use variables in the generation and reverse-engineering of objects during
database synchronization.

Variable Comment

%OLDOWNER% Old owner name of Object. See also OWNER

%NEWOWNER% New owner name of Object. See also OWNER

%OLDQUALIFIER% Old qualifier of Object. See also QUALIFIER

%NEWQUALIFIER% New qualifier of Object. See also QUALIFIER

%OLDTABL% Old code of Table

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 227

Variable Comment

%NEWTABL% New code of Table

%OLDCOLN% Old code of Column

%NEWCOLN% New code of Column

%OLDNAME% Old code of Sequence

%NEWNAME% New code of Sequence

Variables for DB Packages and Their Child Objects
PowerDesigner can use variables in the generation and reverse-engineering of database
packages and their child objects.

The following variables are available for database packages:

Variable Comment

%DBPACKAGE% Generated code of the database package

%DBPACKAGECODE% Initialization code at the end of the package

%DBPACKAGESPEC% Database package specification

%DBPACKAGEBODY% Database package body

%DBPACKAGEINIT% Database package initialization code

%DBPACKAGEPRIV% Database package authorization (old privilege)

%DBPACKAGEAUTH% Database package authorization

%DBPACKAGEPUBLIC% True for public sub-object

%DBPACKAGETEXT% Database package body with ODBC

%DBPACKAGEHEADER
%

Database package spec with ODBC

The following variables are available for database package procedures:

Variable Comment

%DBPKPROC% Procedure code

%DBPKPROCTYPE% Procedure type (procedure, function)

%DBPKPROCCODE% Procedure body (begin... end)

%DBPKPROCRETURN% Procedure return type

CHAPTER 4: DBMS Definition Files

228 PowerDesigner

Variable Comment

%DBPKPROCPARAM% Procedure parameters

The following variables are available for database package variables:

Variable Comment

%DBPFVAR% Variable code

%DBPFVARTYPE% Variable type

%DBPFVARCONST% Variable of constant type

%DBPFVARVALUE% Variable default value for constant

The following variables are available for database package types:

Variable Comment

%DBPKTYPE% Type code

%DBPKTYPEVAR% List of variables

%DBPKISSUBTYPE% True if type is a subtype

The following variables are available for database package cursors:

Variable Comment

%DBPKCURSOR% Cursor code

%DBPKCURSORRE-
TURN%

Cursor return type

%DBPKCURSORQUERY
%

Cursor query

%DBPKCURSORPARAM
%

Cursor parameter

The following variables are available for database package exceptions:

Variable Comment

%DBPKEXEC% Exception code

The following variables are available for database package parameters:

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 229

Variable Comment

%DBPKPARM% Parameter code

%DBPKPARMTYPE% Parameter type

%DBPKPARMDTTP% Parameter data type

%DBPKPARMDEFAULT
%

Parameter default value

The following variables are available for database package pragmas:

Variable Comment

%DBPKPRAGMA% Pragma directive

%DBPKPRAGMAOBJ% Pragma directive on object

%DBPKPRAGMAPARAM
%

Pragma directive parameter

Variables for Database Security
PowerDesigner can use variables in the generation and reverse-engineering of database
security objects.

Variable Comment

%PRIVLIST% List of privileges for a grant order

%REVPRIVLIST% List of privileges for a revoke order

%PERMLIST% List of permissions for a grant order

%REVPERMLIST% List of permissions for a revoke order

%COLNPERMISSION% Permissions on a specific list of columns

%BITMAPCOLN% Bitmap of specific columns with permissions

%USER% Name of the user

%GROUP% Name of the group

%ROLE% Name of the role

%GRANTEE% Generic name used to design a user, a group, or a role

%PASSWORD% Password for a user, group, or role

%OBJECT% Database objects (table, view, column, and so on)

%PERMISSION% SQL grant/revoke order for a database object

CHAPTER 4: DBMS Definition Files

230 PowerDesigner

Variable Comment

%PRIVILEGE% SQL grant/revoke order for an ID (user, group, or role)

%GRANTOPTION% Option for grant: with grant option / with admin option

%REVOKEOPTION% Option for revoke: with cascade

%GRANTOR% User that grants the permission

%MEMBER% Member of a group or member with a role

%GROUPS% List of groups separated by the delimiter

%MEMBERS% List of members (users or roles) of a group or role separated by the
delimiter

%ROLES% List of parent roles of a user or role

%SCHEMADEFN% Schema definition

Variables for Defaults
PowerDesigner can use variables in the generation and reverse-engineering of defaults.

Variable Comment

%BOUND_OBJECT% Binded object

Variables for Web Services
PowerDesigner can use variables in the generation and reverse-engineering of Web services.

The following variables are available for web services:

Variable Comment

%WEBSERVICENAME% Only generated code of the web service

%WEBSERVICE% Generated code of the web service and local path

%WEBSERVICETYPE% Web service type

%WEBSERVICESQL% SQL statement

%WEBSERVICELOCAL-
PATH%

Local path

The following variables are available for web service operations:

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 231

Variable Comment

%WEBOPERATION-
NAME%

Only generated code of the web operation

%WEBOPERATION% Generated code of the operation, service, and local path

%WEBOPERATIONTYPE
%

We operation type

%WEBOPERATIONSQL
%

SQL statement

%WEBOPERATIONPAR-
AM%

Web operation parameters list

The following variables are available for web service security:

Variable Comment

%WEBUSER% Connection user required for web service

%WEBCNCTSECURED% Connection secured

%WEBAUTHREQUIRED
%

Authorization required

The following variables are available for web service parameters:

Variable Comment

%WEBPARAM% List of web parameters

%WEBPARAMNAME% Web parameter name

%WEBPARAMTYPE% Web parameter type

%WEBPARAMDTTP% Web parameter data type

%WEBPARAMDEFAULT
%

Web parameter default value

Variables for Dimensions
PowerDesigner can use variables in the generation and reverse-engineering of dimensions.

Variable Comment

%DIMENSION% Generated code of dimension

%DIMNDEF% Dimension definition

CHAPTER 4: DBMS Definition Files

232 PowerDesigner

Variable Comment

%DIMNATTR% Dimension attribute (level)

%DIMNOWNERTABL% Level table owner

%DIMNTABL% Level table

%DIMNCOLN% Level column

%DIMNCOLNLIST% Level columns list

%DIMNHIER% Dimension hierarchy

%DIMNKEY% List of child key columns

%DIMNKEYLIST% List of child key columns

%DIMNLEVELLIST% Level list for hierarchy

%DIMNATTRHIER% Attribute of hierarchy

%DIMNATTRHIERFIRST
%

First attribute of hierarchy

%DIMNATTRHIERLIST% List of attributes of hierarchy

%DIMNPARENTLEVEL
%

Parent level for hierarchy

%DIMNDEPATTR% Dimension dependant attribute

%DIMNDEPCOLN% Dependent column

%DIMNDEPCOLNLIST% List of dependent columns

Variables for Extended Objects
PowerDesigner can use variables in the generation and reverse-engineering of extended
objects.

Variable Comment

%EXTENDEDOBJECT% Generated code for extended object

%EXTENDEDSUBOB-
JECT%

Generated code for extended sub-object

%EXTSUBOBJTPARENT
%

Generated code for parent of extended sub-object

%EXTSUBOBJTPAREN-
TOWNER%

Generated code for owner of extended sub-object

%EXTSUBOBJTPARENT-
QUALIFIER%

Parent object qualifier (database prefix and owner prefix)

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 233

Variable Comment

%EXTOBJECTDEFN% Complete body of the extended object definition. Contains definition
of extended collection listed in DefinitionContent DBMS item.

Variables for Reverse Engineering
PowerDesigner can use variables during the reverse engineering of objects.

Variable Comment

%R% Set to TRUE during reverse engineering

%S% Allow to skip a word. The string is parsed for reverse but not generated

%D% Allow to skip a numeric value. The numeric value is parsed for reverse but
not generated

%A% Allow to skip all Text. The text is parsed for reverse but not generated

%ISODBCUSER% True if Current user is Connected one

%CATALOG% Catalog name to be used in live database connection reverse queries

%SCHEMA% Variable representing a user login and the object belonging to this user in
the database. You should use this variable for queries on objects listed in
database reverse dialog boxes, because their owner is not defined yet.
Once the owner of an object is defined, you can use SCHEMA or OWN-
ER

%SIZE% Data type size of column or domain. Used for live database reverse, when
the length is not defined in the system tables

%VALUE% One value from the list of values in a column or domain

%PERMISSION% Allow to reverse engineer permissions set on a database object

%PRIVILEGE% Allow to reverse engineer privileges set on a user, a group, or a role

Variables for Database, Triggers, and Procedures Generation
PowerDesigner can use variables in the generation of databases, triggers, and procedures.

Variable Comment

%DATE% Generation date & time

%USER% Login name of User executing Generation

%PATHSCRIPT% Path where File script is going to be generated

%NAMESCRIPT% Name of File script where SQL orders are going to be written

%STARTCMD% Description to explain how to execute Generated script

CHAPTER 4: DBMS Definition Files

234 PowerDesigner

Variable Comment

%ISUPPER% TRUE if upper case generation option is set

%ISLOWER% TRUE if lower case generation option is set

%DBMSNAME% Name of DBMS associated with Generated model

%DATABASE% Code of Database associated with Generated model

%DATASOURCE% Name of the data source associated with the generated script

%USE_SP_PKEY% Use stored procedure primary key to create primary keys (SQL Server
specific)

%USE_SP_FKEY% Use stored procedure foreign key to create primary keys (SQL Server
specific)

.AKCOLN, .FKCOLN, and .PKCOLN Macros
Repeat a statement for each alternate, foreign, or primary key column in a table.

Syntax
.AKCOLN("statement","prefix","suffix","last_suffix", "condition")
.FKCOLN("statement","prefix","suffix","last_suffix")
.PKCOLN("statement","prefix","suffix","last_suffix")

Argument Description

statement Statement to repeat for each column

prefix Prefix for each new line

suffix Suffix for each new line

last suffix Suffix for the last line

condition Alternate key code (if condition argument is left empty the macro returns a state-
ment for each alternate key in the table)

Example
In a trigger for the table TITLEAUTHOR:

• message .AKCOLN("'%COLUMN% is an alternate key column'","", "",
"", "AKEY1")

generates the following trigger script:
message 'TA_ORDER is an alternate key column',

• message .FKCOLN("'%COLUMN% is a foreign key column'","",",",";")

generates the following trigger script:

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 235

message 'AU_ID is a foreign key column,
TITLE_ISBN is a foreign key column;'

• message .PKCOLN("'%COLUMN% is a primary key column'","",",",";")

generates the following trigger script:
message 'AU_ID is a primary key column',
 'TITLE_ISBN is a primary key column';

Note: For columns, these macros only accept the %COLUMN% variable.

.ALLCOL Macro
Repeats a statement for each column in a table

Syntax
.ALLCOL("statement","prefix","suffix","last_suffix")

Argument Description

statement Statement to repeat for each column

prefix Prefix for each new line

suffix Suffix for each new line

last suffix Suffix for the last line

Example
In a trigger for the table AUTHOR, the following macro:

.ALLCOL("%COLUMN% %COLTYPE%","",",",";")

generates the following trigger script:

AU_ID char(12),
AU_LNAME varchar(40),
AU_FNAME varchar(40),
AU_BIOGRAPH long varchar,
AU_ADVANCE numeric(8,2),
AU_ADDRESS varchar(80),
CITY varchar(20),
STATE char(2),
POSTALCODE char(5),
AU_PHONE char(12);

.DEFINE Macro
Defines a variable and initializes its value

Syntax
.DEFINE "variable" "value"

CHAPTER 4: DBMS Definition Files

236 PowerDesigner

Argument Description

variable Variable name (without % signs)

value Variable value (may include another variable surrounded by % signs)

Example
In a trigger for the table AUTHOR, the following macro:

.DEFINE "TRIGGER" "T_%TABLE%"
message 'Error: Trigger(%TRIGGER%) of table %TABLE%'

generates the following trigger script:

message 'Error: Trigger(T_AUTHOR) of table AUTHOR';

.DEFINEIF Macro
Defines a variable and initializes its value if the test value is not null

Syntax
.DEFINEIF "test_value" "variable" "value"

Argument Description

test_value Value to test

variable Variable name (without % signs)

value Variable value (may include another variable surrounded by % signs)

Example
For example, to define a variable for a default data type:

%DEFAULT%
.DEFINEIF "%DEFAULT%" "_DEFLT"" "%DEFAULT%"
Add %COLUMN% %DATATYPE% %_DEFLT%

.ERROR Macro
Handles errors.

Syntax
.ERROR (errno, "errmsg")

Argument Description

errno Error number

errmsg Error message

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 237

Example
.ERROR(-20001, "Parent does not exist, cannot insert child")

.FOREACH_CHILD Macro
Repeats a statement for each parent-to-child reference in the current table fulfilling a
condition.

Syntax
.FOREACH_CHILD ("condition")

"statement"

.ENDFOR

Argument Description

condition Reference condition (see below)

statement Statement to repeat

Condition Selects

UPDATE RESTRICT Restrict on update

UPDATE CASCADE Cascade on update

UPDATE SETNULL Set null on update

UPDATE SETDEFAULT Set default on update

DELETE RESTRICT Restrict on delete

DELETE CASCADE Cascade on delete

DELETE SETNULL Set null on delete

DELETE SETDEFAULT Set default on delete

Example
In a trigger for the table TITLE, the following macro:

.FOREACH_CHILD("DELETE RESTRICT")
-- Cannot delete parent "%PARENT%" if children still exist in
"%CHILD%"
.ENDFOR

generates the following trigger script:

-- Cannot delete parent "TITLE" if children still exist in
"ROYSCHED"
-- Cannot delete parent "TITLE" if children still exist in "SALE"

CHAPTER 4: DBMS Definition Files

238 PowerDesigner

-- Cannot delete parent "TITLE" if children still exist in
"TITLEAUTHOR"

.FOREACH_COLUMN Macro
Repeats a statement for each column in the current table fulfilling a condition.

Syntax
.FOREACH_COLUMN ("condition")

"statement"

.ENDFOR

Argument Description

condition Column condition (see below)

statement Statement to repeat

Condition Selects

empty All columns

PKCOLN Primary key columns

FKCOLN Foreign key columns

AKCOLN Alternate key columns

NMFCOL Non-modifiable columns (columns that have Cannot Modify selected as a check
parameter)

INCOLN Triggering columns (primary key columns, foreign key columns; and non-modi-
fiable columns)

Example
In a trigger for the table TITLE, the following macro:

.FOREACH_COLUMN("NMFCOL")
-- "%COLUMN%" cannot be modified
.ENDFOR

generates the following trigger script:

-- "TITLE_ISBN" cannot be modified
-- "PUB_ID" cannot be modified

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 239

.FOREACH_PARENT Macro
Repeats a statement for each child-to-parent reference in the current table fulfilling a
condition.

Syntax
.FOREACH_PARENT ("condition")

"statement"

.ENDFOR

Argument Description

condition Reference condition (see below)

statement Statement to repeat

Condition Selects references defined with ...

empty All references

FKNULL Non-mandatory foreign keys

FKNOTNULL Mandatory foreign keys

FKCANTCHG Non-modifiable foreign keys

Example
In a trigger for the table SALE, the following macro:

.FOREACH_PARENT("FKCANTCHG")
-- Cannot modify parent code of "%PARENT%" in child "%CHILD%"
.ENDFOR

generates the following trigger script:

-- Cannot modify parent code of "STORE" in child "SALE"
-- Cannot modify parent code of "TITLE" in child "SALE"

.INCOLN Macro
Repeats a statement for each primary key column, foreign key column, alternate key column,
or non-modifiable column in a table.

Syntax
.INCOLN("statement","prefix","suffix","last_suffix")

CHAPTER 4: DBMS Definition Files

240 PowerDesigner

Argument Description

statement Statement to repeat for each column

prefix Prefix for each new line

suffix Suffix for each new line

last suffix Suffix for the last line

Example
In a trigger for the table TITLE, the following macro:

.INCOLN("%COLUMN% %COLTYPE%","",",",";")

generates the following trigger script:

TITLE_ISBN char(12),
PUB_ID char(12);

.JOIN Macro
Repeats a statement for column couple in a join.

Syntax
.JOIN("statement","prefix","suffix","last_suffix")

Argument Description

statement Statement to repeat for each column

prefix Prefix for each new line

suffix Suffix for each new line

last suffix Suffix for the last line

Example
In a trigger for the table TITLE, the following macro:

.FOREACH_PARENT()
where .JOIN("%PK%=%FK%", " and", "", ";")
message 'Reference %REFR% links table %PARENT% to %CHILD%'
 .ENDFOR

generates the following trigger script:

message 'Reference TITLE_PUB links table PUBLISHER to TITLE

Note: For columns, the macro JOIN only accepts the variables %PK%, %AK%, and %FK
%.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 241

.NMFCOL Macro
Repeats a statement for each non-modifiable column in a table. Non-modifiable columns have
Cannot Modify selected as a check parameter.

Syntax
.NMFCOL("statement","prefix","suffix","last_suffix")

Argument Description

statement Statement to repeat for each column

prefix Prefix for each new line

suffix Suffix for each new line

last suffix Suffix for the last line

Example
In a trigger for the table TITLE, the following macro:

.NMFCOL("%COLUMN% %COLTYPE%","",",",";")

generates the following trigger script:

TITLE_ISBN char(12),
PUB_ID char(12);

.CLIENTEXPRESSION and .SERVEREXPRESSION Macros
Uses the client and/or server expression of a business rule in the trigger template, template
item, trigger, and procedure script.

Syntax
.CLIENTEXPRESSION(code of the business rule)

.SERVEREXPRESSION(code of the business rule)

Example
The business rule ACTIVITY_DATE_CONTROL has the following server expression:

activity.begindate < activity.enddate

In a trigger based on template AfterDeleteTrigger, you type the following macro in the
Definition tab of the trigger:

.SERVEREXPRESSION(ACTIVITY_DATE_CONTROL)

This generates the following trigger script:

CHAPTER 4: DBMS Definition Files

242 PowerDesigner

activity.begindate < activity.enddate
end

.SQLXML Macro
Represents a SQL/XML query in the definition of a trigger, a procedure or a function.

Use one of the following tools:

• The Insert SQL/XML Macro tool opens a selection dialog box where you choose a global
element from an XML model. The XML model must be open in the workspace, mapped to
a PDM, and have the SQL/XML extension file attached. Click OK in the dialog box and
the SQLXML macro is displayed in the definition code, with the code of the XML model
(optional) and the code of the global element.

• The Macros tool, where you select .SQLXML() in the list. The SQLXML macro is
displayed empty in the definition code. You must fill the parentheses with the code of an
XML model (optional), followed by :: and the code of a global element. The XML model,
from which you choose a global element, must be open in the workspace, mapped to a
PDM, and have the SQL/XML extension file attached.

After generation, the SQLXML macro is replaced by the SQL/XML query of the global
element.

Syntax
.SQLXML(code of an XML model::code of a global element)

Note: the code of an XML model is optional.

CHAPTER 4: DBMS Definition Files

Customizing and Extending PowerDesigner 243

Example
In a trigger for the table EMPLOYEE, the following macro:

.SQLXML(CorporateMembership::DEPARTMENT)

generates the following trigger script:

select XMLELEMENT(NAME "Department", XMLATTRIBUTES
(DEPNUM,DEPNAME),
 (select XMLAGG (XMLELEMENT(NAME "Employee", XMLATTRIBUTES
(DEPNUM,EMPID,FIRSTNAME,LASTNAME)))
 from EMPLOYEE
 where DEPNUM = DEPNUM))
from DEPARTMENT

CHAPTER 4: DBMS Definition Files

244 PowerDesigner

CHAPTER 5 Customizing Generation with
GTL

The PowerDesigner Generation Template Language (GTL) is used to extract model object
properties as text. GTL is written in templates and generated files defined under metaclasses in
language definition and extension files. It powers generation of code for business process,
object-oriented and XML languages, and can be used to define new generations for any model.

When you launch a generation from a model, PowerDesigner generates a file for each instance
of each metaclass for which you have defined a generated file (see Generated Files (Profile) on
page 85) by evaluating the templates it calls and resolving any variables.

GTL is object-oriented, supporting inheritance and polymorphism for reusability and
maintainability, and provides macros for testing variables and iterating through collections,
etc.

A GTL template can contain text, macros, and variables, and can reference:

• metamodel attributes, such as the name of a class or data type of an attribute
• collections, such as the list of attributes of a class or columns of a table
• other elements of the model, such as environment variables

Note: Though GTL can be used to extend generation in a PDM, the standard generation is
primarily defined using a different mechanism (see Database Generation and Reverse
Engineering on page 120).

Creating a Template and a Generated File
GTL templates are commonly used for generating files. If your template is going to be used in
generation, it must be referenced in a generated file.

1. Open your language definition or extension file in the resource editor (see Opening
Resource Files in the Editor on page 3).

2. If necessary, add a metaclass to the Profile category (see Metaclasses (Profile) on page 33)
and then right-click it and select New > Template (see Templates (Profile) on page 84).

3. Enter helloWorld as the name of the template and enter the following code in the text
box:
Hello World!
This template is being generated for the %Name% object.

Customizing and Extending PowerDesigner 245

Note: We recommend that you name your templates using headless camelCase, (starting
with a lowercase letter), in order to avoid clashes with property and collection names
which, by convention use full CamelCase.

4. Right-click the metaclass again, and select New > Generated File (see Generated Files
(Profile) on page 85).

5. Enter myFile as the name of the generated file, and enter the following code in the text
box to call your template:
%helloWorld%

6. Click OK to save your changes in the resource file and return to your model.

7. Create an instance of the metaclass on which you defined the template and generated file,
open its property sheet, and click the Preview tab.

8. Select the myFile sub-tab to preview what would be generated for this object.

Extracting Object Properties
Object properties are referenced as variables and enclosed between percent signs:
%variable%. Variable names are case sensitive, and property names are, by convention,
defined in CamelCase.

Properties are extracted as the following types:

• String - returns text.
• Boolean - returns true or false.

• Object - returns the object ID or null.

Example

This file is generated for %Name%, which is a %Color% %Shape%.
Result:

This file is generated for MyObject, which is a Red Triangle.

Standard properties defined in the PowerDesigner public metamodel (see Chapter 8, The
PowerDesigner Public Metamodel on page 343) are referenced using their public names,
which are written in CamelCase. You can infer public names for many properties from their
labels in object property sheets, but in case of doubt, click the Property Sheet Menu button at
the bottom of the property sheet and select Find in Metamodel Objects Help to review all
available properties for the object.

Extended attributes (see Extended Attributes (Profile) on page 41) are referenced by their
Name defined in the resource editor.

Note: To access an extended attribute defined in another extension file attached to the model,
prefix the name with the .D formatting option. For example:

CHAPTER 5: Customizing Generation with GTL

246 PowerDesigner

%.D:MyExtAtt%

Accessing Collections of Sub-Objects or Related Objects
An OOM contains a collection of classes and classes contain collections of attributes and
operations. To iterate over a collection, use the .foreach_item macro.

Example

%Name% contains:
.foreach_item(Widgets)
 \n\t%Name% (%Color% %Shape%)
.next
Result:

MyObject contains:
 Widget1 (Red Triangle)
 Widget2 (Yellow Square)
 Widget3 (Green Circle)

Standard collections defined in the PowerDesigner public metamodel (see Chapter 8, The
PowerDesigner Public Metamodel on page 343) are referenced using their public names,
which are written in CamelCase. You can infer public names for many collections from their
labels in object property sheet tabs, but in case of doubt, click the Property Sheet Menu
button at the bottom of the property sheet and select Find in Metamodel Objects Help to
review all available collections for the object.

Extended collections (see Extended Collections and Compositions (Profile) on page 48 and
Calculated Collections (Profile) on page 50) are referenced by their Name.

You can use the following keywords to access information about a collection:

Name Description

First (object) Returns the first element of the collection.

IsEmpty (boolean) Returns True if the collection is empty, or false if it contains one or
more members.

Count (integer) Returns the number of elements in the collection. You can use this key-
word for defining criteria based on collection size, for example Attrib-
utes.Count>=10.

CHAPTER 5: Customizing Generation with GTL

Customizing and Extending PowerDesigner 247

Example

%Name% is associated with %AttachedRules.Count% business rules,
 of which the first is %AttachedRules.First.Name%.
Result:

myClass is associated with 3 business rules,
 of which the first is myRule.

Formatting Your Output
You can change the formatting of variables by embedding formatting options in variable
syntax. New lines and tabs are specified using the \n and \t escape sequences respectively.

%[[-][x][.[-]y][options]:]variable%

The following variable formatting options are available:

Option Description

[-][x].[-]y[M] Extracts the first y characters or, for -y, the last y characters.

If x is specified, and y is lower than x, then blanks or zeros are added to the
right of the extracted characters to fill the width up to x. For -x, the blanks
or zeros are added to the left and the output is right-justified.

If the M option is appended, then the first x characters of the variable are
discarded and the next y characters are output.

Thus, for an object named abcdefghijklmnopqrstuvwxyz
(with parentheses present simply to demonstrate padding):

Template Output
(%.3:Name%) gives (abc)
(%.-3:Name%) gives (xyz)
(%10.3:Name%) gives (abc)
(%10.-3:Name%) gives (xyz)
(%-10.3:Name%) gives (abc)
(%-10.-3:Name%) gives (xyz)
(%10.3M:Name%) gives (jkl)

L[F], U[F], and c Converts the output to lowercase or uppercase. If F is specified, only the
first character is converted. c is equivalent to UF.

q and Q Surrounds the variable with single or double quotes.

A Removes indentation and aligns text on the left border.

T Trims leading and trailing whitespace from the variable.

H Converts number to hexadecimal.

CHAPTER 5: Customizing Generation with GTL

248 PowerDesigner

Option Description

D Returns the human-readable value of an attribute used in the PowerDe-
signer interface when this value differs from the internal representation.

For example, the value of the Visibility attribute is stored internally
as +, but is displayed as public in the property sheet. The template
%Visibility% generates as +, but %.D:Visibility% gen-
erates as public.

Note: You can access extended attributes defined in another extension file
by prefixing them with the .D option (see Extracting Object Properties on
page 246).

X Escapes XML forbidden characters.

E [deprecated – use the ! power evaluation operator instead, see GTL Op-
erators on page 252].

Examples

This file is generated for %.UQ:Name%. It has the form of a %.L:Col-
or% %.L:Shape%.
This file is generated for "MYGADGET". It has the form of a red
triangle.

The following template is applied to object abcdefghijklmnopqrstuvwxyz
%12.3QMFU:Name%
Result:

"Lmn"

CHAPTER 5: Customizing Generation with GTL

Customizing and Extending PowerDesigner 249

Controlling Line Breaks in Head and Tail Strings
The head and tail strings in a macro block are only generated when necessary. If the block
returns nothing then the head and tail strings do not appear, which can help to control the
creation of new lines.

Example

The text and new lines in the head and tail of each .foreach_item loop are only printed if the
collection is not empty. When this template is applied to a class with attributes but no operations, the
text // Operations and the new lines specified before and after the operations list will not be
printed:

class "%Code%" {
 .foreach_item(Attributes, // Attributes\n,\n\n)
 %DataType% %Code%
 .if (%InitialValue%)
 = %InitialValue%
 .endif
 .next(\n)
 .foreach_item(Operations, // Operations\n,\n\n)
 %ReturnType% %Code%(...)
 .next(\n)
<Source>
}
Result:

class "C1" {// Attributes
 int a1 = 10
 int a2
 int a3 = 5
 int a4

<Source>
}

Note: To print a blank space between the curly brace and the string // Attributes, you must
enclose the head string in double-quotes:

.foreach_item(Attributes," // Attributes\n",\n)

Conditional Blocks
Place text containing a variable between square brackets to have it appear only if the variable
resolves to a non-null value.

You can also use a form similar to C and Java ternary expressions to print a string if the variable
is true or not null:
[variable ? ifNotNull]

CHAPTER 5: Customizing Generation with GTL

250 PowerDesigner

You can optionally include a string to print if the variable is evaluated to false, null, or the
empty string:
[variable ? ifNotNull :ifNull]

Examples

Attribute %Code%[= %InitialValue%];
Result:

Attribute A1 =0;
Attribute A2 =100;
Attribute A3;
Attribute A4 =10;

The class %Name% is [%Abstract%?Abstract:Concrete].
Result if the Abstract property is selected:

The class myClass is Abstract.
Result if the Abstract property is not selected:

The class myClass is Concrete.

Accessing Global Variables
You can insert information such as your user name and the current date with global variables.

Name Description

%ActiveModel% (object) Returns the UID of the model. Use %ActiveModel.Name%
to obtain the name of the model.

%GenOptions% (struct) Returns the model generation options.

%PreviewMode% (boolean) Returns true in the Preview tab, false when generated to a
file.

%CurrentDate% (string) Returns the current system date and time formatted using local
settings.

%CurrentUser% (string) Returns the current user login.

%NewUUID% (string) Returns a new universally unique identifier.

CHAPTER 5: Customizing Generation with GTL

Customizing and Extending PowerDesigner 251

Example

This file was generated from %ActiveModel.Name% by %CurrentUser% on
%CurrentDate%.
Result:

This file was generated from My Model by jsmith on Tuesday, Novem-
ber 06, 2012 4:06:41 PM.

GTL Operators
GTL supports standard arithmetic and logical operators along with some advanced template
operators.

The following standard arithmetical and logical operators are supported, where x and y can be
numbers or templates resolving to numbers:

Operator Description

= Assignment operator.

== and != Equal to and not equal to operators.

> and < Greater than and less than operators.

>= and <= Greater than or equal to and less than or equal to operators.

&& and || Logical AND and logical OR operators.

%+(x,y)% Addition operator.

%-(x,y)% Subtraction operator.

%*(x,y)% Multiplication operator.

%/(x,y)% Division operator.

%&(x,y)% Logical bitfield and operator

In this example, the template in the left column produces the output on the right:

Template Results

Base number= %Number%
Number+1= %+(Number,1)%
Number-1= %-(Number,1)%
Number*2= %*(Number,2)%
Number/2= %/(Number,2)%
Number&1= %&(Number,1)%

Base number= 4
Number+1= 5
Number-1= 3
Number*2= 8
Number/2= 2
Number&1= 0

CHAPTER 5: Customizing Generation with GTL

252 PowerDesigner

The following advanced template operators are also supported:

Operator Description

* Dereferencing operator - Corresponds to a double evaluation, returning a template
instead of text, using the syntax:

%*template [(P1,P2...)]%
For information about template parameters, see Passing Parameters to a Template
on page 260.

In the following example, a local variable is returned normally and in a dereferenced
form:

.set_value(C, Code)
%C%
%*C%
Result:

Code
%Code%

! Power evaluation operator - Evaluates the results of the evaluation of the variable as
a template.

In the following example, a local variable is returned normally and in a power-
evaluated form:

.set_value(C, %%MyAttribute%%)
%C%
%!C%
Result:

%MyAttribute%
Red
The ! operator may be applied any number of times. For example:

%!!t%
This outputs the results of the evaluation of the evaluation of the evaluation of
template t.

CHAPTER 5: Customizing Generation with GTL

Customizing and Extending PowerDesigner 253

Operator Description

? Existence operator - Tests whether a template, local variable, or property is present,
and returns false if it is not.

For example:

.set_value (myVariable, 20, new)
%myVariable?%
.unset (myVariable)
%myVariable?%
Result:

true
false

+ Visibility operator - Tests whether an object property is visible in the interface, and
returns false if it is not.

For example, to test if the Type field is displayed in the General tab of a database
property sheet in a DMM (meaning that a Replication Server extension file is
attached to the model), enter the following:

%Database.Type+%

CHAPTER 5: Customizing Generation with GTL

254 PowerDesigner

Translation Scope
The initial scope of a template is always the metaclass on which it is defined. All standard and
extended attributes, collections, and templates defined on the active object metaclass and its
parents are visible, but only one object is active at any given time.

Examples

The following template is applied to a package P1, which contains a class C1, which contains
operations O1 and O2, which each contain parameters P1 and P2. The scope changes, affecting the
value of the %Name% variable, as each collection is traversed. The Outer keyword is used to return
temporarily to previous scopes:

%Name%
.foreach_item(Classes)
 \n\t*%Name% in %Outer.Name%
 .foreach_item(Operations)
 \n\t*%Name% in %Outer.Name% in %Outer.Outer.Name%
 .foreach_item(Parameters)
 \n\t\t*%Name% in %Outer.Name% in %Outer.Outer.Name% in
%Outer.Outer.Outer.Name%
 .next
 .next
.next
Result:

P1
 *C1 in P1
 *O1 in C1 in P1
 *P1 in O1 in C1 in P1
 *P2 in O1 in C1 in P1
 *O2 in C1 in P1
 *P1 in O2 in C1 in P1
 *P2 in O2 in C1 in P1

The Outer scope is restored when you leave a .foreach_item block. Nested scopes form a
hierarchy that can be viewed as a tree, with the top level scope being the root. Use Parent instead of
Outer to climb above the scope of the original object. For example, nothing will be output if the
following template is applied to the parameter P1:

%Name% in %Outer.Name% in %Outer.Outer.Name%
However, this template will produce output:

%Name% in %Parent.Name% in %Parent.Parent.Name%
Result:

P1 in O1 in C1

CHAPTER 5: Customizing Generation with GTL

Customizing and Extending PowerDesigner 255

Shortcut Translation
Shortcuts are dereferenced during translation, so that the scope of the target object replaces the
scope of the shortcut. This is different from VB Script where shortcut translation retrieves the
shortcut itself. You can use the %IsShortcut% variable to test whether an object is a
shortcut, and the Shortcut keyword to access the properties of the shortcut itself.

Template

In this example, the template is applied to an OOM package P1 containing two classes and two
shortcuts to classes in P2:

.foreach_item(Classes)
\n*Class %Code% [%IsShortcut% ? From package %Package.Name% : Local
Object]
.next
Result:

*Class C1 Local Object
*Class C2 Local Object
*Class C3 From package P2
*Class C4 From package P2

Note: If your model contains shortcuts to objects in another model that is not open, a dialog
box invites you to open the target model. You can use the .set_interactive_mode
macro to change this behavior (see .set_interactive_mode Macro on page 278).

Escape Sequences
GTL supports a number of escape sequences to simplify the layout of your templates and
generated files, and to make reserved characters accessible.

The following escape sequences can be used inside templates:

Escape sequence Description

\n New line. For examples of using new lines in macro blocks, see Con-
trolling Line Breaks in Head and Tail Strings on page 250.

\t Tab

\\ Backslash

\ at end of line Continuation character (ignores the new line)

. at beginning of line Comment. Ignores the line.

CHAPTER 5: Customizing Generation with GTL

256 PowerDesigner

Escape sequence Description

.. at beginning of line Dot character (to generate a macro).

%% Percent character.

Calling Templates
You can call a template from a generated file or from another template by entering its name
surrounded by percentage signs. Object properties, collections, and local and global variables
are called in the same way. At generation time, a template call is replaced by the template
content, which is then resolved to its final textual value.

Examples:

• %Name% - Calls the object's Name property

• %myTemplate% - Calls the %myTemplate% template

• %CurrentDate% - Calls the %CurrentDate% global variable (see Accessing Global
Variables on page 251)

Breaking templates into concise units and calling them at generation time helps with
readability and reuse. For example, you can define a commonly-used condition in one
template and reference it in multiple other templates:

Example

The %isInner% template is defined as:

.bool (%ContainerClassifier%!=null)
The %QualifiedCode% template calls the %isInner% template to test if the class is an inner
class:

.if (%isInner%)
 %ContainerClassifier.QualifiedCode%::%Code%
.else
 %Code%
.endif
Result:

C2::C1
The %QualifiedCode% template is applied to the C1 class, which is an inner class to C2.

Inheritance and Polymorphism
Templates are defined on a particular metaclass in a language definition file or extension and
are inherited by and available to the children of the metaclass. For example, a template defined

CHAPTER 5: Customizing Generation with GTL

Customizing and Extending PowerDesigner 257

on the Classifier metaclass is available to templates or generated files defined on the Class and
Interface metaclasses.

GTL supports the following OO concepts as part of inheritance:

• Polymorphism - The choice of the template to be evaluated is made at translation-time. A
template defined on a classifier can access templates defined on its children (class,
interface). In the following example, the content of %definition% depends on whether
a class or an interface is being processed:

• Template overriding - A template defined on a given metaclass can be overridden by a
template of the same name defined on a child class. In the following example the template
defined on the Classifier metaclass is overridden by the one defined on the Class
metaclass:

You can view the overridden parent by right-clicking the child template and selecting Go
to Super-Definition. You can specify the use of the parent template by prefixing the
template call with the :: qualifying operator. For example:
%Classifier::isAbstract%.

• Template overloading - You can overload your template definitions and test for different
conditions. Templates can also be defined under criteria (see Criteria (Profile) on page 40)
or stereotypes (see Stereotypes (Profile) on page 37), and the corresponding conditions are
combined. At translation-time, each condition is evaluated and the appropriate template
(or, in the event of no match, the default template) is applied. For example:

CHAPTER 5: Customizing Generation with GTL

258 PowerDesigner

You can define the same template multiple times in the hierarchy of a language definition file
and extensions files, and PowerDesigner will resolve it using inheritance rules. For example,
the myLang OOM language definition file and the myExtension extension file each
contain a template %t% defined on each of the Classifier and Class metaclasses:

myLang Language Definition File myExtension Extension File

• Classifier:
• myFile generated file

• %t% template

• Class:
• %t% template

• Classifier:
• myOtherFile generated file

• %t% template

• Class:
• %t% template

The Class and Interface metaclasses both inherit from the Classifier metaclass,
and each will generate a myFile and a myOtherFile.

The following template calls are possible in myLang/Classifier/myFile (which
cannot access the templates in myExtension):

Template Call in myFile Template Called

%t% or

%myLang::t%
myLang/Class/t

%Classifier::t% or

%myLang::Classifier::t%
myLang/Classifier/t

The following template calls are possible in myExtension/Classifier/
myOtherFile (which can access both its own templates and those in myLang):

Template Call in myOtherFile Template Called

%t% or

%myExtension::t%
myExtension/Class/t

%Classifier::t% or

%myExtension::Classifier::t%
myExtension/Classifier/t

%myLang::t% or

%myLang::Class::t%
myLang/Class/t

%myLang::Classifier::t% myLang/Classifier/t

Note: For an extension file to reach templates defined in a language definition file, the
Complement language generation property in the extension must be selected (see Extension
File Properties on page 14).

CHAPTER 5: Customizing Generation with GTL

Customizing and Extending PowerDesigner 259

Passing Parameters to a Template
You can pass parameters to a template, using the syntax:%t(p1,p2...)%.

Parameter values cannot contain any % characters (you cannot pass a template), and are
separated by commas. They are retrieved in the template using local variables with the names
@1, @2,

Examples

The following template call:

%myTemplate(fine,sunny,24,12)%
calls %myTemplate%:

The weather today is %@1% and %@2%, with a high of %@3% and a low of
%@4%.
Result:

The weather today is fine and sunny, with a high of 24 and a low of
12.

CHAPTER 5: Customizing Generation with GTL

260 PowerDesigner

Examples

The template %Attributes% is defined as follows:

.foreach_item(Attributes)
 .if (%Visibility% == %@1%)
 %DataType% %Code%
 .endif
.next(\n)
The template %AttributeList% calls %Attributes% three times, passing a different
visibility value each time to loop over only the attributes that have this visibility:

Class "%Code%" attributes:
// Public
%attributes(+)%

// Protected
%attributes(#)%

// Private
%attributes(-)%
Result:

Class "C1" attributes :
// Public
 int height
 int width

// Protected
 int shape

// Private
 int cost
 int price

CHAPTER 5: Customizing Generation with GTL

Customizing and Extending PowerDesigner 261

Recursive Templates
A template can call itself, but such a template should contain some kind of criteria or scope
change to avoid an infinite loop.

Example

Class C1 is inner to class C2, which is in turn inner to C3. The template %topContainerCode
% tests whether the present classifier is inner to another, and if so, calls itself on the container classifier
to perfom the same test until it reaches a classifier that is not inner, at which point it prints the code of
the top container:

.if (%isInner%)
 %ContainerClassifier.topContainerCode%
.else
 %Code%
.endif
Result:

C3

GTL-Specific Metamodel Extensions
A number of calculated attributes and collections are provided as GTL-specific extensions to
the metamodel.

The following calculated attributes are metamodel extensions specific to GTL:

Metaclass GTL-Specific Attributes

PdCommon.BaseObject • isSelected (boolean) - True if the object is part of the selection in
the generation dialog

• isShorctut (boolean) - True if the object was accessed by dere-
ferencing a shortcut

PdCommon.BaseModel • GenOptions (struct) - Gives access to user-defined generation
options

PdOOM.* • ActualComment (string) - Cleaned–up comment (with /**, /*, */
and // removed)

PdOOM.Association • RoleAMinMultiplicity (string)
• RoleAMaxMultiplicity (string)
• RoleBMinMultiplicity (string)
• RoleBMaxMultiplicity (string)

CHAPTER 5: Customizing Generation with GTL

262 PowerDesigner

Metaclass GTL-Specific Attributes

PdOOM.Attribute • MinMultiplicity (string)
• MaxMultiplicity (string)
• Overridden (boolean)
• DataTypeModifierPrefix (string)
• DataTypeModifierSuffix (string)
• @<tag> [Java-specific] (string) - Javadoc@<tag> extended at-

tribute with additional formatting

PdOOM.Class • MinCardinality (string)
• MaxCardinality (string)
• SimpleTypeAttribute [XML-specific]
• @<tag> [Java-specific] (string) - Javadoc@<tag> extended at-

tribute with additional formatting

PdOOM.Interface • @<tag> [Java-specific] (string) - Javadoc@<tag> extended at-
tribute with additional formatting

PdOOM.Operation • DeclaringInterface (object)
• GetSetAttribute (object)
• Overridden (boolean)
• ReturnTypeModifierPrefix (string)
• ReturnTypeModifierSuffix (string)
• @<tag> [Java-specific] (string) - Javadoc@<tag> extended at-

tribute with additional formatting (especially for @throws,
@exception, @params)

PdOOM.Parameter • DataTypeModifierPrefix (string)
• DataTypeModifierSuffix (string)

The following calculated collections are metamodel extensions specific to GTL:

Metaclass name Collection name

PdCommon.BaseModel Generated <metaclass-name> List - Collection of all objects of
type <metaclass-name> that are part of the selection in the gener-
ation dialog

PdCommon. BaseClassifier-
Mapping

SourceLinks

PdCommon. BaseAssociation-
Mapping

SourceLinks

CHAPTER 5: Customizing Generation with GTL

Customizing and Extending PowerDesigner 263

GTL Macro Reference
GTL supports macros to express template logic, and to loop on object collections. Macro
keywords are prefixed by a . (dot) character, which must be the first non-blank character in the
line, and you must respect the use of line breaks in the macro syntax.

Note: Macro parameters can be delimited by double quotes, and this is required if the
parameter value includes commas, braces, leading or trailing blanks. The escape sequence for
double quotes inside a parameter value is \". When the macro parameters specify that a
parameter is of type simple template, this means that it can contain text, variables, and
conditional blocks, but no macros. Parameters of type complex template can additionally
include macros.

The following macros are available:

• Conditional and loop / iterative macros:
• .if Macro on page 275 - evaluates conditions.
• .foreach_item Macro on page 271 – iterates on object collections.
• .foreach_line Macro on page 273 – iterates on lines of a multi-line text block.
• .foreach_part Macro on page 274 – iterates on parts of a string.
• .break Macro on page 266 – breaks a loop.

• Formatting and string manipulation macros:
• .lowercase and .uppercase Macros on page 277 - change the case of a text block.
• .convert_name and .convert_code Macros on page 267 - convert codes into names or

names into codes.
• .delete and .replace Macros on page 268 - perform operations on substrings.
• .unique Macro on page 281 - filters redundant lines from a text block.
• .block Macro on page 265 - adds a header and a footer to a text block.

• Generation command macros - for use when writing GTL in the context of the execution of
a generation command:
• .vbscript Macro on page 281 - embed VB script code inside a template.
• .execute_vbscript Macro on page 270 - launch vbscripts.
• .execute_command Macro on page 269 - launch executables.
• .abort_command Macro on page 265 - stop command execution.
• .change_dir and .create_path Macros on page 266 - change directory or create a path.
• .log Macro on page 277 - write log messages.

• Miscellaneous macros:
• .set_object, .set_value, and .unset Macros on page 279 - create local objects or

variables.
• .comment and .// Macro on page 267 - inserts a comment in a template.

CHAPTER 5: Customizing Generation with GTL

264 PowerDesigner

• .object and .collection Macros on page 278 - returns a collection of objects based on
the specified scope and condition.

• .object and .collection Macros on page 278 - return an object or collection based on the
specified scope and condition.

• .bool Macro on page 266 - evaluates a condition.
• .set_interactive_mode Macro on page 278 – defines whether the GTL execution must

interact with the user.
• .error and .warning Macros on page 269

.abort_command Macro
This macro stops a generation command.

Example

.if %_JAVAC%
 .execute_command (%_JAVAC%,%FileName%)
.else
 .abort_command
.endif

For information about generation commands, see Generation Category on page 112.

.block Macro
This macro wraps a block of output with a header and/or a footer, if the output is not empty.

.block [(head)]
 block-input
.endblock[(tail)]

The following parameters are available:

Parameter Description

head [optional] Generated only if block-input is not empty.

Type: Simple template

block-input Specifies the text to output between the head and tail.

Type: Complex template

tail [optional] Generated only if block-input is not empty.

Type: Simple template

CHAPTER 5: Customizing Generation with GTL

Customizing and Extending PowerDesigner 265

Example Result

.block ()
%Comment%
.endblock ()

My comment is in bold!

Note: The tags would not be generated if no

comment were entered for a particular object.

.bool Macro
This macro returns true or false depending on the value of the condition specified.

.bool (condition)

The following parameters are available:

Parameter Description

condition Specifies the condition to be evaluated.

Type: Condition

Example Result

.bool(%.3:Code%= =ejb) true

.break Macro
This macro can be used to break out of .foreach loops.

Example

.set_value(_hasMain, false, new)

.foreach_item(Operations)
 .if (%Code% == main)
 .set_value(_hasMain, true)
 .break
 .endif
.next
%_hasMain%

.change_dir and .create_path Macros
These macros change the current directory or create the specified path as part of a generation
command.

.change_dir (path)

.create_path (path)

The following parameters are available:

CHAPTER 5: Customizing Generation with GTL

266 PowerDesigner

Parameter Description

path Specifies the directory to go to or to create.

Type: Simple template (escape sequences ignored)

Example Result

.change_dir(C:\temp) Changes the path to write to to C:\temp.

.create_path(C:\temp\mydir) Creates the new directory C:\temp\mydir.

For information about generation commands, see Generation Category on page 112.

.comment and .// Macro
These macros are used to insert comments in a template. Lines starting with .//
or .comment are ignored during generation.

Example

.// This is a comment

.comment This is also a comment

.convert_name and .convert_code Macros
These macros convert the object name to its code (or vice versa).

Use the following syntax to convert a name to a code:

.convert_name (expression[,"separator"[,"delimiters"],case])

Use the following syntax to convert a code to a name:

.convert_code (expression[,"separator"[,"delimiters"]])

The following parameters are available:

Parameter Description

expression Specifies the text to be converted. For .convert_name, this is generally the %Name
% variable and may include a suffix or prefix.

Type: Simple template

separator [optional] Character generated each time a separator declared in delimiters is found
in the code. For example, "_" (underscore).

Type: Text

CHAPTER 5: Customizing Generation with GTL

Customizing and Extending PowerDesigner 267

Parameter Description

delimiters [optional] Specifies the different delimiters likely to exist in the input code or name,
and which will be replaced by separator. You can declare several separators, for
example "_ " and "-"

Type: Text

case [optional for .convert_name only] Specifies the case into which to convert
the code. You can choose between:

• firstLowerWord - First word in lowercase, first letters of subsequent
words in uppercase

• FirstUpperChar - First character of all words in uppercase

• lower_case - All words in lowercase and separated by an underscore

• UPPER_CASE - All words in uppercase and separated by an underscore

.delete and .replace Macros
These macros delete or replace all instances of the given string in the text input.

.delete (string)
 block-input
.enddelete
.replace (string,new-string)
 block-input
.endreplace

The following parameters are available:

Parameter Description

string Specifies the string to be deleted.

Type: Text

new-string [.replace only] Specifies the string with which to replace string.

Type: Text

block-input Specifies the text to be parsed for instances of the string to delete or replace.

Type: Complex template

Examples Result

.delete(Get)
 GetCustomerName
.enddelete

CustomerName

CHAPTER 5: Customizing Generation with GTL

268 PowerDesigner

Examples Result

.replace(Get,Set)
GetCustomerName
.endreplace

SetCustomerName

.replace(" ", _)
Customer Name
.endreplace

Customer_Name

.error and .warning Macros
These macros are used to output errors and warnings during translation. Errors stop
generation, while warnings are purely informational and can be triggered when an
inconsistency is detected while applying the template on a particular object. The messages are
displayed in both the object Preview tab and the Output window.

.error message

.warning message

The following parameters are available:

Parameter Description

message Specifies the text of the message.

Type: Simple template

Example

.error no initial value supplied for attribute %Code% of class
%Parent.Code%

.execute_command Macro
This macro is launches executables as part of a generation command. If there is a failure for
any reason (executable not found or output sent to stderr), then command execution is
stopped.

.execute_command (cmd [,args [,mode]])

The following parameters are available:

Parameter Description

cmd Specifies the path to the executable

Type: Simple template (escape sequences ignored)

CHAPTER 5: Customizing Generation with GTL

Customizing and Extending PowerDesigner 269

Parameter Description

args [optional] Specifies arguments for the executable.

Type: Simple template (escape sequences ignored)

mode [optional] Specifies the execution mode.You can choose from:

• cmd_ShellExecute - runs as an independent process

• cmd_PipeOutput - blocks until completion, and shows the executable
output in the output window

Example

.execute_command(notepad, file1.txt, cmd_ShellExecute)

For information about generation commands, see Generation Category on page 112.

.execute_vbscript Macro
This macro is used to execute a VB script specified in a separate file as part of a generation
command.

.execute_vbscript (vbs-file [,script-parameter])

The following parameters are available:

Parameter Description

vbs-file Specifies the path to the VB script.

Type: Simple template (escape sequences ignored)

script-parameter [optional] Passed to the script through the ScriptInputParameters
global property.

Type: Simple template

Example

.execute_vbscript(C:\samples\vbs\login.vbs, %username%)

The result of the script is available in the ScriptResult global property (see Manipulating
Models, Collections, and Objects (Scripting) on page 312). The active object of the current translation
scope can be accessed through the ActiveSelection collection as ActiveSelec-
tion.Item(0).

For information about generation commands, see Generation Category on page 112.

CHAPTER 5: Customizing Generation with GTL

270 PowerDesigner

.foreach_item Macro
This macro iterates over a collection of sub-objects or related objects.

.foreach_item (collection [,head [,tail [,filter [,order]]]])
 output
.next [(separator)]

The following parameters are available:

Parameter Description

collection Specifies the collection over which to iterate.

Type: Simple template

head [optional] Specifies text to be generated before the output, unless the collection is
empty.

Type: Text

tail [optional] Specifies text to be generated after the output, unless the collection is empty.

Type: Text

filter [optional] Specifies a filter to apply to the collection before iteration.

Type: Simple condition

order [optional] Specifies the order in which the collection will be iterated in the format:

%Item1.property% <= %Item2.property%
When the comparison evaluates to true, %Item1% will be placed after %Item2%.
By default, the collection is ordered alphabetically by name.

Type: Simple condition

output Specifies the text to output for each item in the collection.

Type: Complex template

separator [optional] Specifies text to be generated between each instance of output.

Type: Text

Note: If parameter values contain commas, braces, or leading or trailing blanks, they must be
delimited with double-quotes. To escape double-quotes inside a parameter value, use \".

CHAPTER 5: Customizing Generation with GTL

Customizing and Extending PowerDesigner 271

Examples

Simple list:

.foreach_item(Attributes)
 *%Code% (%DataType%)[= %InitialValue%];
.next(\n)
Result:

 *available (boolean) = true;
 *actualCost (int);
 *baseCost (int);
 *color (String);
 *height (int) = 10;
 *width (int) = 5;
 *name (int);

With head and tail:

.foreach_item(Attributes,Attributes:\n,\n\nEnd of Attribute List)
 *%Code% (%DataType%)[= %InitialValue%];
.next(\n)
Result:

Attributes:
*available (boolean) = true;
*actualCost (int);
*baseCost (int);
*color (String);
*height (int) = 10;
*width (int) = 5;
*name (int);

End of Attribute List

With filter:

.foreach_item(Attributes,,,%.1:Code%==a)
 *%Code% (%DataType%)[= %InitialValue%];
.next(\n)
Result:

 *available (boolean) = true;
 *actualCost (int);

CHAPTER 5: Customizing Generation with GTL

272 PowerDesigner

Examples

With reverse alphabetical ordering:

.foreach_item(Attributes,,,, %Item1.Code% <= %Item2.Code%)
 *%Code% (%DataType%)[= %InitialValue%];
.next(\n)
Result:

 *width (int) = 5;
 *name (int);
 *height (int) = 10;
 *color (String);
 *baseCost (int);
 *available (boolean) = true;
 *actualCost (int);

.foreach_line Macro
This macro iterates over the lines of the multiline block of text using the special
%CurrentLine% local variable.

.foreach_line (input [,head [,tail]])
 output
.next [(separator)]

The following parameters are available:

Parameter Description

input Specifies the text over which to iterate.

Type: Simple template

head [optional] Specifies text to be generated before the output, unless there is no
output.

Type: Text

tail [optional] Specifies text to be generated after the output, unless there is no output.

Type: Text

output Specifies the text to output for each line in the input.

Type: Complex template

separator [optional] Specifies text to be generated between each line of output.

Type: Text

CHAPTER 5: Customizing Generation with GTL

Customizing and Extending PowerDesigner 273

Example

.foreach_line(%Comment%,"/**\n","\n*/")
* %CurrentLine%
.next("\n")
Result:

/**
* This is my comment.
* It is a Java style documentation comment.
* It spans several lines.
*/

.foreach_part Macro
This macro iterates over the parts of a string divided by a delimiter using the special
%CurrentPart% local variable.

.foreach_part (input [,"delimiter" [,head [,tail]]])
 output
.next[(separator)]

The following parameters are available:

Parameter Description

input Specifies the text over which to iterate.

Type: Simple template

delimiter Specifies the sub-string that divides the input into parts. You can specify multiple
characters including ranges. For example [A-Z] specifies that any capital letter
acts as a delimiter.

By default, the delimiter is set to ' -_,\t' (space, dash, underscore, comma,
or tab).

Note: The delimiter must be surrounded by single quotes if it contains a space.

Type: Text

head [optional] Specifies text to be generated before the output, unless there is no
output.

Type: Text

tail [optional] Specifies text to be generated after the output, unless there is no output.

Type: Text

output Specifies the text to output for each part in the input.

Type: Complex template

CHAPTER 5: Customizing Generation with GTL

274 PowerDesigner

Parameter Description

separator [optional] Specifies text to be generated between each part of output.

Type: Text

For example:

Examples

This template is applied to My class:

.foreach_part (%Name%)
%.FU:CurrentPart%
.next
Result:

MyClass

This template is applied to My class:

.foreach_part (%Name%,' -_',tbl_)
%.L:CurrentPart%
.next(_)
Result:

tbl_my_class

This template is applied to MyClass:

.foreach_part (%Name%,[A-Z])
%.L:CurrentPart%
.next(-)
Result:

my-class

.if Macro
This macro is used for conditional generation.

.if[not] condition
 output
 [(.elsif[not] condition
 output)*]
 [.else
 output]
.endif [(tail)]

The following parameters are available:

CHAPTER 5: Customizing Generation with GTL

Customizing and Extending PowerDesigner 275

Parameter Description

condition Specifies the condition to evaluate, in the form:

variable [operator comparison]
Where comparison may be :

• Text, or a simple template
• true or false
• null or notnull
If no operator and condition are specified, the condition evaluates to true unless
the value of the variable is false, null, or the empty string.

If variable and comparison are not integers, the operators perform a string
comparison that takes into account embedded numbers. For example:

Class_10 > Class_2
You can chain conditions together using the and or or logical operators.

Type: Simple template

output Specifies the output if the condition is true.

Type: Complex template

tail [optional] Specifies text to be generated after the output, unless the output is
empty.

Type: Text

Examples

Simple .if block:

.if %Abstract%
 This class is abstract.
.endif

Result (if the Abstract property is selected):

This class is abstract.

With two conditions and an .else clause:

.if (%Abstract%==false) && (%Visibility%=="+")
 This class is public and concrete.
 .else
This is not a public, concrete class.
.endif

Result (if the Abstract property is not selected and the Visibility property is set to Public):

This class is public and concrete.

CHAPTER 5: Customizing Generation with GTL

276 PowerDesigner

Examples

With an .elseif clause:

.if (%Abstract%==false) && (%Visibility%=="+")
 This class is public and concrete.
.elsif (%Visibility%=="+")
 This class is public.
 .else
This is not a public, concrete class.
.endif

.log Macro
This macro logs a message to the Output window Generation tab as part of a generation
command.

.log message

Example

.log undefined environment variable: JAVAC

For information about generation commands, see Generation Category on page 112.

.lowercase and .uppercase Macros
These macros convert text blocks to the specified case.

.lowercase
 block-input
.endlowercase
.uppercase
 block-input
.enduppercase

The following parameters are available:

Parameter Description

block-input Specifies the text to convert.

Type: Complex template

CHAPTER 5: Customizing Generation with GTL

Customizing and Extending PowerDesigner 277

Example Result

.lowercase
 %Comment%
.endlowercase

Applied to

This is my comment.
Produces:

this is my comment.

.object and .collection Macros
These macro return a single object OID or a collection of objects as a concatenation of semi-
colon terminated OIDs, and are generally used to create templates returning objects for use by
other templates.

.collection (scope [,filter])

.object (scope [,filter])

The following parameters are available:

Parameter Description

scope Specifies the collection over which to iterate.

Type: simple-template returning a collection scope

filter [optional] Specifies a filter condition to filter the collection.

Type: simple-template

Examples

.object(Attributes, (%.1:Code%>= a) and (%.1:Code% <= e))
Result:

C73C03B7-CD73-466A-B323-0B90B67E82FC

.collection(Attributes, (%.1:Code%>= a) and (%.1:Code% <= e))
Result:

C73C03B7-CD73-466A-B323-0B90B67E82FC;77E3F55C-
CF24-440F-84E7-5AA7B3399C00;F369CD8C-0C16-4896-9C2D-0CD2F80D6980;0
0ADD959-0705-4061-BF77-BB1914EDC018;

.set_interactive_mode Macro
This macro is used to define if the GTL execution must interact with the user or not.

.set_interactive_mode(mode)

The following parameters are available:

CHAPTER 5: Customizing Generation with GTL

278 PowerDesigner

Parameter Description

mode Specifies the level of interaction required. You can choose between:

• im_Batch - Suppresses dialog boxes and always uses default values. For

example, if your model contains external shortcuts and the target model for
the shortcuts is closed, this mode will automatically open the model without
user interaction.

• im_Dialog - Displays information and confirmation dialog boxes that

require user interaction for the execution to keep running.

• im_Abort - Suppresses dialog boxes and aborts execution if a dialog is

encountered.

.set_object, .set_value, and .unset Macros
These macros are used to define a local variable of object (local object) or value type or to
unset them.

Use the following syntax to create a local object:
.set_object ([scope.] name [,object-ref [,mode]])

Use the following syntax to create a local variable:
.set_value ([scope.] name, value [,mode])

Use the following syntax to remove a local object or variable:
.unset ([scope.] name)

The following parameters are available:

Parameter Description

scope [optional] Specifies the qualifying scope. If no scope is set, then the scope is the
object with the current scope. Use the this keyword to explicitly give a scope

of the current object, or Parent to give a scope of the parent object.

Type: Simple-template returning an object or a collection scope

name Specifies the name of the object or variable, which you can reference elsewhere
in the template in the form of %name%.

Type: Simple-template

object-ref [.set_object only - optional] Specifies an object reference. If no reference is
specified or an empty string is given, the variable is a reference to the active object
in the current translation scope.

Type: [scope.]object-scope]

CHAPTER 5: Customizing Generation with GTL

Customizing and Extending PowerDesigner 279

Parameter Description

value [.set_value only] Specifies the value to give to the variable.

Type: Simple template (escape sequences ignored)

mode [optional] Specifies the mode of creation. You can choose between:

• new - Forces the (re)-definition of the variable in the current scope. Recom-
mended when a variable with the same name may already be defined in a
previous scope.

• update – [default] If a variable with the same name already exists, update the
existing variable. Otherwise define a new one.

• newifundef - Define the variable in the current scope if it has not been defined
in an outer scope. Otherwise do nothing.

Examples:

Examples

.set_object(Attribute1, Attributes.First)

.set_value(FirstAttributeCode, %Attributes.First.Code%)
%FirstAttributeCode% (OID: %Attribute1%)
Result:

a1 (OID: 63442F85-48DF-42C8-92C1-0591F5D34525)

.set_value(this.key, %Code%-%ObjectID%)
Result:

C1-40D8F396-EE29-4B7B-8C78-E5A0C5A23325

.set_value(i, 1, new)
%i?%
.unset(i)
%i?%
Result:

true
false

The first call to %i?% outputs true as the variable i is defined, and the second outputs false,

because it has been unset.

Note: You can use the dereferencing operator, * (see GTL Operators on page 252), to convert
the value of a variable set with the .set_value macro to a template name. For example, the
following code is equivalent to %Code%.:

.set_value(i, Code)
%*i%

CHAPTER 5: Customizing Generation with GTL

280 PowerDesigner

.unique Macro
This macro outputs a block in which each line of the text generated is unique, and is often used
for calculating imports, includes, typedefs, or forward declarations in languages such as Java,
C++ or C#.

.unique
 block-input
.endunique[(tail)]

The following parameters are available:

Parameter Description

block-input Specifies the text block to be processed.

Type: Complex template

tail [optional] Specifies text to be generated after the output, unless the collection is
empty.

Type: Text

Example

.unique
 import java.util.*;
 import java.lang.String;
 %imports%
.endunique

.vbscript Macro
This macro is used to embed VBScript code inside a template as part of a generation
command. The result of the script is available as the ScriptResult array

.vbscript [(script-param-list)]
 block-input
.endvbscript [(tail)]

The following parameters are available:

Parameter Description

script-param-list Specifies the parameters to pass to the script through the ScriptInpu-
tArray table.

Type: List of simple-template arguments separated by commas

block-input Specifies theVBscript to run.

Type: Text

CHAPTER 5: Customizing Generation with GTL

Customizing and Extending PowerDesigner 281

Parameter Description

tail Appended to the output, if there is one

Type: Text

Examples

This simple script accepts the two words hello and world as input parameters, and returns them

as a single string with a space in between them:

.vbscript(hello, world)
ScriptResult = ScriptInputArray(0) + " " + ScriptInputArray(1)
.endvbscript
Result:

hello world

CHAPTER 5: Customizing Generation with GTL

282 PowerDesigner

Examples

This script accepts an attribute code, reviews it against all the attribute codes in the current model, and
appends a 1 to it if it matches any other code:

.set_value(_code,%@1%,new)

.vbscript(%_code%)
 Dim attrCode
 attrCode = ScriptInputArray(0)

 While (attrFound(attrCode))
 attrCode = attrCode + "1"
 Wend

 Function attrFound(attrCode)
 Dim found, attr
 found = False
 For Each attr in ActiveSelection.Item(0).Attributes
 If attr.Code = attrCode Then
 found = True
 Exit For
 End If
 Next

 For Each attr in ActiveSelection.Item(0).InheritedAttri-
butes
 If attr.Code = attrCode Then
 found = True
 Exit For
 End If
 Next
 attrFound = found
 End Function

 ScriptResult = attrCode
.endvbscript

Note: The active object of the current translation scope is accessed as ActiveSelec-
tion.Item(0) (see Manipulating Models, Collections, and Objects (Scripting) on page 312).

For information about generation commands, see Generation Category on page 112.

GTL Syntax and Translation Errors
Error messages stop the generation of the file in which errors have been found, these errors are
displayed in the Preview tab of the corresponding object property sheet.

Error messages have the following format:
target::catg-path full-template-name(line-number)
active-object-metaclass active-object-code):
 error-type error-message

CHAPTER 5: Customizing Generation with GTL

Customizing and Extending PowerDesigner 283

You may encounter the following syntax errors:

Syntax error message Description and correction

condition parsing error Syntax error in a boolean expression

expecting .endif

.else with no matching .if

.endif with no matching .if

Add an .endif or .if (see .if Macro on page 275).

expecting .next

.next with no matching .foreach

Add an appropriate .next or .foreach to the

collection block (for example, see .foreach_item Macro
on page 271).

expecting .end%s Add an appropriate .end to the macro block (for ex-

ample, see .unique Macro on page 281).

.end%s with no matching .%s Add an appropriate .macro to the .endmacro (for

example, see .vbscript Macro on page 281).

missing or mismatched parentheses Correct any mismatched parentheses.

unexpected parameters: extra-params Remove any unnecessary parameters

unknown macro Replace with a valid macro (see GTL Macro Reference
on page 264).

.execute_command incorrect syntax The correct syntax is displayed in the Preview tab, or in
the Output window (see .execute_command Macro on
page 269).

Change_dir incorrect syntax See .change_dir and .create_path Macros on page 266.

convert_name incorrect syntax

convert_code incorrect syntax

See .convert_name and .convert_code Macros on page
267.

set_object incorrect syntax

set_value incorrect syntax

See .set_object, .set_value, and .unset Macros on page
279.

execute_vbscript incorrect syntax See .execute_vbscript Macro on page 270.

Translation errors are evaluation errors on a variable when evaluating a template:

Translation error message Description and correction

unresolved collection: collection Unknown collection (see Accessing Collections of Sub-
Objects or Related Objects on page 247).

CHAPTER 5: Customizing Generation with GTL

284 PowerDesigner

Translation error message Description and correction

unresolved member: member

null object

expecting object variable: object

Unknown member, null object member, or expecting a
string instead of an object (see Extracting Object Prop-
erties on page 246).

no outer scope Invalid use of the Outer keyword (see Translation
Scope on page 255).

VBScript execution error VB script error (see .vbscript Macro on page 281).

Deadlock detected Deadlock due to an infinite loop.

CHAPTER 5: Customizing Generation with GTL

Customizing and Extending PowerDesigner 285

CHAPTER 5: Customizing Generation with GTL

286 PowerDesigner

CHAPTER 6 Translating Reports with Report
Language Files

When you create a report, you select a report language, which contains all the framing text
used in the generation of the report for the selected language, such as report section titles, types
of model objects, and their properties. PowerDesigner ships with support for English
(default), French, and simplified and traditional Chinese. You can edit these files, or use them
as the basis for creating your own files for translations into other languages.

Report language files have an .xrl extension and are stored in install_dir/Resource
Files/Report Languages. To view the list of report languages, select Tools >
Resources > Report Languages. For information about the tools available in resource file
lists, see Chapter 1, PowerDesigner Resource Files on page 1.

In the following example, Entity Card, Entity Description, and Entity Annotation are shown in
English and French as they will appear in the Report items pane:

The report language files use GTL templates (see Chapter 5, Customizing Generation with
GTL on page 245) to factorize the work of translation. Report Item Templates interact with
your translations of the names of model objects and Linguistic Variables (that handle syntactic
peculiarities such as plural forms and definite articles) to automatically generate all the textual

Customizing and Extending PowerDesigner 287

elements in a report and dramatically reduce (by around 60%) the number of strings that must
be translated in order to render reports in a new language.

For example the French report title Liste des données de l'entité MyEntity
is automatically generated as follows:

• the List - object collections report item template (see Profile/Report Item Templates
Category on page 303) is translated as:
Liste des %@Value% %ParentMetaClass.OFTHECLSSNAME% %%PARENT%%

in which the following variables are resolved:
• %@Value% - resolves to the object type of the metaclass (see Object Attributes

Category on page 298), données.

• %ParentMetaClass.OFTHECLSSNAME% %%PARENT%% - resolves to the
object type of the parent metaclass, as generated by the OFTHECLSSNAME linguistic
variable (see Profile/Linguistic Variables Category on page 300), l'entité.

• %%PARENT%% - resolves to the name of the specific object (see Object Attributes
Category on page 298), MyEntity.

Opening a Report Language File
You can review and edit report language files in the Resource Editor.

1. Select Tools > Resources > Report Languages to open the List of Report Languages,
which lists all the available .xrl files:

2. Select a report language and click the Properties tool to open it in the Resource Editor.

Note: You can open the .xrl file attached to a report open in the Report Editor by selecting
Report > Report Properties, and clicking the Edit Current Language tool beside the

CHAPTER 6: Translating Reports with Report Language Files

288 PowerDesigner

Language list. You can change the report language by selecting another language in the
list.

For more information about the tools available in the List of Report Languages, see
Chapter 1, PowerDesigner Resource Files on page 1.

Creating a Report Language File for a New Language
You can translate reports and other text items used to generate PowerDesigner reports into a
new language.

1. Select Tools > Resources > Report Languages to open the List of Report Languages,
which shows all the available report language resource files.

2. Click the New tool, and enter the name that you want to appear in the List of Report
Languages.

3. [optional] Select a report language in the Copy from list.

4. Click OK to open the new file in the Report Language Editor.

5. Open the Values Mapping category, and translate each of the keyword values (see Values
Mapping Category on page 291).

6. Open the Profile > Linguistic Variables category to create the grammar rules necessary
for the correct evaluation of the report item templates (see Profile/Linguistic Variables
Category on page 300).

7. Open the Profile > Report Items Templates category, and translate the various templates
(see Profile/Report Item Templates Category on page 303). As you translate, you may
discover additional linguistic variables that you should create.

8. Click the All Classes tab to view a sortable list of all the metaclasses available in the
PowerDesigner metamodel (see All Classes Tab on page 299). Translate each of the
metaclass names.

9. Click the All Attributes and Collections tab to view a sortable list of all the attributes and
collections available in the PowerDesigner metamodel (see All Attributes and Collections
Tab on page 300). Translate each of the attribute and collection names.

10. Click the All Report Titles tab, and review the automatically generated report titles (see
All Report Titles Tab on page 297). This tab may take several seconds to display.

11. Click the Save tool, and click OK to close the Report Language Editor. The report
language file is now ready to be attached to a report.

CHAPTER 6: Translating Reports with Report Language Files

Customizing and Extending PowerDesigner 289

Report Language File Properties
All report language files can be opened in the Resource Editor, and have the same basic
category structure.

The root node of each file contains the following properties:

Property Description

Name Specifies the name of the report language.

Code Specifies the code of the report language.

File Name [read-only] Specifies the path to the .xrl file.

Comment Specifies additional information about the report language.

CHAPTER 6: Translating Reports with Report Language Files

290 PowerDesigner

Values Mapping Category
The Values Mapping category contains a list of keywords values (such as Undefined, Yes,
False, or None) for object properties displayed in cards, checks, and lists. You must enter a
translation in the Value column for each keyword in the Name column:

This category contains the following sub-categories:

Sub-category Description

Forms Contains a Standard mapping table for keywords of object properties in cards
and checks, which is available to all models. You have to provide translations
for keywords values in the Value column.

Example: Embedded Files.

Lists Contains a Standard mapping table for keywords of object properties in lists,
which is available to all models. You have to provide translations for keywords
values in the Value column.

Example: True.

You can create new mapping tables containing keywords values specific to particular types of
model objects.

CHAPTER 6: Translating Reports with Report Language Files

Customizing and Extending PowerDesigner 291

Example: Creating a Mapping Table, and Attaching It to a Specific Model Object
You can override the values in the Standard mapping tables for a specific model object by
creating a new mapping table, and attaching it to the object.

In the following example, the DisplayMap mapping table is used to override the Standard
mapping table for PDM columns to provide custom values for the Displayed property, which
controls the display of the selected column in the table symbol. This situation can be
summarized as follows:

Name Value

TRUE Displayed

FALSE Not Displayed

1. Open the Values Mapping > Lists category.

2. Right-click the Lists category, select New > Map Item to create a new list, and open its
property sheet.

3. Enter DisplayMap in the Name field, enter the following values in the Value list, and click
Apply:

• Name: TRUE, Value: Displayed.
• Name:FALSE, Value: Not Displayed.

CHAPTER 6: Translating Reports with Report Language Files

292 PowerDesigner

4. Right-click the Lists category, select New > Category, name the category Physical Data
Model, and click Apply.

5. To complete the recreation of the PDM Object Attributes tree, right-click the new Physical
Data Model category, select New > Map Item, name the category Column, and click
Apply.

6. Click the Name column to create a value and enter Displayed, which is the name of the
PDM column attribute (property).

7. Click the Value column and enter DisplayMap to specify the mapping table to use for that
attribute.

8. Click Apply to save your changes. When you generate a report, the Displayed property
will be shown using the specified values:

CHAPTER 6: Translating Reports with Report Language Files

Customizing and Extending PowerDesigner 293

Report Titles Category
The Report Titles category contains translations for all the possible report titles that appear in
the Available Items pane in the Report Editor, those that are generated with the Report Wizard,
and other miscellaneous text items.

This category contains the following sub-categories:

Sub-cate-
gory

Description

Common Ob-
jects

Contains the text items available to all models. You must provide translations of
these items here.

Example: HTMLNext provides the text for the Next button in an HTML report.

Report Wizard Contains the report titles generated with the Report Wizard. You must provide
translations of these items here.

Example: Short description title provides the text for a short description section
when you generate a report with the Report Wizard.

CHAPTER 6: Translating Reports with Report Language Files

294 PowerDesigner

Sub-cate-
gory

Description

[Models] Contain the report titles and other text items available to each model. These are
automatically generated, but you can override the default values.

Example: DataTransformationTasks list provides the text for the data transforma-
tion tasks list of a given transformation process in the Data Movement Model.

By default (with the exception of the Common Objects and Report Wizard sub-categories)
these translations are automatically generated from the templates in the Profile category (see
Profile/Report Item Templates Category on page 303). You can override the automatically
generated values by entering your own text in the Localized name field, which will depress
the User-Defined button to indicate that the value is no longer generated.

Note: The All Report Titles tab (see All Report Titles Tab on page 297) displays the same
translations shown in this category in a simple, sortable list form. You may find it more
convenient to check and, where appropriate, to override generated translations on this tab.

Example: Translating the HTML Report Previous Button
The HTML report Previous button is a common object available to all models, and located in
the Common Objects category. You must translate this text item manually along with the other
items in this, and the Report Wizard categories.

1. Open the Report Titles > Common Objects category.

2. Click the HtmlPrevious entry to display its properties, and enter a translation in the
Value box. The User-Defined button is depressed to indicate that the value is no longer
generated.

CHAPTER 6: Translating Reports with Report Language Files

Customizing and Extending PowerDesigner 295

3. Click Apply to save your changes.

CHAPTER 6: Translating Reports with Report Language Files

296 PowerDesigner

All Report Titles Tab
The Report Titles tab lists all the report titles and other miscellaneous text items available in
the Report Titles category on the General tab, but the flat structure makes it more convenient to
work with.

For each report listed in the Name column, you can review or override a translation in the
Localized Name column. You can sort the list to group similarly-named objects, and translate
identical items together by selecting multiple lines.

CHAPTER 6: Translating Reports with Report Language Files

Customizing and Extending PowerDesigner 297

Object Attributes Category
The Object Attributes category contains all the metaclasses, collections and attributes
available in the PowerDesigner metamodel, organized in tree form:

This category contains the following sub-categories:

Sub-category Description

[Models] Contain text items for metaclasses, collections and attributes available to
each model, for which you must provide translations.

Example: Action provides the text for an attribute of a process in the
Business Process Model.

Common Objects Contains text items for metaclasses, collections and attributes available to
all models, for which you must provide translations.

Example: Diagram provides the text for a diagram in any model.

For each item the name is given, and you must provide a translation in the Localized name
field. This value is retrieved by the templates you have specified in the Profile category to
generate default report titles (see Report Titles Category on page 294).

CHAPTER 6: Translating Reports with Report Language Files

298 PowerDesigner

For metaclasses only, the linguistic variables you have specified (see Profile/Linguistic
Variables Category on page 300) are listed along with the results of their application to the
translations given in the Localized name field. If necessary, you can override the
automatically generated values by entering your own text in the Value column, which will
depress the User-Defined button to indicate that the value is no longer generated.

All Classes Tab
The All Classes tab lists all the metaclasses available in the Object Attributes category on the
General tab but the flat structure makes it more convenient to work with.

For each metaclass listed in the Name column, you must enter a translation in the Localized
Name column. You can sort the list to group similarly-named objects, and translate identical
items together by selecting multiple lines.

CHAPTER 6: Translating Reports with Report Language Files

Customizing and Extending PowerDesigner 299

All Attributes and Collections Tab
The All Attributes and Collections lists all the collections and attributes available in the Object
Attributes category on the General tab, but the flat structure makes it more convenient to work
with.

For each attribute or collection listed in the Name column, you must enter a translation in the
Localized Name column. You can sort the list to group similarly-named objects, and translate
identical items together by selecting multiple lines.

Profile/Linguistic Variables Category
The Linguistic Variables category contains templates, which specify grammar rules to help
build the report item templates.

Examples of grammar rules include the plural form of a noun, and the correct definite article
that must precede a noun (see Profile/Report Item Templates Category on page 303).

CHAPTER 6: Translating Reports with Report Language Files

300 PowerDesigner

Specifying appropriate grammar rules for your language, and inserting them into your report
item templates will dramatically improve the quality of the automatic generation of your
report titles. You can create as many variables as your language requires.

Each linguistic variable and the result of its evaluation is displayed for each metaclass in the
Object Attributes category (see Object Attributes Category on page 298).

The following are examples of grammar rules specified as linguistic variables to populate
report item templates in the French report language resource file:

• GENDER – Identifies as feminine a metaclass name %Value%, if it finishes with "e" and
as masculine in all other cases:

.if (%.-1:@Value% == e)
F
.else
M
.endif

For example: la table, la colonne, le trigger.

• CLSSNAMES – Creates a plural by adding "x" to the end of the metaclass name %Value
%, if it finishes with "eau" or "au" and adds "s" in all other cases:

.if (%.-3:@Value% == eau) or (%.-2:@Value% == au)
%@Value%x

CHAPTER 6: Translating Reports with Report Language Files

Customizing and Extending PowerDesigner 301

.else
%@Value%s
.endif

For example: les tableaux, les tables, les entités.

• THECLSSNAME – Inserts the definite article before the metaclass name %Value% by
inserting " l' ", if it begins with a vowel, "le" if it is masculine, and "la" if not:

.if (%.1U:@Value% == A) or (%.1U:@Value% == E) or (%.1U:@Value% == I)
or (%.1U:@Value% == O) or (%.1U:@Value% == U)
l'%@Value%
.elsif (%GENDER% == M)
le %@Value%
.else
la %@Value%
.endif

For example: l'association, le package, la table.

• OFTHECLSSNAME – Inserts the preposition "de" plus the definite article before the
metaclass name %Value%,if it begins with a vowel or if it is feminine, otherwise "du".

.if (%.1U:@Value% == A) or (%.1U:@Value% == E) or (%.1U:@Value% == I)
or (%.1U:@Value% == O) or (%.1U:@Value% == U) or (%GENDER% == F)
de %THECLSSNAME%
.else
du %@Value%
.endif

For example: de la table, du package.

• OFCLSSNAME – Inserts the preposition " d' " before the metaclass name %Value%,, if it
begins with a vowel, otherwise "de".

.if (%.1U:@Value% == A) or (%.1U:@Value% == E) or (%.1U:@Value% == I)
or (%.1U:@Value% == O) or (%.1U:@Value% == U)
d'%@Value%
.else
de %@Value%
.endif

For example: d'association, de table.

CHAPTER 6: Translating Reports with Report Language Files

302 PowerDesigner

Profile/Report Item Templates Category
The Report Item Templates category contains a set of templates that, in conjunction with the
translations that you will provide for metaclass, attribute and collection names, are evaluated
to automatically generate all the possible report titles for report items (book, list, card etc.)

You must provide translations for each template by entering your own text. Variables (such as
%text%) must not be translated.

For example the template syntax for the list of sub-objects contained within a collection
belonging to an object is the following:

List of %@Value% of the %ParentMetaClass.@Value% %%PARENT%%

When this template is evaluated, the variable %@Value% is resolved to the value of the
localized name for the object, %ParentMetaClass.@Value% is resolved to the value of
the localized name for the parent of the object, and %%PARENT%% is resolved to the name for
the parent of the object.

In this example, you translate this template as follows:

• Translate the non-variable items in the template. For example:
• Create a linguistic variable named OFTHECLSSNAME to specify the grammar rule used in

the template (see Profile/Linguistic Variables Category on page 300).

CHAPTER 6: Translating Reports with Report Language Files

Customizing and Extending PowerDesigner 303

This template will be reused to create report titles for all the lists of sub-objects contained
within a collection belonging to an object.

Note: You cannot create or delete templates.

CHAPTER 6: Translating Reports with Report Language Files

304 PowerDesigner

CHAPTER 7 Scripting PowerDesigner

When working with large or multiple models, it can be tedious to perform repetitive tasks,
such as modifying objects using global rules, importing or generating new formats, or
checking models. Such operations can be automated through scripts.

You can access and modify any PowerDesigner object using Java, VBScript, C#, or many
other languages. In this chapter, we focus primarily on writing VBScript to execute in
PowerDesigner's Edit/Run Script dialog, but you can also call add-ins from PowerDesigner
menus (see Launching Scripts and Add-Ins from Menus on page 338) or script the
PowerDesigner application via OLE automation (see OLE Automation and Add-Ins on page
332).

The following script illustrates the basic syntax of VBScript applied to manipulating
PowerDesigner models and objects, including:

• Declaration of local variable
• Assignment of value to a local variable (with the specific case of object)
• Condition operator: If Then / Else / End If
• Iteration on a list: For Each / Next
• Definition and call of a procedure: Sub
• Definition and call of a function: Function
• Error handling using On Error statements

' This is a VBScript comment.
Dim var ' Declaration of a local variable
var = 1 ' Value assignment for simple type
Set var = ActiveModel ' Value assignment for an object. ActiveModel
is a PowerDesigner global property
If not var is Nothing Then ' Condition on an object, testing if it is
'null'
 Dim objt ' Declaration of another local variable
 For Each objt In ActiveModel.Children ' Loop on the Children
object collection
 DescribeObject objt ' Procedure call with objt as a parameter
(without parentheses). The procedure is defined below.
 Next
Else
 output "There is no active model" ' Output is a PowerDesigner
procedure that writes text to the Output window
End If

' This is a procedure - a method that does not return a value
Sub DescribeObject(objt)
 Dim desc ' A variable declaration inside the procedure
 desc = ComputeObjectLabel(objt) ' A function call with objt as
parameter (with parentheses). The function is defined below.

Customizing and Extending PowerDesigner 305

 ' We retrieve the value returned by the
function in the variable desc
 output desc ' Displays the object description in the output
End Sub

' This is a function - a method that returns a value
Function ComputeObjectLabel(objt)
 Dim label ' Declare a local variable to store the object label
 label = "" ' Initialize the label variable with a default value
 If objt is nothing then
 label = "There is no object"
 ElseIf objt.IsShortcut() then ' IsShortcut is a PowerDesigner
function available on objects
 label = objt.Name & " (shortcut)" ' Concatenation of two strings
 Else
 On Error Goto 0 ' Disables script execution abort on error
 label = objt.Name ' Assigns the object's Name property to the
local variable
 On Error Resume Next ' Reactivates script execution error
 End If
 ComputeObjectLabel = label ' The value is returned by assigning an
implicit variable with same name than the function
End Function

Note: VBScript can also be used to create custom checks, event handlers, transformations,
and methods in an extension file (see Chapter 2, Extension Files on page 11) and embedded in
or called from GTL templates (see .execute_vbscript Macro on page 270 and .vbscript Macro
on page 281).

The examples in this chapter are intended to introduce the basic concepts and techniques for
controlling PowerDesigner by script. For complete documentation of the PowerDesigner
metamodel, select Help > Metamodel Objects Help. For full documentation of VBScript,
see the Microsoft MSDN site.

CHAPTER 7: Scripting PowerDesigner

306 PowerDesigner

http://msdn.microsoft.com/en-us/library/t0aew7h6

Running Scripts in PowerDesigner
You can run VBScript scripts in your PowerDesigner client by selecting Tools > Execute
Commands to open the Edit/Run Script dialog. Output from the script is printed to the
Output window.

The following tools are available on the Edit/Run Script dialog toolbar:

CHAPTER 7: Scripting PowerDesigner

Customizing and Extending PowerDesigner 307

Tools Description

Editor Menu [Shift+F11] - Contains the following commands:

• New [Ctrl+N] - Reinitializes the field by removing all the existing content.
• Open... [Ctrl+O] - Replaces the content of the field with the content of the se-

lected file.
• Insert... [Ctrl+I] - Inserts the content of the selected file at the cursor.
• Save [Ctrl+S] - Saves the content of the field to the specified file.
• Save As... - Saves the content of the field to a new file.
• Select All [Ctrl+A] - Selects all the content of the field.
• Find... [Ctrl+F] - Opens a dialog to search for text in the field.
• Find Next... [F3] - Finds the next occurence of the searched for text.
• Find Previous... [Shift+F3] - Finds the previous occurence of the searched for

text.
• Replace... [Ctrl+H] - Opens a dialog to replace text in the field.
• Go To Line... [Ctrl+G] - Opens a dialog to go to the specified line.
• Toggle Bookmark [Ctrl+F2] Inserts or removes a bookmark (a blue box) at the

cursor position. Note that bookmarks are not printable and are lost if you refresh
the tab

• Next Bookmark [F2] - Jumps to the next bookmark.
• Previous Bookmark [Shift+F2] - Jumps to the previous bookmark.

Edit With [Ctrl+E] - Opens the previewed code in an external editor. Click the down
arrow to select a particular editor or Choose Program to specify a new editor. Editors
specified here are added to the list of editors available at Tools > General Options >
Editors.

Save [Ctrl+S] - Saves the content of the field to the specified file.

Print [Ctrl+P] - Prints the content of the field.

Find [Ctrl+F] - Opens a dialog to search for text.

 Cut [Ctrl+X], Copy [Ctrl+C], and Paste [Ctrl+V] - Perform the standard clipboard
actions.

Clear - Deletes the script in the dialog.

 Undo [Ctrl+Z] and Redo [Ctrl+Y] - Move backward or forward through edits.

Multiple levels of Undo and Redo are supported but , if you run a script that modifies
objects in several models, you must use the Undo or Redo commands in each of the
models called by the script.

CHAPTER 7: Scripting PowerDesigner

308 PowerDesigner

Tools Description

Run [F5] - Runs the script. Output is printed to the Output window.

If a compilation error occurs, a message box is displayed, a brief error description
appears in the dialog's Result pane, and the cursor is set at the error position.

You can catch errors using the On Error Resume Next statement, unless the
script is called in the im_Abort interactive mode (see .set_interactive_mode Macro
on page 278).

Find in Metamodel Objects Help [Ctrl+F1] - Opens the PowerDesigner metamodel
objects help file, which provides detailed information about all the attributes, collec-
tions, and methods available for each metaclass.

VBScript File Samples
PowerDesigner ships with a set of script samples, that you can use as a basis to create your own
scripts, and which are located in the VB Scripts folder of the PowerDesigner installation
directory. These scripts are intended to show you the range of tasks you can perform on
PowerDesigner models using VBScript.

Warning! You should always make a backup copy of the sample script before making changes
to it.

Model Scan Sample
The following script browses any model, looping through any packages and listing the objects
contained in them:

Option Explicit ' Forces each variable to be declared
'before assignment
InteractiveMode = im_Batch ' Supresses the display of dialogs
' get the current active model
Dim diag
Set diag = ActiveDiagram ' the current diagram
If (diag Is Nothing) Then
 MsgBox "There is no Active Diagram"
Else
 Dim fldr
 Set Fldr = diag.Parent
 ListObjects(fldr)
End If
' Sub procedure to scan current package and print information on
' objects from current package and call again the same sub
procedure
' on all child packages
Private Sub ListObjects(fldr)
 output "Scanning " & fldr.code
 Dim obj ' running object
 For Each obj In fldr.children
 ' Calling sub procedure to print out information on the object
 DescribeObject obj

CHAPTER 7: Scripting PowerDesigner

Customizing and Extending PowerDesigner 309

 Next
 ' go into the sub-packages
 Dim f ' running folder
 For Each f In fldr.Packages
 'calling sub procedure to scan children package
 ListObjects f
 Next
End Sub
' Sub procedure to print information on current object in output
Private Sub DescribeObject(CurrentObject)
 if CurrentObject.ClassName ="Association-Class link" then exit sub
 'output "Found "+CurrentObject.ClassName
 output "Found "+CurrentObject.ClassName+" """+CurrentObject.Name
+""", Created by "+CurrentObject.Creator+" On
"+Cstr(CurrentObject.CreationDate)
End Sub

Model Creation Sample
The following script creates a new OOM model, then creates a class with attributes and
operations:

ValidationMode = True 'Forces PowerDesigner to validate
' actions and return errors in the event of a forbidden action
InteractiveMode = im_Batch ' Supresses PowerDesigner dialogs
' Main function
' Create an OOM model with a class diagram
Dim Model
Set model = CreateModel(PdOOM.cls_Model, "|Diagram=ClassDiagram")
model.Name = "Customer Management"
model.Code = "CustomerManagement"
' Get the class diagram
Dim diagram
Set diagram = model.ClassDiagrams.Item(0)
' Create classes
CreateClasses model, diagram
' Create classes function
Function CreateClasses(model, diagram)
 ' Create a class
 Dim cls
 Set cls = model.CreateObject(PdOOM.cls_Class)
 cls.Name = "Customer"
 cls.Code = "Customer"
 cls.Comment = "Customer class"
 cls.Stereotype = "Class"
 cls.Description = "The customer class defines the attributes and
behaviors of a customer."
 ' Create attributes
 CreateAttributes cls
 ' Create methods
 CreateOperations cls
 ' Create a symbol for the class
 Dim sym
 Set sym = diagram.AttachObject(cls)
 CreateClasses = True
End Function

CHAPTER 7: Scripting PowerDesigner

310 PowerDesigner

' Create attributes function
Function CreateAttributes(cls)
 Dim attr
 Set attr = cls.CreateObject(PdOOM.cls_Attribute)
 attr.Name = "ID"
 attr.Code = "ID"
 attr.DataType = "int"
 attr.Persistent = True
 attr.PersistentCode = "ID"
 attr.PersistentDataType = "I"
 attr.PrimaryIdentifier = True
 Set attr = cls.CreateObject(PdOOM.cls_Attribute)
 attr.Name = "Name"
 attr.Code = "Name"
 attr.DataType = "String"
 attr.Persistent = True
 attr.PersistentCode = "NAME"
 attr.PersistentDataType = "A30"
 Set attr = cls.CreateObject(PdOOM.cls_Attribute)
 attr.Name = "Phone"
 attr.Code = "Phone"
 attr.DataType = "String"
 attr.Persistent = True
 attr.PersistentCode = "PHONE"
 attr.PersistentDataType = "A20"
 Set attr = cls.CreateObject(PdOOM.cls_Attribute)
 attr.Name = "Email"
 attr.Code = "Email"
 attr.DataType = "String"
 attr.Persistent = True
 attr.PersistentCode = "EMAIL"
 attr.PersistentDataType = "A30"
 CreateAttributes = True
End Function
' Create operations function
Function CreateOperations(cls)
 Dim oper
 Set oper = cls.CreateObject(PdOOM.cls_Operation)
 oper.Name = "GetName"
 oper.Code = "GetName"
 oper.ReturnType = "String"
 Dim body
 body = "{" + vbCrLf
 body = body + " return Name;" + vbCrLf
 body = body + "}"
 oper.Body = body
 Set oper = cls.CreateObject(PdOOM.cls_Operation)
 oper.Name = "SetName"
 oper.Code = "SetName"
 oper.ReturnType = "void"
 Dim param
 Set param = oper.CreateObject(PdOOM.cls_Parameter)
 param.Name = "newName"
 param.Code = "newName"
 param.DataType = "String"
 body = "{" + vbCrLf

CHAPTER 7: Scripting PowerDesigner

Customizing and Extending PowerDesigner 311

 body = body + " Name = newName;" + vbCrLf
 body = body + "}"
 oper.Body = body
 CreateOperations = True
End Function

Manipulating Models, Collections, and Objects (Scripting)
You can manipulate the contents of a model by creating or opening it and then descending
from the model root through collections of objects. A number of global properties, functions,
and constants are available in any context and provide entry points for your scripts.

The following global properties provide access to the Workspace and models it contains:

• ActiveWorkspace - Retrieves the current Workspace.

• ActiveModel, ActivePackage, and ActiveDiagram - Retrieves the model,
package, or diagram with current focus.

• ActiveSelection - Read-only collection of the objects selected in the active diagram.

• Models - Read-only collection of models open in the current Workspace.

• RepositoryConnection - Retrieves the current repository connection (see
Manipulating the Repository (Scripting) on page 325).

The following global functions are commonly used to create or open models and perform
actions upon them:

• CreateModel() and OpenModel() - Create and open a model (see Creating and
Opening Models (Scripting) on page 313).

• Output() - Prints text to the Script tab of PowerDesigner's Output window.

• IsKindOf() - Tests the metaclass of the object.

• ExecuteCommand() - Launches an external application

CHAPTER 7: Scripting PowerDesigner

312 PowerDesigner

• EvaluateNamedPath() and MapToNamedPath() - Manage named paths in
model files.

• BeginTransaction(), CancelTransaction(), and EndTransaction() -
Start, cancel, and commit transactions.

The following global constants provide information about the instance of PowerDesigner:

• UserName - Retrieves the user login name.
• Version - Returns the PowerDesigner version.
• HomeDirectory - Returns the application home directory.
• RegistryHome - Returns the application registry home path.
• Viewer - Returns True if the running application is a Viewer version that has limited

features.
• ValidationMode - By default, PowerDesigner performs various checks to validate

your actions and gives an error in the case of a forbidden action. You can set
ValidationMode = False (which turns off validation rules such as name
uniqueness or link extremities) to improve performance or if your algorithm temporarily
requires an invalid state.

• InteractiveMode - Specifies the level of interaction required. You can choose
between:
• im_Batch [default] - Suppresses dialog boxes and always uses default values. For

example, if your model contains external shortcuts and the target model for the
shortcuts is closed, this mode will automatically open the model without user
interaction.

• im_Dialog - Displays information and confirmation dialog boxes that require user
interaction for the execution to keep running.

• im_Abort - Suppresses dialog boxes and aborts execution if a dialog is encountered.
• ShowMode [OLE-specific] - Checks or changes the visibility status of the main

application window. Returns True if the application main window is visible and not
minimized.

• Locked [OLE-specific] - When set to True, ensures that PowerDesigner continues to
run even after an OLE client disconnects.

For detailed information about all the global properties, constants, and functions, select Help
> MetaModel Objects Help and navigate to Basic Elements.

Creating and Opening Models (Scripting)
You create models and open existing models using the CreateModel() and
OpenModel() global functions. The model with the current focus is accessible via the
ActiveModel global property, and the models currently open in the workspace are
available from the Models global collection.

This script creates a new OOM targeting the Analysis language, creates some classes in it,
displays them in the diagram, and then saves the model and closes it:

CHAPTER 7: Scripting PowerDesigner

Customizing and Extending PowerDesigner 313

Dim NewModel
set NewModel = CreateModel(PdOOM.Cls_Model, "Language=Analysis|
Diagram=ClassDiagram|Copy")
If NewModel is Nothing then
 msgbox "Failed to create UML Model", vbOkOnly, "Error" ' Display an
error message
Else
 output "The UML model has been created" ' Display a message in
Output
 NewModel.SetNameAndCode "MyOOM", "MyOOM" 'Initialize model name and
code
 For idx = 1 to 12 'Create classes and display them
 Set obj=NewModel.Classes.CreateNew()
 obj.SetNameAndCode "C" & idx, "C" & idx
 Set sym=ActiveDiagram.AttachObject (obj)
 Next
 ActiveDiagram.AutoLayoutWithOptions(2)
 NewModel.Save "c:\temp\MyOOM.oom" ' Save the model
 NewModel.Close ' Close the model
 Set NewModel = Nothing ' Release last reference to object to free
memory
End If

This script verifies that the previously created model exists, and then opens it in the
workspace:
Dim MyModel, FileName
FileName = "c:\temp\MyOOM.oom"
On Error Resume Next ' Avoid generic scripting error message
Set MyModel = OpenModel(FileName)
If MyModel is nothing then ' Display an error message box
 msgbox "Failed to open Model:" + vbCrLf + FileName, vbOkOnly,
"Error"
Else ' Display a message in Output
 output "The OOM has been opened."
End If

Browsing and Modifying Collections (Scripting)
Most metamodel navigation is performed by descending from the model root through
collections of objects to collections of sub-objects or associated objects. An OOM contains a
collection of classes and classes contain collections of attributes and operations. You can
obtain information about and browse the members of a collection through scripting, as well as
adding, removing, and moving objects in the collection.

To browse the members of a collection, navigate to the parent object and then use a For
each loop. This script prints the names of all the tables in an open PDM:

Dim MyModel
Set MyModel=ActiveModel
For each t in MyModel.Tables
 Output "* " & t.Name
Next

CHAPTER 7: Scripting PowerDesigner

314 PowerDesigner

When you browse a collection, both full objects in the collection and any shortcuts will be
retrieved.

Note: For information about accessing collections defined in extensions, see Creating and
Accessing Extensions (Scripting) on page 329.

The following kinds of collections appear in the metamodel:

• Compositions - contain objects that will be deleted if the parent is deleted. For example,
the PdPDM/Tables and PdPDM/Table/Columns collections are compositions.

• Aggregations - reference objects that will continue to exist if the parent is deleted. For
example, the PdCommon/NamedObject/AttachedRules collection (inherited by
most objects) is an aggregation.

• Unordered collections - contain objects with no significant order. For example, the
PdCDM/Entity/Relationships collection is unordered.

• Ordered collections - contain objects where the user chooses the order. For example, the
PdPDM/Table/Columns collection is ordered.

• Read-only collections - can only be browsed. For example, the global Models collection
(all open models) is read-only.

The following properties are available for all collections:

• Count - Retrieves the number of objects in the collection.

• Item[(index)] - Retrieves the specified item in the collection as an object. Item(0) is
the first object (and the default) and Item(-1) is the last object.

• MetaCollection - Retrieves the metadefinition of the collection as an object.

• Kind - Retrieves the type of objects the collection can contain.

• Source - Retrieves the object on which the collection is defined.

The following methods are available for modifying writeable collections:

• CreateNew([kind] and CreateNewAt(index[,kind]) - [compositions only]
Creates a new object at the end of the collection or at the specified index (default, -1). The
kind parameter (for example, PdPDM.cls_Table) is only needed if the collection
supports multiple kinds of objects.

• Add(object) - Inserts the specified object at the end of the collection.

• Insert([index][, object]) - Inserts the specified object in the collection at the
specified index position (default, -1).

• Move(index2, index1) - Moves the object at position index1 to position index2 in the
collection.

• Remove(object[, delete = y|n]) and RemoveAt([index][, delete =
y|n]) - Removes the specified object or the object at the specified index (default, -1)
from the collection. For aggregations, you can additionally specify to delete the object
(objects removed from a composition are always deleted).

CHAPTER 7: Scripting PowerDesigner

Customizing and Extending PowerDesigner 315

• Clear([delete = y|n]) - Removes all objects from the collection and optionally
deletes them.

The following script:

• Creates a PDM,
• Creates objects in the model's Tables and BusinessRules unordered composition

collections, and
• Adds some objects to table T1's AttachedRules ordered aggregation collection and

then manipulates that collection:

Dim MyModel, t, r, sym
set MyModel = CreateModel(PdPDM.Cls_Model,"DBMS=SYASA12")
MyModel.SetNameAndCode "MyPDM" , "MyPDM"
'Create tables and rules
For idx = 1 to 12
 Set t=MyModel.Tables.CreateNew()
 t.SetNameAndCode "T" & idx, "T" & idx
 Set sym=ActiveDiagram.AttachObject (t)
 Set r=MyModel.BusinessRules.CreateNew()
 r.SetNameAndCode "BR" & idx, "BR" & idx
Next
ActiveDiagram.AutoLayoutWithOptions(2)
'Attach rules to Table 1
 Dim MyTable
 Set MyTable=MyModel.FindChildByName("T1",cls_table)
 For idx = 1 to 10
 MyTable.AttachedRules.Add(MyModel.FindChildByName("BR" &
(idx),cls_businessrule))
 Next
'Print list of rules attached to Table 1
Output "Rules Attached to T1 (" & MyTable.AttachedRules.Count & ")"
For each r in MyTable.AttachedRules
 Output "* " & r.Name
Next
'Modify attached rules by insertion, move and removal
MyTable.AttachedRules.Insert 3,
MyModel.FindChildByName("BR12",cls_businessrule)
MyTable.AttachedRules.Move 5,0
MyTable.AttachedRules.Remove(MyModel.FindChildByName("BR6",cls_busi
nessrule))
'Print modified list of rules
Output "Modified Rules Attached to T1 (" &
MyTable.AttachedRules.Count & ")"
For each r in MyTable.AttachedRules
 Output "* " & r.Name
Next

Accessing and Modifying Objects and Properties (Scripting)
You can access and modify any PowerDesigner object and its properties by script. Objects
include not only standard design objects (such as tables, classes, processes, and columns), but
also diagrams and symbols and functional objects (such as a report or repository). An object

CHAPTER 7: Scripting PowerDesigner

316 PowerDesigner

belongs to a metaclass of the PowerDesigner metamodel and inherits properties, collections
and methods from its metaclass.

Root objects, such as models, are accessed using global properties and functions (see
Manipulating Models, Collections, and Objects (Scripting) on page 312), while standard
objects are accessed by browsing collections (see Browsing and Modifying Collections
(Scripting) on page 314) or individually through the following methods:

• FindChildByName("Name",Kind[,OptionalParams]
• FindChildByCode("Code",Kind[,OptionalParams]
• FindChildByPath("Path",Kind[,OptionalParams]
The following parameters are available:

Parameter Description

Name / Code /
Path

Specifies the name or code of, or the path to the object. For example, to find the
column Address in the table Customer in the package Sales from the
context of the model node, you could search by name Address or by path
Sales/Customer/Address.

Kind Specifies the metaclass of the object to find in the form cls_PublicName.
For example, to find a column, select cls_Column.

These metaclass ids are unique within their model library but, in cases such as
packages, which appear in multiple types of models, you must prefix the id with
the name of the module (PdOOM.cls_Package). When you create a model,
you must use the module prefix (for example PdPDM.cls_Model).

OptionalParams The following parameters are optional:

• "Stereotype" - Specifies that the object to find must bear the specified ster-
eotype.

• "LastFound" - Specifies to begin the search after this object. This parameter
is used when several objects have the same path value, and can be used to
launch a find in a while loop that uses the previous match as the last found
parameter.

• CaseSensitive=y|n - [default: y] Specifies that the search is case sensitive.
• IncludeShortcuts - [default: n] Specifies that shortcuts can be found.
• UseCodeInPlaceOfName - [ByPath, default: n] Specifies that the object can

be found by its code (Default=n).
• PathSeparator - [ByPath, default= /, \, or ::)] Specifies the character to sep-

arate nodes in the path.

You can get standard attribute values using the dot notation (object.attribute) or using the
following methods:

• GetAttribute("attribute") - retrieves the value stored for the attribute

• GetAttributeText("attribute") - retrieves the value displayed for the attribute

CHAPTER 7: Scripting PowerDesigner

Customizing and Extending PowerDesigner 317

You can set attribute values using the dot notation (object.attribute=value) or using the
following methods:

• SetAttribute "attribute", value

• SetAttributeText "attribute", "value"

Note: For information about getting and setting extended attribute values see Creating and
Accessing Extensions (Scripting) on page 329

The following script opens a sample OOM, finds a class by name and a parameter by path, and
then prints and modifies some of their properties:
Dim MyModel, C, P
'Open model file
Set MyModel=OpenModel(EvaluateNamedPath("%_EXAMPLES%\" & "UML2
Sample.oom"))
'Obtain class and parameter
Set C=MyModel.FindChildByName("OrderManager",cls_Class)
Set P=Mymodel.FindChildByPath("SecurityManager/CheckPassword/
login",PdOOM.cls_Parameter)

'Print initial values
Output "Initial Values:"
PrintProperties C, P
'Modify values
C.Comment="This class controls orders."
C.SetAttributeText "Visibility", "private"
P.Name="LoginName"
'Print revised values
Output "Revised Values:"
PrintProperties C, P

'Procedure for printing values
Sub PrintProperties(MyClass, MyParam)
 output "Class: " & MyClass.Name
 output vbTab & "Comment: " & MyClass.Comment
 output vbTab & "Visibility: " &
MyClass.GetAttributeText("Visibility")
 output vbTab & "Persisted as: " &
MyClass.GetAttributeText("PersistentGenerationMode")
 output "Parameter: " & MyParam.Parent & "." & MyParam.Name
 output vbTab & "Data type: " & MyParam.DataType
 output vbTab & "Parameter type: " &
MyParam.GetAttributeText("ParameterType")
End Sub

Creating Objects (Scripting)
You should generally create objects via the collection under the parent object using the
CreateNew() method. The CreateObject(kind) method is also available on model
objects.

This script creates a class in an OOM, sets some of its properties, and then creates an attribute
under the class, in each case creating the objects inside collections:

CHAPTER 7: Scripting PowerDesigner

318 PowerDesigner

Dim MyModel
Set MyModel = ActiveModel
Dim MyClass
' Create a class
Set MyClass = MyModel.Classes.CreateNew()
If MyClass is nothing Then
 ' Display an error message box
 msgbox "Fail to create a class", vbOkOnly, "Error"
Else
 output "The class has been created."
 ' Set Name, Code, Comment, Stereotype and Final attributes
 MyClass.SetNameAndCode "Customer", "cust"
 MyClass.Comment = "Created by script"
 MyClass.Stereotype = "MyStereotype"
 MyClass.Final = true
 ' Create an attribute inside the class
 Dim MyAttr
 Set MyAttr = MyClass.Attributes.CreateNew()
 If not MyAttr is nothing Then
 output "The attribute has been created."
 MyAttr.SetNameAndCode "Name", "custName"
 MyAttr.DataType = "String"
 ' Reset the variable in order to avoid memory leaks
 End If
 End If

You can also create objects using the CreateObject(kind) method. This script creates a
class inside an OOM and sets some of its properties:
Dim MyModel
Set MyModel = ActiveModel
Dim MyClass
' Create a class
Set MyClass = MyModel.CreateObject(cls_Class)
MyClass.SetNameAndCode "Another Class", "Class2"
MyClass.Comment = "Created by CreateObject"

When creating a link object, you must define its extremities. This script creates two classes
and joins them by an association link:
Dim MyModel
Set MyModel = ActiveModel
Dim MyFirstClass, MySecondClass, MyAssociation
' Create classes
Set MyFirstClass = MyModel.Classes.CreateNew()
MyFirstClass.SetNameAndCode "Class1", "C1"
Set MySecondClass = MyModel.Classes.CreateNew()
 MySecondClass.SetNameAndCode "Class2", "C2"
' Create association
Set MyAssociation = MyModel.Associations.CreateNew()
MyAssociation.Name = "A1"
' Define its extremities
Set MyAssociation.Object1 = MyFirstClass
Set MyAssociation.Object2 = MySecondClass

CHAPTER 7: Scripting PowerDesigner

Customizing and Extending PowerDesigner 319

Displaying, Formatting, and Positioning Symbols (Scripting)
When you create an object, it will not appear in a diagram unless you use the
AttachObject() or AttachLinkObject() method. Symbols are objects in their own
right that can be accessed via collections on the parent object or diagram. You can position a
symbol using the Position() method and change its format using the LineWidth and
other formatting attributes.

The following script creates two classes, joins them by an association link, and displays all
three symbols in the active diagram:
Dim MyModel, MyDiagram, C1, C2, A1
Set MyModel = ActiveModel
Set MyDiagram = ActiveDiagram
' Create classes
Set C1 = MyModel.Classes.CreateNew()
C1.SetNameAndCode "C1", "C1"
Set C2 = MyModel.Classes.CreateNew()
 C2.SetNameAndCode "C2", "C2"
' Display class symbols
MyDiagram.AttachObject(C1)
MyDiagram.AttachObject(C2)
' Create association
Set A1 = MyModel.Associations.CreateNew()
A1.SetNameAndCode = "A1", "A1"
' Define its extremities
Set A1.Object1 = C1
Set A1.Object2 = C2
' Display Association symbol
MyDiagram.AttachLinkObject(A1)

The following script creates an EAM and four architecture areas, aligns them in a square, and
formats the top-left area:
Dim NewModel, idx, obj, sym
set NewModel = CreateModel(PdEAM.Cls_Model,
"Diagram=CityPlanningDiagram")
NewModel.SetNameAndCode "MyEAM" , "MyEAM"
For idx = 1 to 4
 Set obj=NewModel.ArchitectureAreas.CreateNew()
 obj.SetNameAndCode "A" & idx, "A" & idx
 Set sym=ActiveDiagram.AttachObject (obj)
 sym.width=30000
 sym.height=20000
Next
dim A1, A2, A3, A4, X1, Y1
set A1 =
NewModel.FindChildByName("A1",cls_architecturearea).Symbols.Item(0)
set A2 =
NewModel.FindChildByName("A2",cls_architecturearea).Symbols.Item(0)
set A3 =
NewModel.FindChildByName("A3",cls_architecturearea).Symbols.Item(0)
set A4 =
NewModel.FindChildByName("A4",cls_architecturearea).Symbols.Item(0)

CHAPTER 7: Scripting PowerDesigner

320 PowerDesigner

X1 = A1.Position.X
Y1 = A1.Position.Y
' Move symbols for them to be adjacent
A2.Position = NewPoint(X1 + A1.Width, Y1)
A3.Position = NewPoint(X1, Y1 - A1.Height)
A4.Position = NewPoint(X1 + A1.Width, Y1 - A1.Height)
A1.DashStyle = 2
A1.LineWidth = 3

Deleting Objects (Scripting)
You can delete objects using the Delete method.

The following script creates a new CDM, populates it with entities and relationships, and then
deletes entity E5 and relationship R8:

Dim MyModel, obj, sym, idx
set MyModel = CreateModel(PdCDM.Cls_Model)
MyModel.SetNameAndCode "MyCDM" , "MyCDM"
'Create entities
For idx = 1 to 12
 Set obj=MyModel.Entities.CreateNew()
 obj.SetNameAndCode "E" & idx, "E" & idx
 Set sym=ActiveDiagram.AttachObject (obj)
Next
'Create relationships
For idx = 2 to 11
 Set obj=MyModel.Relationships.CreateNew()
 obj.SetNameAndCode "R" & idx-1, "R" & idx-1
 Set obj.Object1 = MyModel.FindChildByName("E" &
(idx-1),cls_entity)
 Set obj.Object2 = MyModel.FindChildByName("E" & (idx
+1),cls_entity)
 Set sym=ActiveDiagram.AttachLinkObject (obj)
Next
ActiveDiagram.AutoLayoutWithOptions(2)
'Delete objects
MyModel.FindChildByName("E5",cls_entity).Delete
MyModel.FindChildByName("R8",cls_relationship).Delete

Creating an Object Selection (Scripting)
You can create a selection of objects using the CreateSelection() method. You can
perform actions on the selection such as changing properties or format or moving them to
another package.

The following script creates a PDM, populates it with tables and then makes a selection of
tables and moves them into a package:
Dim MyModel, obj, sym
set MyModel = CreateModel(PdPDM.Cls_Model,"DBMS=SYASA12")
MyModel.SetNameAndCode "MyPDM" , "MyPDM"
'Create tables
For idx = 1 to 12
 Set obj=MyModel.Tables.CreateNew()

CHAPTER 7: Scripting PowerDesigner

Customizing and Extending PowerDesigner 321

 obj.SetNameAndCode "T" & idx, "T" & idx
 Set sym=ActiveDiagram.AttachObject (obj)
Next
ActiveDiagram.AutoLayoutWithOptions(2)
'Create package
Dim MyPackage
Set MyPackage=MyModel.Packages.CreateNew()
MyPackage.SetNameAndCode "P1", "P1"
ActiveDiagram.AttachObject (MyPackage)
'Create selection
Dim MySelection
Set MySelection = ActiveModel.CreateSelection
For idx = 1 to 5
 MySelection.Objects.Add(MyModel.FindChildByName("T" &
(idx*2),cls_table))
Next
'Move selection to package
MySelection.MoveToPackage(MyPackage)

To add all the tables to the selection, use the AddObjects method:

MySelection.AddObjects MyModel,cls_table

To remove an object from the selection, use the Remove method:

MySelection.Objects.Remove(MyModel.FindChildByName("T6",cls_table))

Controlling the Workspace (Scripting)
You can access the current workspace using the ActiveWorkspace global property, open,
save, and close workspaces, and add folders and documents to it.

The following script constructs a simple folder structure in a workspace and adds and creates
several models in it:

Option Explicit
' Close existing workspace and save it to Temp
Dim workspace, curentFolder
Set workspace = ActiveWorkspace
workspace.Load "%_EXAMPLES%\mywsp.sws"
Output "Saving current workspace to ""Example directory :
"+EvaluateNamedPath("%_EXAMPLES%\temp.sws")
workspace.Save "%_EXAMPLES%\Temp.SWS"
workspace.Close
workspace.Name = "VBS WSP"
workspace.FileName = "VBSWSP.SWS"
workspace.Load "%_EXAMPLES%\Temp.SWS"
dim Item, subitem
for each Item in workspace.children
 If item.IsKindOf(PdWsp.cls_WorkspaceFolder) Then
 ShowFolder (item)
 renameFolder item,"FolderToRename", "RenamedFolder"
 deleteFolder item,"FolderToDelete"
 curentFolder = item
 ElsIf item.IsKindOf(PdWsp.cls_WorkspaceModel) Then
 ElsIf item.IsKindOf(PdWsp.cls_WorkspaceFile) Then

CHAPTER 7: Scripting PowerDesigner

322 PowerDesigner

 End if
next
 Dim subfolder
'insert folder in root
 Set subfolder =
workspace.Children.CreateNew(PdWsp.cls_WorkspaceFolder)
 subfolder.name = "Newfolder(VBS)"
 'insert folder in root at pos 6
 Set subfolder = workspace.Children.CreateNewAt(5,
PdWsp.cls_WorkspaceFolder)
 subfolder.name = "Newfolder(VBS)insertedAtPos5"'
 ' add a new folder in this folder
 Set subfolder =
subfolder.Children.CreateNew(PdWsp.cls_WorkspaceFolder)
 subfolder.name = "NewSubFolder(VBS)"
 subfolder.AddDocument EvaluateNamedPath("%_EXAMPLES%\pdmrep.rtf")
 subfolder.AddDocument EvaluateNamedPath("%_EXAMPLES%\cdmrep.rtf")
 subfolder.AddDocument EvaluateNamedPath("%_EXAMPLES%\project.pdm")
 subfolder.AddDocument EvaluateNamedPath("%_EXAMPLES%\demo.oom")
 dim lastmodel
 set lastmodel = subfolder.AddDocument
(EvaluateNamedPath("%_EXAMPLES%\Ordinateurs.fem"))
 lastmodel.open
 lastmodel.name = "Computers"
 lastmodel.close
 'detaching model from workspace
 lastmodel.delete
workspace.Save "%_EXAMPLES%\Final.SWS"

For more information about properties and methods available on the workspace, select Help >
MetaModel Objects Help and navigate to Libraries/PdWSP/Workspace.

Creating Shortcuts (Scripting)
You create a shortcut in a model using the CreateShortcut() method.

The following script acts on an OOM and creates a shortcut of the class C1 from package P1 in
package P2:

Dim obj, shortcut, recipient
' Get class to shortcut
Set obj = ActiveModel.FindChildByPath("P1/C1",cls_Class)
' Get package to create shortcut in
Set recipient = ActiveModel.FindChildByPath("P2",PdOOM.cls_Package)
' Create shortcut
Set shortcut = obj.CreateShortcut(recipient)
If not shortcut is nothing then
 output "The class shortcut has been successfully created"
End If

The following script creates a shortcut of the class C1 from model O1 package P1 directly
under model O2:

CHAPTER 7: Scripting PowerDesigner

Customizing and Extending PowerDesigner 323

Dim targetmodel, usingmodel, obj, shortcut
For each m in Models
 Output m.Name
 If m.Name="O1" then 'Get model with object to shortcut
 Set targetmodel=m
 End If
 If m.Name="O2" then 'Get model to create shortcut in
 Set usingmodel=m
 End If
Next
' Get object to shortcut
Set obj = targetmodel.FindChildByPath("P1/C1",cls_Class)
' Create shortcut
Set shortcut = obj.CreateShortcut(receivingmodel)
If not shortcut is nothing then
 output "The class shortcut has been successfully created"
End If

Creating Mappings Between Objects (Scripting)
You can create data sources in a model and from there create mappings from source objects in
other models to objects in the first model using scripts.

The following script creates an OOM and a PDM, populates them with classes and tables, then
creates a data source in the OOM, associates the PDM with it and creates mappings:
Dim MyOOM, MyPDM
'Create an OOM and a PDM
set MyOOM = CreateModel(PdOOM.Cls_Model, "|Language=Analysis|
Diagram=ClassDiagram|Copy")
MyOOM.SetNameAndCode "MyOOM", "OOM"
set MyPDM = CreateModel(PdPDM.Cls_Model, "|DBMS=Sybase SQL Anywhere
12|Copy")
MyPDM.SetNameAndCode "MyPDM", "PDM"
 'Create classes and tables
 For idx = 1 to 6
 Set c=MyOOM.Classes.CreateNew()
 c.SetNameAndCode "Class" & idx, "C" & idx
 Set t=MyPDM.Tables.CreateNew()
 t.SetNameAndCode "Table" & idx, "T" & idx
Next
'Create a data source in the OOM and add the PDM as its source
Dim ds, m1
Set ds = MyOOM.DataSources.CreateNew()
ds.SetNameAndCode "MyPDM", "PDM"
ds.AddSource MyPDM

'Create a mapping between C1 and T6
set m1 = ds.CreateMapping(MyOOM.FindChildByName("Class1",cls_class))
m1.AddSource MyPDM.FindChildByName("Table6",cls_table)
' Retrieve mappings for each class in the OOM
 For each c in MyOOM.Classes
 Dim m, sc
 set m = ds.GetMapping(c)

CHAPTER 7: Scripting PowerDesigner

324 PowerDesigner

 If not m is nothing then
 Output c.Name & vbtab & "Mapped to: "
 for each sc in m.SourceClassifiers
 output vbtab & vbtab & "- " & sc.Name
 next
 Else
 Output c.Name & vbtab & "No mapping defined."
 End if
Next

For more information about objects mapping, see Core Features Guide > Linking and
Synchronizing Models > Object Mappings.

Creating and Generating Reports (Scripting)
You can create a report, browse its contents, and generate it as HTML or RTF using scripting.

To create a report, use the CreateReport() method on a model. For example:

Dim model
Set model = ActiveModel
model.CreateReport("MyReport")

To browse the reports in a model, use the Reports collection. For example:

Dim model
Set model = ActiveModel
For each m in model.Reports
 Output m.Name
Next

To generate a report as RTF or HTML, use the GenerateRTF() or GenerateHTML()
method:
set m = ActiveModel
For each r in m.Reports
 filename = "C:\temp\" & r.Name & ".htm"
 r.GenerateHTML (filename)
Next

Manipulating the Repository (Scripting)
You can connect to the repository and check documents into and out of it by script and iterate
on the latest versions of repository documents through the RepositoryConnection
object. You can manage repository folders and branches and LDAP and SMTP servers and the
repository password policy, but you cannot manipulate repository users and groups.

The following script opens a repository connection, creates a new PDM and checks it in, and
then loops over the creation of tables, and further consolidations, before closing the
connection:

CHAPTER 7: Scripting PowerDesigner

Customizing and Extending PowerDesigner 325

Dim rc
Set rc = RepositoryConnection
rc.Open "REPOSITORYNAME", "USER", "PW", "DBUSER", "DBPW"
Output "Before consolidation"
ListChildren rc
Dim NewModel
Set NewModel = CreateModel(PdPDM.Cls_Model, "|Language=SYASIQ1540")
NewModel.Name = "My PDM"
NewModel.ConsolidateNew rc
For i = 1 to 5
 For j = 1 to 5
 NewModel.Tables.CreateNew()
 Next
 NewModel.Consolidate
Next
Output "After consolidation"
ListChildren rc
rc.Close

Sub ListChildren(rc)
For each c in rc.ChildObjects
 Output c.Name & "(Modified: " & c.ModificationDateInRepository &
")"
Next
End Sub

To check out a model, use the CheckOut method.

For detailed information about the members, collections, and methods available for scripting
the repository, select Help > MetaModel Objects Help and navigate to Libraries/
PdRMG.

Generating a Database (Scripting)
You can generate a PDM as a SQL script or directly to a live database connection using the
GenerateDatabase() method. You can generate test data with the
GenerateTestData() method.

The following script fragment opens an example PDM and then calls procedures to generate
various scripts:
Dim GenDir, MyModel
GenDir = "C:\temp\"
Set MyModel=OpenModel(EvaluateNamedPath("%_EXAMPLES%\" &
"project.pdm"))

GenerateDatabaseScripts MyModel 'Generate a SQL script to create the
database
ModifyModel MyModel 'Modify each table in the model
GenerateAlterScripts MyModel - Generate alter scripts to modify the
database
GenerateTestDataScript MyModel - generate test data to load into the
database

CHAPTER 7: Scripting PowerDesigner

326 PowerDesigner

This procedure generates a SQL script to create the database:
Sub GenerateDatabaseScripts(m)
 Dim opts
 Set opts = m.GetPackageOptions()
 InteractiveMode = im_Batch ' Avoid displaying generation window
 opts.GenerateODBC = False ' Force sql script generation rather
than ODBC
 opts.GenerationPathName = GenDir
 opts.GenerationScriptName = "MyScript.sql"
 m.GenerateDatabase ' Launch the Generate Database feature
End Sub

To generate to a live database connection, you would connect to the database (using the
ConnectToDatabase() method) and then set the GenerateODBC property to true.

Note: For more information about the generation options, select Help > MetaModel Objects
Help and navigate to Libraries/PdPDM/BasePhysicalPackageOptions.

This procedure modifies the model by adding a new column to each table:
Sub ModifyModel(m)
 dim pTable, pCol
 For each pTable in m.Tables
 Set pCol = pTable.Columns.CreateNew()
 pCol.SetNameAndCode "az" & pTable.Name, "AZ" & pTable.Code
 pCol.Mandatory = False
 Next
End Sub

This procedure generates an alter script to modify the database:
Sub GenerateAlterScripts(m)
 Dim pOpts
 Set pOpts = m.GetPackageOptions()
 InteractiveMode = im_Batch ' Avoid displaying generate window
' set generation options using model package options
 pOpts.GenerateODBC = False ' Force sql script generation rather than
ODBC
 pOpts.GenerationPathName = GenDir
 pOpts.DatabaseSynchronizationChoice = 0 'force already saved apm as
source
 pOpts.DatabaseSynchronizationArchive = GenDir & "model.apm"
 pOpts.GenerationScriptName = "MyAlterScript.sql"
 m.ModifyDatabase ' Launch the Modify Database feature
End Sub

This procedure generates test data to load to the database:
Sub GenerateTestDataScript(m)
 Dim pOpts
 Set pOpts = m.GetPackageOptions()
 InteractiveMode = im_Batch ' Avoid displaying generate window
' set generation options using model package options
 pOpts.TestDataGenerationByODBC = False ' Force sql script generation
rather than ODBC
 pOpts.TestDataGenerationDeleteOldData = False

CHAPTER 7: Scripting PowerDesigner

Customizing and Extending PowerDesigner 327

pOpts.TestDataGenerationPathName = GenDir
 pOpts.TestDataGenerationScriptName = "MyTestData.sql"
m.GenerateTestData ' Launch the Generate Test Data feature
End Sub

Reverse Engineering a Database (Scripting)
You can connect to a database using the ConnectToDatabase() method, and reverse
engineer the schema to a PDM using ReverseDatabase().

To connect to a database via a user or system data source, define a constant in the form
"ODBC:datasourcename" . For example:

Const cnxDSN = "ODBC:ASA 9.0 sample"

To use a data source file, define a constant with the full path to the DSN file. For example:
Const cnxDSN = "\\romeo\public\DATABASES_filedsn
\sybase_asa9_sample.dsn"

This script creates a new PDM, connects to a database via a system data source, sets reverse
options and reverses all objects to the PDM:

' Define ODBC data source and PDM file
Const cnxDSN = "ODBC:MyDatabase"
Const cnxUSR = "MyUser"
Const cnxPWD = "MyPassword"
Const filename = "C:\temp\MyReversedDB.pdm"

Dim pModel, pOpt
' Create model with appropriate DBMS
Set pModel=CreateModel(PdPDM.cls_Model, "|DBMS=Sybase SQL Anywhere
12")
' Hide dialogs
InteractiveMode = im_Batch

' Connect to the database
 pModel.ConnectToDatabase cnxDSN, cnxUSR, cnxPWD
' Set reverse options to reverse all listed objects via ODBC
 Set pOpt = pModel.GetPackageOptions()
 pOpt.ReversedScript = False
 pOpt.ReverseAllTables = true
 pOpt.ReverseAllViews = true
 pOpt.ReverseAllStorage = true
 pOpt.ReverseAllTablespace = true
 pOpt.ReverseAllDomain = true
 pOpt.ReverseAllUser = true
 pOpt.ReverseAllProcedures = true
 pOpt.ReverseAllTriggers = true
 pOpt.ReverseAllSystemTables = true
 pOpt.ReverseAllSynonyms = true

' Reverse database to model and then save model

CHAPTER 7: Scripting PowerDesigner

328 PowerDesigner

 pModel.ReverseDatabase
 pModel.save(filename)

Creating and Accessing Extensions (Scripting)
You can create extensions by script to define additional properties, new metaclasses, forms,
and any other type of extension to the standard metamodel.

The following example creates an EAM, then creates an extension inside it, defines a new type
of object called tablet derived from the MobileDevice metaclass, and creates an
extended attribute and new custom form for it:
Dim MyModel, MyExt, MyStype, MyExAtt, MyForm, FormDef
set MyModel =
CreateModel(PdEAM.Cls_Model,"Diagram=TechnologyInfrastructureDiagra
m")
MyModel.SetNameAndCode "MyEAM" , "MyEAM"
'Create extension
Set MyExt = MyModel.ExtendedModelDefinitions.CreateNew()
MyExt.Name = "MyExtension"
MyExt.Code = "MyExtension"
'Create stereotype
Set MyStype = MyExt.AddMetaExtension(PdEAM.Cls_MobileDevice,
Cls_StereotypeTargetItem)
MyStype.Name = "Tablet"
MyStype.UseAsMetaClass = true
'Create extended atrribute
Set MyExAtt =
MyStype.AddMetaExtension(Cls_ExtendedAttributeTargetItem)
MyExAtt.Name = "TabletType"
MyExAtt.Label = "Type"
MyExAtt.DataType = "12" ' (String) For a full list of values,
' see ExtendedAttributeTargetItem in the Metamodel objects help
MyExAtt.ListOfValues = "iPad;Android;Playbook;Windows8"
MyExAtt.Value = "iPad"
'Create form to replace General tab
Set MyForm = MyStype.AddMetaExtension(Cls_FormTargetItem)
MyForm.Name = "ReplaceGeneral"
MyForm.FormType = "GENERAL"
'Assemble form definition
FormDef = "<Form><StandardNameAndCode Attribute=""NameAndCode"" />"
& vbcrlf
FormDef = FormDef + "<StandardAttribute Attribute=""Comment"" />" &
vbcrlf
FormDef = FormDef + "<ExtendedAttribute Attribute=""TabletType"" />"
& vbcrlf
FormDef = FormDef + "<StandardAttribute Attribute=""KeywordList"" /
></Form>"
MyForm.Value = FormDef

You can get and set extended attribute values using the following methods:

• GetExtendedAttribute("resource.attribute")

CHAPTER 7: Scripting PowerDesigner

Customizing and Extending PowerDesigner 329

• GetExtendedAttributeText("resource.attribute")
• SetExtendedAttribute "resource.attribute" "value"
• SetExtendedAttributeText "resource.attribute" "value"
You can access collections defined in an extension using the following methods:

• GetCollectionByStereotype("stereotype" - for new types of objects defined in
an target or extension file (see Promoting a Stereotype to Metaclass Status on page 39).

• GetExtendedCollection("resource.collection") - for extended collections and
compositions (see Extended Collections and Compositions (Profile) on page 48).

• GetCalculatedCollection("resource.collection") - for calculated collections
(see Calculated Collections (Profile) on page 50).

• GetCollectionByName("resource.collection")-for any kind of collection.

The following script uses the GetCollectionByStereotype() method to access the
collection of tablets and the SetExtendedAttribute method to set the tablet type:

Dim col, obj
'The collection of tablets is not directly accessible
set col = ActiveModel.GetCollectionByStereotype("Tablet")
'Create an array to hold the values to assign to tablet properties
Dim myArray(3)
myArray(0) = "Tablet1, T1, PlayBook"
myArray(1) = "Tablet2, T2, Android"
myArray(2) = "Tablet3, T3, iPad"
myArray(3) = "Tablet4, T4, iPad"
CreateObjects col, myArray

'Procedure to assign values to properties
Sub CreateObjects(compColl, dataArray)
 For Each line In dataArray
 Dim myProps
 myProps = split(line, ",")
 set obj = compColl.CreateNew()
 obj.Name = myProps(0)
 obj.Code = myProps(1)
 'Special syntax for setting extended attribute
 obj.SetExtendedAttribute "MYEXT.TabletType", myProps(2)
 Next
End Sub

Accessing Metadata (Scripting)
You can explore the structure of the PowerDesigner metamodel as a standalone model or
starting from object instances in your model.

For general information about accessing and navigating in the metamodel, see Chapter 8, The
PowerDesigner Public Metamodel on page 343. Metaclasses (such as
CheckModelInternalMessage and FileReportItem) that are not accessible by

CHAPTER 7: Scripting PowerDesigner

330 PowerDesigner

script are visible in Metamodel.oom, but bear the <<notScriptable>> stereotype and are
not listed in the Metamodel Object Help file.

You can access metaclasses, metaattributes, and metacollections by iterating over collections
descending from the MetaModel root or individually through the following methods:

• GetMetaClassByPublicName (name) - to access a metaclass by its public name.
• GetMetaMemberByPublicName (name) - to access a metaattribute or a metacollection by

its public name

The following script traverses the metamodel by library and lists each concrete class:
for each l in MetaModel.Libraries
 for each c in l.Classes
 if c.Abstract = false then
 Output l.PublicName + "." + c.PublicName
 end if
 next
next

The following script locates the BaseClass root and shows the first two levels of inheritance
under it:
set root = MetaModel.GetMetaClassByPublicName("PdCommon.BaseObject")
for each c in root.Children
 output c.PublicName
 for each cc in c.Children
 output " " + cc.PublicName
 next
next

The following script obtains a table in a PDM, and then shows the metaclass of which the
object is an instance, the parent metaclass and metalibrary to the metaclass, and all the
attributes and collections that are available on that metaclass:
Dim object
Set object = ActiveModel.FindChildByName("myTable",cls_Table)
Output "Object: " + object.Name

Dim metaclass
Set metaclass = object.MetaClass
Output "Metaclass: " + metaclass.PublicName
Output "Parent: " + metaclass.Parent.PublicName
Output "Metalibrary: " + metaclass.Library.PublicName
Output "Attributes:"
For each attr in metaclass.attributes
 Output " - " + attr.PublicName
Next
Output "Collections:"
For each coll in metaclass.collections
 Output " - " + coll.PublicName
Next

Properties and collections are read-only for all metamodel objects.

CHAPTER 7: Scripting PowerDesigner

Customizing and Extending PowerDesigner 331

OLE Automation and Add-Ins
OLE Automation provides a way to communicate with PowerDesigner from another
application using the COM architecture. You can write a program using any language that
supports COM, such as Word or Excel macros, VB, C++, or PowerBuilder.You can create
executables that call PowerDesigner or add-ins that are called by PowerDesigner.

VBScript programs that run from within PowerDesigner and OLE Automation programs are
very similar, but OLE requires you to work through a PowerDesigner application object, and
to use stronger typing. You must:

• Create an instance of the PowerDesigner Application object and release it when your script
terminates:
 Dim PD As PdCommon.Application
Set PD = CreateObject("PowerDesigner.Application")
'Enter script here
'Once script is finished, release PD object
Set PD = Nothing

If PowerDesigner is currently running, this instance will be used; otherwise a new instance
will be launched. If you do not specify a version number, the most recent version is used.
To specify a specific version, use the syntax:
Set PD = CreateObject("PowerDesigner.Application.version")

• Prefix all global properties and functions (see Manipulating Models, Collections, and
Objects (Scripting) on page 312) with the PowerDesigner Application object. For
example, to access the model with focus using a PowerDesigner application object called
PD, use the following syntax:

PD.ActiveModel
• Specify object types whenever possible. For example, instead of simply using Dim cls,

you should use:
Dim cls as PdOOM.Class

If your model contains shortcuts, we recommend that you use the following syntax to
avoid runtime errors when the target model is closed:
Dim obj as PdCommon.IdentifiedObject

• Adapt the object class ID syntax to the language when you create object. For VBScript,
VBA and VB and other languages that support enumeration defined outside a class, you
can use the syntax:
Dim cls as PdOOM.Class
Set cls = model.CreateObject(PdOOM.cls_Class)

For C# and VB.NET, you can use the following syntax (where PdOOM_Classes is the
name of the enumeration):
Dim cls As PdOOM.Class
Set cls = model.CreateObject(PdOOM.PdOOM_Classes.cls_Class)

CHAPTER 7: Scripting PowerDesigner

332 PowerDesigner

For other languages such as JavaScript or PowerBuilder, you have to define constants that
represent the objects you want to create. For a complete list of class ID constants, see file
VBScriptConstants.vbs in the PowerDesigner OLE Automation directory.

• Add references to the object type libraries you need to use. For example, in a VBA editor,
select Tools > References:

This script is launched from outside PowerDesigner, creates an instance of the PowerDesigner
Application object, and then uses it to create two OOMs through OLE Automation:
'* Purpose: This script displays the number of classes defined in an
OOM in the output window.
Option Explicit
' Main function
Sub VBTest()
 ' Defined the PowerDesigner Application object
 Dim PD As PdCommon.Application
 ' Get the PowerDesigner Application object
 Set PD = CreateObject("PowerDesigner.Application")
' Get the current active model
 Dim model As PdCommon.BaseModel
 Set model = PD.ActiveModel
 If model Is Nothing Then
 MsgBox "There is no current model."
 ElsIf Not model.IsKindOf(PdOOM.cls_Model) Then
 MsgBox "The current model is not an OOM model."
 Else
 ' Display the number of classes
 Dim nbClass
 nbClass = Model.Classes.Count
 PD.Output "The model '" + model.Name + "' contains " +
CStr(nbClass) + " classes."
' Create a new OOM
 Dim model2 As PdOOM.Class

CHAPTER 7: Scripting PowerDesigner

Customizing and Extending PowerDesigner 333

 Set model2 = PD.CreateModel(PdOOM.cls_Model)
 If Not model2 Is Nothing Then
 ' Copy the author name
 model2.Author = Model.Author
 ' Display a message in the output window
 PD.Output "Successfully created the model '" + model2.Name + "'."
 Else
 MsgBox "Cannot create an OOM."
 End If
 End If
' Release the PowerDesigner Application object
 Set PD = Nothing
End Sub

OLE Automation samples for different languages are provided in the OLE Automation
directory within your PowerDesigner installation directory.

Creating an ActiveX Add-in
You can create ActiveX add-ins to provide additional features to PowerDesigner, and call
them through menu items.

To operate as a PowerDesigner add-in, the ActiveX add-in must implement the IPDAddIn
interface, which defines the following methods, invoked by PowerDesigner to dialog with
menus and execute the commands defined by the add-in:

• HRESULT Initialize([in] IDispatch * pApplication) and HRESULT
Uninitialize() - The Initialize() method initializes communication between
PowerDesigner and the add-in. PowerDesigner provides a pointer to its application object,
defined in the PdCommon type library, which allows you to access the PowerDesigner
environment (output window, active model etc.). The Uninitialize() method is
called when PowerDesigner is closed to release all global variables and clean all
references to PowerDesigner objects.

• BSTR ProvideMenuItems([in] BSTR sMenu, [in] IDispatch
*pObj) - is invoked each time PowerDesigner needs to display a menu, and returns an
XML text that describes the menu items to display. It is called once without an object
parameter at the initialization of PowerDesigner to fill the Import and Reverse menus.
When you right-click a symbol in a diagram, this method is called twice: once for the
object and once for the symbol. Thus, you can create a method that is only called on
graphical contextual menus.
The DTD for menu definition is as follows:
<!ELEMENT Menu (Command | Separator | Popup)*>
<!ELEMENT Command>
<!ATTLIST Command
 Name CDATA #REQUIRED
 Caption CDATA #REQUIRED>
<!ELEMENT Separator>
<!ELEMENT PopUp (Command | Separator | Popup)*>
<!ATTLIST PopUp
 Caption CDATA #REQUIRED>

CHAPTER 7: Scripting PowerDesigner

334 PowerDesigner

For example:
ProvideMenuItems ("Object", pModel)

returns the following text:
<Menu>
<Popup Caption="&Perforce">
 <Command Name="CheckIn" Caption="Check &In"/>
 <Separator/>
 <Command Name="CheckOut" Caption="Check &Out"/>
</POPUP>
</MENU>

• BOOL IsCommandSupported([in] BSTR sMenu, [in] IDispatch *
pObject, [in] BSTR sCommandName) - allows you to dynamically disable
commands defined in a menu. The method must return true to enable a command and false
to disable it.

• HRESULT DoCommand(in BSTR sMenu, in IDispatch *pObj, in
BSTR sCommandName) - implements the execution of a command designated by its
name. For example:
DoCommand ("Object", pModel, "CheckIn")

Note: To use your add-in, save it to the Add-ins directory beneath your PowerDesigner
installation directory and enable it through the PowerDesigner General Options window (see
Core Features Guide > Modeling with PowerDesigner > Customizing Your Modeling
Environment > General Options > Add-Ins).

Creating an XML File Add-in
You can create XML add-ins to group multiple commands for calling executable programs or
VB scripts and add them to PowerDesigner menus.

The following illustration helps you understand the XML file structure:

CHAPTER 7: Scripting PowerDesigner

Customizing and Extending PowerDesigner 335

Note: The DTD is available at PD_installdir\Add-ins\XMLAddins.dtd.

The Profile is the root element of the XML file add-in descriptor and can contain:

• A Shared element - which defines the menus that are always available and their
associated methods, along with a GlobalScript attribute, which can contain a global
script for shared functions.

• One or more Metaclass elements - which define commands and menus for a specific
metaclass, identified by its public name prefixed by its Type Library public name.

Both these elements can contain sub-elements as follows:

• Menus contains Menu elements that specify a location, which can be one of:

• FileImport - shared only
• FileExport - metaclass only
• FileReverse - shared only
• Tools
• Help
• Object - metaclasses only (default)
Each Menu element can contain:

• A Command element - whose Name must be equal to the name of a Method, and whose
Caption defines the name of the command that appears in the menu.

CHAPTER 7: Scripting PowerDesigner

336 PowerDesigner

• A Separator element - which indicates that you want to insert a line in the menu.
• A Popup element - which defines a sub-menu item that may in turn contain

commands, separators, and popups.
• Methods contains Method elements, which define the methods used in the menus, and

which are defined by a name and a VBScript. A method defined under a metaclass has the
current object as a parameter. Inheritance is taken into account, so that a menu defined on
the metaclass PdCommon.NamedObject will be available on PdOOM.Class.

The following example defines two menu items for the Perforce repository and the methods
that are called by them:
<?xml version="1.0" encoding="UTF-8"?>
<Profile>
 <Metaclass Name="PdOOM.Model">
 <Menus>
 <Menu Location="Tools">
 <Popup Caption="Perforce">
 <Command Name="CheckIn" Caption="Check In"/>
 <Separator/>
 <Command Name="CheckOut" Caption="Check Out"/>
 </Popup>
 </Menu>
 </Menus>
 <Methods>
 <Method Name="CheckIn">
 Sub %Method%(obj)
 execute_command(p4, submit %Filename%, cmd_PipeOutput)
 End Sub
 </Method>
 <Method Name="CheckOut">
 Sub %Method%(obj)
 execute_command(p4, edit %Filename%, cmd_PipeOutput)
 End Sub
 </Method>
 </Methods>
 </Metaclass>
</Profile>

The following example defines a global script which is referenced by a method defined under a
metaclass:
<?xml version="1.0" encoding="UTF-8"?>
<Profile>
 <Shared>
 <GlobalScript>
 Option Explicit
 Function Print (obj)
 Output obj.classname & " " & obj.name
 End Function
 </GlobalScript>
 </Shared>
 <Metaclass Name="PdOOM.Class">
 <Menus>
 <Menu>
 <Popup Caption="Transformation">

CHAPTER 7: Scripting PowerDesigner

Customizing and Extending PowerDesigner 337

 <Command Name="ToInt" Caption="Convert to interface"/>
 <Separator/>
 </Popup>
 </Menu>
 </Menus>
 <Methods>
 <Method Name="ToInt">
 Sub %Method%(obj)
 Print obj
 ExecuteCommand("%MORPHEUS%\ToInt.vbs",
"", cmd_InternalScript)
 End Sub
 </Method>
 </Methods>
 </Metaclass>
</Profile>

Note: To use your add-in, save it to the Add-ins directory beneath your PowerDesigner
installation directory and enable it through the PowerDesigner General Options window (see
Core Features Guide > Modeling with PowerDesigner > Customizing Your Modeling
Environment > General Options > Add-Ins).

Launching Scripts and Add-Ins from Menus
You can extend PowerDesigner menus to add commands to call scripts defined in resource
files or externally and to launch executables and ActiveX add-ins. XML add-ins can be used to
group and organize multiple commands. You can extend the File, Tools, and Help menus, and
the contextual menus available on objects in the Browser and diagrams.

You can modify PowerDesigner menus in the following ways:

• Custom commands - are defined directly in PowerDesigner and can call executable
programs or VB scripts (see Adding Commands to the Tools Menu on page 339).

• Menu and method extensions – are specified in a DBMS or language definition or
extension file and define commands for a specific target or model type (see Menus
(Profile) on page 81).

• ActiveX Add-Ins – are written in languages such as VB, C#, C++ or any language
supporting COM, and permit more complex interactions with PowerDesigner, such as
enabling and disabling menu items based on object selection, and interaction with the
windows display environment (see Creating an ActiveX Add-in on page 334).

Note: The XML syntax used to define menus in an ActiveX or XML add-in is the same as
that used in the creation of a menu extension, and you can use the resource editor menu
XML page (seeMenus (Profile) on page 81) to help you construct the syntax for your add-
ins.

CHAPTER 7: Scripting PowerDesigner

338 PowerDesigner

• XML Add-Ins – define multiple commands to call executable programs or VB scripts.
Commands linked to the same applications (for example, ASE, IQ etc.) should be gathered
into the same XML file (see Creating an XML File Add-in on page 335).

Adding Commands to the Tools Menu
You can create your own menu items in the PowerDesigner Tools menu to access
PowerDesigner objects using your own scripts or executable programs. You can define up to
256 commands in the Customize Commands dialog, and control the contexts (model,
diagram, and target type) in which they appear.

1. Select Tools > Execute Commands > Customize Commands and click the Add a row
tool.

2. Enter the following properties:

Property Description

Name Specifies the name of the command that will appear in the menu. Names
must be unique and can contain a pick letter (&Generate Java will appear as
Generate Java)

Submenu Specifies a submenu in which to place the command. You can enter your
own or select one of:
• <None> - directly under Tools > Execute Commands
• Check Model
• Export
• Generation
• Import - also appears under File > Import
• Reverse - also appears under File > Reverse-Engineer

CHAPTER 7: Scripting PowerDesigner

Customizing and Extending PowerDesigner 339

Property Description

Context Specifies when the command is available. By default the command is
available at all times (*/*/*). Click the ellipsis button to restrict the
display of the command to a specific:
• Model type - for example OOM/*/*
• Model and Diagram type - for example OOM/Class diagram/

*
• Model, Diagram, and Target type - for example OOM/Class di-

agram/Java. By default, the list contains extensions available for
the chosen model type. Click the Path tool to navigate to another folder
containing extensions or DBMS or language definition files.

Type Specifies whether the command will launch an executable or VBScript.

Command Line Specifies the path to the executable or script file to run. Click the ellipsis
button to navigate to a file. If your file is a VBScript, you can review or edit
the script by clicking the Edit With tool in the toolbar.

Comment Specifies text that is displayed in the status bar when you select the com-
mand.

[S]how in Menu Specifies that the command should be displayed. Deselect this field to hide
the command while retaining its definition.

Accelerator Key Associates one of ten reserved keyboard shortcuts Ctrl-Shift-0 to Ctrl-
Shift-9 with the command.

CHAPTER 7: Scripting PowerDesigner

340 PowerDesigner

3. Click OK to save your changes.

Your command is now available under Tools > Execute Commands.

Note: Customized Commands are saved by default in the Registry at
HKEY_CURRENT_USER\Software\Sybase\PowerDesigner v
\PlugInCommands\submenu and are available only to the user defining them. To
make them available to all users, create an entry at the same location under
HKEY_LOCAL_MACHINE.

The name of the entry is the name of the command, and its value takes the following
syntax, in which only the commandline parameter is mandatory and must be terminated
by a | (pipe) character

[Hide:][Key:accelerator:][Script:]commandline[|comment]

If you want to insert a pipe within a command, you must escape it with a second pipe.

CHAPTER 7: Scripting PowerDesigner

Customizing and Extending PowerDesigner 341

CHAPTER 7: Scripting PowerDesigner

342 PowerDesigner

CHAPTER 8 The PowerDesigner Public
Metamodel

The PowerDesigner public metamodel is an abstraction of the metadata for all the
PowerDesigner models, describing the elements of a model, and the syntax and semantics of
their manipulation.

You can review the public metamodel in PowerDesigner by opening install dir
\Examples\MetaModel.oom, and find exhaustive documentation of all the metamodel
objects, collections, and methods available via scripting, by selecting Help > Metamodel
Objects Help (see Using the Metamodel Objects Help File on page 347).

This OOM and help file help you understand the structure of your models, especially when
working with:

• Generation Template Language (GTL) templates (see Chapter 5, Customizing Generation
with GTL on page 245).

• VB scripts (see Chapter 7, Scripting PowerDesigner on page 305).
• PowerDesigner XML model files (see PowerDesigner Model File Format on page 348).

The metamodel is divided into the following main packages:

Customizing and Extending PowerDesigner 343

•
PdBPM - Business Process Model

• PdCDM - Conceptual Data Model
• PdCommon - contains all objects shared between two or more models, and the abstract

classes of the model. For example, business rules, which are available in all models, and
the BaseObject class, from which all model objects are derived, are defined in this
package. Other model packages are linked to PdCommon by generalization links
indicating that each model inherits common objects from the PdCommon package.

• PdEAM - Enterprise Architecture Model
• PdFRM - Free Model
• PdGLM - Glossary Model
• PdILM - Data Movement Model (the DMM was previously named Information Liquidity

Model or ILM, and the PdILM library name has been retained for backwards
compatibility)

• PdLDM - Logical Data Model
• PdMTM - Merise Model (available in French only)
• PdOOM - Object Oriented Model
• PdPDM - Physical Data Model
• PdPRJ - Project
• PdRMG - Repository
• PdRQM - Requirements Model
• PdXSM - XML Model
• PdWSP - Workspace

Each of these top-level packages contains the follow kinds of sub-objects, organized by
diagram or, in the case of PdCommon, by sub-packages:

• Features - All the features implemented by classes in the model. For example, Report
(available in all models) belongs to PdCommon, and AbstractDataType belongs to
PdPDM.

• Objects - Design objects in the model
• Symbols - Graphical representation of design objects

Navigating in the Metamodel
You can expand and collapse the packages in the Browser to explore their contents. Double-
click a diagram to display it in the canvas.

Each metaclass has a name, contains zero or more attributes and assumes zero or more roles in
associations with other classes, which allow you to identify collections. The PowerDesigner
public metamodel uses standard UML concepts:

• Public Names - Each object in the metamodel has a name and a code corresponding to the
public name of the object, which is the unique identifier of the object in a model library or

CHAPTER 8: The PowerDesigner Public Metamodel

344 PowerDesigner

package. Public names are referenced in PowerDesigner XML model files and when using
GTL and scripting. The public name often matches the object's name in the
PowerDesigner interface, but where the two diverge, the public name must be used in
scripts and GTL templates.

• Classes - are used to represent metadata in the following ways:
• Abstract classes - are used only to share attributes and behaviors, and are not visible in

the PowerDesigner interface.
• Instantiable/Concrete classes - correspond to objects displayed in the interface. They

have their own attributes and behaviors in addition to those they inherit from abstract
classes through generalization links. For example, NamedObject is an abstract
class, which contains standard attributes like Name, Code, Comment,
Annotation, and Description, which are inherited by most PowerDesigner
design objects.

• Class attributes - are object properties. Classes linked to other classes with generalization
links usually contain derived attributes that are calculated from the attributes or collections
of the parent class. Neither derived attributes, nor attributes migrated from navigable
associations, are stored in the model file. Non-derived attributes are proper to the class, and
are stored in the model and saved in the model file.

• Associations - express the semantic connections between classes. In the association
property sheet, the roles carry information about the end object of the association.
PowerDesigner objects are linked to other objects using collections, and the role at the
other end of the association gives the name of the collection for an object. For example,
NamedOject has a collection of business rules called AttachedRules, and
BusinessRule has a collection of objects called Objects:

When associations have two roles, only the collection with the navigable role will be saved
in the XML file. In the case, only the AttachedRules collection is saved.

• Compositions – express an association where the children live and die with the parent and,
when the parent is copied, the child is also copied. For example, Table has a composition
association with the Column class:

• Generalizations - show the inheritance links existing between a more general, usually
abstract, class and a more specific, usually instantiable, class. The more specific class
inherits from the attributes of the more generic class, these attributes are called derived
attributes. For example, Class inherits from Classifier

CHAPTER 8: The PowerDesigner Public Metamodel

Customizing and Extending PowerDesigner 345

Each diagram shows classes the connections between metaclasses via associations and
generalizations. Classes in green are defined in the current diagram, while classes in purple are
present only to provide context. To investigate a purple class, right-click it and select Related
Diagrams > diagram to open the diagram where it is defined.

In the following example, BusinessRule is being defined, while NamedObject and
BaseModel are present only to show inheritance and composition links:

Double-click any class to show its property sheet and review the following tabs:

• General - provides the public name in the Name and Code fields, a Comment providing a
brief description of the class, and shows whether it is Abstract.

Note: Objects, such as RepositoryGroup that do not support scripting bear the
<<notScriptable>> stereotype.

• Attributes - lists the properties defined directly on the class, but not those that it inherits
via any parent classes.

• Associations - lists the migrated associations for the class, which represent collections.
The Role B column lists the collections for the class, while the Role A column lists the
collections in which the class figures.

• Operations - lists the methods available for scripting.
• Dependencies - contains the following sub-tabs (among others):

• Associations
• Generalizations - lists the generalization links where the current class is the child and

inherits attributes from a parent class.
• Specializations - lists the generalization links where the current class is the parent and

its children inherit attributes from it.
• Shortcuts - lists the shortcuts created for the current object.

• Notes - may include further information on the Description or Annotation sub-tabs.

CHAPTER 8: The PowerDesigner Public Metamodel

346 PowerDesigner

Using the Metamodel Objects Help File
PowerDesigner provides documentation of the metamodel available from Help > Metamodel
Objects Help.

The file can be opened from the Edit/Run Script dialog (see Running Scripts in
PowerDesigner on page 307) or from a metaclass in a resource file (see Metaclasses (Profile)
on page 33) by clicking the Find in MetaModel Help button or pressing Ctrl+F1. It can also
be opened from any object property sheet by pressing Ctrl+F1 or clicking the Property Sheet
Menu button and selecting Find in MetaModel Help.

The three top-level nodes contain the following documentation:

CHAPTER 8: The PowerDesigner Public Metamodel

Customizing and Extending PowerDesigner 347

Nodes What you can find...

Basic Elements Provides general information on:

• Collections of objects - provide the principal way of navigating the
metamodel (see Browsing and Modifying Collections (Scripting) on
page 314).

• Structured Types - used for positioning symbols in diagrams (see Dis-
playing, Formatting, and Positioning Symbols (Scripting) on page 320).

• Global properties, constants, and functions - provide entry points for
scripting (see Manipulating Models, Collections, and Objects (Script-
ing) on page 312).

Libraries Provides exhaustive documentation of all scriptable properties, collections,
and methods for metamodel objects, organized by module.

Appendix Includes an expandable hierarchy showing all the metaclasses in the Pow-
erDesigner metamodel, a VBScript code sample, and a list of the class ID
constants used to identify objects in certain contexts (see Accessing and
Modifying Objects and Properties (Scripting) on page 316).

To obtain information about the properties, collections and methods available for a particular
metaclass, navigate to it under the Libraries category, or locate it in the index. All properties,
collections, and methods are listed in the index.

Each metaclass shows the hierarchy of ancestors from which it is descended and inherits.
After a brief description and symbol, it then lists:

• Specific Members - a table which lists the properties, collections, and methods defined
directly on this metaclass

• Full definition - which lists, in separate tables, the properties, collections, and methods
inherited from each of its ancestors. For example, the Table metaclass (located at
Libraries\PdPDM\Table) inherits members from:

• PdCommon.BaseObject
• PdCommon.IdentifiedObject
• PdCommon.ExtensibleObject
• PdCommon.NamedObject
• PdCommon.NamedClassifier
• PdPDM.BaseTable
• PdPDM.View

PowerDesigner Model File Format
PowerDesigner models are made up of objects, the properties and interactions of which are
explained in the public metamodel. Models can be saved in either binary or XML file formats.
Binary files are smaller and significantly quicker to open and save, but XML model files can

CHAPTER 8: The PowerDesigner Public Metamodel

348 PowerDesigner

be edited by hand or programatically (and DTDs are provided for each model type in the DTD
folder in the installation directory).

Warning! You can modify an XML model file using a text or XML editor, but you should take
care, as even a minor syntax error may render the file unusable. If you create an object in an
XML file by copy and paste, make sure that you remove the duplicated OID. PowerDesigner
will automatically assign an OID to the new object when next you open the model.

The following elements are used in PowerDesigner XML files:

• <o:object> - A PowerDesigner model object. The first time the object is mentioned in
a collection, PowerDesigner assigns it an id using the <o:object Id="XYZ"> syntax
(where XYZ is a unique identifier automatically assigned to an object when it is found for
the first time) or references it with the <o:object Ref="XYZ"/> syntax. Object
definition is only used in composition collections, where the parent object owns the
children in the association.

• <c:collection> - A collection of objects linked to another object. You can use the
PowerDesigner metamodel to visualize the collections of an object. For example
<c:Children>.

• <a:attribute> - An object is made up of a number of attributes each of which you can
modify independently. For example <a:ObjectID>.

PowerDesigner XML model files have an <o:model> element at their root, which contains
collections defined in the PowerDesigner metamodel. The model object and all the other
object elements that it contains define their attributes and collections in sub-elements. The
definition of an object implies the definition of its attributes and its collections.
PowerDesigner checks each object and drills down the collections of this object to define each
new object and collection in these collections, and so on, until the process finds terminal
objects that do not need further analysis.

You can search for an object in the metamodel using its object name in the XML file in order to
better understand its definition. Once you have found an object in the metamodel you can read
the following information:

• Each PowerDesigner object can have several collections corresponding to other objects to
interact with, these collections are represented by the associations existing between
objects. The roles of the associations (aggregations and compositions included)
correspond to the collections of an object. For example, each PowerDesigner model
contains a collection of domains called Domains.
Usually associations have only one role, the role is displayed at the opposite of the class for
which it represents a collection. However, the metamodel also contains associations with
two roles, in such case, both collections cannot be saved in the XML file. You can identify
the collection that will be saved from the association property sheet: the role where the
Navigable check box is selected is saved in the file.
In the following example, association has two roles which means Classifier has a
collection Actors, and Actor2 has a collection ImplementationClasses:

CHAPTER 8: The PowerDesigner Public Metamodel

Customizing and Extending PowerDesigner 349

If you display the association property sheet, you can see that the Navigable check box is
selected for role ImplementationClass, which means that only collection
ImplementationClass will be saved in file.

• Attributes with the IOBJECT data type are attributes in the metamodel while they appear
as collections containing a single object in the XML file. This is not true for Parent and
Folder that do not contain any collection.

CHAPTER 8: The PowerDesigner Public Metamodel

350 PowerDesigner

Example: Simple OOM XML File
In this example, we will explore the structure of a simple OOM model file containing two
classes and one association.

The file starts with several lines stating XML and model related details.

The first object to appear is the root of the model <o:RootObject Id="01">. RootObject is a
model container that is defined by default whenever you create and save a model. RootObject
contains a collection called Children that is made up of models.

In our example, Children contains only one model object that is defined as follows:

<o:Model Id="o2">
 <a:ObjectID>3CEC45F3-A77D-11D5-BB88-0008C7EA916D</a:ObjectID>
 <a:Name>ObjectOrientedModel_1</a:Name>
 <a:Code>OBJECTORIENTEDMODEL_1</a:Code>
 <a:CreationDate>1000309357</a:CreationDate>
 <a:Creator>arthur</a:Creator>
 <a:ModificationDate>1000312265</a:ModificationDate>
 <a:Modifier>arthur</a:Modifier>
 <a:ModelOptionsText>
[ModelOptions]
...

Below the definition of the model object, you can see the series of ModelOptions attributes.
Note that ModelOptions is not restricted to the options defined in the Model Options dialog
box of a model, it gathers all properties saved in a model such as intermodel generation
options.

After ModelOptions, you can identify collection <c:ObjectLanguage>. This is the object
language linked to the model. The second collection of the model is <c:ClassDiagrams>. This
is the collection of diagrams linked to the model, in our example, there is only one diagram
defined in the following paragraph:

<o:ClassDiagram Id="o4">
 <a:ObjectID>3CEC45F6-A77D-11D5-BB88-0008C7EA916D</a:ObjectID>
 <a:Name>ClassDiagram_1</a:Name>
 <a:Code>CLASSDIAGRAM_1</a:Code>
 <a:CreationDate>1000309357</a:CreationDate>
 <a:Creator>arthur</a:Creator>
 <a:ModificationDate>1000312265</a:ModificationDate>

CHAPTER 8: The PowerDesigner Public Metamodel

Customizing and Extending PowerDesigner 351

 <a:Modifier>arthur</a:Modifier>
 <a:DisplayPreferences>
...

Like for model options, ClassDiagram definition is followed by a series of display preference
attributes.

Within the ClassDiagram collection, a new collection called <c:Symbols> is found. This
collection gathers all the symbols in the model diagram. The first object to be defined in
collection Symbols is AssociationSymbol:

<o:AssociationSymbol Id="o5">
 <a:CenterTextOffset>(1, 1)</a:CenterTextOffset>
 <a:SourceTextOffset>(-1615, 244)</a:SourceTextOffset>
 <a:DestinationTextOffset>(974, -2)</a:DestinationTextOffset>
 <a:Rect>((-6637,-4350), (7988,1950))</a:Rect>
 <a:ListOfPoints>((-6637,1950),(7988,-4350))</a:ListOfPoints>
 <a:ArrowStyle>8</a:ArrowStyle>
 <a:ShadowColor>13158600</a:ShadowColor>
 <a:FontList>DISPNAME 0 Arial,8,N

AssociationSymbol contains collections <c:SourceSymbol> and <c:DestinationSymbol>. In
both collections, symbols are referred to but not defined: this is because ClassSymbol does not
belong to the SourceSymbol or DestinationSymbol collections.

<c:SourceSymbol>
 <o:ClassSymbol Ref="o6"/>
 </c:SourceSymbol>
 <c:DestinationSymbol>
 <o:ClassSymbol Ref="o7"/>
 </c:DestinationSymbol>

The association symbols collection is followed by the<c:Symbols> collection. This collection
contains the definition of both class symbols.

<o:ClassSymbol Id="o6">
 <a:CreationDate>1012204025</a:CreationDate>
 <a:ModificationDate>1012204025</a:ModificationDate>
 <a:Rect>((-18621,6601), (-11229,12675))</a:Rect>
 <a:FillColor>16777215</a:FillColor>
 <a:ShadowColor>12632256</a:ShadowColor>
 <a:FontList>ClassStereotype 0 Arial,8,N

Collection <c:Classes> follows collection <c:Symbols>. In this collection, both classes are
defined with their collections of attributes.

<o:Class Id="o10">
 <a:ObjectID>10929C96-8204-4CEE-911#-E6F7190D823C</a:ObjectID>
 <a:Name>Order</a:Name>
 <a:Code>Order</a:Code>
 <a:CreationDate>1012204026</a:CreationDate>
 <a:Creator>arthur</a:Creator>
 <a:ModificationDate>1012204064</a:ModificationDate>
 <a:Modifier>arthur</a:Modifier>

CHAPTER 8: The PowerDesigner Public Metamodel

352 PowerDesigner

 <c:Attributes>
 <o:Attribute Id="o14">

Attribute is a terminal object: there is not further ramification required to define this object.

Each collection belonging to an analyzed object is expanded, and analyzed and the same
occurs for collections within collections.

Once all objects and collections are browsed, the following markups appear:

</o:RootObject>
</Model>

CHAPTER 8: The PowerDesigner Public Metamodel

Customizing and Extending PowerDesigner 353

CHAPTER 8: The PowerDesigner Public Metamodel

354 PowerDesigner

Index
%-(x,y)% subtraction operator 252
! power evaluation operator 252
!= not equal to operator 252
? existence operator 252
.foreach_item

example 27
.xems

See extension files
[] operators 213
[] conditional block 250
* dereferencing operator 252
%*(x,y)% multiplication operator 252
%/(x,y)% division operator 252
.// macro 267
\\ escape sequence 256
\n escape sequence 256
\t escape sequence 256
%&(x,y)% logical bitfield and operator 252
&& logical AND operator 252
%% escape sequence 256
+ visibility operator 252
%+(x,y)% addition operator 252
< less than operator 252
<= less than or equal to operator 252
= assignment operator 252
== equal to operator 252
> greater than operator 252
>= greater than or equal to operator 252
|| logical OR operator 252

A
A formatting option (align left) 248
.abort_command macro 265
abstract classes 344
abstract data type attributes

AllowedADT 176
abstract data types

ADTComment 174
AllowedADT 174
EnableAdtOnColn 174
EnableAdtOnDomn 174
Install 174
PDM variables 224
Remove 174

ActiveDiagram global property 312, 320
%ActiveModel% global variable 251
ActiveModel global property 312, 313
ActiveSelection global collection 312
ActiveWorkspace global property 312, 322
ActiveX

add-in 334
DoCommand 334
Initialize 334
IsCommandSupported 334
method 334
ProvideMenuItems 334
Uninitialize 334

Add 144
add-ins 305

ActiveX 334
launching 338
XML file 335

Add() method 314
AddColIndex 160
AddColnChck 152
AddColnCheck 152
adding items in resource files 6
AdditionalDataTypes 110
AddJoin 185
AddMetaExtension() method 329
AddObjects() method 321
AddQuote 136
AddSource() method 324
AddTableCheck 148
ADTComment 174
AfterCreate 144, 189
AfterDatabaseGenerate event handler 75, 133
AfterDatabaseReverseEngineer event handler 75,

133
AfterDrop 144
AfterModify 144
.AKCOLN PDM macro 235
AKeyComment 164
All Attributes and Collections tab 300
All Classes tab 299
All Report Titles tab 297
.ALLCOL PDM macro 236
AllowedADT 148, 174, 176
AllowNullableColn 164

Index

Customizing and Extending PowerDesigner 355

AltEnableAddColnChk 152
Alter 144
AlterDBIgnored 144
AlterFooter 138
AlterHeader 138
AlterStatementList 144
AlterTableFooter 148
AlterTableHeader 148
ASE

PDM variables 227
associations 344
AttachLinkObject() method 320
AttachObject() method 320
attribute icon sets 46
attribute value icons 46
attributes 344

creating from a property sheet 15
Attributes collection 330
auto-attach 14
autofixes 74

B
BasicDataTypes 110
BeforeCreate 144
BeforeCreateDatabase 172
BeforeDatabaseGenerate event handler 75, 133
BeforeDatabaseReverseEngineer event handler 75,

133
BeforeDrop 144
BeforeModify 144
BeginTransaction() global function 312
Bind 152, 173, 187, 188
BinDefault 173
.block macro 265
BlockComment 135
BlockTerminator 135
.bool macro 266
booleans

.bool macro 266
testing in GTL 266

.break macro 266

C
calculated collections 50
CancelTransaction() global function 312
CanLinkKind event handler 75
cases

changing in GTL 277

.lowercase macro 277

.uppercase macro 277
CaseSensitivityUsingQuote 136
.change_dir macro 266
CharFunc 140
CheckNull 152
CheckOnCommit 166
CheckOut() method 325
Choreography category

process language 109
class attributes 344
classes 344
Clear() method 314
.CLIENTEXPRESSION macro 242
CloseDatabase 172
Cluster 160
code property

.convert_code macro 267
converting in GTL 267

.collection macro 278
collections

accessing first item 247
Add() method 314
calculated collections 50
Clear() method 314
.collection macro 278
Count keyword 247
Count property 314
counting members 247
CreateNew() method 314, 318
CreateNewAt() method 314
extended collections 48
extended compositions 48
First keyword 247
.foreach_item macro 247, 271
GetCalculatedCollection() method 329
GetCollectionByStereotype() method 329
GetExtendedCollection() method 329
Insert() method 314
IsEmpty keyword 247
Item property 314
iterating over in GTL 271
Kind property 314
MetaCollection property 314
modifying by script 314
Move() method 314
Outer scope 255
Parent scope 255
Remove() method 314

Index

356 PowerDesigner

returning by GTL 278
scope 255
Source property 314
testing for members 247

ColnDefaultName 177
ColnRuleName 177
ColumnComment 152
columns

AddColnChck 152
AddColnCheck 152
AltEnableAddColnChk 152
Bind 152
CheckNull 152
ColumnComment 152
ConstName 152
DefineColnCheck 152
DropColnChck 152
DropColnComp 152
EnableBindRule 152
EnableComputedColn 152
EnableDefault 152
EnableIdentity 152
EnableNotNullWithDflt 152
MaxConstLen 152
ModifyColnComp 152
ModifyColnDflt 152
ModifyColnNull 152
ModifyColumn 152
null values 159
NullRequired 152, 159
PDM variables 217
Permission 152
Rename 152
SqlChckQuery 152
SqlPermQuery 152
SqlStatistics 152
Unbind 152
variables 235

commands
creating custom commands 338, 339

.comment macro 267
comments

. // 267

.comment 267
in GTL 267

Commit 140
comparing resource file 7
Complement language generation 14, 89
composite physical options 209

ConceptualDataTypes 110
concrete classes 344
conditional blocks 250

.block macro 265
in GTL 265

conditional processing
GTL 275
.if macro 275

connecting to databases by script 326, 328
ConnectToDatabase() method 328
Consolidate() method 325
ConsolidateNew() method 325
Constants category

object language 110
ConstName 148, 152, 163, 164, 166
constraints

PDM variables 217
conversion tables 1
.convert_code macro 267
.convert_name macro 267
ConvertFunc 140
copying resource files 7
Count keyword 247
Count property 314
Create 144
.create_path macro 266
CreateBeforeKey 160
CreateBody 189
CreateDefault 173
CreateFunc 180
CreateModel() global function 312
CreateModel() method 313
CreateNew() method 314, 318
CreateNewAt() method 314
CreateObject() method 318
CreateReport() method 325
CreateSelection() method 321
CreateShortcut() method 323
creating data sources by script 324
creating mappings by script 324
creating metaclasses from stereotypes 39
creating resource files 7
criteria 40
csv (conversion tables) 1
%CurrentDate% global variable 251
%CurrentUser% global variable 251
custom checks 71

autofixes 74
example 21, 73, 74

Index

Customizing and Extending PowerDesigner 357

script 73
custom commands

adding to menus 338, 339
custom properties

See extended attributes
custom symbols 70

example 19
CustomFunc 180
CustomProc 180

D
D formatting option (interface values) 248
DashStyle property 320
data sources

AddSource() method 324
creating by script 324

Data Type category (DBMS) 197
data types 45, 112, 197
database package templates 120
database security

PDM variables 230
database synchronization

PDM variables 227
databases

AfterCreate 122
BeforeCreate 122
BeforeCreateDatabase 172
CloseDatabase 172
connecting by script 326, 328
ConnectToDatabase() method 328
database package templates 120
EnableManyDatabases 172
estimating size 202, 205
EX keyword 128
GenerateDatabase() method 326
GenerateTestData() method 326
generating by script 326
generating test data by script 326
generation 120–122, 125, 133, 200
GetPackageOptions() method 326, 328
live connection 125
ModifyDatabase() method 326
object generation order 142
OpenDatabase 172
PDM variables 234
physical options 129, 207
procedure templates 120
reverse engineering 120, 124, 125, 128, 129,

131–133

reverse-engineering by script 328
ReverseDatabase() method 328
ReversedQueries 128
ReversedStatements 124
scripts 121, 124
trigger template items 120
trigger templates 120

See also DBMS definition files
DataHandling category

process language 109
DataTypes category

XML language 112
date formats 137
DateFormat 136
DateFunc 140
dates

%CurrentDate% global variable 251
DateTimeFormat 136
DB package cursors 190
DB package exceptions 190
DB package pragmas 190
DB package types 190
DB package variables 190
DB packages

AfterCreate 189
CreateBody 189
PDM variables 228

DBMS definition files 1, 119
[] operators 213
abstract data type attributes 176
abstract data types 174, 224
AfterCreate 122
ASE 227
BeforeCreate 122
columns 152, 159, 217
constraints 217
Data Type category 197
database package templates 120
database security 230
database synchronization 227
databases 172, 234
date formats 137
DB package cursors 190
DB package exceptions 190
DB package pragmas 190
DB package types 190
DB package variables 190
DB packages 189, 228
DBMS triggers 184

Index

358 PowerDesigner

defaults 193, 231
dimensions 196, 232
domains 173, 217
EnableOption 142
estimating database size 202, 205
EX keyword 128
extended attributes 200, 207
extended objects 197, 233
extensions 207, 210
File category 138
Format category 136, 137
forms 210
General category 134
generation 120–122, 125, 133, 200
GenerationOrder 142
GetEstimatedSize 202, 205
groups 187
index columns 220
indexes 160, 220
introduction 119
join indexes 185, 227
keys 163, 164, 219
Keywords category 140
live database connection 125
live database generation 206
MaxConstLen 142
Objects category 142, 144, 148, 152, 159, 160,

163, 164, 166, 169, 171–174, 176,
177, 180, 181, 184–197

ODBC category 206
parameters 191
PDM macros 212, 235–243
PDM variables 212, 213, 215–217, 219, 220,

222–224, 227, 228, 230–234
permissions 192
physical options 129, 207, 209, 210
Physical Options (Common) tab 207
Physical Options tab 207
primary keys 163
privileges 191
procedure templates 120
procedures 180, 222, 234
Profile category 200
properties 119
qualifiers 185
reference columns 220
references 166, 220
result columns 195

reverse engineering 120, 124, 125, 128, 129,
131–133, 234

ReversedQueries 128
ReversedStatements 124
roles 188
rules 177, 223
scripts 121, 124
sequences 186, 224
SQL category 135
SQL Server 227
storages 171, 224
synonyms 187, 224
Syntax category 135
tables 144, 148, 216
tablespaces 171, 224
testing values 213
time formats 137
trigger template items 120
trigger templates 120
triggers 181, 222, 234
users 177
views 169, 216
Web operations 194
Web parameters 195
Web services 194, 231

DBMS triggers 184
DclDelIntegrity 166
DclUpdIntegrity 166
Default association container 117
default variable 144
DefaultDataType 110
defaults 193

PDM variables 231
DefaultTriggerName 181
DefIndexColumn 160
DefIndexType 160
.DEFINE PDM macro 236
DefineColnCheck 152
.DEFINEIF PDM macro 237
DefineJoin 166
DefineTableCheck 148
DefOptions 144
.delete macro 268
Delete() method 321
deleting items in resource files 6
Delimiter 135
dependencies 344
dependency matrices 52

dependency paths 54

Index

Customizing and Extending PowerDesigner 359

dependency paths 54
diagrams

ActiveDiagram global property 312, 320
AttachLinkObject() method 320
AttachObject() method 320
displaying symbols by script 320

dialog boxes
creating from forms 55
example 67

dimensions 196
PDM variables 232

directories
.change_dir 266
changing in GTL 266

domains
Bind 173
BinDefault 173
CreateDefault 173
EnableBindRule 173
EnableCheck 173
EnableDefault 173
EnableOwner 173
PDM variables 217
SqlListDefaultQuery 173
UddtComment 173
Unbind 173
UserTypeName 173

Drop 144
DropColnChck 152
DropColnComp 152
DropFunc 180
DropTableCheck 148

E
Edit/Run Script editor 307
editing resource files 6
embedding resource files 6
Enable 144
EnableAdtOnColn 174
EnableAdtOnDomn 174
EnableAlias 187
EnableAscDesc 160
EnableBindRule 152, 173
EnableChangeJoinOrder 166
EnableCheck 134, 173
EnableCluster 160, 163, 164, 166
EnableComputedColn 152
EnableConstName 134
EnableDefault 152, 173

EnableDtbsPrefix 136
EnablefKeyName 166
EnableFunc 180
EnableFunction 160
EnableIdentity 152
EnableIntegrity 134
EnableJidxColn 185
EnableManyDatabases 172
EnableMultiCheck 134
EnableMultiFile 138
EnableMultiTrigger 181
EnableNotNullWithDflt 152
EnableOption 142
EnableOwner 160, 173, 180, 181, 186
EnableOwnerPrefix 136
EndTransaction() global function 312
.error macro 269
.ERROR PDM macro 237
error messages 237
errors

.error macro 269
in GTL 269

escape sequences
\\ backslash 256
\n new line 256
\t tab 256
%% percent sign 256

EvaluateNamedPath() global function 312
Event 181
event handlers

AfterDatabaseGenerate 75, 133
AfterDatabaseReverseEngineer 75, 133
BeforeDatabaseGenerate 75, 133
BeforeDatabaseReverseEngineer 75, 133
CanCreate 75
CanLinkKind 75
GetEstimatedSize 75, 202, 205
Initialize 75
OnLanguageChanged 75
OnLanguageChangeRequest 75
OnLanguageChanging 75
OnModelClose 75
OnModelOpen 75
OnModelSave 75
OnNewFromTemplate 75
Validate 75

EventDelimiter 181
Events category

object language 110

Index

360 PowerDesigner

EX keyword 128
examples

.foreach_item 27
creating a property sheet tab 61
creating custom check autofix 74
creating custom check script 73
creating custom checks 21
creating custom symbols 19
creating generated files 29
creating stereotypes 18
creating templates 27
extended attribute 15
extension files 15
extensions 15, 16, 18, 19, 21, 27, 29, 30
generated files 87
generation commands 114
generation options 113
generation tasks 114
including a form in a form 64
opening a dialog box from a form 67
opening a dialog from a menu 82
templates 87
XML model file format 351

excluding metaclasses from models 33
executables

.execute_command macro 269
launching with GTL 269

.execute_command macro 269

.execute_vbscript macro 270
ExecuteCommand() global function 312
exporting

extension files 14
extensions 14

extended attribute types
type 45

extended attributes 41, 207
accessing in other extension files 246
adding to forms 41
attribute value icons 46
creating from a property sheet 15
creating types for 45
data types 45
displaying in forms 57
example 15
generation 200
specifying objects as data types 48

extended collections 48
displaying in forms 57

extended compositions 48

extended generation 89
extended links 36
extended model definitions

See extension files
extended objects 36, 197

generation 133
PDM variables 233
reverse engineering 133

extended sub-objects 36
ExtendedLink metaclass 36
ExtendedModelDefinitions collection 329
ExtendedObject metaclass 36
ExtendedSubObject metaclass 36, 48
extension category 14
extension files 1, 11

attaching to a model 12
auto-attach 14
category 14
Complement language generation 14
conflict resolution 11
creating 12, 16
embedded 12
example 15
exporting from a model 14
Generation category 14
properties 14
shared 12
trace mode 14
Transformation Profile category 14

See also extensions
extensions 11, 207, 210

accessing by script 329
AddMetaExtension() method 329
attaching to a model 12
calculated collections 50
collections 329
criteria 40
custom checks 21, 71
custom symbols 19, 70
dependency matrices 52, 54
event handlers 75, 133, 202, 205
example 15, 16, 18, 19, 21, 27, 29, 30, 82
exporting from a model 14
extended attribute types 45
extended attributes 15, 41, 46, 48, 57, 200
extended collections 48, 57
extended compositions 48
extended links 36
extended objects 36

Index

Customizing and Extending PowerDesigner 361

extended sub-objects 36
ExtendedModelDefinitions collection 329
forms 55, 57, 61, 64, 67
generated files 29, 85, 87, 89, 245
Generation category 11
GetCalculatedCollection() method 329
GetCollectionByStereotype() method 329
GetExtendedAttribute() method 329
GetExtendedAttributeText() method 329
GetExtendedCollection() method 329
global script 105
in DBMS definition files 200
menus 81, 338
metaclasses 33
methods 57, 79, 81, 338
object generations 100, 102, 103
object language definition files 117
process language definition files 117
Profile category 11
SetExtendedAttribute() method 329
SetExtendedAttributeText() method 329
stereotypes 18, 37, 39, 329
templates 27, 84, 87, 245
transformation profiles 94
transformations 92, 95
UseAsMetaclass property 329
XML imports 96, 97, 100
XML language definition files 117

external applications
ExecuteCommand() global function 312

F
File category (DBMS)

AlterFooter 138
AlterHeader 138
EnableMultiFile 138
Footer 138
Header 138
ScriptExt 138
StartCommand 138
TableExt 138
TrgFooter 138
TrgHeader 138
TrgUsage1 138
TrgUsage2 138
TriggerExt 138
Usage1 138
Usage2 138

FindChildByCode() method 316

FindChildByName() method 316
FindChildByPath() method 316
First keyword 247
FKAutoIndex 166
.FKCOLN PDM macro 235
FKeyComment 166
folders

creating by script 322
Footer 138, 160
.FOREACH_CHILD PDM macro 238
.FOREACH_COLUMN PDM macro 239
.foreach_item macro 271
.foreach_line macro 273
.FOREACH_PARENT PDM macro 240
.foreach_part macro 274
foreign key

variable 241
Format category (DBMS)

AddQuote 136
CaseSensitivityUsingQuote 136
date formats 137
DateFormat 136, 137
DateTimeFormat 136, 137
EnableDtbsPrefix 136
EnableOwnerPrefix 136
IllegalChar 136
LowerCaseOnly 136
MaxScriptLen 136
time formats 137
TimeFormat 136, 137
UpperCaseOnly 136

formatting options
A (align left) 248
D (interface values) 248
H (hexadecimal) 215, 248
L (lowercase) 215, 248
LF (first character lowercase) 215, 248
M (delete substring) 215, 248
Q (double quotes) 215, 248
q (single quotes) 215, 248
T (trim whitespace) 215, 248
U (uppercase) 215, 248
UF (first character uppercase) 215, 248
X (escape XML characters) 248

forms 210
adding buttons 57
adding controls 57
creating dialog boxes 55
creating property tabs 55

Index

362 PowerDesigner

dialog box example 67
displaying extended attributes 57
displaying extended collections 57
form-in-form example 64
property sheet example 61
replacing property tabs 55

function based indexes 131
FunctionComment 180

G
General category (DBMS)

EnableCheck 134
EnableConstName 134
EnableIntegrity 134
EnableMultiCheck 134
SqlSupport 134
UniqConstName 134

generalizations 344
generated files 85, 87, 89, 245

example 29
GenerateDatabase() method 326
GenerateHTML() method 325
GenerateRTF() method 325
GenerateTestData() method 326
generating database objects 142
generating databases by script 326
generating models 102
generating test data by script 326
generation 120

extended generation 89
%GenOptions% global variable 251
live connection 125
PDM extended objects 133
script after 133
script before 133
scripts 121, 122

generation category 112
Generation category 11, 14
generation commands 112, 114

.abort_command macro 265
aborting 265
GTL 265

generation options 112, 113
generation tasks 112, 114
Generation Template Language

See GTL
GenerationOrder 142
%GenOptions% global variable 251
GetAttribute() method 316

GetAttributeText() method 316
GetCalculatedCollection() method 329
GetCollectionByStereotype() method 329
GetEstimatedSize 202, 205
GetEstimatedSize event handler 75
GetExtendedAttribute() method 329
GetExtendedAttributeText() method 329
GetExtendedCollection() method 329
GetMapping() method 324
GetMetaClassByPublicName() method 330
GetMetaMemberByPublicName() method 330
GetPackageOptions() method 326, 328
global script 71, 75, 79, 105
global variables 105

%ActiveModel% 251
%CurrentDate% 251
%CurrentUser% 251
%GenOptions% 251
%NewUUID% 251
%PreviewMode% 251

go to super-definition 5
GrantOption 191, 192
GroupFunc 140
groups

Bind 187
SqlListChildrenQuery 187
SqlPermQuery 187
Unbind 187

GTL 84, 85, 245
aborting generation commands 265
accessing extended attributes in other

extension files 246
breaking loops 266
calling templates 257
changing directory 266
changing text case 277
collections 247
comments 267
conditional blocks 250, 265
conditional generation 275
controlling user interaction 278
converting names and codes 267
creating generated files 245
creating paths 266
creating templates 245
defining local variable and value types 279
deleting substrings 268
embedding VBScript 281
errors 283

Index

Customizing and Extending PowerDesigner 363

escape sequences 256
executing VBScript 270
extended attributes 246
formatting text 248
generated files 245
global variables 251
GTL operators 252
head string 250
inheritance 257
introduction 245
%IsShortcut% 256
iterating over a collection 271
iterating over lines in a text block 273
iterating over parts of a string 274
launching executables 269
line breaks 250
macros 264
metamodel extensions 262
new line 250
object properties 246
Outer scope 255
outputting unique lines 281
overloading templates 257
overriding templates 257
parameters 260
Parent scope 255
polymorphism 257
printing error messages 269
printing warning messages 269
properties 246
recursive templates 262
replacing substrings 268
returning collections by OID 278
returning objects by OID 278
scope 255
%Shortcut% 256
shortcuts 256
syntax errors 283
tail string 250
templates 245
testing boolean conditions 266
text blocks 250
translation errors 283
writing log messages 277

GTL macros
. // 267
.abort_command 265
.block 265
.bool 266

.break 266

.change_dir 266

.collection 278

.comment 267

.convert_code 267

.convert_name 267

.create_path 266

.delete 268

.error 269

.execute_command 269

.execute_vbscript 270

.foreach_item 247, 271

.foreach_line 273

.foreach_part 274

.if 275

.log 277

.lowercase 277

.object 278

.replace 268

.set_interactive_mode 278

.set_object 279

.set_value 279

.unique 281

.unset 279

.uppercase 277

.vbscript 281

.warning 269
GTL operators

! power evaluation 252
!= not equal to 252
? existence 252
%-(x,y)% subtraction 252
* dereferencing 252
%*(x,y)% multiplication 252
%/(x,y)% division 252
%&(x,y)% logical bitfield and 252
&& logical AND 252
+ visibility 252
%+(x,y)% addition 252
< less than 252
<= less than or equal to 252
= assignment 252
== equal to 252
> greater than 252
>= greater than or equal to 252
|| logical OR 252

H
H formatting option (hexadecimal) 215, 248

Index

364 PowerDesigner

head string 250
Header 138, 160
HomeDirectory global constant 312

I
IdentifierDelimiter 135
.if macro 275
IllegalChar 136
impact and analysis rule sets 1
Implementation category

process language 109
.INCOLN PDM macro 240
index columns

PDM variables 220
IndexComment 160
indexes

AddColIndex 160
Cluster 160
CreateBeforeKey 160
DefIndexColumn 160
DefIndexType 160
EnableAscDesc 160
EnableCluster 160
EnableFunction 160
EnableOwner 160
Footer 160
Header 160
IndexComment 160
IndexType 160
MandIndexType 160
MaxColIndex 160
PDM variables 220
SqlSysIndexQuery 160
UniqName 160

IndexType 160
inheritance 257
Insert() method 314
Install 174
instantiable classes 344
InteractiveMode global property 312
inverse collections 48
IsEmpty keyword 247
IsKindOf() global function 312
%IsShortcut% 256
Item property 314

J
.JOIN PDM macro 241

join indexes
AddJoin 185
EnableJidxColn 185
JoinIndexComment 185
PDM variables 227

JoinIndexComment 185

K

keys
AKeyComment 164
AllowNullableColn 164
ConstName 164
EnableCluster 164
MaxConstLen 164
PDM variables 219
primary keys 163
SqlAkeyIndex 164
UniqConstAutoIndex 164
UniqInTable 164

Keywords category (DBMS)
CharFunc 140
Commit 140
ConvertFunc 140
DateFunc 140
GroupFunc 140
ListOperators 140
NumberFunc 140
OtherFunc 140
ReservedDefault 140
ReservedWord 140

Kind property 314

L

L formatting option (lowercase) 215, 248
LF formatting option (first character lowercase)

215, 248
Libraries collection 330
Library property 330
line breaks

controlling in GTL 250
LineComment 135
LineWidth property 320
Linguistic Variables category 300
link objects

creating by script 318
link symbols

setting extremities by script 320

Index

Customizing and Extending PowerDesigner 365

ListOperators 140
live database generation 206
local variables

defining in GTL 279
.set_object 279
.set_value 279
.unset 279

Locked global property 312
.log macro 277
logs

.log macro 277
writing to in GTL 277

loops
.break macro 266
breaking in GTL 266

.lowercase macro 277
lowercase 277
LowerCaseOnly 136

M
M formatting option (delete substring) 215, 248
MandIndexType 160
Mapping Editor 100, 103

XML imports 97
mappings

creating by script 324
GetMapping() method 324
metamodel 97, 103
metamodel objects 101
properties 100
retrieving by script 324
SourceClassifiers collection 324

MapToNamedPath() global function 312
MaxColIndex 160
MaxConstLen 142, 148, 152, 164, 166
MaxDefaultLen 177
MaxFuncLen 180
Maxlen 144
MaxScriptLen 136
mcc (model category sets) 1
MDA 92
menus

creating custom commands in 338, 339
customizing via extensions 81, 338
customizing via XML add-ins 338
example 82
launching add-ins from 338
launching scripts from 338

merging resource files 8

metaclass 33
Metaclass property 330
metaclasses 33

adding to extension file 33
creating from stereotypes 39
creating new 36
excluding from model 33
ExtendedLink 36
ExtendedObject 36
ExtendedSubObject 36, 48
extending 33
subclassifying with criteria 40
subclassifying with stereotypes 37

MetaCollection property 314
metamodel

abstract classes 344
associations 344
attributes 344
Attributes collection 330
calculated attributes 262
calculated collections 262
class attributes 344
classes 344
concrete classes 344
dependencies 344
extending by script 329
generalizations 344
GetMetaClassByPublicName() method 330
GetMetaMemberByPublicName() method

330
GTL-specific extensions 262
instantiable classes 344
Libraries collection 330
Library property 330
Metaclass property 330
MetaModel global property 330
Metamodel Objects Help 343, 347
metamodel.oom 343
navigating 344
notScriptable stereotype 344
operations 344
Parent property 330
PdBPM 344
PdCDM 344
PdCommon 344
PdEAM 344
PdFRM 344
PdGLM 344
PdILM 344

Index

366 PowerDesigner

PdLDM 344
PdMTM 344
PdOOM 344
PdPDM 344
PdPRJ 344
PdRMG 344
PdRQM 344
PdWSP 344
PdXSM 344
PowerDesigner 343
public names 344
PublicName property 330
shortcuts 344
specializations 344
XML model file format 348, 351

MetaModel global property 330
metamodel objects

properties 101
Metamodel Objects Help 343, 347
metamodel.oom 343
methods 79

adding to menus 81, 338
attaching to form buttons 57

model category sets 1
model checks

creating custom checks 71
model file format

bin 348
DTD 348
XML 348, 351

model generation 102
models

%ActiveModel% global variable 251
ActiveModel global property 312
CreateModel() global function 312
CreateObject() method 318
creating by script 313
Models global collection 312
opening by script 313
OpenModel() global function 312

Models global collection 312, 313
ModifiableAttributes 144
ModifyColnComp 152
ModifyColnDflt 152
ModifyColnNull 152
ModifyColumn 152
ModifyDatabase() method 326
Move() method 314
MoveToPackage() method 321

N
name property

.convert_name macro 267
converting in GTL 267

named paths
EvaluateNamedPath() global function 312
MapToNamedPath() global function 312

Namings category
object language 110

navigating in resource files 5
new line 250
NewPoint() global function 320
%NewUUID% global variable 251
.NMFCOL PDM macro 242
not certified resource files 3
notScriptable stereotype 344
NullRequired 152, 159
NumberFunc 140

O
.object macro 278
Object Attributes category 298
Object container 117
object generations 102

initialization scripts 100
mapping properties 100
mappings 103
post-processing scripts 100

object language definition files 1
AdditionalDataTypes 110
BasicDataTypes 110
ConceptualDataTypes 110
Constants category 110
data types 110
Default association container 117
DefaultDataType 110
Events category 110
extensions 117
generation category 112
generation commands 112, 114
generation options 112, 113
generation tasks 112, 114
Namings category 110
Object container 117
profile category 117
properties 107
Settings category 110

object permission profiles 1

Index

Customizing and Extending PowerDesigner 367

object properties 246
accessing by script 316
modifying by script 316

object selections
ActiveSelection global collection 312
AddObjects() method 321
CreateSelection() method 321
creating by script 321
MoveToPackage() method 321
Remove() method 321

objects
accessing by script 316
creating by script 318
creating shortcuts by scripts 323
Delete() method 321
deleting by script 321
displaying in diagrams by script 320
FindChildByCode() method 316
FindChildByName() method 316
FindChildByPath() method 316
GetAttribute() method 316
GetAttributeText() method 316
IsKindOf() global function 312
.object macro 278
Outer scope 255
Parent scope 255
returning by GTL 278
scope 255
SetAttribute() method 316
SetAttributeText() method 316
Symbols collection 320

Objects category (DBMS)
abstract data type attributes 176
abstract data types 174
Add 144
AfterCreate 144
AfterDrop 144
AfterModify 144
Alter 144
AlterDBIgnored 144
AlterStatementList 144
BeforeCreate 144
BeforeDrop 144
BeforeModify 144
columns 152, 159
Create 144
databases 172
DB package cursors 190
DB package exceptions 190

DB package pragmas 190
DB package types 190
DB package variables 190
DB packages 189
DBMS triggers 184
default variable 144
defaults 193
DefOptions 144
dimensions 196
domains 173
Drop 144
Enable 144
EnableOption 142
extended objects 197
GenerationOrder 142
groups 187
indexes 160
join indexes 185
keys 163, 164
MaxConstLen 142
Maxlen 144
ModifiableAttributes 144
Options 144
parameters 191
permissions 192
primary keys 163
privileges 191
procedures 180
qualifiers 185
references 166
result columns 195
ReversedStatements 144
roles 188
rules 177
sequences 186
SqlAttrQuery 144
SqlListQuery 144
SqlOptsQuery 144
storages 171
synonyms 187
tables 144, 148
tablespaces 171
triggers 181
users 177
views 169
Web operations 194
Web parameters 195
Web services 194

ODBC category 206

Index

368 PowerDesigner

OLE
Locked global property 312
ShowMode global property 312

OLE Automation 305, 332
OnLanguageChanged event handler 75
OnLanguageChangeRequest event handler 75
OnLanguageChanging event handler 75
OnModelClose event handler 75
OnModelOpen event handler 75
OnModelSave event handler 75
OnNewFromTemplate event handler 75
OpenDatabase 172
opening resource files 3
OpenModel() global function 312
OpenModel() method 313
operations 344
Options 144
OtherFunc 140
Outer 255
Output window

Output() global function 312
Output() global function 312
overloading

templates 257
overriding

templates 257

P
parameters 191, 260
Parent 255
Parent property 330
paths

.create_path 266
creating in GTL 266
specifying for resource files 1

PdBPM 344
PdCDM 344
PdCommon 344
PdEAM 344
PdFRM 344
PdGLM 344
PdILM 344
PdLDM 344
PDM macros 212

.AKCOLN 235

.ALLCOL 236

.CLIENTEXPRESSION 242

.DEFINE 236

.DEFINEIF 237

.ERROR 237

.FKCOLN 235

.FOREACH_CHILD 238

.FOREACH_COLUMN 239

.FOREACH_PARENT 240

.INCOLN 240

.JOIN 241

.NMFCOL 242

.PKCOLN 235

.SERVEREXPRESSION 242

.SQLXML 243
PDM variables 212

[] operators 213
abstract data types 224
ASE 227
columns 217
constraints 217
database security 230
database synchronization 227
databases 234
DB packages 228
defaults 231
dimensions 232
domains 217
extended objects 233
formatting 215
index columns 220
indexes 220
join indexes 227
keys 219
procedures 222, 234
reference columns 220
references 220
reverse engineering 234
rules 223
sequences 224
SQL Server 227
storages 224
synonyms 224
tables 216
tablespaces 224
testing values 213
triggers 222, 234
views 216
Web services 231

PdMTM 344
PdOOM 344
PdPDM 344
PdPRJ 344

Index

Customizing and Extending PowerDesigner 369

PdRMG 344
PdRQM 344
PdWSP 344
PdXSM 344
Permission 148, 152, 180
permissions

GrantOption 192
RevokeOption 192

physical options 210
composite options 209
default value 207
defining defaults in a DBMS file 144
defining in a DBMS file 144, 207
DefOptions DBMS item 144
extended attributes 207
list of values 207
Options DBMS item 144
Physical Options (Common) tab 207
Physical Options tab 207
reverse engineering 129
simple options 207

Physical Options (Common) tab 207
Physical Options tab 207
PkAutoIndex 163
.PKCOLN PDM macro 235
PKeyComment 163
platform-independent models 92
platform-specific models 92
polymorphism 257
Position property 320
PowerDesigner

metamodel 343
XML model file format 351

ppf (object permission profiles) 1
Preview tab

%PreviewMode% global variable 251
%PreviewMode% global variable 251
primary key

variable 241
primary keys

ConstName 163
EnableCluster 163
PkAutoIndex 163
PKeyComment 163
UseSpPrimKey 163

privileges
GrantOption 191
RevokeOption 191
System 191

procedure templates 120
ProcedureComment 180
procedures

CreateFunc 180
CustomFunc 180
CustomProc 180
DropFunc 180
EnableFunc 180
EnableOwner 180
FunctionComment 180
MaxFuncLen 180
PDM variables 222, 234
Permission 180
ProcedureComment 180
SqlPermQuery 180

process language definition files 1
Choreography category 109
DataHandling category 109
extensions 117
generation category 112
generation commands 112, 114
generation options 112, 113
generation tasks 112, 114
Implementation category 109
profile category 117
properties 107
Settings category 109

profile
See extension files

profile category
object language definition files 117
process language definition files 117
XML language definition files 117

Profile category 11
DBMS definition files 200

promoting a stereotype to metaclass 37
promoting a sterotype to metaclass 39
properties 246
property sheets

example 61
form-in-form example 64

property tabs
creating from forms 55
replacing by forms 55

public names 344
PublicName property 330

Q
Q formatting option (double quotes) 215, 248

Index

370 PowerDesigner

q formatting option (single quotes) 215, 248
qualifiers 185
Quote 135

R
recursive templates 262
reference columns

PDM variables 220
references

CheckOnCommit 166
ConstName 166
DclDelIntegrity 166
DclUpdIntegrity 166
DefineJoin 166
EnableChangeJoinOrder 166
EnableCluster 166
EnablefKeyName 166
FKAutoIndex 166
FKeyComment 166
MaxConstLen 166
PDM variables 220
SqlListChildrenQuery 166
UseSpFornKey 166

RegistryHome global constant 312
Remove 174
Remove() method 314, 321
Rename 148, 152
.replace macro 268
Report Item Templates category 303
report language files 1, 287

All Attributes and Collections tab 300
All Classes tab 299
All Report Titles tab 297
creating 289
Linguistic Variables category 300
Object Attributes category 298
opening 288
properties 290
Report Item Templates category 303
Report Titles category 294
translation example 295
Values Mapping category 291

report templates 1
Report Titles category 294
reports

CreateReport() method 325
creating by script 325
GenerateHTML() method 325
GenerateRTF() method 325

generating by script 325
Reports collection 325
translating 287

Reports collection 325
repository

checking documents in by script 325
checking documents out by script 325
checking resource files into 1
CheckOut() method 325
comparing resource files 1
connecting by script 325
Consolidate() method 325
ConsolidateNew() method 325
RepositoryConnection global property 312
updating resource files from 1

RepositoryConnection global property 312
ReservedDefault 140
ReservedWord 140
resource editor

See also resource files
resource files

adding items 6
checking into the repository 1
comparing 7
comparing with the repository 1
conversion tables 1
copying 7
creating 7
csv (conversion tables) 1
DBMS definition files 1
deleting items 6
editing 6
embedding 6
extension files 1
impact and analysis rule sets 1
mcc (model category sets) 1
merging 8
model category sets 1
navigating in 5
not certified 3
object language definition files 1
object permission profiles 1
opening 3
paths 1
ppf (object permission profiles) 1
process language definition files 1
report language files 1
report templates 1
repository 1

Index

Customizing and Extending PowerDesigner 371

restoring defaults 6
rtp (report templates) 1
rul (impact and analysis rule sets) 1
saving 6
searching 5
sharing 6
updating from the repository 1
upf (user profiles) 1
user profiles 1
xdb (DBMS definition files) 1
xem (extension files) 1
XML language definition files 1
xol (object language definition files) 1
xpl (process language definition files) 1
xrl (report language files) 1
xsl (XML language definition files) 1

restoring defaults in resource files 6
result columns 195
retrieving mappings by script 324
reverse engineering 120

attributes 128
EX keyword 128
extending 128
function based indexes 131
live connection 125
live databases 129, 131, 132
PDM extended objects 133
PDM variables 234
physical options 129
qualifiers 132
ReversedQueries 128
ReversedStatements 124
script after 133
script before 133
scripts 124

reverse-engineering databases by script 328
ReverseDatabase() method 328
ReversedQueries 128
ReversedStatements 124, 144
RevokeOption 191, 192
robustness diagrams

creating custom checks 21
creating custom symbols 19
creating extension for 16
creating generated files 29
creating stereotypes 18
creating templates 27
testing extension 30

roles
Bind 188
SqlListChildrenQuery 188
SqlPermQuery 188
Unbind 188

rtp (report templates) 1
rul (impact and analysis rule sets) 1
RuleComment 177
rules

ColnDefaultName 177
ColnRuleName 177
MaxDefaultLen 177
PDM variables 223
RuleComment 177
UddtDefaultName 177
UddtRuleName 177

S
saving resource files 6
scope

Outer 255
Parent 255

ScriptExt 138
scripting

accessing extensions 329
accessing object properties 316
accessing objects 316
ActiveModel global property 313
browsing collections 314
changing symbol format 320
checking documents into the repository 325
checking out of the repository 325
connecting to databases 326, 328
connecting to the repository 325
create shortcut 323
CreateModel() method 313
creating data sources 324
creating extensions 329
creating link objects 318
creating mappings 324
creating models 313
creating object selections 321
creating objects 318
creating reports 325
creating shortcuts 323
creating symbols 320
databases 326, 328
deleting objects 321
Edit/Run Script editor 307

Index

372 PowerDesigner

extending the metamodel 329
folders 322
generating databases 326
generating reports 325
generating test data 326
global constants 312
global functions 312
global properties 312
introduction 305
launching scripts via custom commands 338,

339
mappings 324
metamodel 330
Metamodel Objects Help 347
Models global collection 313
modifying collections 314
modifying object properties 316
navigating in the metamodel 330
notScriptable stereotype 344
OLE Automation 332
opening models 313
OpenModel() method 313
positioning symbols 320
reports 325
repository 325
reverse-engineering databases 328
running scripts 307
sample scripts 309
transactions 312
VBScript example 305
workspace 322

searching in resource files 5
SequenceComment 186
sequences

EnableOwner 186
PDM variables 224
SequenceComment 186

.SERVEREXPRESSION macro 242

.set_interactive_mode macro 278

.set_object macro 279

.set_value macro 279
SetAttribute() method 316
SetAttributeText() method 316
SetExtendedAttribute() method 329
SetExtendedAttributeText() method 329
Settings category

object language 110
process language 109
XML language 112

sharing resource files 6
%Shortcut% 256
shortcuts 344

CreateShortcut() method 323
creating by script 323
in GTL 256

ShowMode global property 312
Source property 314
SourceClassifiers collection 324
specializations 344
SQL category (DBMS) 135
SQL Server

PDM variables 227
SqlAkeyIndex 164
SqlAttrQuery 144
SqlChckQuery 148, 152
SqlContinue 135
SqlListChildrenQuery 166, 187, 188
SqlListDefaultQuery 173
SqlListQuery 144
SqlListRefrTables 148
SqlListSchema 148, 169
SqlOptsQuery 144
SqlPermQuery 148, 152, 169, 177, 180, 187, 188
SqlStatistics 152
SqlSupport 134
SqlSysIndexQuery 160
.SQLXML PDM macro 243
SqlXMLTable 148
SqlXMLView 169
StartCommand 138
stereotypes 37, 39

example 18
promoting to metaclass 37, 39
Use as metaclass 18, 37, 39
UseAsMetaclass property 329

StorageComment 171
storages

PDM variables 224
StorageComment 171

strings
A (align left) 248
aligning left 248
converting to first character lowercase 215,

248
converting to first character uppercase 215,

248
converting to lowercase 215, 248
converting to uppercase 215, 248

Index

Customizing and Extending PowerDesigner 373

deleting substrings 215, 248
.foreach_part macro 274
iterating over in GTL 274
L (lowercase) 215, 248
LF (first character lowercase) 215, 248
M (delete substring) 215, 248
Q (double quotes) 215, 248
q (single quotes) 215, 248
surrounding in double quotes 215, 248
surrounding in single quotes 215, 248
T (trim whitespace) 215, 248
trimming whitespace 215, 248
U (uppercase) 215, 248
UF (first character uppercase) 215, 248

subclassifying metaclasses with criteria 40
subclassifying metaclasses with stereotypes 37
submenus

creating 339
substrings

deleting in GTL 248, 268
deleting in PDM variables 215
M (delete substring) 215, 248
replacing in GTL 268

symbols
creating by script 320
DashStyle property 320
formatting by script 320
LineWidth property 320
NewPoint() global function 320
Position property 320
positioning by script 320

Symbols collection 320
synonyms

EnableAlias 187
PDM variables 224

Syntax category (DBMS)
BlockComment 135
BlockTerminator 135
Delimiter 135
IdentifierDelimiter 135
LineComment 135
Quote 135
SqlContinue 135
Terminator 135
UseBlockTerm 135

syntax errors 283
System 191

T
T formatting option (trim whitespace) 215, 248

TableComment 148
TableExt 138
tables

AddTableCheck 148
AllowedADT 148
AlterTableFooter 148
AlterTableHeader 148
ConstName 148
DefineTableCheck 148
DropTableCheck 148
MaxConstLen 148
PDM variables 216
Permission 148
Rename 148
SqlChckQuery 148
SqlListRefrTables 148
SqlListSchema 148
SqlPermQuery 148
SqlXMLTable 148
TableComment 148
TypeList 148
UniqConstraintName 148

TablespaceComment 171
tablespaces

PDM variables 224
TablespaceComment 171

tail string 250
templates 84, 87, 245

calling 257
example 27
F12 5
jumping to referenced template 5
Outer scope 255
overloading 257
overriding 257
Parent scope 255
passing parameters 260
recursive 262
referencing shortcuts 256
scope 255

Terminator 135
testing PDM variable values 213
text

formatting in GTL 248
text blocks

changing case in GTL 277
.foreach_line macro 273
iterating over in GTL 273
.lowercase macro 277

Index

374 PowerDesigner

outputting unique lines in GTL 281
.unique macro 281
.uppercase macro 277

Time 181
time formats 137
TimeFormat 136
Tools menu

creating custom commands in 338, 339
trace mode 14
transactions

BeginTransaction() global function 312
CancelTransaction() global function 312
EndTransaction() global function 312

Transformation Profile category 14
transformation profiles 94
transformations 92

transformation profiles 94
transformation scripts 95

translation errors 283
TrgFooter 138
TrgHeader 138
TrgUsage1 138
TrgUsage2 138
trigger template items 120
trigger templates 120
TriggerComment 181
TriggerExt 138
triggers

DefaultTriggerName 181
EnableMultiTrigger 181
EnableOwner 181
Event 181
EventDelimiter 181
PDM variables 222, 234
Time 181
TriggerComment 181
UseErrorMsgTable 181
UseErrorMsgText 181

TypeList 148, 169

U
U formatting option (uppercase) 215, 248
UddtComment 173
UddtDefaultName 177
UddtRuleName 177
UF formatting option (first character uppercase)

215, 248
Unbind 152, 173, 187, 188
UniqConstAutoIndex 164

UniqConstName 134
UniqConstraintName 148
UniqInTable 164
UniqName 160
.unique macro 281
unique identifiers

%NewUUID% global variable 251
.unset macro 279
upf (user profiles) 1
uppercase 277
.uppercase macro 277
UpperCaseOnly 136
Usage1 138
Usage2 138
Use as metaclass 18, 37, 39
UseAsMetaclass property 329
UseBlockTerm 135
UseErrorMsgTable 181
UseErrorMsgText 181
user interaction

controlling in GTL 278
.set_interactive_mode macro 278

user profiles 1
UserName global constant 312
users

%CurrentUser% global variable 251
SqlPermQuery 177

UserTypeName 173
UseSpFornKey 166
UseSpPrimKey 163

V
ValidationMode global property 312
Values Mapping category 291
variable

foreign key 241
primary key 241

variables
columns 235

.vbscript macro 281
VBScript 79, 95, 309

embedding in GTL 281
example 305
.execute_vbscript macro 270
executing with GTL 270
.vbscript macro 281

Version global constant 312
ViewCheck 169
ViewComment 169

Index

Customizing and Extending PowerDesigner 375

Viewer global constant 312
views

PDM variables 216
SqlListSchema 169
SqlPermQuery 169
SqlXMLView 169
TypeList 169
ViewCheck 169
ViewComment 169
ViewStyle 169

ViewStyle 169

W
.warning macro 269
warnings

in GTL 269
.warning macro 269

Web operations 194
Web parameters 195
Web services 194

PDM variables 231
workspace

accessing by script 322
ActiveWorkspace global property 312, 322
Children collection 322
modifying by script 322
saving by script 322

X
X formatting option (escape XML characters) 248

xdb (DBMS definition files) 1
xem (extension files) 1
xems

See extension files
XML

extensions for importing 96
importing objects from 97

XML file
add-in 335
structure 335

XML imports 96
initialization scripts 100
mapping properties 100
mappings 97
post-processing scripts 100

XML language definition files 1
DataTypes category 112
extensions 117
generation category 112
generation commands 112, 114
generation options 112, 113
generation tasks 112, 114
profile category 117
properties 107
Settings category 112

XML model file format 351
xol (object language definition files) 1
xpl (process language definition files) 1
xrl (report language files) 1
xsl (XML language definition files) 1

Index

376 PowerDesigner

	Customizing and Extending PowerDesigner
	Contents
	CHAPTER 1: PowerDesigner Resource Files
	Opening Resource Files in the Editor
	Navigating and Searching in Resource Files
	Editing Resource Files
	Saving Changes
	Sharing and Embedding Resource Files
	Creating and Copying Resource Files
	Comparing Resource Files
	Merging Resource Files

	CHAPTER 2: Extension Files
	Creating an Extension File
	Attaching Extensions to a Model
	Exporting an Embedded Extension File for Sharing
	Extension File Properties
	Example: Adding a New Attribute from a Property Sheet
	Example: Creating Robustness Diagram Extensions
	Creating New Objects with Stereotypes
	Specifying Custom Symbols for Robustness Objects
	Example: Creating Custom Checks on Instance Links
	Example: Defining Templates to Extract Message Descriptions
	Example: Creating a Generated File for the Message Information
	Example: Testing the Robustness Extensions

	Metaclasses (Profile)
	Extended Objects, Sub-Objects, and Links (Profile)

	Stereotypes (Profile)
	Promoting a Stereotype to Metaclass Status

	Criteria (Profile)
	Extended Attributes (Profile)
	Creating an Extended Attribute Type
	Specifying Icons for Attribute Values
	Linking Objects Through Extended Attributes

	Extended Collections and Compositions (Profile)
	Calculated Collections (Profile)
	Dependency Matrices (Profile)
	Specifying Advanced Dependencies

	Forms (Profile)
	Adding Extended Attributes and Other Controls to Your Form
	Example: Creating a Property Sheet Tab
	Example: Including a Form in a Form
	Example: Opening a Dialog from a Property Sheet

	Custom Symbols (Profile)
	Custom Checks (Profile)
	Example: PDM Custom Check
	Example: PDM Autofix

	Event Handlers (Profile)
	Methods (Profile)
	Menus (Profile)
	Example: Opening a Dialog Box from a Menu

	Templates (Profile)
	Generated Files (Profile)
	Example: JavaGenerated File and Templates
	Generating Your Files in a Standard or Extended Generation

	Transformations (Profile)
	Transformation Profiles (Profile)
	Developing Transformation Scripts

	XML Imports (Profile)
	XML Import Mappings
	Metamodel Mapping Properties
	Metamodel Object Properties

	Object Generations (Profile)
	Model-to-Model Generation Mappings

	Global Script (Profile)

	CHAPTER 3: Object, Process, and XML Language Definition Files
	Settings Category: Process Language
	Settings Category: Object Language
	Settings Category: XML Language
	Generation Category
	Example: Adding a Generation Option
	Example: Adding a Generation Command and Task

	Profile Category (Definition Files)

	CHAPTER 4: DBMS Definition Files
	Triggers Templates, Trigger Template Items, and Procedure Templates
	Database Generation and Reverse Engineering
	Script Generation
	Extending Generation with Before and After Statements

	Script Reverse Engineering
	Live Database Generation
	Live Database Reverse Engineering
	Creating Queries to Retrieve Additional Attributes
	Calling Sub-Queries with the EX Keyword
	Live Database Reverse Engineering Physical Options
	Live Database Reverse Engineering Function-based Index
	Live Database Reverse Engineering Qualifiers

	Generating and Reverse-Engineering PDM Extended Objects
	Adding Scripts Before or After Generation and Reverse Engineering

	General Category (DBMS)
	Script/Sql Category (DBMS)
	Syntax Category
	Format Category
	Date and Time Format

	File Category
	Keywords Category

	Script/Objects Category (DBMS)
	Common Object Items
	Table
	Column
	Working with Null Values

	Index
	Pkey
	Key
	Reference
	View
	Tablespace
	Storage
	Database
	Domain
	Abstract Data Type
	Abstract Data Type Attribute
	User
	Rule
	Procedure
	Trigger
	DBMS Trigger
	Join Index
	Qualifier
	Sequence
	Synonym
	Group
	Role
	DB Package
	DB Package Sub-objects
	Parameter
	Privilege
	Permission
	Default
	Web Service and Web Operation
	Web Parameter
	Result Column
	Dimension
	Extended Object

	Script/Data Type Category (DBMS)
	Profile Category (DBMS)
	Using Extended Attributes During Generation
	Modifying the Estimate Database Size Mechanism
	Calling the GetEstimatedSize Event Handler on Another Metaclass
	Formatting the Database Size Estimation Output

	ODBC Category (DBMS)
	Physical Options (DBMS)
	Simple Physical Options
	Composite Physical Options
	Adding DBMS Physical Options to Your Forms

	PDM Variables and Macros
	Testing Variable Values with the [] Operators
	Formatting Variable Values
	Variables for Tables and Views
	Variables for Columns, Domains, and Constraints
	Variables for Keys
	Variables for Indexes and Index Columns
	Variables for References and Reference Columns
	Variables for Triggers and Procedures
	Variables for Rules
	Variables for Sequences
	Variables for Synonyms
	Variables for Tablespaces and Storages
	Variables for Abstract Data Types
	Variables for Join Indexes (IQ)
	Variables for ASE & SQL Server
	Variables for Database Synchronization
	Variables for DB Packages and Their Child Objects
	Variables for Database Security
	Variables for Defaults
	Variables for Web Services
	Variables for Dimensions
	Variables for Extended Objects
	Variables for Reverse Engineering
	Variables for Database, Triggers, and Procedures Generation
	.AKCOLN, .FKCOLN, and .PKCOLN Macros
	.ALLCOL Macro
	.DEFINE Macro
	.DEFINEIF Macro
	.ERROR Macro
	.FOREACH_CHILD Macro
	.FOREACH_COLUMN Macro
	.FOREACH_PARENT Macro
	.INCOLN Macro
	.JOIN Macro
	.NMFCOL Macro
	.CLIENTEXPRESSION and .SERVEREXPRESSION Macros
	.SQLXML Macro

	CHAPTER 5: Customizing Generation with GTL
	Creating a Template and a Generated File
	Extracting Object Properties
	Accessing Collections of Sub-Objects or Related Objects
	Formatting Your Output
	Controlling Line Breaks in Head and Tail Strings

	Conditional Blocks
	Accessing Global Variables
	GTL Operators
	Translation Scope
	Shortcut Translation
	Escape Sequences
	Calling Templates
	Inheritance and Polymorphism
	Passing Parameters to a Template
	Recursive Templates

	GTL-Specific Metamodel Extensions
	GTL Macro Reference
	.abort_command Macro
	.block Macro
	.bool Macro
	.break Macro
	.change_dir and .create_path Macros
	.comment and .// Macro
	.convert_name and .convert_code Macros
	.delete and .replace Macros
	.error and .warning Macros
	.execute_command Macro
	.execute_vbscript Macro
	.foreach_item Macro
	.foreach_line Macro
	.foreach_part Macro
	.if Macro
	.log Macro
	.lowercase and .uppercase Macros
	.object and .collection Macros
	.set_interactive_mode Macro
	.set_object, .set_value, and .unset Macros
	.unique Macro
	.vbscript Macro

	GTL Syntax and Translation Errors

	CHAPTER 6: Translating Reports with Report Language Files
	Opening a Report Language File
	Creating a Report Language File for a New Language
	Report Language File Properties
	Values Mapping Category
	Example: Creating a Mapping Table, and Attaching It to a Specific Model Object

	Report Titles Category
	Example: Translating the HTML Report Previous Button
	All Report Titles Tab

	Object Attributes Category
	All Classes Tab
	All Attributes and Collections Tab

	Profile/Linguistic Variables Category
	Profile/Report Item Templates Category

	CHAPTER 7: Scripting PowerDesigner
	Running Scripts in PowerDesigner
	VBScript File Samples

	Manipulating Models, Collections, and Objects (Scripting)
	Creating and Opening Models (Scripting)
	Browsing and Modifying Collections (Scripting)
	Accessing and Modifying Objects and Properties (Scripting)
	Creating Objects (Scripting)
	Displaying, Formatting, and Positioning Symbols (Scripting)
	Deleting Objects (Scripting)
	Creating an Object Selection (Scripting)
	Controlling the Workspace (Scripting)

	Creating Shortcuts (Scripting)
	Creating Mappings Between Objects (Scripting)
	Creating and Generating Reports (Scripting)
	Manipulating the Repository (Scripting)
	Generating a Database (Scripting)
	Reverse Engineering a Database (Scripting)
	Creating and Accessing Extensions (Scripting)
	Accessing Metadata (Scripting)
	OLE Automation and Add-Ins
	Creating an ActiveX Add-in
	Creating an XML File Add-in

	Launching Scripts and Add-Ins from Menus
	Adding Commands to the Tools Menu

	CHAPTER 8: The PowerDesigner Public Metamodel
	Navigating in the Metamodel
	Using the Metamodel Objects Help File
	PowerDesigner Model File Format
	Example: Simple OOM XML File

	Index

