SYBASE

Company

Customizing and Extending
PowerDesigner

PowerDesigner® 16.0

Windows

DOCUMENT ID: DC38628-01-1600-01

LAST REVISED: July 2011

Copyright © 2011 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at /#fp.//www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. A ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of the respective companies
with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568

http://www.sybase.com/detail?id=1011207

Contents

CHAPTER 1: Working with PowerDesigner Resource

IS oo 1
Opening Resource Files in the Editorcccccceeiiiiin. 2
Navigating and Searching in Resource Files...................... 4
Editing Resource Files ... 5
SaVvINg ChanNQgEeScoiiiiii e 5
Sharing and Embedding Resource Filesccccccceeeie 5
Creating and Copying Resource Files...........cccccvvvvienneen, 6
Comparing Resource Filesccooiiiiiiiiiiiiii e 6
Merging Resource FileS ..o 7
The PowerDesigner Public Metamodelo 8

Metamodel CONCEPLSuviieeeiiiiieeiiice e 9
Navigating in the Metamodelcccoooevveeiiiiieeeeennnnn. 11
Accessing the Metamodel with VB Script..................... 12
Accessing the Metamodel with GTLcccooevvvviinnenns 13
Model Files and the PowerDesigner Metamodel........... 15
Example: Simple OOM XML Fileccccceeeeees 17
CHAPTER 2: Extension Files..........cccooviiiiiiiineennnn, 21
Creating, Attaching, and Embedding Extension Files.....23
Creating an Extension Filecccccceeiiiiiiiiiii e, 23
Attaching Extensions to a Modelccccooeevviinnens 24
Exporting an Embedded Extension File for Sharing.....25
EXteNSion Propertiesccouvuviieieeveeiiiieeee e 25
Example: Adding a New Attribute from a Property Sheet
... 26
Example: Creating Robustness Diagram Extensions...... 27
Creating a New Extension File in your Model................ 28
Creating New Objects with Stereotypes.............c..u..eee. 29
Customizing and Extending PowerDesigner iii

Contents

Specifying Custom Symbols for Robustness Objects...30
Creating Custom Checks on Instance Links................. 32
Defining Templates to Extract Message Descriptions

.. 38
Creating a Generated File for the Message
INFOrMALION ... 40
Testing the Robustness EXtensionscccccceeeveeeeeeens 41
Extending Generation and Creating Separate
Generation TargetScoovvevieiiiiii e 44
Metaclasses (Profile)euvuveiiiiiiiiiiieeeees e 46
Adding a Metaclass to a Profilecccccoovviiiiiiiiinnnnes 47
Metaclass Propertiescouveeeieeeeeeeeeiiiiiie e, 48
Stereotypes (Profile) ..o, 49
Creating a Stereotypecccvvvvvvvviiiiiie e 49
Stereotype Propertiesccccccceiiimiiiiiiiiiiiiiiiiiieee 50
Promoting a Stereotype to Metaclass Status................ 51
Specifying an Icon and Custom Tool for a Stereotype
.. 52
Criteria (Profile) ... 52
Creating a CriterioNuuiiieeiieiiiie e 53
Criterion Properties ...t 53
Extended Objects, Sub-Objects, and Links (Profile)........ 54
Adding Extended Objects, Sub-Objects, and Links to a
Profile ... 54
Dependency Matrices (Profile)cciiiiiiiiiiiiins 55
Creating a Dependency MatriXcccccvvieeeeeveennnnnnnnn. 55
Specifying Advanced Dependencies................... 57
Dependency Matrix Properties.........ccoeeeevveeviiiieeeeeennnnn. 58
Extended Attributes (Profile)ccoiiiiiiiiiiies 58
Creating an Extended Attributecoovvvicceennn. 59
Extended Attribute Propertiescccccvvvvviiiiieiiiieeeeenn. 59
Creating an Extended Attribute Typecccoeevvvvvinnnnnnn. 63
Specifying Icons for Attribute Valuesccccooeeeennnnnn. 64
Linking Objects Through Extended Attributes 65
Extended Collections and Compositions (Profile)........... 65

PowerDesigner

Contents

Creating Extended Collections and Compositions........ 66
Extended Collection/Composition Properties............... 67
Calculated Collections (Profile)cccccovveiiiiiiiiiiiiicecceennn, 68
Creating a Calculated Collectionccccceevvvvviennnnns 69
Calculated Collection Propertiescccccceeeeeiiiiininnnns 70
FOIrmMS (Profil@)covviiiiiiiiiiiiiiiii s 70
Creating @ FOImM ... 71
FOrm Propertiescuuuueiiiie e 72
Adding Extended Attributes and Other Controls to
YOUI FOIM .. 72
Form Control Propertiesccceeeveeieeeeiiiiiiinnnn, 74
Adding DBMS Physical Options to Your Forms...76
Example: Creating a Property Sheet Tab 77
Example: Including a Formina Form..............cccccovvee. 80
Example: Opening a Dialog from a Property Sheet...... 83
Custom Symbols (Profile) ..., 86
Custom Checks (Profile)cccooveeviiiiiiiii e, 87
Custom Check Propertiesccccevvvieeeeieeveeiiiiice e 87
Defining the Script of a Custom Check......................... 88
Defining the Script of an AUtofiXccceceiiiieininennnn. 89
Using the Global Script ... 91
Running Custom Checks and Troubleshooting Scripts
.. 92
Event Handlers (Profile) ... 93
Adding an Event Handler to a Metaclass or a
SEEIEOLYPE .. e 96
Event Handler Propertiescccccoovvveii, 97
Methods (Profile) ... 97
Creating a Method ... 98
Method Propertiescccoeeeeiveeiiiiii e, 99
Menus (Profile) ... 100
MenU Propertiesuueiieeeiiiiiiiiee e 101
Adding Commands and Other Items to Your Menu....102
Example: Opening a Dialog Box from a Menu............ 102
Templates and Generated Files (Profile)......................... 104

Customizing and Extending PowerDesigner v

Contents

Creating a Template ... 105
Creating a Generated Filecccoevieiiiiiiiinececennnnn, 106
Generated File Examplescccoooiiiiiiiiiiiiiiiiiiiiiiis 107
Transformations and Transformation Profiles (Profile)..110
Transformation Propertiesveiiiiiieeiiieiiiiiin. 111
Creating a Transformation Profile..............ccccccoeevennnnn. 114
Transformation Profile Propertiescccccevvvvvvnnnnnn. 114

CHAPTER 3: Object, Process, and XML Language

Definition Files ..o, 117
Settings Category: Process Languagecccceevvvvvnnnnn. 119
Settings Category: Object Languageccccoevveeeeeeeenennee. 120
Settings Category: XML Languagecccccvvvveeeeeeeennnnnn. 122
Generation CategoOryccuiveiiiuiiieee e 122

Example: Adding a Generation Command and Task . .123
Example 2: Adding a Generation Option..................... 125
Profile Category (Definition Files)cccccceevvieeeiiiiiinnnnns 126
CHAPTER 4: DBMS Definition Files..............cc.ccuu..... 127
Opening your Target DBMS Definition File in the Target
EAITOr ... 127
DBMS Definition File Structureooooevviiieieennnnnn. 128
DBMS Property Pagec.cccevvvviiiiiiiiieeeieeeeeen, 129
Triggers Templates, Trigger Template Items, and
Procedure Templates..........cccccvvveiieeiiinnennns 129
Managing Generation and Reverse Engineering............ 129
Yo g1 o] MO (=T o] Y 130
(O] S O O 11=To 0] 5 AP 131
SCript GENErationcccvvvuiiieeeeeieiiiee e 131
Script Reverse Engineeringccoeeevvveiiiiieecineeennnn. 134
Live Database Generationcccovvvvvvvvninnineeeeeeene, 135
Live Database Reverse Engineering............cccoeeveunnnes 135
QUENY SIIUCIUIE ... 136

Vi PowerDesigner

Contents

Extension Mechanism for Live Database

Reverse Engineering Queries.............ccccee..... 138
Live Database Reverse Engineering Physical
(@]] 10] o 1TSS 140
Live Database Reverse Engineering Function-
based INdeXuuveeeiiiiiiiiiiii, 141
Live Database Reverse Engineering Qualifiers
... 143
Generating and Reverse Engineering Extended
(@] o] 1= o] £ 3SR 144
Creating an Extended Object.............ccccooeie 144
Defining Generation and Reverse Engineering
Scripts for an Extended Object...................... 144
Adding Scripts Before or After Generation and
Reverse ENgiNEEeringccoooecvvivvviiiiiiiiiiiieeeeeeee e 145
General Categoryooovviieeeiieee e 146
Script/Sql Categoryooeiiiiii e 147
SYNaX CategOrY ...ccvuiiiiiieeiie e 147
Format Categorycoooeiiiiiieiiiiiie e 148
Date and Time Formatuuvvveuveneneeninnnnnnns 149
File Categoryoovviiiiiiiiiiiiiiiii 150
Keywords Categorycoeveeeveeereiiiiieeeeeeeeiiiieeeeeeeennnnns 152
Script/Objects Categoryccvvvviiiiiiiiiiie e 154
Commands for All Objectscevvvceiiieiiieeeieeeeeiiis 154
MaxConstLen — Defining a Maximum Constraint
Name Lengthoceeiiiiiiiiiiicii e, 154
EnableOption — Enabling Physical Options........ 154
GenerationOrder — Customizing the Order in
Which Objects Are Generatedccccccee.... 154
Common Object HEMScoovvviieiiiiiiiiieeeeeeeeeeeeeeeeaan, 156
Table .. 160
(@] 11111 o PP PPPPPPPPP 164
Working with Null Values ..., 171
INAEX e 172
PEY et 175

Customizing and Extending PowerDesigner Vi

Contents

KB oo 177
REFEIENCE ...vviiiiiiiii 178
VIBW o 181
TableSPACEcoeeeeeeccie e 183
SEOTAGE ...t 183
Databasecccevviiiiiiiiiiiiiiiiini e 184
DOMAIN e e 185
Abstract Data TYPEuvuvieeiiiiiiiiee e e e e 186
Abstract Data Type Attributecccoovviiiiiiiiiiis 188
U Sl et 189
RUIE . 189
Procedurecoooiiiiii 192
B L[o =] PP PPPPRPPRP 193
D] 2] ST T [=] 196
JOIN INAEX .. 197
QUANFIEE evveeee e 197
SEUUENCE ... 198
SYNONYIM ittt eaaas 199
GIOUP i 199
ROIE e 200
DB PaCKAQEccevvviiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeee e 201
DB Package Sub-objects........cccooeeevviiiiiiiiiii, 202
Parameter ... 203
Privilege .oveeeii e 203
PEeIrmiSSION ..ooevviiiiiie e 204
Defaultoooiiiiii 205
Web Service and Web Operationcccceevvvvnnnnnn. 206
Web Parameterccccccviii 207
Result Column ... 207
DIMENSION oo 208
Extended ODJECTociiiiiii e 209
Script/Data Type Categoryccooovviviiiiiiiiiiiiiiieeeeeeeeeee 209
Profile Category (DBMS)ccooviiiiiiiiiiiciiieceeeeeeei 212
Using Extended Attributes During Generation............ 212

Modifying the Estimate Database Size Mechanism....214

viii

PowerDesigner

Contents

Calling the GetEstimatedSize Event Handler on

Another Metaclassccccvvvviiiiiiiiiiiiiiieeeeee. 217
Formatting the Database Size Estimation

OUIPUL .. 217
Physical OptioNS ..o 218
Physical Option SyntaXccccuuievieeiviiiiiiieeeeeeiiinnnns 220

Defining Physical Options Specified by a Value
... 221
Physical Options Without Names...................... 222

Defining a Default Value for a Physical Option. .222
Defining a List of Values for a Physical Option. .222
Defining a Physical Option for a Tablespace or a

SEOrAGE .. 223
Composite Physical Option Syntax.................... 223
Repeating Options Several Times..................... 225

PDM Variables and MacCrosccccoovveeeiieeeiiiiiiieeeeeeeeeinns 226
Testing Variable Values with the [] Operators............ 227
Formatting Variable Values...............cccccovvvviiieeieinnnnnn.. 229
Common Variables for ObjectScccceeeeiiiiiiiiiinnns 230
Variables for Tables and VIiewscccvvvvvvvinninnnnnn. 231
Variables for Columns, Domains, and Constraints..... 233
Variables for KeYseeiiiiiiiieiiiiie e 235
Variables for Indexes and Index Columns................... 235
Variables for References and Reference Columns.....236
Variables for Triggers and Procedures........................ 238
Variables for RUIESuvviiiiiiiiiiiiiiiieee e 239
Variables for SEqQUENCESoooeveviiiiiiiiii e 239
Variables for Synonymsccccovvviiiiieiieeiieieeeeeeas 240
Variables for Tablespaces and Storages..................... 240
Variables for Abstract Data TypesS.......ccccoeeevvvvvieeeennnn. 240
Variables for Join Indexes (1Q)coovvrrriiiiiiiiiiiineeenn. 242
Variables for ASE & SQL Servercccooeeevvvieeeeinnnnnnn. 243
Variables for Database Synchronization...................... 243
Variables for Database Packages and Their Child

ODJECES .. 244

Customizing and Extending PowerDesigner ix

Contents

Variables for Database Securityccccovvieiiiiiiinnnnn. 246
Variables for Defaultsccccooeviiiiiiiiiiiciee, 247
Variables for Web Servicescccovvvviiiiiiiiiiiiiiieeiins 247
Variables for DIMeNSIoNSccccevvviiiiieeeeeiiiiiieeeeeeans 248
Variables for Extended Objects ..., 249
Variables for Metadataccccooeveeeiiiiiiiiiiiee e, 249
Variables for Reverse Engineering...........cccoooeevvvvnnnnn. 250
Variables for Database, Triggers, and Procedures
€T aToT =1 1o o RPN 250
AKCOLN MACIO ..t 251
N B O @] I 1 - Vo] o I 251
DEFINE MACIOcovviiiiiiiieiiie e 252
DEFINEIF MACIO ...ccuiiiiiiiiiiiii e 253
LERROR MACIO ...ccviiiiiiiiiiiii e 253
JFKCOLN MACIO ..cvuciiiicieieeee et 253
.FOREACH_CHILD MaCIOccvvvviiieeeiiiiiieeeeeiiee e, 254
.FOREACH_COLUMN MaCrOccevvviiiiiiiiiiaieaeaeaee, 255
.FOREACH_PARENT MaCroc.cccuvveiieeiiiiiiiiieeeenans 256
ANCOLN MACIO ..ccviiiieiicieceee e 257
JOIN MACIO .. 257
NMFECOL MACIO ...ccvuiiiiiieiei et 258
LPKCOLN MACIO ... 259
.CLIENTEXPRESSION and .SERVEREXPRESSION
MABCTOS ... e 259
SQLXML MACKO .. 260
CHAPTER 5: Customizing Generation with GTL 263
Creating a Template and a Generated File....................... 264
Accessing Object PropertieSccccvvvevvviviiiiiieeeeeeeeeinins 264
Formatting OQULPULcooeiiiiiiiiii e 265
Using Conditional BIOCKScccoiiiiiiiiiiiii e, 265
Accessing Collections of Sub-objects...............coee. 265
Accessing Global Variablesccccvvviiiiiiiie, 266
GTL Variable Reference........c..ccccoeiviiiiiiiiiiice e 266

PowerDesigner

Contents

ODbject MEMDEISooviiiiiiiiieee e 268
Collection MemMDbEISuvvviiiiiiiiieieeeee e 269
Conditional BIOCKScooveiiiiiiiiiiie et 269
Global Variablesuuuviiiiiiiiiiiiiii 269
Local Variables ... 270
Formatting OptioNSccoooevviiiiiiiiee e 271
GTL OPEIAtOrSuiiieiiiieiiiie e 272
Translation SCOPEccovvvviiiiieeiieicie e 273
Inheritance and Polymorphismcccccviviiiiiiinnnn. 275
Shortcut TransIlation ... 277
EScape SEqUENCEScoovvviiiiiiie e 277
Sharing Templatesccocevvviviiiiii e, 278
Sharing ConditioNSuvuiiiiiiieieeeeeeeeeeeeeiiiine 278
Using Recursive Templates..........ccccoeeevvvvneennns 278
Using New Lines in Head and Tail String 279
Using Parameter Passingccceuveeeeeeeeiiiiiieeeeeennnnn. 282
Error MESSAgESuvviiiiiiiiiii e 284
SYNtaX EIMOrscc.oviiiii e 284
Translation Errorsoooovvvveiiiiiie e 285

GTL Macro ReferencCeuceeiiiiiiieeeeeeeeeiee e 285
.abort_command MacCro............ccceevveeiiiiiiiiiiinie e 287
DIOCK MACTO ... 287
DOOI MACIO ..o 288
break Macro ..., 288
.change_dir Macrooooevviiiiiiiiiiiii e, 288
.COlIECtioN MACIOuuuiiiiiiiiee e, 289
.comment and .// MacCroccoeveeveeiiiiiiieeeeiiiee e 289
.convert_name and .convert_code Macros................. 289
.create_path Macroccccevvviiiiiiiiieeee, 290
delete MACIOoovviiiiiiieei e 291
.error and .warning MacroSceeeiiieneeeeeeeeeeeeeeeeee 291
.execute_command Macroc..oceevvvvvviiiiieeeeeennnnnn 292
.execute_VDbSCript Macrocooevviiviiiiiiiiniee e, 293
foreach_item Macro.........cccccceeeviiiiiiiii e 293
foreach_line MacCro...........ueeiiiiiiiiiiiii e 295

Customizing and Extending PowerDesigner Xi

Contents

foreach_part Macroccccccvvvviiiiiiiiiiiiiiiiiiieeee, 295
AFIMACTO o 297
d0G MACTO ... 298
Jlowercase and .uppercase Macros............ccceeeeeeeenne. 299
LODJECE MACTO .o 299
(=10 F= Tot 1Y = Tod o TSR 300
.set_interactive_mode Macro........cccceeeeeevvviieeceeeiinnnnnn, 301
.set_object and .set_value Macros............cccccceeeeennn.. 301
UNIQUE MAECTO ..t 302
UNSEEMACTO ... 303
VDBSCHPEt MACIO ... 303

CHAPTER 6: Translating Reports with Report

Language Resource Files.........ccoiiiiiiiiiiiiin, 305
Opening a Report Language Resource File.................... 306
Creating a Report Language Resource File for a New

[T [0 [U 1= T [P UPPRRPP 307

Report Language Resource Files Properties.................. 309

Values Mapping Categorycccccevvvvvviieeeeeeeiiiiieeeee, 310

Example: Creating a Mapping Table, and

Attaching It to a Specific Model Object.......... 311

Report Titles Categoryeuvvvviviiiiiiiiiiiiiiaaee e 313
Example: Translating the HTML Report Previous

BUION .o 314

Object Attributes Categorycceeeveeeiveiiiiiiee e, 316

Profile/Linguistic Variables Category 317

Profile/Report Item Templates Category 319

All Classes Tab ... 320

All Attributes and Collections Tabvvvieiiinnnnns 321

All Report Titles Tabcovvvviiiiiiiiiiiiiiiiiiiis 321

CHAPTER 7: Scripting PowerDesigner..................... 323

Accessing PowerDesigner Metamodel Objects.............. 323

ODJECES v 324

Xi PowerDesigner

Contents

PrOPEITIES ...viiiiiiiiiiiieiieeeeee e 324
COlIECHIONS ..o 325
Global Propertiescooooooiiiiie 328
Global FUNCLIONScoooiiieeeeee s 331
Global Constantscooovvviiiiiiieeeeee e 333
[o] = 1 [PP 335
Using the Metamodel Objects Help File 336
Using the Edit/Run Script EitOreviiiiiiiiiiiieee, 337
Creating a VBScript Fileoooovviiiiiiiieeie 339
Modifying a VBScript Fileccoooiieviiiiiieieeeeeee, 340
Saving a VBScript File ... 340
Running a VBScript Filecoooeiiiiiiiieceeee, 341
Using VBScript File Samplesoevveiiiiiiiiiiiiiiieene. 341
Basic SCripting TaSKSuuvuiiiiiiiiiiiiiiiiiiiiiiicceeee e 345
Creating a Model by Script.........oooviiiiiiiiiiieeeeeiiies 345
Opening a Model by Script.......ccccovviiiiiiiieiei e, 346
Creating an Object by SCript...........ccccuveviiiiiiiiiiiiiiiinnes 347
Creating a Symbol by Script........ccccooveiiiiiiiiiieeeeeeieen, 348
Displaying an Object Symbol by Script....................... 348
Positioning a Symbol next to Another by Script.......... 350
Deleting an Object by Script.........covvuiiiiiiiiiiiieeeeeeee 350
Retrieving an Object by Script........ccccooveevviiiiiiieeeennnnn. 351
Creating a Shortcut by Script ... 352
Creating a Link Object by Script...........ccovvviiiiievnnnnnnn. 352
Browsing a Collection by Script..........coovvviiiiiniiieeenen. 353
Manipulating Objects in a Collection by Script............ 353
Extending the Metamodel by Script.............oooeeeeee. 354
Manipulating Extended Properties by Script............... 355
Creating a Graphical Synonym by Script.................... 356
Creating an Object Selection by Script..............c........ 356
Creating an Extension by Script.........cccccoeeiiiiieeiiiinnns 359
Mapping Objects by Script...........cciieeiiiieeeieeeen, 360
Manipulating Databases by Script........cccccccoiviiiiiiiiennnnn. 361
Generating a Database by Script............ccccovvvvviiiinnnnns 361

Customizing and Extending PowerDesigner Xiii

Contents

Generating a Database Via a Live Connection by

.. 364
Reverse Engineering a Database by Script................ 366
Manipulating the Repository By Script........cccccccvvvvinnnnn. 367
Connecting to a Repository Database 367
Accessing a Repository Document.........cccoeeeeeevieennnn, 368
Extracting a Repository Documentcccceeveeeeennnnn. 370
Consolidating a Repository Document....................... 371
Understanding the Conflict Resolution Mode.............. 372
Managing Document Versionsccceeeeeeeeeveevvennnnn. 374
Managing the Repository Browserccccvvvveeneee. 375
Managing Reports by SCrPt.........uuuveiiiiiiiiiiiiiieeieeeeeeeenn 375
Browsing a Model Report by Script..........cccvvviinneeee. 376
Retrieving a Multimodel Report by Script................... 376
Generating an HTML Report by Script.........ccccoeeeeeeee 376
Generating an RTF Report by Script.........cccoeeveveennnn. 376
Accessing Metadata by Script........ccccooeeeiiiiiiiiiiiineeecennnn, 377
Accessing Metadata Objects by Script............cccc.... 378
Retrieving the Metamodel Version by Script............... 378
Retrieving the Available Types of Metaclass Libraries
DY SCIPL .o 378
Accessing the Metaclass of an Object by Script......... 378
Retrieving the Children of a Metaclass by Script......... 379
Managing the Workspace by Script..........ccccoevvvviiiiiinnnnnn. 379
Loading, Saving and Closing a Workspace by Script
.. 379

Manipulating the Content of a Workspace by Script...380
Communicating With PowerDesigner Using OLE
AUTOMATION .ottt 381
Differences Between Scripting and OLE Automation

Xiv

PowerDesigner

Contents

Creating the PowerDesigner Application Object

... 383
Specifying the Object TYpeccoevvvveiiieiiiiiinnnn. 384

Adapting the Object Class ID Syntax to the
LanQUAaQgEvvivieiiiieeieeii e 384
Adding References to Object Type Libraries..... 385
Customizing PowerDesigner Menus Using Add-Ins...... 386
Creating Customized Commands in the Tools Menu ..387
Defining a Customized Command 387
Managing Customized Commands.................... 392
Creating an ActiveX Add-iN ... 394
Creating an XML File Add-in...........ccoovvviviiiiciiieenn. 396
8 T0 = PP PPPPUPPPPPP 401

Customizing and Extending PowerDesigner XV

Contents

XVi PowerDesigner

CHAPTER 1 Working with PowerDesigner
Resource Files

The PowerDesigner® modeling environment is powered by XML-format resource files,
which define the objects available in each model along with the methods for generating and
reverse-engineering them. You can view, copy, and edit the provided resource files and create
your own in order to customize and extend the behavior of the environment.

The following types of resource files are provided:

« Definition file. define the standard objects available in a model:

« DBMS definition files (.xdb) - define a specific DBMS in the PDM (see Chapter 4,
DBMS Definition Files on page 127).

* Process language definition files (.xpl) — define a specific business process language in
the BPM (see Chapter 3, Object, Process, and XML Language Definition Fileson page
117).

» Object language definition files (.xol) - define a specific object-oriented language in
the OOM (see Chapter 3, Object, Process, and XML Language Definition Files on
page 117).

* XML language definition files(.xsl) - define a specific XML language in the XSM (see
Chapter 3, Object, Process, and XML Language Definition Files on page 117).

» Extension files (.xem) — extend the standard definitions of target languages to, for
example, specify a persistence framework or server in an OOM. You can create or attach
one or more XEMs to a model (see Chapter 2, Extension Files on page 21).

e Report templates (.rtp) - specify the structure of a report. Editable within the Report
Template Editor (see Core Features Guide > The PowerDesigner Interface > Reports).

* Report language files (.xrl) — translate the headings and other standard text in a report (see
Chapter 6, Translating Reports with Report Language Resource Files on page 305).

o Impactand lineage analysis rule sets(.rul) - specify the rules defined for generating impact
and lineage analyses (see Core Features Guide > Linking and Synchronizing Models >
Impact and Lineage Analysis).

» Object permission profiles (.ppf) - customize the PowerDesigner interface to hide models,
objects, and properties (see Core Features Guide > Administering PowerDesigner >
Customizing the PowerDesigner Interface).

» User profiles (.upf) - store preferences for model options, general options, display
preferences, etc (see Core Features Guide > The PowerDesigner Interface > Customizing
Your Modeling Environment > User Profiles).

» Model category sets(.mcc) - customize the New Model dialog to guide model creation (see
Core Features Guide > Administering PowerDesigner > Customizing the PowerDesigner
Interface > Customizing the New Model Dialog).

Customizing and Extending PowerDesigner 1

» Conversion tables(.csv) - define conversions between the name and code of an object (see
Core Features Guide > The PowerDesigner Interface > Objects > Object Properties >
Naming Conventions).

These resource files are based upon the PowerDesigner public metamodel (see 7he
PowerDesigner Public Metamodel on page 8).

You can review all the available resource files from the lists of resource files, available by
selecting Tools > Resources > Type.

The following tools are available on each resource file list:

Tool |Description

Properties - Opens the resource file in the Resource Editor.

=41

New - Creates a new resource file using an existing file as a model (see Creating and
Copying Resource Files on page 6).

Save - Saves the selected resource file.

Save All - Saves all the resource files in the list.

Path - Browses to the directory which contains the resource files.

U ==

o3| Compare - Selects two resource files for comparison (see Comparing Resource Files on
page 6).

ﬂ Merge - Selects two resource files for merging (see Merging Resource Files on page
7).

Check In - [if the repository is installed] Checks the selected resource file into the reposi-
tory. For information about storing your resource files in the repository, see Core Features
Guide > Administering PowerDesigner > Deploying Shared Resources.

&

Update from Repository - [if the repository is installed] Checks out a version of the selected
file from the repository to your local machine.

&

e | Compare with Repository - [if the repository is installed] Compares the selected file with a
resource file stored in the repository.

Opening Resource Files in the Editor

When working with a BPM, PDM, OOM, or XSM, you can open the definition file that
controls the objects available in your model in the Resource Editor for viewing and editing.
You can also open and edit any extension files currently attached to or embedded in your
model or access the appropriate list of resource files and open any PowerDesigner resource
file.

To open the definition file currently used by your model:

2 PowerDesigner

CHAPTER 1: Working with PowerDesigner Resource Files

* InaPDM, select Database > Edit Current DBMS.

* InaBPM, select Language > Edit Current Process L anguage.
* Inan OOM, select Language > Edit Current Object L anguage.
* Inan XSM, select Language > Edit Current Language.

To open any extension file currently attached to your model, double-click its entry inside the

Extensions category in the Browser.

To open any other resource file, select Tools > Resources > Type to open the relevant
resource file list, select a file in the list, and then click the Propertiestool.

In each case, the file opens in the Resource Editor, in which you can review and edit the

structure of the resource. The left-hand pane shows a tree view of the entries contained within

the resource file, and the right-hand pane displays the properties of the currently-selected

element:
l DBMS Properties (For All Models) (=]]
General I Trigger Templates | Trigger Template Hemsl Procedure Tamplalesl
Root a- -~ ISYASlQT520..F’erile\CUIumn\ExlendEdAIlribulEs\IndexCude j Q- - ﬁf.f "’a}
_J Sybase 10 15.2 - - -
: Gi |
&) Generation ENEla IGetMethod Scnpll Global Script
-0 General Marne:
H 8 IndexCod
r\ =i [indesCode
. 1) Seftings Label [
Categories =53 Profile S :
__a Shared 5 Code of the first indes defined on the column ﬂ
2-[E Column
v [+ Criteria
=~ -0 Custom Checks
1) Event Handlers
It) Extended Attibutes =l
ems -3 ExtigUnicity -
¥ HasPartition Eelhe I[Strlng] jul!l
___,.._’ ¥ Computed: = Read/write [Get+5et methods) = Read only [Get methad)
RevColPartiion Default value: | = J Template [~
%] YalueNeedduate . :
Properties -1 -2 Forms = List of values: | E Camplste [~
d P s as

Ok I Cancel | Apply | Help

Note: You should never modify the resource files shipped with PowerDesigner. If you want to
modify a file, create a copy using the New tool (see Creating and Copying Resource Fileson

page 6).

Each entry is a part of the definition of a resource file, and entries are organized into logical
categories. For example, the Script category in a DBMS language file collects together all the

entries relating to database generation and reverse engineering.

You can drag and drop categories or entries in the tree view of the resource editor and also

between two resource editors of the same type (for example two XOL editors).

Note: Some resource files are delivered with "Not Certified" in their names. Sybase® will

perform all possible validation checks, however we do not maintain specific environments to
fully certify these resource files. We will support them by accepting bug reports and providing

fixes as per standard policy, with the exception that there will be no final environmental

Customizing and Extending PowerDesigner

validation of the fix. You are invited to assist us by testing fixes and reporting any continuing
inconsistencies.

Navigating and Searching in Resource Files

The tools at the top of the Resource Editor help you to navigate through and search in the
resource file.

Go Back/ Find In/
Tmid Path/Lookup Box Lookup Save Replace
a- - |SYASE1E50:ProfilehT able!Extended Atiibutes\WithE spRiowSize A -l

Tool | Description

Back (Alt+L eft) - Go to the previous visited entry or category. Click the down arrow to
directly select from your history.

Forward (Alt+Right) - Go to the next visited entry or category. Click the down arrow to
directly select from your history.

B EE

Lookup (Enter) - Go to the item named in the text box to the left of the tool. If more than one
item is found, they are listed in a results dialog and you should double-click on the desired
item or select it and click OK to go to it.

Click the down arrow to set lookup options:

» [extensiontype] - select the type of extension to search, for example you can search only
stereotypes

» Allow wildcard - Enables the use of the characters * to match any string and ? to match
any single character. For example, type i S* to retrieve all extensions called
is....

e Match case - Search with case sensitivity.

- Save (Ctrl+Shift+S) — Save the current resource file. Click the down arrow to save the
current resource file under a new name.

o'y Find In Items (Ctrl+Shift+F) - Search for text in entries.
E Replace In Items (Ctrl+Shift+H) - Search for and replace text in entries.

Note: To jump to the definition of atemplate from a reference in a field of other template, place
your cursor between the percent signs and press F12 (see 7emplates and Generated Files
(Profile) on page 104).

4 PowerDesigner

CHAPTER 1: Working with PowerDesigner Resource Files

Go to Super-definition
If an extension overrides another item you can use the Go to super-definition command in the
corresponding object contextual menu to access the overriden item.

Editing Resource Files

When you right-click a category or an entry in the resource file tree view, the following editing
options appear:

Edit option Description

New Adds a user-defined entry or category .

Add items... Opens a selection dialog box to allow you select one or more of the predefined
metamodel categories or entries to add to the present node. You cannot edit the
names of these items but you can change their comments and values by selecting
their node.

Remove Deletes the selected category or entry.

Restore Comment | Restores the default comment for the selected category or entry.

Restore value Restores the default value for the selected entry.

Note: You can rename a category or an entry directly from the resource file tree by selecting it
and pressing the F2 key.

Saving Changes

If you make changes to a resource file and then click OK to close the resource editor without
having clicked the Save tool, the changes are saved in memory, the editor is closed and you
return to the list of resource files. When you click Close in the list of resource files, a
confirmation box is displayed asking you if you really want to save the modified resource file.
If you click Yes, the changes are saved in the resource file itself. If you click No, the changes
are kept in memory until you close the PowerDesigner session.

The next time you open any model that uses the customized resource file, the model will take
modifications into account. However, if you have previously modified the same options
directly in the model, the values in the resource file do not change these options.

Sharing and Embedding Resource Files

Resource files can be shared and referenced by multiple models or copied to and embedded in
a single model. Any modifications that you make to a shared resource are available to all
models using the resource, while modifications to an embedded resource are available only to

Customizing and Extending PowerDesigner 5

the model in which it is embedded. Embedded resource files are saved as part of their model
and not as a separate file.

Note: You should never modify the original extensions shipped with PowerDesigner. To
create a copy of the file to modify, open the List of Extensions, click the New tool, specify a
name for the new file, and then select the .xem that you want to modify in the Copy from
field.

The File Name field displays the location of the resource file you are modifying is defined.
This field is empty if the resource file is embedded.

Creating and Copying Resource Files

You can create a new resource file in the appropriate resource file list. To create a copy of an
existing resource file, select it in the Copy from field of the New... dialog.

Warning! Since each resource file has a unique id, you should only copy resource files within
PowerDesigner, and not in Windows Explorer.

1. Select Tools> Resources> Type to open the appropriate resource file list.

2. Click the New tool, enter a name for the new file and select an existing file to copy. Select
the <Def aul t t enpl at e> item to create a minimally completed resource file.

3. Click OK to create the new resource file, and then specify a filename and click Saveto
open it in the Resource Editor.

Note: You can create an extension file directly in your model from the List of Extensions.
For more information, see Creating an Extension File on page 23.

Comparing Resource Files

You can select two resource files and compare them to highlight the differences between
them.

1. Select Tools> Resources > Type to open the appropriate resource file list.

2. Select the first resource file you want to compare in the list, and then click the Compare
tool to open a selection dialog.

The selected file is displayed in the second comparison field.
3. Select the other resource file to compare in the first comparison field.

If the resource file you want to compare is not in the list, click the Select Path tool and
browse to its directory.

6 PowerDesigner

CHAPTER 1: Working with PowerDesigner Resource Files

Select DBEMS to Compare
DBEMS 1: Subaze AS Enterprige 12.5 @

DEMS 2: |Sybase 45 Enterprize 12.5.1

0K I Cancel | Help |

4. Click OK to open the Compare... dialog, which allows you to review all the differences
between the files.

For detailed information about this window, see Core Features Guide > The
PowerDesigner Interface > Comparing and Merging Models.

5. Review the differences and then click Closeto close the comparison window and return to
the list.

Merging Resource Files

You can select two resource files of the same kind and merge them. Merge is performed from
left to right, the resource file in the right pane is compared to the resource file in the left pane,
differences are highlighted and merge actions are proposed in the right hand resource file.

1. Select Tools> Resources > Type to open the appropriate resource file list.

2. Select the resource file in which you want to make merge changes in the list, and then click
the Merge tool to open a selection dialog.

The selected file is displayed in the To field.
3. Select the resource file from which you want to merge in the From field.

If the resource file you want to merge is not in the list, click the Select Path tool and browse
to its directory.

Select DEMS to Merge

Frarm:

Tar |Sybase A5 Enterprise 12.5.1

QK. I Cancel | Help |

4. Click OK to open the Merge... dialog, which allows you to review all the merge actions
before you complete them.

For detailed information about this window, see Core Features Guide > The
PowerDesigner Interface > Comparing and Merging Models.

Customizing and Extending PowerDesigner 7

5. Selector reject the proposed merge actions as necessary, and then click OK to perform the
merge.

The PowerDesigner Public Metamodel

A metamodel describes the elements of a model, and the syntax and semantics of their
manipulation. Where a model is an abstraction of data, and can be described using metadata,
the metamodel is an abstraction of that metadata.

The PowerDesigner public metamodel is an abstraction of the metadata for all the

PowerDesigner models, which is represented in an object-oriented model. It is intended to

help you understand the overall structure of the PowerDesigner modeling metadata when

working with:

e VB scripts

« Generation Template Language (GTL) templates

» PowerDesigner XML model files (see Model Files and the PowerDesigner Metamodel on
page 15)

The public metamodel OOM is located at:

[Power Desi gner install dir]\Exanpl es\ Met aMbdel . oom

+*1 PowerDesigner - [DOM Metamodel::PdCDM, Objects - C:\Program Files',Syba: - O]
=] File Edit ¥ew Model Symbol Language Report Repostory Tools Window Help _|ﬁ||1|
Jodsuadrg|tmax |20 |r¢lancmcad. »alaes]|as
R —
_.,j ‘Workspace -
-5 Metamodel *

(-5 PdEPM

=2 PCOM
Features
Objects
Symbols
=4 Classes
- abstractRiequiement
#-E Association
- Associationdttibute
- Associationattibuteh
- AssociationLink
- #ssociationLinkSymt
-E Associationt apping
- AssociationSymbol
#-E Basedthibute
- Basedttibutet appin
--i7H BaseCheckMamedCl
E BaseD atas ource
I BaseLinkDbject

.. E Ease!_og?ca!go?cﬁelpt =
4« | L

== = .
3 Local I 4! Hepositoryl iI I _'I—I
Ready Analpsiz 2

For documentation, select Help > M etamodel ObjectsHelp

The metamodel is divided into the following main packages:

8 PowerDesigner

CHAPTER 1: Working with PowerDesigner Resource Files

e PdBPM - Business Process Model

e PdCDM - Conceptual Data Model

e PdCommon - contains all objects shared between two or more models, and the abstract
classes of the model. For example, business rules, which are available in all models, and
the BaseObject class, from which all model objects are derived, are defined in this
package. Other model packages are linked to PdCommaon by generalization links
indicating that each model inherits common objects from the PdCommon package.

e PdEAM - Enterprise Architecture Model

e PdFRM - Free Model

* PdILM - Data Movement Model (the DMM was previously named Information Liquidity
Model or ILM, and the PdILM library name has been retained for backwards
compatibility)

e PdLDM - Logical Data Model

e PdAMTM - Merise Model (available in French only)

e PdOOM - Object Oriented Model

e PdPDM - Physical Data Model

e PdPRJ - Project

* PdRMG - Repository

* PdRQM - Requirements Model

e PdXSM - XML Model

* PdWSP - Workspace

Each of these top-level packages contains the follow kinds of sub-objects, organized by
diagram or, in the case of PdCommon, by sub-packages:

« Features - All the features implemented by classes in the model. For example, Report
(available in all models) belongs to PdCommon, and AbstractDataType belongs to
PdPDM.

e Obijects - Design objects in the model
< Symbols - Graphical representation of design objects

Metamodel Concepts
The PowerDesigner public metamodel uses standard UML concepts:

* Public Names - Each object in the metamodel has a name and a code corresponding to the
public name of the object. The public name is the unique identifier of the object in a model
library or package (for example, PdCommon) visible in the Modules diagram in the
metamodel. Public names are used in the PowerDesigner XML model files (see Mode/
Files and the PowerDesigner Metamodel on page 15) and in the GTL (see the Chapter 5,
Customizing Generation with GTL on page 263).The public name does not always match
the object's name in the PowerDesigner interface.

e Classes - are used to represent metadata in the following ways:

» Abstract classes- are used only to share attributes and behaviors, and are not visible in
the PowerDesigner interface. Instantiable classes inherit from abstract classes via

Customizing and Extending PowerDesigner 9

generalization links. For example, NamedObject is an abstract class, which stores
standard attributes like name, code, comment, annotation, and description, which are
inherited by most PowerDesigner design objects.

» Instantiable/Concrete classes - correspond to objects displayed in the interface. They
have their own attributes, such as type or persistence, and they inherit attributes and
behaviors from abstract classes through generalization links.

Class attributes - are class properties that can be derived or not. Classes linked to other

classes with generalization links usually contain derived attributes that are calculated from

the attributes or collections of the parent class. Neither derived attributes, nor attributes
migrated from navigable associations, are stored in the model file. Non-derived attributes
are proper to the class, and are stored in the model and saved in the model file.

Associations - are used to express the semantic connections between classes called

collections. In the association property sheet, the roles carry information about the end

object of the association. In the PowerDesigner metamodel, this role has the same name as

a collection for the current object. PowerDesigner objects are linked to other objects using

collections.

Associations usually have only one role, which is at the far end of the association from the

class for which it represents a collection. In the following example, Identifier has a

collection called Attributes:

==CUSTOM AP == SSQLERYVABLE ==
BaseObject Identifier : 2
1abstrach Entity I0BJECT
Farent CIOBJECT 0.1 Frimaneldentifier :BOOL
ClassMame : TEXT e FrimaryldentifierStatus : CHARZSS)
ObjectType : TEXT Attributes ldentifiarndicator : CHARZGS)
Falder D IDBJECT
_ﬁlassKind : CLEID

When associations have two roles, both collections cannot be saved in the XML file, and
only the collection with the navigable role will be saved (see Model Files and the
PowerDesigner Metamodel on page 15).

Composition — expresses an association where the children live and die with the parent
and, when the parent is copied, the child is also copied. For example, in package
PdCommon, diagram Option Lists, class NamingConvention is associated with class
BaseModelOptions with 3 composition associations: NameNamingConventions,
CodeNamingConventions, and NamingConventionsTemplate. These composition
associations express the fact that class NamingConvention would not exist without class
BaseModelOptions.

Generalizations - show the /nheritance links existing between a more general, usually
abstract, class and a more specific, usually instantiable, class. The more specific class
inherits from the attributes of the more generic class, these attributes are called derived
attributes.

Comments and notes - explains the role of the object in the metamodel. Some internal
implementation details are also available in the Notes > Annotation page of the classes
property sheets.

10

PowerDesigner

CHAPTER 1: Working with PowerDesigner Resource Files

Navigating in the Metamodel

You can use the Browser to expand and collapse the packages in order to explore their
contents. Double-click a diagram to display it in the canvas.

Each diagram shows classes that relate to each other via associations and generalizations.

Each class has a name (the public name) and is described by zero or more attributes. It may
assume various roles in associations with other classes. Many associations display their roles
which makes it possible to identify object collections (see Metamodel concepts on page 9).

Classes in greenare classes whose behavior is explained in the current diagram, while classes
in purpleare usually shortcuts of a class existing in another package, and are presented only to
help in understanding the context. The shortcut makes it easier to read the diagram and
understand the generalization links between classes. If you want to understand a purple class,
right-click it and select Open Related Diagram from the contextual menu to open the diagram
where the class is actually defined.

In the following example taken from PdCommon/Objects/Common Instantiable Objects,
BusinessRule (in green) is developed, while NamedObject and BaseModel are present only to
express inheritance and composition links with abstract classes.

TELUERVABLE GLOBAL =%
BusinessHule

Type :zhort
ClientExpreszion : TEXT
SenverExprazsion : TEXT

0.1
FPackage

0.
BusineszRules

Double-click any class to show its property sheet. The Dependencies tab contains (among
others) the following sub-tabs:

» Associations - you can customize the filter in order to display association roles, which
provides a list of the collections of the current object

* Generalizations - lists the generalization links where the current object is the parent. You
can use this list to display all the children of the current class. Child classes inherit
attributes from the parent class and do not display derived attributes

« Specializations - Displays the parent of the current object. The current class inherits
attributes from this parent

» Shorteuts - displays the list of shortcuts created for the current object

The Associations tab lists the migrated associations for the class.

Customizing and Extending PowerDesigner 11

Accessing the Metamodel with VB Script

You can access and manipulate PowerDesigner internal objects using VB Script. The
metamodel (and its online help, available by selecting Help > M etamodel Objects Help)
provides useful information about objects:

Information

Description

Public name

The name and code of the metamodel objects are the public names of
PowerDesigner internal objects.

Examples: AssociationLinkSymbol, ClassMapping, CubeDimensionAs-
sociation

Obiject collections

You can identify the collections of a class by observing the associations
linked to it in the diagram. The role of each association is the name of the
collection.

Example: In PdBPM, the Format association connects the classes Messa-
geFormat and MessageFlow. The role of this association is Usedby, which
corresponds to the message flow collection of MessageFormat.

Object attributes

You can view the attributes of a class together with the attributes it inherits
from other classes via generalization links.

Example: In PdCommon/Objects/Common Instantiable Objects, you can
view the attributes of BusinessRule, FileObject, and ExtendedDependen-
cy, and also those that they inherit from abstract classes via generalization
links.

Object operations

Operations in metamodel classes correspond to object methods used in
VBS.

Example: BaseModel contains the operation Compare that is can be used
in VB scripting

<<notScriptable>> ster-
eotype

Obijects that do not support VB scripting have the <<notScriptable>>
stereotype.

Example: RepositoryGroup

For more information about public names and other metamodel concepts, see Metamodel

concepts on page 9.

For detailed information about using VB Script with PowerDesigner, see Chapter 7, Scripting
PowerDesigner on page 323.

12

PowerDesigner

CHAPTER 1: Working with PowerDesigner Resource Files

Accessing the Metamodel with GTL
The Generation Template Language (GTL) uses femplates to generate files. A template is a
piece of code defined on a given PowerDesigner metaclass and the metaclasses that inherit
from this class. It can be used in different contexts for text and code generation.

These templates can be considered as metamodel extensions as they are special kinds of
metamodel class attributes. You can define as many templates as needed for any given
metaclass using the following syntax:

<nmet anodel - cl assnane> / <tenpl at e- nane>

Templates are inherited by all the descendants of the metaclass they are defined for, and so can
be used to share template code between metaclasses with a common ancestor. For example, if
you define a template for the BaseObjects abstract class, all the classes linked via
generalization links to this class inherit from this template.

The GTL uses macros such as foreach_item, for iterating over object collections. The template
specified inside the block is translated over all the objects contained in the specified collection.
The metamodel provides useful information about the collections of the metaclass on which
you define a template containing an iteration macro.

The following calculated attributes are metamodel extensions specific to GTL:

Metaclass Attributes

PdCommon.BaseObject - isSelected (boolean) - True if the object is part of the selection in

the generation dialog
e isShorctut (boolean) - True if the object was accessed by dere-
ferencing a shortcut

PdCommon.BaseModel « GenOptions (struct) - Gives access to user-defined generation

options

PdOOM.* e ActualComment (string) - Cleaned—up comment (with /** /* */

and // removed)

PdOOM. Association « RoleAMinMultiplicity (string)

¢ RoleAMaxMultiplicity (string)
¢ RoleBMinMultiplicity (string)
* RoleBMaxMultiplicity (string)

Customizing and Extending PowerDesigner 13

Metaclass

Attributes

PdOOM . Attribute

* MinMultiplicity (string)

« MaxMultiplicity (string)

e Overridden (boolean)

« DataTypeModifierPrefix (string)

« DataTypeModifierSuffix (string)

e (@<tag> [Java-specific] (string) - Javadoc@<tag> extended at-
tribute with additional formatting

PdOOM.Class

¢ MinCardinality (string)

e MaxCardinality (string)

e SimpleTypeAttribute [XML-specific]

e (@<tag> [Java-specific] (string) - Javadoc@<tag> extended at-
tribute with additional formatting

PdOOM.Interface

e (@<tag> [Java-specific] (string) - Javadoc@<tag> extended at-
tribute with additional formatting

PdOOM.Operation

e Declaringlnterface (object)

« GetSetAttribute (object)

e Overridden (boolean)

e ReturnTypeModifierPrefix (string)
¢ ReturnTypeModifierSuffix (string)

* (@<tag> [Java-specific] (string) - Javadoc@<tag> extended at-
tribute with additional formatting (especially for @throws,
@exception, @params)

PdOOM.Parameter

« DataTypeModifierPrefix (string)
« DataTypeModifierSuffix (string)

The following calculated collections are metamodel extensions specific to the GTL:

Metaclass name

Collection name

PdCommon.BaseModel

Generated <metaclass-name>List - Collection of all objects of
type <metaclass-name> that are part of the selection in the gener-
ation dialog

PdCommon. BaseClassifier-
Mapping

SourceLinks

PdCommon. BaseAssociation-

Mapping

SourceLinks

14

PowerDesigner

CHAPTER 1: Working with PowerDesigner Resource Files

Model Files and the PowerDesigner Metamodel
PowerDesigner models are made up of objects, the properties and interactions of which are
explained in the public metamodel. Models can be saved in either binary or XML file formats.
Binary files are smaller and significantly quicker to open and save, but XML model files can
be edited by hand or programatically (and DTDs are provided for each model type in the DTD
folder in the installation directory).

Warning! You can modify an XML model file using a text or XML editor, but you should take
care, as even a minor syntax error may render the file unusable. If you create an object in an
XML file by copy and paste, make sure that you remove the duplicated OID. PowerDesigner
will automatically assign an OID to the new object when next you open the model.

The following elements are used in PowerDesigner XML files:

e <0: obj ect > - A PowerDesigner model object. The first time the object is mentioned in
a collection, PowerDesigner assigns it an id using the <o: obj ect | d="XYZ" > syntax
(where X'YZis a unique identifier automatically assigned to an object when it is found for
the first time) or references it with the <o: obj ect Ref =" XYZ"/ > syntax. Object
definition is only used in composition collections, where the parent object owns the
children in the association.

e <c:collection>-A collection of objects linked to another object. You can use the
PowerDesigner metamodel to visualize the collections of an object. For example
<c: Chi | dren>.

e <a:attri but e>-Anobjectis made up of anumber of attributes each of which you can
modify independently. For example <a: Cbj ect | D>.

PowerDesigner XML model files have an <o: nodel > element at their root, which contains
collections defined in the PowerDesigner metamodel. The model object and all the other
object elements that it contains define their attributes and collections in sub-elements. The
definition of an object implies the definition of its attributes and its collections.
PowerDesigner checks each object and drills down the collections of this object to define each
new object and collection in these collections, and so on, until the process finds terminal
objects that do not need further analysis.

You can search for an object in the metamodel using its object name in the XML file in order to
better understand its definition. Once you have found an object in the metamodel you can read
the following information:

« Each PowerDesigner object can have several collections corresponding to other objects to
interact with, these collections are represented by the associations existing between
objects. The roles of the associations (aggregations and compositions included)
correspond to the collections of an object. For example, each PowerDesigner model
contains a collection of domains called Domains.

Usually associations have only one role, the role is displayed at the opposite of the class for
which it represents a collection. However, the metamodel also contains associations with

Customizing and Extending PowerDesigner 15

two roles, in such case, both collections cannot be saved in the XML file. You can identify
the collection that will be saved from the association property sheet: the role where the
Navigable check box is selected is saved in the file.

In the following example, association has two roles which means Classifier has a
collection Actors, and Actor2 has a collection ImplementationClasses:

Classifier
{abstract}

+ Stereotype CHAREZSS
+ Wisibility : CHAR) = TEXTM+™)

+ Abstract :BOOL =FALSE

[
Implementation

Actors

==QUERYABLE ==
Actor?

+ Symbaollisplayed : BOOL

If you display the association property sheet, you can see that the Navigable check box is
selected for role ImplementationClass, which means that only collection
ImplementationClass will be saved in file.

PowerDesigner

CHAPTER 1: Working with PowerDesigner Resource Files

F‘nﬁssuciatiun Properties - ImplementationClasses (Implem... M=l E3

Class & Clazz B I

a.F 0.7 a
Actor ActolmplementationClasses Classifier

General Detail |Ma|:||:|ing| Motes I Rules I Dependenciesl Versinnlnfol

— Actar Classifier
IImpIementationCIasses
izibility: Wizibility:
I public: j I public j
Multiplicity: Ordering: Fultiplicity: Ordering:
ID..“ j IUnDrdered j ID.." j IUnnldered j
[T Mavigable ¥ Mavigable

— Agagregation / Composition
Container: 5 FHole s " Role B
Indicator: Logregation) Compostion

<{ Less | - (1] 4 I Cancell Appli | Help |

Attributes with the /OBJECT data type are attributes in the metamodel while they appear

as collections containing a single object in the XML file. This is not true for Parent and
Folder that do not contain any collection.

Example: Simple OOM XML File

The following model contains two classes and one association. We are going to explore the
XML file corresponding to this model.

Customer

+ MName
+ Company :
+ D

o.r Order

+ Orderfumber :
+ Orderfmount

The file starts with several lines stating XML and model related details.

Customizing and Extending PowerDesigner 17

The first object to appear is the root of the model <o0:RootObject 1d="01">. RootObject is a
model container that is defined by default whenever you create and save a model. RootObject
contains a collection called Children that is made up of models.

In our example, Children contains only one model object that is defined as follows:

<o0: Mbdel |d="02">
<a: bj ect | D>3CECA5F3- A77D- 11D5- BB88- 0008C7EA916D</ a: (oj ect | D>
<a: Name>(bj ect Ori ent edModel _1</ a: Nane>
<a: Code>OBJECTORI ENTEDMODEL 1</ a: Code>
<a: Creati onDat €>1000309357</ a: Cr eat i onDat e>
<a: Creator >art hur </ a: Creat or >
<a: Modi fi cati onDat e>1000312265</ a: Modi fi cat i onDat e>
<a: Modi fi er>art hur </ a: Modi fi er>
a: Mbdel Opti onsText >
[l\/bdel Opt i ons]

Below the definition of the model object, you can see the series of ModelOptions attributes.
Note that ModelOptions is not restricted to the options defined in the Model Options dialog
box of a model, it gathers all properties saved in a model such as intermodel generation
options.

After ModelOptions, you can identify collection <c:ObjectLanguage>. This is the object
language linked to the model. The second collection of the model is <c:ClassDiagrams>. This
is the collection of diagrams linked to the model, in our example, there is only one diagram
defined in the following paragraph:

<o: Cl assDi agram | d=" 04" >
<a: Obj ect | D>3CECA5F6- A77D- 11D5- BB88- 0008C7EA916D</ a: Obj ect | D>
<a: Nane>C assDi agr am 1</ a: Nanme>
<a: Code>CLASSDI AGRAM 1</ a: Code>
<a: Creat i onDat e>1000309357</ a: Cr eat i onDat e>
<a: Creat or >art hur </ a: Cr eat or >
<a: Modi fi cati onDat e>1000312265</ a: Modi fi cati onDat e>
<a: Modi fi er>art hur</a: Mdifier>
<a: Di spl ayPr ef erences>

Like for model options, ClassDiagram definition is followed by a series of display preference
attributes.

Within the ClassDiagram collection, a new collection called <c:Symbols> is found. This
collection gathers all the symbols in the model diagram. The first object to be defined in
collection Symbols is AssociationSymbol:

<0: Associ ati onSynbol | d="05">
<a: Center Text Of f set >(1, 1)</a:CenterTextfset>
<a: Sour ceText Of f set >(- 1615, 244)</a: Sour ceText O f set >
<a: Destinati onText Of f set >(974, -2)</a:DestinationTextOfset>
<a: Rect >((-6637, -4350), (7988, 1950)) </ a: Rect >
<a: Li st Of Poi nt s>((-6637, 1950), (7988, - 4350)) </ a: Li st Of Poi nt s>
<a: Arrowst yl e>8</ a: Arrowst yl e>

18

PowerDesigner

CHAPTER 1: Working with PowerDesigner Resource Files

<a: ShadowCol or >13158600</ a: ShadowCol or >
<a: Font Li st >DI SPNAME 0 Arial, 8, N

AssociationSymbol contains collections <c:SourceSymbol> and <c:DestinationSymbol>. In
both collections, symbols are referred to but not defined: this is because ClassSymbol does not
belong to the SourceSymbol or DestinationSymbol collections.

<c: Sour ceSynbol >
<o: Cl assSynbol Ref="06"/>
</ c: Sour ceSynbol >
<c: Desti nati onSynbol >
<0: Cl assSynmbol Ref="07"/>
</ c: Desti nati onSynbol >

The association symbols collection is followed by the<c:Symbols> collection. This collection
contains the definition of both class symbols.

<0: Cl assSynbol [|d="06">
<a: Creati onDat €>1012204025</ a: Cr eat i onDat e>
<a: Modi fi cati onDat €>1012204025</ a: Modi fi cat i onDat e>
<a: Rect >((-18621, 6601), (-11229, 12675)) </ a: Rect >
<a: Fill Col or>16777215</ a: Fi | | Col or >
<a: ShadowCol or >12632256</ a: ShadowCol or >
<a: Font Li st >Cl assStereotype 0 Arial,8, N

Collection <c:Classes> follows collection <c:Symbols>. In this collection, both classes are
defined with their collections of attributes.

<o0:C ass |d="010">
<a: Obj ect | D>10929C96- 8204- 4CEE- 911#- E6GF7190D823C</ a: Obj ect | D>
<a: Name>Or der </ a: Nanme>
<a: Code>Or der </ a: Code>
<a: Creati onDat €>1012204026</ a: Cr eat i onDat e>
<a: Creat or >art hur </ a: Cr eat or >
<a: Modi fi cati onDat €>1012204064</ a: Modi fi cati onDat e>
<a: Modi fi er>art hur</a: Mdifier>
<c:Attributes>
<o: Attribute 1d="014">

Attribute is a terminal object: there is not further ramification required to define this object.

Each collection belonging to an analyzed object is expanded, and analyzed and the same
occurs for collections within collections.
Once all objects and collections are browsed, the following markups appear:

</ 0: Root (bj ect >
</ Model >

Customizing and Extending PowerDesigner 19

20

PowerDesigner

CHAPTER 2 Extension Files

Extensions files (* . xem) provide means for customizing and extending PowerDesigner
metaclasses, parameters and generation. You can use extensions to define additional
properties for existing object types or entirely new kinds of objects, to modify the
PowerDesigner interface (reorganizing and adding property sheet tabs, Toolbox tools and
menu items), and to define additional generation targets and options.

PowerDesigner provides a number of predefined extension files and you can also create your
own. Each extension file contains two first-level categories:

Generation - used to develop or complement the default PowerDesigner object generation
(for BPM, OOM, and XSM models) or for separate generation. For more information, see
Generation Category on page 122.

Profile - a UML extension mechanism, which is used for extending a metamodel for a
particular target. Profiles are used in PowerDesigner for adding additional metadata to
objects and creating new kinds of links between them, sub-dividing object types (via
stereotypes and criteria), customizing symbols, menus, and forms, and modifying
generation output. For example:

The Java 5.0 object language resource file - extends the Component metaclass via
several levels of criteria to model various forms of EJBs.

The BPEL4WS 1.1 process language resource file - extends the Event metaclass
through stereotypes to model Compensation, Fault, and Timer events.

The MSSQLSRV2005 DBMS resource file - uses stereotyped extended objects in
order to model aggregates, assemblies, and other SQL Server-specific objects.

You can extend the metamodel in the following ways:

Add or sub-classify new kinds of objects:

* Metaclasses — drawn from the metamodel as a basis for extension.

« Stereotypes [for metaclasses and stereotypes only] — to sub-classify objects.

 Criteria — to evaluate conditions to sub-classify objects.

< Extended objects, sub-objects, and links — to create new kinds of objects.

Provide new ways of viewing connections between objects:

» Dependency matrices — to show connections between two types of objects.

» Extended collections and compositions — to enable manual linking between
objects.

» Calculated collections — to automate linking between objects.

Add new properties to objects and display them:

« Extended attributes — to provide extra metadata.

» Forms — to display custom property tabs or dialog boxes.

e Custom symbols — to help you visually distinguish objects.

Customizing and Extending PowerDesigner 21

Add constraints and validation rules to objects:

« Custom checks — to provide data testing.

« Event handlers — to invoke methods when triggered by an event.
Execute commands on objects:

< Methods - to be invoked by other profile extensions such as menus and form
buttons (written in VBScript).

« Menus [for metaclasses and stereotypes only] — to customize PowerDesigner
menus.

Generate objects in new ways:

« Templates and generated files — to customize generation.

< Transformations and Transformation profiles — to automate changes to objects at
generation or on demand.

You can review and edit the profile in a resource file by opening it in the Resource Editor and
expanding the top-level Profile category. You can add extensions to a metaclass (a type of
object, such as Class inan OOM or Table in a PDM), or to a stereotype or criterion, which has
previously been defined on a metaclass:

[EstendedModelDefinition

-I2) Generation
SR o
i) Shared
B Class
- =2 Criteria

-l tyCriterion

E,_"| Stereatypes

B[] MyStereatype
E,__'l Criteria
-1l AnatherCriterion
303 Extended Attributes

In the example above:

Class is a metaclass. Metaclasses are drawn from the PowerDesigner metamodel, and
always appear at the top level, directly beneath the Profile category

MyCriterion is a criterion that refines the Class metaclass. Those classes that meet the
criterion can be presented and processed differently from other classes.

MyStereotype is a stereotype that refines the Class metaclass. Those classes that bear the
MyStereotype stereotype can be presented and processed differently from other classes.
AnotherCriterion is a criterion that refines further those classes that bear the MyStereotype
stereotype. Classes bearing the stereotype AND meeting the criterion can be presented and
processed differently from those that merely bear the stereotype.

Extensions are inherited, so that any extensions made to a metaclass are available to its
stereotyped children, and those that are subject to criteria.

22

PowerDesigner

CHAPTER 2: Extension Files

[EstendedModelDefinition
-I2) Generation
=00 (R
“e3) Shared
BB Class
&3 Criteria
E,_"| Stereatypes
B-E= tyStereotype
=) Critsia
: E_M:ll AniotherCriterian
E,_"| Estended Attributes

E,__'l Eutended Attributes

Thus, in the example above, classes that bear the MyStereotype stereotype have available the
Attribute_5 extended attribute, and those that bear this stereotype AND meet
AnotherCriterion have Attribute_4 and Attribute_5 available.

Note: Since you can attach several resource files to a model (for example, a target language
and one or more extension files) you can create conflicts, where multiple extensions with
identical names (for example, two different stereotype definitions) are defined on the same
metaclass in separate resource files. In case of such conflicts, the extension file extension
usually prevails. When two XEMs are in conflict, priority is given to the one highest in the
list.

Creating, Attaching, and Embedding Extension Files

Extensions can be in independent * . xemfiles that are attached to models or can be embedded
in model files. Independent extension files can be referenced by multiple models, and any
changes made to such a file are shared by all models that attach it. Changes made to extensions
embedded in a model file affect only that model.

Creating an Extension File

You can create an extension file from the list of extension files or directly embedded in your
model.

Note: For information about creating an extension file from the list of extension files, see
Creating and Copying Resource Files on page 6.

1. Open your model, and then select Model > Extensionsto open the List of Extensions.
2. Click the Add a Row tool and enter a name for the new extension file.

3. Clickthe Propertiestool to open the new extension file in the Resource Editor, and create
any appropriate extensions.

4. When you have finished, click OK to save your changes and return to the List of
Extensions.

Customizing and Extending PowerDesigner 23

The new XEM is initially embedded in your model, and cannot be shared with any other
model. For information about exporting your extensions and making them available for
sharing, see Exporting an Embedded Extension File for Sharing on page 25.

Attaching Extensions to a Model

You can attach an extension file (.xem) to your model at the creation of the model by clicking
the Select Extensions button on the New Model dialog. You can subsequently attach an
extension file to your model at any time from the List of Extensions.

Note: You should never modify the original extensions shipped with PowerDesigner. To
create a copy of the file to modify, open the List of Extensions, click the New tool, specify a
name for the new file, and then select the .xem that you want to modify in the Copy from

field.
1. Select Model > Extensionsto open the List of Extensions.
2. Click the Import tool to open the Select Extensions dialog.
3. Review the different sorts of extensions available by clicking the sub-tabs and select one or
more to attach to your model.
By default, PowerDesigner creates a link in the model to the specified file. To copy the
contents of the extension file and save it in your model file, click the Embed Resourcein
Model button in the toolbar. Embedding a file in this way enables you to make changes
specific to your model without affecting any other models that reference the shared
resource.
4. Click OK to return to the List of Extensions.
(ol
S 4 L AKX A g S -
Mame Code el
1 D ata Movement |0 Datahovemnentll) efjp—
2 Powerb uilder POWERBLILDER N
= | ASE Frosy Tables ASEProsyT ables R Attached
“_ P4
g
P
Embedded <
£4]e]+]8]2]4] >
QK I Cancel Apply | Help |

Extension files listed in grey are attached to the model, while those in black are embedded
in the model.

24

PowerDesigner

CHAPTER 2: Extension Files

Note: If you import an extension file and embed it in the model, the name and code of the
extension may be modified in order to make it respect the naming conventions of the Other
Obijects category in the Model Options dialog.

Exporting an Embedded Extension File for Sharing

If you export an XEM created in a model, it becomes available in the List of Extensions, and
can be shared with other models. When you export an XEM, the original remains embedded in

the model.

o~ w DN

Select Model > Extensions to open the List of Extensions.
Select an extension in the list.

Click the Export an Extension tool.

Type a name and select a directory for the extension file.
Click Save.

The extension is saved in a library directory where it can be shared with other models.

Extension Properties

All extension filess have the same basic category structure.

The root node of each file contains the following properties:

Property Description

Name Specifies the name of the extension. This name must be unique in a model for
generic or specific XEMs.

Code Specifies the code of the extension. This code must be unique in a model for
generic or specific XEMs.

File Name [read-only] Specifies the path to the extension file. If the XEM has been copied to
your model, this field is empty.

Family Restricts the availability of the XEM to a particular target family. For example,
when an XEM has the family Java, it is available only for use with targets in the
Java object language family.

Subfamily Refines the family. For example, EJB 2.0 is a sub-family of Java.

Auto attach Specifies that the XEM will be automatically attached to new models with a target
belonging to the specified family

Category Groups XEMs by type for generation and in the Select Extensions dialog. Ex-
tensions having the same category cannot be generated simultaneously. If you do
not specify a category, the XEM is displayed in the General Purpose category and
is treated as a generation target.

Customizing and Extending PowerDesigner 25

Property Description

Enable Trace Lets you preview the templates used during generation. Before starting the gen-
Mode eration, click the Preview page of the relevant object, and hit the Refresh tool to
display these templates.

When you double-click on a trace line from the Preview page, the Resource Editor
opens to the corresponding template definition in the Profile\Object\Templates

category.
Complement Specifies that the XEM is used to complement the generation of an target lan-
language genera- | guage. The generation items of the object language are merged with those of the
tion XEM before generation. All generated files specified in the target resource file and

any attached XEMs are generated. If two generated files have identical names, the
file in the XEM overrides the one defined in the target.

Note that PowerBuilder does not support XEMs for complementary generation.

Comment Provides a descriptive comment for the XEM.

The following categories are also available:

Generation - Contains Generation commands, options, and tasks to define and activate a
generation process (see Generation Category on page 122).

Transformation Profile - A transformation profile is a group of transformations used
during model generation when you need to apply changes to objects in the source or target
models. For information about creating transformations and transformation profiles, see
Transformations and Transformation Profiles (Profile) on page 110. For information
about invoking transformations, see Core Features Guide > Linking and Synchronizing
Models > Generating Models and Model Objects > Generating Models > Model
Generation Options Window > Applying Model Transformations

Example: Adding a New Attribute from a Property Sheet

In this example, we will quickly add a new attribute directly from the property sheet of an
object. PowerDesigner will manage the creation of the extension file and creation of all the
necessary extensions.

1

Click on the Property Sheet M enu button at the bottom-left of the property sheet, to the
right of the M ore/L ess button, and select New Attribute.

In the New Attribute dialog, enter Lat ency in the Namefield, select St r i ng for the
data type.

Click the ellipsis button to the right of the List of valuesfield, enter the following list of
predefined values, and then click OK:

* Batch

26

PowerDesigner

CHAPTER 2: Extension Files

* Real-Time
» Scheduled
4. [optional] Select Schedul ed in the Default value field.

5. [optional] Click Next to specify the property sheet page where you want the new attribute
to appear. Here, we'll leave the default, so its inserted on the General tab.

x
Nare: ILatenc_l,J
Camment: ﬂ
D ata type: I [String) ﬂ
Defalt value: IScheduIed j _I
List af walugs: IBatch;HeaI-Time;Scheduled _I Complete [+

" Open Resource Editor on Finish Create Anotker... |
< Back I Heut » I Finish Cancel | Help |

Example: Creating Robustness Diagram Extensions

In this example, we will recreate the Robustness extension file delivered with PowerDesigner
to extend the OOM communication diagram to enable robustness analysis. Robustness
diagrams sit between use case and sequence diagram analysis, and allow you to bridge the gap
between what the system has to do, and how it is actually going to accomplish it.

In order to support the robustness diagram, we will need to define new objects by applying
stereotypes to a metaclass, specify custom tools and symbols for them, as well as defining
custom checks for instance links and producing a file to output a description of messages
exchanged between objects.

Creating the robustness extensions will enable us to verify use cases like the following, which
represents a basic Web transaction:

Customizing and Extending PowerDesigner 27

Custc-mer\

Internet Browser

Seacoessr >

LA [
Application Senver

[Latabase Senrer

A customer wants to know the value of his stocks in order to decide to sell or not, and sends a
stock value query from his Internet Browser, which is transferred from his browser to the
database server via the application server.

Creating a New Extension File in your Model

The first step in defining extensions, is to create an extension file (.xem) to keep them in. To
begin this process, you should create or open an OOM.

1. Select Model > Extensionsto open the list of extensions attached to the model.
2. Clickthe Add aRow tool to create a new extension file, and then click the Propertiestool
to open it in the Resource Editor.

3. Enter Robust ness Anal ysi s Ext ensi ons in the Namefield, and clear the
Complement language gener ation check box, as these extensions do not belong to any
object language family and will not be used to complement any object language

generation.

4. Expand the Profile category, in which we will create the extensions:

Extension Properties {(MyDDM) ”|

General |

=lolx|

- - |H0bustness Analysis Extensions

Q-

L)f] Fiobustness &nalysis Extensions
|3 Generation
-3 Prafile
d5) Shared

Hame: IHobustness Analysiz Extensions j
Lode: |H0bustness Analysis Extensions IT
File name: I
Family: | Auto attach
Subfamiy: |
Categary: I

Generation
’7 " Enable trace mode [~ Complement Janguage generatiors |

Comment:

3

= |

[ox]

Cancel

Apply | Help |

28

PowerDesigner

CHAPTER 2: Extension Files

Creating New Objects with Stereotypes

To implement robustness analysis in PowerDesigner, we need to create three new types of
objects (boundary, entity, and control objects), which we will define in the Profile category by
extending the UMLCbj ect metaclass through stereotypes.

1

Right-click the Profile category and select Add M etaclasses to open the Metaclass
Selection dialog.

Select UMLbj ect on the PAOOM tab and click OK to add this metaclass to the
extension file.

Note: Click the Find in M etamodel Objects Help tool to the right of the Namefield (or
click Ctrl+F1) to obtain information about this metaclass and see where it is situated in the
PowerDesigner metamodel.

Right-click the UMLObj ect category and select New > Ster eotypeto create a stereotype
to extend this metaclass.

Enter Boundar y in the Namefield, and Boundary obj ects are used by
actors when communi cating with the system they can be

wi ndows, screens, dial og boxes or nenus. inthe Comment field.
Select the Useas metaclasscheck box to promote the object type in the interface so that it
has its own object list and Browser category.

Click the Select 1con tool to open the PowerDesigner image library dialog, select the
Sear ch Imagestab, enter boundar y inthe Sear ch for field, and click the Sear ch button.
Select the Boundar y. cur image in the results, and click OK to assign it to represent
boundary objects in the Browser and other interface elements. Click the Toolbox custom

tool check box to create a tool with the same icon for creating the new object in the
Toolbox.

Repeat these steps to create the following stereotypes and icons:

Stereo- Comment Image file

type

Entity Entity objects represent stored data like a database, data- | entity.cur
base tables, or any kind of transient object such as a search
result.

Control Control objects are used to control boundary and entity | control.cur
objects, and represent transfer of information.

Customizing and Extending PowerDesigner 29

Extension Properties (MyOOM)

=lol>|

Gieneral |
- - IF\obustness Analysiz Extensions::ProfiletJMLObject\StereatypesiCantral j '~)§ - lﬂ = njf 52}
L)f] Raobustness Analysis Estensions B |
@ Generation
E‘@ Prafile Marme: IContrDI
A5 Shared
=-E UMLDbject Label: |
=) Stereotypes .
"] Boundary Parent: I <Mone> j @
-ﬁm [~ abstract W Useasmetaclass [Mo spmbal
. J&#] Entity [T |6 ¥ Palette custom ool
Joor: B :
’7 <Cursor click test arear
PBlural label: IContloI Objects
Diefault name: |
Comrment:
Control objects are used to control boundary and entity objects, and represent transfer of
information.
ak I Cancel Apply Help

9. Click Apply to save your changes before continuing.

Specifying Custom Symbols for Robustness Objects

We will specify diagram symbols for each of our new robustness diagram objects by adding
custom symbols to our new stereotypes.

1. Right-click Boundar y stereotype and select New > Custom Symboal to create a custom

symbol under the stereotype.

2. Click the Modify button to open the Symbol Format dialog, and select the Custom Shape

tab.

3. Select the Enable custom shape check box, and select Boundary Object in the Shape

name list.

30

PowerDesigner

CHAPTER 2: Extension Files

Symbol Format x|

Size I Line St_l,llel Fill I Shadowl Font Custom Shape |I:0ntent|

— v &pply custom shape to symbols

¥ Allow users to madify spmbol custom shape

—Iv Enable custom shape

Shape bype: IF'redeflned Symbal I Browse. |

Shape name:

Display name: (% Bottom (& Center & Mone

g; N

 Preview

QK I Cancel Apply | Help |

4. Click OK to complete the definition of the custom symbol and return to the Resource
Editor.

5. Repeat these steps for the other stereotypes:

Stereotype Shape Name

Entity Entity Object

Control Control Object

Customizing and Extending PowerDesigner 31

Extension Properties (MyOOM) ;Iglll

Gieneral |

- - IF\obustnessAnaIysis Estensions::ProfiletJMLObjgct\StereotypesiEntitysCustom Symbol j -)\ - lﬂ - nz:: ’2}

L)f] Raobustness Analysis Estensions

|3 Generation ZLITE
=) Prafile Comment: =
{3 Shared j
=B UMLObject
B3 Stereotypes j

Eﬁﬁ;“gﬂ:{im Symbal Type: Predefined Symbol - MName: Entity Object

1] Cantral — Default size [pixel]
L] Custom Symbol Wwidth |B4 Height: |B4

EI---M_* Entity -
i Custom Symbol - Preview

MHame:

Diefault | Modify... |
ak I Cancel Apply | Help |

6. Click Apply to save your changes before continuing.

Creating Custom Checks on Instance Links

We will now create three custom checks on the instance links that will connect the various
robustness objects. These checks, which are written in VB, do not prevent users from creating
diagrams not supported by the robustness methodology, but define rules that will be verified
by the Check Model function.

For more information on VVBS syntax, see Chapter 7, Scripting PowerDesigner on page
323.

1. Right-click the Profile category, select Add M etaclassesto open the Metaclass Selection
dialog, selectl nst anceLi nk onthe PdAOOM tab and click OK to add it to the extension
file.

2. Right-click the | nst anceLi nk category and select New > Custom Check to create a
check under the metaclass.

3. Enter the following values for the properties on the General tab:

Field Value
Name I ncorrect Actor Coll aboration
Comment This check verifies if actors are |linked to boundary

obj ects. Linking actors to control or entity objects
is not allowed in the robustness anal ysis.

32 PowerDesigner

CHAPTER 2: Extension Files

Field Value

Help message | Thi s check ensures that actors only comunicate with
boundary obj ects.

Output mes- The follow ng instance |links are incorrect:
sage

Default severi- | Er r or
ty
Execute the [selected]

check by de-
fault

4. Select the Check Script tab and enter the following script in the text field:

Functi on %Check% | i nk)
Default return is True
9%Check% = True

The object must be an instance |ink
If link is Nothing then
Exit Function
End if
If not link.I|sKindO (PdOOM cl s_I nstanceLi nk) then
Exit Function
End | f

Retrieve the link extremties
Dim src, dst
Set src = |link. hjectA
Set dst = link.ObjectB

Source i s an Actor
Cal | ConpareCbjectKind() global function defined in d obal
Scri pt pane
I f ConpareObj ectKi nd(src, PdOOM C s_Actor) Then
Check if destination is an UM Object with "Boundary"
St er eot ype
I f not ConpareStereotype(dst, PdOOM O s_UM.Obj ect,
"Boundary") Then
%Check% = Fal se
End I f
El sel f Conpar eObj ect Ki nd(dst, PdOOM Cl s_Actor) Then
Check if source is an UML Obj ect with "Boundary" Stereotype
I f not ConpareStereotype(src, PdOOM C s_UM.bj ect,
"Boundary") Then
% Check% = Fal se
End |f
End |f
End Functi on

5. Select the Global Script tab (where you store functions and static attributes that may be
reused among different functions) and enter the following script in the text field:

Customizing and Extending PowerDesigner 33

Thi s gl obal function check if an object is of given kind
or is a shortcut of an object of given kind
Function Conpar eCbj ect Ki nd(Obj, Ki nd)
Default return is fal se
Conpar ebj ect Ki nd = Fal se

Check obj ect
If Obj is Nothing Then
Exit Function
End |f
Shortcut specific case, ask to it's target object
If Obj.lsShortcut() Then
Conpar eoj ect Ki nd = Conpar eObj ect Ki nd(Obj . Tar get Obj ect,
Ki nd)
Exit Function
End |f
If Obj.IsKindO (Kind) Then
' Correct object kind
Conpar ebj ect Ki nd = True
End |f
End Function

Thi s gl obal function check if an object is of given kind
and conpare it's stereotype val ue
Functi on ConpareStereotype(Cbj, Kind, Value)
' Default return is false
Conpar eSt er eot ype = Fal se

Check obj ect
If Obj is Nothing then
Exit Function
End |f
if (not Qbj.IsShortcut() and not
bj . HasAttribute("Stereotype")) Then
Exit Function
End |f
Shortcut specific case, ask to it's target object
If Obj.lsShortcut() Then
Conpar eSt er eot ype = Conpar eSt er eot ype(Obj . Tar get Obj ect,
Ki nd, Val ue)
Exit Function
End |f
If Obj.IsKindO (Kind) Then
Correct object kind
If Cbj.Stereotype = Value Then
' Correct Stereotype val ue
Compar eSt ereotype = True
End |f
End |f
End Functi on

Thi s gl obal function copy the standard attribute
from source to target
Function Copy (src, trgt)
trgt.name = src. name
trgt.code = src.code

34

PowerDesigner

CHAPTER 2: Extension Files

trgt.coment = src.conment

trgt.description = src.description

trgt.annotation = src.annotation

Dmb, d

for each b in src. AttachedRul es
trgt. AttachedRul es.insert -1,b

next

for each d in src. Rel at edDi agr ans
trgt. Rel atedDi agrans.insert -1,d

next

out put

output trgt.Cl assnane & " " & trgt.nane & " has been created."”

out put

End Functi on

6. Repeat these steps to create a second check by entering the following values:

Field Value

Name I ncorrect Boundary to Boundary Link

Help message Thi s check ensures that an instance |ink is not de-
fined between two boundary objects.

Output message The follow ng |inks between boundary objects are
i ncorrect:

Default severity Error

Execute the check | [selected]
by default

Customizing and Extending PowerDesigner 35

Field

Value

Check Script

Function %Check% | i nk)
Default return is True
%Check% = True

The obj ect nust be an instance |ink
If link is Nothing then
Exit Function
End if
If not |ink.IlsKindOf(PdOOM cl s_I nst ancelLi nk) then
Exit Function
End | f

Retrieve the link extremties
Dim src, dst
Set src = link. QbjectA
Set dst = |ink. QojectB
Error if both extremties are 'Boundary' objects
| f ConpareStereotype(src, PdOOM C s_UML.Obj ect, "Boun-
dary") Then
I f ConpareSt er eot ype(dst, PdOOM O s_UM.bj ect,
"Boundary") Then
%Check% = Fal se
End |f
End |f
End Functi on

7. Repeat these steps to create a third check by entering the following values:

Field

Value

Name

Incorrect Entity Access

Help Message

Thi s check ensures that entity objects are accessed
only fromcontrol objects.

Output Message

The following links are incorrect:

Default Severity Error
Execute the check | [selected]
by default
36 PowerDesigner

CHAPTER 2: Extension Files

Field

Value

Check Script

Function %Check% | i nk)
Default return is True
%Check% = True

The obj ect nust be an instance |ink
If link is Nothing then
Exit Function
End if
If not |ink.IlsKindOf(PdOOM cl s_I nst ancelLi nk) then
Exit Function
End | f

Retrieve the link extremties
Dim src, dst
Set src = link. QbjectA
Set dst = |ink. QojectB
Source is and UML Object with "Entity" stereotype?
Cal | ConpareStereotype() global function defined in
d obal Script pane
| f ConpareStereotype(src, PdOOM C s_UML.Obj ect, "Enti -
ty") Then
' Check if destination is an UML Object with "Con-
trol" Stereotype
I f not ConpareStereotype(dst, PdOOM C s_UM.(bj ect ,
"Control") Then
%Check% = Fal se
End |f
El sel f Conpar eSt er eot ype(dst, PdOOM C s_UM.bj ect,
"Entity") Then
' Check if source is an UML Cbject with "Control "
St er eot ype
I f not ConpareStereotype(src, PdOOM C s_UM.(bj ect ,
"Control") Then
%Check% = Fal se
End |f
End |f
End Function

Customizing and Extending PowerDesigner 37

Extension Properties (MyOOM) ;Iglll

Gieneral |

- - IF\obustnessAnaIysis Estensions:Profilebnstancelink\Custom Checks\lncorect Entity Access j Q- - nsf ’2}

Fiobust Analysiz Extensi . " . .
e General | Check Scipt | Autofis Scrpt | Global 5 cript

{2) Generation
..j Profile iz
-1 7) Shared
- R Instancelink Camment: |
i EMD Custom Checks
; Bg" Incorrect Actar Collabaration LI

B‘ Incaorrect Boundary ta Boundar, Help messags:
[Incarect Entity Access
BB UMLObjsct
EC Stereatypes
[=2| Boundary Clutput message: IThe fallowing links are incarrect:
i) Custom Symbal
5[] Corral Default severity : % Enar Waming
: S Customn Symbol ¥ Execute the check by default
[2] Entity
L Custom Syrbol

K1 | O

Thiz check ensures that entity obiects are accessed only from eontral objects

I Enable automnatic corection
™| Execute the automatic corection by default

ak I Cancel Apply Help

8. Click Apply to save your changes before continuing.

Defining Templates to Extract Message Descriptions

We are going to generate a textual description of the messages in the diagram, giving for each
message, the names of the sender, message, and receiver. To do so, we will need to define
PowerDesigner Generation Template Language (GTL) templates to extract the information
and a generated file to contain and display the extracted information.

To generate this textual description, we will need to extract information from the following
metaclasses:

Message - to extract the message sequence number, name, sender, and receiver
CommunicationDiagram - to gather all the messages from each diagram and sort them

Right-click the Profile category, select Add M etaclassesto open the Metaclass Selection
dialog, select Communi cat i onDi agr amand Message on the PdAOOM tab and click
OK to add them to the extension file.

Right-click the Message category and select New > Templateto create a template under
the metaclass.

Enter descri pti on in the Name field, and then enter the following GTL code in the
text area:

.set _value(_tabs, "", new)
.foreach_part (%equenceNunber% '.")
.set _val ue(_tabs, " % t abs%')

. next

% t abs%®SequenceNunber %9 %Sender . Short Descri pti on% sends nmessage
"OMName% to %Recei ver. ShortDescription%

38

PowerDesigner

CHAPTER 2: Extension Files

The first line of the template initializes the _t abs variable, and the f or each_part
macro calculates an appropriate amount of indentation by looping through each sequence
number, and adding 3 spaces whenever a dot is found. The last line uses this variable to
indent, format, and display information extracted for each message.

For detailed information about the PowerDesigner Generation Template Language
(GTL), see Chapter 5, Customizing Generation with GTL on page 263.

. Right-click the Cormuni cat i onDi agr amcategory and select New > Template to
create a template under the metaclass.

. Enter conpar eCoMsgSynbol s in the Name field, and then enter the following GTL
code in the text area:

.bool (% tenl. Obj ect. SequenceNunmber % >=
% t enR. Obj ect . SequenceNunber %

This template resolves to a boolean value to determine if one message number is greater
than another, and the result will be used in a second template.

. Right-click the Cormuni cat i onDi agr amcategory and select New > Template to
create a second template, enter descri pt i on in the Name field, and then enter the
following GTL code in the text area:

Col | aborati on Scenari o Y%Nane%

\n

.foreach_item Synbol s,,, %bject Type% ==

Col | abor at i onMessageSynbol , %onpar eCoMsgSynbol s%

%bj ect . descri pti on%
. next (\ n)

The first line of this template generate the title of the scenario from the name of the
communication diagram. Then the . f or each_i t emmacro loops on each message
symbol, and calls on the other templates to format and output the message information.

Customizing and Extending PowerDesigner 39

Extension Properties (MyOOM)

Gieneral |

=lol>|

- - IF\obustnessAnaIysis Estensions::Profile\CommunicationDiagram' T emplateshdescription j \)\ L™ R.Ef ’2}

L)f] Raobustness Analysis Estensions
|3 Generation
=) Prfile
23 Shared
E CommunicationDiagram
- Templates

%] description
[—]-- InstanceLink
=2 Custom Checks

-+ Message

B4 Templates
.E] description

=-E UMLObject

Eh,j Stereotypes

[T = P

. .

ﬁ] compareCbkd sg5 ymbals

[Incomect Actor Collabor,
B‘ Incomect Boundary to B
E@" Incarrect Entity Access

s

MHame: |descripti0n

Comment: ﬂ

=

H-FH-dIR| 4 B9 |2 @ Ln5CollD

Communication 3cenario $Namek:

41

.foreach item(dymbols,,, %0bjectType: == CommunicationMessagesy
%0bject. description®

Snextihn)

L

o of

ok I Cancel Apply | Help |

7. Click Apply to save your changes before continuing.

Creating a Generated File for the Message Information

Having created templates to extract information about the messages in the model, we need to
create a generated file to contain and display them on the Preview tab of the diagram property
sheet. We will define the file on the BasePac kage metaclass, which is the common class for
all packages and models, and will have it loop through all the communication diagrams in the
model to evaluate the template descri pt i on defined onthe Conmuni cat i onDi agr am
metaclass.

1

Right-click the Profile category, select Add M etaclassesto open the Metaclass Selection

dialog, click the M odify M etaclass Filter tool, select Show Abstract Mdel i ng
Met acl asses, and click the PdCommon tab.

2. Select BasePackage and click OK to add it to the extension file.

3. Right-click the BasePackage category and select New > Generated Fileto create a file
under the metaclass.

4, Enter the following values for the file properties:

Field Value
Name Communi cati ons Textual Descriptions
File name %Narme% Conmuni cati on Descri ption.txt
Encoding ANSI
40

PowerDesigner

CHAPTER 2: Extension Files

Field Value

Use package
hierarchy as
file path

[unselected]

5. Enter the following code in the text box:

.foreach_iten(Col | aborati onDi agr ans)
%descri pti on%
. next (\'n\ n)

Extension Properties (MyODM}) ;IEILI
Gereral |
- - |H0bustness Analysiz Extensions::Profile\B asePack age’\Generated Files\Communications T extual Descripj \l = - ﬁff ’2}
1] Robustness Analysis E stensions Ay
\,j Generation Rame
E‘\.j Frafile File name: IZNamEZ Cammunication Description. bt Tupe: I.txt j
- 7) Shared
=1-[1 BasePackage Encoding: IANSI [Active Code Page] _I
E|\u3 E_:‘enerated Fl.les) Cammat: "
[;J Communications Textua
[—:I-- CommunicationDiagram
EH) Templates LI
i '.E] caompareChid g5 ymbols .
.ﬂ description ¥ Use package hierarchy as file path
=18y InstanceLink A& -B- 8|4 aR|9¢|2@ Lnc
[=1+2) Custom Checks
"% Incorrect Actar Callaber. .foreach itemiCollaborationDiagrams) d
va Incomect Boundary to B ;::i?:;l\]:jnns
L[Incorrect Entity Access)
£l Message
© =M Templates s
(8 Aeeintion, Ml 4
4 | r

ak. I Cancel | Lpply | Help |

6. Click Apply to save your changes, and then OK to close the resource editor.
7. Click OK to close the List of Extensions.

Testing the Robustness Extensions

To test the extensions we have created, we will create a small robustness diagram to analyze
our use case.

1. Right-click your model node in the Browser, and select New > Communication
Diagram.
In addition to the standard Toolbox, a custom toolbox is provided with tools you have
defined to create boundary, control, and entity objects.

2. Drag the Customer actor from the Actors category in the Browser into the diagram to
create a shortcut. Then create one each of the boundary, control and entity objects, and
name them | nt er net Browser, Applicati on Server,and Dat abase
Ser ver respectively.

Customizing and Extending PowerDesigner 41

3. Use the Instance Link tool in the standard Toolbox to connect the Customer to the
I nternet Browser tothe Application Server,tothe Dat abase

Server.
4. Create the following messages on the M essagestabs of the instance links property sheets:
Direction Message name Sequence
number

Customer - Internet Browser Stock value query 1

Internet Browser - Application Server Ask value to app server 2
Application Server - Database Server Ask value to db 3

Database Server - Application Server Return value from db 4
Application Server - Internet Browser Return value from app server | 5

Internet Browser - Customer Return value 6

% Stock Walue Queny

Custamer

<<Contmolz=
Application Senrer

Return value from h

Feturn walue from app semear

Agivalue to app ser\ter/(

Ashowalue to db

Return value\

<<Boundarz= =<Entityx=

Internet Browser Lrabatase Senrer

5. Select Tools> Check Model to display the Check Model Parameters dialog box, in which
the custom checks we have created appear in the Instance Link category:

42 PowerDesigner

CHAPTER 2: Extension Files

Check Model Parameters 1ol =l

Optiar | Selection I

B - - | B E

Incomect dctor Collaboration
Incormect Boundary to Boundary Link,
Incomect Entity Access

0k I Cancel | Apply | Help |

Click OK to test the validity of the instance links we have created.

6. Right-click the model node in the Browser and select Propertiesto open the model
property sheet. Click the Preview tab to review messages sent for our use case:

S vodelproperties- ooz onoorg) S _loix]
Generall Annotationsl WSDLI Motes I Extended &ttibutes Preview |
S-R-d3A|Xam| 920 |@EE Lo

|Collabm:at,ion dcenario Stock Query Robustness: ;I

1) Actor 'Customer' sends message "Stock Value Query™ to Boundary 'Internet Browser'

2) Boundary 'Internet Browser' sends message "isk walue to app server” to Control 'aAppl
3) Control 'Application Serwver' sends message "isk walue to db™ to Entity 'Dabatase Ser
4] Entity 'Dabatase Zerver' sends message "Return value frowm db™ to Control 'Applicatio
5) Control 'Application Serwver' sends message "Return walue from app serwver” to Boundar
&) Boundary 'Internet Browser' sends message "Return walue™ to Actor 'Customer'

vI
E\Robus{ness Extensions. Communications Textual Descriptions A 1 | | 3
Mare »» | % - QK I Cancel Lpply | Help |

Customizing and Extending PowerDesigner 43

Extending Generation and Creating Separate Generation
Targets

Extensions can be used to extend generation and create new generation targets.

The following table shows how you can customize the standard BPM, OOM, or XSM
generation from the Resource Editor:

Generation dia- | Extension

log

Targets page The Target page is displayed if the Complement language gener ation prop-
erty is selected (see Extension Properties on page 25) and if the extension
contains at least one task or generated file.

Options page Define options in Gener at i on\ Opti ons .

Tasks page Define commands in Gener at i on\ Comrands and reference these
commands in tasks.

If you want to create separate generation targets (available from the Tools > Extended
Generation command), you must respect the following conditions:

* The Complement L anguage Gener ation check box in the extension property sheet must
not be selected

« Theextension contains generated files and templates. During generation, the evaluation of
a template generates text which is written to a file.

This type of generation is called extended generation. 1 you have several extensions designed
for extended generation, these will appear in the Targets page of the extended generation
dialog box.

44 PowerDesigner

CHAPTER 2: Extension Files

Generation H=] 3
Directary: |c:\tem|:| |EI

¥ Check madel

Targets | Selectionl Elptic-nsl Tasksl

tabilink 9.0
Replication Server 12.6

QK I Cancel Apply | Help |

You can create commands in the Tools menu to directly access extended generation for a
selected target. To do so you have to:

« Create amenu (see Menus (Profile)on page 100) under the Model metaclass in the Profile
category of the extension, and select the Tool s menu in the Location list

» Create a method (see Methods (Profile) on page 97) to invoke extended generation as
follows:

Sub %kt hod% obj)
Dimselection ' as bj ect Sel ecti on

' Create a new sel ection
set selection = obj.CreateSel ection

Add object of the active selection in the created sel ection
sel ecti on. AddActi veSel ecti onChj ects

Generate scripts for specific target
Interacti veMode = i m Di al og
obj . CGenerateFiles "", selection, "specific target"
End Sub
Where speci fi c target isthe code of the extended generation target.

» Add the method for extended generation to the menu in order to create a specific command

Customizing and Extending PowerDesigner 45

* Save the extension
The new command is displayed in the Tools menu.
Generation |_ (O] x|

Directany: |e:\temp\ IEI

¥ Check model

Selection | Dptians I

IG ContactDemol le | % v % v E' ET El fo ZE
M arme | Code |
W[Consal Congol
W] (3 Fiemote Femote

4 | L4 |\Databases ,{Replication Proceszes)\Data Connectionz }'

Object(z] zelected: 202
QK. I Cancel | Lpply | Help |

The Targetstab does not display because the underlying method already specifies a
generation target.

Metaclasses (Profile)

Metaclasses are classes drawn from the PowerDesigner metamodel, and appear at the top level
of the Profile category. You add a metaclass to a profile when you want to extend it.

Concrete metaclasses are defined for specific object types that can be created ina model, while
abstract metaclasses are never instantiated but are instead used to define common extensions.
For example BasePackage is an ancestor to both model and package.

For information about viewing and navigating among metaclasses in the metamodel, see 7he
PowerDesigner Public Metamodel on page 8.

If you do not want to extend an existing metaclass, but rather create an entirely new kind of
modeling object, you should use the extended object metaclass (see Extended Objects, Sub-
Objects, and Links (Profile) on page 54).

46 PowerDesigner

CHAPTER 2: Extension Files

Adding a Metaclass to a Profile
You add a metaclass to a profile in order to define extensions for it.

1. Right-click the Profile category and select Add Metaclasses from the contextual menu to
open the Metaclass Selection dialog box:

i Metaclass Selection
g = R SNG E 2
tetaclass | Parent -~
18 action MamedO bject
18 activity B azed chivity —
8 actor BehavioralM amedObject
(18 Association Bazedssociation
WIB attribute Congtrainedt amedObject
WIE Class Clazsifier
WIB Component MamedO bject
18 Componentinstance Instance -
A F % Peoom £PdCommon f

Ohject(z] selectad: 3734
0K I Cancel | Help |

2. Select one or several metaclasses to add to the profile. You can use the sub-tabs to switch
between metaclasses belonging to the present module (for example, the OOM), and
standard metaclasses belonging to the PdCommon module. You can also use the Modify
Metaclass Filter tool to display all metaclasses, or only concrete or abstract conceptual
metaclasses in the list.

3. Click OK to add the selected metaclasses to your profile:

Customizing and Extending PowerDesigner 47

[pBMS Properties (For All Models) o]
General ITrigger Templalesl Trigger Template ltems | Procedure Templatesl
@ - - |Svbase AS Arpwhere 5 FrafilshBusinessFiule - d- T
1 Svbase AS Anpwhere 9 : -
0 Gerersl Marne: |BusmessF|uIe
-1 Script Farent; [MamedObject
-1 Profile
B2 Shared Cade naming convention: |<None> j
-l BusinezzFule X
[]---% Diatabase legal characters: I
G5 Index I Enable selection in file generation
6% Procedure
B Table [Exclude fram maods
120 Criteria .
{58 |=Temporary T able gt
120 Ewvent Handlers ﬂ
1) Extended Attributes
-3 Forms
-} Tablespace
-4 WebOperation
-4 webService
4] [s] =l

Ok I Cancel Apply | Help |

Metaclass Properties

You specify the properties for a metaclass by selecting its entry in the resource editor.

Property Description

Name [read-only] Specifies the name of the metaclass. Click the button to the right of
this field to open the Metamodel Objects Help for the metaclass.

Parent [read-only] Specifies the parent of the metaclass. Click the button to the right of
this field to open the parent metaclass properties. If the parent metaclass is not
present in the profile, a message invites you to add it automatically.

Code naming [concrete metaclasses in target files only] Specifies the default format to initialize

convention the name to code conversion script for instances of the metaclass. The following

formats are available:

e firstLowerWrd - First word in lowercase, then other first letters of
other words in uppercase

* FirstUpperChar - First character of all words in uppercase

* | ower _case - All words in lowercase and separated by an underscore

» UPPER_CASE - All words in uppercase and separated by an underscore

For more information on conversion scripts and naming conventions, see Core
Features Guide > The PowerDesigner Interface > Objects > Object Properties >
Naming Conventions.

48

PowerDesigner

CHAPTER 2: Extension Files

Property

Description

Illegal characters

[concrete metaclasses only] Specifies a list of illegal characters that may not be
used in code generation for the metaclass. The list must be placed between double
quotes, for example:

"f=<st ()
When working with an OOM, this object-specific list overrides any values

specified in the IllegalChar parameter for the object language (see Settings Cat-
egory: Object Language on page 120).

Enable selection
in file generation

Specifies that the corresponding metaclass instances will appear in the Selection
tab of the extended generation dialog box. If a parent metaclass is selected for file
generation, children metaclasses also appear in the Selection tab.

Exclude from
model

[concrete metaclasses only] Prevents the creation of instances of the metaclass in
the model and removes all references to the metaclass from the menus, Toolbox,
property sheets and so on, to simplify the interface. For example, if you do not use
business rules, you can select this check box in the business rule metaclass page
to hide them.

When several resource files are attached to a model, the metaclass is excluded if
at least one file excludes it and the others do not explicitly enable it. For models
that already have instances of this metaclass, the objects will be preserved but it
will not be possible to create new ones.

Comment

Specifies a descriptive comment for the metaclass.

Stereotypes (Profile)

Stereotypes are a per-instance extension mechanism. When a stereotype is applied to a
metaclass instance (by selecting it in the Stereotype field of the object's property sheet), any
extensions that you add to the stereotype are then applied to the instance.

Stereotypes can be promoted to the status of metaclassesto give them greater visibility in the
interface, with a specific list, Browser category and, optionally custom symbol and toolbox
tool. For more information, see Promoting a Stereotype to Metaclass Status on page 51.

You can define more than one stereotype for a given metaclass, but you can only apply asingle
stereotype to each instance. Stereotypes support inheritance: extensions to a parent stereotype
are inherited by its children.

Creating a Stereotype

You can create a stereotype within a metaclass, a criterion, or another stereotype.

1. Right-click a metaclass, criterion, or stereotype, and select New > Stereotype.

A new stereotype is created with a default name.

Customizing and Extending PowerDesigner 49

2. Type a stereotype name in the Name box, and fill in any of the other properties that are

relevant.
'}:) Process Language Properties (For All Models) o [m] 5
General |
a - - Iﬂnal_l,lsis::Profile\F’rocess\Steleotypes\Binar_l,lEoIIaboration ﬂ \-\Q - L‘;_-‘ - ﬁ.:'f ig}
& Analysis
: General
[Generation |
* 12 Settings Mame: IBinar_l,lCoIIaboration
=20 Profile
..... I3 Shared Label: IBinar_l,l Callaboration
----- ¢ Corelation .
% DataT ransfarmation o I Ehions j IEI
- Event [~ sbstact W Use as metaclass [Mo symbal
Operation lsar [~ Palette custom tool
eon [:
<Cursar click test areak
-4 Servicelnterface Plural label: |Binar_l,l Collaborations E
----- |f]u ServiceProvider
..... & Varable Detaulk name: I
Comment:
ﬂ
QK. I Cancel | Apply | Help |

Once you have created the stereotype, you can define extensions like a custom tool, or
custom checks for the stereotype. These extensions will apply to all metaclass instances
that carry the stereotype.

Stereotype Properties

You specify the properties for a stereotype by selecting its entry in the resource editor.

Property | Description

Name Specifies the internal name of the stereotype, which can be used for scripting.

Label Specifies the display name of the stereotype, which will appear in the PowerDesigner
interface.

Parent Specifies a parent stereotype of the stereotype. You can select a stereotype defined in
the same metaclass or in a parent metaclass. Click the Propertiesbutton to go to the
parent stereotype in the tree and display its properties.

Abstract Specifies that the stereotype cannot be applied to metaclass instances. The stereotype
will not appear in the stereotype list in the object property sheet, and can only be used
asa parent of other child stereotypes. If you select this property, the Useasmetaclass
check box is not available.

50

PowerDesigner

CHAPTER 2: Extension Files

Property | Description

Use as meta- | Specifies that the stereotype is a sub-classification for instances of the selected met-
class aclass. The stereotype will have its own list of objects and Browser category, and its
own tab in multi-pane selection boxes such as those used for generation. For more
information, see Promoting a Stereotype to Metaclass Status on page 51.

No Symbol [available when Use as metaclass is selected] Specifies that when instances of the
stereotyped metaclass are created, they will not have diagram symbols. This can be
useful when you want to model sub-objects or other objects that do not need to appear
in the diagram. The Toolbox custom tool option is disabled when this option is
selected.

Icon Specifies an icon for stereotyped instances of the metaclass. Click the tools to the
right of this field in order to browse for .cur or .ico files.

Toolbox cus- | Associates a tool in a toolbox to the current stereotype. This option is available for
tom tool objects supporting symbols, it cannot be used for the stereotype of an attribute for
example. For more information, see Specifying an Icon and Custom Tool for a
Stereotype on page 52.

Plural label [available when Useas metaclassis selected] Specifies the plural form of the display
name that will appear in the PowerDesigner interface.

Default name | [available when Use as metaclass or Toolbox Custom Tool is selected] Specifies a
default name for objects created. A counter will be automatically appended to the
name specified to generate unique names.

A default name can be useful when designing for a target language or application with
strict naming conventions. Note that the default name does not prevail over model
naming conventions, so if a name is not correct it is automatically modified.

Comment Additional information about the stereotype.

Promoting a Stereotype to Metaclass Status

You can promote a stereotype to metaclass status by selecting Use as M etaclass in the
stereotype property page. Stereotypes promoted in this way have their own Browser folders
and entries in the Model menu and New contextual menu.

You can use such stereotypes to:

« Create new kinds of objects that share much of the behavior of an existing object type, such
as business transactions and binary collaborations in a BPM for ebXML.

» Have objects with identical names but different stereotypes in the same namespace (a
metaclass stereotype creates a sub-namespace in the current metaclass).

Note: Stereotypes defined on sub-objects (such as table columns or entity attributes), cannot
be turned into metaclass stereotypes.

1. In the Stereotype property page, select Use as metaclass.

The new metaclass stereotype behaves like a standard PowerDesigner metaclass, and has:

Customizing and Extending PowerDesigner 51

3.

* A separate list in the Model menu - the parent metaclass list will not display objects
with the metaclass stereotype. These objects will be displayed in a separate list, under
the parent metaclass list. Objects created in the new list bear the new metaclass
stereotype by default. If you change the stereotype, the object will be removed from the
list the next time it is opened.

* Its own Browser folder and command under New, when you right-click the model or a
package.

« Property sheet titles based on the metaclass stereotype.

[optional] Specify an icon and tool to create instances of the metaclass stereotype (see
Specifying an Icon and Custom Tool for a Stereotype on page 52).

Click Apply to save the changes.

Specifying an Icon and Custom Tool for a Stereotype

You can specify an icon for a stereotype to allow users to identify instances of the metaclass
bearing the stereotype in the Browser, property sheets, and elsewhere in the interface. You can
also specify a tool to allow user to create instances from the Toolbox.

1

4,

In the Stereotype property page, click the Select | con tool to open the Select Image dialog.
Select an appropriate image to use as an icon in the interface and click OK to associate it
with the stereotype.

Note: Theicon is used to identify objects in the Browser and elsewhere in the interface, but
is not used as a diagram symbol. To specify a custom diagram symbol, see Custom
Symbols (Profile) on page 86.

[optional] To enable a tool to create instances of the metaclass bearing the stereotype from
the Toolbox, select Toolbox custom tool. If you do not select this option, users are only
able to create instances of the metaclass bearing the stereotype from the Model menu or by
right-clicking the model. Custom tools appear in a separate Toolbox group named after the
resource file in which they are defined.

Note: If you have not specified an icon, the tool will use a hammer icon by default.

[optional] Click inside the <Cur sor Cl i ck Test Area> to preview the look of the
tool cursor.

Click Apply to save the changes.

Criteria (Profile)

You can control the treatment of metaclass instances based on whether they conform to one or
more criteria. Whereas you can apply only one stereotype to a metaclass instance, you can test
the instance against multiple forms of criteria.

You define one or several criteria for a selected metaclass. Criteria let you define the same
extensions as stereotypes.

52

PowerDesigner

CHAPTER 2: Extension Files

When a metaclass instance meets the criterion condition, the extensions defined on the
criterion are applied to this instance. In case of sub-criteria, both the criterion and sub-criterion
conditions must be met for the relevant extensions to be applied to the instance.

Creating a Criterion
You can create a criterion in a profile

1. Right-click a metaclass and select New > Criterion in the contextual menu.

A new criterion is created with a default name.

2. Modify the default name in the Name box, and type a condition in Condition box. You can
use any valid expression used by the .if macro (see ./f Macro on page 297).

£ Object Language Properties [For All Models)

General |

= E3

&y = IJava::F'rUfiIe\Interface\Elitelia\EJB Component Interface’\CriteriahEJB lj Q - H - - ﬁ:B

[+-[%&] EJB Remote Interface
[Templates

- EJB Home Interface

B[] Stereotypes

E-] Templates

tdodel

peration

ackage

ararmeter

ealization

=
R=
=
=
=

[B B e B e B

]
P
=
R

-8 Component -] _
E Dependancy MHame: IEJB Local Interface
E Fil=Object LCondition: I (%isLocalInterfaces)
#-B Generalization
2B Intedace Earent; I EJB Component Interface j
EI[:I Criteria Comment;
EI EJE Component Interface
; E|D Criteria ﬂ
: E.B Local Interface

(119 I

Cancel Lpply Help

3. Click Apply to save your changes.

Criterion Properties

You specify the properties for a criterion by selecting its entry in the resource editor.

Property | Description

Name Specifies the name of the criterion.

Customizing and Extending PowerDesigner

53

Property

Description

Condition

Specifies the condition which instances must meet in order to access the criterion
extensions. You can use any expressions valid for the PowerDesigner GTL .if macro
(see Chapter 5, Customizing Generation with GTL on page 263. You can reference
the extended attributes defined at the metaclass level in the condition, but not those
defined in the criterion itself.

For example, in a PDM, you can customize the symbols of fact tables by creating a
criterion that will test the type of the table using the following condition:

(9 nensi onal Type% == "1")

%0 mensi onal Type%is an attribute of the BaseTabl e object, which has a
set of defined values, including " 1", which corresponds to " f act " . For more

information, select Help > M etamodel ObjectsHelp, and navigate to Libraries >
PdPDM > Abstract Classes > BaseTable.

Parent

Specifies a parent criterion of the criterion. You can select a criterion defined in the
same metaclass or in a parent metaclass. Click the Propertiestool to go to the parent
in the tree and view its properties.

Comment

Specifies additional information about the criterion.

Extended Objects, Sub-Objects, and Links (Profile)

Extended objects, sub-objects, and links are special metaclasses that are designed to allow you
to add completely new types of objects to your models, rather than basing them on existing
PowerDesigner objects.

For more information on metaclasses, see Metaclasses (Profile) on page 46. You should use
extended objects, sub-objects, and links as follows:

« Extended objects — can be created anywhere

» Extended sub-objects — can only be created in the property sheet of their parent object
where they are defined via an extended composition (see Extended Collections and
Compositions (Profile) on page 65)

« Extended links — can be defined to link extended objects

Adding Extended Objects, Sub-Objects, and Links to a Profile

Extended objects, sub-objects, and links do not appear, by default, in models other than the
free model unless you add them to an extension or other resource file.

1. Right-click the Profilecategory, select Add M etaclasses, and click the PdCommon sub-
tab in the dialog to display the list of objects common to all models.

2. Select one or more of Ext endedLi nk, Ext endedSubbj ect , and
Ext endedObj ect and click OK to add them to your profile.

54

PowerDesigner

4,

CHAPTER 2: Extension Files

Note: To make the tools for creating extended objects and extended links available in the
Toolbox of models other than the free model, you must add them via the customization
dialog available at Tools > Customize Menus and Tools.

[optional] To create your own object add a stereotypes (see Stereotypes (Profile) on page
49 and define appropriate extensions under the stereotype. To have your object appear in
the PowerDesigner interface as a standard metaclass, with its own tool, Browser category
and model list, select Use as metaclass in the stereotype definition (see Promoting a
Stereotype to Metaclass Status on page 51).

Click Apply to save the changes.

Dependency Matrices (Profile)

Dependency matrices allow you to review and create links between any kind of objects. You
specify one metaclass for the matrix rows, and the same or another metaclass for the columns.
The contents of the cells are then calculated from a collection or link object.

For example, you could create dependency matrices that show links between:

OOM Classes and Classes — connected by Association link objects
PDM Tables and Users — connected by the Owner collection

Ll

T

B &=

m || m

= (oo

=T | = | =X

o | oo | CO

oo o
Customers L4
Diwiziohiz -
Employess -
Groups L
Order Lines L4

PDM Tables and OOM Classes — connected by extended dependencies

Creating a Dependency Matrix

You can create a dependency matrix in a profile.

1. Right-click the Profile category and select Add Dependency Matrix. This adds the

DependencyMatrix metaclass to the profile and creates a stereotype under it, in which you
will define the matrix properties.

Enter a name for the matrix (for example Tabl e Oaner s Mat ri x) along with a label
and plural label for use in the PowerDesigner interface, as well as a default name for the
matrices that users will create based on this definition.

3. Click the Definition tab to specify the rows and columns of your matrix.

Customizing and Extending PowerDesigner 55

4, Select an object type from the current model to populate your matrix rows and an object
type from the current or another model type to populate the columns.

5. Specify how the rows and columns of your matrix will be associated by selecting a

dependency from the list.

Only direct dependencies are available from the list. To specify a more complex
dependency, click the Advanced button to open the Dependency Path Definition dialog
(see Specifying Advanced Dependencies on page 57).

! DBMS Properties {For All Models)

General |TriggerTempIates| Trigger Template Itemsl Procedure Templatesl

a- 8- |SYASIG'IEUD::F'lofile\Dependencyh-iatli:-:'\stereotypes'\Table Owners j L R i

) Sybase 10 15.x -
-0 Generation
I General
-2 Seript
5153 Profile
&3 Shared
=] Column
B

1 DataSource

E|.,j Stereotypes

wof53] LifecycledT abla
i[=2| Table Owners b
H--[2] ExtendedDbject
H-[z] ExtendedSubObject
t- 5 Index
H- 5 Joinindex
q- 7 Key
752 Model
f-€%3 Procedurs

Fre IO e O s IO OO s IO e B

General Definition |

 Object types
Flows:

Caluning:

=

3|

r Matris cells
Dependency:

Object type:

Obiject attribute

I Dvarier

j Advanced... |

: |<Nc-ne>

j Mo walue: I

- =
| | 3|

o]

Cancel | Apply | Help |

6. For certain dependencies, the Object type on which the dependency is based will be
displayed, and you can select an Object attributeto display in the matrix cells along with
the No value symbol, which is displayed if that attribute is not set in any particular

instance.

7. Click OK to save your matrix and close the resource editor.

You can now create instances of the matrix in your model as follows:
« Select View > Diagram > New Diagram > Matrix Name.
* Right-click a diagram background and select Diagram > New Diagram > Matrix

Name.

* Right-click the model in the browser and select New > Matrix Name.

56

PowerDesigner

CHAPTER 2: Extension Files

Note: For information about using dependency matrices, see Core Features Guide > The
PowerDesigner Interface > Diagrams, Matrices, and Symbols > Dependency Matrices.

Specifying Advanced Dependencies

You can examine dependencies between two types of objects that are not directly associated
with each other, using the Dependency Path Definition dialog, which is accessible by clicking
the Advanced button on the Definition tab, and which allows you to specify a path passing

through as many intermediate linking objects as necessary.

Each line in this dialog represents one step in a dependency path:

Property Description

Name Specifies a name for the dependency path. By default, this field is populated with
the origin and destination object types.

Dependency Specifies the dependency for this step in the path. The list is populated with all the
possible dependencies for the previous object type.

Object Type Specifies the specific object type that is linked to the previous object type by the
selected dependency. This field is autopopulated if only one object type is available
through the selected dependency.

In the following example, a path is identified between business functions and roles, by passing
from the business function through the processes it contains, to the role linked to it by a role

association:

M Dependency Path Definition

Mame;

IBusiness Function / Role

Dependency path:
Create as many raws az necessary in the list below to provide & path through the metamaodel

from ‘Buginess Function' to 'Role’

Diependency Object Type -
Frocesses Frocess
Role Aszzociations Role ==
-
=
r
4| | »
Rezet | 0k I Cancel | Help |

Customizing and Extending PowerDesigner

57

Dependency Matrix Properties

You specify the properties for a dependency matrix by selecting its entry in the resource editor.

Dependency matrices are based on stereotypes. For information about the properties on the
General tab, see Stereotype properties on page 50. The following properties are available on
the Dependency Matrix Definition tab:

Property | Description

Rows Specifies the object type with which to populate your matrix rows.

Columns Specifies the object type to populate your matrix columns. Click the Select M eta-
class button to the right of the list to select a metaclass from another model type.

Matrix Cells | Specifies how the rows and columns of your matrix will be associated. You must
specify a Dependency from the list, which includes all the collections and links
available to the object.

For certain dependencies, the Obj ect type on which the dependency is based will be
displayed, and you can select an Object attributeto display in the matrix cells along
with the No value symbol, which is displayed if that attribute is not set in any
particular instance.

Click the Createbutton to the right of the list to create a new extended collection (see
Extended Collections and Compositions (Profile) on page 65) connecting your
objects, or the Advanced button to specify a complex dependency path (see Speci-
fying Advanced Dependencies on page 57).

Extended Attributes (Profile)

Extended attributes allow you to define additional metadata for your objects.
They can be defined for metaclasses, stereotypes, and criteria, in order to:

e Control generation for a given generation target. In this case, extended attributes are
defined in the target language or DBMS of the model. For example, in the Java object
language, several metaclasses have extended attributes used for generating Javadoc
comments.

Further define model objectsin extensions. For example, in the extension for Sybase ASA
Proxy tables, the extended attribute called GenerateAsProxyServer in the DataSource
metaclass is used to define the data source as a proxy server.

Note: By default, extended attributes are listed on a generic Extended Attributes tab in the
object property sheet. You can customize the display of attributes by inserting them into forms
(see Forms (Profile) on page 70). If all the extended attributes are allocated to forms, the
generic page will not be displayed.

58

PowerDesigner

CHAPTER 2: Extension Files

Creating an Extended Attribute
You can create an extended attribute for a metaclass, stereotype, or criterion.

1. Right-click a metaclass, stereotype, or criterion in the Profile category and select New >
Extended Attribute.

2. Specify the appropriate properties.

l: DBMS Properties {For All Models) ;Iglll

General | Trigger Templatesl Trigger Template Itemsl Procedure Templates

- - |SYASE1502:FrofieT ablehE tended Attributes\withl dentityGiap [I ™ R
'"i'f\ PhysicalD omain ;I General |
@ Procedure
% Slorage Name: [t drtityGap
5 able
--\,j Criteria Label: |
-2 Custom Checks) = —
i Estended Attibutes Camment: Specifies the identity gap for the table ﬂ
9 At
27 ExternalT able
=9 Lock
= On
{3 Partition hd|
2 WithExpRowSize - -
ERE it cenility ap Dt s | Physical Opion i3 5T
() wihMasRowsPe ¥ Computed: 1% | Read/w/iite (Get+Set methods) = Biead oy [Get method]
= withReservepag
-5 Fams Default value: I j _I Template
H M . E
E “E ufluin hd List of valugs: I IEI Camplete I
4 I I 3

oK I Cancel | Lpply | Help

3. Click Apply to save your changes.

Extended Attribute Properties
You specify the properties for an extended attribute by selecting its entry in the resource

editor.
Property Description
Name Specifies the internal name of the attribute, which can be used for scripting.
Label Specifies the display name of the attribute, which will appear in the PowerDesigner
interface.
Comment Provides additional information about the extended attribute.

Customizing and Extending PowerDesigner 59

Property

Description

Data type Specifies the form of the data to be held by the extended attribute. You can choose
from:
* Boolean
* Color
» Date or Time
» File or Path
» Integer, Float, or Hex
» Font, Font Name, Font Size, or Font Style
* Object - Specify the Object type, Object stereotype (if appropriate), and I n-
ver se collection namein the properties below. For more information, see Link-
ing Objects Through Extended Attributes on page 65.
» String (single line) or Text (multi-line)
To create your own data type, click the Create Extended Attribute Typetool to the
right of the field (see Creating an Extended Attribute Type on page 63).
Computed Specifies that the extended attribute is calculated from other values using VBScript

on the Get Method Script, Set Method Script, and Global Script tabs. When you
select this checkbox, you must choose between:

» Read/Write (Get+Set methods)
* Read only (Get method)

In the following example script, the Fi | e G oup computed extended attribute
gets its value from and sets the value of the f i | egr oup physical option of the
object:

Function %Get % obj)

%Get % = obj . Get Physi cal Opti onVal ue("on/ <fil egroup>")
End Functi on

Sub %Set %{ obj , val ue)
obj . Set Physi cal Opti onVal ue "on/ <fil egroup>", val ue
End Sub

Default value

[if not conmput ed] Specifies a default value for the attribute. You can specify the
value in any of the following ways:

» Enter the value directly in the list.

* [predefined data types] Click the Ellipsis button to open a dialog listing possible
values. For example, if the data type is set to Color, the Ellipsis button opens a
palette window.

» [user-defined data types] Select a value from the list.

60

PowerDesigner

CHAPTER 2: Extension Files

Property

Description

Template

[if not conput ed] Specifies that the value of the attribute is to be evaluated as a
GTL template at generation time. For example, if the value of the attribute is set to
%Code% it will be generated as the value of the code attribute of the relevant
object.

By default (when this checkbox is not selected), the attribute is evaluated literally,
and a value of ¥€Code%will be generated as the string %6Code %

List of values

Specifies a list of possible values for the attribute in one of the following ways:

» Enter a static list of semi-colon-delimited values directly in the field.

» Usethetoolsto the right of the list to create or select a GTL template to generate
the list dynamically.
If the attribute type is Cbj ect , and you do not want to filter the list of available
objects in any way, you can leave this field blank.
To perform a simple filter of the list of objects, usethe . col | ect i on macro
(see .collection Macroon page 289). In the following example, only tables with
the Gener at ed attribute set to true will be available for selection:

.col | ection(Model . Tabl es, %ener at ed¥%=true)

For more complex filtering, use the f or each_i t emmacro (see .fore-
ach_item Macro on page 293):
.foreach_item (Model . Tabl es)

.i f %enerat ed%

./l (or nmore conplex criteria)

%j ect | D%

.endif

.next (\n)

If the attribute is based on an extended attribute type (see Creating an Extended
Attribute Type on page 63), this field is unavailable since the values of the ex-
tended attribute type will be used.

Complete

Specifies that all possible values for the attribute are defined in the List of values,
and that the user may not enter any other value.

Customizing and Extending PowerDesigner 61

Property

Description

Edit method

[if not Conpl et e] Specifies a method to override the default action associated
with the tool to the right of the field.

This method is often used to apply a filter defined in the List of valuesfield in the
object picker. Inthe following example, only tables with the Gener at ed attribute
set to true will be available for selection:

Sub %kt hod% obj)

Di m Ml
Set Ml

obj . Model

Di m Sel
Set Sel = Mil. CreateSel ection

If not (Sel is nothing) Then
Dimtable
For Each table in Ml . Tabl es
if table.generated then
Sel . Cbj ects. Add tabl e
end if
Next

Di spl ay the object picker on the selection
D m sel Obj
set sel Gbj = Sel . Showbj ect Pi cker
If Not (sel Qbj is Nothing) Then
obj . Set Ext endedAttri bute " Storage- For-Each",
sel oj
End If

Sel . Del et e
End If

End Sub

Text format

[for Text data types only] Specifies the language contained within the text attrib-
ute. If you select any value other than plain Text , then an editor toolbar and (where
appropriate) syntax coloring are provided in the associated form fields.

Object type

[for Obj ect data types only] Specifies the type of the object that the attribute
contains (for example, User, Table, Class).

Object stereo-
type

[for Obj ect datatypesonly] Specifies the stereotype that objects of this type must
bear to be selectable.

62

PowerDesigner

CHAPTER 2: Extension Files

Property Description

Inverse collec- | [for Obj ect datatypes only, if not conput ed] Specifies the name under which
tion name the links to the object will be listed on the Dependencies tab of the target object.

An extended collection with the same name as the extended attribute, which handles
these links, is automatically created for all non-computed extended attributes of the
Object type, and is deleted when you delete the extended attribute, change its type, or
select the Computed checkbox.

Physical op- [for [Physical Option] data types only] Specifies the physical option with which the
tion attribute is associated. Click the ellipsis to the right of this field to select a physical
option. For more information, see Adding DBMS Physical Options to Your Forms
on page 76.

Creating an Extended Attribute Type

You can create extended attribute types to define the data type and authorized values of
extended attributes. Creating extended attribute types allows you to reuse the same list of
values for several extended attributes without having to write code.

1. Right-click the Pr of i | e\ Shar ed category and select New > Extended Attribute
Type.
2. Enter the appropriate properties, including a list of values and a default value.

] Extended Model Definition Properties [For All Models)

General |

a3 - - I\-\-"ebLogic::Profile\Shaled\ExtendedAttribute Typeshweblogic-boolean j A ov ol Pfff 12}

] BEAWeblagic 7.0
..j Generation
E‘u:l Prafils Comment: |Boolean data type for 'WebLogic., ﬂ
=) Shared

-3 Extended Attribute Types
SSEAE veblogic-boolean
- {#] weblogic-cache-type ﬂ
{3 weblogic-concurrency-strategy

-

Name: weblogic-boolean

List of walues:

{3 weblogic-dbms-calumn-type | x | . | - | + @

-3 weblogic-delay-database-insert-u
-3 weblogic-generator-type [Tme
— | |CIFake

-3 weblogic-replication-type
{2 weblogic-type-identifier
[H-1) Templates

[T Association

[]---?@ Agzociationkd apping
A Abibba = ‘I I ’I
| [»
QK I Catcel Apply | Help |

<]

3. Click Apply to save your changes.

Customizing and Extending PowerDesigner 63

The new shared type is available to any extended attribute in the Data Typefield. You can
also define a list of values for a given extended attribute directly in this field (see Extended
Altribute Properties on page 59).

Specifying Icons for Attribute Values

You can specify icons to display on object symbols in place of extended attribute values by
creating an attribute icon set with individual attribute value icons for each possible value.

1.

Create an extended attribute and select a standard data type or an extended attribute type
(see Creating an Extended Attribute Type on page 63).

If appropriate, specify a list of possible values and a default value.
Click the Create tool to the right of the I con set list to create a new icon set

A new icon set is created at Profile > Shared > Attribute | con Sets initialized with the

possible values and an empty icon which matches any value for which another icon has not
been defined (=*).

For each value in the list, double-click it, and click the | con tool to select an icon to
represent this value on object symbols:

| Extension Properties (Project Management (CDM]) = @
General
a- EXTENDEDDEFINITION_1::Profie\Shared\Attribute Icon Sets'\CompletionlconSet O = [= % 2% 43
i_)ﬂ Completion) =
a Generation Hame: CompletionlconSet
th Profile Comment: o~
El\,j Shared
. B+ Atrbuteleon Sets |
L. #% CompletionlconS
\._j Extended Attribute Ty -
3 {3 Completion List of walues:
(= Entity E = o
50 Extended Atrbutes | 28 X &+
i ¥ Completion = Not Started
Forms = In Progress
...... j General == - Complete
P — D — \
[ok][Cancel][2oph Help

Note: By default, the Filter operator field is set to =, and each icon matches exactly one
possible value. To have a single icon match multiple values, use the Bet ween or another
operator together with a suitable Filter value. For example, in an icon set paired with a
pr ogr ess attribute for which the user can enter any value between 0 and 100% progress,
you could use three icons:

* NotStarted-= 0

64

PowerDesigner

CHAPTER 2: Extension Files

¢ InProgress - Bet ween 1, 99
e Completed -= 100

5. If appropriate, add the attribute to a form (see Forms (Profile) on page 70), to enable
users to modify its value.

6. Click OK to save your changes and return to the model.

7. To enable the display of the icon on your object symbol, select Tools > Display
Preferences, select your object type, and click the Advanced button to add your attribute
to the symbol. For detailed information about working with display preferences, see Core
Features Guide > The PowerDesigner Interface > Diagrams, Matrices, and Symbols >
Display Preferences.

Your attribute is now displayed on object symbols. In the following example, the
Enpl oyee and Teamentities are | n Pr ogr ess, while the Cust oner entity is

Conpl et ed:
Customer [

Employee Customer number =pi= D =h=
Employes number <pi= D =h= Customer name NAME =M=
First name NAME Customer address SHORT_TEXT <M=
Last name NAME <M= Customer activity SHORT_TEXT
Employee functicn NAME Customer telephone PHONE
Employes salary MOMNEY Customer fax PHONE
Idtf_2 <pi= Idtf 2 <pi=

Linking Objects Through Extended Attributes

When you specify the [Object] data type, you enable the display of the Object type, Object
stereotype, and Inverse collection name fields.

The Obiject type field specifies the kind of object you want to link to, and the stereotype field
allows you to filter the objects that are available for selection.

For example, under the Table metaclass, | create an extended attribute called Owner, select
[Object] in the Data type field, and User in the Object type field. | name the inverse collection
"Tables owned". | can set the Owner attribute in the property sheet of a table, and the table will
be listed on the Dependencies tab of the user property sheet, under the name of "Tables
owned".

Extended Collections and Compositions (Profile)

An extended collection allows you to associate multiple instances of one metaclass with an
instance of another.

For example, to attach documents containing use case specifications to the different packages
of a model you can create an extended collection in the Package metaclass and define
FileObject as the target metaclass. You could create an extended collection on the OOM

Customizing and Extending PowerDesigner 65

process metaclass to show the components used as resources to the process, in order to have a
more accurate vision of the physical implementation of the process.

The association between the parent and child objects is relatively weak, so that:

« If you copy and paste an object with extended collections, the related objects are not
copied.

« If you move an object with extended collections, the link with the related objects is
preserved (using shortcuts if required).

An extended composition allows you to associate multiple instances of the extended sub-
object metaclass with a metaclass. The association is stronger than that created by an extended
collection — sub-objects can only be created within the parent object and are moved, copied,
and/or deleted along with their parent.

When you create an extended collection or extended composition in a metaclass, a new tab
with the name of the collection or composition is added to the metaclass property sheet.

Note: If you create an extended collection or composition on a stereotype or criterion, the
corresponding tab is displayed only if the metaclass instance bears the stereotype or meets the
criterion.

For extended collections, the property sheets of the objects contained within the collection list
the parent object on their Dependencies tab.

Creating Extended Collections and Compositions
You can create an extended collection for a metaclass, stereotype, or criterion.

1. Right-click a metaclass, stereotype, or criterion and select New > Extended Collection or
Extended Composition.

2. Enterascripting Nameand display L abel to use as the name of the tab associated with the
collection in the parent object property sheet.

3. [optional] Enter a Comment and an | nver se Name.

4. Select a metaclass in the Target Type list to specify the kind of object that will be
contained in the collection.

5. [optional] Select or enter a Target Stereotypeto further refine the instances of the target
metaclass that may appear in the collection. Click the Createtool to the right of this field to
create a new stereotype.

6. [optional] Click the Customize Default Columnstool to modify the columns that will
appear by default when the user opens the property sheet tab associated with the collection.

66 PowerDesigner

CHAPTER 2: Extension Files

] Extended Model Definition Properties (Business Process_1)

General I
Q- - IM_',JEHtEnSiDhSZZF'I'Df"e'\PI'DCESS\EHtEthd Collections'T ableR esources j (SR “35 13}
[MyEntensions .
.,j Generation Harne: |TabIeF|esources
E-0D Prafle Label: |Tables
12 Shared
=0 Process Carment; List of tables used as resources for the process ﬂ
E|..:| Extended Collections

Inyerse Mame: IF'rDcesses Using Table
TagetTvpe: |PdPDM:Table =1 [l
Target Sterectype: I ﬂ Iil
List Colurmms: I ame - |¥|
Code
Murnber of Reconds
Drirnzri K an LI

4 |

Ok I Cancel | Apply | Help |

7. Click Apply to save your changes.

You can view the tab associated with the collection by opening the property sheet of a
metaclass instance. The tab contains an Add Objects(and, if the metaclass belongs to the
same type of model, Create an Object) tool, to populate the collection.

Extended Collection/Composition Properties

You specify the properties for an extended collection or composition by selecting its entry in
the resource editor.

Property | Description

Name Specifies the name of the extended collection.

Label Specifies the display name of the collection, which will appear in the PowerDesigner
interface.

Comment Describes the extended collection.

Inverse Name | [extended collection only] Specifies the name to appear in the Dependenciestab of
the target metaclass. If you do not enter a value, an inverse name is automatically
generated.

Customizing and Extending PowerDesigner 67

Property |Description

Target Type | Specifies the metaclass whose instances will appear in the collection.

For extended collections, the list displays only metaclasses that can be directly in-
stantiated in the current model or package, such as classes or tables, and not sub-
objects such as class attributes or table columns. Click the Select a M etaclasstool to
the right of this field to choose a metaclass from another type of model.

For extended compositions, only the ExtendedSubObject is available, and you must
specify a stereotype for it.

Target Stereo- | [required for extended compositions] Specifies a stereotype to filter the target type.
type You can select an existing stereotype from the list or enter a new one.

List Columns | Specifies the property columns that will be displayed by default in the parent object
property sheet tab associated with the collection. Click the Customize Default Col-
umns tool to the right of this field to add or remove columns.

When you open a model containing extended collections or compositions and associate it with
a resource file that does not support them, the collections are still visible in the different
property sheets in order to let you delete objects in the collections no longer supported.

Calculated Collections (Profile)

You define a calculated collection on a metaclass, stereotype, or criterion, when you need to
display a list of associated objects with a user-defined semantic.

Calculated collections (unlike extended collections) cannot be modified by the user (see
Extended Collections and Compositions (Profile) on page 65).

You create calculated collections to:

Display user-defined dependencies for a selected object, the calculated collection is
displayed in the Dependencies tab of the object property sheet. You can double-click items
and navigate among user-defined dependencies.

Fine-tune impact analysis by creating your own calculated collections in order to be able to
better evaluate the impact of a change. For example, in a model where columns and
domains can diverge, you can create a calculated collection on the domain metaclass that
lists all the columns that use the domain and have identical data type.

Improve your reports. You can drag and drop any book or list item under any other report
book and modify its default collection in order to document a specific aspect of the model
(see Core Features Guide > The PowerDesigner Interface > Reports > The Report Editor >
Adding Items to a Report > Modifying the Collection of an Item).

Improve GTL generation since you can loop on user-defined calculated collections.

For example, in an OOM, you may need to create a list of sequence diagrams using an
operation, and can create a calculated collection on the operation metaclass that retrieves this
information.

68

PowerDesigner

CHAPTER 2: Extension Files

InaBPM, you could create a calculated collection on the process metaclass that lists the CDM
entities created from data associated with the process.

Creating a Calculated Collection

You can create a calculated collection for a metaclass, stereotype, or criterion.

1. Right-click a metaclass, stereotype, or criterion and select New > Calculated

Collection.

2. Enterascripting Nameand display L abel to use as the name of the tab associated with the
collection in the parent object property sheet.

3. [optional] Enter a Comment to describe the collection.
4. Select a metaclass in the Target Type list to specify the kind of object that will be

contained in the collection.

5. [optional] Select or enter a Target Stereotypeto further refine the instances of the target
metaclass that may appear in the collection.

6. Click the Calculated Collection Script tab and enter a script that will calculate which
objects will form the collection. If appropriate, you can reuse functions on the Global

Script tab.

] Extended Model Definition Properties {Class Diagram_1)

General I

Q- H=E- |MyEHtensions::Profile'\Dperation\CaIcuIated CollectiongsCollection_1

o a-d- T

,_)g MyE xtensions

General I Calculated Collection Script | Global Seript I

-2 Generation
E"‘:' Profile Mame:; |Messagesl rDiagrams
1) Shared
= Operation Label: IDiaglam Messages
E|.,J Calculated Collections)
ﬁ MeszagesinCiagrams Cigrmuctt
Target Type: IMessage j Ig
Target Stereotype: I j
Lizt Columns: M ame ﬂ E
Code
Sender
Raraivar LI
Ok, I Cancel | Apply | Help |

7. Click Apply to save your changes.

You can view the tab associated with the collection by opening the property sheet of a

metaclass instance.

Customizing and Extending PowerDesigner

69

Calculated Collection Properties

You specify the properties for an extended collection by selecting its entry in the resource
editor.

Property Description

Name Specifies the name of the calculated collection.

Label Specifies the display name of the collection, which will appear in the PowerDe-
signer interface.

Comment Describes the calculated collection.

Target Type Specifies the metaclass whose instances will appear in the collection. The list

displays only metaclasses that can be directly instantiated in the current model or
package, such as classes or tables, and not sub-objects such as class attributes or
table columns.

Click the Select a M etaclass tool to the right of this field to choose a metaclass
from another type of model.

Target Stereo- Specifies a stereotype to filter the target type. You can select an existing stereotype
type from the list or enter a new one.

The Calculated Collection Script tab contains the definition of the body of the calculated
collection function.

The Global Script tab is used for sharing library functions and static attributes in the resource
file. You can declare global variables on this tab, but you should be aware that they will not be
reinitialized each time the collection is calculated, and keep their value until you modify the
resource file, or the PowerDesigner session ends. This may cause errors, especially when
variables reference objects that can be modified or deleted. Make sure you reinitialize the
global variable if you do not want to keep the value from a previous run.

For more information on defining a script and using the Global Script tab, see Defining the
script of a custom check on page 88 and Using the global script on page 91.

Forms (Profile)

You can use forms to create new property sheet tabs or to replace existing tab, or to create
dialog boxes that are launched from menus or by clicking on buttons in your property sheet
tabs. Building a new form is fast and easy, using the form tools in the resource editor.

By default, extended attributes are listed alphabetically on the Extended Attributes tab of the
object's property sheet. By creating your own form, you can make these attributes more visible
and easy to use, by organizing them logically, grouping related ones, and emphasizing those
that are most important. Custom forms are used in PDMs to emphasize the most commonly-
used physical options on the "Physical Options (Common)" tabs.

70

PowerDesigner

CHAPTER 2: Extension Files

You can create a form on any metaclass that has a property sheet, or on a stereotype or a
criterion. For property tabs, if the tab is linked to a stereotype or criterion, it is displayed only
when the metaclass instance bears the stereotype or meets the criterion.

Creating a Form

You can create a form in a profile to create a new property tab or dialog box in the
PowerDesigner interface, or to replace a standard property sheet tab.

1. Right-click a metaclass, stereotype or criterion and select New > Form to create an empty

form.
?} Process Language Properties (For All Models) [_ O
General I
3 - Bl - [WSBPEL 20:Profils\Process\Forms\/S BPEL] Q- T
[~ Flow -] _
-] MessageFormat e IWS'BPEL
-7 MessageFart Label: I
-5 Model
#-E MamedObject Camment; |
[#-£@ Operation [
-----.'.'{-, CrganizationUrit ;
-3 Package Help file: |
H"'j'_gc'cé o Type: [Propery Tab ~| ¥ Addtofaverite tabs Preview |
--\,j Event Handlers Farm |><ML I
-2 Extended Attribut » .
I$|--‘.:|Forms 2 ER B S A — I X
] . j Form
--‘.j Generated Files [jsinCandition
"“3 Methods [suppreszloinFailure
3 ?tereTt_l:pes [expreszionlanguage
+]- emplates
L e Pk Srongbel
«| i
(n] 4 I Cancel | Aapply | Help |

2. Enter ascripting Nameand display L abel for the form, select a Typeand enter any other
appropriate properties (seeForm Properties on page 72). This name will display in the
tab of the property tab or in the title bar of the dialog box. You can also, optionally, enter a
description of the form in the Comment field.

3. Insert controls as necessary in your form using the toolbar on the Form tab (see Adding
Extended Attributes and Other Controls to Your Form on page 72).

4. Click the Preview button to review the layout of your form and, when satisfied, click
Apply to save your changes.

Customizing and Extending PowerDesigner 71

Form Properties

You specify the properties for a form by selecting its entry in the resource editor.

Proper- | Description
ty
Name Specifies the internal name of the form, which can be used for scripting.
Label Specifies the display name of the form, which will appear in the PowerDesigner inter-
face.
Comment | Provides additional information about the form.
Help file Enables the display of a Help button and specifies an action that will be performed when
the button is clicked or F1 is pressed when in the context of the form.
The action can be the display of a help file (.hlp, .chm or .html), and can specify a specific
topic. For instance:
C: \ PD1500\ pddoc15. chm 26204
If no help file extension is found, the string will be treated as a shell command to execute.
For instance, you could instruct PowerDesigner to open a simple text file:
not epad. exe C:\ Tenp\ Readne. t xt
Type Specifies the kind of form. You can choose from the following:
» Dialog Box - creates a dialog box that can be launched from a menu or via a form
button
« Property Tab —creates a new tab in the property sheet of the metaclass, stereotype or
criterion
* Replace <standard> Tab — replaces a standard tab in the property sheet of the
metaclass, stereotype or criterion. If your form is empty, it will be filled with the
standard controls from the tab that you are replacing.
Add to fa- | [property tabs only] Specifies that the tab is displayed by default in the object property
vorite tabs | sheet.

Adding Extended Attributes and Other Controls to Your Form

You insert controls into your form using the tools in the Form tab toolbar.

You can reorder controls in the form control tree by dragging and dropping them. To place a
control inside a container control (group box or horizontal or vertical layout), drop it onto the
container. For example, if you want the extended attributes GUID, InputGUID, and
OutputGUID to be displayed in a GUI group box, you should create a group box, name it GUI
and drag and drop all three extended attributes under the GUI group box.

72

PowerDesigner

CHAPTER 2: Extension Files

Tool

Description

ﬂ

Add Group Box - inserts a group box, intended to contain other controls within a named
box.

)

Add Tab Window - inserts a sub-tab layout, in which each child control appears, by default,
in its own sub-tab. To place multiple controls on a single sub-tab, use a horizontal or vertical
layout.

1

Add Horizontal Layout - inserts a horizontal layout. To arrange controls to display side by
side, drag them onto the horizontal layout in the list.

i

Add Vertical Layout - inserts a vertical layout. To arrange attributes to display one under
the other, drag them onto the vertical layout in the list. Vertical layouts are often used in
conjunction with a horizontal layout, to provide columns of controls.

&

Include Ancther Form - inserts a form defined on this or another metaclass in the present
form (see Example. Including a Form in a Form on page 80).

(=)

Add Attribute— opens a selection box in which you select standard or extended attributes
belonging to the metaclass. Select one or more attributes and then click OK to insert them
into the form.

The type of control associated with the attribute depends on its type: booleans are associated
with check boxes, lists with combo boxes, text fields with multi-line edit boxes, and so on.

Unless you enter a label, the attribute name is used as its form label, and any comment that
you have entered is displayed as its tooltip.

Add Collection —opens a selection box in which you select standard collections belonging
to the metaclass. Select one or more collections and then click OK to insert them into the
form.

Collections are displayed as standard grids with all the appropriate tools.

Unless you enter a label, the collection name is used as its form label and any comment that
you have entered is displayed as its tooltip.

Add Method Push Button - opens a selection box in which you select one or more
methods, which will be associated with the form via form buttons. This list is limited to
methods defined under the same metaclass in the profile. Select one or more methods and
then click OK to insert them into the form.

Each method is displayed as a button on the form that, when clicked, invokes the method.
Unless you enter a label, the method name is used as the button label. Any comment that you
have entered for the method is displayed as its tooltip in the form.

Add Edit Field [dialog boxes only] inserts an edit field.

Add Multi-Line Edit Field [dialog boxes only] - inserts a multi-line edit field below the
selected item in the tree.

Add Combo Box [dialog boxes only] - inserts a combo box.

Customizing and Extending PowerDesigner 73

Tool | Description

3 | Add List Box [dialog boxes only] - inserts a list box.

Add Check Box [dialog boxes only] - inserts a check box.

ﬂ Add Text - inserts a text control.

j Add Separator Line—inserts a separator line. The line is vertical when its parent control is
a vertical layout.

Fa Add Spacer — inserts an area of blank space.

ﬁ Delete — deletes the currently selected control.

Form Control Properties

When you add controls to your form, you can specify properties to control their format and

contents.

Property

Definition

Name

Internal name of the control. This name must be unique within the form. The name
can be used in scripts to get and set dialog box control values (see Example. Opening
a Dialog Box from a Menu on page 102).

Label

Specifies a label for the control on the form. If this field is left blank, the name of the
control is used. If you enter a space, then no label is displayed. You can insert line
breaks with \ n.

To create keyboard shortcuts to navigate among controls, prefix the letter that will
serve as the shortcut with an ampersand. If you do not specify a shortcut key,
PowerDesigner will choose one by default. To display an ampersand in a label, you
must escape it with a second ampersand (for example: &I ohnson && Son will
display as Johnson & Son.

Attribute

[included forms] Specifies the object on which the form to be included is defined.
The list is populated with all attributes of type obj ect and the following objects:

* <None> - the present metaclass

» Generation Origin - for example, the CDM entity from which a PDM table was
generated

* Model - the parent model

» Parent - the immediate parent object for sub-objects (for example, the table
containing a column

» Parent Folder - the immediate parent object for composite objects (for example
BPM processes that contain other processes)

» Parent Package - the immediate parent package

74

PowerDesigner

CHAPTER 2: Extension Files

Property

Definition

Form name

[included forms] Specifies the name of the form that will be included. You can:

» Select a standard property sheet tab name from the list.
» Enter the name of a custom form defined in the extension file.
» Enter the name of a GTL template to generate XML to define the form.

Indentation

[container controls] Specifies the space in pixels between the left margin of the
container (form, group box, or horizontal or vertical layout) and the beginning of the
labels of its child controls.

Label space

[container controls] Specifies the space in pixels reserved for displaying the labels of
child controls between the indentation of the container and the control fields.

Toalign controls with the controls in a previous container, enter a negative value. For
example, if you have two group boxes, and want all controls in both to be aligned
identically, set an appropriate indentation in the first group box and set the inden-
tation of the second group box to - 1.

If a child control label is larger than the specified value, the label space property is
ignored,; to display this label, you need to type a number of pixels greater than 50.

Advanced Teradata Attributes _ O

Startup: IDefauIt value [preview mode)

Fallback: IDefauIt value [preview mode) j

Graup baox label Default Database: IDefauIt walue [preview mode)
_—

= Journal

Indentation

[Hournal IDefauIt value [preview mode) j

Default Journal T able: ID efault value [preview mode]

Label space

—After Jounal: || Default value [preview mode] j

Ok I Cancel |

Show control
as label

[group boxes] Use the first control contained within the group box as its label.

Show Hidden
Attribute

[extended attributes] Displays controls that are not valid for a particular form
(because they do not bear the relevant stereotype, or do not meet the criteria) as
greyed. If this option is not set, irrelevant options are hidden.

Value

[dialog box entry fields] Specifies a default value for the control. For extended
attributes, default values must be specified in the attribute's properties (see Extended
Altribute Properties on page 59).

Customizing and Extending PowerDesigner 75

Property

Definition

List of Values

[combo and list boxes] Specifies a list of possible values for the control. For ex-
tended attributes, lists of values must be specified in the attribute's properties (see
Extended Attribute Properties on page 59).

Exclusive

[combo boxes] Specifies that only the values defined in the List of values can be
entered in the combo box.

Minimum Size
(chars)

Specifies the minimum width (in characters) to which the control may be reduced
when the window is resized.

Minimum
Line Number

Specifies the minimum number of lines to which a multiline control may be reduced
when the window is resized.

Horizontal Re-
size

Specifies that the control may be resized horizontally when the window is resized.

Vertical resize

Specifies that the multiline control may be resized vertically when the window is
resized.

Read-Only

[included forms and dialog box entry fields] Specifies that the control is read-only,
and will be greyed in the form.

Left Text

[booleans] Places the label text to the left of the checkbox.

Display

[booleans and methods] Specifies the form in which the boolean options or method
button are displayed.

For booleans, you can choose between:

* Check box
» Vertical radio buttons
* Horizontal radio buttons

For methods, you can choose from arange of standard icons or Text, which prints the
text specified in the Label field on the button.

Width/ Height

[spacers] Specify the width and height, in pixels, of the spacer.

Adding DBMS Physical Options to Your Forms

Many DBMSs use physical options as part of the definition of their objects. The most

commonly-used physical options are displayed on a form, Physical Options (Common),
defined under the appropriate metaclass. You can edit this form, or add physical options to
your own forms.

Note: PowerDesigner displays all of the available options for an object (defined at Scr i pt /
bj ect s/ obj ect/ Opt i ons category) on the Physical Optionstab (see Physical
Options on page 218).

For a physical option to be displayed in a form, it must be associated with an extended attribute
with the type physi cal opti on.

76

PowerDesigner

CHAPTER 2: Extension Files

1. Right-click the metaclass and select New Extended Attributefrom Physical Optionsto
open the Select Physical Options dialog:

I 5elect Physical Dptions E3
B - Oy~
o Ch

QK | Cancel | Help I

Note: This dialog will be empty if no physical options are defined at Scr i pt /
bj ect s/ obj ect/ Opti ons.

2. Select the physical option required and click OK to create an extended attribute associated
with it.

3. Specify any other appropriate properties.

4. Select the form in which you want to insert the physical option and click the Add Attribute

tool to insert it as a control (see Adding Extended Attributes and Other Controls to Your
Formon page 72).

Note: To change the physical option associated with an extended attribute, click the ellipsis to
the right of the Physical Optionsfield in the Extended Attribute property sheet.

Example: Creating a Property Sheet Tab

In this example, we will create a new property tab for the EAM Person metaclass to display
extended attributes we define to store personal information.

1. Create anew extension file (see Creating an Extension Fileon page 23) inan EAM, add the
Per son metaclass (see Adding a Metaclass to a Profile on page 47), and define five
extended attributes (see Creating an Extended Attribute on page 59) to contain home
contact details:

Customizing and Extending PowerDesigner 77

] Extension Properties {Acme Corporation)

General |

- - IDrganogram::Profile\Person\ExtendedAttributes\HomeAddress

SQ-de T

=10l x|

I_),(] Organogram
- G |
@ Generation SnEE
E-) Settings Marme: Home Add
=53 Profile - IHome Address
A3 Shared Label |
- 3 Person
@ .
E@ Extended Attributes Tzt ﬂ
ERERE Home Address
{9 Home City
[Home Country
{9 Home Telephone
~{¥] Hame Zip hd|
Drata type: I[String] ju'!l
[Computed: & Fead/uite [Get+Set methods] € Bead only (et method]
Drefault walue: I j _I Template [
List of values: I |__1||Q Complete [
Edit method: I@ <Mones j |_—1||!|
QK I Cancel | Apply | Help |

2. Right-click the Per son metaclass and select New > Form, enter Per sonal

Details

in the Namefield, select Pr operty Tab inthe Typelist, and click the Add Attribute

tool to select all the new extended attributes for inclusion in the form:

Ml Add Attributes x|

B-a- #a

MHame | Data Type | Auailability Contest | Carnrment |

[39 Home &ddress [String) Perzon

[39 Home City [String) Perzon

[39 Home Couritry [String) Perzon

[39 Home Telephone [String) Perzon

[*9 Home Zip [String) Perzon
D Iy Extended atiributes £ Attributes J

Selected ohjects]: 540
ak I Cancel | Help |

3. Click OK to add the attributes to the form, and arrange them in a group box, using
horizontal layouts to align them neatly. Here, I'm using the Label field to overide the
default name of the attribute in the form for brevity:

78

PowerDesigner

ﬁ] Extension Properties {Acme Corporation)

CHAPTER 2: Extension Files

~lalx|
General |
= e IDrganogram::F'r0file\Person\Forms\F’ersonalDetails j [i P4 “,fi’ al;-é
x] 0
Lg__égzn;f::im Mame: IPersonaI D etails
@ Settings Label I
£ Profile
; 23 Shared Comment: ;I
= & Person =
{23 Extended Attributes)
-] Home Address Help file: I
Wi i ;
é :22: Egintr}, Type: |Property Tab x| ¥ Addtafavoite tabs Preview |
-{#9 Home Telephone Form |><ML I
{9 Home Zip ” _ ; .
23 Forms MOXEEDEH A — I X
[5] Personal Details & Form . ;

[Perzamal Information Altribute: W
= Home Address Label I—City
=¥ Horizontallayout :

JESEHorne City Diata Type: I[Stnng]
3] Home Zip Caomment;

*. HorizontalLayout2
[Home Country
[Home Telephone

——

¥ Show Hidden Attribut

inimum Size [Chars): |1

¥ Horizantal Resize

QK I Cancel | Apply |

Help |

4. Click OK to save your changes and return to the model. When you next open the property
sheet of a person, a new Personal Detailstab is available containing the extended

attributes:

Customizing and Extending PowerDesigner

79

#_, Person Properties - James Jones (james_jones = |EI|5|

Generall Roles Personal Details |Nu:|les I

Personal Information

Home address: |EERE]ls[0ENEEx
City: IChippingham Zipr |5W1 B 9al
Couritry: UK Tel |0205-555-9576

More > | = QK I Cancel | Apply Help

Example: Including a Form in a Form

In this example, we will replace the General tab of the EAM Person metaclass by a form which
includes properties from the person and from the site to which she is assigned by including a
form defined on the Site metaclass as a read-only control in a form defined on the Person
metaclass.

This example builds on the extension file created in Example. Creating a Property Sheet Tab
on page 77.

1. Addthe Si t e metaclass and create a form called Si t e Addr ess. Select Property
Tab from the Type list and unselect the Add to favorite tabsoption (as we do not want
this form, which duplicates standard site properties displayed in site property sheets).

2. Populate the form with standard attributes to display the complete address of the site:

PowerDesigner

CHAPTER 2: Extension Files

i Extension Properties (Acme Corporation — x
| {) O
General |
- - IDrganogram::Profile\Site\Forms\SiteAddress j % - H - ﬁ_if 52}
] 0
Lg__égzn;f:‘::ion Mame: ISite Address
@ Settings Label: |
=) Prafile
{2) Shared Caomment: ;I
2 Person LI
{23 Extended Attributes)
-[3] Home Address Help file: I
Wi i ;
j Ezm: Egintry Type: IProperty Tab j [T Add to favorite tabs Ereview |

-[3] Home Telephane Farm |><M|_ |
{9 Home Zip » . .
MO EED@EHA— X

; Altribute: IAddress
*. HorizontalLayout | abek IAddress

[City
[ZipCode inimum Size [Chars): |1
g gﬁuntr}l Minimum Line Mumber: |3
ohe

¥ Horizantal Resize

¥ “ertical Fesize

QK I Cancel | Apply | Help |

3. Create a form under the Per son metaclass, select Repl ace General t ab from the
Type list, and change the name to Cont act Det ai | s.

4. Delete unwanted attributes from the list, and arrange the remaining attributes you want to
display, including the Si t e attribute (which is of type Cbj ect , and which will enable us
to pull in the appropriate properties from the associated site form) using horizontal and
vertical layouts.

5. Clickthe IncludeAnother Formtool, select Si t e inthe Attributefield, andenterSi t e
Addr ess inthe Form namefield. Select the Read-Only check box to prevent editing of
the included form from the person's property sheet:

Customizing and Extending PowerDesigner 81

Extension Properties {Acme Corporation)

General |

- - IDrganogram::F'r0fiIe\Person\Forms\EontactDetails

I_),(j Organogram

{13 Generation Mame: IEontact D etails
74 Settings Label I
Comment: ;I
-[3] Home Address Help file: I
Wi i
é :Ez: Egintry Type: IHepIace General tab j Breview |
-[#9 Home Telephone Form |><ML I
-[¥9 Home Zip ”
MO=EER@E&H A — I X
[=] Fom i
2. HorizontalLayout] Hame: ISItB Address
@ Namg Attribute: ISite VI
[JobTite -
*. HorizontalLayout2 Farm name: ISlte Address vl
(3 Email tinirum Size [Chars]: |3
[Telephone
[Manager Minirum Line Mumber: |1
% e ¥ Horizortal Resize
fElf Site Address
¥ “ertical Fiesize
[Read-Orly
’TI Cancel | Apply | Help |

6. Click OK to save the extensions, and return to your model. When you next open the
property sheet of a person, the Gener al tab is replaced by the custom Contact Detailstab,
and when the person is assigned to a site, the site's address details are displayed as read-
only in the lower part of the form:

82

PowerDesigner

CHAPTER 2: Extension Files

& Person Properties - James Jones (james_jones) i I] B
Contact Details | Roles | Personal Details | Motes |
Mame: arnes Jones Job title; IMarkeling E xecutive
Emal. [iiones@acme. com Telephone: | 01085555678
Manager: I 2 Alison Anderson j
Site: I European Headquarters j
fddress: |57 Picoadily
City: |London Zip code: [EC1 3FR
Coountry: IUK
Phone: |0108-555-5000
More > | = ITI Cancel | Apply | Help |

Example: Opening a Dialog from a Property Sheet

In thisexample, we will add a button to a property sheet tab, to open a dialog box, allowing you

to enter additional personal details for a person.

This example builds on the extension file developed in Example: Including a Form in a Form

on page 80.

1. Openthe Per sonal

Det ai | s form under the Per son metaclass, and select Di al og

Box inthe Typefield, to transform it from a property sheet tab into an independent dialog:

Customizing and Extending PowerDesigner

83

Extension Properties {Acme Corporation) ;Iglll

General |
- - IDrganogram::F'rofiIe\Person\Forms\PersonalDetails j (@ 4 n-if ’2}
Organogram .
22 Generation Mame: IPersonaI Dretailz
@ Settings Label: I
- Profile
@ Shared Caomment: ;I
=3 Perzon LI
{23 Extended Attibutes)
39 Home Address Help file: I
29 Home City Tuaes -)
e - |
) Horme Courtry Tup IDlang Box J Breview
-[#] Home Telephone Farm |><M|_ |
%] Home Zip i _ —a ra
12 Forms MO EECD BHFEEENM A — I B X
EontactDetaiI§ =] Fom
aw :Eé30na| Dietails m Perzonal Information Attribute: IHome Telephone
ethods
" Showp - [E) Home Address Label: I
. awrersonallietals =¥ Horizontallayout] -
El" Site [3 Home City Diata Type: I[Stnng]

=0 Forms [Home Zj
L g P Caomment:
""" ; Site Address *. HorizontalLayout2
[Home Country

IESEHome T elephone: ¥ Shaow Hidden Attribut

inimum Size [Chars): |1

¥ Horizontal Resize

Kl [+

QK I Cancel | Lpply | Help |

2. Right-click the Person metaclass and select New > M ethod. Enter the name

ShowPer sonal Det ai | s, and then click the Method Script tab and enter the
following script:
Sub %vet hod% obj)

' Show custom di al og for advanced extended attri butes

Dimdl g
Set dl g = obj. Creat eCust onDi al og(" %Curr ent Tar get Code% Per sonal

Det ai |l s")

If not dlg is Nothing Then
dl g. Showbi al og()

End |f

End Sub

Select the Cont act Det ai | s form, and click the Add M ethod Push Button tool,
select the ShowPer sonal Det ai | s method, and then click OK to add it to the form.
Here, | use a horizontal layout and spacer to align the button with the right edge of the
form:

84

PowerDesigner

CHAPTER 2: Extension Files

Extension Properties {Acme Corporation) B Inlﬂ
General |
= e IDrganogram::F'r0fiIe\Person\Forms\EontactDetails J Q- - ﬁ9° ab1
Organogram -
{03 Generation Mame: IEontact D etails
g Settings Label I
F'roflle
i Comment: ;I
E-@ Extended Attributes .
| {3 Home Address Help file: I
{3 Home City Tupe: = :
3 Home Country Jype: IHepIace General tab J Preview |
{9 Home Telephone Form |><ML I
I . ‘_j Home Zip » -~ D
E@Forms UQ=:=*§E@@$A—U>(
| Lot Datifls 2. Horizontallayaut! |
AR [T Mame Method: ISthPersonaIDetaiIs
E| @ Methods [JobTit
gl ShowP 1D etail obitle Mame: IF‘ersonaI...
""" owrersonallelals =¥ HorizontalLayout2
- .é'f'eF [Email Label |
= ome [Telephone
Caomment:
------ j Site Address [Manager
[Site
j Site Address
= HonzontaILayoutB . .
"7 Spacel I Horizartal Resize
=1 Dizplay: IText j
Kl I —
’TI Cancel | Lpply | Help |

4. Enter Personal . ..

in the Label field, and then click OK to save your changes and

return to the model. Now when you open the property sheet of a person, the Contact
Detailstab contains a Per sonal... button which opens the Personal I nformation dialog:

.[Person Properties - James

Contact Details |F||3|es | Motes I

M ame: IJames Jones

=lol x|

Personal Details

=lol x|

Emal. |iones@acme.com Personal Information

el
tdanager: I w Alizon Anderson

Home address: |59 Oldbury Gardens

Site: I European Headquart City: |Ehippingham Zip: |5W15 S8l
Address: |5?' Piccadilly Country: IUK Home telephone: |U2UE-555-98?B
City: ILondon
Country: IUK
ITI Cancel |
Phone: | 0108-555-5000
Perzonal... |
] Cancel Aoply | Help |

More »» | =K

Customizing and Extending PowerDesigner

85

Custom Symbols (Profile)

A custom symbol allows you to modify the appearance of instances of the metaclass,
stereotype, or criterion.

When you customize the line style of a link symbol, such as a PDM reference for example, the
parameters you select in the Style list and in the Arrow groupbox in the Line Style tab replace
the one you may have selected in the Display Preferences dialog box. This can provoke
confusion in the model coherence. To avoid that confusion and preserve the method definition
of your model, you should use the Notation attribute in the Style list and or in the Arrow
groupbox. This attribute is only available in the Profile.

1. Right-click a metaclass, stereotype, or criterion in the Profile category and select New >
Custom Symbol.

A new custom symbol is created under the selected category.

[Extended Model Definition Properties [DbjectOrientedModel 1)

General I

& o= IEHtendedDefinitionj::Profile\EIass\Eustom Symbal H- %%
E stendedD efinition_1

--[ﬁege:erazol:l - Mame: [Custom Symbal

= Comment: :I
* B Associationtd apping
#-B BusinessRule =l

-8 Class Type: Predefined Symbol Mame: 3D Rectangle
[Sterectypes

& Custom Symbol — Default gize [inch)

ClassMapping width: [0 Height: [0.7

-8B Operationtapping

 Preview

Default | todify... |
ak I Cancel | Apply | Help |

2. Specify a default Width and Height for the symbol and then click the M odify button to
open the Symbol Format dialog box, and set the required properties on the various tabs.

For more information on the Symbol Format dialog box (and on the additional custom
symbol options that let you control the default format options for the symbol, and whether
users can edit them, on a per-tab basis) see Core Features Guide > The PowerDesigner
Interface > Diagrams, Matrices, and Symbols > Symbols > Symbol Format Properties.

86

PowerDesigner

CHAPTER 2: Extension Files

3. Click OK to return to the resource editor, where you can view your changes in the Preview

field.

4. Click Apply to save your changes.

Custom Checks (Profile)

Custom checks are model checks, written in VBScript, which enable you to verify that your
model objects are well-defined. Custom checks are listed with standard model checks in the
Check Model Parameters dialog box.

For more information about using VVBScript, see Chapter 7, Scripting PowerDesigneron page

323.

Custom Check Properties

You specify the properties for a custom check by selecting its entry in the resource editor.

Parameter Description

Name Name of the custom check. This name is displayed under the selected object
category in the Check Model Parameter s dialog. This name is also used
(concatenated) in the check function name to uniquely identify it.

Comment Additional information about the custom check.

Help Message

Text displayed in the message box that is displayed when the user selects
Help in the custom check context menu in the Check Model Parameters
dialog.

Output message

Text displayed in the Output window during check execution.

Default severity

Allows you to define if the custom check is an error (major problem that
stops generation) or a warning (minor problem or just recommendation).

Execute the check by
default

Allows you to make sure that this custom check is selected by default in the
Check Model Parameter s dialog.

Enable automatic cor-
rection

Allows you to authorize automatic correction for the custom check.

Execute the automatic
correction by default

Allows you to make sure that automatic correction for this custom check is
executed by default.

Check Script

This tab contains the custom check script. See Defining the script of a
custom check on page 88.

Autofix Script

This tab contains the autofix script. See Defining the script of an autofix on
page 89

Global Script

This tab is used for sharing library functions and static attributes in the
resource file. See Using the global scripton page 91.

Customizing and Extending PowerDesigner 87

Defining the Script of a Custom Check

This section also applies for defining the script of a custom method, a calculated collection, an
event handler, or a transformation.

You type the script of a custom check in the Check Script tab of the custom check properties.
By default, the Check Script tab displays the following script items:

%Check% is the function name, it is passed on parameter obj. It is displayed as a variable,
which is a concatenation of the name of the resource file, the name of the current
metaclass, the name of the stereotype or criterion, and the name of the check itself defined
in the General tab. If any of these names contains an empty space, it is replaced by an
underscore

A comment explaining the expected script behavior

The return value line that indicates if the check succeeded (true) or not (false)

In Sybase AS IQ, you need to create additional checks on indexes in order to verify their
columns. The custom check you are going to create verifies if indexes of type HG, HNG, CMP,
or LF are linked with columns which data type VARCHAR length is higher than 255.

1

Right-click a metaclass, stereotype or a criterion under Profile, and select New > Custom
Check.

Click the Check Script tab in the custom check properties to display the script editor.

By default, the function is declared at the beginning of the script. You should not modify
this line.

Type acomment after the function declaration in order to document the custom check, and
then declare the different variables used in the script.

Dimc 'tenporary index colum
Dimcol 'tenmporary colum

Di m position

Di m DT _col

Enter the function body.

%Check% True

if obj.type = "LF" or obj.type = "HG' or obj.type = "CVW" or
obj.type ="HNG' then

for each ¢ in obj.indexcol ums

set col = c.colum

position = InStr(col.datatype,"(")
if position <> 0 then

DT_col = left(col.datatype, position -1)
el se

DT_col = col.datatype
end if

i f ucase(DT_col) = "VARCHAR' and col.length > 255 then
output "Table " & col.parent.nanme &" Colum " & col.nane & " :
Data type is not conpatible with Index " & obj.nane & " type " &

88

PowerDesigner

CHAPTER 2: Extension Files

obj . type
Check% = Fal se
end if
Bl Extended Model Definition Properties [For All Models) Mi=] E3
General |
& v o Icustum_ckeck..Prufile\lndex\Culem Checks\Index_type_verification = - F&: A:B

I@ custom_ckeck

General Check Script IAutof\x Script' Global Sc:ripll

(7] Generation
E"DET'R ’ E-B-EES# L B@Rl v o~ Wt
o Ll
B Calumn Function $Checks(obi)]
#-B CubeMapping !
#-B Dimensiontapping ! cannot create an LF, HG, CHP, or HNG index for VarcharizZ55) column
#-B FactMapping !
=B Index Dim ¢ 'temporary index column
E‘D Custom Checks Dim col 'temporary column
H - Dim position
LB Index_type_verification .
Din DT _col
B Namedibject %Check¥= True
B Table if obj.type = "LF" or obj.type = "HE" or obj.type = "CMPF" or obj.typ
#-B TableMapping fo

r each ¢ in obj.indexcolunns
zet col = c.column

position = InStricol.datatype,” (™)
if poszition <> 0 then
LT _col = left{col.datatype, position -1}

else
LT col = col.datatype
end if
if ucase(DT_col) = "VARCHAR" and col.length > 255 then
output "Table " & col.parent.name s ” Column ™ & col.na
4Check® = False
end if
next |
end if
End Function =
KN _>l_I
oK I Cancel Lpply | Help |

5. Click Apply to save your changes.

Defining the Script of an Autofix

If the custom check you have defined supports an automatic correction, you can type the body
of this function in the Autofix Script tab of the custom check properties.

The autofix is visible in the Check Model Parameters dialog box, it is selected by default if you
select the Execute the Automatic Correction by Default check box in the General tab of the

custom check properties.

By default, the Autofix Script tab displays the following script items:

which is a concatenation of the nam

e of the resource file, the name of the current

%Fix% is the function name, it is passed on parameter obj. It is displayed as a variable,

metaclass, the name of the stereotype or criterion, and the name of the fix. If any of these
names contains an empty space, it is replaced by an underscore

that will appear when the fix script will be executed

The variable outmsgis a parameter of the fix function. You need to specify the fix message

Customizing and Extending PowerDesign

er

89

* The return value line that indicates if the fix succeeds or not

We will use the same example as in section Defining the script of a custom check, to define an
autofix script that removes the columns with incorrect data type from index.

1. Click the Autofix Script tab in the custom check properties.

By default, the function is declared at the beginning of the script. You should not modify
this line.

2. Type acomment after the function declaration in order to document the custom check, and
then declare the different variables used in the script:

Dimc 'tenporary index colum
Dimcol 'tenmporary colum
Di m position
Di m DT _col
3. Enter the function body:

%-i x% = Fal se
If obj.type = "LF" or obj.type = "HG' or obj.type = "CW" or
obj .type ="HNG' Then

For Each ¢ In obj.I|ndexCol ums

Set col = c.colum

position = InStr(col.datatype,"(")

If position <> 0 Then

DT _col = Left(col.datatype, position -1)

El se
DT_col = col.datatype
End If

If (Ucase(DT_col) = "VARCHAR') And (col.length > 255) Then
outmsg = "Automatic correction has renoved colum " & col . Nane
& " fromindex."
c.Delete
%-i x% = True
End |f
Next
End If

PowerDesigner

CHAPTER 2: Extension Files

Eil Extended Model Definition Properties (For All Models) |_ (O] <]
General |
o Istom_ckack: Profilehlndext Custorn ChecksYndex_type_verification - %4

t keck
I@ clsiom_ckec! Genelall Check Script Autofix Script IEInhaI Scliptl

(] Generation
E'"C'Effgeh) E-B-HE# $BE © o~ ki
are
B Column Function %Fix%(obj, outnsy) =1
-8 Cubehtapping '
#-B Dimensiontapping ! Automatic correction: camnot create an LF, HG, CMP, or HNG index fi
. '
#-B Facttapping -
E-B Index Dim ¢ 'temporary index column
g [:I Custom Checks Dim col 'temporary column
H Dim position
[Indew_type_verification X
B Namedih Dim DT _col
amedibieet %Fix% = False
-8 Table If ohj.type = “LF" or obj.type = "HG" or ohj.type = "CHP" or obj.tym
1B TableMapping For Each c In obj.IndexColunns

et col = c.column
position = InStr{col.datatype,” (")
If position <> 0 Then
DT col = Left{col.datatype, position -1}

Else
DT col = col.datatype
End If
If (Ucase(DT_col) = "VARCHAR™) And (col.length > 255) Then
outnsg = “Automatic correction has removed column “ & col.Ni
c.Delete
5Fixn% = True
End If
Hext
End If

End Function

| _'ILI

Ok I Cancel Apply | Help I

4. Click Apply to save your changes.

Using the Global Script

This section also applies for defining the script of a custom method, a calculated collection, an
event handler, or a transformation.

The Global Script tab is used to store functions and static attributes that may be reused among
different functions. This tab displays a library of available sub-functions.

Example
In the Sybase AS 1Q example, you could have a function called DataTypeBase that retrieves
the data type of an item in order to further analyze it.

This function is defined as follows:

Functi on Dat aTypeBase(dat at ype)
Di m position
position = InStr(datatype, "(")
If position <> 0 Then
Dat aTypeBase = Ucase(Left (datatype, position -1))

El se
Dat aTypeBase = Ucase(dat at ype)
End |f

End Function

Customizing and Extending PowerDesigner 91

In this case, this function only needs to be referenced in the check and autofix scripts:

Functi on %Check% obj)
Dimc 'tenmporary index colum

Di mcol 'tenporary col um

Di m position

%Check% True

I f obj.type = "LF" or obj.type = "HG' or obj.type = "CVMP" or obj.type

="HNG' then

For Each c In obj.IndexCol ums

Set col = c.colum

I f (Dat aTypeBase(col . datatype) = "VARCHAR') And (col .l ength > 255)
Then

Qutput "Table " & col.parent.name & " Colum " & col.nane & "
Data type is not conpatible with Index " & obj.nane & " type " &
obj . type

%Check% = Fal se

End |f
Next
End |f
End Function

Global Variables

You can also declare global variables in the Global Script. These variables are reinitialized
each time you run the custom check.

Running Custom Checks and Troubleshooting Scripts

All custom checks defined in any resource files attached to the model are merged and all the
functions for all the custom checks are appended to build one single script. The Check Model
Parameters dialog box displays all custom checks defined on metaclasses, stereotypes and
criteria under the corresponding categories.

If there are errors in your custom check scripts, the user will be prompted with the following

options:
Button Action
Ignore Allows you to skip the problematic script and resume check
Ignore All Allows you to skip all problematic scripts and resume process with standard checks
Abort Stops check model
Debug Stops check model, opens the resource editor and indicate on which line the problem
is. You can correct error and restart check model

92 PowerDesigner

CHAPTER 2: Extension Files

Event Handlers (Profile)

Anevent handler can automatically launch a VBScript when an event occurs on an object. You
can associate an event handler with a metaclass or a stereotype; criteria do not support event

handlers.

The following event handlers can be defined on items in the Profile category:

Event handler

Description

CanCreate

[all objects] Used to implement a creation validation rule to prevent objects
from being created in an invalid context. For example, ina BPM for ebXML, a
process with a Business Transactions stereotype can only be created under a
process with a Binary Collaboration stereotype. The script of the CanCreate
event handler associated with the Business Transaction process stereotype is
the following:

Functi on %CanCr eat e% par ent)
if parent is Nothing or
parent .| sKi ndOf (PdBpm Cl s_Process) then
%CanCr eat e% = Fal se
el se
%CanCr eat €% = True
end if
End Functi on

If this event handler is set on a stereotype and returns True, then you can use
the custom tool to create the stereotyped object. Otherwise the tool is not
available, and the stereotype list excludes corresponding stereotype. If it is set
on a metaclass and returns True, then you can create the object from the
Toolbox, from the Browser or in a list.

Note that, when you import or reverse engineer a model, the CanCreate func-
tions are ignored since they could modify the model and make it diverge from
the source.

Customizing and Extending PowerDesigner 93

Event handler

Description

Initialize

[all objects] Used to instantiate objects with predefined templates. For ex-
ample, in a BPM, a Business Transaction must be a composite process with a
predefined sub-graph. The script of the Initialize event handler associated
with the Business Transaction process stereotype contains all the functions
needed to create the sub-graph. The following piece of script is a subset of the
Initialize event handler for a Business Transaction.

' Search for an existing requesting activity
synbol
Di m ReqSym
Set ReqSym = Not hi ng
If Not ReqgBi zAct is Nothing Then
I f ReqBi zAct. Synbol s. Count > 0 Then
Set ReqSym = ReqBi zAct . Synbol s. It en{0)
End |f
End |f
' Create a requesting activity if not found
I f ReqgBi zAct is Nothing Then
Set ReqgBi zAct =
Bi zTr ans. Processes. Cr eat eNew
ReqBi zAct . St ereot ype =
"Request i ngBusi nessActivity"
RegBi zAct . Nane = "Request”
End |f

If the Initialize event handler is set on a stereotype and returns True, the
initialization script will be launched whenever the stereotype is assigned,
either with a custom tool in the Toolbox, or from the object property sheet. If it
is set on a metaclassand returns True, the initialization script will be launched
when you create a new object from the Toolbox, from the Browser, in a list or
in a property sheet.

If it is set on the mode/ metaclass and returns True, the initialization script is
launched when you assign a target (DBMS or object, process, or schema
language) to the model at creation time, when you change the target of the
model or when you attach an extension to the model.

94

PowerDesigner

CHAPTER 2: Extension Files

Event handler

Description

Validate [all objects] Runs when you change tabs or click OK or Apply in an object
property sheet. Used to validate changes to object properties and to implement
cascade updates.

You can define an error message that will appear when the condition is not
satisfied. To do so, fill the message variable and set the %Validate% variable to
False.
In the following example, the validate event handler verifies that acomment is
added to the definition of an object when the user validates the property sheet.
A message is displayed to explain the problem.
Functi on %/al i date%{obj, ByRef nessage)
if obj.coment ="" then
%/al i dat e% = Fal se
message = "Conment cannot be enpty”
el se
%/al i dat e% = True
end if
End Function
CanLinkKind [link objects only] Runs when you create a link with a Toolbox tool or modify

link ends in a property sheet. Used to restrict the kind and stereotype of the
objects that can be linked together.

This event handler has two input parameters: its source and destination ex-
tremities. You can also use the sourceStereotype and destinationStereotype
parameters. These are optional and used to perform additional checks on
stereotypes.

In the following example, the source of the extended link must be a start
object:

Functi on %CanLi nkKi nd% sour ceKi nd,
sour ceSt ereot ype, desti nati onKind,
desti nati onSt er eot ype)

if sourceKind = cls_Start Then
%CanLi nkKi nd% = True

end if

End Function

OnModelOpen

[models only] Runs immediately after a model is opened.

OnModelSave

[models only] Runs immediately before a model is saved.

OnModelClose

[models only] Runs immediately before a model is closed.

OnLanguageChan-
geRequest

[models only] Runs immediately before the model's DBMS or language def-
inition file is changed. If the event handler returns false, then the language
change is canceled.

Customizing and Extending PowerDesigner 95

Event handler

Description

verseEngineer

OnLanguageChang- | [models only] Runs immediately after the model's DBMS or language defi-

ing nition file is changed, but before any transformations are applied to objects to
make them conform with the new language definition.

OnlLanguage- [models only] Runs immediately after the model's DBMS or language defi-

Changed nition file is changed and the object transformations are applied.

OnNewFromTem- [models only] Runs immediately after a model or a project is created from a

plate model or project template.

BeforeDatabase- [PDM maodels only] Runs immediately before generating a database.

Generate

AfterDatabaseGen- | [PDM models only] Runs immediately after generating a database.

erate

BeforeDatabaseRe- | [PDM models only] Runs immediately before reverse-engineering a database.

AfterDatabaseRe-
verseEngineer

[PDM models only] Runs immediately after reverse-engineering a database.

GetEstimatedSize

[PDM only] Runs when the Estimate Database Size mechanic is called. For
detailed information, see Modifying the Estimate Database Size Mechanism
on page 214.

Adding an Event Handler to a Metaclass or a Stereotype

You can create an event handler in a profile.

1. Right-click a metaclass or a stereotype and select New > Event Handler to open a
selection box, listing the available event handlers.

2. Select one or more event handlers and click OK to add them to the metaclass.
3. Click on the event handler in the tree view, and enter a name and comment.
4. Click the Event Handler Script tab and enter your script:

PowerDesigner

CHAPTER 2: Extension Files

i Process Language Properties [For All Models] M= E
General |
Gy Do Ieb><ML‘I_D4::Profile\Process\Stereotypes\BinaryEoIIaboration\EventHandlers\EanEreate n - ?i’ ?_;’B
OB P - -
7 ...[“_[-locgjsstom Checks 2 General Event Handler Script | Global Scriptl
[“_‘| Generated Files CNE R = =] M| 2 E|) (“x| @ LnB Cold
=] Stereotypes
=] AbstractProcess Function %CanCreate%(parent) ;I

(] Extended Attibutes
D Templates

=2 BinanyCollaboration
D Custam Checks
(2 Event Handlers

[Z Estended Attributes

[Z] Templates

BusinessAction

(2 Custom Checks

[Z1 Extended Attributes

[Z Templates

=] BusinessTransaction ;I

P = T e T O WU o R N

4CanCreate% = False
elae

3CanCreate® = True
end if

End Function

if parent is Nothing or parent.IsKind0f (PdBEpm.

P

o 1

Cancel Apply

Help |

5. Click Apply to save your changes.

Event Handler Properties

You specify the properties for an event handler by selecting its entry in the resource editor.

Property Description
Name Specifies the name of the event handler.
Comment Provides a description of the event handler.

Event Handler
Script

This tab specifies the VBScript that will run when the event occurs. Note that you
should not use statements such as msgbox, or input box to open a dialog box in the
event handler function.

Global Script

This tab can be used for sharing library functions and static attributes in the
resource file.

For more information on defining a script and using the Global Script tab, see
Defining the script of a custom check on page 88 and Using the global scripton
page 91.

Methods (Profile)

Methods allow you to perform actions on objects.

They are written in VVBScript, and are invoked by other profile components, such as menu
items (see Menus (Profile) on page 100) or form buttons (see Forms (Profile) on page 70).

Customizing and Extending PowerDesigner

97

The following example method, created in the Class metaclass, converts classes into
interfaces. It copies class basic properties and operations, deletes the class (to avoid
namespace problems), and creates the new interface.

Note that this script does not deal with other class properties, or with interface display, but a
method can be used to launch a custom dialog box to ask for end-user input before performing
its action (see Example: Creating a dialog box launched from a menu on page 102).

Sub %wvt hd%{ obj)
' Convert class to interface

Copy cl ass basic properties
Di m Fol der, Intf, C assNanme, O assCode
Set Fol der = obj . Parent
Set Intf = Folder.|nterfaces. Creat eNew
Cl assName = obj . Name
Cl assCode = obj. Code
I ntf.Coment = obj.Comrent

Copy cl ass operations
Dim Op
For Each Op I n obj.Qperations
Qut put Op. Nane
Next

Destroy cl ass
obj . Del ete

' Renane interface to saved nane
Intf. Nanme = Cl assNane

Intf.Code = C assCode

End Sub

For detailed information about using VBScript in PowerDesigner, see Chapter 7, Scripting
PowerDesigner on page 323.

Creating a Method

You can create a method in a profile.

1. Right-click a metaclass, stereotype or criterion and select New > Method.

2. Enter a name and a comment to describe the method.

3. Click the Method Script tab, and enter the VVBscript. If appropriate, you can reuse
functions on the Global Script tab.
By default, this tab contains the following skeleton script:

Sub %vet hod% obj)
| mpl ement your net hod on <obj > here
End Sub

98

PowerDesigner

CHAPTER 2: Extension Files

%Method% is a concatenation of the name of the resource file, the metaclass (and any
stereotype or criterion), and the name of the method itself defined in the General tab. If any
of these names contains an empty space, it is replaced by an underscore.

il Extended Model Definition Properties [ObjectDrientedModel_1]

General |

a8y = INBWXEM::Profile\EIass\Methods'\Method_'I n - ﬁ:B
Hevi<EM General Methad Seript | Global Scri tI
[:l Generation P
=03 Profle E-B-EHS#@ BB o § 2o
[:| Shared
=B Class Sub 3Mthd%iobi) -
B2 Methods ! Convert class to interface
3 Method 1
' Copy class basic properties
Iim Folder, Intf, ClassName, ClassCode
Set Folder = ohj.Parent
Set Intf = Folder.Interfaces.CreatelNew
Classlame = obj.MName
ClassCode = obj.Code
Intf. Comment = obj.Comment
' Copy class operations
Dim Op
For Each Op In obj.0Operations -
oK I Cancel Apply | Help |
4. Click Apply.

Method Properties

You specify the properties for a method by selecting its entry in the resource editor.

Property Description
Name Name of the method that identifies a script
Comment Additional information about the method

The Method Script tab contains the body of the method function.

The Global Script tab is used for sharing library functions and static attributes in the resource
file. This tab is shared with event handlers and transformations.

You can declare global variables on this tab, but you should be aware that they will not be
reinitialized each time the method is executed, and keep their value until you modify the

resource file, or the PowerDesigner session ends. This may cause errors, especially when
variables reference objects that can be modified or deleted. Make sure you reinitialize the

Customizing and Extending PowerDesigner

99

global variable at the beginning of a method if you do not want to keep the value from a
previous run.

For more information on defining a script and using the Global Script tab, see Defining the
script of a custom check on page 88 and Using the global script on page 91.

Menus (Profile)

You can add menus in the PowerDesigner interface and fill them with commands that call
method or transformations.

For more information on methods and transformations, see Methods (Profile) on page 97 and
Transformations and Transformation Profiles (Profile) on page 110.

Menus can be added to the PowerDesigner File, Tools, and Help menus when defined on the
model or a diagram metaclass, or on the contextual menus of diagram symbols and browser
items. Menus defined on a parent metaclass are inherited by its children. For example, you
could generalize a contextual menu by defining it on a parent metaclass like BaseObject.

1. Right-click a metaclass, stereotype or criterion and select New > Menu.
2. Enteraname and comment (and, in the case of model or diagram metaclasses, a location).

3. Usethetools on the Menu sub-tab to create the items in your menu (see Adding commands
and other items to your menu on page 102).

100

PowerDesigner

CHAPTER 2:

I4 Extended Model Definition Properties [PhysicalD ataModel 2]

Extension Files

General |
& = IEHTENDEDDEFINITIDN_'I::F'rnfile\Table\Menus'\ManageViews E- % 4%
ExtendedDefinition_1 . ,
I:l Generation Mame: M anage Views
ED Profile Comrment: ;I
i Shared
EE Table
=~ Methods LI
0 CreateVisws
4 OrganizeViews
=20 Merus
. B4 Manage Yiews Menu |><ML I
wh = HEE X
I% tenu

& Create Views [CreateViews):

@ Organize Views [OrganizeViews)

o]

Cancel Apply Help

4. Click Apply to save your changes.

Menu Properties

You specify the properties for a menu by selecting its entry in the resource editor.

choose between:

« File > Export menu
¢ Help menu

¢ Object Contextual Menu

¢ Tools menu

Menus created on other metaclasses are only available on the contextual menu,

Property Description

Name Specifies the internal name of the menu. This name will not appear in the menu
Comment Provides a description of the menu.

Location [model and diagram only] Specifies where the menu will be displayed. You can

and do not display a L ocation field.

Customizing and Extending PowerDesigner

101

Property Description

Menu This sub-tab provides tools to add items to your menu (see Adding commands and
other items to your menu on page 102).
XML This sub-tab displays the XML generated from the M enu sub-tab.

Adding Commands and Other Items to Your Menu

You insert items into your menu using the tools in the Menu tab toolbar.

You can reorder items in the menu tree by dragging and dropping them. To place an item inside
a submenu item, drop it onto the submenu.

Tool

Function

@

Add Command - Opens a selection dialog box to allow you to add one or more methods or
transformations to the menu as commands. This list is limited to methods and transforma-
tions defined in the current metaclass and its parents.

When you click OK, each selected method is added to your menu in the format: <Caption>
(<Method/Transformation name>).

The captionis the command name that will appear in the menu. You can define a shortcut
key in the caption by adding an ampersand before the shortkey letter.

Methods or transformations associated with menu commands are not synchronized with
those defined in a metaclass. Thus, if you modify the name or the script of a method or
transformation, you should use the Find tool to locate and update all the commands using
this method or transformation..

=

Add Separator -Creates a menu separator under the selected item.

al

=

Add Submenu - Creates a submenu under the selected item.

X

Deletes the selected item.

Example: Opening a Dialog Box from a Menu

Inthis example, we will create a menu command to export object properties to an XML file via
a dialog box.

1. Create a new extension file (see Creating an Extension Fileon page 23) in a PDM and add
the Tabl e metaclass (see Adding a Metaclass to a Profile on page 47).

2. Right-click the Tabl e metaclass and select New > Form. Enter Expor t in the Name
field, and select Di al og Box from the Type list.

3. Click the Edit Field tool to add an edit field control, and call it Fi | enane.

Right-click the Tabl e metaclass and select New > M ethod. Enter Expor t inthe Name

field, click the Method Script tab and enter the following code:

102

PowerDesigner

CHAPTER 2: Extension Files

Sub %vet hod% obj)

' Exports an object to a file

Create a dialog to input the export file name

Dimdl g

Set dl g = obj.Creat eCustonDi al og(" %Current Tar get Code% Export")
If not dlg is Nothing Then
" Initialize filename control val ue
dl g. Set Val ue "Fil enane", "c:\temp\ MWFile.xm"

Show di al og

I f dl g. ShowbDi al og() Then

' Retrieve custoner value for filenane control
Dim fil enane

filename = dl g. Get Val ue("Fi |l enane")

Process the export algorithm..
" (Actual export code not included in this exanple)

Qut put "Exporting object " + obj.Nane + " to file " +

fil ename
End |f
' Free dial og object
dl g. Del ete
Set dl g = Not hi ng
End I f
End Sub

5. Right-click the Tabl e metaclass and select New > Menu. Enter Expor t in the Name
field, and then click the Add Command tool and select the Expor t method:

] Extension Properties {Data Warehouse) ;Iglil
General |
- - |EHp0rt::F'rofile\Table\Menus\Export ﬂ k-\k - H - ﬁif 52}
[Export : —
I3 Generation Name: g
EI\.__"I Prrofile: Comment; =
A Shared
= Table
B Foms -
i LE] Export _I
1) Menus Location:
g = Export
E|»..:| Methods Menu |><ML I
L& Export ﬁ = & X
= Menu

@ Export [Expart]

u] I Cancel Apply Help

Customizing and Extending PowerDesigner 103

6. Click OK tosave your changes and return to your model. When you next right-click a table
in a diagram or the browser, the Export command is available in the contextual menu.

Templates and Generated Files (Profile)

You can define templates and generated files for metaclasses, stereotypes, and criteria. If a
template applies to all metaclasses, then you should create it in the Shared category.

The PowerDesigner Generation Template Language (GTL) is used to generate files from
metaclasses and for scripting (see Chapter 5, Customizing Generation with GTL on page
263). You write a template in GTL, using variables that allow you to access properties of the
current object or any other object in the model.

In the following example, the Generated Files category for classifiers contains a Java
Sour ce entry, which contains a reference to the template ¥%s our ce% When the file is
generated for a given classifier or for the instances of a classifier with a selected stereotype or
criterion, it will have the name specified in the File namefield, and will contain the contents
generated by this template:

7 object Language Properties (For All Models) _ |EI|1|
General |
a3 - ™ IJava::Profile\EIassifier\Generated Files'Java Source J ul, = nsc ’b1
G b d Fil -
E‘ J T <o IES —I Mame: I.Ja\ra Source
E‘) Templates File: narne: IZSDUlceFilenameZ Type: |<N0ne> j
-1 Helpers
-5 Kind Encoding: IUTF-B _I
ﬂ DrefaultHeader o .
onmmert: -
@ Defaullmports j
Iﬂ altributes
%] extends LI
- %] imports . .
Iﬂ iriticlizers v Use package hisrarchy as file path
%] innerClasses S-EF-Hda R | % 3 ‘E| ¥) [|-?‘=1 @ Lni Coll
ﬂ innerE nums 5 5
@ inner nterfaces it ;I
Iﬂ members
|E| operatiohs
Iﬂ package
ﬂ SOUMCE - -
[4 4
Kl P— »
ok I Cancel I Apply | Help |

Note: If you position your cursor between the percent signs surrounding this or any other
template name and press F12, you will either jump directly to the referenced template or, if
several templates share the same name, a Results diaglog will open allowing you to select the
template you want to navigate to.

104

PowerDesigner

CHAPTER 2: Extension Files

The referenced template, sour ce, contains GTL code to generate the contents of the file,
including references to other templates called:

« % sSourceGener at ed%
* 9sour ceHeader %

« Ypackage%

e % nports%

BT Object Language Properties (For All Models) -0 =|
General |
ﬂ - - IJava::Profile\CIassifier'\Templates\source j ")\ - H b ﬁif ig}
- Generated Files -
O - —I Mame: FOUICE
E] Java Source
=00 Templates Comment: =
-2 Helpers
-0 Kind
- %] DefaultHeadsr =l
@ Defaulimparts
= Ve (g =
Iﬂ attributes = ._;:f ~d S | & 53 LLiﬂ’l| a9 o |5"£' @ Ln1.Cot
- %] extends T .
Iﬂ imports .if ($isdourcelenerated%) -
Iﬂ it .zet_object(GenClassifier, new)
- Bl 'agr's .4/ header and package declaration
- [#] =L 2o [3zourceHeadersininly
%] inerErms [$packagesinin]
@ innernterffaces .44 imports
Iﬂ members undgque
ﬂ operations importss
%) package - endunique (4n)
[. ./ definition s
A
ak, I Cancel Apply | Help |

Creating a Template

Templates can be created in the Shared category when they apply to all metaclasses. They can
also be created at the metaclass level or for a given stereotype or criterion.

Note: Previously, you would bind the use of a particular template to a stereotype using the
template name <<stereotype>> syntax. Now, you create the template beneath the stereotype in
the profile.

You can use the Browse tool to find all templates of the same name. To do so, open a template,
position the cursor on a template name in-between % characters, and click Browse (or F12).
This opens a Result window that displays all templates prefixed by their metaclass name. You
can double-click a template in the result window to locate its definition in the resource editor.

1. Right-click a metaclass, a stereotype, or a criterion and select New > Templateto create a
template.

2. Enter a name in the Name box. We recommend that you do not use spaces in the name.

Customizing and Extending PowerDesigner 105

3. [optional] Enter a comment to explain the use of the template.
4. Enter the template body using GTL in the central box.

Creating a Generated File

The Generated Files category contains an entry for each type of file that will be generated for
the metaclass, stereotype, or criterion. Only files defined for objects belonging directly to a
model or a package collection will be generated. Sub-objects, like attributes, columns, or
parameters do not support file generation, but it can be interesting to see the code generated for
these sub-objects in their Preview tab.

Note: If an extension attached to the model contains a generated file name identical to one
defined in the main resource file, then the extension generated file will be generated.

1. Right-click a metaclass, stereotype, or criterion, and select New > Generated File.

2. Enter a name in the Name box, specify a file name, and select a file type to provide syntax
coloring.

3. Enter the template for the contents of the generated file in the text zone:

B Object Language Properties [For All Models) _ O] =]

General I

o - =9 IJava::Profile\CIassifier'\Genelated Filezh) ava Source j Q - E < '&c '?.;ag

=[] Profile -]
[:I Shared

5 Asgzaciation File name: IZsourceFiIenameZ Tupe: I,iava
#H-B Attribute
g BaseObject Encoding: IUTF-B
B BasePackage
+-B Class

E Classtd apping
95 Clagsifier
8 E::z:;ed Attibute V¥ Use package hierarchy as file path
Iil---[:lﬁeneratedFiles =~ - E§M| % E| sl ﬁ| 8 R Lnil Coll
I Java Saurce

D Templates |
#-B Component

#-B Dependency

#-B FileObijsct
[

t-B Generalization -
. P lebafemn hd 4 »
| »

Q. I Cancel Apply | Help |

Mame: |J ava Source

Carnment:

Lo L]l L

L

H30Urces

1]

4. Click Apply to save your changes.

Each generated file has the following properties:

106 PowerDesigner

CHAPTER 2: Extension Files

Property Description

Name Specifies a name for the file entry in the resource editor.

File Name Specifies the name of the file that will be generated. This field can contain GTL
variables. For example, to generate an XML file with the code of the object for its
name, you would enter € ode% xml .

If you leave this field empty, then no file will be generated, but you can view the
code produced in the object's Preview tab.

If this field contains a recognized extension, the code is displayed with the cor-
responding language editor and syntactic coloring.

Type Specifies the type of file to provide appropriate syntax coloring in the Preview
window.

Encoding Specifies the encoding format for the file. Click the ellipsis tool to the right of the
field to choose an alternate encoding from the Text Output Encoding Format
dialog, where you can specify the following options:

« Encoding - Encoding format of the generated file
« Abort on character loss - Specifies to stop generation if characters cannot be
identified and are to be lost in current encoding

Comment Specifies additional information about the generated file

Use package hi- | Specifies that the package hierarchy should be used to generate the hierarchy of

erarchy as file file directories.

path

Generated file Specifies the template of the file to generate. You can enter the template directly

template (text here or reference a template defined elsewhere in the profile (see Chapter 5,

zone) Customizing Generation with GTL on page 263).

Generated File Examples

A file is generated for each entry in the Gener at ed Fi | e category under a metaclass,
stereotype or criterion when the File name field is not empty. If no file name or only an
extension is specified, the content of the generated file can still be viewed in the object's

Preview tab.

The mechanism of file generation is the following for each object having a Generated Files
entry that is not empty:

Customizing and Extending PowerDesigner 107

Far each entry in the
Generated Files category

i

File name generated

¢

File opened — e Template evaluated in the
Generated Files category

'

File closed -w—— File created

In the following example, the Gener at ed Fi | es category for file objects in Java contains
the EnbeddedArti f act entry that applies to all embedded files of type Artifact to be
generated, and whose File name field contains the template for the name of the file to be
generated. The text field at the bottom displays the code of the template of the file to generate:

B3 Dbject Language Properties [For All Models) | _ (O] x|
General |
Qe =5 IJava::Profile\FiIeDbiect\Generated FileshE mbeddedatifact ﬂ -~ RBE ?-EB
-] Shared
e %I A&:orziation ;I Mame: IEmbedded-’-‘utifact
B Atribute File name: I‘ZfileName‘Z
‘B BaseObject
B BasePackage Encoding: |ANS [Active Code Page) m
S E::zzifier Comment: |Default generation for embedded files of type artifact ;l
* ‘B Companent
E Dependency LI
E-B FileDbject ; ;
D Criteria ¥ Usze package hierarchy as file path
I?..l[?--l%angrn?;iiz;rtifact . T n % ﬁ| ‘x’ E| L ﬁ'l -;:b ? Ln 1. Ce
[:I Templates ;I
B Generalization (GeneratedContents
B Interface
B Operation
-8B Parameter _ILI
-8B Realization = 4] »

0Ok I Cancel | Apply | Help |

In this example, a file called ejb-jar.xml located in the META-INF folder is generated:

108 PowerDesigner

CHAPTER 2: Extension Files

51 Dbject Language Properties [For All Models] _|Of x|

Gerneral |

& o = I.Java::F'rofile\EasePackage'\Eriteria\EJE Package\Generated Files\EJB Deployment [~ 4 25

J -
--DavaSeltings =1 | Mame: IE.JB Deployment Descriptar
D Generation File name: IMET;’-\-INF\eib-iar.xml
=21 Prafile
[:' Shared Encoding: IANSI [&ctive Code Page) IZI
B Associstion
: C k -
= B Atrbute . —
E BaseObject
£-B BasePackage =l
=[] Criteria) ;
: - EJB Package W Use package hierarchy as file path
@---DGneratedFiles Al & - Br- E@Ml % El) ml i
EJB Deployment Desc
D Templates <ml verszion="1.0" encoding="UTF—8"?>i|
'web application package <!-- EJB 2.0 deployment descriptor -->
[:' Templates <1-- duthor: zModifiery --Z

<1-- Modified: %*ModificationDate® --X
LIDOCTYFE ejb-jar PUBLIC "-//5un Hicrosvl

=

B Classifier =

[T — I S 4 3
4| |

ak. I Caticel | Spply | Help |

Class

In this example, there is no file generated since the Filenamefield contains only an extension
beginning with a . (dot) character. The contents of the file is only available on the Preview tab
of the component (EJB - Entity Bean) property sheet:

Customizing and Extending PowerDesigner 109

E7 Object Language Properties [For All Models]

IS [=] E3

General |
o BN IJava::F'rofile\Component\Criteria\EJB - Entity BeantGenerated Files\Bean Class E - PQ? '?_;’B
=[] Profil
= "[:T ;SBhaled d Marme: IEean Clazs
B Association File name: |.iava
B Athibute
B BaseObject Encoding: IANSI [tctive Code Page) |:I
B BasePackage
: C 13 -
B Class Smmen _I
-8 Classifier
=B Comporent =
=1 Criteria . .
- EJB ¥ Use package hisrarchy as file path

= EJE - Entity Bean

E-B-HES#HM 2R v @f n

E|[:| Generated Files

Bean Class ;I
_ Local Home Interf *EBeanClass. sources
- Lacal Interface
- Frimary K.ey Class

; - Remote Home Ink = Iv

FI L TN = FUS Yy (U SRy 1| I 4

4 [
’T‘ Cancel Ay | Help |

Transformations and Transformation Profiles (Profile)

A transformation defines a set of actions to be executed during generation or upon request.
You define a transformation in the profile category of an extension on a metaclass or a

stereotype or other criteria.

You define a transformation when you want to:

« Modify objects for a special purpose. For example, you can create a transformation in an
OOM that converts <<control>> classes into components.

« Modify objects in a reversible way. This can be useful during round-trip engineering. For
example, if you generate a PDM from an OOM in order to create O/R mappings, and the
source OOM contains components, you can pre-transform components into classes for
easy mapping to PDM tables. When you update the source OOM from the generated PDM,
you can use a post-transformation to recreate the components from the classes.

Transformations can be used:

* In atransformation profile (see Creating a Transformation Profile on page 114) during
model generation, or on demand. For more information, see Core Features Guide >
Linking and Synchronizing Models > Generating Models and Model Objects >

110

PowerDesigner

CHAPTER 2: Extension Files

Generating Models > Model Generation Options Window > Applying Model
Transformations.

e Asacommand in a user-defined menu (see Menus (Profile) on page 100)

Transformations can be used to implement Model Driven Architecture (MDA), a process
defined by the OMG, and which separates the business logic of an application from the
technological means used to implement it. The goal is to improve the integration and
interoperability of applications and as a result, reduce the time and effort spent in application
development and maintenance.

MDA development uses UML modeling to describe an application at different levels of detail,
starting with the construction of a Platform-independent model (PIM)which models the basic
business logic and functionality, and ending in a Platform-Specific Model (PSM) which
includes implementation technologies (like CORBA, .NET, or Java). Between the initial PIM
and the final PSM, there may be other intermediate models.

PowerDesigner allows you to create an initial PIM and refine it progressively in different
models containing increasing levels of implementation and technology-dependent
information. You can define transformations that will generate a more refined version of a
model, based on the desired target platform. When changes are made to the PIM, they can be
cascaded down to the generated models.

Transformations can also be used to apply design patterns to your model objects.

1. Right-click a metaclass or stereotype, and select New > Transfor mation from the
contextual menu.

2. Enter the appropriate properties including a transformation script.

Transformation Properties
A transformation has the following properties:

General Tab
The General tab contains the following properties:

Property | Description

Name Name of the transformation. Make sure you type understandable names in order to
easily identify them in selection lists

Comment Additional information about the transformation used to explain the script

Transformation Script Tab
The Transformation Script tab contains the following properties:

Customizing and Extending PowerDesigner 111

Name Definition

CopyObject Duplicates an existing object and set a source for the duplicated object.
Parameters:

e source: object to duplicate
« tag [optional]: identifier

Returns: A copy of the new object

SetSource Sets the source object of a generated object. It is recommended to always set the
source object to keep track of the origin of a generated object.

Parameters:

e source: source object
e target: target object
e tag [optional]: identifier

Returns:

GetSource Retrieves the source object of a generated object.
Parameters:

e target: target object
e tag [optional]: identifier

Returns: Source object

GetTarget Retrieves the target object of a source object.

Parameters:

e source: source object
« tag [optional]: identifier

Returns: Target object

Since a source object can be transformed and have several targets, you may have problems

identifying the origin of an object, especially in the merge dialog box. The following

mechanism is used to help identify the origin of an object:

 If the source object is transformed into a single object, the transformation is used as an
internal identifier of the target object.

 If the source object is transformed into several objects, you can define a specific fagto
identify the result of transformation. You should use only alphanumeric characters, and we
recommend that you use a "stable" value such as a stereotype, which will not be modified
during repetitive generations.

For example, OOML1 contains the class Customer, to which you apply a transformation script

to create an EJB. Two new classes are created from the source class, one for the home

112

PowerDesigner

CHAPTER 2: Extension Files

interface, and one for the remote interface. In the transformation script, you should assign atag
"home" for the home interface, and "remote" for the remote interface. The tag is displayed
between <> signs in the Version Info tab of an object, beside the source object.

In the following example, the tag mechanism is used to identify the classes attached to a
component:

'setting tag for all classes attached to conponent
for each Css in nmyConponent.C asses
if clss <> obj then
trfm Set Source obj, Clss,"” GenatedFronEJB"+ obj.nanme +"target”
+Cl ss. Name
For each ope in clss.Operations
if Ope.Nane = Clss.Code Then '"then it is a constructor _Bean
operation
trfm Set Source obj, Ope," CenatedFronEJB"+ obj.name +"target"”
+Ope. Nanme
end if
if Ope.Nanme = Clss.Nanme Then 'then it is a constructor operation
trfm Set Source obj, Ope," CenatedFronEJB"+ obj.name +"target"”
+Ope. Nanme
end if
if Ope.name = "equal s" Then 'then it is an equal s operation and
shoul d be tagged
trfm Set Source obj, Ope," CenatedFronEJB"+ obj.name +"target"
+Ope. Nanme
end if
next
end if
next

Transformation scripts do not require as many checks as standard scripts, which require that
you verify the content of a model in order to avoid errors, because transformations are always
implemented in a temporary model where there is no existing object. The temporary model is
merged with the generation target model if the Preserve modification option is selected during
update.

If you create a transformation using an existing script, you can remove these controls.

Internal transformation objects do not appear in the PowerDesigner interface; they are created
as temporary objects passed to the script so that the user can access the helper functions, and
also to record the execution of a sequence of transformations in order to be able to execute
them later.

Internal transformation objects are preserved when the transformations are used by the Apply
Transformations feature or in a menu, so that when you update a model (regenerate) in which
these kind of transformations have been executed, the transformations can be re-executed in
the source model in order to maintain an equality between the source and the target model.

For example, CDML1 contains an entity A. You generate an OOM from CDM1 and class B is
created. You apply some transformations to class B in OOML1 in order to create class C. When
you re-generate CDM1 and update OOM1, class B will be generated from entity A but class C

Customizing and Extending PowerDesigner 113

is missing in the generated model, and shows as a difference in the merge dialog box.
However, thanks to the internal transformation objects, the transformations which were
executed in the generated OOM are re-executed and you obtain class C and the models to be
merged are more similar than before.

Global Script and Dependencies Tabs

The Global Script tab provides access to definitions shared by all VBScript functions defined
in the profile, and the Dependencies tab lists the transformation profiles in which the
transformation is used.

Creating a Transformation Profile

A transformation profile is a group of transformations applied during model generation when
you want to apply changes to objects in the source or target models.

You define a transformation profile in the Transformation Profiles category of an extension
(see Transformations and Transformation Profiles (Profile) on page 110). Each profile is
identified by the model in which the current extension file is defined, a model type, a family
and a subfamily.

1. [if the Transformation Profiles category is not present] Right-click the root node, select
Add Items from the contextual menu, select Transformation Profiles and click OK to
create this folder beneath the root node.

2. Rightclick the Transformation Profiles folder, and select New from the contextual menu.
A new transformation profile is created in the folder.

3. Define the appropriate properties and add one or more transformations using the Add
Transformations tool on the Pre-generation or Post-generation tabs. These
transformations should have been previously defined in the Profile\Transformations
category.

Transformation Profile Properties

You define a transformation profile using the following properties:

Property | Description

Name Name of the transformation profile

Comment Additional information about the transformation profile

Model Type | [optional] Specifies the type of model with which the transformation profile can be
used. This is a way to filter profiles during generation. For example, if you select
OOM when the current extension is in a PDM, the transformation profile can be used
during PDM to OOM generation or reverse engineering

114

PowerDesigner

CHAPTER 2: Extension Files

Property | Description

Family and [optional] If the model type supports a target resource file, you can also define a

subfamily family and subfamily to filter the display of profiles in the generation dialog box. The
family is used to establish a link between the resource file of amodel and an extension
file. When the resource file family corresponds to the extension family, it suggests
that the extension complements the resource file

Pre-genera- The Pre-generation tab lists the transformations to be executed before model gener-

tion ation. These transformations are executed when the current model in which you have

created the extension is the source model, and when the constraints defined in the
model type, family, and subfamily boxes are met.

Any object created during pre-generation is automatically added to the list of objects
used in generation.

These changes to the source model are temporary and are reversed after generation is
complete.

For example, you can define a transformation profile with a transformation that
cancels the creation of EJBs from classes before generating an OOM into a PDM in
order to establish a better mapping between classes and tables during generation.

Post-genera-
tion

The Post-generation tab lists the transformations to be executed after generation.
These transformations are executed when the current model in which you have
created the extension is the target model.

For example, you can define a transformation profile with a transformation that
automatically applies the correct naming conventions to the generated model.

Customizing and Extending PowerDesigner 115

116 PowerDesigner

CHAPTER 3 Object, Process, and XML
Language Definition Files

A separate definition file is supplied for each OOM, BPM, and XSM language supported by
PowerDesigner, which defines the syntax and guidelines for generating objects and
implementing stereotypes, data types, scripts and constants for the language. You must select
a language definition file when you create an OOM, BPM, or XSM.

The following types of language definition files are explained in this chapter:

e OOM - Object language definition files (.xol)
« BPM - Business process language definition files (.xpl)
e XSM - XML language definition files (.xsl)

Note: The PDM uses a different form of definition file (see Chapter 4, DBMS Definition Files
on page 127), and other model types do not have definition files but can be extended with
extension files (see Chapter 2, Extension Files on page 21).

All target languages have the same basic category structure, but the detail and values of entries
differs for each language:

« Settings - contains data types, constants, namings, and events categories used to customize
and manage generation features. The types of items in this category differ depending on
the type of resource file.

» Generation - contains generation commands, options, and task.
 Profile - contains extensions on metaclasses.

Customizing and Extending PowerDesigner 117

E7 object Language Properties (For All Models)

General |

=10l x|

a-BE- IJava

Q- %

El-
EHT) Settings
H-C) Marmings
1) DataTypes
{3 Constants
) Everts
1] EnableGenerics
“[ol1] Enablevarbrgs
EH) Gereration
£1-3) Commands
{3 Options
) Tasks
=) Prafile
B Shared
= Annotation
RS Association
H attribute
- Criteria

-3) Extended Attributes

| v

=

Mame: I.Java _=I
Code: I.Java lT

File name: IC:\F‘rngram FileshSybaze \PowerDesigner 164 esource Files'

Farnily: |.Java

Subfamiy: [J2EE

~ Generation
[" Enable race mode

Comment:

Thiz object language definition iz based on the Java language
specification.

It includes support for J25E 5.0 Metadata ag well az JZEE 1.4, Enterprise
avaBeans 2.1, Java Servlets 2.4 and Java Server Pages [J5F).

ak. I Caticel Aol Help

The root node of each file contains the following properties:

Property Description

Name Specifies the name of the target language.

Code Specifies the code of the target language.

File Name [read-only] Specifies the path to the .xol, xpl, or .xsl file. If the target language has
been copied to your model, this field is empty.

\ersion [read-only] Specifies the repository version if the resource is shared via the re-
pository.

Family Enables certain non-default features in the model. For example, object languages
of the Java, XML, IDL and PowerBuilder® families support reverse engineering.

Subfamily Fine-tunes the features for a given family. For example, in the Java family, the
J2EE subfamily supports EJBs, servlets and JSPs.

118

PowerDesigner

CHAPTER 3: Object, Process, and XML Language Definition Files

Property

Description

Enable Trace
Mode

Lets you preview the templates used during generation. Before starting the gen-
eration, click the Preview page of the relevant object, and hit the Refresh tool to
display these templates.

When you double-click on a trace line from the Preview page, the Resource Editor
opens to the corresponding template definition in the Profile\Object\Templates
category. The code of the template may be colored (see Syntactic coloring in
section Generated Files category on page 107).

Comment

Specifies additional information about the target language.

Settings Category: Process Language

The Settings category contains the following items used to control the data types, constants,
namings, and events categories used to customize and manage BPM generation features:

» Implementation — [executable BPM only] Gathers options that influence the process
implementation possibilities. The following constants are defined by default:
» LoopTypeList- This list defines the type of loop supported by the language. The value
must be an integer
« QperationTypeList- This list defines the type of operation supported by the language.
An unsupported operation type cannot be associated with a process. The value must be

an integer

* EnableEmissionCorrelation - enables the definition of a correlation for an emitted

message

e EnableProcessReuse - allows a process to be implemented by another process
* AutomaticlnvokeMode - indicates if the action type of a process implemented by an
operation can be automatically deducted from the operation type. You can specify:
e 0 (default) - the action type cannot be deduced and must be specified
< 1 -the language enforces a Request-Response and a One-Way operation to be
received by the process and a Solicit-Response and a Notification operation to be
invoked by the process
» 2 the language ensures that a Solicit-Response and a Notification operation are
always received by the process while Request-Response and One-Way operations
are always invoked by the process

Customizing and Extending PowerDesigner 119

{# Process Language Properties [For All Models) _ (O] x|

General I
S =T IBF'EL4W'S 1.1::Settings' mplementation’ 0 perationT ppeList = - Fi? ?-E'B
= Seth -
= D EhndE . —I Marne: O perationT ypelis
= Implementation
D] LoopTypelist Commert: [T his lizt defines the type of operation supported by the language &
|I| OperationTypeList Ah unzupported operation type cannot be associated with a
[0 EnableE mizzionCorrela process. .
[0 ErableProcessReuse The: value must be an integer.)) .
:) The list must contain a subset of following operation tppes:
(1 DataHanding - Undsfined (valus
[il1] EnabletessagelnFloy - One-way [value 1) ;I
: [0l Enabletd essagel ariab W alue:
=10 Chaorengraphy == % | ¢
[f[1] EnabletultipleStarts ' | ‘% E |
[i[i] EnableTopLevelChaore MHame Walue)
B2 Profile 1 o Undefined
-] Shared 2 1 One-way
= BasePackage 3 2 Request-response]
i Templates i
Correlation =
B Data =
= | B FYEYPY A E1 1K |21
4| [[
ak. I Cancel | Apply | Help |

» DataHandling - [executable BPM only] Gathers options for managing data in the
language. The following constant values are defined by default:
» EnableMessageOnFlow - indicates if a message format can be associated to a flow or
not. The default value is Yes
» EnableMessageVariable - enables a variable object to store the whole content of a
message format. In this case, the message format objects will appear in the data type
combo box of the variable
» Choreography - Gathers objects that allow the design of the graph of activities (start, end,
decision, synchronization, transition...) Contains the following constant values defined by
default:
e EnableMultipleStarts - When set to No, ensures that no more than one start is defined
under a composite process
» EnableTopLevelChoreography- When setto No, ensures that no flow or choreography
object (start, end, decision...) is defined directly under the model or a package. These
objects can be defined only under a composite process

Settings Category: Object Language

The Settings category contains the following items used to control the data types, constants,
namings, and events categories used to customize and manage OOM generation features:

» Data Types- Tables for mapping internal data types with object language data types. The
following data types values are defined by default:

120 PowerDesigner

CHAPTER 3: Object, Process, and XML Language Definition Files

BasicDataTypes — lists the most commonly-used data types. The Value column
indicates the conceptual data type used for CDM and PDM model generations.
ConceptualDataTypes - lists internal PowerDesigner data types. The Value column
indicates the object language data type used for CDM and PDM model generations.
AdditionalDataTypes- lists additional data types added to data type lists. Can be used
to add or change data types of your own. The Value column indicates the conceptual
data type used for CDM and PDM model generations.

DefaultDataType — specifies the default data type.

B3 Object Language Properties [For All Models) H=] E3
General |
S x2S IXML Schema::SettingstDataT ypeshBasicD ataT ppes n - ?_T ?-EB
(] =ML - Schema -
HD Seffings Harmne: IBamcDataT_l,lpes
D Hamings Comment: |basic =ML-Schema datatypes -
-] DataTypes The zecond column indicates the conceptual data type
o]] AddtionalDataT ypes uzed for COM and POM model generations but alza in the
|I| EasicDataT ypes 'Change Object Language' process
: |I| Conceptuall ataTypes
[:I Constants LI
-] Events Walue:
..... | Genleratlon fz= =] | ¥ B % | 4
-] Profile
Marne Walue i’
1 wid: sting TsT
2 wzd:boolean BL
3 wzd:decimal M
4 wzd:float F A
5 xzd:double M =
=] wed: duration T -
cak AR EAETEIED] |»

Ok, I Cancel | Sppl | Help |

« Constants - contains mapping between the following constants and their default values:
Null, True, False, Void, Bool.

e Namings - contains parameters that influence what will be included in the files that you
generate from an OOM:

GetterName - Name and value for getter operations

GetterCode - Code and value for getter operations

SetterName - Name and value for setter operations

SetterCode - Code and value for setter operations

IllegalChar - lists illegal characters for the object language. This list populates the

Invalid characters field in Tools> Model Options > Naming Convention. For
example, "/ 1 =<>""" ()"

» Events- defines standard events on operations. This category may contain default existing
events such as constructors and destructors, depending on the object language. An event is
linked to an operation, and the contents of the Events category is displayed in the Event list

Customizing and Extending PowerDesigner 121

in operation property sheets to describe the events that can be used by an operation. In
PowerBuilder for example, the Events category is used to associate operations with
PowerBuilder events.

Settings Category: XML Language

The Settings category contains the Data types category that shows a mapping of internal data
types with XML language data types.

The following data types values are defined by default:

ConceptualDataTypes - The Value column indicates the XML language data type used for
model generations. Conceptual data types are the internal data types of PowerDesigner,
and cannot be modified

XsmDataTypes- Data types for generations from the XML model

Generation Category

The Generation category contains categories and entries to define and activate a generation
process.

The following sub-categories are available:

Commands - contains generation commands, which can be executed at the end of the
generation process, after the generation of all files. Commands are written in GTL (see
Chapter 5, Customizing Generation with GTL on page 263), and must be included within
tasks to be evoked.

variable defined in General Options = Variables
{environment variable)

Afnot (HSJAVACK) -
log Warning: Undefined environment variable: JAVAC {(Jawva
.1log If java.exe i= not accessible from Path. please defins
c=et_walue{ JAVAC, "jawvac emxe")

else

cmet_value(_JAVAC, "¥SJAVACH")
local endif

variable

foreach item{Activelodel GensratedClassifierlist)
.execute_command (¥ JAVACK, ¥javaFilepath¥, cmd PipeOutput)

next / ;I

template for evaluating the path hlocks until commletion
and shows the output

Options— contains options, available on the Options tab of the Generation dialog box, the
values of which can be tested by generation templates or commands. You can create
options that take boolean, string, or list values. The value of an option may be accessed ina
template using the following syntax:

"% ' GenOptions.'<option-nane> '%

122

PowerDesigner

CHAPTER 3: Object, Process, and XML Language Definition Files

For example, for a boolean option named GenerateComment,
%GenOptions.GenerateComment% will evaluate to either true or false in a template,
depending on the value specified in the Generation dialog Options tab.

Tasks— contains tasks, available on the Tasks tab of the Generation dialog box, and which
contain lists of generation commands (see above). When a task is selected in the Tasks tab,
the commands included in the task are retrieved and their templates evaluated and
executed.

Example: Adding a Generation Command and Task

In this example, we will add a generation command and associated task to the Java object
language

1

Create anew OOM for Java, and then select L anguage> Edit Current Object L anguage
to open the Java resource file.

Expand the Generation category, and then right-click the Commands category and select
New in the contextual menu to create a new command.

Name the command DoCommand and enter an appropriate template:

7 Object Language Properties [For All Models] _ [Of x|
General |
&S o IJava::Generation\Commands\DDCommand E < F&? ?-EB
(] Java -
[:l Settings Marne: DaCaommand
E‘D Generatian Comment: [Fun do command on file to generate ﬂ
EI[:I Commands
EID Enterprize Java Beans
435 EJBCleanup |
-y EJBJar N
gty EJBV ey E-B-HESH#M L BE v o 8f e
=[] web Application
% xeﬁpp&md dog Warning: Undefined environment wariable
Dol = pz ar .log If do.bat is not accessible from Path,
¢ DoComman .get_walue(DO, "do.bat™)
gy Java - -
43 Javac .set_value(DO, "%§D0%")
gl Javadoo =
#-[C7 Options
EI[:] Tasks .get_walue(CMD, "cnd.exe™)
-1 Enterprize Java Beans _lj
D “Weh Application lI_I k
I U S ll

Ok I Cancel | Apply | Help |

4. Right-click the Tasks category and select New from the contextual menu, to create a new

task. Name the task Execute, click the Add Commands tool, select DoCommand from the
list and then click OK to add it to the new task:

Customizing and Extending PowerDesigner 123

B Object Language Properties [For All Models) |_ O] =|

General |
& or o I.Java::Generation'\Tasks\EHecute H- % ?-EB
E_ﬁl Java Marme: E n
[:I Settings Mame: wecute
=1+ Generation Caomment: |Execute do command on files ﬂ
-1 Commands
=0 Tasks
-] Enterprise Java Beans LI
-1 Web spplication
'3-1—; Compile Commanids:
% CompileRun | E)
Execute
-k Generatel avadoc Marme Caomment =]
-7 Profile 1 CoCarmmand Run do command on file to generate
4
F#| e[v]$|2]4] I

Ok I Cancel | Apply | Help |

5. Click OKto save your changes and return to the model. Then select L anguage> Gener ate
Java codeto open the Generation dialog, and click the Tasks tab. The new task is listed on
the tab under its comment (or its name, if no comment has been provided):

Generation H =] E3
Duireectary: |c:'\generalion\ |EI

Targetsl Selectinnl Options Tasks |

+ +

WS5DL: Generate Web Service related files using the <RPCC toal
Java: Compile Java sources

Java: Package compiled clazzes in a JAR file

Java: Run Java application

Java Generate Jawa Doc

Java Aun JZEE verifier

Java: Package J2EE application in an EAR file

Ok I Cancel Spply Help

124 PowerDesigner

CHAPTER 3: Object, Process, and XML Language Definition Files

Example 2: Adding a Generation Option
In this example, we will add a generation option to the Java object language.

1. Select Language > Edit Current Object L anguage to open the Java resource file.

2. Expand the Generation category, and then right-click the Options category and select New
in the contextual menu to create a new option:

£ Object Language Properties [For All Models)

=] B3
General |
Sy =T IJava::Generation\Dptions\UselDefined_Dption H - F&’ ﬁ:B
J
--[:alvgettings Marne: ILISElDefined_Dption
EI[:] Generation Type: IBDD|BEII"I =]
#-[Z1 Commands
=1+ Options Comment: |Userdefined option for generation ;l
| om-l] J2EE
MembersPrimanyS ort
tembersTwpeSort LI

MembersyizibilityS art
Packagelmparts

¢ [UserDefined_Optian
[:| Tazks

-1 Profile

Yalue: ey % No

0k I Cancel | Apply | Help |

3. Click OKtosave your changes and return to the model. Then select L anguage> Gener ate
Java code to open the Generation dialog, and click the Options tab. The new option is
listed on the tab under its comment (or its name, if no comment has been provided):

Customizing and Extending PowerDesigner 125

Generation _ (O] x|

Cirectony: Ic: aeneration @
Targets I Selection Options | Tasks I
[Check model
Target « Option et
Java EJE : Add Java clazzes source code in the JAR: tue
Java Jawa: Sort clazs members primarily by: Wizibility
Java Jawva : Clazz members wpe sort Aftributes - O
Java Jawa: Clazs members vizibility zort Private - Publi
Java Java : Generate package imports falze
Java E.JB : Generate CMA field accessors in remote i falze
Java EJB : Generate CMP field accessors in compon i true
Java Uzer defined option for generation true =i
=
=
4| | b

QK I Cancel | Apply | Help |

Note: For detailed information about creating and modifying generation templates, see
Chapter 5, Customizing Generation with GTL on page 263. It is strongly advised that you first
read this chapter in order to get familiar with the concepts and features of the generation
process.

Profile Category (Definition Files)

The language definition file Profile category can contain Stereotypes, Extended attributes,
Methods and so on, to extend the metaclasses defined in the PowerDesigner metamodel.

In object languages, the Shar ed/ Ext ended Attri bute Types category contains
various attributes used to control object language support within PowerDesigner. The Object
Container variable specifies the default container for implementing associations. This
attribute has an editable list of possible values for each object language, from which you can
select a default value for your language. You can, if necessary, override this default using the
Default association container model option.

For detailed information about working with the Profile category, see Chapter 2, Extension
Fileson page 21.

126

PowerDesigner

CHAPTER 4 DBMS Definition Files

A DBMS definition file is a PowerDesigner resource file that provides PowerDesigner with
the information necessary to model, reverse-engineer, and generate a particular DBMS.

PowerDesigner provides definition files for most popular DBMSs. The DBMS definition files
are located in install_dir/Resource FilessDBMS, and have an .xdb extension.

Note: Modifications to a DBMS definition file can change the way PowerDesigner functions
work, especially when generating scripts. Make sure you create backup copies of your
database and thoroughly test generated scripts before executing them.

Opening your Target DBMS Definition File in the Target
Editor
You can consult or modify a DBMS definition file using the Resource Editor. When you select

a categoryor an item in the left-hand pane, the name, value, and related comment appear in the
right side of the dialog box.

£ DBMS Properties [For All Models) _|Of =]

General | Trigger Templatesl Trigger Template Itemsl

& v =T IS_l,lbase.-’-‘n.S Enterprize 12 5::GeneraE nableCheck. & - FQF ?-EB

[i Sybase AS Enterprize 125
EI[:I General
-1 EnableCheck Comment: |Determines if the generation of check, parameters is authonized ;I
Enablelntegrity or hot
EnableMultiCheck
Enableconstname
: SqlSupport
UnigCanstMarme LI
M- Seript
-3 Odbe Walue F Yes 0 Mo
B[] Profile

Mame: EnableCheck

(1] I Cancel Spply Help

Customizing and Extending PowerDesigner 127

Select Database > Edit current DBMS

The DBMS Properties dialog box is displayed.

Note: You should never modify the DBMS files shipped with PowerDesigner. You should
instead copy the DBMS to create a new one. To do so, create a new DBMS from the List of
DBMS, define a name, and then select the original file in the Copy From list.

For more information on using the editor, see Opening Resource Files in the Editor on page

2.

DBMS Definition File Structure

All DBMS definition files have the same structure made up of a number of categories, each of
which may contain items or other categories. The items, and their values are different for each
DBMS. Each item is present only if it is relevant to the DBMS. Each value is a SQL statement
or other parameter to define how to model, generate and reverse engineer for the DBMS.

Each DBMS file has the following structure:

General - contains general information about the database, without any categories (see
General Category on page 146). All items defined in the General category apply to all
database objects.

Script - used for generation and reverse engineering. Contains the following sub-

categories:

e SQL - contains the following sub-categories, each of which contains items whose
values define general syntax for the database:

» Syntax- general parameters for SQL syntax (see Syntax Category on page 147)

» Format - parameters for allowed characters (see Format Category on page 148)

* File- header, footer and usage text items used during generation (see File Category
on page 150)

* Keywords- the list of SQL reserved words and functions (see Keywords Category
on page 152)

« Objects- contains commands to create, delete or modify all the objects in the database.
Also includes commands that define object behavior, defaults, necessary SQL queries,
reverse engineering options, and so on (see Script/Objects Category on page 154).

« Data Type - contains the list of valid data types for the specified DBMS and the
corresponding types in PowerDesigner (see Script/Data Type Category on page 209).

e Customize - Retrieves information from PowerDesigner \ersion 6 DBMS definition
files. It is not used in later versions.

ODBC- present only if the DBMS does not support standard statements for generation. In

this case the ODBC category contains additional items necessary for live database

connection generation .

Transformation Profiles — contains group of transformations used during model

generation when you need to apply changes to objects in the source or target models. For

more information, see Transformations and Transformation Profiles (Profile)on page 110

and Core Features Guide > Linking and Synchronizing Models > Generating Models and

128

PowerDesigner

CHAPTER 4: DBMS Definition Files

Model Objects > Generating Models > Model Generation Options Window > Applying
Model Transformations.

Profile- allows you to define extended attribute types and extended attributes for database
objects. For more information, see Profile Category (DBMS) on page 212.

DBMS Property Page
A DBMS has a property page available when you click the root node in the tree view. The
following properties are defined:

Property | Description

Name Name of the DBMS. This name must be unique in a model

Code Code of the DBMS. This code must be unique in a model

File Name [read only] Path and name of the DBMS file.

Family Used to classify a DBMS, and to establish a link between different database resource
files. For example, Sybase AS Anywhere, and Sybase AS Enterprise belong to the
SQL Server family.

Triggers are retained when you change target within the same family.

Merge interface allows to merge models from the same family

Comment Additional information about the DBMS

Triggers Templates, Trigger Template Items, and Procedure Templates

The DBMS Trigger templates, Trigger template items, and Procedure templates are accessible
via the tabs in the Resource Editor window. In addition, for Oracle, there is a tab for database
package templates.

Templates for stored procedures are defined under the Procedure category in the DBMS tree
view.

For more information, see Data Modeling > Building Data Models > Triggers and Procedures

Managing Generation and Reverse Engineering

PowerDesigner supports reverse engineering and generation through both scriptsand /ive
aatabase connections.

In this section:

o Statementis used to define a piece of SQL syntax. Statements often contain variables that
will be evaluated during generation and script reverse engineering.

* Queryis reserved for describing live database reverse engineering

Statements for script generation, script reverse engineering, and live database generation are
identical, whereas live database reverse engineering may require specific queries.

Customizing and Extending PowerDesigner 129

The processes of generation and reverse-engineering can be defined as follows:

Generation- statements are parsed and variables are evaluated and replaced by their actual
values taken from the current model. The same statements are used for script and live
database generation.

Reverse engineering — may be performed by:

» Script- PowerDesigner parses the script and identifies the different statements thanks
to the terminator (defined in Script\Sql\Syntax). Each individual statement is
"associated" with an existing statement in the DBMS definition file in order to commit
the variables in the reversed statement as items in a PowerDesigner model.

« Live database connection - special queries are used to retrieve information from the
database system tables. Each column of a query result set is associated with a variable.
The query header specifies the association between the columns of the resultset and the
variable. The values of the returned records are stored in these variables which are then
committed as object attributes.

For more information on variables, see Optional strings and variables on page 227.

Script Category

The Script category contains the following kinds of items:

Generation and reverse engineering statements - used for script and live database
generation and script reverse engineering. For example, the standard statement for
creating an index is:

create i ndex % NDEX%

These statements differ from DBMS to DBMS. For example in Oracle 9i, the index create
statement contains the definition of an owner:

create [9N QUEYR%N QUE% : [% NDEXTYPE%]]i ndex [%QUALI FI ER% % NDEX%
on [UCLUSTERY®cl ust er C 9%TABLE% [YT ABLQUALI FI ER%4 % ABLE% (

%Cl DXLI ST%

% !’/QDTI ONS%

The following kinds of generation and reverse engineering statements are also available:

Drop for deleting an object

Options for defining the physical options of an object

ConstName to define the constraint name template for object checks

Modify statements - used to modify the attributes of already existing objects. Most start
with the word "Modify", but others include Rename or AlterTableFooter.

The statement for creating a key' depending on where the key is defined. If the key is inside
the table, then it will be created with a generation order, and if it is created outside the table,
it will be a modify order of the table.

130

PowerDesigner

CHAPTER 4: DBMS Definition Files

» Database definition items— used to customize the PowerDesigner interface and behavior
according to database features. For example, item Maxlen in the table category, has to be
set according to the maximum code length tolerated for a table in the current database.
Permission, EnableOwner, AllowedADT are other examples of items defined to adapt
PowerDesigner to the current DBMS.

» Live database reverse engineering queries - most start with "Sql". For example,
SqlListQuery retrieves a list of objects, and SqlOptsQuery reverse engineers physical
options. For more information, see Live database reverse engineering on page 135.

ODBC Category

The ODBC category contains items for live database generation when the DBMS does not
support the generation statements defined in the Script category.

For example, data exchange between PowerDesigner and MSACCESS works with VB scprits
and not SQL, this is the reason why these statements are located in the ODBC category. You
have to use a special program (access.mdb) to convert these scripts into MSACCESS database
objects.

Script Generation

Script generation statements are available in the Script category, under the different object
categories. For example, in Sybase ASA 8, the Create statement in the Table category is the
following:

create table [%QUALI Fl ER% Y9 ABLE%

96 ABL DEFNY%
)
[%OPTI ONS%4

This statement contains the parameters for creating the table together with its owner and
physical options.

Extension Mechanism

You can extend script generation statements to complement generation using them extension
statements. The extension mechanism allows you to generate statements immediately before
or after Create, Drop, and Modify statements, and to retrieve these statements during reverse
engineering.

For more information on reverse engineering additional statements see Script reverse
engineering on page 134.

Generation Template Language
Extension statements are defined using the PowerDesigner Generation Template Language
(GTL) mechanism.

An extension statement can contain:

Customizing and Extending PowerDesigner 131

« Reference to other statements that will be evaluated during generation. These items are
text items that must be defined in the object category of the extension statements

» \ariablesused to evaluate object properties and extended attributes. Variables are enclosed
between % characters

e Macrossuch as ".if", provide generic programming structures for testing variables. Note:
we recommend that you avoid using GTL macros in generation scripts, as they cannot be
reconstituted when reverse engineering by script. Generating and reverse engineering viaa
live database connection are not subject to this limitation.

For more information on the PowerDesigner Generation Template Language (GTL), see
Chapter 5, Customizing Generation with GTL on page 263.

During generation, the statements and variables are evaluated and the result is added to the
global script.

Example 1

The extension statement AfterCreateis defined in the table category to complement the table
Create statement by adding partitions to the table if the value of the partition extended attribute
requires it.

AfterCreate is defined in GTL syntax as follows:

i f (%ExtTabl ePartition% > 1)
%CreatePartiti on%

go

.endi f

The .if macro is used to evaluate variable %ExtTablePartition%. This variable is an extended
attribute that contains the number of table partitions. If the value of %ExtTablePartition% is
higher than 1, then %CreatePartition% will be generated followed by "go". %CreatePartition
% is a statement defined in the table category as follows:

alter table [%QUALI Fl ER% %9 ABLE%
partition %ExtTabl ePartiti on%

%CreatePartition% generates the statement for creating the number of table partitions
specified in %ExtTablePartition%.

Example 2
You create in Sybase ASE an extended statement to automatically create the login of a user
before the Create user statement is executed. The BeforeCreate statement is the following:

sp_addl ogi n ¥Nanme% %Passwor d%
go

The automatically generated login will have the same name as the user and its password. You
can preview the statement in the user property sheet, the BeforeCreate statement is displayed
before the user creation statement:

132

PowerDesigner

CHAPTER 4: DBMS Definition Files

¥ User Properties - User_1 [User_1]

Dependencies I Extended Dependencies I Yerzion Info

General I Privileges I Permigzions Preview | MHotes I Rulez

B--HESdHA iR oo REREI
sp_dropuser Taer_ 1 ;I

oo

sp_addlogin Taer 1 password
g0

sp_adduzer User_ 1l
s 0]

3 8 N a— 1T e
<< Less | - ok | Eancell Al | Help |

Modify Statements
You can also add BeforeModify and AfterModify statements to standard modify statements.

Modify statements are executed to synchronize the database with the schema created in the
PDM. By default, the modify database feature does not take into account extended attributes
when it compares changes performed in the model from the last generation. You can bypass
this rule by adding extended attributes in the ModifiableAttributes list item. Extended
attributes defined in this list will be taken into account in the merge dialog box during database
synchronization.

To detect that an extended attribute value has been modified you can use the following
variables:

¢ %OLDOBJECT% to access an old value of the object

* %NEWOBJECT% to access a new value of the object

For example, you can verify that the value of the extended attribute ExtTablePartition has been
modified using the following GTL syntax:

i f (YOLDOBJECT. Ext Tabl ePartiti on% ! = %NEWOBJECT. Ext Tabl ePartiti on%

If the extended attribute value was changed, an extended statement will be generated to update
the database. In the Sybase ASE syntax, the ModifyPartition extended statement is the
following because in case of partition change you need to delete the previous partition and
then recreate it:

i f (Y%OLDOBJECT. Ext Tabl ePartiti on% ! = %\NEWOBJECT. Ext Tabl ePartiti on%
i f (9\NEWOBJECT. Ext Tabl ePartition% > 1)

Customizing and Extending PowerDesigner 133

i f (Y%0OLDOBJECT. Ext Tabl ePartition% > 1)
%Or opPartiti on%
.endif
%CreatePartiti on%
.el se
%Or opPartiti on%
.endif
.endi f

For more information on the PowerDesigner Generation Template Language (GTL), see
Chapter 5, Customizing Generation with GTL on page 263.

Script Reverse Engineering
The same statements are used for generation and reverse engineering.

If you are using the extension mechanism for script generation, you have to declare statements
in the list item ReversedStatements in order for them to be properly reversed. Type one
statement per line in the ReversedStatement list.

For example, the extension statement AfterCreate uses statement CreatePartition. This text
item must be declared in ReversedStatements to be properly reverse engineered. You could
declare other statements in the following way:

E” DEMS Properties (For All Models) =] E3

General | Trigger Templatesl Trigger Template Itemsl

=t o ISybaseAS Enterprize 12.5::5ScripthObjects\T ablehR eversedStatements H - & "":B
=[] Tabl B
=4 I|a Pe a I MNarne: ReversedStatements
----- effiizion
""" j AddT ableCheck Comment: |Additional statements which can be reversed ;I

----- j AfterCreate
.....) Aftertodity
----- 3 AlterT ableFooter
----- j AlterT ableHeader

----- j Consti ame: :I
..... 3 Create Walue:

----- % CreatePartition CreatePartition d
----- j DefOptions Statement2

.....) DefineT ableCheck Statementd

----- 3 Dirap

..... % DropPartition

----- D DropT ableCheck
..... [£) Modifiabledttibutes
----- % F adifuP artition

----- j Options

----- j Rename

----- 3 ReverzsedStatements j

..... _j Sqlattrluery =

Ok I Cancel Apply | Help |

134 PowerDesigner

CHAPTER 4: DBMS Definition Files

Live Database Generation

In general, live database generation uses the same statements as script generation. However,
when the DBMS does not support standard SQL syntax, special generation statements are
defined inthe ODBC category. This is the case for MSACCESS that needs VB scripts to create
database objects during live database generation.

These statements are defined in the ODBC category of the DBMS.

Live Database Reverse Engineering

The DBMS contains live database reverse engineering queries for retrieving objects (like
Table, Columns, and so on) from the database.

Most queries follow the same naming pattern "Sql...Query".

Item

Description

SqlListQuery

Lists objects for selection in the Selection box. Sql Li st Query
retrieves objects and fills the reverse engineering window. Then, each
of the other queries below are executed for each selected object.

If Sql Li st Query is not defined, standard functions are used to
retrieve objects. Sql At t r Query, Sql Opt sQuery etc. will
then be executed, if defined.

Sql Li st Quer y must retrieve the smallest number of columns
possible as the process is memory intensive

SqlAttrQuery

Reverse engineers object attributes. Sql At t r Quer y may be un-
necessary if Sql Li st Quer y can retrieve all necessary informa-
tion. For example, in Sybase Adaptive Server® Anywhere 6, Ta-
bl espacelLi st Query is sufficient to retrieve all information
required for use in a PDM

SqlOptsQuery

Reverse engineers physical options

SqlListChildrenQuery

Reverse engineers lists child objects, such as columns of a specific
index or key, joins of a specific reference

SqlSysIndexQuery

Reverse engineers system indexes created by the database

SqlChckQuery

Reverse engineers object check constraints

SqlPermQuery

Reverse engineers object permissions

You can define additional queries to recover more attributes during live database reverse
engineering. This is to avoid loading Sg/ListQuery with queries for retrieving attributes not
supported by SqlAttrQuery, or objects not selected for reverse engineering. These additional
queries must be listed in the ReversedQueriesitem. For example, Sg/ColnL istQueryis used to
exclusively retrieve view columns. This query has to be declared in the ReversedQueries item
in order to be taken into account during reverse engineering.

Customizing and Extending PowerDesigner 135

Note: extended queries should not be defined in the ReversedQueries item. For more
information on ReversedQueries, see Extension mechanism for live database reverse
engineering queries on page 138.

£ DBMS Properties [For All Models) _ (O] x|

General |Trigger Templatesl Trigger Template Itemsl

=y = IEIFHJ’-‘-.I:LE 9i::ScripthObjects\Wiew\Reversedd ueries - % "?:-FB

0 Koy =

[:| Fieference

B0 View Cormment: |Addiional attributes queries ta be ;I
..... [[] Pemission called by ODBC

----- 5 Create

..... = Drop

----- = Options

Feversediueries: LI

----- 5 SqltGueny Walue:

----- [2 SqlColnListDuery SqiColnlistQuery =]

----- [5) sgExOptsQuen

----- SglGetSnapshotT ext

----- B saGetviewT ext

----- & SqllistQuery

----- & SgiDptsQueny

----- 5 SgPermBuery

----- 5 WiewCheck

-----) WigwComment

..... WiewS byl ﬂ
| Jeusuk =
ak I Cancel | Apply | Help |

Mame: IHeversedQueries

Query Structure

Each column of a query result set is associated with a variable. A script header specifies the
association between the columns of the result set and the variable. The values of the returned
records are stored in these variables, which are then committed as object attribute values.

The script header is contained within curly brackets { }. The variables are listed within the
brackets, each variable separated by acomma. There is a matching column for each variable in
the Select statement that follows the header.

For example:

{OMNER, @BJTCCDE, SCRI PT, @BJTLABL}

SELECT U. USER_NAME, P. PROC_NAME, P. PROC_DEFN, P. REMARKS

FROM SYSUSERPERMS U, SYSPROCEDURE P

WHERE [%SCHEMA% ? U. USER_NAME=' %SCHEMA% AND] P. CREATOR=U. USER | D
CRDER BY U. USER_NAME

The variables can be any listed in PDM Variables on page 226.

Each comma-separated part of the header is associated with the following information:

136

PowerDesigner

CHAPTER 4: DBMS Definition Files

» Name of variable (mandatory). See the example in Processing with variable names

e The | Dkeyword follows each variable name. ID means that the variable is part of the
identifier

e The. .. (ellipsis) keyword means that the variable must be concatenated for all the lines
returned by the SQL query and having the same values for the 1D columns

* Retrieved_val ue = PD. val ue lists the association between a retrieved value and
a PowerDesigner value. A conversion table converts each value of the record (system
table) to another value (in PowerDesigner). This mechanism is optionally used. See the
example in Processing with conversion table

The only mandatory information is the variable name. All others are optional. The | Dand. . .
(ellipsis) keywords are mutually exclusive.

Processing with Variable Names:

{TABLE I D, | SPKEY I D, CONSTNAME | D, COLUM\S ...}
sel ect

t.tabl e_nane,

i,

nul |,

c.col um_nane + '

c.colum_id

from
systable t,
syscolum c
wher e

etc.

In this script, the identifier is defined as TABLE + ISKEY+ CONSTNAME.

In the result lines returned by the SQL script, the values of the fourth field is concatenated in
the COLUMNS field as long as these ID values are identical.

SQ. Result set
Tablel,1,null,'coll,"
Tablel, 1, null,'col 2,
Tablel, 1, null,"'col 3,
Table2,1,null,"'col 4,"

I n Power Desi gner nenory
Tablel, 1,null,"'col 1, col 2, col 3'
Tabl e2, 1, null, ' col 4

In the example, COLUMNS will contain the list of columns separated by commas.
PowerDesigner will process the contents of COLUMNS field to remove the last comma.

Processing with Conversion Table:
The syntax inserted just behind a field inside the header is:

(SQL val uel = Power Desi gner val uel, SQL val ue2 = Power Desi gner
val ue2, * = Power Desi gner val ue3)

where * means all other values.

Customizing and Extending PowerDesigner 137

For example:

{ADT, OMNER, TYPE(25=JAVA , 26=JAVA)}

SELECT t.type_nane, u.user_nanme, t.domain_id
FROM sysusertype t, sysuserpermns u

WHERE [u. user _name = ' %SCHEMAY% AND]
(domain_id = 25 OR domain_id = 26) AND
t.creator = u.user_id

In this example, when the SQL query returns the value 25 or 26, it is replaced by JAVA in
TYPE variable.

Extension Mechanism for Live Database Reverse Engineering Queries

During reverse engineering, PowerDesigner executes queries to retrieve information from the
columns of the system tables. The result of the query is mapped to PowerDesigner internal
variables via the query header. When the system tables of a DBMS store information in
columns with LONG, BLOB, TEXT and other incompatible data types, PowerDesigner
cannot concatenate these data into strings.

You can bypass this limitation by using the £Xkeyword and creating user-defined queries and
variables in the existing reverse engineering queries with the syntax:

%Jser Def i nedQuer yNane. User Def i nedVar i abl eNane%
These user-defined variables will be evaluated by sub-queries which you write.

In the following example, the value of OPTIONS is marked as containing a user-defined
query, and we see in the body of the query that the 'global partition by range' option contains a
user-defined query called :'SqlPartIndexDef', which seeks values for the variables 'i.owner'
and 'i.index_name":

{OMNER, TABLE, CONSTNAME, OPTI ONS EX}

sel ect
c. owner,
c.tabl e_nane,
c.constraint_nane,

;éiobal partition by range
(¥8qgl Part | ndexDef.'||i.owner||i.index_nanme||'%",

The following graphic illustrates the process of variable evaluation during reverse
engineering:

138 PowerDesigner

CHAPTER 4: DBMS Definition Files

Query is executed to
evaluate a set of
string staternents

Strings contain

%lzerDefinedCueryMNarme.

UserDefinedvariableMName
¥

[Ma]

UserDefinedQueryMame
is executed

|

Generates even numbered
resultset with
UserDefinedvariableMames
and their values

serDefinedvariableMames
are replaced by actual
valugs

Concatenation in a
string statement

Note: Extended queries should not be defined in the ReversedQueries item.

Stepl
A query is executed to evaluate variables in a set of string statements.

If the EX keyword is present in the query header, PowerDesigner searches for user-defined
queries and variables to evaluate. These user-defined variables are created to be filled with
data proceeding from columns with LONG/BLOB/TEXT... data type.

You can create user-defined queries in any live database reverse engineering query. Each
query must have a unique name.

Customizing and Extending PowerDesigner 139

Step 2
The execution of the user-defined query generates a resultset containing pairs of user-defined
variable names (without %) and variable value for each of the variables as needed.

For example, in the following resultset, the query returns 3 rows and 4 columns by row:

Variable 1 1 Variable 2 2
Variable 3 3 Variable 4 4
Variable 5 5 Variable 6 6
Step 3

These values replace the user-defined variables in the original query.

The following sections explain user-defined queries defined to address reverse engineering
limitations.

Live Database Reverse Engineering Physical Options

During reverse engineering, physical options are concatenated in a single string statement.
However, when the system tables of a database are partitioned (like in Oracle) or fragmented
(like in Informix), the partitions/fragments share the same logical attributes but their physical
properties like storage specifications, are stored in each partition/fragment of the database.
The columns in the partitions/fragments have a data type (LONG) that allows storing larger
amount of unstructured binary information.

Since physical options in these columns cannot be concatenated in the string statement during
reverse engineering, Sql Opt sQuer y (Tables category in the DBMS) contains a call to a
user-defined query that will evaluate these physical options.

In Informix SQL 9, Sql Opt sQuer y is delivered by default with the following user-defined
queries and variables (the following is a subset of Sql Opt sQuer y):

sel ect
t. owner,
t.tabnane,
"U8ql FragQuery. FragSprt' || f. eval pos||' % %ragExpr'||f.eval pos||' %
in %ragDbsp'||f.evalpos||' %",
f . eval pos
from
i nform x. systables t,
i nform x.sysfragnents f
wher e
t.partnum= 0
and t.tabid=f.tabid
[and t.owner = ' %SCHEMAY]
[and t.tabnane=" 9%9ABLEY]

140

PowerDesigner

CHAPTER 4: DBMS Definition Files

After the execution of Sql Opt sQuer y, the user-defined query Sql FragQuery is
executed to evaluate FragDbsp n, FragExpr n, and Fr agSprt n. n stands for

eval pos whichdefines fragment position in the fragmentation list. n allows to assign unique
names to variables, whatever the number of fragment defined in the table.

FragDbsp n, FragExpr n, and Fr agSprt n are user-defined variables that will be
evaluated to recover information concerning the physical options of fragments in the database:

User-defined variable Physical options

FragDbsp n Fragment location for fragment number n
FragExpr n Fragment expression for fragment number n
FragSprt n Fragment separator for fragment number n

Sql FragQuery is defined as follows:

{A a(E="expression", R="round robin", H="hash"), B, b, C ¢, D
d(o="", *=",")}
sel ect
" FragDbsp' | | f. eval pos, f.dbspace,
"FragExpr' || f.eval pos, f.exprtext,
"FragSprt'||f.eval pos, f.eval pos
from
i nform x.systables t,
i nform x. sysfragnments f
wher e
t.partnum= 0
and f.fragtype="T
and t.tabid=f.tabid
[and t.owner = ' ¥%SCHENVAY%]
[and t.tabname="' %TABLE%]

The header of Sql Fr agQuery contains the following variable names.

{A, a(E="expression", R="round robin", H="hash"), B, b, C, c, D
d(o="", *=",")}

Only the translation rules defined between brackets will be used during string concatenation:
"FragSprt0", which contains 0 (f.evalpos), will be replaced by " ", and "FragSprt1", which
contains 1, will be replaced by ","

Sqgl Fr agQuer y generates a numbered resultset containing as many pairs of user-defined
variable name (without %) and variable value as needed, if there are many variables to
evaluate.

The user-defined variable names are replaced by their values in the string statement for the
physical options of fragments in the database.

Live Database Reverse Engineering Function-based Index
In Oracle 8i and later versions, you can create indexes based on functions and expressions that
involve one or more columns in the table being indexed. A function-based index precomputes

Customizing and Extending PowerDesigner 141

the value of the function or expression and stores it in the index. The function or the expression
will replace the index column in the index definition.

An index column with an expression is stored in system tables with a LONG data type that
cannot be concatenated in a string statement during reverse engineering.

To bypass this limitation, Sql Li st Quer y (Index category in the DBMS) contains a call to
the user-defined query Sql Expr essi on used to recover the index expression in a column
with the LONG data type and concatenate this value in a string statement (the following is a
subset of Sql Li st Query):

sel ect
" %SCHEMVAY |
i.tabl e name
i .index_nane,
decode(i.index_type, 'BITMAP', '"bitmap', ''),
decode(substr(c.col um_nanme, 1, 6), 'SYS_NC,
' U5ql Expression. Xpr' | |i.table_name||i.index_name|
c.columm_position||'%, c.colum_nane)||' '|]|c.descend||', ',
c. col um_posi tion
from
user _i ndexes i,
user _i nd_colums c

wher e
c.tabl e_nane=i . tabl e_nane
and c.index_name=i.index_nane

i
[and i.table_owner="%SCHENAY]
[and i.table_nane="' %TABLE%]
[and i.index_nane=" % NDEX%]

The execution of Sql Li st Quer y calls the execution of the user-defined query
Sql Expr essi on.

Sql Expr essi on is followed by a user-defined variable defined as follow:
{VAR, VAL}

sel ect
" Xpr' || tabl e_nane| | i ndex_nane| | col um_posi ti on,
col um_expr essi on

from
al | _i nd_expr essi ons

where 1=1

[and tabl e_owner =" %GCHEMA%]|

[and tabl e_nanme=" 9%9TABLE%]

The name of the user-defined variable is unique, it is the result of the concatenation of "Xpr",
table name, index name, and column position.

142 PowerDesigner

CHAPTER 4: DBMS Definition Files

Live Database Reverse Engineering Qualifiers

A qualifier allows the use of the object qualifier that is displayed in the dropdown list box in the
upper left corner of the Database Reverse Engineering dialog box. You use a qualifier to select
which objects are to be reverse engineered.

Database Reverse Engineering

[« qualfiers =l|5 psa | A B oo Bt B Y W
Code | Owaner | M arne -~
] contact DE& contact
T customer DE& cugtamer s
] department DE& department
] employee DEA

A

employes _ILI
| 3

-

L4 r\TabIe ,{View }\System Tahle)\Synonym }\User)\Grnup 3 Role A Domain)\Defaurt i

¥ Primary Keys

V¥ Faoreign Kess W Indexes

v Altemnate Keys

¥ Checks [Pemissions
¥ Physical options [Statistics

Objectz] selected: 9/3

Selection: |<Default Selection:

=] (Gl]

Help |

[o]

Cancel |

You can add a qualifier section when you customize your DBMS. This section must contain

the following items:

« enable: YES/NO

« SqglListQuery (script) : this item contains the SQL query that is executed to retrieve the
qualifier list. You should not add a Header to this query

The effect of these items are shown in the table below:

Enable SqlListQuery Result

present?

Yes Yes Qualifiers are available for selection. Select one as required.
You can also type the name of a qualifier. SqlListQuery is
executed to fill the qualifier list

No Only the default (All qualifiers) is selected. You can also type
the name of a qualifier

No No Dropdown list box is grayed.

Example

In Adaptive Server Anywhere 7, a typical qualifier query is:

Customizing and Extending PowerDesigner 143

.Qualifier.SqlListQuery :
sel ect dbspace_nane from sysfile

Generating and Reverse Engineering Extended Objects

Some DBMSs have objects that cannot be represented by the standard PowerDesigner model
objects. However, you can work with these objects, generate and reverse-engineer them
through the use of extended objects. To do this you must first create an extended object, and
then define its generation and reverse engineering scripts.

Creating an Extended Object
You can create extended objects in a DBMS.

1. Select Database> Edit Current DBM Sto open the DBMS Properties window, and then
expand the Profile category in the left-hand pane.

2. If there is not an entry for Extended Object in this category, then create one by right-
clicking Profile and selecting Add Metaclasses from the contextual menu. In the Selection
box, click the PdCommon sub-tab, select Extended Object and click OK to add it to the list
of objects.

3. Right-click the Extended Object entry, and select New > Stereotype from the contextual
menu to create a new stereotype, which will be used to define your new object.

4. Enter the name of your new object and select the Use as metaclass checkbox. This will
ensure that the new object appears in the PowerDesigner menus and has its own special
browser category.

You can add attributes to the object, create templates to define its form for generation and
reverse engineering, and produce custom forms for use in property sheets. For more
information, see Chapter 2, Extension Files on page 21.

Once you have defined your object, you need to enable its generation.

Defining Generation and Reverse Engineering Scripts for an Extended Object
You can define generation and reverse engineering scripts for an extended object

1. Right-click the Script/Objects category, and then select Add Items from the contextual
menu to open a Selection dialog that lists all the objects available in the model.

2. Selectyour new extended object in the list, and then click OK to add it to the list of objects.

3. Right-click the new object entry, and then select Add Items from the contextual menu to
open a Selection dialog that lists all the script items that can be added to an extended
object.

4. Asaminimum, to enable the generation and reverse engineering of the object, you should
select the following items:

e Create
e Drop

144

PowerDesigner

5.

CHAPTER 4: DBMS Definition Files

* AlterStatementL.ist

e SglAttrQuery

e SqglListQuery

Click OK to add these script items to your object. You will need to enter values for each of
these items. For more information, and guidance on syntax, see Common object items on
page 156.

Your object will now be available for generation and reverse engineering. You can also
control the order in which this and the other objects will be generated. For more
information, see GenerationOrder — customizing the order in which objects are generated
on page 154.

Adding Scripts Before or After Generation and Reverse Engineering

You can specify scripts to be used before or after database generation or reverse engineering.

1

Openthe Profile folder. If there is no entry for Model, then right-click the Profile folder and
select Add Metaclasses from the contextual menu to open the Metaclass Selection dialog
box.

On the PAPDM sub-tab, select Model and then click OK to return to the DBMS properties
editor. The Model item now appears in the Profile folder.

Right-click the Model item, and select New > Event Handler from the contextual menu to
open a Selection dialog box.

Select one or more of the following event handlers depending on where you want to add a
script:

« BeforeDatabaseGenerate

* AfterDatabaseGenerate

« BeforeDatabaseReverseEngineer

» AfterDatabaseReverseEngineer

Click OK to return to the DBMS properties editor. The selected event handlers now appear
beneath the Model item.

Select each of the event handlers in turn, click its Event Handler Script tab, and enter the
desired script.

Click OK to confirm your changes and return to the model.

Customizing and Extending PowerDesigner 145

General Category

The General category is located directly beneath root, and contains the following items:

Item

Description

EnableCheck

Specifies whether the generation of check parameters is authorized. The fol-
lowing settings are available:

* Yes - Check parameters generated

* No- All variables linked to Check parameters will not be evaluated during
generation and reverse

Enable Constname

Specifies whether constraint names are used during generation. The following
settings are available:

* Yes - Constraint names are used during generation
* No - Constraint names are not used

Enablelntegrity

Specifies whether there are integrity constraints in the DBMS. The following
settings are available:

* Yes - Primary, alternate, and foreign key check boxes are available for
database generation and modification

* No - Primary, alternate, and foreign key check boxes are not available

EnableMulti Check

Specifies whether the generation of multiple check parameters for tables and
columns is authorized. The following settings are available:

* Yes - Multiple check parameters are generated. The first constraint in the
script corresponds to the concatenation of all validation business rules, the
other constraints correspond to each constraint business rules attached to
an object

* No - All business rules (validation and constraint) are concatenated into a
single constraint expression

SqlSupport

Specifies whether SQL syntax is allowed. The following settings are available:

e Yes- SQL syntax allowed and SQL Preview available
* No - SQL syntax not allowed. SQL Preview is not available

146

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

UnigConst Name

Specifies whether unique constraint names for objects are authorized . The
following settings are available:

* Yes - All constraint names (including index names) must be unique in the
database

* No - Constraint names must be unique for an object

Check model takes this item into account in constraint name checking.

Script/Sql Category

The SQL category is located in the Root > Script category. Its sub-categories define the SQL
syntax for the DBMS

Syntax Category

The Syntax category is located in the Root > Script > SQL category, and contains the
following items that define the DBMS-specific syntax:

Item

Description

BlockComment

Specifies the character used to enclose a multi-line commentary.
Example:
[* */

Block Terminator

Specifies the end of block character, which is used to end expressions for
triggers and stored procedures.

Delimiter

Specifies the field separation character.

Identifier Delimiter

Specifies the identifier delimiter character. When the beginning and end de-
limiters are different, they must be separated by a space character.

LineComment

Specifies the character used to enclose a single line commentary.
Example:
%%

Quote

Specifies the character used to enclose string values.

Note that the same quote must be used in the check parameter tab to enclose
reserved words used as default.

SqglContinue

Specifies the continuation character. Some databases require a continuation

character when a statement is longer than a single line. For the correct char-
acter, refer to your DBMS documentation. This character is attached to each
line just prior to the linefeed.

Customizing and Extending PowerDesigner 147

Item

Description

Terminator

Specifies the end of statement character, which is used to terminate create table,
view, index, or the open/close database, and other statements.

If empty, Bl ockTer m nat or is used instead.

UseBlockTerm

Specifies the use of Bl ockTer i nat or . The following settings are
available:

e Yes-Bl ockTer m nat or isalways used

* No-Bl ockTerm nat or is used for triggers and stored procedures
only

Format Category

The Format category is located in the Root > Script > SQL category, and contains the
following items that define script formatting:

Item

Description

AddQuote

Specifies that object codes are systematically enquoted during the generation.
The following settings are available:

* Yes - Quotes are systematically added to object codes during generation
* No - Object codes are generated without quotes

CaseSensitivity
UsingQuote

Specifies if the case sensitivity for identifiers is managed using double quotes.
You should set this boolean to Yes if the DBMS you are using needs double
quotes to preserve the case of object codes.

Date and Time for-
mats

See Date and time format on page 149.

EnableOwner Pre-
fix / EnableDtbs
Prefix

Specifies that object codes can be prefixed by the object owner, the database
name, or both, using the %QUALIFIER% variable. The following settings are
available:

* Yes-enables the Owner Prefix and/or Database Prefix check boxes in the
Database Generation box. Select one or both of these options to prefix
objects. If you select both, the owner and database are concatenated when
%QUALIFIER% is evaluated.

* No - The Owner Prefix and Database Prefix options are unavailable

148

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

IllegalChar

[generation only] Specifies invalid characters for names. If there is an illegal
character in a Code, the code is set between quotes during generation.
Example:

+-*[1 =<>""()

If the name of the table is "SALES+PROFITS", the generated create statement
will be:

CREATE TABLE " SALES+PROFI TS"

Double quotes are placed around the table name to indicate that an invalid

character is used. During reverse engineering, any illegal character is consid-
ered as a separator unless it is located within a quoted name.

LowerCase Only

When generating a script, all objects are generated in lowercase independently
of the model Naming Conventions and the PDM codes. The following settings
are available:

» Yes - Forces all generated script characters to lowercase
* No - Generates all script unchanged from the way objects are written in the
model

MaxScriptLen

Specifies the maximum length of a script line.

UpperCase Only

When generating a script, all objects are generated in uppercase independently
of the model Naming Conventions and the PDM codes. The following settings
are available:

* Yes - Forces all generated script characters to uppercase
* No- Generates all script unchanged from the way objects are written in the
model

Note that the Upper CaseOnl y and Lower CaseOnl y items are mu-
tually exclusive. In the event that both items are enabled, the script is generated
in Jowercase.

Date and Time Format

You can customize the date and time format for test data generation to a script or live database
connection using DBMS items in the Format category.

PowerDesigner uses the PhysDat aType map item in the script\data types category to
convert the physical data types of columns to conceptual data types because the DBMS items
are linked with conceptual data types.

Example for Sybase AS Anywhere 7:

Customizing and Extending PowerDesigner 149

Physical da- | Conceptual DBMS entry used |DBMS entry used for live
ta type data type for SQL connection

datetime DT DateTimeFormat OdbcDateTimeFormat
timestamp TS DateTimeFormat OdbcDateTimeFormat

date DateFormat OdbcDateFormat

time TimeFormat OdbcTimeFormat

If you want to customize the date and time format of your test data generation, you have to
verify the data type of the columns in your DBMS, then find the corresponding conceptual
data type in order to know which item to customize in your DBMS. For example, if the

columns use the datetime data type in your model, you should customize the Date TimeFormat
item in your DBMS.

The default date and time format is the following:

e SQL:'yyyy-mmdd HH MM SS
e Live connection: {ts 'yyyy-mmdd HH MM SS'}

Where:
Format Description
yyyy Year on 4 digits
yy Year on 2 digits
mm Month
dd Day
HH Hour
MM Minute
SS Second

For example, you can define the following value for the DateTimeFormat item for SQL: yy-
mm dd HH: MM For live database connections, this item should have the following value:
{ts "yy-mmdd HH. MM }.

File Category

The File category is located in the Root > Script > SQL category, and contains the following
items that define script formatting:

Iltem Description

AlterHeader Specifies header text for a modify database script.

150

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

AlterFooter

Specifies footer text for a modify database script.

EnableMulti File

Specifies that multiple scripts are allowed. The following settings are available:

* Yes - enables the One File Only check box in the Generate database,
Generate Triggers and Procedures, and Modify Database parameters win-
dows. If you deselect this option, a separate script is created for each table
(named after the table, and with the extension defined in the Tabl eExt
item), and a global script summarizes all the single table script items.

» TheOne File Only check box is unavailable, and a single script includes all
the statements.

The file name of the global script is customizable in the File Name field of the
generation or modification windows and has the extension specified in the
Scri pt Ext item.

The default name for the global script is CREBAS for database generation,
CRETRG for triggers and stored procedures generation, and ALTER for da-
tabase modification.

Footer Specifies the text for the database generation script footer.

Header Specifies the text for the database generation script header.

ScriptExt Specifies the default script extension when you generate a database or modify a
database for the first time.

Example:
sql

StartCommand Specifies the statement for executing a script. Used inside the header file of a
multi-file generation to call all the other generated files from the header file.
Example (Sybase ASE 11):

i sql YNAMESCRI PT%
Corresponds to the %STARTCMD% variable (see PDM Variables on page
226).

TableExt Specifies the extension of the scripts used to generate each table when the
EnableMultiFile item is enabled and the "One File Only" check box is not
selected in the Generate or Modify windows.

Example:

sql
TrgFooter Specifies footer text for a triggers and procedures generation script.
TrgHeader Header script for triggers and procedures generation.

Customizing and Extending PowerDesigner 151

Item Description

TrgUsagel [when using a single script] Specifies text to display in the Output window at
the end of trigger and procedure generation.

TrgUsage2 [when using multiple scripts] Specifies text to display in the Output window at
the end of trigger and procedure generation.

TriggerExt Specifies the main script extension when you generate triggers and stored
procedures for the first time.
Example:
trg

Usagel [when using a single script] Specifies text to display in the Output window at
the end of database generation.

Usage2 [when using multiple scripts] Specifies text to display in the Output window at
the end of database generation.

Keywords Category

The Keywords category is located in the Root > Script > SQL category, and contains the
following items that reserve keywords.

The lists of SQL functions and operators are used to populate the PowerDesigner SQL editor
to propose lists of available functions to help in entering SQL code.

ltem Description
CharFunc Specifies a list of SQL functions to use with characters and strings.
Example:
char ()
chari ndex()
char_length() etc
Commit Specifies a statement for validating the transaction by live connection.
ConvertFunc Specifies a list of SQL functions to use when converting values between hex

and integer and handling strings.
Example:

convert ()
hext oi nt ()
i nttohex() etc

152

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

DateFunc

Specifies a list of SQL functions to use with dates.

Example:

dat eadd()
datedi ff ()
dat enane() etc

GroupFunc

Specifies a list of SQL functions to use with group keywords.
Example:

avg()
count ()
max() etc

ListOperators

Specifies a list of SQL operators to use when comparing values, boolean, and
various semantic operators.

Example:

hot li ke etc

NumberFunc

Specifies a list of SQL functions to use with numbers.

Example:

abs()
acos()
asin() etc

OtherFunc

Specifies a list of SQL functions to use when estimating, concatenating and
SQL checks.

Example:

db_i d()
db_nane()
host id() etc

Reserved Default

Specifies a list of keywords that may be used as default values. If a reserved
word is used as a default value, it will not be enquoted.

Example (SQL Anywhere® 10) - USER is a reserved default value:

Create tabl e CUSTOVER (
User nane varchar (30) default USER

)

When you run this script, CURRENT DATE is recognized as a reserved default
value.

Customizing and Extending PowerDesigner 153

Item Description

ReservedWord Specifies a list of reserved keywords. If a reserved word is used as an object
code, it is enquoted during generation (using quotes only inDBM S> Script >
SQL > Syntax > > Quote).

Script/Objects Category

The Objects category is located in the Root > Script > SQL category (and, possibly within
Root > ODBC > SQL), and contains the following items that define the database objects that
will be available in your model.

Commands for All Objects

The following commands are located in the Root > Script > Objectsand Root > ODBC >
Objects categories, and apply to all objects.

MaxConstLen — Defining a Maximum Constraint Name Length

Command for defining the maximum constraint name length supported by the target database
for tables, columns, primary and foreign keys. This value is implemented in the Check model
and produces an error if the code exceeds the defined value. The constraint name is also
truncated at generation time.

Note: PowerDesigner has a maximum length of 254 characters for constraint names. If your
database supports longer constraint names, you must define the constraint names to fit in 254
characters or less.

EnableOption — Enabling Physical Options

Command for enabling physical options for the model, tables, indexes, alternate keys, and
other objects that are supported by the target DBMS. It also controls the availability of the
Options tab from an object property sheet.

The following settings are available:

* Yes - The Physical Options tabs are available from the object property sheet
* No - Physical Options tabs are not available from the object property sheet.

For more information, see Physical Options on page 218

GenerationOrder — Customizing the Order in Which Objects Are Generated

Command for specifying the generation order of objects. Disabled by default.

1. Right-click the Script/Objects node and select Add Items from the contextual menu to
open a selection window listing all the available objects.

154

PowerDesigner

CHAPTER 4: DBMS Definition Files

2. Select the GenerationOrder checkbox and click OK. The GenerationOrder command is
enabled and added at the foot of the Objects category list.

3. Click the GenerationOrder item to display its properties:

F DBMS Properties [For All Modelz) Hi=] B2
General |TriggerTempIates| Trigger Template Itemsl Frocedure Templatesl
Ao = IDHACLE'IDg::Script\Dbiects‘\GenerationDrder j A-EH- w4k
[Abstract Data Type Proced -
e Abstiact Data Type Frocedue —I Marmne: GenerationOrder
-2 User
B[] Procedure Comment: | This list defines the objects generation order, &
-2 Trigger
E-(C Join Index
-1 Sequence LI
-2 Synonym
E=-(3 Role Ordered List | sthL |
#-Z] DB Package
F-1 DB Package Procedure @ b4
- DB Package Type %uﬁgt;iﬁ:ase::F'elmission
B DB Package Cursor B Storage
-] DB Package Exception Tableg'lspac:e
-0 Parameter o BuzinessAule
-1 DB Package Pragma E Sequence
Sg E:;:::sgs?on = % Sequence::Permiszion
E-@3 Dimension & AbstractDataType
MaxConsiLen % AbstractD ataT ype::Permission
E el ation [PhypsicalDefault
_p PhyzicalD omain
Generationdrder User
[ataType Ll
kK I Cancel | Apply | Help |

4. You can drag and drop entries in the Ordered List tab to adjust the order in which objects
will be created.

5. Note that not all object types are included in this list by default. You can add and remove
items to and from the list using the tools on the tab. If an object does not appear on the list, it
will still be generated, but after all the other objects. Sub-objects, such as
"Sequence::Permissions”, can be placed directly below their parent object in the list
(where they will be indented to demonstrate their parentage) or separately, in which case
they will be displayed without indentation.

6. Click OK to confirm your changes and return to the model.

Note: By default, extended objects (see Generating and reverse engineering extended objects
on page 144) are not automatically included in this list, and are generated after all other
objects. To promote these objects in the generation order, simply add them to the list with the
tab tools, and then place them in the desired generation position.

Customizing and Extending PowerDesigner 155

Common Obiject Items

The following items are available in various objects located in the Root > Script > Objects

category.
Item Description
Add Specifies the statement required to add the object inside the creation statement
of another object.
Example (adding a column):
920: COLUM\% %80: DATATYPE% [def aul t YOEFAULTY%
[98 DENTI TY9®i dent i ty: [YNULLYG [YNOTNULLY%]
[[constraint %CONSTNAMEY] check (%CONSTRAI NTY)]
AfterCreate/ After- | Specifies extended statements executed after the main Create, Drop or Modify
Drop/ AfterModify | statements. For more information, see Script generation on page 131.
Alter Specifies the statement required to alter the object.

AlterDBIgnored

Specifies a list of attributes that should be ignored when performing a com-
parison before launching an update database.

AlterStatementList

Specifies a list of attributes which, when changed, should give rise to an alter
statement. Each attribute in the list is mapped to the alter statement that should
be used.

BeforeCreate/ Befor-
eDrop/ BeforeModi-

fy

Specifies extended statements executed before the main Create, Drop or
Modify statements. For more information, see Script generation on page
131.

ConstName

Specifies a constraint name template for the object. The template controls how
the name of the object will be generated.

The template applies to all the objects of this type for which you have not
defined an individual constraint name. The constraint name that will be ap-
plied to an object is displayed in its property sheet.

Examples (ASE 15):

e Table: CKT_%.U26:TABLE%
e Column: CKC_%.U17:COLUMN%_%.U8:TABLE%
e Primary Key: PK_%.U27:TABLE%

Create

[generation and reverse] Specifies the statement required to create the object.

Example:
create tabl e Y%ABLE%

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

DefOptions

Specifies default values for physical options that will be applied to all objects.
These values must respect SQL syntax.

Example:
i n default_tabl espace

For more information, see Physical Options on page 218.

Drop

Specifies the statement required to drop the object.
Example (SQL Anywhere 10):

if exists(select 1 from sys.systable
wher e tabl e_name=% q: TABLE%
and table type in (' BASE , 'GBL TEMP')[%QUALI FI ER
9w
and creator=user _i d(% gq: OANER%)]
) then drop table [%QUALI Fl ERY Y%@ABLEY
end if

Enable

Specifies whether an object is supported.

EnableOwner

Enables the definition of owners for the object. The object owner can differ
from the owner of the parent table. The following settings are available:

* Yes - The Owner list is enabled in the object's property sheet.
¢ No - Owners are not supported for the object.

Note that, in the case of index owners, you must ensure that the Create state-
ment takes into account the table and index owner. For example, in Oracle 9i,
the Create statement of an index is the following:

create [%N QUEY®?%INI QUEY : [%4 NDEXTYPE%Y%]]i ndex

[YQUALI FI ER% % NDEX% on [UCLUSTERY®cl ust er C_%IABLE

% [Y ABLQUALI FI ER% 9’ ABLE% (
%Cl DXLI ST%

% l/GDTI ONS%

Where %QUALIFIER% refers to the current object (index) and %TABL-
QUALIFIERY% refers to the parent table of the index.

EnableSynonym

Enables support for synonyms on the object.

Footer Specifies the object footer. The contents are inserted directly after each
creat e obj ect statement.

Header Specifies the object header. The contents are inserted directly before each
creat e obj ect statement.

MaxConstLen Specifies the maximum constraint name length supported for the object in the

target database, where this value differs from the default. See also MaxCons-
tLen — defining a maximum constraint name length on page 154).

Customizing and Extending PowerDesigner 157

Item

Description

MaxLen

Specifies the maximum code length for an object. This value is used when
checking the model and produces an error if the code exceeds the defined
value. The object code is also truncated at generation time.

Modifiable Attrib-
utes

Specifies a list of extended attributes that will be taken into account in the
merge dialog during database synchronization. For more information, see
Script generation on page 131.

Example (ASE 12.5):
Ext Tabl ePartition

Options Specifies physical options for creating an object.
Example (ASA 6):
in % : category=tabl espace
For more information, see Physical Options on page 218.
Permission Specifies a list of available permissions for the object. The first column is the

SQL name of permission (SELECT for example), and the second column is
the shortname that is displayed in the title of grid columns.

Example (table permissions in ASE 15):

SELECT / Sel
INSER / Ins
DELETE / Del
UPDATE / Upd
REFERENCES / Ref

Reversed Queries

Specifies a list of additional attribute queries to be called during live database
reverse engineering. For more information, see Live database reverse engi-
neering on page 135.

Reversed Statements

Specifies a list of additional statements that will be reverse engineered. For
more information, see Script reverse engineering on page 134.

SqlAttrQuery

Specifies a SQL query to retrieve additional information on objects reversed
by SQLLI st Query.
Example (Join Index in Oracle 10g):

{OMER ID, JIDX ID, JIDXWHERE ...}
sel ect i ndex_owner, index_nane,

outer_table owner || '.' || outer_table_name || '.'
|| outer_table_colum || '=" || inner_table_owner
[| *." |] inner_table_name || '." || inner_ta-

ble_colum || ',

fromall _join_ind_colums
where 1=1

[and i ndex_owner =% q: OANER%
[and i ndex_nane=% q: JI DX%4

158

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

SqlListQuery

Specifies a SQL query for listing objects in the reverse engineering dialog.
The query is executed to fill header variables and create objects in memory.

Example (Dimension in Oracle 10g):

{ OMNER, DI MENSI ON }

sel ect d.owner, d.di nmension_name

from sys. all _di nensions d

where 1=1

[and d.dimensi on_nane=% q: DI MENSI ON%4
[and d. owner =% q: SCHEMA%

order by d. owner, d.dinmension_nane

SqlOptsQuery

Specifies a SQL query to retrieve physical options from objects reversed by
Sql Li st Quer y. The result of the query will fill the variable %OPTIONS
% and must respect SQL syntax.

Example (Table in SQL Anywhere 10):

{OWNER, TABLE, OPTI ONS}
sel ect u.user_nane, t.table_nane,
"in '+ f.dbspace_nane
from sys. sysuserperns u
join sys.systab t on (t.creator = u.user_id)
join sys.sysfile f on (f.file_id =t.file_id)
where f.dbspace_name <> ' SYSTEM
and t.table_type in (1, 3, 4)
[and t.table_nane = % q: TABLE%
[and u.user_nanme = % q: ONNERA%

SqlPermQuery

Specifies a SQL query to reverse engineer permissions granted on the object.
Example (Procedure in SQL Anywhere 10):

{ GRANTEE, PERM SSI ON}

sel ect

u. user_nanme grantee, 'EXECUTE

from sysuserperns u, sysprocedure s, Sysprocperm p
where (s.proc_nane = % q: PROC%) and

(s.proc_id = p.proc_id) and

(u.user_id p. gr ant ee)

Default Variable

Inacolumn, if the type of the default variable is text or string, the query must retrieve the value
of the default variable between quotes. Most DBMS automatically add these quotes to the
value of the default variable. If the DBMS you are using does not add quotes automatically,
you have to specify it in the different queries using the default variable.

For example, in IBM DB2 UDB 8 for 0OS/390, the following line has been added in
SqlListQuery in order to add quotes to the value of the default variable:

Customizing and Extending PowerDesigner 159

case(default) when '1' then '''"' concat defaultval ue concat ''""'
when '5' then '''' concat defaul tvalue concat '''' el se defaultval ue
end,

Table

The Table category is located in the Root > Script > Objects category, and can contain the
following items that define how tables are modeled for your DBMS.

Iltem Description

[Common items] The following common object items may be defined for tables:

« AfterCreate, AfterDrop, AfterModify

« BeforeCreate, BeforeDrop, BeforeModify
¢ ConstName

¢ Create, Drop

* Enable, EnableSynonym

* Header, Footer

e Maxlen, MaxConstLen

* ModifiableAttributes

« Options, DefOptions

e Permission

* ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery, SqlOptsQuery, SqlPermQuery

For a description of each of these common items, see Common object itemson
page 156.

AddTableCheck Specifies a statement for customizing the script to modify the table constraints
withinanal t er tabl e statement.

Example (SQL Anywhere 10):

alter table [%QUALI FI ER% % ABLEY
add [constraint %CONSTNAME% | check (% A: CON-
STRAI NT%

AllowedADT Specifies a list of abstract data types on which a table can be based. This list
populates the Based On field of the table property sheet.

You can assign an abstract data type to a table, the table will use the properties
of the type and the type attributes become table columns.

Example (Oracle 10g):
OBJECT

160 PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

AlterTable Footer

Specifies a statement to be placed after al t er t abl e statements (and
before the terminator).

Example:
Al t er Tabl eFooter = /* End of alter statenment */

AlterTable Header

Specifies a statement to be placed before al t er t abl e statements. You
can place an alter table header in your scripts to document or perform initi-
alization logic.

Example:
Al t er Tabl eHeader = /* Tabl e nanme: %ABLE% */

DefineTable Check

Specifies a statement for customizing the script of table constraints (checks)
withinacr eat e t abl e statement.

Example:
check (%CONSTRAI NT%)

DropTable Check

Specifies a statement for dropping a table check inanal t er tabl e
statement.
Example:

alter table [%QUALI Fl ERY % ABLEY
del ete check

InsertldentityOff

Specifies a statement for enabling insertion of data into a table containing an
identity column.

Example (ASE 15):
set identity_insert [%QUALIFI ERY %aDBJTCODE% of f

InsertldentityOn

Specifies a statement for disabling insertion of data into a table containing an
identity column.

Example (ASE 15):
set identity_insert [%QUALIFI ERY %@DBJTCODEY on

Customizing and Extending PowerDesigner 161

Item

Description

Rename

[modify] Specifies a statement for renaming a table. If not specified, the

modify database process drops the foreign key constraints, creates a new table
with the new name, inserts the rows from the old table in the new table, and
creates the indexes and constraints on the new table using temporary tables.

Example (Oracle 109):
rename %OLDTABL% t 0o YNEWTABL%

The %OLDTABL% variable is the code of the table before renaming, and the
%NEWTABL% variable is the new code.

SqlChckQuery

Specifies a SQL query to reverse engineer table checks.
Example (SQL Anywhere 10):

{OWNER, TABLE, CONSTNAME, CONSTRAI NT}
sel ect u.user_nane, t.table_nane,

k. constrai nt _nane,

case(l case(l eft(h.check_defn, 5))) when 'check’
then substring(h. check_defn, 6) else h.check_defn
end
from sys. sysconstraint k

join sys.syscheck h on (h.check_id = k.con-
straint_id)

join sys.systab t on (t.object_id = k.tabl e_ob-

ject_id)
join sys.sysuserperns u on (u.user_id =t.creator)
where k.constraint_type ='T

and t.table_type in (1, 3, 4)

[and u.user_name = % q: ONNER%
[and t.table_nane = % q: TABLE%
order by 1, 2, 3

162

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

SqlListRefr Tables

Specifies a SQL query used to list the tables referenced by a table.

Example (Oracle 10g):

{OMER, TABLE, POMER, PARENT}

sel ect c.owner, c.table_nane, r.owner,
r.tabl e_nane

fromsys.all _constraints c,
sys.all _constraints r

where (c.constraint_type = 'R and c.r_con-
straint_nane = r.constraint_name and c.r_owner =
r.owner)

[and c.owner = % gq: SCHEMA%
[and c.tabl e_name = % q: TABLE%
uni on sel ect c.owner, c.table nane,
r.owner, r.table nane
fromsys.all_constraints c,
sys.all _constraints r

where (r.constraint_type = 'R and r.r_con-
straint_nanme = c.constraint_nane and r.r_owner =
C. owner)

[and c.owner = % q: SCHEMA%
[and c.table_name = % q: TABLE%

SqlListSchema

Specifies a query used to retrieve registered schemas in the database. This
item is used with tables of XML type (a reference to an XML document stored
in the database).

When you define an XML table, you need to retrieve the XML documents
registered in the database in order to assign one document to the table, this is
done using the SqlListSchema query.

Example (Oracle 10g):
SELECT schema_url FROM dba_xm _schemas

SqlStatistics

Specifies a SQL query to reverse engineer column and table statistics. See
SqlStatistics in Column on page 164.

SqIXMLTable

Specifies a sub-query used to improve the performance of SqlAttrQuery (see
Common object items on page 156).

TableComment

[generation and reverse] Specifies a statement for adding a table comment. If
not specified, the Comment check box in the Tables and Views tabs of the
Database Generation box is unavailable.

Example (Oracle 10g):
conment on table [%QUALI FI ERY %9ABLE% i s
% q: COMVENT%

The % TABLE% variable is the name of the table defined in the List of Tables,
or in the table property sheet. The %COMMENT% variable is the comment
defined in the Comment textbox of the table property sheet.

Customizing and Extending PowerDesigner 163

Item Description

TypelList Specifies a list of types (for example, DBMS: relational, object, XML) for
tables. This list populates the Type list of the table property sheet.

The XML type is to be used with the SqlListSchema item.

UnigConstraint Specifies whether the same name for index and constraint name may be used
Name in the same table. The following settings are available:

¢ Yes-Thetable constraint and index names must be different, and this will
be tested during model checking

* No - The table constraint and index names can be identical

Column

The Column category is located in the Root > Script > Obj ectscategory, and can contain the
following items that define how columns are modeled for your DBMS.

Item Description
[Common items] The following common object items may be defined for columns:
« Add

e AfterCreate, AfterDrop, AfterModify

« BeforeCreate, BeforeDrop, BeforeModify
¢ ConstName

¢ Create, Drop

« Enable

« Maxlen, MaxConstLen

* ModifiableAttributes

e Options, DefOptions

e Permission

e ReversedQueries, ReversedStatements

« SqlAttrQuery, SqlListQuery, SqlOptsQuery, SqlPermQuery

For a description of each of these common items, see Common object ftemson
page 156.

AddColnCheck Specifies a statement for customizing the script for modifying column con-
straints within an alter table statement.

Example (Oracle 109):

alter table [%QUALI Fl ERY % ABLEY
add [constraint %CONSTNAMEY check (% A: CONSTRAI NT
7

164 PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

AlterTableAdd De-

Specifies a statement for defining the default value of a column in an alter

fault statement.
Example (SQL Server 2005):
[[constraint %ExtDeftConst Name% default YOEFAULT
%]for %COLUMNY%
AltEnableAdd Specifies if a column check constraint, built from the check parameters of the
ColnChk column, can or cannot be added in atable usingan al t er t abl e state-

ment. The following settings are available:

* Yes-AddCol nChck can be used to modify the column check con-
straintinan al t er t abl e statement.

« No-PowerDesigner copies data to a temporary table before recreating the
table with the new constraints.

See also AddCol nChck.

AltEnableTS Copy

Enables timestamp columns in insert statements.

Bind

Specifies a statement for binding a rule to a column.
Example (ASE 15):

[%] exec]][execute]sp_bindrul e [%[[YQUALI -
Fl ER% YRULEY | [[%QUALI FI ERY YRULEY : [' [QUALI FI ER
9% YRULE% 1], ' Y9ABLEY %COLUMN%

CheckNull

Specifies whether a column can be null.

Column Comment

Specifies a statement for adding a comment to a column.
Example:

coment on col um [%QUALI FI ERY% YT ABLEY #COLUMN% i s
% qg: COMVENT%

DefineColn Check

Specifies a statement for customizing the script of column constraints
(checks) withinacr eat e t abl e statement. This statement is called if
the create, add, or alter statements contain %CONSTDEFN%.

Example:
[constrai nt %CONSTNAMEY check (%CONSTRAI NT%

Customizing and Extending PowerDesigner 165

Item

Description

DropColnChck

Specifies a statement for dropping a column check inanal t er tabl e
statement. This statement is used in the database modification script when the
check parameters have been removed on a column.

If Dr opCol nChck is empty, PowerDesigner copies data to a temporary
table before recreating the table with the new constraints.

Example (SQL Anywhere 10):

alter table [%QUALI Fl ER% %9 ABLE%
drop constrai nt %CONSTNAMVE%

DropColnComp

Specifies a statement for dropping a column computed expression in an alter
table statement.

Example (SQL Anywhere 10):

alter table [%QUALI Fl ER% %9 ABLEY
alter %COLUMN\% dr op conpute

DropDefault Con-
straint

Specifies a statement for dropping a constraint linked to a column defined
with a default value

Example (SQL Server 2005):

[¥&Ext Def t Const Nanme%®al t er tabl e [%QUALI Fl ER%4 %0 A-
BLE%
drop constraint %kxt Deft Const Name%

EnableBindRule

Specifies whether business rules may be bound to columns for check param-
eters. The following settings are available:

e Yes - The Create and Bind entry of Rule are generated
e No - The check is generated inside the column Add order

Enable Computed-
Coln

Specifies whether computed columns are permitted.

166

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item Description

settings are available:

Generation box

(

EnableDefault Specifies whether predefined default values are permitted. The following

e Yes - The default value (if defined) is generated for columns. It can be
defined in the check parameters for each column. The %DEFAULT%
variable contains the default value. The Default Value check box for
columns must be selected in the Tables & Views tabs of the Database

* No - The default value can not be generated, and the Default Value check
box is unavailable.

Example (AS IQ 12.6):

EnableDefault is enabled and the default value for the column employee
function EMPFUNC is Technical Engineer. The generated script is:

create tabl e EMPLOYEE

EMPNUM nuneri c(5) not null,

EMP_EMPNUM nuneri c(5)

DI VNUM nuneri c(5) not nul | ,

EMPENAM char (30)

EMPLNAM char (30) noi nul |,

EMPFUNC char (30)
default 'Techni cal Engi neer',
EMPSAL nuneric(8, 2) ,

primary key (EMPNUM

Customizing and Extending PowerDesigner

167

Item

Description

Enableldentity

Specifies whether the Identity keyword is supported. Identity columns are
serial counters maintained by the database (for example Sybase and Microsoft
SQL Server). The following settings are available:

* Yes - Enables the Identity check box in the column property sheet.
¢ No - The Identity check box is not available.

When the Identity check box is selected, the ldentity keyword is generated in
the script after the column data type. An identity column is never null, and so
the Mandatory check box is automatically selected. PowerDesigner ensures
that:

e Only one identity column is defined per table

« A foreign key cannot be an identity column

e The Identity column has an appropriate data type. If the Identity check
box is selected for a column with an unsupported data type, the data type is
changed to numeric. If the data type of an identity column is changed to an
unsupported type, the error "ldentity cannot be used with the selected data
type" is displayed.

Note that, during generation, the %IDENTITY% variable contains the value
"identity" but you can easily change it, if needed, using the following syn-
tax :

[98 DENTI TY%new i dentity keywor d]

EnableNotNull
WithDflt

Specifies whether default values are assigned to columns containing Null
values. The following settings are available:

* Yes-The With Default check box is enabled in the column property sheet.
When it is selected, a default value is assigned to a column when a Null
value is inserted.

¢ No - The With Default check box is not available.

168

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

ModifyColn Chck

Specifies a statement for modifying a column check inanal t er tabl e
statement. This statement is used in the database modification script when the
check parameters of a column have been modified in the table.

If AddCol nChck is empty, PowerDesigner copies data to a temporary
table before recreating the table with the new constraints.
Example (AS 1Q 12.6):
alter table [%QUALI FI ERY % ABLEY
nodi fy %COLUMN% check (% A: CONSTRAI NT%)

The %COLUMN% variable is the name of the column defined in the table
property sheet. The % CONSTRAINT % variable is the check constraint built
from the new check parameters.

Al t Enabl eAddCol nChk must be set to YES to allow use of this state-
ment.

ModifyColn Comp

Specifies a statement for modifying a computed expression for a columninan
alter table.

Example (ASA 6):

alter table [%QUALI Fl ERY % ABLEY%
alter %COLUMN% set conput e (%COVPUTEY)

ModifyColnDflt

Specifies a statement for modifying a column default value inan al t er
t abl e statement. This statement is used in the database modification script
when the default value of a column has been modified in the table.

If Modi f yCol nDf | t is empty, PowerDesigner copies data to a tempo-
rary table before recreating the table with the new constraints.

Example (ASE 15):

alter table [%UALI FI ERY % ABLEY%
repl ace %COLUMN% def aul t YDEFAULT%

The %COLUMN% variable is the name of the column defined in the table
property sheet. The %DEFAULT% variable is the new default value of the
modified column.

ModifyColnNull

Specifies a statement for modifying the null/not null status of a column in an
al ter tabl e statement.
Example (Oracle 10g):

alter table [%QUALIFI ERY % ABLE%
modi fy %COLUMNY %VANDY%

Customizing and Extending PowerDesigner 169

Item Description

ModifyColumn Specifies a statement for modifying a column. This is a different statement
fromthe al t er t abl e statement, and is used in the database modifica-
tion script when the column definition has been modified.

Example (SQL Anywhere 10):
alter table [%QUALI Fl ERY %I ABLE%
nodi fy %COLUMNY YDATATYPEY Y8NOTNULL%

NullRequired Specifies the mandatory status of a column. This item is used with the
NULLNOTNULL column variable, which can take the "null", "not null" or
empty values. For more information, see Working with Null values on page
171.

Rename Specifies a statement for renaming a column withinan al t er tabl e

statement.
Example (Oracle 10g):

alter table [%UALI Fl ERY % ABLEY
rename colum %LDCOLN% t o YNEWCOLN%

SqlChckQuery

Specifies a SQL query to reverse engineer column check parameters. The
result must conform to proper SQL syntax.

Example (SQL Anywhere 10):

{OWNER, TABLE, COLUMN, CONSTNAME, CONSTRAI NT}
sel ect u.user_nane, t.table_nane,

c. colunmm_nane, Kk.constraint_nane,

case(l case(l eft(h.check_defn, 5))) when 'check’
then substring(h. check_defn, 6) else h.check_defn
end
from sys. sysconstraint k

join sys.syscheck h on (h.check_id = k.con-

straint_id)
join sys.systab t on (t.object_id = k.tabl e_ob-
ject_id)

join sys.sysuserperns u on (u.user_id =t.creator)
join sys.syscolum ¢ on (c.object_id = k.ref_ob-

ject _id)

where k.constraint_type = 'C

[and u.user_nanme=% q: OAWNER%

[and t.tabl e_name=% q: TABLE%

[and c.col um_nanme=% q: COLUMN%

order by 1, 2, 3, 4

170

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item Description

SqlStatistics Specifies a SQL query to reverse engineer column and table statistics.
Example (ASE 15):

[98 SLONGDTTPY%®{ AveragelLength }

sel ect [9% SLONGDTTPY®[9% SSTRDTTPY®

avg(char _I engt h(“COLUMN\%)) : avg(dat al engt h(%COLUMN
%)]:null] as average_l ength

from [“QUALI FI ERY % ABLE%

:{ NullValuesRate, DistinctValues, AveragelLength }
sel ect

[98 SMANDY®nul | : (count (*) - count (%COLUMNY) * 100 /
count(*)] as null _val ues,

[98 SMANDY®nul | : count (di stinct COLUMNYY] as dis-
tinct_val ues,

[98 SVARDTTPY®[%8 SSTRDTTP%®avg(char _I| engt h(4COLUWN
%):avg(datal engt h(%COLUMN®Y)] : nul I] as aver-

age_l ength

from [%QUALI FI ER%4 YT ABLE%

Unbind Specifies a statement for unbinding a rule to a column.
Example (ASE 15):

[9% exec]][execute]sp_unbindrul e ' %rABLEY% %COL-
UMN%%

Working with Null Values

The NullRequired item specifies the mandatory status of a column. This item is used with the
NULLNOTNULL column variable, which can take the "null”, “not null" or empty values. The
following combinations are available

When the Column Is Mandatory
"not null™ is always generated whether NullRequired is set to True or False as shown in the
following example:

create domai n DOVN_MAND char (33) not null;
create domain DOVN _NULL char (33) nul | ;

create table TABLE_1

(

COLN_MAND 1 char(33) not null,
COLN_MAND_2 DOWN_MAND not nul I,
COLN_MAND_3 DOWN_NULL not nul I,

)i

When the Column Is not Mandatory

e If NullRequired is set to True, "null" is generated. The NullRequired item should be used
in ASE for example, where nullability is a database option, and the "null™ or "not null"
keywords are required.

Customizing and Extending PowerDesigner 171

In the following example, all "null" values are generated:

create domain DOVN_MAND char (33) not null;
create domai n DOVN_MAND char (33) nul | ;

create table TABLE 1

COLN_NULL_1 char(33) null,
COLN_NULL_2 DOWN_NULL null,
COLN_NULL_3 DOVN_MAND nul |

)

< If NullRequired is set to False, an empty string is generated. However, if a column attached
to a mandatory domain becomes non-mandatory, "null” will be generated.
In the following example, "null" is generated only for COLUMN_NULL3 because this
column uses the mandatory domain, the other columns generate an empty string:

create domain DOVN_MAND char (33) not null;
create donmain DOVN_NULL char (33) nul | ;

create table TABLE_ 1

(

COLUMN_NULL1 char (33)
COLUWN_NULL2 DOWN_NULL ,
COLUMN_NULL3 DOVN_MAND nul |
)

Index

The Index category is located in the Root > Script > Objects category, and can contain the
following items that define how indexes are modeled for your DBMS.

Iltem Description
[Common items] The following common object items may be defined for indexes:
* Add

e AfterCreate, AfterDrop, AfterModify

« BeforeCreate, BeforeDrop, BeforeModify
e Create, Drop

* Enable, EnableOwner

e Header, Footer

e Maxlen

« ModifiableAttributes

e Options, DefOptions

* ReversedQueries

e ReversedStatements

« SqlAttrQuery, SqlListQuery, SqlOptsQuery

For adescription of each of these common items, see Common object itemson
page 156.

172 PowerDesigner

CHAPTER 4: DBMS Definition Files

Item Description

AddCollIndex Specifies a statement for adding a column in the Cr eat e | ndex state-
ment. This parameter defines each column in the column list of the Cr eat e
I ndex statement.
Example (ASE 15):
UOOLUMNY %ASCH
%COLUMN% is the code of the column defined in the column list of the
table. %ASC% is ASC (ascending order) or DESC (descending order) de-
pending on the Sort radio button state for the index column.

Cluster Specifies the value to be assigned to the Cluster keyword. If this parameter is

empty, the default value of the %CLUSTER% variable is CLUSTER.

CreateBefore Key

Controls the generation order of keys and indexes. The following settings are
available:

* Yes— Indexes are generated before keys.
« No - Indexes are generated after keys.

DeflndexType

Specifies the default type of an index.
Example (DB2):
Type2

Definelndex Column

Specifies the column of an index.

EnableAscDesc

Enables the Sort property in Index property sheets, which allows sorting in
ascending or descending order. The following settings are available:

* Yes - The Sort property is enabled for indexes, with Ascending selected
by default. The variable %ASC% is calculated, and the ASC or DESC
keyword is generated when creating or modifying the database

¢ No - Index sorting is not supported.
Example (SQL Anywhere 10):

A primary key index is created on the TASK table, with the PRONUM column
sorted in ascending order and the TSKNAME column sorted in descending
order:

create index | X_ TASK on TASK (PRONUM asc, TSKNAME
desc);

EnableCluster

Enables the creation of cluster indexes. The following settings are available:

e Yes - The Cluster check box is enabled in index property sheets.
e No - Cluster indexes are not supported.

Customizing and Extending PowerDesigner 173

Item

Description

EnableFunction

Enables the creation of function-based indexes. The following settings are
available:

* Yes - You can define expressions for indexes.
* No - Function-based indexes are not supported.

IndexComment Specifies a Statement for adding a comment to an index.
Example (SQL Anywhere 10):
coment on index [Y%QUALI FI ERY %TABLEY % NDEX% i s
% q: COMVENT%

IndexType Specifies a list of available index types.

Example (1Q 12.6):

CWP
HG
HNG
LF
WD
DATE
TI ME
DTTM

MandIndexType

Specifies whether the index type is mandatory for indexes. The following
settings are available:

e Yes - The index type is mandatory.
¢ No - The index type is not mandatory.

MaxCollIndex

Specifies the maximum number of columns that may be included in an index.
This value is used during model checking.

174

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

SqlSysIndex Query

Specifies a SQL query used to list system indexes created by the database.
These indexes are excluded during reverse engineering.

Example (AS IQ 12.6):
{OMER, TABLE, | NDEX, | NDEXTYPE}

sel ect u.user_nane, t.table_nane, i.index_nane,
i.index_type

from sysindex i, systable t, sysuserperns u
where t.table_id = i.table_id

and u.user_id = t.creator

and i.index owner !="'USER

[and u. user_nane=% q: ONNER%
[and t.tabl e_name=% q: TABLE%

uni on

sel ect u.user _nane, t.table nane, i.index_naneg,
i.index_type

fromsysindex i, systable t, sysuserperns u
where t.table_ id = i.table_id

and u.user_id = t.creator

and i.index_type = 'SA

[and u. user _name=% q: ONNER%
[and t.tabl e_name=% q: TABLE%

UnigName Specifies whether index names must be unique within the global scope of the
database. The following settings are available:
* Yes-Index names must be unique within the global scope of the database.
e No - Index names must be unique per object
Pkey

The Pkey category is located in the Root > Script > Objects category, and can contain the
following items that define how primary keys are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for primary keys:

« Add

e ConstName

¢ Create, Drop

e Enable

« Options, DefOptions
¢ ReversedQueries

For a description of each of these common items, see Common object ftemson
page 156.

Customizing and Extending PowerDesigner 175

Item

Description

EnableCluster

Specifies whether clustered constraints are permitted on primary keys.

e Yes - Clustered constraints are permitted.
* No - Clustered constraints are not permitted.

PkAutolndex

Determines whether a Cr eat e | ndex statement is generated for every
Primary key statement. The following settings are available:

* Yes - Automatically generates a primary key index with the primary key
statement. If you select the primary key check box under create index
when generating or modifying a database, the primary key check box of
the create table will automatically be cleared, and vice versa.

* No - Primary key indexes are not automatically generated. Primary key
and create index check boxes can be selected at the same time.

PKeyComment

Specifies a statement for adding a primary key comment.

UseSpPrimKey

Specifies the use of the Sp_pr i mar ykey statement to generate primary
keys. For a database that supports the procedure to implement key definition,
you can test the value of the corresponding variable %USE_SP_PKEY% and
choose between the creation key in the table or launching a procedure. The
following settings are available:

e Yes-The Sp_pri nar ykey statement is used to generate primary
keys.

* No - Primary keys are generated separately inanal t er tabl e
statement.

Example (ASE 15):

If UseSpPrimKey is enabled the Add entry for Pkey contains:

UseSpPri nmKey = YES
Add entry of

[YAUSE_SP_PKEY%®[execut €] sp_pri marykey %IABLE%
YPKEYCOL UMNS%
calter table [%QUALI FI ERY % ABLEY%
add [constrai nt %CONSTNAVEX primary key [% s us-
tered¥ (9%PKEYCOLUWNS%)
[%0PTI ONS%]

176

PowerDesigner

Key

CHAPTER 4: DBMS Definition Files

The Key category is located in the Root > Script > Objects category, and can contain the
following items that define how keys are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for keys:

e Add

e AfterCreate, AfterDrop, AfterModify

« BeforeCreate, BeforeDrop, BeforeModify
¢ ConstName

¢ Create, Drop

« Enable

¢ MaxConstLen

« ModifiableAttributes

« Options, DefOptions

* ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery, SqlOptsQuery

For a description of each of these common items, see Cormmon object itemson
page 156.

AKeyComment

Specifies a statement for adding an alternate key comment.

AllowNullable Coln

Specifies whether non-mandatory columns are permitted. The following set-
tings are available:

* Yes - Non mandatory columns are permitted.
* No - Non mandatory column are not permitted.

EnableCluster

Specifies whether clustered constraints are permitted on alternate keys.

e Yes - Clustered constraints are permitted.
* No - Clustered constraints are not permitted.

SqlAkeylndex

Specifies a reverse-engineering query for obtaining the alternate key indexes
of a table by live connection.

Example (SQL Anywhere 10):

select distinct i.index_nane
from sys. sysuserperns u
join sys.systable t on
(t.creator=u.user_id)
join sys.sysindex i on
(i.table_id=t.table_id)
where i."unique" not in ("Y', '"N)
[and t.table_nane = % q: TABLE%
[and u.user_nanme = % q: SCHEMA%

Customizing and Extending PowerDesigner 177

Item Description

UnigConstAuto In- | Determines whether a Cr eat € | ndex statement is generated for every
dex key statement. The following settings are available:

* Yes - Automatically generates an alternate key index within the alternate
key statement. If you select the alternate key check box under create index
when generating or modifying a database, the alternate key check box of
the create table will automatically be cleared, and vice versa.

* No - Alternate key indexes are not automatically generated. Alternate key
and create index check boxes can be selected at the same time.

Reference

The Reference category is located in the Root > Script > Objects category, and can contain
the following items that define how references are modeled for your DBMS.

Item Description
[Common items] The following common object items may be defined for references:
« Add

« AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify
¢ ConstName

e Create, Drop

e Enable

¢ MaxConstLen

* ModifiableAttributes

¢ ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object ftemson
page 156.

CheckOn Commit Specifies that referential integrity testing is performed only after the COM-
MIT. Contains the keyword used to specify a reference with the CheckOn-
Commit option.

Example:
CHECK ON COW T

178 PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

DclDellIntegrity

Specifies a list of declarative referential integrity constraints allowed for
delete. The list can contain any or all of the following values, which control the
availability of the relevant radio buttons on the Integrity tab of reference
property sheets:

* RESTRICT
« CASCADE
« SET NULL

» SET DEFAULT

DclUpdIntegrity

Specifies a list of declarative referential integrity constraints allowed for
update. The list can contain any or all of the following values, which control
the availability of the relevant radio buttons on the Integrity tab of reference
property sheets:

* RESTRICT
« CASCADE
« SET NULL

« SET DEFAULT

DefineJoin

Specifies a statement to define a join for a reference. This is another way of
defining the contents of the cr eat e r ef er ence statement, and corre-
sponds to the %JOINS% variable.

Usually the cr eat e script for a reference uses the % CKEYCOLUMNS%
and %PKEYCOLUMNS% variables, which contain the lists of child and
parent columns separated by commas.

If you use %JOINS%, you can refer to each paired parent and child columns
separately. A loop is executed on Join for each paired parent and child col-
umns, allowing to have a syntax mix of PK and FK.

Example (Access 2000):
P=9%K% F=%-K%

EnableChange Join-
Order

Specifies whether, when areference is linked to a key as shown in the Joins tab
of reference properties, the auto arrange join order check box and features are
available. The following settings are available:

e Yes - The join order can be established automatically, using the Auto
arrange join order check box. Selecting this check box sorts the list ac-
cording to the key column order. Clearing this check box allows manual
sorting of the join order with the move buttons.

e No - The auto arrange join order property is unavailable.

Customizing and Extending PowerDesigner 179

Item

Description

EnableCluster

Specifies whether clustered constraints are permitted on foreign keys.

e Yes - Clustered constraints are permitted.
* No - Clustered constraints are not permitted.

EnablefKey Name

Specifies the foreign key role allowed during database generation. The fol-
lowing settings are available:

* Yes - The code of the reference is used as role for the foreign key.
e No - The foreign key role is not allowed.

FKAutolndex

Determines whether a Cr eat e | ndex statement is generated for every
foreign key statement. The following settings are available:

* Yes - Automatically generates a foreign key index with the foreign key
statement. If you select the foreign key check box under create index when
generating or modifying a database, the foreign key check box of the
create table will automatically be cleared, and vice versa.

« No - Foreign key indexes are not automatically generated. Foreign key
and create index check boxes can be selected at the same time.

FKeyComment

Specifies a statement for adding an alternate key comment.

SqlListChildren
Query

Specifies a SQL query used to list the joins in a reference.
Example (Oracle 10g):

{ CKEYCOLUMN, FKEYCOLUMN}
[94 SODBCUSERY®sel ect
p. col um_nane, f.col um_nane
from sys. user_cons_col ums f,
sys.all _cons_colums p
where f.position = p.position
and f.tabl e_name=% q: TABLE%
[and p. owner =% q: POANER%4
and p.tabl e_nane=% q: PARENT%
and f.constraint_nane=% q: FKCONSTRAI NT%
and p. constraint _nanme=% q: PKCONSTRAI NT%
order by f.position
:sel ect p.colum_name, f.columm_nane
fromsys.all _cons_colums f,
sys.all _cons_colums p
where f.position = p.position

and f.owner =% q: SCHEMA%
and f.tabl e_name=% q: TABLE%
[and p. owner =% q: POANER%
and p.tabl e_name=% q: PARENT%
and f.constraint_nane=% q: FKCONSTRAI NT%

and p. constrai nt _nane=% q: PKCONSTRAI NT%
order by f.position]

180

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

UseSpFornKey

Specifies the use of the Sp_f or ei gnkey statement to generate a foreign
key. The following settings are available:

* Yes-The Sp_f orei gnkey statement is used to create references.

* No - Foreign keys are generated separately inanal t er t abl e state-
ment using the Create order of reference.

See also UseSpPr i mKey (Pkeyon page 175).

View

The View category is located in the Root > Script > Objects category, and can contain the
following items that define how views are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for views:

« AfterCreate, AfterDrop, AfterModify

« BeforeCreate, BeforeDrop, BeforeModify

¢ Create, Drop

e Enable, EnableSynonym

* Header, Footer

* ModifiableAttributes

e Options

e Permission

¢ ReversedQueries, ReversedStatements

« SqlAttrQuery, SqlListQuery, SqlOptsQuery, SqlPermQuery

For a description of each of these common items, see Common object ftemson
page 156.

Enablelndex

Specifies a list of view types for which a view index is available.
Example (Oracle 10g):
MATERI ALI ZED

SqlListSchema

Specifies a query used to retrieve registered schemas in the database. This
item is used with views of XML type (a reference to an XML document stored
in the database).

When you define an XML view, you need to retrieve the XML documents
registered in the database in order to assign one document to the view, this is
done using the SglListSchema query.

Example (Oracle 109):
SELECT scherma_url FROM dba_xm _schenas

Customizing and Extending PowerDesigner 181

Item Description

SqIXMLView Specifies a sub-query used to improve the performance of SqlAttrQuery.

TypelList Specifies a list of types (for example, DBMS: relational, object, XML) for
views. This list populates the Type list of the view property sheet.

The XML type is to be used with the SqlListSchema item.

ViewCheck Specifies whether the With Check Option check box in the view property
sheet is available. If the check box is selected and the Vi ewCheck param-
eter is not empty, the value of Vi ewCheck is generated at the end of the
view select statement and before the terminator.

Example (SQL Anywhere 10):

If ViewCheck is set to with check option, the generated script is:
create view TEST as

sel ect CUSTOVER. CUSNUM CUSTOVER. CUSNAMVE, CUSTOW
ER. CUSTEL

from CUSTOVER

with check option;

ViewComment Specifies a statement for adding a view comment. If this parameter is empty,
the Comment check box in the Views groupbox in the Tables and Views tabs
of the Generate Database box is unavailable.

Example (Oracle 10g):
[%/ EWNSTYLEYvi ew? conment on table [%QUALI FI ER%
WIEWH i s
% q: COMMENT%
ViewStyle Specifies a view usage. The value defined is displayed in the Usage list of the

view property sheet.
Example (Oracle 10g):
materialized view

182

PowerDesigner

Tablespace

CHAPTER 4: DBMS Definition Files

The Tablespace category is located in the Root > Script > Obj ects category, and can contain
the following items that define how tablespaces are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for tablespaces:

« AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify
¢ Create, Drop

e Enable

* ModifiableAttributes

e Options, DefOptions

* ReversedQueries, ReversedStatements

« SqlAttrQuery, SglListQuery, SqlOptsQuery

For adescription of each of these common items, see Common object itemson

page 156.
Tablespace Com- Specifies a statement for adding a tablespace comment.
ment
Storage

The Storage category is located in the Root > Script > Obj ects category, and can contain the
following items that define how storages are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for storages:

e AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify
« Create, Drop

* Enable

* ModifiableAttributes

e Options, DefOptions

* ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object ftemson

page 156.

Storage Comment

Specifies a statement for adding a storage comment.

Customizing and Extending PowerDesigner

183

Database

The Database category is located in the Root > Script > Obj ectscategory, and can contain the
following items that define how databases are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for databases:

« AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify

¢ Create, Drop

e Enable

* ModifiableAttributes

e Options, DefOptions

e Permission

¢ ReversedQueries, ReversedStatements

« SqlAttrQuery, SqlListQuery, SqlOptsQuery, SqlPermQuery

For a description of each of these common items, see Common object ftemson
page 156.

BeforeCreate Data- | Controls the order in which databases, tablespaces, and storages are gener-
base ated. The following settings are available:

e Yes-—[default] Create Tablespace and Create Storage statements are gen-
erated before the Create Database statement.

* No - Create Tablespace and Create Storage statements are generated after
the Create Database statement

CloseDatabase Specifies the command for closing the database. If this parameter is empty, the
Database/Close option on the Options tab of the Generate Database box is
unavailable.

EnableMany Data- Enables support for multiple databases in the same model.

bases

OpenDatabase Specifies the command for opening the database. If this parameter is empty,
the Database/Open option on the Options tab of the Generate Database box is
unavailable.

Example (ASE 15):
use YDATABASE%

The %DATABASE% variable is the code of the database associated with the
generated model.

184 PowerDesigner

Domain

CHAPTER 4: DBMS Definition Files

The Domain category is located in the Root > Script > Obj ectscategory, and can contain the
following items that define how domains are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for domains:

« AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify
¢ Create, Drop

* Enable, EnableOwner

¢ Maxlen

* ModifiableAttributes

* ReversedQueries, ReversedStatements

« SqlAttrQuery, SqlListQuery

For adescription of each of these common items, see Common object itemson
page 156.

Bind

Specifies the syntax for binding a business rule to a domain.
Example (ASE 15):

[0% exec]][execute]sp_bindrule [%R%["' [YQUALI -
FI ERY %RULE%] [[QUALI FI ER%4 YRULEY] : [' [4QUALI FI ER
% YRULE% 1], YDOVAI N%

EnableBindRule

Specifies whether business rules may be bound to domains for check param-
eters. The following settings are available:

* Yes - The Create and Bind entry of Rule are generated
e No - The check inside the domain Add order is generated

EnableCheck

Specifies whether check parameters are generated.

This item is tested during column generation. If User-defined Type is selected
for columns in the Generation dialog box, and EnableCheck is set to Yes for
domains, then the check parameters are not generated for columns, since the
column is associated with a domain with check parameters. When the checks
on the column diverge from those of the domain, the column checks are
generated.

The following settings are available:

e Yes - Check parameters are generated

* No - Variables linked to check parameters are not evaluated during gen-
eration and reverse

Customizing and Extending PowerDesigner 185

Item Description

EnableDefault Specifies whether default values are generated. The following settings are
available:

e Yes - Default values defined for domains are generated. The default value
can be defined in the check parameters. The %DEFAULT% variable
contains the default value

e No - Default values are not generated

SqlListDefault Specifies a SQL query to retrieve and list domain default values in the system
Query tables during reverse engineering.

UddtComment Specifies a statement for adding a user-defined data type comment.

Unbind Specifies the syntax for unbinding a business rule from a domain.

Example (ASE 15):
[9R®] exec]][execute]sp_unbindrul e %DOVAI N%

Abstract Data Type

The Abstract Data Type category is located in the Root > Script > Obj ects category, and can
contain the following items that define how abstract data types are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for abstract data types:

e AfterCreate, AfterDrop, AfterModify

« BeforeCreate, BeforeDrop, BeforeModify

e Create, Drop

e Enable

* ModifiableAttributes

e Permission

e ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery, SqlPermQuery

For a description of each of these common items, see Common object ftemson
page 156.

ADTComment Specifies a statement for adding an abstract data type comment.

AllowedADT Specifies a list of abstract data types which can be used as data types for
abstract data types.

Example (Oracle 10g):

OBJECT
TABLE
VARRAY

186 PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

Authorizations

Specifies a list of those users able to invoke abstract data types.

CreateBody

Specifies a statement for creating an abstract data type body.
Example (Oracle 10g):

create [or replace Jtype body [%UALI FI ER% YADT%
[.O[as][is]]

Y%ADTBODY%

end;

EnableAdtOn Coln

Specifies whether abstract data types are enabled for columns. The following
settings are available:

* Yes - Abstract Data Types are added to the list of column types provided
they have the valid type.

* No - Abstract Data Types are not allowed for columns.

EnableAdtOn Domn

Specifies whether abstract data types are enabled for domains. The following
settings are available:

e Yes - Abstract Data Types are added to the list of domain types provided
they have the valid type

* No - Abstract Data Types are not allowed for domains

Enable Inheritance

Enables inheritance for abstract data types.

Install

Specifies a statement for installing a Java class as an abstract data class (in
ASA, abstract data types are installed and removed rather than created and
deleted). This item is equivalenttoa cr eat e statement.

Example (SQL Anywhere 10):
install JAVA UPDATE fromfile % q: FI LE%

JavaData

Specifies a list of available instantiation mechanisms for SQL Java abstract
data types.

Remove

Specifies a statement for installing a Java class as an abstract data class.
Example (SQL Anywhere 10):
renmove JAVA cl ass %ADT%

Customizing and Extending PowerDesigner 187

Abstract Data Type Attribute

The Abstract Data Types Attribute category is located in the Root > Script > Objects
category, and can contain the following items that define how abstract data type attributes are

modeled for your DBMS.
Item Description
[Common items] The following common object items may be defined for abstract data type
attributes:
« Add

e AfterCreate, AfterDrop, AfterModify

« BeforeCreate, BeforeDrop, BeforeModify
« Create, Drop, Modify

* ModifiableAttributes

* ReversedQueries, ReversedStatements

e SqlListQuery

For a description of each of these common items, see Common object itemson
page 156.

AllowedADT Specifies a list of abstract data types which can be used as data types for
abstract data type attributes.

Example (Oracle 10g):

CBJECT
TABLE
VARRAY

If you select the type OBJECT for an abstract data type, an Attributes tab
appears in the abstract data type property sheet, allowing you to specify the
attributes of the object data type.

188 PowerDesigner

User

CHAPTER 4: DBMS Definition Files

The User category is located in the Root > Script > Objects category, and can contain the
following items that define how users are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for users:

« AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify

¢ Create, Drop

e Enable

¢ Maxlen

* ModifiableAttributes

e Options, DefOptions

¢ ReversedQueries, ReversedStatements

« SqlAttrQuery, SqlListQuery, SqlOptsQuery, SqlPermQuery

For a description of each of these common items, see Common object ftemson
page 156.

UserComment

Specifies a statement for adding a user comment.

Rule

The Rule category is located in the Root > Script > Objects category, and can contain the
following items that define how rules are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for rules:

e AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify
e Create, Drop

e Enable

¢ Maxlen

* ModifiableAttributes

e ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object ftemson
page 156.

Customizing and Extending PowerDesigner 189

Item

Description

ColnDefault Name

Specifies the name of a default for a column. This item is used with DBMSs
that do not support check parameters on columns. When a column has a
specific default value defined in its check parameters, a name is created for
this default value.

The corresponding variable is %DEFAULTNAME%.
Example (ASE 15):
D % 19: COLUMN% % 8: TABLE%

The EMPFUNC column of the EMPLOYEE table has a default value of
Techni cal Engi neer. The D_ EMPFUNC EMPLOYEE column
default name is created:

create default D _EMPFUNC EMPLOYEE

as ' Techni cal Engi neer'’

go

execute sp_bi ndefault D EMPFUNC EMPLOYEE, "EMPLOY-
EE. EMPFUNC"

go

ColnRuleName

Specifies the name of a rule for a column. This item is used with DBMSs that
do not support check parameters on columns. When a column has a specific
rule defined in its check parameters, a name is created for this rule.

The corresponding variable is %RULE%.
Example (ASE 15):
R % 19: COLUMN% % 8: TABLE%

The TEASPE column of the Team table has a list of values - Industry, Military,
Nuclear, Bank, Marketing - defined in its check parameters:

The R_TEASPE_TEAM rule name is created and associated with the TEA-
SPE column:

create rul e R TEASPE TEAM

as @EASPE in ('Industry',"Mlitary',"' Nu-
clear','Bank',' Marketing')

go

execut e sp_bindrul e R_ TEASPE TEAM " TEAM TEASPE"
go

MaxDefaultLen

Specifies the maximum length that the DBMS supports for the name of the
column Default name

RuleComment

Specifies a statement for adding a rule comment.

190

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

UddtDefault Name

Specifies the name of a default for a user-defined data type. This item is used
with DBMSs that do not support check parameters on user-defined data types.
When a user-defined data type has a specific default value defined in its check
parameters, a name is created for this default value.

The corresponding variable is %DEFAULTNAME%.
Example (ASE 15):
D_% 28: DOVAI N%

The Funct i onLi st domain has a default value defined in its check
parameters: Techni cal Engi neer . The following SQL script will
generate a default name for that default value:

create default D _FunctionLi st

as ' Techni cal Engi neer'’

go

UddtRuleName

Specifies the name of arule for a user-defined data type. This item is used with
DBMSs that do not support check parameters on user-defined data types.
When a user-defined data type has a specific rule defined in its check param-
eters, a name is created for this rule.

The corresponding variable is %RULE%.
Example (ASE 15):
R_% 28: DOVAI N%

The Donai n_speci al i t y domain has to belong to a set of values. This
domain check has been defined in a validation rule. The SQL script will
generate the rule name following the template defined in the item Udd-

t Rul eNane:

create rule R Dommin_speciality

as (@onmi n_speciality in ('Industry',"MIi-
tary', ' Nuclear','Bank','Marketing'))

go

execut e sp_bindrul e R Donmin_speciality, T_Do-
mai n_speciality

go

Customizing and Extending PowerDesigner 191

Procedure

The Procedure category is located in the Root > Script > Obj ects category, and can contain
the following items that define how procedures are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for procedures:

« AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify

¢ Create, Drop

« Enable, EnableOwner, EnableSynonym

¢ Maxlen

* ModifiableAttributes

e Permission

¢ ReversedQueries, ReversedStatements

« SqlAttrQuery, SqlListQuery, SqlPermQuery

For a description of each of these common items, see Common object ftemson
page 156.

CreateFunc Specifies the statement for creating a function.
Example (SQL Anywhere 10):

create function [%QUALI FI ERY %-UNC% %°ROCPRVEY®
([PROCPRVEY])| 9@ RGDEFN%

CustomFunc Specifies the statement for creating a user-defined function, a form of pro-
cedure that returns a value to the calling environment for use in queries and
other SQL statements.

Example (SQL Anywhere 10):

create function [%QUALI Fl ERY %-UNC% (<ar g> <t ype>)
RETURNS <t ype>

begin

end

CustomProc Specifies the statement for creating a stored procedure.
Example (SQL Anywhere 10):

create procedure [%QUALI FI ERY 9%PROC% (I N <ar g>
<type>)

begi n

end

192 PowerDesigner

CHAPTER 4: DBMS Definition Files

Item Description

DropFunc Specifies the statement for dropping a function.
Example (SQL Anywhere 10):

if exists(select 1 from sys.sysprocedure where
proc_name = % q: FUNCY and user_nane(creator) =
% q: OANER%) t hen

drop function [%QUALI FlI ER% %-UNC%

end if

EnableFunc Specifies whether functions are allowed. Functions are forms of procedure
that return a value to the calling environment for use in queries and other SQL
statements.

Function Comment | Specifies a statement for adding a function comment.

ImplementationType | Specifies a list of available procedure template types.

MaxFuncLen Specifies the maximum length of the name of a function.

Procedure Comment | Specifies a statement for adding a procedure comment.

Trigger

The Trigger category is located in the Root > Script > Objects category, and can contain the
following items that define how triggers are modeled for your DBMS.

ltem Description

[Common items] The following common object items may be defined for triggers:

e AfterCreate, AfterDrop, AfterModify

« BeforeCreate, BeforeDrop, BeforeModify
¢ Create, Drop

* Enable, EnableOwner

e Maxlen

« ModifiableAttributes

¢ ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery

For adescription of each of these common items, see Common object itemson
page 156.

DefaultTrigger Specifies a template to define default trigger names.
Name Example (SQL Anywhere 10):
YTEMPLATE% % L: TABLE%

EnableMulti Trigger | Enables the use of multiple triggers per type.

Customizing and Extending PowerDesigner 193

Item

Description

Event

Specifies a list of trigger event attributes to populate the Event list on the
Definition tab of Trigger property sheets.

Example:

Del et e
I nsert
Updat e

EventDelimiter

Specifies a character to separate multiple trigger events.

ImplementationType

Specifies a list of available trigger template types.

Time

Specifies a list of trigger time attributes to populate the Time list on the
Definition tab of Trigger property sheets.

Example:

Bef or e
After

Trigger Comment

Specifies a statement for adding a trigger comment.

UnigName

Specifies whether trigger names must be unique within the global scope of the
database. The following settings are available:

* Yes—Trigger names must be unique within the global scope of the data-
base.

« No - Trigger names must be unique per object

194

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

UseErrorMsg Table

Specifies a macro for accessing trigger error messages from a message table in
your database.

Enables the use of the User-defined radio button on the Error Messages tab of
the Trigger Rebuild dialog box (see Data Modeling > Building Data Models >
Triggers and Procedures > Generating Triggers and Procedures > Creating
and generating user-defined error messages).

If an error number in the trigger script corresponds to an error number in the
message table, the default error message of the .ERROR macro is replaced
your message.

Example (ASE 15):

begin

sel ect @rrno = %ERRNO%
@rrmsg = %UEGTXT%

f r om %VEGTAB%

where Y%EGNO%H = YERRNO%

goto error

end

Where:

* %ERRNO% - error number parameter to the .ERROR macro

* %ERRMSG% - error message text parameter to the .ERROR macro

* %MSGTAB - name of the message table

e %MSGNO% - name of the column that stores the error message number
* %MSGTXT% - name of the column that stores the error message text

See also UseErrorMsgText.

UseErrorMsg Text

Specifies a macro for accessing trigger error messages from the trigger tem-
plate definition.

Enables the use of the Standard radio button on the Error Messages tab of the
Trigger Rebuild dialog box.

The error number and message defined in the template definition are used.
Example (ASE 15):

begin

select @rrno = %ERRNO%
@rrnmsg = %VBGTXT%

goto error

end

See also UseErrorMsgTable.

ViewTime

Specifies a list of available times available for trigger on view.

Customizing and Extending PowerDesigner 195

DBMS Trigger

The DBMS Trigger category is located in the Root > Script > Objects category, and can
contain the following items that define how DBMS triggers are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for DBMS triggers:

« AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify
¢ Create, Drop

e Alter, AlterStatementList, AlterDBIgnored
* Enable, EnableOwner

e Header, Footer

e Maxlen

« ModifiableAttributes

« ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object ftemson
page 156.

EventDelimiter

Specifies a character to separate multiple trigger events.

Events_scope

Specifies a list of trigger event attributes to populate the Event list on the
Definition tab of Trigger property sheets for the selected scgpe, for example,
schema, database, server.

Scope Specifies a list of available scopes for the DBMS trigger. Each scope must
have an associated Events_scope item.
Time Specifies a list of trigger time attributes to populate the Time list on the

Definition tab of Trigger property sheets.

Example:

Bef or e
After

Trigger Comment

Specifies a statement for adding a trigger comment.

196

PowerDesigner

Join Index

CHAPTER 4: DBMS Definition Files

The Join Index category is located in the Root > Script > Objects category, and can contain
the following items that define how join indexes are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for join indexes:

« Add

e AfterCreate, AfterDrop, AfterModify

« BeforeCreate, BeforeDrop, BeforeModify
e Create, Drop

* Enable, EnableOwner

e Header, Footer

e Maxlen

« ModifiableAttributes

« Options, DefOptions

* ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery, SqlOptsQuery

For a description of each of these common items, see Cormmon object itemson
page 156.

AddJoin

Specifies the SQL statement used to define joins for join indexes.
Example:
Tabl el. col n1 = Tabl e2. col n2

EnablelidxColn

Enables support for attaching multiple columns to a join index. In Oracle 9i,
this is called a bitmap join index.

Joinlndex Comment

Specifies a statement for adding a join index comment.

Qualifier

The Qualifier category is located in the Root > Script > Obj ectscategory, and can contain the
following items that define how qualifiers are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for qualifiers:

e Enable
¢ ReversedQueries
e SqlListQuery

For a description of each of these common items, see Common object ftemson
page 156.

Customizing and Extending PowerDesigner 197

Item Description

Label Specifies a label for <all> in the qualifier selection list.

Sequence

The Sequence category is located in the Root > Script > Obj ectscategory, and can contain the
following items that define how sequences are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for sequences:

e AfterCreate, AfterDrop, AfterModify

« BeforeCreate, BeforeDrop, BeforeModify

¢ Create, Drop

e Enable, EnableOwner, EnableSynonym

e Maxlen

« ModifiableAttributes

« Options, DefOptions

e Permission

* ReversedQueries, ReversedStatements

* SqlAttrQuery, SqlListQuery, SqlPermQuery

For adescription of each of these common items, see Common object itemson
page 156.

Rename Specifies the command for renaming a sequence.
Example (Oracle 10g):
rename %OLDNAMVEY% t 0 YNEVINAMEY

Sequence Comment | Specifies a statement for adding a sequence comment.

198 PowerDesigner

CHAPTER 4: DBMS Definition Files

Synonym
The Synonym category is located in the Root > Script > Obj ectscategory, and can contain the
following items that define how synonyms are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for synonyms:

e Create, Drop

* Enable, EnableSynonym

* Maxlen

¢ ReversedQueries

e SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object ftemson
page 156.

EnableAlias Specifies whether synonyms may have a type of alias.

Group
The Group category is located in the Root > Script > Objects category, and can contain the
following items that define how groups are modeled for your DBMS.

Iltem Description

[Common items] The following common object items may be defined for groups:

e AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify

e Create, Drop

« Enable

¢ Maxlen

* ModifiableAttributes

e ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery, SqlPermQuery

For a description of each of these common items, see Common object itemson
page 156.

Bind Specifies a command for adding a user to a group.
Example (SQL Anywhere 10):
grant menbership in group %GROUP% t o %JSER%

Group Comment Specifies a statement for adding a group comment.

ObjectOwner Allows groups to be object owners.

Customizing and Extending PowerDesigner 199

Item

Description

SqlListChildren
Query

Specifies a SQL query for listing the members of a group.
Example (ASE 15):

{GROUP | D, MEMBER}

sel ect g.nane, u.nane
from

[UCATALOG%] dbo. sysusers u, [%CATALOG%] dbo. sysus-
ers g
wher e

u.suid > 0 and

u.gid = g.gid and

g.gid = g.uid
order by 1, 2

Unbind

Specifies a command for removing a user from a group.
Example (SQL Anywhere 10):
revoke menbership in group %GROUP% fr om %JSERY%

Role

The Role category is located in the Root > Script > Objects category, and can contain the
following items that define how roles are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for roles:

* AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify

¢ Create, Drop

e Enable

e Maxlen

* ModifiableAttributes

» ReversedQueries, ReversedStatements

« SqglAttrQuery, SqlListQuery, SqlPermQuery

For adescription of each of these common items, see Common object itemson
page 156.

Bind

Specifies a command for adding a role to a user or to another role.
Example (ASE 15):
grant role YROLE% t 0 YISER%

200

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item Description
SqlListChildren Specifies a SQL query for listing the members of a group.
Query

Example (ASE 15):

{ ROLE ID, MEMBER }
SELECT r. nane, u.nane
FROM

mast er . dbo. sysl ogi nrol es
[UCATALOG%] dbo. sysr ol es
[UCATALOG%] dbo. sysusers
[UCATALOG%] dbo. sysusers
wher e

|.suid = u.suid

and s.id =l.srid

and r.uid = s.lrid

S cwn—

Unbind Specifies a command for removing a role from a user or another role.

DB Package

The DB Package category is located in the Root > Script > Objectscategory, and can contain
the following items that define how database packages are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for database packages:

e AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify

e Create, Drop

« Enable, EnableSynonym

¢ Maxlen

* ModifiableAttributes

e Permission

« ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery, SqlPermQuery

For adescription of each of these common items, see Common object itemson
page 156.

Authorizations Specifies a list of those users able to invoke database packages.

Customizing and Extending PowerDesigner 201

Item

Description

CreateBody

Specifies a template for defining the body of the database package. This
statement is used in the extension statement AfterCreate.

Example (Oracle 109):

create [or replace]package body [%QUALI Fl ER%
YDOBPACKAGE% [. O [as] [is]][% sPragma% ? pragme seri -
al ly_reusabl e]

YOBPACKAGEBODY%
[begin

YOBPACKAGEI NI T%
]end[%DOBPACKAGEY] ;

DB Package Sub-objects

The following categories are located in the Root > Script > Objects category:

DB Package Procedure
DB Package Variable

DB Package Type

DB Package Cursor
DB Package Exception
DB Package Pragma

Each contains many of the following items that define how database packages are modeled for
your DBMS.

Item

Description

[Common items]

The following common object items may be defined for database packages:

* Add
¢ ReversedQueries

For a description of each of these common items, see Common object itemson
page 156.

DBProcedure Body

[database package procedures only] Specifies a template for defining the body
of the package procedure in the Definition tab of its property sheet.

Example (Oracle 10g):

begin
end

202

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

ParameterTypes

[database package procedures and cursors only] Specifies the available types
for procedures or cursors.

Example (Oracle 10g: procedure):
in

i n nocopy

in out

in out nocopy

out

out nocopy

Parameter

The Parameter category is located in the Root > Script > Objects category, and can contain
the following items that define how parameters are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for database packages:
* Add
¢ ReversedQueries

For adescription of each of these common items, see Common object itemson
page 156.

Privilege

The Privilege category is located in the Root > Script > Obj ectscategory, and can contain the
following items that define how privileges are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for privileges:

« AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify
¢ Create, Drop

e Enable

* ModifiableAttributes

* ReversedQueries, ReversedStatements

For a description of each of these common items, see Common object itemson
page 156.

Customizing and Extending PowerDesigner 203

Item

Description

GrantOption

Specifies the grant option for a privileges statement.
Example (Oracle 10g):
with admin option

Revokelnherited

Allows you to revoke inherited privileges from groups and roles.

RevokeOption

Specifies revoke option for a privileges statement.

System

Specifies a list of available system privileges.
Example (ASE 15):

CREATE DATABASE
CREATE DEFAULT
CREATE PROCEDURE
CREATE TRI GGER
CREATE RULE
CREATE TABLE
CREATE VI EW

Permission

The Permission category is located in the Root > Script > Obj ects category, and can contain
the following items that define how permissions are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for permissions:

¢ Create, Drop

« Enable

* ReversedQueries
e SqlListQuery

For adescription of each of these common items, see Common object itemson
page 156.

GrantOption

Specifies the grant option for a permissions statement.

Example (ASE 15):
with grant option

Revokelnherited

Allows you to revoke inherited permissions from groups and roles.

RevokeOption

Specifies the revoke option for a permissions statement.
Example (ASE 15):
cascade

204

PowerDesigner

Default

CHAPTER 4: DBMS Definition Files

The Default category is located in the Root > Script > Objects category, and can contain the
following items that define how defaults are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for defaults:

« AfterCreate, AfterDrop, AfterModify

» BeforeCreate, BeforeDrop, BeforeModify
¢ Create, Drop

* Enable, EnableOwner

¢ Maxlen

* ModifiableAttributes

* ReversedQueries, ReversedStatements

« SqlAttrQuery, SqlListQuery

For adescription of each of these common items, see Common object itemson
page 156.

Bind

Specifies the command for binding a default object to a domain or a column.

When a domain or a column use a default object, a binddefault statement is
generated after the domain or table creation statement. In the following ex-
ample, column Address in table Customer uses default object CITYDFLT:

create tabl e CUSTOVER (
ADDRESS char (10) null

)
sp_bi ndefault C TYDFLT, ' CUSTOVER. ADDRESS'

If the domain or column use a default value directly typed in the Default list,
then the default value is declared in the column creation line:

ADDRESS char (10) default 'StdAddr' null

PublicOwner

Enables PUBLIC to own public synonyms.

Unbind

Specifies the command for unbinding a default object from a domain or a
column.

Example (ASE 15):

[9% exec]][execute]sp_unbindefault
% q: BOUND_OBJECT%

Customizing and Extending PowerDesigner 205

Web Service and Web Operation

The Web Service and Web Operation categories are located in the Root > Script > Objects
category, and can contain the following items that define how web services and web
operations are modeled for your DBMS.

Item Description
[Common items] The following common object items may be defined for web services and web
operations:

« AfterCreate, AfterDrop, AfterModify
e Alter

« BeforeCreate, BeforeDrop, BeforeModify
e Create, Drop

* Enable, EnableOwner

e Header, Footer

e MaxConstLen (web operations only)

e Maxlen

* ModifiableAttributes

* ReversedQueries, ReversedStatements
e SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object itemson
page 156.

Enable Namespace | Specifies whether namespaces are supported.

EnableSecurity Specifies whether security options are supported.

OperationType List | [web operation only] Specifies a list of web service operation types.
Example (DB2 UDB 8.x CS):

query
updat e

st or eXM_
retrieveXm
cal

ServiceTypeList [web service only] Specifies a list of web service types.
Example (SQL Anywhere 10):

UnigName Specifies whether web service operation names must be unique in the data-
base.

206 PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

WebService Com-
ment/ WebOperation
Comment

Specifies the syntax for adding a comment to web service or web service
operation.

Web Parameter

The Web Parameter category is located in the Root > Script > Objects category, and can
contain the following items that define how web parameters are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for web parameters:
* Add
* Enable

For adescription of each of these common items, see Common object itemson
page 156.

EnableDefault

Allows default values for web service parameters.

ParameterDttp List

Specifies a list of data types that may be used as web service parameters.

Result Column

The Result Column category are located in the Root > Script > Objects category, and can
contain the following items that define how web services and web operations are modeled for

your DBMS.

Item

Description

ResultColumn
DttpList

Specifies a list of data types that may be used for result columns.

Customizing and Extending PowerDesigner

207

Dimension

The Dimension category is located in the Root > Script > Objects category, and can contain
the following items that define how dimensions are modeled for your DBMS.

Item Description

[Common items] The following common object items may be defined for dimensions:

« AfterCreate, AfterDrop, AfterModify

e Alter

« BeforeCreate, BeforeDrop, BeforeModify
e Create, Drop

¢ Enable
e Header, Footer
¢ Maxlen

¢ ReversedQueries
e SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object ftemson
page 156.

AddAttr Hierarchy | Specifies the syntax for defining a list of hierarchy attributes.
Example (Oracle 10g):
child of %O MNATTRH ER%

AddAttribute Specifies the syntax for defining an attribute.
Example (Oracle 109):

attri bute %D MNATTR% det ermi nes [. O [(%D MNDEPCOLN-
LI ST%] [YOI MNDEPCOLNY]

AddHierarchy Specifies the syntax for defining a dimension hierarchy.
Example (Oracle 10g):

hi erarchy %Ol MNH ER% (
%0l MNATTRHI ERFI RST% %0 MNATTRHI ERLI ST%

AddJoin Hierarchy | Specifies the syntax for defining a list of joins for hierarchy attributes.
Example (Oracle 10g):

join key [.O:[(%DIMNKEYLIST%)][%DIMNKEY LIST%]] references
%DIMNPARENTLEVEL%

208 PowerDesigner

CHAPTER 4: DBMS Definition Files

Item

Description

AddLevel

Specifies the syntax for dimension level (attribute).
Example (Oracle 10g):

level %DIMNATTR% is [.O:[(%DIMNCOLNLIST%)][%DIMNTABL%.
%DIMNCOLN%]]

Extended Object

The Extended Object category is located in the Root > Script > Objects category, and can
contain the following items that define how extended objects are modeled for your DBMS.

Item

Description

[Common items]

The following common object items may be defined for extended objects:

e AfterCreate, AfterDrop, AfterModify

« BeforeCreate, BeforeDrop, BeforeModify
¢ Create, Drop

* EnableSynonym

e Header, Footer

« ModifiableAttributes

« ReversedQueries, ReversedStatements

e SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common object itemson
page 156.

AlterStatement List

Specifies a list of text items representing statements modifying the corre-
sponding attributes

Comment

Specifies the syntax for adding a comment to an extended object.

Script/Data Type Category

The Data Type category provides mappings to allow PowerDesigner to handle DBMS-
specific data types correctly.

The following variables are used in many of the entries:

e % - Length of the data type
e Us - Size of the data type
* % - Precision of the data type

Customizing and Extending PowerDesigner 209

Item

Description

AmcdAmcd-
Type

Lists mappings to convert from specialized data types (such as XM, | VL, ME-
DI A, etc) to standard PowerDesigner data types. These mappings are used to help
conversion from one DBMS to another, when the new DBMS does not support
one or more of these specialized types. For example, if the XML data type is not
supported, TXT is used.

AmcdDataType

Lists mappings to convert from PowerDesigner (Internal) data types to DBMS
(Physical M odel) data types.

These mappings are used during CDM to PDM generation and with the Change
Current DBM 'S command.

Examples (ASE 15):

» The PowerDesigner A% datatype is converted to a char (%) for ASE
15.

» The PowerDesigner VA% datatype is converted to a var char (%) for
ASE 15.

PhysDataType

Lists mappings to convert from DBMS (Physical M odel) data types to Power-
Designer (Internal) data types.

These mappings are used during PDM to CDM generation and with the Change
Current DBM S command.

Examples (ASE 15):

» The ASE 15 sysnane datatype is converted to a VA30 for PowerDesigner.
e The ASE 15i nt eger datatype is converted to a | for PowerDesigner.

PhysDttpSize

Lists the storage sizes of DBMS data types. These values are used when estimat-
ing the size of a database.

Examples (ASE 15):

e The ASE 15 snal | noney requires 8 bytes of space.
« The ASE 15smal | dat et i e requires 4 bytes of space.

OdbcPhysData
Type

Lists mappings to convert from live database (ODBC) data types to DBMS
(Physical Model) data types during database reverse engineering.

These mappings are used when data types are stored differently in the database
(often due to the inclusion of a default size) than in the DBMS notation.

Examples (ASE 15):

« Afl oat (8) inan ASE 15 database is reversed as af | oat .
+ Adeci mal (30, 6) inan ASE 15 database is reversed as a deci mal .

210

PowerDesigner

CHAPTER 4: DBMS Definition Files

Item Description
PhysOdbcData | Lists mappings of DBMS (Physical M odel) data types to database (ODBC) data
Type types for use when updating and reverse engineering a database.
These mappings are used when data types that are functionally equivalent but
different to those specified in the PDM are found in an existing database to avoid
the display of unnecessary and irrelevant differences in the Merge dialog.
Examples (ASE 15):
* Auni char istreated as equivalent to auni char (1) inan ASE 15
database.
« Afl oat (1) istreated as equivalenttoaf | oat (4) inan ASE 15
database.
PhysLogADT Lists mappings to convert from DBMS (Physical M odel) abstract data types to
Type PowerDesigner (I nternal) abstract data types.
These mappings are used to populate the Type field and display the appropriate
properties in abstract data type property sheets and with the Change Current
DBM S command.
Examples (Oracle 11g):
* The Oracle 11g VARRAY abstract data type is converted to an Ar r ay for
PowerDesigner.
e TheOracle11g SQLJ OBJECT datatype is convertedtoaJavaChj ect
for PowerDesigner.
LogPhysADT Lists mappings to convert from PowerDesigner (I nternal) abstract data types to
Type DBMS (Physical M odel) abstract data types.
These mappings are used with the Change Current DBM S command.
Examples (Oracle 119):
« The PowerDesigner Li st abstract data type is converted to a TABLE for
Oracle 11g.
» The PowerDesigner Obj ect abstract data type is converted to an OBJECT
for Oracle 11g.
AllowedADT Lists the abstract data types that may be used as types for columns and domains in
the DBMS.
Example (ASE 15):
« JAVA

Customizing and Extending PowerDesigner 211

Item Description

HostDataType Lists mappings to convert from DBMS data types (Physical M odel) to data types
permitted as procedure parameters (Trigger).

These mappings are used to populate the Data type field in ADT procedure
parameter property sheets

Examples (Oracle 119):

e The Oracle 11g DEC data type is converted to a nunber .
e The Oracle 11g SMALLI NT datatype is converted to an i nt eger .

Profile Category (DBMS)

The Profile category is used to extend standard PowerDesigner objects. You can refine the
definition, behavior, and display of existing objects by creating extended attributes,
stereotypes, criteria, forms, symbols, generated files, etc, and add new objects by creating and
stereotyping extended objects and sub-objects.

You can add extensions in either:

» your DBMS definition file - you should save a backup of this file before editing it.
« aseparate extension file - which you attach to your model.

For detailed information about working with profiles, including adding extended attributes
and objects, see Chapter 2, Extension Files on page 21.

Using Extended Attributes During Generation
Extended attributes can be taken into account during generation. Each extended attribute
value can be used as a variable that can be referenced in the scripts defined in the Script
category.

Some DBMSs include predefined extended attributes. For example in PostgreSQL, domains
include default extended attributes used for the creation of user-defined data types.

212 PowerDesigner

CHAPTER 4: DBMS Definition Files

E* Domain Properties - Address [ADDRESS])

Prewview I Dependencies I Extended Dependencies I Yerzion Info
General I Standard Checks I Additional Checks Base Type | Motes I Rules

Length: ||

Array Element type: I

Array delimiter: I

[~ Bu¥alue

Input function:

Qutput function;

Send function:

Receive function;

< Less | - QK I Cancel | Apply Help |

You can create as many extended attributes as you need, for each DBMS supported object.

Note: PowerDesigner variable names are case sensitive. The variable name must be an exact
match of the extended attribute name.

Example
For example, in DB2 UDB 7 0S/390, the extended attribute Wher eNot Nul | allows you to

add a clause enforcing the uniqueness of index names if they are not null.

Inthe Cr eat e i ndex order, Wher eNot Nul | is evaluated as follows:

create [% NDEXTYPE%] [%Nl QUEY% [%0\her eNot Nul | %@2wher e not
nul |]]index [%QUALI FI ERY % NDEX% on [%TABLQUALI FI ERY4 % ABLE% (
%Cl DXLI ST%

)

[YOPTI ONS%

If the index name is unique, and if you set the type of the Wher eNot Nul | extended attribute
to True, the "where not null” clause is inserted in the script.

Inthe Sgl Li st Query item:

{OMNER, TABLE, | NDEX, | NDEXTYPE, UN QUE, | NDEXKEY, CLUSTER,
Wher eNot Nul | }

sel ect
t bcreat or,
t bnane,

Customizing and Extending PowerDesigner 213

nane,
case indextype when '2' then 'type 2' else '"type 1' end,

case uni querule when 'D then '' else 'unique' end,
case uni querul e when 'P then 'primary' when 'U then 'uni que' else
"' end,

case clustering when 'Y then 'cluster' else end,
case uni querule when 'N then ' TRUE' else 'FALSE end
from
sysi bm sysi ndexes
where 1=1
[and tbname=% q: TABLE%
[and tbcreator=% q: ONNER%
[and dbname=% q: CATALOGY
order by
1,2,3

Modifying the Estimate Database Size Mechanism

By default, the Estimate Database Size mechanism uses standard algorithms to calculate the
sizes of tablespaces, tables, columns, and indexes and adds them together to provide an
indication of the size that the database will require. You can override the algorithm for one or
more of these types of objects or include additional objects in the calculation by adding the
CGet Est i mat edSi ze event handler to the appropriate object inthe Pr of i | e category and
entering a script to calculate its size.

1. Select Database>Edit Current DBM Sto open the DBMS definition file, and expand the
profile category.

2. Right-click the metaclass for which you want to provide a script to calculate the object
size, select New > Event Handler to open a selection dialog, select the
Get Est i mat edSi ze event handler, and then click OK to add it under the metaclass.

3. Click the Event Handler Script tab in the right pane and enter appropriate code to
calculate the size of your chosen object.

214 PowerDesigner

CHAPTER 4: DBMS Definition Files

‘ DBMS Properties {For All Models) =101 x]

General | Trigger Templates I Trigger Template Items | Procedure Templatesl

a- - ISYASIE!'I52EI::Prof|Ie\TabIe\EvantHandlels\GetEstlmatedSlze j Qv - Nf ’3’,_!

D ataSource ;I
| Dependencyh atix

ExtendedObject B v‘jv‘ﬂjlﬁ| & _\555| ¥ | & Ln1.Coll
] ExtendedSubObject

General Event Handler Script | GIobaIScliptI

ndex Function %GetEstimated3ize%(obj, ByRef meszsage) N
Joinlndex
Key ! First couwpute global database setting wariable we will need.
3 Model ! Get IQPagefize
Procedure Din IQPagelize
Refershce IQPageSize = 131072 ' default

if (ActiweModel.Databases.Count > 0) then
T Table .
n Criteri Dim DB, S0pts
12 Criteriz Set DB = ActiveModel.Databases.Ttem(0)
"3 EventHanf:IIers § S0pts = DE.GetPhysicallptionValue("ig page =size™)
F GeFEstlmatedSlze if (S0pts <> ") then
& Velidate ! IQPageSize = CLngiS0pts)
1) Extended Attributes end if

D) Extended Collections end if -
+]-1) Forms
IR J;I KIS 2
13

Ok I Cancel | Spply | Help |

In the following example, we look at extracts of a Get Est i mat edSi ze event handler
defined onthe Tabl e metaclass to estimate the size of the database by calculating the size
of each table as the total size of all its columns plus the total size of all its indexes.

Note: For examples of the Get Est i mat edSi ze event handler in use on the Table and
other metaclasses, see the Sybase 1Q v15.2 and HP Neoview R2.4 DBMS definition files.

In this first extract from the script, the Get Est i mat edSi ze function opens and the size
of each table is obtained by looping through the size of each of its columns. The actual
work of calculating the column size is done by the line:

Col Si ze = C. CGetEstinat edSi ze(nessage, fal se)

, which calls the Get Est i mat edSi ze event handler on the Col unm metaclass (see
Calling the GetEstimatedSize Event Handler on Another Metaclass on page 217):
Functi on %Get Esti nmat edSi ze% obj, ByRef nessage)

Fi rst conpute gl obal database setting variable we will need.
' Get table size and keep colum size for future use
Di m Col Si zes, Tbl Si ze, Col Size, C
Set Col Si zes = CreateObject("Scripting.Dictionary")

Thl Size = 0 ' May be changed to take into account table
definition initial size.

for each Cin obj.Colums
' Start browsing table colums and use event handl er defined
on colum netaclass (if it exists).
Col Si ze = C. CetEstinmat edSi ze(nmessage, fal se)

Customizing and Extending PowerDesigner 215

Store colum size in the map for future use in indexes.
Col Si zes. Add C, Col Si ze

' Increase the table gl obal size.
Tbhl Si ze = Thl Si ze + Col Si ze
next
Di m RawDat aSi ze
RawDat aSi ze = Bl ockSi ze * int(obj.Nunber * Thl Size / Bl ockSi ze)
' At this point, the RawDataSi ze is the size of table in
dat abase.

Next the size of the table indexes is calculated directly in the script without making a call to
an event handler on the Index metaclass, the line outputting index sizes is formatted and
the size of the indexes added to the total database size:

Now cal cul ate index sizes. Set up variables to store indexes
si zes.
Dim X, XMsg, XDataSi ze
XMsg = ""
for each X in obj.Indexes
XDat aSi ze = 0
' Browsing index colums and get their size added in
XDat aSi ze
For each C in X I ndexCol ums
XDat aSi ze = XDat aSi ze + Col Si zes. |t en{ C. Col umm)
next
XDat aSi ze = Bl ockSi ze * int(obj.Nunber * XDataSi ze /
Bl ockSi ze)
' Format the display nessage in order to get size
information in output and result |ist.
XMsg = XMsg & CStr(XDataSize) & "|" & X Object!lD & vbCrLf

' Add the index size to table size.
RawDat aSi ze = RawDat aSi ze + XDat aSi ze
next

Finally the size information is formatted for output (see Formatting the Database Size
Estimation Outputon page 217). Each table is printed on a separate line in both the Output
and Result List windows, and its total size including all columns and indexes is given:

' set the global nmessage to table size and all indexes
(separate with carriage return)
message = CStr(RawDat aSize) & "||" & obj.ShortDescription &

vbCrLf & XMsg
%Get Est i mat edSi ze% = RawDat aSi ze
End Function

Once all the tables have been processed, PowerDesigner calculates and prints the total
estimated size of the database.

216 PowerDesigner

CHAPTER 4: DBMS Definition Files

Calling the GetEstimatedSize Event Handler on Another Metaclass

You can call aGet Est i mat edSi ze event handler defined on another metaclass to use this
size in your calculation. For example, you may define Get Est i mat edSi ze onthe Tabl e
metaclass, and make a call to Get Est i nat edSi ze defined on the Col urm and | ndex
metaclasses to use these sizes to calculate the total size of the table.

The syntax of the function is as follows, where message is the name of your variable
containing the results to print:

Get Est i mat edSi ze(message[, true| fal se])

In general, we recommend that you use the function in the folllowing form:
Get Est i mat edSi ze(message, fal se)

The use of the f al se parameter (which is the default, but which is shown here for clarity)
means that we call the Get Est i nat edSi ze event handler on the other metaclass, and use
the default mechanism only if the event handler is not available.

Setting the parameter to true will force the use of the default mechanism for calculating the
size of objects (only possible for tables, columns, and join indexes):

Get Est i mat edSi ze(message, true)

Formatting the Database Size Estimation Output

You can format the output for your database size estimation. Sub-objects (such as columns and
indexes) contained in a table are offset, and you can print additional information after the
total.

The syntax for the output is as follows:
[object-size][:conpartment]|[Objectl D[] abel]

where:

* object-size - is the size of the object.

e compartment- is a one-digit number, which indicates that the size of the object should be
excluded from the total size of the database and should be printed after the database size
has been calculated. For example, you may include the size of individual tables in your
calculation of the database size and print the sizes of tablespaces separately after the
calculation.

e (bj ect | D-isunneccessary for objects, such as tables, but required for sub-objects if
you want to print them to the Result List.

« Jabel - is any appropriate identifying string, and is generally set to
Short Descri pti on, which prints the type and name of the selected object.

For example, in the event handler defined on the Tabl e metaclass (having calculated and
stored the size of a table, the size of all the columns of type LONG contained in the table, and
the size of each index in the table), we create a message variable to print this information. We
begin by printing a line giving the size of a table:

Customizing and Extending PowerDesigner 217

nessage = CStr(Tabl eSize) & "||" & obj Tabl e. Short Description & vbCr Lf

We then add a line printing the total size of all the columns of type LONG in the table:
message = nessage & CStr(LongSize) & "|| Colums of type LONG' &

vbCr Lf

We then add a line printing the size of each index in the table:

message = nessage & CStr(lndexSize) & "|" & objlndex.ObjectID &
vbCr Lf

In the event handler defined onthe Tabl espace metaclass (having calculated and stored the
size of a tablespace), we create a message variable to print this information after the database
size calculation has been printed.

We begin by overriding the default introduction to this second compartment:
message = ":1|| Tables are allocated to the foll ow ng tabl espaces: "

We then add a line printing the size of each tablespace in the table
nessage = nessage + CStr(tabl espaceSize) & ":1]|" &
obj Tabl espace. Short Descri ption

The result gives the following output:

Estimate of the size of the Database "Sal es"...

Nurber Esti mated si ze oj ect

10, 000 6096 KB Tabl e 'l nvoi ces'
Col unms of type LONG (35 KB)
I ndex ' custoner FKeyl ndex' (976 KB)
I ndex 'descriptionlndex' (1976 KB)

[...etc...]

Tables are allocated to the follow ng tabl espaces:

Esti mated si ze oj ect
6096 KB Tabl espace ' nai nSt or age'
[etc...]

Physical Options

In some DBMSs, physical options are used to specify how an object is optimized or stored ina
database. You define physical options in object property sheets on the following tabs:

» Physical Options (Common) — displays the physical options most commonly set for the
object in a standard form format:

218 PowerDesigner

CHAPTER 4: DBMS Definition Files

B Table Properties - Employees (EMPLOYEES) H=] &3

Gerneral I Colurmnz I Indexes | Fepz | Triggers | Frocedures I Phwszical Optiong
Jain Index I Oracle I Partitions Physical Optians ([Comman] | Motes I Rules I Freview
On commit: || ﬂ
—v Mot clustered
Organization
= Heap [T Indes 7| Esternal

Segment attributes: J

Table comprezsion: I j
— Cluster

Cluster: I Colurnz: I

More > | = QK I Cancel | Apply | Help |

» Physical Options—displays all the available physical options for the object in a tree format:

Customizing and Extending PowerDesigner 219

B Table Properties - Employees (EMPLOYEES) H=] &3

Join Index I Oracle I Partitions I Phwszical Optiong [Common) I Motez I Rulez | Frevig |
Gerneral I Colurmnz I Indexes I Fepz I Triggers I Frocedures Phyzical Options

EI <phyzical_properties:
{ [<zegment_attributes_clauser
- coomprezs_clauzer [compresz]

[+]- organization ﬂ
[+ cluster [%g)

[l <table_properties: 2'
[+ <column_properties» ﬂ
[+ <table_partitioning_clauses>

- crow_movement_clauger [dizab
- ¢rache_clauger [cache]

- ¢rowdependencies_clauger [ror
- cmionitoring_clauger [monitoring=—
- <paralle_clauze»

[+- enable -
| »

F [Syrte £ A Iy tems AsaL 7
Apply ta.. |

= QK I Cancel | Apply | Help |

. 'Y

Note: The Physical Options (Common) tab is configurable and the options that appear onitare
associated with extended attributes. You can add other options to this tab or to your own
custom tab by associating them with extended attributes. For more information, see Adding
DBMS Physical Options to Your Forms on page 76.

For information about setting physical options, see Data Modeling > Building Data Models >
Physical Implementation > Physical Options.

Physical Option Syntax

If physical options are supported for an object, they are stored in the Options entry beneath the
object in the Script/Object category of the DBMS resource file.

For more information, see Common object itemson page 156. Default values are stored in the
DefOptions entry.

During generation, the options selected in the model for each object are stored as a SQL string
in the %OPTIONS% variable, which must appear at the end of the Create statement of the
object, and cannot be followed by anything else. The following example uses the correct
syntax:

create table
[YOPTI ONS%4

220

PowerDesigner

CHAPTER 4: DBMS Definition Files

During reverse engineering by script, the section of the SQL query determined as being the
physical options is stored in %OPTIONS%, and will then be parsed when required by an
object property sheet.

During live database reverse engineering, the Sql Opt sQuer y SQL statement is executed to
retrieve the physical options which is stored in %OPTIONS% to be parsed when required by
an object property sheet.

You can use PowerDesigner variables (see PDM Variables on page 226) to set physical
options for an object. For example, in Oracle, you can set the following variable for a cluster to
make the cluster take the same name as the table.

Cl ust er %ABLE%

Defining Physical Options Specified by a Value
Option items contain text that is used to display the option on the Physical Options tabs.
Entries may contain %d or %s variables to let the user specify a value. For example:

wi th max_rows_per_page=%l
on %: category=storage

 the %d variable - requires a numeric value
* %s variable - requires a string value
Variables between % signs (%--%) are not allowed inside physical options.

You can specify a constraint (such as a list of values, default values, the value must be a storage
or a tablespace, some lines can be grouped) on any line containing a variable. Constraints are
introduced by a colon directly following the physical option and separated by commas.

Example
Wth max_rows_per _page is a physical option for Sybase ASE 11.x,which limits the
number of rows per data page. The syntax is as follows:

wi th max_row_per_page = X

Thewi t h max_r ows_per _page option is shown on the Options tabs with a default value
of zero (0):

This option is defined in the DBMS definition file as follows:

with max_rows_per_page=%
on % : category=storage

The %l and % variables must be in the last position and they must not be followed by other
options.

Customizing and Extending PowerDesigner 221

Physical Options Without Names

A line in an option entry must have a name in order to be identified by PowerDesigner. If a
physical option does not have any name, you must add a name between angled brackets <>
before the option.

For example, the syntax to define a segment in Sybase ASE 11, is as follows:
sp_addsegnent segnment nane, dat abasenane, devi cename
segment nane corresponds to the storage code defined in PowerDesigner, and

dat abasenane corresponds to the model code. These two entries are automatically
generated. devi cename must be entered by the user, and becomes an option.

In SYSTEML11, this option is defined as follows:

Create = execute sp_addsegnent ¥STORAGEYy YOATABASEY %OPTI ONS%
OPTI ONS = <devnane> %

Note that a physical option without name must be followed by the %@ or % variable.
Defining a Default Value for a Physical Option

A physical option can have a default value specified by the Def aul t = x keyword, which is
placed after the option name or after the %@ or % value, and separated by a colon.

Example
The default value for max_r ow_per _page is 0. In Sybase Adaptive Server® Enterprise 11,
this default value for the index object is defined as follows:

max_rows_per _page=%l : defaul t=0

Defining a List of Values for a Physical Option

When you use the %@ and %s variables, a physical option value can correspond to a list of
possible options specified by thel i st = x | y keyword, which is placed after the option
name or after the %l or % value, and separated by a colon. Possible values are separated by
the | character.

For example, the dup_pr owoption of a Sybase ASE 11 index has two mutually exclusive
options for creating a non-unique, clustered index:

I ndexOption =
<duprow> %s: |ist=ignore_dup_row | allow dup_row

A list with the values is displayed on the Physical Options tabs.

Note: If Def aul t = and Li st = are used at the same time, they must be separated by a
comma. For example IndexOption = <duprow> %s: def aul t = i gnor e_dup_r ow,
list=ignore_dup_row | allow_dup_row

222

PowerDesigner

CHAPTER 4: DBMS Definition Files

Defining a Physical Option for a Tablespace or a Storage

A physical option can use the code of a tablespace or a storage. The

Cat egor y=t abl espace and cat egor y=st or age options build lists of all the
tablespace or storage codes defined in the model.

For example, in Sybase ASE 11, the on segnent narme option specifies that the index is
created on the segment specified. An ASE segment corresponds to a PowerDesigner storage.
The syntax is:

on segnent nanme

The default value for the index object is defined in option items as follows:
on %: category=storage

A list with the values is displayed on the Physical Options tabs.
Composite Physical Option Syntax

A composite physical option is a physical option that includes other dependent options. These
options are selected together in the right pane of the physical options tab.

The standard syntax for composite physical options is as follows:
with : conposite=yes, separator=yes, parenthesis=no
{

fillfactor=%d : defaul t=0

max_rows_per _page=% : defaul t=0

}

The W t h physical option includes the other options between curly brackets { }, separated by
a comma. To define a composite option, a composite keyword is necessary.

Keyword Value and result

composite The following settings are available:

» yes - brackets can be used to define a composite physical option
* no - brackets cannot be used

separator The following settings are available:

* yes - options are separated by a comma
» no [default] - options have no separator character

parenthesis The following settings are available:

» yes - the composite option is delimited by parenthesis, including all the
other options, for example: with (max_row_per_page=0, ignore_dup_key)
* no [default] - nothing delimits the composite option

Customizing and Extending PowerDesigner 223

Keyword

Value and result

nextmand

The following settings are available:

» yes - the next line in the physical option is mandatory.

* no - you will not be able to generate/reverse the entire composite physical
option

prevmand

The following settings are available:

* yes - the previous line in the physical option is mandatory

* no - you will not be able to generate/reverse the entire composite physical
option

chldmand

The following settings are available:

* yes - at least one child line is mandatory
* no - children are not mandatory

category

The following settings are available:

» tablespace - the item is linked to a tablespace
» storage - the item is linked to a storage

storage : category=storage, conposite=yes, separa-
tor=no, parenthesi s=yes

{

Note: In Oracle, the st or age composite physical option is used as a template
to define all the storage values in a storage entry. This is to avoid having to set
values independently each time you need to use the same values in a storage
clause. Thus, the Oracle physical option does not include the storage name
(%s):

list

List in which values are separated by a pipe (])

dquoted

The following settings are available:

* yes - the value is enclosed in double quotes (""" ")
* no - the value is not enclosed in double quotes (""" ")

squoted

The following settings are available:

» yes - the value is enclosed in single quotes (' ')
* no - the value is not enclosed in single quotes (')

enabledbprefix

The following settings are available:

» yes - the database name is used as prefix (see tablespace options in DB2
0S/390)

* no - the database name is not used as prefix

224

PowerDesigner

CHAPTER 4: DBMS Definition Files

Def aul t = and/or Li st = can also be used with the conposi t e=, separ at or =and
par ent hesi s= keywords. Cat egor y= can be used with the three keywords of a
composite option.

Example
The IBM DB2 index options contain the following composite option:

<usi ng_bl ock> : conposite=yes

{
using vcat %
usi ng stogroup % : category=storage, conposite=yes

priqty % : default=12
secqty %l
erase % : default=no, list=yes | no

}

Repeating Options Several Times
Certain databases repeat a block of options, grouped in a composite option, several times. In
this case, the composite definition contains the multiple nul ti pl e:

with: conposite=yes, mltiple=yes
For example, the Informix fragmentation options can be repeated /7 times as follows:

I ndexOption =
fragnent by expression : conposite=yes, separator=yes

<list>: conposite=yes, nultiple=yes

<frag-expressi on> %
in % : category=storage

}

remai nder in % : category=storage

}

The <l i st > sub-option is used to avoid repeating the f r agnent keyword with each new
block of options.

When you repeat a composite option, the option is displayed with <*> in the available physical
options pane (left pane) of the physical options tab.

max_r ows_per _page=0 <*>

Customizing and Extending PowerDesigner 225

B Table Properties - Store [S5T] [_ O] =]

MHates I Rules I Wersion Info I Dependencies
General I Caluring I |ndexes I Keyps I Triggers I Check I Script Options | Preview
[=]- with max_rows_per_page = [0] <*» [=1- with max_rows_per_page = (0]

i o (< starages) on [7)
with max_rows_per_page = (0]
E\. Syrtax £ E\. tems ASQL 7

with max_rows_per_page = ’T |E|
QK I Cancel | Apply | Help

You can add the composite option to the right pane several times using the Add button between
the panes of the physical options tab.

If the selection is on the composite option in the right pane and you click the same composite
option in the left pane to add it, a message box asks you if you want to reuse the selected option.
If you click No, the composite option is added to the right pane as a new line.

PDM Variables and Macros

The SQL queries recorded in the DBMS definition file items make use of various PDM
variables. These variables are replaced with values from your model when the scripts are
generated, and are evaluated to create PowerDesigner objects during reverse engineering.

PowerDesigner variables are written between percent signs (%).

Example
CreateTable = create table %ABLEY

The evaluation of variables depends on the parameters and context. For example, the

%COLUMN% variable cannot be used in a CreateTablespace parameter, because it is only
valid in a column parameter context.

When referencing object attributes you can use the following variables or, alternately, the
public names available through the PowerDesigner metamodel (see Chapter 5, Customizing

226

PowerDesigner

CHAPTER 4: DBMS Definition Files

Generation with GTL on page 263 and Chapter 1, Working with PowerDesigner Resource

Fileson page 1.

Testing Variable Values with the [] Operators

You can use square brackets [] to test for the existence or value of a variable.

You can use square brackets to

* Include optional strings and variables, or lists of strings and variables in the syntax of SQL
statements: [%var i abl e%

» Test the value of a variable and insert or reconsider a value depending of the result of the
test: [Wvari abl e%® true : false]

e Test the content of a variable [%var i abl e%constant? true : fal se]

Variable

Generation

[Wvari abl e

Tests for the existence of the variable.

Generation: Generated only if variableexists and is not assigned NO
or FALSE.

Reverse: Evaluated if the parser detects a SQL statement corre-
sponding to the variable and it is not assigned NOor FALSE.

[Wvari abl e%®
true : false]

Tests for the existence of the variable and allows conditional output.

Generation: frueis generated if variable exists and is not assigned
NOor FALSE. Otherwise, false is generated.

Reverse: If the parser detects variable and it is not assigned NOor
FALSE, trueis reversed. Otherwise, falseis reversed. variableis set
to Tr ue or Fal se as appropriate.

[Wvari abl e%=con-
stant? true :

Tests the value of the variable and allows conditional output.

Generation: If variableequals constant, trueis generated. Otherwise,

fal se] false is generated.
Reverse: If the parser detects thatvariable equals constant, trueis
reversed. Otherwise, falseis reversed.
[.Z [iteml] Specifies that the items do not have a significant order.
[item2]...]

Generation: . Z is ignored

Reverse: The 7tems can be reversed in any order they are encoun-
tered.

Customizing and Extending PowerDesigner 227

Variable Generation

[.C [iteml] Specifies that the itemsare synonyms, only one of which should be
[iten2]...] output.

Generation: Only the first jfem listed is generated.

Reverse: The reverse parser must find one of the itermsto validate the
full statement.

Examples
o [YOPTI ONS%

If %0PT1 ONS%(physical options for the objects visible in the object property sheet) exists
and is not assigned NOor FALSE, it is generated to the value of %0PTI ONS%
o [default YDEFAULT%

If the statement def aul t 10 is found during reverse engineering, YDEFAUL T%is
assigned the value 10, but the statement is not mandatory and reversing continues even if it
is absent. In script generation, if “DEFAULT%has a value of 10, it is generated as
def aul t 10 otherwise nothing is generated for the block.

o [%WVANDY®? not null : null]

If 99VAND%is evaluated as true or contains a value other than Fal se or NQ it is generated
asnot nul | . Otherwise it is generated as nul | .
« [YDELCONST%RESTRI CT?: [on del et e %DELCONST%]

If YDEL CONST%contains the value RESTRI CT, it is generated as on del et e
RESTRI CT.
o YOOLUMNY YDATATYPEY . Z: [9NOTNULLY] [YDEFAULTY |

Because of the presence of the . Z variable, both of the following statements will be
reversed correctly even though the column attributes are not in the same order:
e Create table abc (a integer not null default 99)
e Create table abc (a integer default 99 not null)
e [.O[procedure][proc]]

This statement will generate pr ocedur e. During reverse engineering, the parser will
match either pr ocedur e or pr oc keywords.

* Note: A string between square brackets is always generated. For reverse engineering,
placing a string between square brackets means that it is optional and its absence will not
cancel the reversing of the statement.

create [or replace] view %I EWboas ¥8QL%

A script containing either cr eat e orcr eat e or repl ace will be correctly reversed
because or repl ace is optional.

228

PowerDesigner

CHAPTER 4: DBMS Definition Files

Formatting Variable Values

You can specify a format for variable values. For example, you can force values to lowercase
or uppercase, truncate the length of values, or place values between quotes.

You embed formatting options in variable syntax as follows:
";@[?][-][Wi dth][.[-Tprecision][c][H[FI[ULI[TI[M[a]l[Q:]<varname>
%

The variable formatting options are the following:

option Description

? Mandatory field, if a null value is returned the translate call fails

n(wherenisan | Blanks or zeros added to the right to fill the width and justify the output to the

integer) left

-n Blanks or zeros added to the left to fill the width and justify the output to the right

width Copies the specified minimum number of characters to the output buffer

.[-]precision Copies the specified maximum number of characters to the output buffer

L Lower-case characters

.U Upper-case characters

F Combined with L and U, applies conversion to first character

T Leading and trailing white space trimmed from the variable

H Converts number to hexadecimal

.c Upper-case first letter and lower-case next letters

.n Truncates to 7 first characters

-n Truncates to 7 last characters

M Extracts a portion of the variable name, this option uses the width and precision
parameters to identify the portion to extract

q Enquotes the variable (single quotes)

Q Enquotes the variable (double quotes)

You can combine format codes. For example, %.U8:CHILD% formats the code of the child
table with a maximum of eight uppercase letters.

Examples
The following examples show format codes embedded in the variable syntax for the constraint
name template for primary keys, using a table called CUSTOMER_PRIORITY:

Customizing and Extending PowerDesigner 229

Format

Use

L

Lower-case characters.
Example: PK_% L: TABLE%

Result: PK_cust oner _priority

.Un

Upper-case characters + left justify variable text to fixed length where n7is the number
of characters.

Example: PK_% Ul12: TABLE%
Result: PK_CUSTOVER_PRI

Trim the leading and trailing white space from the variable.
Example: PK_% T: TABLE%

Result: PK_cust oner _priority

Maximum length where nis the number of characters.
Example: PK_% 8: TABLE%
Result: PK_Cust oner

-Nn

Pad the output with blanks to the right to display a fixed length where nis the number of
characters.

Example: PK_% 20: TABLE%
Result: PK_ Customer _priority

Extract a portion of a variable.
Example: PK%3. 4M TABLE%
Result: PK_CUST

Common Variables for Objects

These variables can be used for all objects supporting these concepts.

Variable Comment

%COMMENT% Comment of Object or its name (if no comment defined)

%OWNER% Generated code of User owning Object or its parent. You should not use
this variable for queries on objects listed in live database reverse dialog
boxes, because their owner is not defined yet

%DBPREFIX% Database prefix of objects (name of Database +"." if database defined)

%QUALIFIER% Whole object qualifier (database prefix + owner prefix)

230

PowerDesigner

CHAPTER 4: DBMS Definition Files

Variable Comment

%OPTIONS% SQL text defining physical options for Object

%OPTIONSEX% The parsed SQL text defining physical options of the object

%CONSTNAME% Constraint name of Object

%CONSTRAINT% Constraint SQL body of Object. Ex: (A <=0) AND (A >=10)

%CONSTDEFN% Column constraint definition. Ex: constraint C1 checks (A>=0) AND
(A<=10)

%RULES% Concatenation of Server expression of business rules associated with
Object

%NAMEISCODE% True if the object (table, column, index) name and code are identical
(AS 400 specific)

%TABLQUALIFIER% Parent table qualifier (database prefix + owner prefix)

%TABLOWNER% The generated code of the user owning the parent table

The following variables are available for all named objects:

Variable Comment
%@OBJTNAME% Name of Object
%@OBJTCODE% Code of Object
%@OBJTLABL% Comment of Object
%@OBJTDESC% Description of Object

The following metadata variables are available:

Variable name Comment

@CLSSNAME Localized name for an object class. For example: Table, View, Column,
Index

@CLSSCODE Object class code. For example: TABL, VIEW, COLN, INDX

Variables for Tables and Views

PowerDesigner can use variables in the generation and reverse-engineering of tables and
views.

The following variables are available for tables:

Customizing and Extending PowerDesigner 231

Variable

Comment

%TABLE% Generated code of Table

%TNAME% Name of Table

%TCODE% Code of Table

%TLABL% Comment of Table

%PKEYCOLUMNS% List of primary key columns. Ex: A, B

%TABLDEFN% Complete body of Table definition. It contains definition of
columns, checks and keys

%CLASS% Abstract data type name

%CLASSOWNER% Owner of the class object

%CLASSQUALIFIER%

Qualifier of the class object

%CLUSTERCOLUMNS% List of columns used for a cluster

%INDXDEFN%

Table indexes definition

%TABLTYPE%

Table type

The following variables are available for views:

Variable Comment

%VIEW% Generated code of View
%VIEWNAME% View name
%VIEWCODE% View code

%VIEWCOLN%

List of columns of View. Ex: "A, B, C"

%SQL%

SQL text of View. Ex: Select * from T1

%VIEWCHECK%

Contains Keyword "with check option" if this option is selected in View

%SCRIPT%

Complete view creation order. Ex: create view V1 as select * from T1

%VIEWSTYLE%

Style of view: view, snapshot, materialized view

%ISVIEW%

True is it is a view (and not a snapshot)

%USAGE%

Read-only=0, Updatable=1, Check option=2

The following variables are available for tables and views:

232

PowerDesigner

CHAPTER 4: DBMS Definition Files

Variable Comment
%XMLELEMENT% Element contained in the XML schema
%XMLSCHEMA% XML schema

Variables for Columns, Domains, and Constraints

PowerDesigner can use variables in the generation and reverse-engineering of columns,
domains, and constraints. Parent table variables are also available.

The following variables are available for columns:

Variable Comment

%COLUMN% Generated code of Column

%COLNNO% Position of Column in List of columns of Table
%COLNNAME% Name of Column

%COLNCODE% Code of Column

%PRIMARY %

Contains Keyword "primary" if Column is primary key column

%ISPKEY %

TRUE if Column is part of a primary key

%ISAKEY %

TRUE if Column is part of an alternate key

%FOREIGN%

TRUE if Column is part of a foreign key

%COMPUTE% Compute constraint text

%PREVCOLN% Code of the previous column in the list of columns of the table

%NEXTCOLN% Code of the next column in the list of columns of the table

%NULLNOTNULL% Mandatory status of a column. This variable is always used with Null-
Required item, see Working with Null Values on page 171

%PKEYCLUSTER% CLUSTER keyword for the primary key when it is defined on the same
line

%AKEYCLUSTER% CLUSTER keyword for the alternate key when it is defined on the
same line

%AVERAGELENGTH% Average length

%ISVARDTTP%

TRUE if the column datatype has a variable length

%ISLONGDTTP%

TRUE if the column datatype is a long datatype but not an image or a
blob

Customizing and Extending PowerDesigner 233

Variable

Comment

%ISBLOBDTTP%

TRUE if the column datatype is an image or a blob

%ISSTRDTTP%

TRUE if the column datatype contains characters

The following variables are available for domains:

Variable

Comment

%DOMAIN%

Generated code of Domain (also available for columns)

%DEFAULTNAME%

Name of the default object associated with the domain (SQL Server
specific)

The following variables are available for constraints:

Variable Comment

%UNIT% Unit attribute of standard check
%FORMAT% Format attribute of standard check
%DATATYPE% Data type. Ex: int, char(10) or numeric(8, 2)
%DTTPCODE% Data type code. Ex: int, char or numeric
%LENGTH% Data type length. Ex: 0, 10 or 8

%PREC% Data type precision. Ex: 0, 0 or 2

%ISRDONLY %

TRUE if Read-only attribute of standard check has been selected

%DEFAULT%

Default value

%MINVAL%

Minimum value

%MAXVAL%

Maximum value

%VALUES%

List of values. Ex: (0, 1, 2, 3, 4, 5)

%LISTVAL%

SQL constraint associated with List of values. Ex: C1in (0, 1, 2, 3, 4,
5)

%MINMAX%

SQL constraint associated with Min and max values. Ex: (C1 <= 0)
AND (C1 >=5)

%ISMAND%

TRUE if Domain or column is mandatory

%MAND%

Contains Keywords "null" or "not null" depending on Mandatory at-
tribute

234

PowerDesigner

CHAPTER 4: DBMS Definition Files

Variable Comment
%NULL% Contains Keyword "null" if Domain or column is not mandatory
%NOTNULL% Contains Keyword "not null" if Domain or column is mandatory

%IDENTITY%

Keyword "identity" if Domain or Column is identity (Sybase specific)

%WITHDEFAULT%

Keyword "with default" if Domain or Column is with default

%ISUPPERVAL%

TRUE if the upper-case attribute of standard check has been selected

%ISLOWERVAL%

TRUE if the lower-case attribute of standard check has been selected

%UPPER% SQL constraint associated with upper only values
%LOWER% SQL constraint associated with lower only values
%CASE% SQL constraint associated with cases (upper, lower, first word capital,

etc)

Variables for Keys

PowerDesigner can use variables in the generation and reverse-engineering of keys.

Variable

Comment

%COLUMNS% or %COLNLIST% | List of columns of Key. Ex: "A, B, C"

%ISPKEY %

TRUE when Key is Primary key of Table

%PKEY % Constraint name of primary key
%AKEY% Constraint name of alternate key
%KEY% Constraint name of the key

%ISMULTICOLN%

True if the key has more than one column

%CLUSTER%

Cluster keyword

Variables for Indexes and Index Columns

PowerDesigner can use variables in the generation and reverse-engineering of indexes and

index columns.

The following variables are available for indexes:

Variable

Comment

%INDEX%

Generated code of index

%TABLE%

Generated code of the parent of an index, can be a table or a query table
(view)

Customizing and Extending PowerDesigner 235

Variable Comment
%INDEXNAME% Index name
%INDEXCODE% Index code

%UNIQUE%

Contains Keyword "unique" when index is unique

%INDEXTYPE%

Contains index type (available only for a few DBMS)

%CIDXLIST%

List of index columns with separator, on the same line. Example: A asc, B
desc, C asc

%INDEXKEY %

Contains keywords "primary", "unique" or "foreign" depending on index
origin

%CLUSTER%

Contains keyword "cluster” when index is cluster

%INDXDEFN%

Used for defining an index within a table definition

The following variables are available for index columns:

Variable

Comment

%ASC%

Contains keywords "ASC" or "DESC" depending on sort order

%ISASC%

TRUE if index column sort is ascending

Variables for References and Reference Columns

PowerDesigner can use variables in the generation and reverse-engineering of references and

reference columns.

The following variables are available for references:

Variable Comment

%REFR% Generated code of reference
%PARENT% Generated code of parent table
%PNAME% Name of parent table
%PCODE% Code of parent table

%PQUALIFIER%

Qualifier of parent table. See also QUALIFIER.

%CHILD%

Generated code of child table

%CNAME%

Name of child table

%CCODE%

Code of child table

236

PowerDesigner

CHAPTER 4: DBMS Definition Files

Variable

Comment

%CQUALIFIER%

Qualifier of child table. See also QUALIFIER.

%REFRNAME%

Reference name

%REFRCODE%

Reference code

%FKCONSTRAINT%

Foreign key (reference) constraint name

%PKCONSTRAINT%

Constraint name of primary key used to reference object

%CKEYCOLUMNS% List of parent key columns. Ex: C1, C2, C3

%FKEYCOLUMNS% List of child foreign key columns. Ex: C1, C2, C3

%UPDCONST% Contains Update declarative constraint keywords "restrict”, "cas-
cade", "set null" or "set default"

%DELCONST% Contains Delete declarative constraint keywords "restrict", "cascade",

"set null" or "set default"

%MINCARD%

Minimum cardinality

%MAXCARD% Maximum cardinality

%POWNER% Parent table owner name

%COWNER% Child table owner name

%CHCKONCMMT% TRUE when check on commit is selected on Reference (ASA 6.0
specific)

%REFRNO% Reference number in child table collection of references

%JOINS%

References joins.

The following variables are available for reference columns:

Variable Comment

%CKEYCOLUMN% Generated code of parent table column (primary key)
%FKEYCOLUMNY% Generated code of child table column (foreign key)
%PK% Generated code of primary key column
%PKNAME% Primary key column name

%FK% Generated code of foreign key column
%FKNAME% Foreign key column name

Customizing and Extending PowerDesigner 237

Variable

Comment

%AK% Alternate key column code (same as PK)

%AKNAME% Alternate key column name (same as PKNAME)

%COLTYPE% Primary key column data type

%COLTYPENOOWNER | Primary column owner

%

%DEFAULT% Foreign key column default value

%HOSTCOLTYPE% Primary key column data type used in procedure declaration. For ex-

ample: without length

Variables for Triggers and Procedures

PowerDesigner can use variables in the generation and reverse-engineering of triggers and
procedures. Parent table variables are also available.

The following variables are available for triggers:

Variable

Comment

%ORDER%

Order number of Trigger (in case DBMS support more than one trigger of
one type)

%TRIGGER%

Generated code of trigger

%TRGTYPE%

Trigger type. It contains Keywords "beforeinsert”, "afterupdate”, ...etc.

%TRGEVENT%

Trigger event. It contains Keywords "insert",

update", "delete"

%TRGTIME%

Trigger time. It contains Keywords NULL, "before", "after"

%REFNO% Reference order number in List of references of Table

%ERRNO% Error number for standard error

%ERRMSG% Error message for standard error

%MSGTAB% Name of Table containing user-defined error messages

%MSGNO% Name of Column containing Error numbers in User-defined error table
%MSGTXT% Name of Column containing Error messages in User-defined error table

%SCRIPT%

SQL script of trigger or procedure.

%TRGBODY%

Trigger body (only for Oracle live database reverse engineering)

%TRGDESC%

Trigger description (only for Oracle live database reverse engineering)

238

PowerDesigner

CHAPTER 4: DBMS Definition Files

Variable Comment

%TRGDEFN% Trigger definition

%TRGSCOPE% Trigger scope (keywords: database, schema, all server)
%TRGSCOPEOWNER | Trigger scope owner

%

%TRGSCOPEQUALI- | Trigger scope owner plus dot

FIER%

The following variables are available for procedures:

Variable Comment

%PROC% Generated code of Procedure (also available for trigger when Trigger is imple-
mented with a procedure)

%FUNC% Generated code of Procedure if Procedure is a function (with a return value)

%PROCPRMS% | List of parameters of the procedure

Variables for Rules
PowerDesigner can use variables in the generation an

d reverse-engineering of rules.

Variable Comment
%RULE% Generated code of Rule
%RULENAME% Rule name
%RULECODE% Rule code
%RULECEXPR% Rule client expression
%RULESEXPR% Rule server expression

Variables for Sequences

PowerDesigner can use variables in the generation and reverse-engineering of sequences.

Variable Comment
%SQNC% Name of sequence
%SQNCOWNER% Name of the owner of the sequence

Customizing and Extending PowerDesigner

239

Variables for Synonyms

PowerDesigner can use variables in the generation and reverse-engineering of synonyms.

Variable Comment

%SYNONYM% Generated code of the synonym
%BASEOBJECT% Base object of the synonym
%BASEOWNER% Owner of the base object

%BASEQUALIFIER%

Qualifier of the base object

%VISIBILITY%

Private (default) or public

%SYNMTYPE%

Synonym of alias (DB2 only)

%ISPRIVATE%

True for a private synonym

%ISPUBLIC%

True for a public synonym

Variables for Tablespaces and Storages

PowerDesigner can use variables in the generation and reverse-engineering of tablespaces and

storages.
Variable Comment
%TABLESPACEY% Generated code of Tablespace
%STORAGE% Generated code of Storage

Variables for Abstract Data Types

PowerDesigner can use variables in the generation and reverse-engineering of abstract data
types and their child objects.

The following variables are available for abstract data types:

Variable Comment

%ADT% Generated code of Abstract data type

%TYPE% Type of Abstract data type. It contains keywords like "array", "list", ...
%SIZE% Abstract data type size

%FILE% Abstract data type Java file

%ISARRAY % TRUE if Abstract data type is of type array

%ISLIST% TRUE if Abstract data type is of type list

PowerDesigner

CHAPTER 4: DBMS Definition Files

Variable

Comment

%ISSTRUCT%

TRUE if Abstract data type is of type structure

%ISOBJECT%

TRUE if Abstract data type is of type object

%ISJAVAOBJIECT%

TRUE if Abstract data type is of type JAVA object

%ISIAVAY%

TRUE if Abstract data type is of type JAVA class

%ADTDEF% Contains Definition of Abstract data type
%ADTBODY % Abstract data type body
%SUPERADT% Abstract data type supertype

%ADTNOTFINAL
%

Abstract data type final

%ADTABSTRACT | Abstract data type instantiable

%

%ADTHEADERY | Abstract data type body with ODBC
%ADTTEXT% Abstract data type spec with ODBC

%SUPERQUALIFI-
ER%

Abstract data type supertype qualifier

%

%SUPEROWNER% | Abstract data type supertype owner
%ADTAUTH% Abstract data type authorization
%ADTIJAVANAME | Abstract data type JAVA name

%

%ADTJAVADATA | Abstract data type JAVA data

%

%ADTATTRDEF% | Attributes part of abstract data type definition
%ADTMETHDEF | Methods part of abstract data type definition

The following variables are available for abstract data type attributes:

Variable Comment

%ADTATTR% Generated code of Abstract data type attribute
%ATTRIAVA- Abstract data type attribute JAVA name
NAME%

Customizing and Extending PowerDesigner

241

The following variables are available for abstract data type procedures:

Variable Comment

%ADTPROC% Procedure code

%PROCTYPE% Procedure type (constructor, order, map)
%PROCFUNC% Procedure type (procedure, function)
%PROCDEFN% Procedure body (begin... end)
%PROCRETURN | Procedure return type

%

%PARAM% Procedure parameters

%PROCNOTFI- Procedure final

NAL%

%PROCSTATIC%

Procedure member

%PROCAB- Procedure instantiable
STRACT%
%SUPERPROC% | Procedure super-procedure

%ISCONSTRUC-
TOR%

True if the procedure is a constructor

%PROCJAVA-
NAME%

Procedure JAVA name

%ISIAVAVARY

True if procedure is mapped to a static JAVA variable

%ISSPEC%

True in specifications, undefined in body

Variables for Join Indexes (1Q)

PowerDesigner can use variables in the generation and reverse-engineering of 1Q join indexes.

Variable

Comment

%JIDX%

Generated code for join index

%JIDXDEFN%

Complete body of join index definition

%REFRLIST%

List of references (for live database connections)

%RFINLIST%

List of reference joins (for live database connections)

%FACTQUALIFIER%

Qualifier for the fact table

%JIDXFACT%

Fact (base table)

242

PowerDesigner

CHAPTER 4: DBMS Definition Files

Variable

Comment

%JIDXCOLN%

List of columns

%JIDXFROM%

From clause

%JIDXWHERE%

Where clause

Variables for ASE & SQL Server

PowerDesigner can use variables in the generation and reverse-engineering of objects for ASE

and SQL Server.

Variable Comment
%RULENAME% Name of Rule object associated with Domain
%DEFAULTNAME%Y% Name of Default object associated with Domain

%USE_SP_PKEY%

Use sp_primary key to create primary keys

%USE_SP_FKEY%

Use sp_foreign key to create foreign keys

Variables for Database Synchronization

PowerDesigner can use variables in the generation and reverse-engineering of objects during

database synchronization.

Variable Comment
%OLDOWNER% Old owner name of Object. See also OWNER
%NEWOWNER% New owner name of Object. See also OWNER

%OLDQUALIFIER%

Old qualifier of Object. See also QUALIFIER

%NEWQUALIFIER%

New qualifier of Object. See also QUALIFIER

%OLDTABL% Old code of Table
%NEWTABL% New code of Table
%OLDCOLN% Old code of Column
%NEWCOLN% New code of Column
%OLDNAME% Old code of Sequence
%NEWNAME%

New code of Sequence

Customizing and Extending PowerDesigner

243

Variables for Database Packages and Their Child Objects

PowerDesigner can use variables in the generation and reverse-engineering of database
packages and their child objects.

The following variables are available for database packages:

Variable Comment

%DBPACKAGE% Generated code of the database package
%DBPACKAGECODE% Initialization code at the end of the package
%DBPACKAGESPEC% Database package specification
%DBPACKAGEBODY% | Database package body

%DBPACKAGEINIT%

Database package initialization code

%DBPACKAGEPRIV%

Database package authorization (old privilege)

%DBPACKAGEAUTH%

Database package authorization

%DBPACKAGEPUBLIC%

True for public sub-object

%DBPACKAGETEXT%

Database package body with ODBC

%DBPACKAGEHEADER
%

Database package spec with ODBC

The following variables are available for database package procedures:

Variable Comment

%DBPKPROC% Procedure code
%DBPKPROCTYPE% Procedure type (procedure, function)
%DBPKPROCCODE% Procedure body (begin... end)
%DBPKPROCRETURN% | Procedure return type
%DBPKPROCPARAM% Procedure parameters

The following variables are available for database package variables:

Variable Comment
%DBPFVAR% Variable code
%DBPFVARTYPE% Variable type

PowerDesigner

CHAPTER 4: DBMS Definition Files

Variable Comment
%DBPFVARCONST% Variable of constant type
%DBPFVARVALUEY% Variable default value for constant

The following variables are available for database package types:

Variable Comment
%DBPKTYPE% Type code
%DBPKTYPEVAR% List of variables

%DBPKISSUBTYPE% True if type is a subtype

The following variables are available for database package cursors:

Variable Comment
%DBPKCURSOR% Cursor code
%DBPKCURSORRE- Cursor return type
TURN%

%DBPKCURSORQUERY | Cursor query
%

%DBPKCURSORPARAM | Cursor parameter
%

The following variables are available for database package exceptions:

Variable Comment

%DBPKEXEC% Exception code

The following variables are available for database package parameters:

Variable Comment

%DBPKPARM% Parameter code

%DBPKPARMTYPE% Parameter type

%DBPKPARMDTTP% Parameter data type

%DBPKPARMDEFAULT | Parameter default value
%

The following variables are available for database package pragmas:

Customizing and Extending PowerDesigner 245

Variable

Comment

%

%DBPKPRAGMA% Pragma directive
%DBPKPRAGMAOBJI% Pragma directive on object
%DBPKPRAGMAPARAM | Pragma directive parameter

Variables for Database Security

PowerDesigner can use variables in the generation and reverse-engineering of database

security objects.

Variable

Comment

%PRIVLIST%

List of privileges for a grant order

%REVPRIVLIST%

List of privileges for a revoke order

%PERMLIST%

List of permissions for a grant order

%REVPERMLIST%

List of permissions for a revoke order

%COLNPERMISSION%

Permissions on a specific list of columns

%BITMAPCOLN%

Bitmap of specific columns with permissions

%USER% Name of the user

%GROUP% Name of the group

%ROLE% Name of the role

%GRANTEE% Generic name used to design a user, a group, or a role
%PASSWORD% Password for a user, group, or role

%0OBJECT% Database objects (table, view, column, and so on)

%PERMISSION%

SQL grant/revoke order for a database object

%PRIVILEGE%

SQL grant/revoke order for an 1D (user, group, or role)

%GRANTOPTION%

Option for grant: with grant option / with admin option

%REVOKEOPTION%

Option for revoke: with cascade

%GRANTOR% User that grants the permission

%MEMBER% Member of a group or member with a role

%GROUPS% List of groups separated by the delimiter

%MEMBERS% List of members (users or roles) of a group or role separated by the

delimiter

PowerDesigner

CHAPTER 4: DBMS Definition Files

Variable Comment
%ROLES% List of parent roles of a user or role
%SCHEMADEFN% Schema definition

Variables for Defaults

PowerDesigner can use variables in the generation and reverse-engineering of defaults.

Variable

Comment

%BOUND_OBJECT%

Binded object

Variables for Web Services

PowerDesigner can use variables in the generation and reverse-engineering of sequences.

The following variables are available for web services:

Variable

Comment

%WEBSERVICENAME%

Only generated code of the web service

%WEBSERVICE%

Generated code of the web service and local path

PATH%

%WEBSERVICETYPE% | Web service type
%WEBSERVICESQL% SQL statement
%WEBSERVICELOCAL- | Local path

The following variables are

available for web service operations:

Variable

Comment

%WEBOPERATION-
NAME%

Only generated code of the web operation

%WEBOPERATION%

Generated code of the operation, service, and local path

%WEBOPERATIONTYPE
%

We operation type

%WEBOPERATIONSQL
%

SQL statement

%WEBOPERATIONPAR-
AM%

Web operation parameters list

The following variables are available for web service security:

Customizing and Extending PowerDesigner

247

Variable

Comment

%WEBUSER%

Connection user required for web service

%WEBCNCTSECURED%

Connection secured

%WEBAUTHREQUIRED
%

Authorization required

The following variables are available for web service parameters:

%

Variable Comment
%WEBPARAM% List of web parameters
%WEBPARAMNAME% Web parameter name
%WEBPARAMTYPE% Web parameter type
%WEBPARAMDTTP% Web parameter data type
%WEBPARAMDEFAULT | Web parameter default value

Variables for Dimensions

PowerDesigner can use variables in the generation and reverse-engineering of dimensions.

Variable

Comment

%DIMENSION%

Generated code of dimension

%DIMNDEF%

Dimension definition

%DIMNATTR%

Dimension attribute (level)

%DIMNOWNERTABL%

Level table owner

%DIMNTABL%

Level table

%DIMNCOLN%

Level column

%DIMNCOLNLIST%

Level columns list

%DIMNHIER%

Dimension hierarchy

%DIMNKEY %

List of child key columns

%DIMNKEYLIST%

List of child key columns

%DIMNLEVELLIST%

Level list for hierarchy

%DIMNATTRHIER%

Attribute of hierarchy

PowerDesigner

CHAPTER 4: DBMS Definition Files

Variable

Comment

%DIMNATTRHIERFIRST
%

First attribute of hierarchy

%DIMNATTRHIERLIST%

List of attributes of hierarchy

%DIMNPARENTLEVEL
%

Parent level for hierarchy

%DIMNDEPATTR%

Dimension attribute with dependent

%DIMNDEPCOLN%

Dependent column

%DIMNDEPCOLNLIST%

List of dependent columns

Variables for Extended Objects

PowerDesigner can use variables in the generation and reverse-engineering of extended

objects.

Variable Comment

%EXTENDEDOBJECT% | Generated code for extended object

%EXTENDEDSUBOB- Generated code for extended sub-object

JECT%

%EXTSUBOBJTPARENT | Generated code for parent of extended sub-object

%

%EXTSUBOBJTPAREN- | Generated code for owner of extended sub-object
TOWNER%

%EXTSUBOBJTPARENT- | Parent object qualifier (database prefix and owner prefix)

QUALIFIER%

Y%EXTOBJECTDEFN%

Complete body of the extended object definition. Contains definition

of extended collection listed in DefinitionContent DBMS item.

Variables for Metadata

PowerDesigner can use variables in the generation and reverse-engineering of metadata.

Variable Comment
%@CLSSNAME% Localized name of Object class. Ex: Table, View, Column, Index
%@CLSSCODE% Code of Object class. Ex: TABL, VIEW, COLN, INDX

Customizing and Extending PowerDesigner 249

Variables for Reverse Engineering

PowerDesigner can use variables during the reverse engineering of objects.

Variable Comment

%R% Set to TRUE during reverse engineering

%S% Allow to skip a word. The string is parsed for reverse but not generated

%D% Allow to skip a numeric value. The numeric value is parsed for reverse but
not generated

%A% Allow to skip all Text. The text is parsed for reverse but not generated

%ISODBCUSER%

True if Current user is Connected one

%CATALOG%

Catalog name to be used in live database connection reverse queries

%SCHEMA%

Variable representing a user login and the object belonging to this user in
the database. You should use this variable for queries on objects listed in
database reverse dialog boxes, because their owner is not defined yet.
Once the owner of an object is defined, you can use SCHEMA or OWN-
ER

%SIZE%

Data type size of column or domain. Used for live database reverse, when
the length is not defined in the system tables

%VALUE%

One value from the list of values in a column or domain

%PERMISSION%

Allow to reverse engineer permissions set on a database object

%PRIVILEGE%

Allow to reverse engineer privileges set on a user, a group, or a role

Variables for Database, Triggers, and Procedures Generation

PowerDesigner can use variables in the generation of databases, triggers, and procedures.

Variable Comment
%DATE% Generation date & time
%USER% Login name of User executing Generation

%PATHSCRIPT%

Path where File script is going to be generated

%NAMESCRIPT%

Name of File script where SQL orders are going to be written

%STARTCMD%

Description to explain how to execute Generated script

%ISUPPER%

TRUE if upper case generation option is set

%ISLOWER%

TRUE if lower case generation option is set

%DBMSNAME%

Name of DBMS associated with Generated model

250

PowerDesigner

CHAPTER 4: DBMS Definition Files

Variable Comment
%DATABASE% Code of Database associated with Generated model
%DATASOURCE%

Name of the data source associated with the generated script

%USE_SP_PKEY%

Use stored procedure primary key to create primary keys (SQL Server
specific)

%USE_SP_FKEY%

Use stored procedure foreign key to create primary keys (SQL Server
specific)

AKCOLN Macro

Repeats a statement for each alternate key in a table

Syntax
AKCOLN("st at erent ","pr ef i x","suf fi x","l ast _suf fi x", "condition")
Argument Description
statement Statement to repeat for each column
prefix Prefix for each new line
suffix Suffix for each new line
last suffix Suffix for the last line
condition Alternate key code (if condition argument is left empty the macro returns a state-
ment for each alternate key in the table)
Example

In a trigger for the table TITLEAUTHOR, the following macro:

message . AKCOLN("' %COLUMN% i s an al ternate key colum'™,"",

" AKEY1")

generates the following trigger script:

message ' TA ORDER is an alternate key colum',

Note: For columns, the macro AKCOLN only accepts the variable %COLUMN%.

ALLCOL Macro

Repeats a statement for each column in a table

Syntax

ALLCOL('st at ement ","prefi x""suf fi x","l ast _suffi x")

Customizing and Extending PowerDesigner

251

Argument | Description
statement Statement to repeat for each column
prefix Prefix for each new line
suffix Suffix for each new line
last suffix Suffix for the last line
Example
In a trigger for the table AUTHOR, the following macro:
. ALLCOL(" Y%COLUMN% ACOLTYPEYS , ", ", ", " ")

generates the following trigger script:

AU_I D char(12),

AU_LNAME var char (40),
AU_FNAME var char (40),
AU_BI OGRAPH | ong var char,
AU_ADVANCE nureric(8, 2),
AU_ADDRESS var char (80),
CI TY varchar (20),

STATE char (2),

POSTALCODE char (5),
AU_PHONE char (12);

.DEFINE Macro

Defines a variable and initializes its value

Syntax
.DEFINE "vari abl e" "val ue"

Argument | Description

variable Variable name (without % signs)
value Variable value (may include another variable surrounded by % signs)
Example

In a trigger for the table AUTHOR, the following macro:

. DEFI NE "TRI GGER' " T_%IABLE%
message 'Error: Trigger (%R GGERY of table %ABLE%

generates the following trigger script:
nmessage 'Error: Trigger(T_AUTHOR) of table AUTHOR ;

252 PowerDesigner

CHAPTER 4: DBMS Definition Files

.DEFINEIF Macro
Defines a variable and initializes its value if the test value is not null

Syntax
.DEFINEIF "t est _val ue™ "vari abl e" "val ue"
Argument [Description
test_value Value to test
variable Variable name (without % signs)
value Variable value (may include another variable surrounded by % signs)
Example
For example, to define a variable for a default data type:
YOEFAULT%

. DEFI NEI F " 9%®OEFAULTY% " _DEFLT"" " %EFAULT%
Add ACOLUMN% YOATATYPE% % DEFLT%

.ERROR Macro
Handles errors.

Syntax
.ERROR (errno, "errnsg")

Argument Description

errno Error number

errmsg Error message
Example

. ERROR(-20001, "Parent does not exist, cannot insert child")

.FKCOLN Macro
Repeats a statement for each foreign key column in a table.

Syntax
.FKCOLN("st at enent ","pr ef i x","suf fi x","l ast _suffi x")

Customizing and Extending PowerDesigner 253

Argument Description
statement Statement to repeat for each column
prefix Prefix for each new line
suffix Suffix for each new line
last suffix Suffix for the last line
Example
In a trigger for the table TITLEAUTHOR, the following macro:
message . FKCOLN("' #0OLUMN% i s a foreign key colum'™", "" " " ";")

generates the following trigger script:

message 'AU IDis a foreign key col um,
TITLE ISBN is a foreign key col um;"'

Note: For columns, the macro FKCOLN only accepts the variable %COLUMNY%.

.FOREACH_CHILD Macro

Repeats a statement for each parent-to-child reference in the current table fulfilling a
condition.

Syntax
.FOREACH_CHILD ("condi ti on")

"st at enent "

.ENDFOR

Argument | Description

condition Reference condition (see below)
statement Statement to repeat

Condition Selects

UPDATE RESTRICT Restrict on update
UPDATE CASCADE Cascade on update
UPDATE SETNULL Set null on update
UPDATE SETDEFAULT Set default on update
DELETE RESTRICT Restrict on delete

254

PowerDesigner

CHAPTER 4: DBMS Definition Files

Condition Selects

DELETE CASCADE Cascade on delete

DELETE SETNULL Set null on delete

DELETE SETDEFAULT Set default on delete
Example

In a trigger for the table TITLE, the following macro:
. FOREACH_CHI LD(" DELETE RESTRI CT")

-- Cannot delete parent "9%PARENTY% if children still exist in

" OCH LD%

. ENDFOR

generates the following trigger script:

-- Cannot delete parent "TITLE" if children still exist in

" ROYSCHED'

-- Cannot delete parent "TITLE" if children still exist in "SALE"
-- Cannot delete parent "TITLE" if children still exist in

" Tl TLEAUTHOR"

.FOREACH COLUMN Macro
Repeats a statement for each column in the current table fulfilling a condition.

Syntax
.FOREACH_COLUMN ("condi ti on")

"st at enent "

.ENDFOR

Argument | Description

condition Column condition (see below)
statement Statement to repeat
Condition Selects

empty All columns

PKCOLN Primary key columns
FKCOLN Foreign key columns
AKCOLN Alternate key columns

Customizing and Extending PowerDesigner 255

Condition Selects
NMFCOL Non-modifiable columns (columns that have Cannot Modify selected as a check
parameter)
INCOLN Triggering columns (primary key columns, foreign key columns; and non-modi-
fiable columns)
Example

In a trigger for the table TITLE, the following macro:

. FOREACH_COLUMN(" NMFCOL")
-- "UCOLUMNY% cannot be nodified
. ENDFOR

generates the following trigger script:

-- "TITLE_I SBN' cannot be nodified
-- "PUB_ID' cannot be nodified

.FOREACH PARENT Macro
Repeats a statement for each child-to-parent reference in the current table fulfilling a

condition.
Syntax
.FOREACH_PARENT (“condi ti on")
"st at enent "
.ENDFOR
Argument Description
condition Reference condition (see below)
statement Statement to repeat
Condition Selects references defined with ...
empty All references
FKNULL Non-mandatory foreign keys
FKNOTNULL Mandatory foreign keys
FKCANTCHG Non-modifiable foreign keys
Example

In a trigger for the table SALE, the following macro:

256 PowerDesigner

CHAPTER 4: DBMS Definition Files

. FOREACH_PARENT(" FKCANTCHG")

-- Cannot nodify parent code of "YARENT% in child "%CH LD%
. ENDFOR

generates the following trigger script:

-- Cannot nodify parent code of "STORE" in child "SALE"
-- Cannot nodify parent code of "TITLE" in child "SALE"

.INCOLN Macro

Repeats a statement for each primary key column, foreign key column, alternate key column,
or non-modifiable column in a table.

Syntax
. I NCOLN("statenent", "prefix","suffix","last_suffix")
Argument | Description
statement Statement to repeat for each column
prefix Prefix for each new line
suffix Suffix for each new line
last suffix Suffix for the last line
Example
In a trigger for the table TITLE, the following macro:
. I NCOLIN(" %COLUMNS %COLTYPEYS , ", ", ", " ")

generates the following trigger script:

TI TLE_I SBN char (12),
PUB_|I D char (12);

.JOIN Macro
Repeats a statement for column couple in a join.
Syntax
.JON("statement", "prefix","suffix","last_suffix")

Argument | Description

statement Statement to repeat for each column
prefix Prefix for each new line
suffix Suffix for each new line

Customizing and Extending PowerDesigner 257

Argument | Description

last suffix Suffix for the last line

Example
In a trigger for the table TITLE, the following macro:

. FOREACH PARENT()
wher e JC]N(WPKYEYFKYS, " and”

womy
message ' Reference %?EFR% li nks tabl e %DARENT%to %CH LD%
. ENDFOR

generates the following trigger script:
nmessage ' Reference TITLE PUB |inks table PUBLISHER to Tl TLE

Note: For columns, the macro JOIN only accepts the variables %PK%, %AK%, and %FK
%.

.NMFCOL Macro

Repeats a statement for each non-modifiable column in a table. Non-modifiable columns have
Cannot Modify selected as a check parameter.

Syntax
.NMFCOL("statenent", "prefix","suffix","last_suffix")
Argument Description
statement Statement to repeat for each column
prefix Prefix for each new line
suffix Suffix for each new line
last suffix Suffix for the last line
Example
In a trigger for the table TITLE, the following macro:
. NMFCOL(" %COLUMN% YCOLTYPEYS , "™, ", ", " ")

generates the following trigger script:

TI TLE_I SBN char (12),
PUB_|I D char (12);

258 PowerDesigner

CHAPTER 4: DBMS Definition Files

.PKCOLN Macro
Repeats a statement for each primary key column in a table.

Syntax
. PKCOLN(" st atenent”, "prefix", "suf fix","last_suffix")
Argument Description
statement Statement to repeat for each column
prefix Prefix for each new line
suffix Suffix for each new line
last suffix Suffix for the last line
Example
In a trigger for the table TITLEAUTHOR, the following macro:
message . PKCOLN("' #COLUMN% i s a primary key columm'™, "" " " ";")

generates the following trigger script:

message 'AU IDis a primary key colum',
"TITLE_ISBN is a primary key colum';

Note: For columns, the macro PKCOLN only accepts the variable %COLUMNY%.

.CLIENTEXPRESSION and .SERVEREXPRESSION Macros

Uses the client and/or server expression of a business rule in the trigger template, template
item, trigger, and procedure script.

Syntax
.CLIENTEXPRESSION(code of the business rule)

.SERVEREXPRESSION(code of the business rule)

Example
The business rule ACTIVITY_DATE_CONTROL has the following server expression:

activity.begindate < activity.enddate

In a trigger based on template AfterDeleteTrigger, you type the following macro in the
Definition tab of the trigger:

. SERVEREXPRESSI| ON(ACTI VI TY_DATE_CONTROL)

This generates the following trigger script:

Customizing and Extending PowerDesigner 259

activity. begindate < activity.enddate
end

Efl Trigger Properties - Trigger_1 [TRIGGER_1]

Generall Definitinnl Template ltems Preview |Nntes I Rules I Versionlnfnl
E-B-EHEA LR -« REEE

<% After delete trigger "TRIGGEE_1" for table "EHPLOY%ﬂ

create trigger TRIGGERE 1 after delete order 1 on EMPLO
referencing old as old del for each row

begin

declare user defined exception exception for SOLST
declare found integer:
activity . begindate { activitv.enddate

end
S sa / ol | »F

<< Less | - QK. I Cancel | Apply | Help |

.SQLXML Macro

Represents a SQL/XML query in the definition of a trigger, a procedure or a function.

Use one of the following tools:

e The Insert SQL/XML Macrotool opens a selection dialog box where you choose a global
element from an XML model. The XML model must be open in the workspace, mapped to
a PDM, and have the SQL/XML extension file attached. Click OK in the dialog box and
the SQLXML macro is displayed in the definition code, with the code of the XML model
(optional) and the code of the global element.

» The Macrostool, where you select .SQLXML() in the list. The SQLXML macro is
displayed empty in the definition code. You must fill the parentheses with the code of an
XML model (optional), followed by :: and the code of a global element. The XML model,
from which you choose a global element, must be open in the workspace, mapped to a
PDM, and have the SQL/XML extension file attached.

After generation, the SQLXML macro is replaced by the SQL/XML query of the global
element.
Syntax

.SQLXML(code of an XML model::code of a global element)

Note: the code of an XML model is optional.

260

PowerDesigner

CHAPTER 4: DBMS Definition Files

Example
In a trigger for the table EMPLOYEE, the following macro:

. SQLXM_(Cor por at eMenber shi p: : DEPARTMENT)

generates the following trigger script:

sel ect XMLELEMENT(NAME "Department”, XM.ATTRI BUTES
(DEPNUM DEPNAME) ,

(sel ect XMLAGG (XMLELEMENT(NAME " Enpl oyee”, XMLATTRI BUTES

(DEPNUM ENMPI D, FI RSTNAME, LASTNAME)))
f rom EMPLOYEE
wher e DEPNUM = DEPNUM)

f r om DEPARTMENT

% Trigger Properties - tdb_employee [TDB_EMFPLOYEE)

Generall Definitionl Template Items Preview I Motes I Rules I Dependenciesl Versionlnfol

B-B -HSHl i2elo | AEBRE w7cs

create trigger TDE_EMPLOVEE before delete order 1 on PROJ.EMPLOYEE
referencing old as old_del for each row
begin
declare user_defined_exception exception for S0LETATE '59599°;
declare found integer;

(DEPNUM, DEPIAME) ,

NT| NAME "Department”, XMLATTRIBUTES
2y HMLATTRIBUTES

WMLAGG { YMLELEMENT{ NAME "Employee"”,

Lrom DEPARTHMER

{DEFNUM,EMFID, FIRS

end;
A hsaL f KN 3|
<¢ Lesz | - QK I Cancel Apply | Help |
261

Customizing and Extending PowerDesigner

262 PowerDesigner

CHAPTER 5 Customizing Generation with
GTL

The PowerDesigner Generation Template Language (GTL) is a template-based language,
which is used to generate text for the metaclasses defined in the PowerDesigner metamodel,
and on any extensions that are defined in the model profile.

Each template is associated with a given metaclass (such as a CDM entity attribute, a PDM
table, or an OOM operation). You can define as many templates as you want for each
metaclass, and they will be available to all objects (instances) of the metaclass. For example, to
examine the set of templates used to generate code for operations in a Java OOM, open the
Java object language in the resource editor and expand the Profile\Operation\Templates
category.

When you generate a model, PowerDesigner evaluates which metaclasses must have files
generated, and creates a file for each instance of the metaclass, by applying the appropriate
templates and resolving any variables.

GTL is object-oriented, and supports inheritance and polymorphism for reusability and
maintainability. Macros provide generic programming structures for testing variables and
iterating through collections, etc.

A GTL template can contain text, macros, and variables, and can reference:

< metamodel attributes, such as the name of a class or data type of an attribute
« collections, such as the list of attributes of a class or columns of a table
« other elements of the model, such as environment variables

GTL templates can be either:

« Simple templates - which can contain text, variables, and conditional blocks, but cannot
contain macros. For example:

%/i si bility% %at aType% % Code%

When this template is evaluated, the three variables Visibility, DataType, and Code will be
resolved to the values of these properties for the object.

e Complex templates - which can contain any element from a simple template, and also
macros. For example:

df (% slnner% == false) and ((W/isibility% == +)
or (Wisibility%==*))
[%sour ceHeader % n\ n] \
[%definition% n\n]
.foreach_item Chi | dDependenci es)
[% sSaneFi | e9%®% nf | uent Cbj ect. definiti on% n\n]
. next

Customizing and Extending PowerDesigner 263

[%sour ceFoot er % n]
.endif

This template begins with an .if macro which tests the values of the isInner and Visibility
properties. Several variables are enclosed in square brackets, which ensures that the text
enclosed with them (in this case, new line characters) will not be generated if the variable
evaluates to void. The .foreach_item macro loops over all the members of the
ChildDependencies collection.

Creating a Template and a Generated File

GTL templates are commonly used for generating files. If your template is going to be used in
generation, it must be referenced in a generated file.

1. In the resource editor, right-click a metaclass in the Profile category, and select New >
Template from the contextual menu.

The convention is to name your templates using headless camelCase, (starting with a
lowercase letter), in order to avoid clashes with property and collection names which, by
convention use full CamelCase.

2. Right-click the metaclass again, and select New > Gener ated File from the contextual
menu.

3. Insert the name of the template in the generated file between percent signs. For example:
%y Tenpl at e%

Accessing Object Properties

Obiject properties are treated as variables, and enclosed between percent signs, as follows:
Y%vari abl e%
Example Template:

This file is generated for %MName% It has the formof a %Col or %
¥Shape%

Output:

This file is generated for MyCbject. It has the formof a Red
Tri angl e.

For more information see Object members on page 268.

264

PowerDesigner

Formatting Output

CHAPTER 5: Customizing Generation with GTL

To control the format of your output, insert format options between the percent signs before

the variable as follows:

% format : vari abl e%

Example Template:

The following template reformats the Name variable to uppercase and encloses it in double-

quotes.

This file is generated for % UQ Nane%

% % L: Shape%

Output:

This file is generated for "MYGADGET".

triangle.

It has the formof a % L: Col or

It has the formof a red

For more information see Formatting options on page 271.

Using Conditional Blocks

If you have text that you want to appear only if a variable resolves to a non-null value, you
should place them together between square brackets.

Example Template:

[This line is generated if

This line is generated even if

Output (if Exist is null);

This line is generated even if

Output (if Exist is not null):

This line is generated if

This line is generated even if

"Exist" is not null: %EXist%
"Exist" is null: %&xist%
"Exist" is null:

"Exist" is not null: Y
"Exist" is null: Y

For more information see Conditional blocks on page 269.

Accessing Collections of Sub-objects

Tables have multiple columns, classes have multiple attributes and operations. To iterate over
such collections of associated objects, use a macro, such as .foreach_item.

Example:

Customizing and Extending PowerDesigner

265

9%Name% cont ai ns the foll owi ng wi dgets:
.foreach_item W dgets)

\ n\ t ¥Nane% (%Col or % %Shape%)
. next

Output:

MyCbj ect contains the followi ng w dgets:
Wdgetl (Red Triangl e)
W dget1l (Yel | ow Square)
Wdgetl (Geen Grcle)

For more information see Collection members on page 269.

Accessing Global Variables

You can insert information such as your user name and the current date, by accessing global
variables.

Example template:
This file was generated by %Current User % on %Current Dat €%

Output:

This file was generated by jsmth on Tuesday, Novenber 06, 2007
4:06:41 PM

For more information see Global variables on page 269.

GTL Variable Reference

Variables are qualified values enclosed in % characters and optionally preceded by formatting
options. At evaluation-time, they are substituted by their corresponding value in the active
translation scope.

A variable can be of the following types:

« An attribute of an object

« A member of a collection or an extended collection
e Atemplate

e Anenvironment variable

For example, the variable %Name% of an interface can be directly evaluated by a macro and
replaced by the name of the interface in the generated file.

Note: Be careful when using variable names as they are case sensitive. The variable name
must have the first letter with an upper case, as in %Code%.

266

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

Variables Syntax
The following variables are shown with their possible syntaxes:

variable-block:

% .formatting-options:]variabl e%

variable

[outer-scope.][vari abl e- obj ect.][obj ect-scope.]obj ect - menber
[out er-scope.][variabl e-object.][collection-scope.]collection-
menber

[out er-scope.]local -variabl e

[out er-scope.] gl obal -vari abl e

object-member:

vol atile-attribute

property

[target-code::]extended-attribute
[target-code::][metacl ass-nane: :]tenpl at e- nane[(paraneter-1ist)]
[*] +l ocal -val ue[(paraneter-1list)]

object-member-object =

obj ecttype-property

oi d- val ued- obj ect - nenber
this

collection-member

First

| SEmpty
Count

collection-member-object =
First

local-variable

| ocal - obj ect
[*]l ocal -val ue

global-variable

gl obal - obj ect
gl obal - val ue
$envi ronnent vari abl e

variable-object

gl obal - obj ect
| ocal - obj ect

outer-scope

Customizing and Extending PowerDesigner 267

[out er-scope.] Quter

object-scope

[obj ect - scope.] obj ect - menber - obj ect
col | ecti on-scope. col | ecti on- menber - obj ect

collection-scope

[obj ect-scope.]coll ection
[obj ect - scope.] sem - col on-t erm nat ed- oi d-val ued obj ect - nenber

For more information on extended collections, see Extended Collections and Compositions
(Profile) on page 65.

Object Members

An object member can be a standard property, an extended attribute, a template or a volatile
attribute. There can be three types of standard property: boolean, string or object. The value of
a standard property can be:

e ‘true' or 'false if it is of boolean type
e 'null’ or object OID if it is of object type

The value of a template is the result of its translation (note that a template may be defined in
terms of itself, that is to say recursively).

The value of an extended attribute may itself be a template, in which case it is translated. This
allows for the definition of templates on a per object (instance) basis instead of a per metaclass
basis.

To avoid name collisions when a template evaluation spans multiple targets, one may prefix
both extended attributes and templates by their parent target code. For example:
%Java::strictfp% or %C++::definition%

Template names may also be prefixed by their parent metaclass name. This allows for the
invocation of an overridden template, actually bypassing the standard dynamic template
resolution mechanism. For example : %Classifier::definition%

A parameter list can optionally be specified. Parameter values should not contain any %
characters and should be separated by commas. Parameters are passed as local variables @1,
@2, @3... defined in the translation scope of the template.

If the template MyTemplate is defined as:

%@L %
%R %

Paraneter 1
Par amet er 2

Then the evaluation of %MyTemplate(MyParam1, MyParam2)% will yield:

Parameter1 = MyPar anil
Par aneter2 = MyPar an®

268

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

Collection Members

Each object can have one or more collections, which contain objects with which it interacts.
For example, a table has collections of columns, indexes, business rules and so on.

Collections are represented in the PowerDesigner metamodel (see Chapter 1, Working with
PowerDesigner Resource Fileson page 1) by associations between objects, with roles named
after the collections.

The available collection members are:

Name Type Description
First Object Returns the first element of the collection
ISEmpty Boolean Used to test whether a collection is empty or not. True if the collection

is empty, false otherwise

Count Integer Number of elements in the collection

Note: Count is particularly useful for defining criteria based on collection size, for example
(Attributes.Count>=10).

Conditional Blocks

Conditional blocks can be used to specify different templates based on the value of a variable.
Two different forms are available:

The first form is similar to C and Java ternary expressions. The first template is evaluated,
unless the value of the variable is false, null, or the null string, in which case, the second,
optional, template, is evaluated:

[variable? simple-template| : simple-template]]
The second form syntax is translated only if the value of the variable is not the null string:
[text variable text]

Example: an attribute declaration in Java:
%/i si bility% %at aType% %Code% [= % nitial Val ue%q

Global Variables

Global variables are available regardless of the current scope. A number of GTL-specific
variables are defined as global as listed in the following table:

Name Type Description
ActiveModel Object Active model
GenOptions struct Gives access to user-defined generation options

Customizing and Extending PowerDesigner 269

Name Type Description

PreviewMode boolean True if in Preview mode, false if in File Generation model
CurrentDate String Current system date and time formatted using local settings
CurrentUser String Current user login

NewUUID String Returns a new UUID

Local Variables

You can define local variables with the .set_object and .set_value macros

For more information, see .set_object and .set_value macroson page 301. Local variables are
only visible in the scope where they are defined and inside its inner scopes.

\olatile attributes may be defined through the .set_object and .set_value macros.

If the Scope Is an Object Scope:

A volatile attribute is defined. This attribute will be available on the corresponding object
regardless of the scope hierarchy. \olatile attributes shadow standard attributes. Once defined,
they remain available until the end of the current generation process.

The "this" keyword returns an object scope and allows you to define volatile attributes on the
object which is active in the current scope.

If the Scope Is a Template Scope:
, a standard local variable is defined.

Examples:
.set _val ue(this. key, % Code% %bj ect| D%

defines the key volatile attribute on the current object

eg. .set_object(this.based ass,
Chi |l dGeneral i zations. First. Parent Cbj ect)

defines the baseClass object-type volatile attribute on the current object.

Dereferencing Operator

Variables defined through the set_object macro are referred to as local objects, whereas those
defined with the set_value macro are called local values. The * dereferencing operator may be
applied to local values.

The * operator allows for the evaluation of the variable whose name is the value of the
specified local variable.

% .formatting-options:]*l ocal -variabl e%

270

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

For example, the following code:

.set _val ue(i, Code)

%i %

Is equivalent to:

%Code%

Formatting Options

You can change the formatting of variables by embedding formatting options in variable
syntax as follows:

% f or mat : vari abl e%

The variable formatting options are the following:

Format Description

option

n Extracts the first n characters. Blanks or zeros are added to the left to fill the width and
justify the output to the right

-n Extracts the last n characters. Blanks or zeros are added to the right to fill the width and
justify the output to the left

L Converts to lowercase characters

U Converts to uppercase characters

c Upper-case first letter and lower-case next letters
Removes indentation and aligns text on the left border

D Returns the human-readable value of an attribute used in the PowerDesigner interface
when this value differs from the internal representation. In the following example, the
value of the Visibility attribute is stored internally as "+", but is displayed as "public" in
the property sheet: %Visibility% = + %.D:Visibility% = public

F Applies case conversion to the first character only. Used with L or U.

T Leading and trailing white space trimmed from the variable

q Surrounds the variable with single quotes

Q Surrounds the variable with double quotes

X Escapes XML forbidden characters

E [deprecated — use the ! power evaluation operator instead, see Operators on page
272]

You can combine format codes. For example, %.U8:CHILD% formats the first eight
characters of the code of the CHILD table in uppercase letters.

Customizing and Extending PowerDesigner 271

GTL Operators
GTL supports standard arithmetic operators along with some advanced template operators.

The following standard arithmetical and logical operators are supported, where xand ycan be
numbers or templates resolving to numbers:

Operator Description

%(X,Yy) % Addition operator

% (X,y)% Subtraction operator

% (X,y) % Multiplication operator

% (X,y) % Division operator

Y&(X,y) % Logical bitfield and operator

In this example, the template in the left column produces the output on the right:

Template Results

Base nunber = YNunber % Base nunber= 4
Nunmber +1= % (Nunber, 1) % Number +1= 5
Nunmber - 1= % (Nunber, 1) % Nunmber - 1= 3
Nunber * 2= % (Nunber, 2) % Nunber * 2= 8
Number / 2= % (Nunber, 2) % Number / 2= 2
Nunmber &1= %&(Nunber, 1) % Number &1= 0

The following advanced template operators are also supported:

Operator Description

* Dereferencing operator - The syntax [*]+/ocal-value [(param-/lisf)] returns the

object member defined by the evaluation of [*]+ /focal-value. If the given object
member happens to be atemplate, a parameter list may be specified. Applying the
star operator corresponds to a double evaluation (the * operator acts as a dere-
ferencing operator).

If a local variable is defined as: . set _val ue(C, Code), then %%will
return "Code" and %& C%will return the result of the evaluation of %Code%. In
other words, %& C%can be thought of as % %% %o(the latter syntax being
invalid).

272 PowerDesigner

CHAPTER 5: Customizing Generation with GTL

Operator Description

! Power evaluation operator - Evaluates the results of the evaluation of the variable
as a template. For example, you define a comment containing a variable like
%Code% When you use the ! operator in 94 Comrent % the actual value of
%Code% is substituted for the variable block. Without the ! operator, the variable
remains unevaluated.

The ! operator may be applied any number of times. For example:
%!tenpl ate%

This outputs the results of the evaluation of the evaluation of the evaluation of
template 'template’

? The ? operator is used to test the existence of atemplate, a local variable, a volatile
or an extended attribute. It returns "true" if the variable exists, "false" otherwise.

For example, if custname is defined whereas custid is not, then the template:

.set _value(foo, tt)
%cust nane?%
%custi d?%

outputs:

true
fal se

+ The + operator is used to test if an object property is visible in the interface.

For example, you could test if the Type box is displayed in the General tab of a
database property sheet in a DMM, and thus that a Replication Server XEM is
attached to the model.

The %Database. Type+% template will output false if no XEM is attached to the
model.

Translation Scope
The translation scope defines the context for evaluating a template, by determining the object
to which the template is applied. The scope can change during the translation of a template, but
only one object is active at any given time.

The initial scope is always the metaclass on which the template is defined. All metamodel
attributes and collections defined on the active object metaclass and its parents are visible, as
well as the corresponding extended attributes and templates.

You can change scope using the . (dot) character, which behaves like the Java indirection
operator, with the right-hand side corresponding to a member of the object referred to by the
left-hand side.

Customizing and Extending PowerDesigner 273

The following types of scope are available:

» Obiject scope - To access the members of an object that is not currently active, specify its
object scope.

» Collection scope - To gain access to the members of a collection, one should specify a
collection scope. For more information on object collections, see Chapter 1, Working with
PowerDesigner Resource Files on page 1.

For example:

%Tahle.Columns.First.DataTypes
L 1L 1

collection scope collection
member

]
object scope ohject member

« Outer scope - accessed using the Outer keyword. The following rules apply:
* When a scope is created, the old scope becomes the outer scope.
* When a scope is exited, the outer scope is restored as the current translation scope

scope
: current

translation
= Scope

Ouiter.
-

R —

|
|
|
|
|
: nuteriscnpe

New scopes may be created during evaluation of a template that forces the active object to
change. For example, foreach_item macro (see .foreach_item macroon page 293) that allows
for iteration on collections defines a new scope, and the foreach_line macro (see . foreach_line
macroon page 295). The outer scope is restored when leaving the block.

Nested scopes form a hierarchy that can be viewed as a tree, the top level scope being the
root.

The following example shows the scope mechanism using a Class template:

274 PowerDesigner

CHAPTER 5: Customizing Generation with GTL

% Codeld - class code

.foreach item{Operations)

¥ Code¥s = i-th operation code

aOnter. Codeli -t class code

.foreach item({Parameters)

% Codebn

et i-th parameter code

¥ Outer. Code¥h -
SaCnter. Outer. Code¥o -t

i-th operation code

class code

.next

.next

Inheritance and Polymorphism
Templates are defined with respect to a given metaclass and are inherited by and available to
the children of the metaclass. In the following example, the definition template defined on the
parent metaclass is available to, and used in the evaluation of the content template on the child
metaclass.

[classifier

L Tenplates Classifier
definition
[class / \
L emplates — —
% content
value = ¥ definition%a

GTL supports the following OO concepts as part of inheritance:

» Polymorphism - Templates are dynamically bound; the choice of the template to be
evaluated is made at translation-time. Polymorphism allows template code defined on a
classifier to use templates defined on its children (class, interface), the template being used
does not have to be defined on the parent metaclass. Coupled with inheritance, this feature
helps you share template code.

In the following example, the content of %definition% depends on whether a class or an
interface is being processed:

Customizing and Extending PowerDesigner 275

[classifier
Fource
Value = Ydefinition%s
[class

definition

[Interface
definition

» Template overriding - Atemplate defined on a given metaclass may be redefined on a child
class. The template defined on the child overrides the template defined on the parent for
objects of the child metaclass. You can view the overridden parent using the Go to super-
definition command in the child class contextual menu, and specify the use of the parent
template with the "::" qualifying operator. For example:

[Profile
[classifier
[Templates

isabstract
Value =fal=e
[class

[Templates
izsAbstract
Walue = true

The same template name "isAbstract” is used in two different categories: Classifier and
Class. "false" is the original value that has just been overridden by the new "true" value.
You retrieve the original value back by using the following syntax:
<metaclassName::template>, in this case:

% sAbstract %
%Cl assifier::isAbstract%

» Template overloading - You can overload your template definitions and test for different
conditions. Templates can also be defined under criteria or stereotypes (see Criteria
(Profile) on page 52 and Stereotypes (Profile) on page 49), and the corresponding
conditions are combined. At translation-time, each condition is evaluated and the
appropriate template (or, in the event of no match, the default template) is applied. For
example:
full-template-name = {syntaxl! <template-name: |

{syntaxd}! <template-nsme:>'<<' stereotype '>>! |

{syntaxi} <template-name>'<' <simple-condition> '=!

tewmp late-name = <LEXL>

276 PowerDesigner

CHAPTER 5: Customizing Generation with GTL

Shortcut Translation

Shortcuts are dereferenced during translation: the scope of the target object replaces the scope
of the shortcut.

For example, the following generated file defined in the package metaclass provides the list of
classes in the package. If a class shortcut is found, the code of its target object followed by
(Shortcut) is generated, followed by the parent object ID and the shortcut ID which clearly
shows that the scope of the shortcut is replaced by the scope of the shortcut target object:

.foreach_item d asses)
.if (% sShortcut%

%Code% (Short cut)

oid = %j ect| D%

shortcut oid = %Shortcut. bjectl D%
.el se

%Code%

ushor t cut %
.endif

. next (\' n)

This is the opposite behavior as in VB Script where shortcut translation retrieves the shortcut
itself.

If you want the shortcut itself to be generated instead of the target object, you can use the
%Shortcut% variable.

External Shortcut

If the target model of an external shortcut is not open, a confirmation dialog box is displayed to
let you open the target model. You can use the set_interactive_mode macro to change this
behavior. This macro allows you to decide if the GTL execution must interact with the user or
not.

For more information on the set_interactive_mode macro, see .set_interactive_mode macro
on page 301.

Escape Sequences
Escape sequences are specific characters sequences used for layout of the generated file

output.

The following escape sequences can be used inside templates:
Escape sequence Description
\n New line character, creates a new line
\t Tab character, creates a tab
\\ Creates a backslash

Customizing and Extending PowerDesigner 277

Escape sequence Description

\ at end of line Creates a continuation character (ignores the new line)
. at beginning of line Ignores the line

.. at beginning of line Creates a dot character (to generate a macro)

%% Creates a percent character

For more information on escape sequences, see Using new lines in head and tail string on page
279.

Sharing Templates

In the GTL mechanism you can share conditions, templates and sub-templates to ease object
language maintenance and readability.

Sharing Conditions
Atemplate can contain a condition expression. You can also create templates to share long and
fastidious condition expressions:

Template name Template value

%ConditionVariable% .bool (condition)

Instead of repeating the condition in other templates, you simply use %ConditionVariable% in
the conditional macro:

.if (% ConditionVariabl e®

Example
The template %isInner% contains a condition that returns true if the classifier is inner to
another classifier.

. bool (%Containerd assifier%=null)

This template is used in the %QualifiedCode% template used to define the qualified code of
the classifier:

i f (% slnner%

%Cont ai ner C assi fier. QualifiedCode% : %Code%
. el se

%Code%
.endif

Using Recursive Templates
A recursive template is a template that is defined in terms of itself.

Example
Consider three classes X, Y, and Z. X isinner to Y, and Y is inner to Z.

278

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

The variable %topContainerCode% is defined to retrieve the value of the parent container of a
class.

The value of the template is the following:

i f (% slnner%

%Cont ai ner Cl assi fi er.topCont ai ner Code%
. el se

%Code%
.endi f

If the class is inner to another class, %topContainerCode% is applied to the container class of
the current class (%ContainerClassifier.topContainerCode%).

If the class is not an inner class, the code of the class is generated.

Using New Lines in Head and Tail String

The head and tail string are only generated when necessary. If no code is generated, the head
and tail strings do not appear. This can be useful when controlling new lines.

Example
You want to generate the name of a class and its attributes under the following format (one
empty line between attributes and class):

Attribute 1 attrl
Attribute 2 attr2

d ass

You can insert the separator "\n" after the .foreach statement to make sure each attribute is
displayed in a separate line. You can also add "\n\n " after the .endfor statement to insert an
empty line after the attribute list and before the word "Class".

.foreach (Attribute) ("\n")

Attribute %Code%

.endfor ("\n\n")
Cl ass

Additional Example
Consider a class named Nurse, with a class code Nurse, and two attributes:

Attribute name Data type Initial value
NurseName String .
NurseGender Char F

The following templates are given as examples, together with the text generated for each of
them, and a description of each output:

Customizing and Extending PowerDesigner 279

Template 1

cl ass "% Code% {

/1 Attributes
.foreach_itenm(Attri butes)
%at aType% % Code%

Jf (YBnitial Val ue®
= %nitial Val ue%

.endif
. next
/1 Operations
.foreach_iten(Operations)
9Ret ur nType% %Code?% . . .)
. next

}

Text Generated 1
class "Nurse" {

/1 Attributes String nurseName char nurseGender

Description 1

/1 Operations}

Below the class code, the code is generated on one line. It is an example of a block macro

(.if, .endif macro).

Template 2 (new Line)

cl ass "% Code% {

/] Attributes
.foreach_iten(Attri butes)
%at aType% % Code%

Jf (YBnitial Val ue®
= % nitial Val ue%

.endi f
. next (\ n)
/1 Operations
.foreach_itenm(Operations)
%Ret ur nType% %Code% . . .)
. next (\ n)

}

Text Generated 2
class "Nurse" {

/1 Attributes String nurseNane

char nurseGender = 'F [/ Operations}

Description 2
String nurseName and char nurseGender are on two lines

280

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

In Template 1, String nurseName and char nurseGender were on the same line, whereas in
Template 2, the addition of the \n at .next(\n) puts String nurseName and char nurseGender on
two different lines.

In addition, // Operations is displayed in the output even if there is no operation (see
Description 3).

Template 3 (blank Space)

cl ass "% Code% {
.foreach_itenm(Attributes, // Attributes\n,\n)
%at aType% % Code%
Jf (YBnitial Val ue®
= % nitial Val ue%
.endi f
. next (\ n)
.foreach_item Operations, // Operations\n,\n)
9Ret ur nType% %Code?%{ . . .)
. next (\'n)

}

Text Generated 3
class "Nurse" {// Attributes

String nurseName

char nurseCGender = 'F

}

Description 3
The blank space between .foreach_item(Attributes, and // Attributesin,) is not generated, as
shown in the output: class "Nurse" {// Attributes instead of { // Attributes

I/ Operations is not displayed in the output because it is positioned in the .foreach_item macro.
It is positioned in the head of the macro for this purpose.

Template 4 (blank Space)

cl ass "% Code% {\n
.foreach_iten(Attributes," // Attributes\n",\n)
%at aType% %Code% = % nitial Val ue%
. next (\ n)
.foreach_item Operations," // Operations\n",\n)
%Ret ur nType% %Code?%{ . . .)
. next (\'n)

}

Text Generated 4
class "Nurse" {

/] Attributes

Customizing and Extending PowerDesigner 281

String nurseName

char nurseCGender = 'F

}

Description 4
The double quote characters (

) in " /I Attributes\n" allows you to insert a blank space as

shown in the output: // Attributes

Note: The newline immediately
following it, as in the following

preceding a macro is ignored as well as the one immediately
example:

Jack .set_value(v, John) Paul yields: JackPaul

instead of: Jack Paul

Using Parameter Passing

You can pass in, out or in/out parameters to a template through local variables by taking
advantage of nested translation scopes. You can access parameters with the %@<number>%

variable.

Example
Class templates:

Template 1

<show> tenpl at e
<<

Cl ass "% ode% attributes :

/1 Public
%ubl i cAttri but es%

/'l Protected
%or ot ect edAttri but es%

Il Private
%orivateAttributes%

>>>

Template 2
<publicAttributes> tenpl
<<

ate

.foreach_item(Attributes)

f (Wisibility%== +)
%0at aType Y% Code%
.endif

. next (\ n)

>>>

282

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

Template 3

<protectedAttributes> tenpl ate
<<

.foreach_item(Attributes)

Jf (Wisibility% == #)

%Dat aType %Code%

.endif

. next (\' n)
>>>

Template 4
<privateAttri butes> tenpl ate
<<
.foreach_item(Attributes)
Jif (Wisibility% == -)
%Dat aType %Code%
.endif
. next (\' n)
>>>

To give you more readability and to enhance code reusability, these four templates can be
written in just two templates by using parameters:

First Template
<show> tenpl ate

<<<
Cl ass "% ode% attributes :
// Public

Yattributes(+)%

/1 Protected
Yattributes(#)%

Il Private
Yattributes(-)%
>>>

Second Template

<attributes> tenplate
<<
.foreach_item(Attributes)
Jf (Wisibility% == %%
%Dat aType %Code%
.endif
. next (\' n)
>>>

Customizing and Extending PowerDesigner 283

Description

The first parameter in this example %attributes(+, or #, or -)% can be accessed using the
variable %@1%, the second parameter when it exists, is accessed using the %@2% variable,

etc ...

Error Messages

Error messages stop the generation of the file in which errors have been found, these errors are
displayed in the Preview tab of the corresponding object property sheet.

Error messages have the following format:

target::catg-path full-tenpl ate-name(line-nunber)
active-object-netacl ass active-object-code):

error-type error-nessage

The following types of errors can be encountered:

» Syntax errors
» Translation errors

Syntax Errors

You may encounter the following syntax errors:

Syntax error message

Description and correction

condition parsing error

Syntax error in a boolean expression

expecting .endif

Add a .endif

.else with no matching .if

Add a .if to the .else

.endif with no matching .if

Add a .if to the .endif

expecting .next

Add a .next

expecting .end%s

Add a .end%s (for example, .endunique, .endre-
place, ...)

.end%s with no matching .%s

Add a .macroto the .endmacro

.next with no matching .foreach

Add a .foreach to the .next

missing or mismatched parentheses

Correct any mismatched braces

unexpected parameters: extra-params

Remove unnecessary parameters

unknown macro

The macro is not valid

.execute_command incorrect syntax

The correct syntax is displayed in the Preview tab, or in
the Output window. It should be: .execute_com-
mand(executable [,arguments],{cmd_ShellExecute|
cmd_PipeOutput}]])

284

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

Syntax error message

Description and correction

Change_dir incorrect syntax

The syntax should be: .change_dir(path)

convert_name incorrect syntax

The syntax should be: .convert_name(name)

convert_code incorrect syntax

The syntax should be: .convert_code(code)

set_object incorrect syntax

The syntax should be: .set_object(/ocal-var-name [,
[scope.] object-scope [, {new|update}]])

set_value incorrect syntax

The syntax should be: .set_value(/ocal-var-name,sim-
ple-template] ,{new|update}])

execute_vbscript incorrect syntax

The syntax should be: .execute_vbscript(script-file
[,script-input_params))

Translation Errors

Translation errors are evaluation errors on a variable when evaluating a template.

You may encounter the following translation errors:

Translation error message

Description and correction

unresolved collection: collection

Unknown collection

unresolved member: member

Unknown member

no outer scope

Invalid use of Outer keyword

null object

Trying to access a null object member

expecting object variable: object

Occurs when using string instead of object

VBScript execution error

VB script error

Deadlock detected

Deadlock due to an infinite loop

GTL Macro Reference

Macros can be used to express template logic, and to loop on object collections. Each macro
keyword must be preceded by a. (dot) character and has to be the first non blank character of a
line. Make sure you also respect the macro syntax in terms of line breaks.

You define a macro inside a template, or a command entry.

There are three types of macros:

e Simple macros are single line macros.

» Block macrosconsist of a begin and an end keyword delimiting a block to which the macro
is applied. They have the following structure:

Customizing and Extending PowerDesigner 285

. macro- nane [(paraneters)]

bl ock-i nput

.endmacro-nane [(tail)]

Loop macrosare used for iteration. At each iteration, a new scope is created. The template
specified inside the block is translated successively with respect to the iteration scope.

.foreach_macro-nanme [(paraneters[, head[,tail]])]

conpl ex-t enpl at e

.next[(separator)]

Note: Macro parameters may be delimited by double quotes. The delimiters are required
whenever the parameter value includes commas, braces, leading or trailing blanks. The escape
sequence for double quotes inside a parameter value is \".

The following macros are available:

Conditional and loop / iterative macros.

e .ifmacroon page 297

e .foreach_item macro on page 293 — iterates on object collections
e .foreach line macro on page 295 — iterates on lines

e .foreach part macroon page 295 — iterates on parts

e .break macro on page 288 — breaks the loop

Assignment macros - define a local variable of object or value type as well as volatile
attributes:

o .Set object and .set_value macros on page 301

e .unset macroon page 303

Output and error reporting macros.

» .log macroon page 298

e .error and .warning macros on page 291

Command macros - only available in the context of the execution of a generic command:
e .vbscript macroon page 303 - embed VB script code inside a template

o .execute_vbscript macroon page 293 - launch vbscripts

e .execute_command macroon page 292 - launch executables

e .abort command macro on page 287 - stop command execution

» .change_dir macroon page 288 - changing a directory

» .create_path macroon page 290 - creating a specified path

Formatting macros.

» .lowercase and .uppercase macros on page 299

e .convert_code and .convert_code macros on page 289 — converts codes into names
String manipulation macros.

e .replace macroon page 300

o .delete macroon page 291

e .unigque macro on page 302

286

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

» .block macro on page 287 - adds a header and a footer to a text block
» Miscellaneous macros.
e .comment and .// macro on page 289 - inserts a comment in a template

» .collection macro on page 289 - returns a collection of objects based on the specified
scope and condition

e .obfect macroon page 299 - returns an object based on the specified scope and
condition

e .bool macro on page 288 - evaluates a condition

e .Set interactive_mode macroon page 301 — defines whether the GTL execution must
interact with the user

.abort command Macro

This macro stops command execution altogether. It is available to execute generation
commands only, and may be used in addition to standard GTL macros when defining
commands.

Example:

i f % JAVACY

.execute (% JAVACY %-i | eName%)
. el se

.abort_command
.endif

.block Macro
The .block macro is used to add a header and/or a footer to its content when it is not empty.

. bl ock [(head)]
bl ock-i nput
.endbl ock[(tail)]

The following parameters are available:

Parameter | Description

head [optional] Generated before output, if there is one.

Type: Simple template

block-input Parameter used to input text

Type: Complex template

tail [optional] Appended to the output, if there is one
Type: Text

The output is a concatenation of /ead, the evaluation of the block-inputand tail.

Example:

Customizing and Extending PowerDesigner 287

. bl ock ()
The current text is in bold
. endbl ock ()

.bool Macro
This macro returns 'true’ or 'false’ depending on the value of the condition specified.

. bool (condition)

The following parameters are available:

Parameter | Description

condition Condition to be evaluated

Type: Condition

Example:
. bool (% 3: Code% =ej b)

.break Macro
This macro may be used to break out of .foreach loops.

. br eak

Example:

.set _val ue(_hasMai n, false, new)
.foreach_iten(Operations)
i f (%Code% == mai n)
.set _val ue(_hasMai n, true)
. break
.endif
. hext
% hasMai n%

.change dir Macro

This macro changes the current directory. Itis available to execute generation commands only,
and may be used in addition to standard GTL macros when defining commands.

. change_di r (path)

The following parameters are available:

Parameter Description

path New current directory

Type: Simple template (escape sequences ignored)

Example:
.change_dir(C \tenmp)

288 PowerDesigner

CHAPTER 5: Customizing Generation with GTL

.collection Macro

This macro returns a collection of objects based on the specified scope and condition.
Collections are represented as the concatenation of semi-colon terminated OIDs.

.collection (collection-scope [,filter])

The following parameters are available:

Parameter | Description

collection- Scope over which to iterate.
scope e . .
Type: <simple-template> returning a collection scope

filter [optional] Filter condition

Type : condition

Example:

The following macro returns a subset of the attributes defined on the current classifier whose
code starts with a letter between a and e included.

.object(Attributes, (% 1: Code% >= a) and (% 1: Code% <= e))
Result:

C3ADA38A- 994C- 4E15- 91B2- 08A6121A514C, 58CE2951- 7782- 49BB-
B1BB- 55380F63A8C9; F522C0OAE- 4080- 41C2- 83A6- 2A2803336560;

.comment and .// Macro

These macros can be used to insert comments in a template. Lines starting with .// or .comment
are ignored during generation.

Example:

./l This is a comment
.coment This is also a comment

.convert name and .convert code Macros
These macros convert the object name to its code (or vice versa).

Use the following syntax to convert a name to a code:

.convert_nane (expression[, " separator”[, " separator_pattern”] , case])
Use the following syntax to convert a code to a name:

.convert _code (expression[, " separator'[, " separator_pattern"]])

The following parameters are available:

Customizing and Extending PowerDesigner 289

Parameter | Description

expression Specifies the text to be converted. For .convert_name, this is generally the ¥0Nane
%ovariable and may include a suffix or prefix.
Type: Simple template

separator [optional] Character generated each time a separator declared in pattern-separator

is found in the code. For example, "_" (underscore).

Type: Text

pattern-separa-

[optional] Declaration of the different separators likely to exist in a code, and which

tor will be replaced by separator. You can declare several separators, for example"_"
and ™"
Type: Text

case [optional for . conver t _namne only] Specifies the case into which to convert

the code. You can choose between:

o firstLowerWrd - First word in lowercase, first letters of subsequent
words in uppercase

« FirstUpper Char - First character of all words in uppercase

« | ower _case - All words in lowercase and separated by an underscore

* UPPER_CASE - All words in uppercase and separated by an underscore

In the following example, the . conver t _narme macro is added from the Pr of i | e
\ Col umm folder in a new Generated Files entry:

.foreach_i t em Col ums)

9YiName%

.foreach_part (YNanme%
.convert _nanme(%Current Part %

.next("_")
. next (\' n)

Note: These macros can also be used to perform conversions to apply naming conventions in
your model. For more information, see Core Features Guide > The PowerDesigner Interface >
Objects > Object Properties > Naming Conventions.

.Create path Macro

This macro creates a specified path if it does not exist.

.Create_path (path)

The following parameters are available:

290

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

Parameter Description

path Path to be created

Type: Simple template (escape sequences ignored)

Example:

.create_path(C: \tenp)

.delete Macro

This macro deletes all instances of the string de/-string from delete-block-input.

.del ete (del -string)
bl ock-i nput
. enddel et e

This macro is particularly useful when you work with naming conventions (see Core Features
Guide > The PowerDesigner Interface > Objects > Object Properties > Naming

Conventions).
The following parameters are available:
Parameter Description
ael-string String to be deleted in the input block
Type: Text
gelete-block-in- | Parameter used to input text
put Type: Complex template
Example:

In the following example, GetCustomerName is converted to CustomerName:

.del ete(get)
Cet Cust onrer Nane
. enddel ete

In the following example, the variable %Code% is m_myMember and is converted to
myMember:

.del ete(m)
%Code%
. enddel ete

.error and .warning Macros

These macros are used to output errors and warnings during translation. Errors stop
generation, while warnings are purely informational and can be triggered when an

Customizing and Extending PowerDesigner 291

inconsistency is detected while applying the template on a particular object. The messages are
displayed in both the object Preview tab and the Output window.

Use the following syntax to insert an error message:

.error nessage

Use the following syntax to insert a warning message:

.warni ng nessage

The following parameters are available:

Parameter Description

message Error message

Type: Simple template

Example:

.error no initial value supplied for attribute % Code% of cl ass
%Par ent . Code%

.execute command Macro
This macro is used to launch executables as separate processes. It is available to execute
generation commands only, and may be used in addition to standard GTL macros when
defining commands.

. execute_command (cnmd [, args [, node]])

The following parameters are available:

Parameter Description

cmd Executable path

Type: Simple template (escape sequences ignored)

args [optional] Arguments for the executable

Type: Simple template (escape sequences ignored)

mode [optional] You can choose one of the following:

« cmd_ShellExecute - runs as an independent process
e cmd_PipeOutput - blocks until completion, and shows the executable output
in the output window

Note that if an .execute_command fails for any given reason (executables not found, or output
sent to stderr), the command execution is stopped.

Example:
. execut e_conmand(notepad, filel.txt, cnd_Shell Execute)

292 PowerDesigner

CHAPTER 5: Customizing Generation with GTL

.execute vbscript Macro
This macro is used to execute a VB script specified in a separate file.

. execute_vbscript (vbs-file [,script-paranmeter])

The following parameters are available:

Parameter Description

vbs-file VB script file path

Type: Simple template (escape sequences ignored)

script-parameter | [optional] Passed to the script through the ScriptinputParameters global prop-
erty.

Type: Simple template

The output is the ScriptResult global property value.
Example:
. execut e_vbscri pt (C: \ sanpl es\ vbs\ | ogi n. vbs, %user name%

Note: the active object of the current translation scope can be accessed through the
ActiveSelection collection as ActiveSelection.ltem(0).

For more information on ActiveSelection, see Global Properties on page 328.

foreach item Macro
This macro is used for iterating on object collections:

.foreach_item (collection [,head [,tail [,condition
[,comparison]]]])

conpl ex-tenpl at e
.next [(separator)]

The template specified inside the block is applied to all objects contained in the specified
collection.

If a comparison is specified, items in the collection are pre-sorted according to the
corresponding rule before being iterated upon.

The following parameters are available:

Parameter Description

collection Collection over which iteration is performed

Type: Simple template

Customizing and Extending PowerDesigner 293

Parameter Description

head [optional] Generated before output, if there is one
Type: Text
tail [optional] Appended to the output, if there is one
Type: Text
condition [optional] If specified, only objects satisfying the given condition are considered

during the iteration

Type: Simple condition

comparison [optional] evaluated in a scope where two local objects respectively named
'Item1' and 'Item?2' are defined. These correspond to items in the collection.
<comparison> should evaluate to true if Item1 is to be placed after Item2 in the
iteration

Type: Simple condition

complex-tem- Template to apply to each item.

plate Type: Complex template

separator [optional] Generated between non empty evaluations of <complex-template>
Type: Text

Note: Macro parameters may be delimited by double quotes. The delimiters are required
whenever the parameter value includes commas, braces, leading or trailing blanks. The escape
sequence for double quotes inside a parameter value is\ " .

Example:

Attribute Data type Initial value
cust_name String _
cust_foreign Boolean false

.foreach_item(Attributes,,,,%Wtenl. Code% >= % tenk. Code%))
Attribute %Code% = % nitial Val ue% ;

. next (\ n)

The result is:

Attribute cust_foreign = false

Attribute cust_name;

Note

The four commas after (Attributes,,,, means that all parameters (head, tail, condition and
comparison) are skipped.

294

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

foreach line Macro

This macro isasimple macro that iterates on the lines of the input template specified as the first
argument to the macro. The template specified inside the block is translated for each line of the
input. This macro creates a new scope with the local variable CurrentLine. This one is defined
inside the block to be the i-th line of the input template at iteration i.

.foreach_line (input [,head [,tail]])

conpl ex-tenpl ate
.next [(separator)]

The following parameters are available:

Parameter Description

input Input text over which iteration is performed

Type: Simple template

head [optional] Generated before output, if there is one
Type: Text

tail [optional] Appended to the output, if there is one
Type: Text

complex-tem- Template to apply to each line.

plate Type: Complex template

separator [optional] Generated between non empty evaluations of complex-template
Type: Text

Example:

.foreach_l i ne(%Coment %
[l Y CurrentLine%
. next (\ n)

foreach part Macro

This macro iterates through and transforms the parts of the input template, with the parts
delimited by a separator pattern.

.foreach_part (expression [, "separator" [, head [, tail]]])
simple-template
. next [(separator) |

This macro creates a new scope wherein the local variable CurrentPart is defined to be the i-th

part of the input template at iteration i. The Separator local variable contains the following
separator.

This macro is often used in applying naming conventions (see Core Features Guide > The
PowerDesigner Interface > Objects > Object Properties > Naming Conventions).

Customizing and Extending PowerDesigner 295

The following parameters are available:

Parameter

Description

input

Input text over which iteration is performed

Type: Simple template

separator-pattern

Char and word separators

« Any character specified in the pattern can be used as separator
e [<cl> - <c2>] specifies a character within the range defined between both
characters <c1> and <c2>

For example, the pattern " -_,[A-Z]" specifies that each part can be separated by a
space, a dash, an underscore, acomma or a character between A and Z (in capital
letter).

By default, the <separator-pattern> is initialized with the pattern (). If the speci-
fied pattern is empty, the pattern is initialized using the default value.

A separator <separator> can be concatenated between each part. <head> and
<tail> expressions can be added respectively at the bottom or at the end of the
generated expression.

There are two kinds of separator:

« Char separator - for each char separator, the separator specified in the next
statement of the macro is returned (even for consecutive separators)

« Word separator - they are specified as interval, for example [A-Z] specifies
that all capital letters are separator. For a word separator, no separator
(specified in next statement) is returned

Default: " -_\t"
Type: Text

head

[optional] Generated before output, if there is one

Type: Text

tail

[optional] Appended to the output, if there is one
Type: Text

simple-template

Template to apply to each part.
Type: Complex template

separator

[optional] Generated between non empty evaluations of complex-template

Type: Text

Examples:

Convert a name into a class code (Java naming convention). In the following example, the
variable %/Name% is equal to Employee shareholder, and it is converted to
EmployeeShareholder:

296

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

.foreach_part (9%Nane% " _-'")
% FU: Current Part %
. next

Convert a name into a class attribute code (Java naming convention). In the following
example, the variable %/Name% is equal to Employee shareholder, and it is converted to
EmployeeShareholder:

.set_value(_First, true, ne
.foreach_part(%Name% "' _-'")
df (%Firsty
% L: Current Part %
.set_value(_First, false, update)
. el se
% FU: Current Part %
.endif
. next

.if Macro
This macro is used for conditional generation, it has the following syntax:

.if[not] condition
conpl ex-tenpl ate
[(.elsif[not] condition
conpl ex-tenpl at e) *]
[.else
conpl ex-tenpl at e]
.endif [(tail)]

The following parameters are available:

Customizing and Extending PowerDesigner 297

tail Appended to the output, if there is one
Type: Text
Jlog Macro

Parameter

Description

condition

complex-tem-
plate

The condition to evaluate, in the form:

vari abl e [operator conparison]

Where gperator may be any of ==, =, <=, >=, <, or >. If both operands are
integers, the <, >, >=, and <= operators perform integer comparisons; otherwise
they perform a string comparison that takes into account embedded numbers
(example: Class_10 is greater than Class_2).

Where comparison may be any of:

e Asimple template

o fext!
e true

¢ false

e null

e notnull

If no operator and condition are specified, the condition evaluates to true unless
the value of the variable is false, null or the null string.

You can chain conditions together using the and or or logical operators.
Type: Simple template
The template to apply is the condition is true.

Type: Complex template

This macro logs a message to the Generation tab of the Output window, located in the lower
part of the main window. It is available to execute generation commands only, and may be used
in addition to standard GTL macros when defining commands.

.l og nmessage

The following parameters are available:

Parameter Description
message Message to be logged
Type: Simple template
Example:

.1 og undefined environnent variable: JAVAC

298

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

lowercase and .uppercase Macros
These macros convert text blocks to the specified case.

.l ower case
bl ock-i nput
. endl ower case

and

. upper case
bl ock-i nput
. endupper case

These macros are particularly useful when working with naming conventions (see Core
Features Guide > The PowerDesigner Interface > Objects > Object Properties > Naming
Conventions).

The following parameters are available:

Parameter Description

block-input Parameter used to input text

Type: Complex template

In the following example, the variable %Comment% contains the string HELLO WORLD,
which is converted to hello world.

.| ower case
%Coment %
. endl ower case

.0bject Macro

This macro returns a collection of objects based on the specified scope and condition. Object
references are represented as OID; for example: E4A0D4254-DA4A-4FB6-
AEF6-3E7B41A41AD1.

obj ect = .object (scope:sinple-tenplate [,filter])

The following parameters are available:

Parameter | Description

scope Collection over which we should iterate, the macro will return the first matching
object in the collection

Type: Simple template returning either an object or a collection scope

simple-tem- Template to be evaluated.
plate

Type: Simple template

Customizing and Extending PowerDesigner 299

Parameter | Description

filter Filter condition

Type: condition

The following macro returns the first attribute in the collection defined on the current classifier
whose code starts with a letter comprised between a and e included.

.object (Attributes, (% 1:Code% >= a) and (% 1: Code% <= e))

In the following example, template : : nyPackage? is defined as:
. obj ect (Acti veMbdel . Packages, Y%Nane% == MyPackage?2)

and template OOM Model : : MyTenpl at e is defined as:

.foreach_item nyPackage2. Cl asses)
%Code%
. next (\'n)

InOOM Mbdel M = { OOM Package MyPackagel, OOM Package
MyPackage2 { OOM O ass Cl, OOM O ass C2} },andtemplate
OOM Model : : MyTenpl at e evaluates to:

Cl
c2

In the following example, this template in a DMM returns the first read-only data connection
for the process associated with the current publication:

. obj ect (Process. Dat aConnecti ons, %AccessType% == "R0')

.replace Macro

The .replace macro replaces all occurrences of a string with another string in a text block.
This macro is particularly useful when you work with naming conventions.

For more information about naming conventions, see Core Features Guide > The
PowerDesigner Interface > Objects > Object Properties > Naming Conventions.

The .replace macro replaces the old string <OldString> with the <NewString> string in the
text block <Block>.
.replace (old-string, newstring)

bl ock-i nput
.endrepl ace

The following parameters are available:

Parameter Description
old-string String to be replaced.
Type: Text

300

PowerDesigner

CHAPTER 5: Customizing Generation with GTL

Parameter Description

new-string String which replaces old-string.
Type: Text

block-input Parameter used to input text.
Type: Complex template

Output
The output is that all instances of the string <old-string> are replaced by instances of the string

<new-string> in the replace block input.
In the following example, 'GetCustomerName' is converted to 'SetCustomerName'.

.replace(get , set)
Cet Cust oner Nane
. endr epl ace

In the following example, the variable %Name% is 'Customer Factory' and it is converted to
'‘Customer_Factory'.
.replace(" ", "_")

9Nane%
.endrepl ace

.set_interactive mode Macro
This macro is used to define if the GTL execution must interact with the user or not.

.set _interactive_node(node)

The following modes are available:

« im_Batch - Never displays dialog boxes and always uses default values

» im_Dialog - Displays information and confirmation dialog boxes that require user
interaction for the execution to keep running

» im_Abort - Never displays dialog boxes and aborts execution instead of using default
values each time a dialog is encountered

For example, you could use this macro if your model contains external shortcuts. If the target
model of an external shortcut is closed and you are in im_Dialog mode, then a dialog box is
displayed to prompt you to open the target model.

.set_object and .set value Macros
These macros are used to define a local variable of object (local object) or value type.

.set_object ([scope.] nane [,object-ref [,npnde]])

The variable is a reference to the object specified using the second argument.

.set_value ([scope.] nanme, value [, npde])

Customizing and Extending PowerDesigner 301

The variable value is set to be the translated template value specified as the second argument.

The following parameters are available:

Parameter Description

scope [optional] Qualifying scope.

Type: Simple-template returning an object or a collection scope

name Variable name

Type: Simple-template

object-ref [optional] Describes an object reference. If it is not specified or is an empty
[.set_object only] | string, the variable is a reference to the active object in the current translation
scope

Type: [scope.] object-scope]

value [.set_value | Value.

only] Type: Simple template (escape sequences ignored)
mode [optional] Specifies the mode of creation. You can choose between:
¢ new - (Re)define the variable in the current scope
e update — [default] If a variable with the same name already exists, update the
existing variable otherwise define a new one
¢ newifundef - Define the variable in the current scope if it has not been defined
in an outer scope, otherwise do nothing
Example:

.set_object(Attributel, Attributes.First)

Example:
.set_value(FirstAttributeCode, %Attributes. First.Code%

Note: When specifying a new variable, it is recommended to specify 'new' as third argument to
ensure that a new variable is created in the current scope.

.unique Macro
This macro defines a block in which each line of the text generated is guaranteed to be unique.
It can be useful for calculating imports, includes, typedefs, or forward declarations in
languages such as Java, C++ or C#.

. uni que
bl ock-i nput
.enduni que[(tail)]
The output is the block input with every redundant line removed.

The following parameters are available:

302 PowerDesigner

CHAPTER 5: Customizing Generation with GTL

Parameter Description

block-input Parameter used to input text

Type: Complex template

tail [optional] Appended to the output, if there is one
Type: Text
Example:
. uni que

i mport java.util.*;
i mport java.lang. String;
% nport s%

. enduni que

.unset Macro

Permits the undefining of both local variables and volatile attributes defined through
the .set_value and .set_object macros

.unset ([scope.] nane)

The following parameters are available:

Parameter Description

scope [optional] Qualifying scope.

Type: Simple-template returning an object or a collection scope

name Local variable or volatile attribute name.

Type: Simple template

Example:

.set _value(i, 1, new
% ?%

.unset (i)

% ?%

The second line outputs true as the variable 'i' is defined while the last one outputs false.

.\vbscript Macro
The vbscript macro is used to embed VB script code inside a template. It is a block macro.

A vbscript macro has the following syntax:
.vbscript [(script-paramlist)]

bl ock-i nput
.endvbscript [(tail)]

The output is the ScriptResultArray value.

Customizing and Extending PowerDesigner 303

The following parameters are available:

Parameter Description

script-param-Iist | Parameters that are passed onto the script through the ScriptinputArray table.

Type: List of simple-template arguments separated by commas

block-input VB script text
Type: Text
tail Appended to the output, if there is one
Type: Text
Example:

.vbscript (hell o, world)

ScriptResult = ScriptlnputArray(0) + " " + ScriptlnputArray(1)
. endvbscri pt

The output is:

hell o world

Note: the active object of the current translation scope can be accessed through the
ActiveSelection collection (see Global Properties on page 328) as ActiveSelection.Item(0).

304 PowerDesigner

CHAPTER 6 Translating Reports with Report

Language Resource Files

A report language resource file is an XML file with an .xrl extension, which contains all the
text used to generate a PowerDesigner model report (such as report section titles, or names of
model objects and their attributes (properties)) for a particular language. Report language
resource files are stored in the Resource Files directory.

PowerDesigner ships with report language resource files in English (default), French, and
simplified and traditional Chinese. You can edit these files, or use them as the basis for
creating your own .xrl files to translate reports into other languages.

Note: When you create areport, you select a report language to display all the printable texts in
the specified language. For more information, see Core Features Guide > The PowerDesigner
Interface > Reports.

In the following example, Entity Card, Entity Description, and Entity Annotation are shown in
English and French as they will appear in the Report items pane:

E Project Management {CDM}, Report - CDM report |_ (O] x|
Wvailable iterms Show Al lterms Fieport items

El-AL) Drata ltem -]) Section 1

=410 Entity SRR E ity - Entity %

=5] Entlity Card |51 Entity Card - Card of entity ZITEM
,J Entity Descriptian i J Entity Description - Description of entity 2 TEM %
,J Entity Annotation || ey j Entity Annotation - Annotation of entity ZITEM =
|| Entity Package Options

f% Lizt of Related Diagrams of Entity

[]"Q_Jl Fl.e\ated [?iagram. [El Project Management (CDM), Report - CDM Report =]
% ::IS: 0: Ehltl'? E;::‘“B; [vailable items Show All ltems Reeotiems
| List of Entiby Attac -0 Enfw ;I ‘j Section_1

-|:=] Entity Card -

_] ntlty Card - Flche de l'entité %I TEMX
j Ertity Description - Description de l'entité ZITEM %
-,j Entity Annotation - Annotation de lentité ZITEME

] List of Relationship 'J En:!tygesc:lptt.lon
] List of Child Inherit | Ertiy Armotaton
X Ertity Package Options
i List of Parents of E 2 R X .
= X -t List of Felated Diagrams of Entity
- ‘ List of Diagrams co 1| Fielated O
2 Listof Entiptipu | 3] Related Diagiam
" " Lizt of Child Entities of Entity

-AL] Entity Attribute N:j List of Entity Attached Rl
-] List of Entity |dentif istal bty Attached Rules

. i List of all Dependencies
AL Entity |dentif
e ,E! &.,,::\i;,‘en el List of Objects in Related Diagrams of Entiy

List of Relationships of Entity

Lizt of Child Inheritances of Entity
List of Parents of Entity

N_:ﬁ List of Diagramz containing the Entity
] List of Entity Atiributes

[% F.ntity.t’-‘lttri?:ut.e. LI E\Semmnj £

The report language resource files use PowerDesigner Generation Template Language (GTL)
templates to factorize the work of translation. Report Item Templates interact with your

Customizing and Extending PowerDesigner 305

translations of the names of model objects and Linguistic Variables (that handle syntactic
peculiarities such as plural forms and definite articles) to automatically generate all the textual
elements in a report.

This mechanism, which was introduced in version 15 of PowerDesigner, dramatically reduces
(by around 60%) the number of strings that must be translated in order to render reports in a
new language.

For example the French report title Liste des données de I'entité MyEntity is automatically
generated as follows:

 the List - object collections report item template (see Profile/Report Item Templates
category on page 319) is translated as:

Li ste des %@al ue% %Par ent Met aCl ass. OFTHECL SSNAMVEY 9%94PARENT %846
in which the following variables are resolved:

* %@Value% - resolves to the object type of the metaclass (see Object Attributes category
on page 316). In this case, données.

* Y%ParentMetaClass.OFTHECLSSNAME% %%PARENT%% - resolves to the object type
of the parent metaclass, as generated by the OFTHECLSSNAME linguistic variable (see
Profile/Linguistic Variables category on page 317). In this case, l'entité.

* %%PARENT%% - resolves to the name of the specific object (see Object Attributes
category on page 316). In this case, MyEntity.

For more information about templates, see Chapter 5, Customizing Generation with GTL on
page 263.

Opening a Report Language Resource File

You can review and edit report language resource files in the Resource Editor.

1. Select Tools> Resources > Report Languages to open the List of Report Languages,
which lists all the available .xrl files:

306 PowerDesigner

CHAPTER 6: Translating Reports with Report Language Resource Files

ol ™ - B e RS RS

Frenich
Simplified Chinese
Traditional Chinese

Cloze Help
| |

2. Select a report language and click the Properties tool to open it in the Resource Editor.

Note: You can open the .xrl file attached to a report open in the Report Editor by selecting
Report > Report Properties, and clicking the Edit Current Language tool beside the
Language list. You can change the report language by selecting another language in the
list.

For more information about the tools available in the List of Report Languages, see
Chapter 1, Working with PowerDesigner Resource Files on page 1.

Creating a Report Language Resource File for a New
Language

You can translate reports and other text items used to generate PowerDesigner reports into a
new language.

1

Select Tools > Resour ces > Report Languagesto open the List of Report Languages,
which shows all the available report language resource files.

Click the New tool to open the New Report Language dialog box, and enter the name that
you want to appear in the List of Report Languages.

[optional] Select a report language in the Copy from list.
Click OK to open the new file in the Report Language Editor.

Open the Values Mapping category, and translate each of the keyword values. For more
information, see Values Mapping category on page 310.

Open the Profile > Linguistic Variables category to create the grammar rules necessary
for the correct evaluation of the report item templates. For more information, see Profile/
Linguistic Variables category on page 317.

Customizing and Extending PowerDesigner 307

. Openthe Profile> Report Items Templatescategory, and translate the various templates.

For more information, see Profile/Report ltem Templates category on page 319. As you
translate, you may discover additional linguistic variables that you should create (see
previous step).

. Click the All Classes tab to view a sortable list of all the metaclasses available in the

PowerDesigner metamodel. Translate each of the metaclass names. For more information,
see All Classes tab on page 320.

. Click the All Attributes and Collections tab to view a sortable list of all the attributes and

collections available in the PowerDesigner metamodel. Translate each of the attribute and
collection names. For more information, see A/l Attributes and Collections tab on page
321.

10. Click the All Report Titles tab, and review the automatically generated report titles. For

more information, see A// Report Titles tab on page 321. Note that this tab may take
several seconds to display.

11. Click the Save tool, and click OK to close the Report Language Editor. The report

language resource file is now ready to be attached to a report.

308

PowerDesigner

CHAPTER 6: Translating Reports with Report Language Resource Files

Report Language Resource Files Properties

All report language resource files can be opened in the Resource Editor, and have the same
basic category structure:

[Report Language Properties {For All Reports) | _ (O] x|
General |.-’-‘«II Elassesl Al Attributes and Eollectionsl Al Repart Titlesl
5 5 IEninsh Template j Q- - 2
"“:I Vales Mapping Hame: IEngIlsh Template j
B0 Repart Titles Code: |Eng|ish Template IT
H-12) Object Attibutes
E..:l Frofile Eile name: IE:'\F‘IDgram Files\Sybaze\PowerDesigner 154
=-2) Shared
: C 1
E.,j Templates el
--uj Linguiztic W anables ﬂ
-2 Repart Item Templates
0k I Cancel | Apply | Help |

For more information about using the Resource Editor, see Opening Resource Files in the
Edlitoron page 2.

The root node of each file contains the following properties:

Property Description

Name Specifies the name of the report language.

Code Specifies the code of the report language.

File Name [read-only] Specifies the path to the .xrl file.

Comment Specifies additional information about the report language.

Customizing and Extending PowerDesigner 309

Values Mapping Category

The Values Mapping category contains a list of keywords values (such as Undefined, Yes,
False, or None) for object properties displayed in cards, checks, and lists. You must enter a
translation in the Value column for each keyword in the Name column:

E Report Language Properties {For All Reports)

H=l
General | All Claszes | All Attributes and Collections | &l Report Titles I
- A IEnuIish Template: ¥ alues MappingsFormshStandard ﬂ Q- - Rif 52}
=
sy RptLang Template - ;
=2 Walues Mapping it IStandard
Camment: ﬂ
=2 Report Titles
B+ Common Dbjects LI
B2 Repart wizard Walue:
Conceptual Data Model e o | EE x | e
1) Logical D ata Madel
153 %ML Model Marne: Walue o
Infarmation Liquidity M odel 1 <Embedded Files> <Embedded Files:
Requirements b odel 2 <Noner ducun
Free Maodel 2 <UMDEF> <Mon définiz
Praject 4 <Undefined: <Mon définiz iz
43 Enterprize Architecture Mod 5 “Unknawne <Unknowin: i
Physical Data Model ? IE:LDE;}IE Empty =
5 biogon T pau 5
B2 P _I;I Flelel ¥ 312 (5]
4 3
ok I Cancel Lpply | Help |

This category contains the following sub-categories:

Sub-category

Description

Forms

Contains a Standard mapping table for keywords of object properties in cards
and checks, which is available to all models. You have to provide translations
for keywords values in the Value column.

Example: Embedded Files.

Lists

Contains a Standard mapping table for keywords of object properties in lists,
which is available to all models. You have to provide translations for keywords

values in the Value column.

Example: True.

You can create new mapping tables containing keywords values specific to particular types of

model objects.

310

PowerDesigner

CHAPTER 6: Translating Reports with Report Language Resource Files

Example: Creating a Mapping Table, and Attaching It to a Specific Model Object
You can override the values in the Standard mapping tables for a specific model object by
creating a new mapping table, and attaching it to the object.

In the following example, the DisplayMap mapping table is used to override the Standard
mapping table for PDM columns to provide custom values for the Displayed property, which
controls the display of the selected column in the table symbol. This situation can be
summarized as follows:

Name Value
TRUE Displayed
FALSE Not Displayed

1. Open the Values Mapping > Lists category.

2. Right-click the Lists category, select New > Map Item to create a new list, and open its
property sheet.

3. Enter DisplayMap in the Name field, enter the following values in the Value list, and click
Apply:
« Name: TRUE, Value: Displayed.
* Name:FALSE, Value: Not Displayed.
[Report Language Properties {(For All Reports) [E =

General |AII Elassesl All Attributes and Collectionsl All Report Tillesl

G- i IEninshTemDIate::VaIues M appingtLists\Displayhd ap j \)“ ~ = “if il:é
Q} French Template - ; -
=) Yalues Mapping HName: IDlspIayMap
B0 Foms Caomment; i
E|.,j Lists

[EREE [i=playtdap

-3 Report Titles Walle:
E2) Object Attributes q T S
= 5 i n @ X |
.,j Common Objects = | # 4 |
.,j Requirements Model MHame Walue i
-2 Conceptual D ata Model 1 TRUE Dizplayed
J Free Model 2 FALSE Mot Digplaped

.,j Logical D ata Model
.,j #ML Model
-2 Information Liquidity Madel

E|._‘| Physical Data Model i =
et et _>I_I SIEXRALAE JE3RY |

|
Ok I Cancel Apply | Help |

Customizing and Extending PowerDesigner 311

4. Right-click the Lists category, select New > Category, hame the category Physical Data
Model, and click Apply.

5. To complete the recreation of the PDM Object Attributes tree, right-click the new Physical
Data Model category, select New > Map Item, name the category Column, and click

Apply.

6. Click the Name column to create a value and enter Displayed, which is the name of the
PDM column attribute (property).

7. Click the Value column and enter DisplayMap to specify the mapping table to use for that

attribute.
E\f Report Language Properties (For All Reports) Hi=] E3
General |AII Classes | All ttibutes and Collections | A1l Repart Titles |
- - I Englizh Termplate: Malues MappingtListstPhyzsical Data ModelsColurng j JQ - H - Rif ig‘g
E‘;f RptLang Template - ik
L—__|..:| Walues Mapping Done:
B Forms Comment: i
=- Lists
Walue:
E BN
-2 Report Titles 24 | i & |
EIJ Object Attibutes I ame Value iz
J Common Objects 1 Dizplayed Dizplaykd ap
-0 Requirsments Model
-0 Concsptual D ata Modsl i
B0 Free Model =
B+ Logical Diata Modsd s
B =ML Model =
e T Leefeme ot | il b o ?I#Ifl‘l*lil‘l I 'I
4| T »
()4 I Cancel | Apply | Help |

8. Click Apply to save your changes. When you generate a report, the Displayed property
will be shown using the specified values:

1 List of table columns

Mame Code Displayed
id id Displayed
name natne Mot Displayed
size size Mot Displayed
supplier suppliet Mot Displayed
guatitity uanitity Displayed
unit_price unit_price Displayed

312

PowerDesigner

CHAPTER 6: Translating Reports with Report Language Resource Files

Report Titles Category

The Report Titles category contains translations for all the possible report titles that appear in
the Available Items pane in the Report Editor, those that are generated with the Report Wizard,
and other miscellaneous text items.

[® Report Language Properties {For All Reports) _ O]

General |.-’-‘«II I:Iassesl Al Attributes and Eollectinnsl All Repart TitIesI

Q- =- IEninsh Template::Repart Titles\Phyzical Data Model\T ableA\Calumn®, j T HT: il

ac
=0 Column =] .
[\.j ExtendedSubObject e Lolumn card
AJIE stendedSubObjects list J Comment: ﬂ

AnalyzizObjects st
Annotation
ArticleCalumneg list
AttachedR equirements list
AttachedRules list

-
Book title —I

CheckConstraintt ame Walue: Fiche de la colonne de la table IEI
ChildviewReferenceloins list

ClientCheckE spregzzion
Column card

Colurmn check

ComputedE spression

Data list
DataStructureColumngSource
DataStructureColumnsT aget

[T P P

4 —I ;

ak I Cancel Apply Help

This category contains the following sub-categories:

Sub-cate- | Description
gory

Common Ob- | Contains the text items available to all models. You must provide translations of
jects these items here.

Example: HTMLNext provides the text for the Next button in an HTML report.

Report Wizard | Contains the report titles generated with the Report Wizard. You must provide
translations of these items here.

Example: Short description title provides the text for a short description section
when you generate a report with the Report Wizard.

Customizing and Extending PowerDesigner 313

Sub-cate- [Description
gory

[Models] Contain the report titles and other text items available to each model. These are
automatically generated, but you can override the default values.

Example: DataTransformationTasks list provides the text for the data transforma-
tion tasks list of a given transformation process in the Data Movement Model.

By default (with the exception of the Common Objects and Report Wizard sub-categories)
these translations are automatically generated from the templates in the Profile category (See
Profile/Report Item Templates category on page 319). You can override the automatically
generated values by entering your own text in the Localized name field. The User-Defined
button is automatically depressed to indicate that the value is not generated.

Note: The All Report Titles tab (see A/l Report Titles tab on page 321) displays the same
translations shown in this category in a simple, sortable list form. You may find it more
convenient to check and, where appropriate, to override generated translations on this tab.

Example: Translating the HTML Report Previous Button

The HTML report Previous button is a common object available to all models, and located in
the Common Objects category. You must translate this text item manually along with the other
items in this, and the Report Wizard categories.

1. Open the Report Titles> Common Objects category.

2. Click the HtmlIPrevious entry to display its properties, and enter a translation in the
Localized name box. The User-Defined button is automatically depressed to indicate that
the value is not generated.

314

PowerDesigner

CHAPTER 6: Translating Reports with Report Language Resource Files

{5 Report Language Properties {For All Reports) =]

General |AII CIasses' All Attributes ard Collections' All Report Titlesl

- - IENG::HepDrtTitles\l:ommon Objects HtmlPreviaus lQA-d- T
----- abe| Domairs list ;I ;
----- abe| ExtendedCollection Conten Here Gl
----- abe| ExtendedDependencies list Comment: -
----- abe| Extendedinfluences list

----- Jbe| EwtendedinverseCollection:
----- Jabe| Ewtendedlinks list

Jbe| ExtendedObjects list

~Jabe| Files list

: ooter LI
Generatedhd odels list
-|abe] GenerationDriging list
eader

i HtmlHame

=Y

Walue: Précédant i

----- abe| bodel card
be| ObjectslnRelatedDiaarams

----- abe| Packages list
bl Dlemisiman X
1 | »

=

0K I Cancel Apply Help

3. Click Apply to save your changes.

Customizing and Extending PowerDesigner 315

Object Attributes Category

The Object Attributes category contains all the metaclasses, collections and attributes
available in the PowerDesigner metamodel, organized in tree form;

EI Report Language Properties (For all Reports) [_ (O] x|

[ieneral |AII EIa&sesI &l Attributes and Eullectionsl Al Repart Titlesl

ﬂ - - IENG::DbiectAttributes'\lnformation Ligquidity Model\ControlF low j J\ s ._‘;_-‘ hd ﬁf 2l

1
ac

E|u3 ’I.r.1fculme.it|nn Liguidity Model ;I e rp———
) Article

15 ArticleColumn Comment: ﬂ

1) Common Attributes

CantralFlaw

15 Datadccesslink

D ataCalculatar

{3 DataCannection

15 DataConnectionGroup

DataFilker

1) DataFlow

3 Datarpu L LIEEY S
Datalookup

1) DataOutput Linguistic Variables | Walue

1 DatalueryE xecution = |CLSSMAMES flux de cantréle| al

D ataStructureColummin OFTHECLSSHAME des flux de contrdle

1 DataStructurel oin

) DataStuctureSortedCaolumr =
== n-.p-.T.-.mrmm-.p:ﬁnT-ml,_Pl_I 4] +] 2] £]2]4] |

1] |
0k I Cancel | Apply | Help |

L

Walue: Iflux de contrdle

-
| mja | |»

This category contains the following sub-categories:

Sub-category Description

[Models] Contain text items for metaclasses, collections and attributes available to
each model, for which you must provide translations.

Example: Action provides the text for an attribute of a process in the
Business Process Model.

Common Objects Contains text items for metaclasses, collections and attributes available to
all models, for which you must provide translations.

Example: Diagram provides the text for a diagram in any model.

For each item the name is given, and you must provide a translation in the Localized name
field.This value is retrieved by the templates you have specified in the Profile category to
generate default report titles (see Report Titles category on page 313).

316 PowerDesigner

CHAPTER 6: Translating Reports with Report Language Resource Files

For metaclasses only, the linguistic variables you have specified (see Profile/Linguistic
Variables category on page 317) are listed along with the results of their application to the
translations given in the Localized name field. If necessary, you can override the automatically
generated values by entering your own text in the Value column. The User-Defined button is
automatically depressed to indicate that the value is not generated.

Note: These tabs display the same translations shown in the Object Attributes category in a
simple, sortable list form. You may find it more convenient to provide translations in these tabs
(see All Classes tab on page 320 and A/l Attributes and Collections tab on page 321).

Profile/Linguistic Variables Category

The Linguistic Variables category contains templates, which specify grammar rules to help
build the report item templates.

Examples of grammar rules include the plural form of a noun, and the correct definite article

that must precede a noun. For more informations, see Profile/Report Item Templates category
on page 319.

[Report Language Properties {For All Reports) | _ (O] x|

General |.-’-‘«II Elassesl Al Sttributes and Eollectionsl All Repaort Titlesl

a8 - - IEninshTemplate::F'rofile'\Shared\Templates\LinguisticVariables'\ELSSj o

*
&) RptLang Template -
.,_‘l Valugs Mapping | Mame: CLSSMAMES
J Report Titles Camment; 12
1-5) Object Attributes il
B3 Profile EE
=+ Shared |
=0 Templates
2 Linguistic Yariables SH-HF-Hd S H | & &3 [| o | P €
Dol AMES : -
-[%] OFTHECLSSNAME *¥aluess &

E|..:| Repart lter Templates —
Attribute - Object
Attribute - Sub object
Book Title - Object
Book Title - Sub ohje
Card - Object

Card - Sub object
Check - Object

b o
. I f Clmnle I =S Ak;n,llll 4 I I LIJ

Ok I Cancel | Apply | Help |

Specifying appropriate grammar rules for your language, and inserting them into your report
item templates will dramatically improve the quality of the automatic generation of your
report titles. You can create as many variables as your language requires.

Customizing and Extending PowerDesigner 317

Each linguistic variable and the result of its evaluation is displayed for each metaclass in the
Object Attributes category (see Object Attributes category on page 316).

The following are examples of grammar rules specified as linguistic variables to populate
report item templates in the French report language resource file:

* GENDER - Identifies as feminine a metaclass name %Value%, if it finishes with "e" and
as masculine in all other cases:

J0f (% -1: @/al ue% == e)

. el se
M
.endif

For example: la table, la colonne, le trigger.

e CLSSNAMES - Creates a plural by adding "x" to the end of the metaclass name %Value
%, if it finishes with "eau" or "au" and adds "s" in all other cases:

0 f (% -3: @/al ue% == eau) or (% -2: @/al ue% == au)
%@d/al ue%x

.el se

Y/al ue¥%s

.endif

For example: les tableaux, les tables, les entités.

« THECLSSNAME - Inserts the definite article before the metaclass name %Value% by
inserting " I' ", if it begins with a vowel, "le" if it is masculine, and "la" if not:

0 f (% 1U: @/al ue% == A) or (% 1U. @/al ue% == E) or (% 1U. @/al ue%== 1)
or (% 1U @/alue% == 0 or (% 1U @al ue% == U)

| ' v@al ue%

.elsif (YENDERY ==

| e %@/al ue%

. el se

| a Y@/al ue%

.endi f

For example: I'association, le package, la table.

e OFTHECLSSNAME - Inserts the preposition "de" plus the definite article before the
metaclass name %Value%,if it begins with a vowel or if it is feminine, otherwise "du".

0 f (% 1U. @/al ue% == A) or (% 1U @/al ue%==E) or (% 1U @al ue%== 1)
or (% 1U @alue% == 0O or (% 1U @alue% == U) or (%ENDER% == F)

de %IHECL SSNANMVEY%

. el se

du %@val ue%

.endif

For example: de la table, du package.

318

PowerDesigner

CHAPTER 6: Translating Reports with Report Language Resource Files

e OFCLSSNAME - Inserts the preposition " d' " before the metaclass name %Value%,, if it
begins with a vowel, otherwise "de".

0 f (% 1U: @/al ue% == A) or (% 1U. @/al ue%==E) or (% 1U @al ue%== 1)

or (% 1U @alue% == 0 or (% 1U @al ue% ==

d' v@al ue%

. el se

de %@val ue%

.endif

For example: d'association, de table.

Profile/Report Item Templates Category

The Report Item Templates category contains a set of templates that, in conjunction with the
translations that you will provide for metaclass, attribute and collection names, are evaluated
to automatically generate all the possible report titles for report items (book, list, card etc.)

For more information, see Object Attributes category on page 316.

[Report Language Properties (For All Reports) _ [O] x|

General |AII EIasses' Al Attributes and Cc-lleu:tic-ns' Al Report Titlesl

- - | English Template:: PrafiletShared\T emplates\Flepart [tem T emplatesiList - j Q- - T

ac

 Book Title - Sub object
E:rod-lzllbeiectu mhIEe ;I Mame: List - Object collections

Card - Sub object Comment: ﬂ

Check - Object

Check - Sub object
izt - Dependent Sub objects LI
ist - Dependent objects
ist - Diagrams containing the « S F - S S | FEE] _ﬂl T |_¢l='| @ Ln1, Col

- Global object mappings

ist - Global objects collections

ist - Model collections

izt - Object collactions

izt - Object extended attribute

- Object mappings

ist - Objects in diagram

izt - Sub object collections

izt - Sub object extended attril

tatri - Object - _ILI
o — '
QK I Cancel | Apply | Help |

Liste de %@Value% de 1' %ParentMetaClass.[({Valuel ;I

You must provide translations for each template by entering your own text. Variables (such as
%text%) must not be translated.

For example the template syntax for the list of sub-objects contained within a collection
belonging to an object is the following:

Li st of %@/al ue% of the %Par ent Met aCl ass. @/al ue% WPARENTY®%

Customizing and Extending PowerDesigner 319

When this template is evaluated, the variable %@Value% is resolved to the value of the
localized name for the object, %ParentMetaClass.@Value% is resolved to the value of the
localized name for the parent of the object, and %%PARENT%% is resolved to the name for
the parent of the object.

In this example, you translate this template as follows:

« Translate the non-variable items in the template. For example:

» Create a linguistic variable named OFTHECLSSNAME to specify the grammar rule used
in the template (see Profile/Linguistic Variables category on page 317).

This template will be reused to create report titles for all the lists of sub-objects contained
within a collection belonging to an object.

You cannot delete templates nor create new ones.

All Classes Tab

The All Classes tab lists all the metaclasses available in the Object Attributes category on the
General tab but the flat structure makes it more convenient to work with.

For more information, see Object Attributes category on page 316.
[B Report Language Properties (For All Reports) [_ (3] x]
General Al Claszes |AIIAttributes and Collectionsl All Report Titlesl

M| %l X (@AY

Farent

I ame: v

Localized Mame i’

Categony 'Physical O ata bMod

AbstractDataT ype

abstract data type

Categony 'Physical O ata bMod

AbstractDataT ypedt

abstract data type al

Categon 'Physical O ata bMod

AbstractDataT ypePr

abstract data type pi

Categon Menze Process Mc

Action

action

Category 'Object Oriented b

Action

action

Category 'Object Oriented b

Achivity

activity

Category 'Object Oriented b

ActivityFlow

flow

(mm) B} N) I S TR N

Category 'Object Oriented b

ActivityParameter

activity parameter
Acteul{

Acteur

11 Category 'Object Oriented b anrotation

12 Categon kL kodel' Arnnotation anrotation

13 Categony #kL kModel' Annotationltem anrotation item

14 Category kL Model' Ay any

15 Category ‘Information Liquidit: Article article

16 Category Information Liguidit: ArticleColumn article column -

17 Category 'Common Objects’ (Artifact artefact =

18 Category Dhject Orented M AszemblyConnector | assembly connector x

4] I
kK I Cancel | Lpply | Help |

For each metaclass listed in the Name column, you must enter a translation in the Localized
name column. You can sort the list to group similarly-named objects, and translate identical
items together by selecting multiple lines.

320

PowerDesigner

CHAPTER 6: Translating Reports with Report Language Resource Files

All Attributes and Collections Tab

The All Attributes and Collections lists all the collections and attributes available in the Object
Attributes category on the General tab, but the flat structure makes it more convenient to work

with.

For more information, see Object Attributes category on page 316.

[Report Language Properties (For All Reports)

General | 4l Classes Al Attibutes and Collactions |AII Report Titles |

| ¥ Al XA D T

=] B

Parent

h amne hd

Localized Mamne

Language Metaclass ‘Servic

DataSchemalangu

Data Schema Lang

Language Metaclass "Servic

Drats5 chemal ext

Data Schema Text

Language Metaclass 'DataT)

Language Metaclass ‘BazeD

Drat=Sorts

DataSourcelogin

data Sarts

Login

Language Metaclass ‘BazeD

DataSourcelogin

Login

Language Metaclass ‘BazeD

DataSourcelogin

Login

Language Metaclass ‘BazeD

DataSourcelogin

Login

Language Metaclass ‘BazeD

DataSourcelogin

Login

Language Metaclass ‘BazeD

DataSourcelogin

Login

Language Metaclass ‘BazeD

DataSourcelogin

Login

Language Metaclass ‘BazeD

DataSourcelogin

Login

Language Metaclass ‘BazeD

DataSourcelogin

|dentifiamt

Language Metaclass 'Datas

DataSourcelogin

Login

Language Metaclass 'Datas

DataSourcelogin

Login

Language Metaclass 'Datas

DataSourcelogin

Login

(14| b 4

e

QK I Cancel | Apply | Help |

For each attribute or collection listed in the Name column, you must enter a translation in the
Localized hame column. You can sort the list to group similarly-named objects, and translate
identical items together by selecting multiple lines.

All Report Titles Tab

The Report Titles tab lists all the report titles and other miscellaneous text items available in
the Report Titles category on the General tab, but the flat structure makes it more convenient to
work with.

For more information, see Object Attributes category on page 316.

Customizing and Extending PowerDesigner 321

@ Report Language Properties (For All Reports) [_ O]
General | Al Classes | Al Attributes and Collections 41l Report Tites |
M| ¥l X | AR
Parent Mare Localized Hame i’
19 Category Diagram' ActivitgFlow list Ligt of flows in diagram
20 Category 'Actar Actar card Card of actor ZITEM %
21 Category 'Actar Actar card Card of actor ZITEM %
22 Category Diagram' Actar list Lizt of actors in diagram
23 Category Diagram' Actar list Lizt of actors in diagram
24 Category Clazs' Actors list Lizt of actors of the class ZPARENT %
25 Category Interface’ Actors list Lizt of actors of the interface XPAREMT %

28 Category 'Datadggregation’ | AggregationColumng list Lizt of aggregated colurmng of the data transft
29 Category ‘ShatractD ataT ppe' AllEstendedSubObjects list Lizt of extended sub-objects of the abstract d.
a0 Category ‘ShatractD ataT ppe | AllEstendedSubObjects list Lizt of extended sub-objects of the abstract d.
£l Categon ‘ShatractD ataT upe AlEstendedSubObjects list Lizst of extended sub-objects of the abstract d.
32 Categaon ‘Action’ AlEstendedSubObjects list Lizst of extended sub-objects of the action %P
33 Categan ‘Action’ AlEstendedSublbjects list Lizst of extended sub-objects of the action %P
34 Categan ‘Sctivity' AlEstendedSubObjects list Lizst of extended sub-objects of the activity %F =
3B Categan ‘ActivitpFlow AlEstendedSublbjects list Lizst of extended sub-objects of the flow XPAF =
6 Categan ‘Actar’ AlEstendedSubObjects list Lizst of extended sub-objects of the actar ZPA =

| e

QK I Cancel | Apply | Help |

For each report listed in the Name column, you can review or override a translation in the
Localized name column. You can sort the list to group similarly-named objects, and translate
identical items together by selecting multiple lines.

322

PowerDesigner

CHAPTER 7 Scripting PowerDesigner

When working with large or multiple models, it can sometimes be tedious to perform
repetitive tasks, such as modifying objects using global rules, importing or generating new
formats or checking models.

Such operations can be automated through scripts. Scripting is widely used in various
PowerDesigner features. For example, to:

« Create custom checks, event handlers, transformations, customs commands and custom
popup menus (see Chapter 2, Extension Files on page 21)

e Communicate with PowerDesigner from another application (see Communicating With
PowerDesigner Using OLE Automation on page 381)

« Customize PowerDesigner menus by adding your own menu items (see Customizing
PowerDesigner Menus Using Add-Ins on page 386).

« Create VBscript macros and embed VBscript code inside a template for generation (see
GTL Macro Reference on page 285).

You can access PowerDesigner objects using any scripting language such as Java, VBScript or
C# (C Sharp). However, the scripting language used to illustrate our examples in this chapter is
VBScript.

VBScript is a Microsoft scripting language. PowerDesigner provides integrated support for
Microsoft VBScript so that you can write and run scripts to interact with metamodel objects in
a development environment using properties and methods. Every PowerDesigner object can
be read and modified (creation, update or deletion).

Accessing PowerDesigner Metamodel Objects

PowerDesigner ships with a metamodel published in an Object Oriented Model
(metamodel.oom) that illustrates how metadata interact in the software. All objects in the
PowerDesigner metamodel have a name and a code. They correspond to the public nameof the
metadata. An HTML help file is also provided to allows you to find out which properties and
methods can be used to drill down to a PowerDesigner object.

For more information on metadata, see Chapter 1, Working with PowerDesigner Resource
Files on page 1.

PowerDesigner also provides a set of pre-written scripts that you can modify to meet your own
needs.

Scripting allows you to perform any kind of data manipulation but you can also insert and
customize commands in the Tools menu that will allow you to automatically launch your own
scripts.

Customizing and Extending PowerDesigner 323

Objects

Objects refer to any PowerDesigner objects. They can be:

« Design objects, such as tables, classes, processes or columns.
« Diagrams or symbols.
» Functional objects, such as the report or the repository.

An object belongs to a metaclass of the PowerDesigner metamodel.
Each object has properties, collections and methods that it inherits from its metaclass.

Root objects like models for example are created or retrieved using global methods. For more
information, see Global properties on page 328.

Non root objects are created or retrieved using collections. For example, you create these
objects using a Create method on collections and delete them using a Delete method on
collections. For more information, see Collections on page 325.

You can browse the PowerDesigner metamodel to get information about the properties and
collections available for each metaclass.

Example

"Variables are not typed in VBScript. You create them and the
"l ocation where you use them determ nes what they are

' get the current active nodel

Dimmdl ' the current nodel

Set ndl = ActiveModel

Properties
A propertyis an elementary information available for the object. It can be the name, the code,
the comment etc.

Example

"How to get a property value in a variable fromtable 'Custoner

Di m Tabl e_nane

"Assumi ng MyTable is a variable that al ready contains a 'tabl e object
Get the name of MyTable in Tabl e_name variabl e

Tabl e_nane = MyTabl e. name

'Di splay MyTabl e nane in out put w ndow

out put MyTabl e. name

'How to change a property val ue : change value for name 'of MTable
MyTabl e. nane = ' new nane'

324 PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Collections
A collectionis a set of objects.

The model is the root object and the other objects can be reached by browsing the
corresponding collection. The objects are grouped together within collections that can be
compared to the category nodes appearing in the Browser tree view of the Workspace.

If an object CUSTOMER has a collection, it means the collection contains the list of objects
with which the object CUSTOMER is in relation.

Some functions are available on collections. You can:

* Browse a collection
» Get the number of objects a collection contains
» Create a new object inside a collection, if it is a composition collection

Collections can be of the following types:

« Read-only collections are collections that can only be browsed

» Unordered collections are collections for which objects order in the list is not significant.
For example the Relationships collection of a CDM Entity object is an unordered
collection

« Ordered collections are collections for which object order is set by the user and must be
respected. For example the Columns collection of the PDM Table object is an ordered
collection

« Composition collections are collections for which objects belong to the collection owner.
They are usually displayed in the Browser. Non composition collections can also be
accessed using scripting and can be for example the list of business rules attached to a table
or aclass and displayed in the Rules tab of its property sheet or the list of objects displayed
in the Dependencies tab of an object property sheet.

Read-only Collections
Models (global collection for opened models) is an example of read-only collection.

The property and method available for read-only collections are the following:

Property or Method Use

Count As Long Retrieves the number of objects in collection

Item(idx As Long = 0) As BaseObject | Retrieves the item in collection for a given index. Item(0)
is the first object

MetaCollection As BaseObject Retrieves the MetaCollection object that defines this col-
lection

Customizing and Extending PowerDesigner 325

Property or Method

Use

Kind As Long

Retrieves the kind of objects the collection can contain. It
returns a predefined constant such as cls_

Source As BaseObject

Retrieves the object that owns the collection

Example:

'How to get the nunber of open nopdels and display it

"in the output w ndow
out put Model s. count

Unordered Collections

All methods and properties for read-only collections are also available for unordered

collections.

Properties and methods available for unordered collections are the following:

Property or Method

Use

Add(obj As BaseObject)

Adds object as the last object of the collection

Remove(obj As BaseObject, delete As
Boolean = False)

Removes the given object from collection and option-
ally delete the object

CreateNew(kind As Long = 0) As Base-
Object

Creates an object of a given kind, and adds it at the end
of collection. If no object kind is specified the value 0 is
used which means that the Kind property of the collec-
tion will be used. See the Metamodel Objects Help file
for restrictions on using this method

Clear(delete As Boolean = False)

Removes all objects from collection and optionally de-
lete them

Example:

'renpve table TEST fromthe active nodel

Set MyModel = ActiveMbdel
For each T in Mynodel . Tabl es
If T.code = "TEST" then

set MyTable = T
End if
next

Acti veModel . Tabl es. Remove MyTabl e,

Ordered Collections

true

All methods and properties for read-only and unordered collections are also available for

ordered collections.

Properties and methods available for ordered collections are the following:

326

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Property or Method Use

Insert(idx As Long = -1, obj As BaseOb- | Inserts objects in collection. If no index is provided, the
ject) index -1 is used, which means the object is simply added
as the last object of the collection

RemoveAt(idx As Long = -1, delete As | Removes objectat given index from collection. If no index
Boolean = False) is provided the index -1 is used, which means the removed
object is the last object in collection (if any). Optionally
deletes the object

Move(source As Long, dest As Long) Moves object from source index to destination index

CreateNewAt(idx As Long=-1, kind As | Creates an object of a given kind, and inserts it at given
Long = 0) As BaseObject position. If no index is provided the index -1 is used which
means the object is simply added as the last object of the
collection. If no object kind is specified the value 0 is used
which means that the Kind property will be used. See the
Metamodel Objects Help file for restrictions on using this
method

Example:

"Move first colum in |ast position
" Assumi ng the variable MyTabl e contains a table
MyTabl e. Col ums. nove(0, - 1)

Composition Collections
Composition collections can be ordered or unordered.

All methods and properties for unordered collections are also available for unordered
compositions.

Properties and methods available for unordered composition collections are the following:

Property or Method Use

CreateNew(kind As Long = 0) As BaseObject Creates an object of a given kind, and adds it at
the end of collection. If no object kind is speci-
fied the value 0 is used, which means the Kind
property of the collection will be used

All methods and properties for ordered collections are also available for ordered
compositions.

All methods and properties for unordered compositions are also available for ordered
compositions.

Properties and methods available for ordered composition collections are the following:

Customizing and Extending PowerDesigner 327

Property or Method Use

CreateNewAt(idx As Long =-1, kind As Long =0) | Creates an object of a given kind, and inserts it
As BaseObject at a given position. If no index is provided the
index -1 is used, which means the object is
simply added as the last object of the collection.
If no object kind is specified the value 0 is used
which means that the Kind property of the col-
lection will be used

These methods can be called with no object kind specified, but this is only possible when the
collection is strongly typed. That is, the collection is designed to contain objects of a precise
non-abstract object kind. In such cases, the Kind property of the collection corresponds to an
instantiable class and the short description of the collection states the object kind name.

Example:

The Columns collection of a table is a compaosition collection as you can create columns from
it. But the Columns collection of a key is not a composition collection as you cannot create
objects (columns) from it, but only list them.

"Create a new table in a nodel

" Assumi ng the variabl e MyModel contains a PDM
'Decl are a new vari abl e obj ect MyTabl e

Di m MyTabl e

"Create a new table in MyMdel

Set MyTabl e = MyMbdel . Tabl es. Cr eat enew

"Create a new colum in a table
'Decl are a new vari abl e obj ect MyCol um
Di m MyCol umrm
"Create a new colum in MyTable in 3rd position
Set MyTabl e = MyTabl e. Col unms. Cr eat eNewAt (2)
the colum is created with a default name and code

Note: When you browse the collections of a model and want to retrieve its objects, be aware
that you will also retrieve the shortcuts of objects of the same type.

Global Properties
The available global properties can be gathered as follows:

Type Global property Use

Global accessor | ActiveModel As BaseObject Retrieves the model, package, or diagram

ActivePackage As BaseObject that corresponds to the active view

ActiveDiagram As BaseObject

ActiveSelection As ObjectSet Read-only collection that retrieves the list
of selected objects in the active diagram

328 PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Type Global property Use
ActiveWorkspace As BaseObject | Retrieves the Application active Work-
space
MetaModel As BaseObject Retrieves the Application MetaModel
Models As ObjectSet Read-only collection that lists opened
models

RepositoryConnection As BaseOb- | Retrieves the current repository connec-
ject tion, which is the object that manages the
connection to the repository server and
then provides access to documents and ob-
jects stored under the repository

Execution mode | ValidationMode As Boolean Enables or disables the validation mode
(True/False).
InteractiveMode As long Manages the user interaction by displaying

dialog boxes or not using the following
constants (im_+Batch, +Dialog or

+Abort).
Application UserName As String Retrieves the user login name
Viewer As Boolean Returns True if the running application is a
Viewer version that has limited features
Version As String Returns the PowerDesigner version
OLE specific ShowMode As Checks or changes the visibility status of
the main application window in the follow-
ing way:

e Itreturns True if the application main
window is visible and not minimized

* False otherwise

Locked As Boolean Can be set to True to ensure that the appli-
cation continues to run after an OLE client
disconnects otherwise the application
closes

Example:

"Create a new table in a nodel
'Get the active nodel in MyMddel variable
Set MyModel = ActiveMbdel

You can use two types of execution mode when running a script in the editor. A default value
can be specified for each mode:

Customizing and Extending PowerDesigner 329

* Validation mode
* Interactive mode

Validation Mode

The validation mode is enabled by default (set to True), but you may choose to temporarily

disable it by setting it to False.

Code

Use

ValidationMode = True

Each time you act over a Power-
Designer object, all internal
PowerDesigner methods are in-
voked to check the validity of
your actions. In case of a forbid-
den action, an error occurs. This
mode is very useful for debug-
ging but is necessarily perform-
ance consuming

ValidationMode = False

You use it for performance rea-
sons or because your algorithm
temporarily requires an invalid
state. However, be aware, that no
validation rules such as name
uniqueness or link object with
missing extremities are applied
to your model in this case

State Constant

Enabled (de- | True

fault value)

Disabled False
Example:

Val i dati onMode = true

Interactive Mode

The interactive mode is Batch by default.

The interactive mode supports the following constants:

Constant Code Description
im_Batch InteractiveMode = Never displays dialog boxes and always uses
im_Batch default values. You use it for Automation
scripts that require no user interaction
im_Dialog InteractiveMode = im_Dia- | Displays information and confirmation dialog
log boxes that require user interaction for the script
to keep running

330

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Constant Code Description
im_Abort InteractiveMode = Never displays dialog boxes and aborts the
im_Abort script instead of using default values each time
a dialog is encountered

Option Explicit Statement

We recommend to use the Option Explicit statement to declare your variables in order to avoid
confusion in code as this option is disabled by default in VBScript. You have to declare a
variable before using this option.

Example:

Option Explicit
Val i dati onMbde = True

InteractiveMbde = i m Batch
' get the current active nodel
Dmndl ' the current nodel

Set ndl = ActiveModel

Global Functions
The following global functions are available:

Global functions Use

CreateModel Creates a new model

(modelkind As Long, filename As String =", flags As
Long =omf_Default) As BaseObject

CreateModelFromTemplate Creates a new model using given model file

(filename As String, flags As Long =omf_Default) As as template

BaseObject

OpenModel Opens an existing model

(filename As String, flags As Long =omf_Default) As

BaseObject

Output Writes a message in the Script tab of the

(message As String = ") Oytput window of PowerDesigner main
window

NewPoint Creates a point to position a symbol

(X AsLong =0, Y As Long = 0) As APoint

NewRect Creates a rectangle to manipulate symbols
position

(Left AsLong =0, Top As Long =0, Right As Long =0,
Bottom As Long = 0) As Arect

Customizing and Extending PowerDesigner 331

Global functions

Use

NewPtList () As PtList

Creates a list of points to position a link

NewGUID() As String

Creates a new Global Unique IDentifier
(GUID). This new GUID is returned as a
string without the usual surrounding

ngn e

IsKindOf(childkind As Long, parentkind As Long) As
Boolean

Returns True if childkind corresponds to a
metaclass derived from the metaclass of
kind parentkind, False otherwise

ExecuteCommand

(cmd As String, Optional arglist As String, Optional
mode As Long) As String

Opens an external application

Rtf2Ascii
(rtf As String) As String

Removes RTF (Rich-Text-File) tags from
an RTF formatted text

ConvertToUTF8
(InputFileName As String, OutputFileName As String)

Converts <InputFileName> file into UTF8
(8-bit Unicode Transformation Format,
where byte order is specified by an initial
Byte-Order Mark) and writes the result to
the file <OutputFileName>. The two file-
names must be different

ConvertToUTF16
(InputFileName As String, OutputFileName As String)

Converts <InputFileName> file into
UTF16 (16-bit Unicode Transformation
Format Little Endian, where byte order is
specified by an initial Byte-Order Mark)
and writes the result to the file <OutputFi-
leName>. The two filenames must be dif-
ferent

EvaluateNamedPath

(FileName As String, QuerylfUnknown As Boolean =
True, FailOnError As Boolean = False) As String

Replaces a variable in a path by the corre-
sponding named path

MapToNamedPath
(FileName As String) As String

Replaces the path of a file by the corre-
sponding named path

Progress(Key As String, InStatusBar Boolean = False)
As BaseObiject

Create or retrieve a given progress indicator

BeginTransaction()

Starts a new transaction

CancelTransaction()

Cancels the ongoing transaction

EndTransaction()

Commits the ongoing transaction

332

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

OpenModel(), CreateModel() and CreateModelFromTemplate Flags
OpenModel, CreateModel and CreateModelFromTemplate functions use the following
global constants:

Constant Use
Omf_Default Default behavior for OpenModel/CreateModel
Omf_DontOpenView Does not open default diagram view for OpenModel/CreateModel/

CreateModelFromTemplate

Omf_QueryType For CreateModel ONLY: Forces querying initial diagram type
Omf_NewFileLock For CreateModel ONLY: Creates and locks corresponding file
Omf_Hidden Does not let the model appear in the workspace for OpenModel/Cre-

ateModel/CreateModelFromTemplate

Command Execution Modes
Command execution modes use the following global constants:

Constant Use
cmd _ShellExec Default behavior: lets MS-Windows shell execute the command
cmd _PipeOutput Redirects the command output to the General tab of PowerDesigner

Output window

cmd _PipeResult Captures the whole command output to the returned string

cmd_InternalScript Indicates that the first parameter of the Execute Command isa VVBScript
file to be executed as an internal script rather than letting the system run
the application associated with the file type

Example:

'Create a new nodel and print its name in output w ndow

Cr eat eMbdel (PDOOm cl s_Mbdel , " C:\ Tenp\ Test . oonj Language=Java]|
Di agr anrSequenceDi agr ant')

Qut put Acti veModel . name

Global Constants
The following global constants are available:

Global constants Use
\ersion As String Returns the application version string
HomeDirectory As String Returns the application home directory string

Customizing and Extending PowerDesigner 333

Global constants Use

RegistryHome As String Returns the application registry home path string

cls_... As Long Identifies the class of an object. This value is used when you need to
specify an object kind in creation method for example. This value is
also used by IsKindOf method available on all PowerDesigner ob-
jects

Classes Ids Constants

Constants are unique within a model and are used to identify object classes in each library. All
classes Ids start with "cls_" followed by the public name of the object. For example
cls_Process identifies the Process object class using the public name of the object.

However, when dealing with several models, some constants may be common, for example
cls_Package.

To avoid confusion in code, you must prefix the constant name with the name of the module,
for example PdAOOM.cls_Package. Same, when you want to create amodel, you need to prefix
the cls_Model constant with the name of the module.

IsKindOf Method
You can use the IsKindOf (ByVal Kind As Long) As Boolean method together with a class
constant in order to check if an object inherits from a given class kind.

Example:

You can have a script with a loop that browses the Classifiers collection of an OOM and wants
to check the type of encountered objects (in this case interfaces or classes) in order to perform
different actions according to their type.

" Assumi ng the Activenpdel is an OOM nodel
For each c in Activenodel.C assifiers

If c.1sKindO (cls_d ass) then

Qutput "Cass " & c.nane

El slf c.lsKindO(cls_Interface) then

Qut put "Interface" & c.name

End If

Next

Example:

All the collections under a model can contain objects of a certain type but also shortcuts for
objects of the same type. You can have a script with a loop that browses the Tables collection of
a PDM and want to check the type of encountered objects (in this case tables or shortcuts) in
order to perform different actions according to their type.

For each t in Activenodel . Tabl es

If t.1sKindO(cls_Table) then
Cut put t.name

334

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

End If
Next

Libraries
Libraries are available for each type of model and for shared PowerDesigner features.

PdBPM - Business Process Model
PdCDM - Conceptual Data Model

PdCommon - contains all objects shared between two or more models, and the abstract
classes of the model. For example, business rules, which are available in all models, and
the BaseObject class, from which all model objects are derived, are defined in this
package. Other model packages are linked to PdCommon by generalization links
indicating that each model inherits common objects from the PdCommon package.

PAdEAM - Enterprise Architecture Model

PdFRM - Free Model

PdILM - Data Movement Model (the DMM was previously named Information Liquidity
Model or ILM, and the PdILM library name has been retained for backwards
compatibility)

PdLDM - Logical Data Model

PdMTM - Merise Model (available in French only)

PdOOM - Object Oriented Model

PdPDM - Physical Data Model

PdPRJ - Project

PdRMG - Repository

PdRQM - Requirements Model

PdXSM - XML Model

PdWSP - Workspace

For each library, you can browse a list of:

Abstract classes (located in the Abstract Classes expanded node). They are general classes
that are used to factorize attributes and behaviors. They are not visible in PowerDesigner.
Instantiable classes inherit from abstract classes

Instantiable classes (located directly at the root of each library node). They are specific
classes that correspond to interface objects, they have proper attributes like name or code,
and they also inherit attributes and behaviors from abstract classes via generalization links.
For example, NamedObiject is the common class for most PowerDesigner design objects,
it stores standard attributes like name, code, comment, annotation, and description

For more information on PowerDesigner libraries, see Chapter 1, Working with
PowerDesigner Resource Files on page 1.

Customizing and Extending PowerDesigner 335

Using the Metamodel Objects Help File

PowerDesigner provides a compiled HTML help file that you can open from the Help >
Metamodel Objects Help command or from the Edit/Run Script editor dialog box. This
reference guide is intended to help you get familiar with the PowerDesigner objects

properties, collections and methods that you can use in scripting.

The Metamodel Objects Help file is composed of two distinct parts: the node tree view
displayed on the left hand side to navigate through the objects hierarchy and their

corresponding description displayed to the right of the tree view:

E? HTHL Help
=
Hide Back Print Options

- (O] x]

Contents | Index I §ealch|

|

= 23 Sybase PowerDesigner Scripting (¢« |

[_7) Basic Elements
[E 3 Libraries
(L7 PdCamman
[Pawwsp
([PdrMG
[PaPDM
(L] PoEFM
=] 3 PdCDM
[Ahbstract Classes

iation

El AzzociationLink

El AzzociationSymbal
El CheckCantroller

El ConceptualDiagram
El Dataltem

El Damain

[£] Entity

ssocistiondttribute

El AzzociationLinkSymbol

i

Association:
Association

(Library: EACDID

BaseObiect
TdentifedCObiect

Extensible Obiect

MNamedObiect
DataStructure

Agsoniation

Description:

An association 13 a connechon
hetween entties Tn the Tv{ﬁﬁ's:ﬁ

1]

il

You can expand the following nodes from the tree view:

336

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Nodes What you can find...

Basic Elements General information on:

« Read-only, ordered, and unordered collections (see Collections on page
325)

e Structured Types (points, rectangles, lists of points)

« Global properties (see Global Properties on page 328), constants (see
Global Constants on page 333), and functions (see Global functions on

page 331)
Libraries Librairies for common features and for each model (see Libraries on page
335)
Appendix Hierarchical representation of the PowerDesigner metamodel

List of constants used to identify objects of each library

The scripting objects provided by PowerDesigner correspond to the design objects (tables,
entities, classes, processes etc.) that appear in the user interface.

For each PowerDesigner object you can browse a list of:

» Properties (Example: Name, Data Type, Transport)
« Read-only, ordered, and unordered collections (Example: Symbols, Columns of a table)
* Methods (Example: Delete (), UpadateNamingOpts())

Using the Edit/Run Script Editor

The Edit/Run Script editor runs in the PowerDesigner environment and provides access to the
scripting environment. You open it from the Tools> Execute Commandsmenu. Itis available
whatever the type of the active model and also when no model is active.

You can see the date and time when the script begins and ends in the Script tab of the Output
window located in the lower part of the PowerDesigner main window, if you have used the
Output global function.

The Edit/Run Script editor looks like the following:

Customizing and Extending PowerDesigner 337

+ Edit/Run Script - read_models. vbs =] E3
H-F-SHIAR| 4 @B X 90| p| @ Lnilca

Option Explicit
ValidationMode = True
Interactivelode = im Batch
' get the current active model
Iim mdl ' the current model
Get mdl = Actiwelodel
If (mdl Is Nothing) Then

MsgBox "There is no Actiwve Model™
Elze

ListObjects (mdl)
End If

' 3ub procedure to scan current package and print information on objec
'"and call again the same sub procedure on all children pacakge
' of the current package

Private 3ub ListObjects(fldr)
output "Scanning T os £ldr.code _ILI
iI I i S : i 3

Bun Cloze | Help |

The following tools and keyboard shortcuts are specific to the Edit/Run Script editor toolbar:

Tool Description Keyboard shortcut

2 - Editor Menu Note: When you use the Find feature, the | Shift+F11
parameter "Regular Expression™ allows the use of wild-
cards in the search expression.

EE Edit With. Opens the previously defined default editor or | Ctrl+E
allows you to select another editor if you click the down
arrow beside this tool
ﬂ Run. Executes the current script F5
ﬂ Metamodel Objects Help provided to allow you to find | Ctrl+F1

out which properties and methods can be used to drill

down to a PowerDesigner object

For more information on defining a default editor, see Core Features Guide > The

PowerDesigner Interface > Customizing Your Modeling Environment > General Options >
Specifying Text Editors.

338

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Script Bookmarks
In the Edit/Run Script editor window, you can add and remove bookmarks at specific points in
the code and then navigate forwards or backwards from bookmark to bookmark:

Keyboard Description

shortcut

Ctrl+F2 Adds a new bookmark. A blue bookmark box is displayed. If you repeat this
action from the same position, the bookmark is deleted and the blue marker
disappears

F2 Jumps to bookmark

Shift+F2 Jumps to previous bookmark

Visual Basic

If you have Visual Basic (VB) installed on your machine, you can use the VB interface for
your script writing in order to have access to the VB IntelliSense feature that checks all the
standard methods and properties that you invoke and suggests the valid alternatives ones that
you can choose in order to correct the code. However the PowerDesigner Edit/Run Script
editor automatically recognizes VVBScript keywords.

The Edit/Run Script editor lets you:

Create a script
Modify a script
Save a script
Run a script

Use a sample script

Creating a VBScript File

The Edit/Run Script dialog box lets you create a VBScript file.

1. Select Tools > Execute Commands > Edit/Run Script to display the Edit/Run Script

dialog box.

2. Type the script instructions directly in the script editor window.

Customizing and Extending PowerDesigner 339

+ Edit/Run Script - read_models. vbs =] E3
e - dIR|p aBX 20 p| @ Lnlci

Option Explicit
ValidationMode = True
Interactivelode = im Batch
' get the current active model
Iim mdl ' the current model
Get mdl = Actiwelodel
If (mdl Is Nothing) Then

MsgBox "There is no Actiwve Model™
Elze

ListObjects (mdl)
End If

' 3ub procedure to scan current package and print information on objec
'"and call again the same sub procedure on all children pacakge
' of the current package

Private 3ub ListObjects(fldr)
output "Scanning T os £ldr.code _ILI
iI I i S : i 3

Bun Cloze | Help |

The script syntax is displayed as in Visual Basic.

For more information on VB syntax, see the Microsoft Visual Basic documentation

Modifying a VBScript File
The Edit/Run Script dialog box lets you edit a VBScript file.

1. Open the Edit/Run Script editor.
2. Click the Open tool.

A standard dialog box opens.
3. Select a VBScript file (.VBS) and click Open.

The VBScript file opens in the Edit/Run Script editor window. You can then modify it.

Note: You can insert a script file in a current script using the Insert command in the Editor
Menu. The script will be inserted at the cursor position.

Saving a VBScript File
It is strongly recommended to save your model and your script file before executing it.

1. Open the Edit/Run Script editor.

340 PowerDesigner

CHAPTER 7: Scripting PowerDesigner

2. Type the script instructions directly in the script editor window.
3. Click the Editor Menu tool and select Save from the list.

or
Click the Save tool.

A standard dialog box opens if your VBScript file has never been saved before.
4. Browse to the directory where you want to save the script file.
5. Type a name for the script file and click Save.

Running a VBScript File

You can run a VVBScript file from PowerDesigner.
Open a script and click the Run tool or the Run button.

The script is executed and the Output window located in the lower part of the PowerDesigner
main window shows the execution progress if you have used the Output global function that
lets you display execution progress and errors in the Script tab.

If a compilation error occurs, a message box is displayed to inform you of the kind of error. A
brief description error also is displayed in the Result pane of the Edit/Run Script dialog box
and the cursor is set at the error position.

The Edit/Run Script editor supports multiple levels of Undo and Redo commands. However, if
you run a script that modifies objects in several models, you must use the Undo or Redo
commands in each of the models called by the script.

Note: In order to avoid application abortions, you can catch errors using the On Error Resume
Next statement. But you cannot catch errors with this statement when you use the im_Abort
interactive mode.

You can also insert and customize commands in the Tools menu that will allow you to
automatically launch your own scripts.

For more information on customizing commands, see Customizing PowerDesigner Menus
Using Add-Ins on page 386.

Using VBScript File Samples

PowerDesigner ships with a set of script samples, that you can use as a basis to create your own
scripts. They are located in the VB Scripts folder of the PowerDesigner installation directory.

These scripts are intended to show you a range of the type of actions you can do over
PowerDesigner objects using VBScript and also to help you in the code writing of your own
scripts as you can easily copy/paste some code pieces from the sample into your script.

It is always recommended to make a backup copy of the sample file for it to remain intact.

Customizing and Extending PowerDesigner 341

Model Scan Sample

The following example illustrates a script with a loop that browses a model and its sub-
packages to display objects information:

' Scan CDM Model and di splay objects information

' going down each package

Option Explicit

Val i dati onMode = True

InteractiveMbde = i m Batch
' get the current active nodel
Dmndl ' the current nodel

Set mdl = ActivelMbdel
If (mdl Is Nothing) Then
MsgBox "There is no Active Model "
El se
Dim fldr
Set Fldr = ActiveDi agram Par ent
Li st Obj ects(fldr)
End |f
' Sub procedure to scan current package and print information on
objects fromcurrent package
' and call again the sane sub procedure on all children package
of the current package
Private Sub ListCbjects(fldr)
out put "Scanning " & fldr.code
Di m obj ' running object
For Each obj In fldr.children
" Calling sub procedure to print out information on the object
Descri behj ect obj
Next
' go into the sub-packages
Dmf ' running folder
For Each f In fldr.Packages
"calling sub procedure to scan children package
Li st Obj ects f
Next
End Sub
' Sub procedure to print information on current object in output
Private Sub Descri beObj ect (Current Cbj ect)
if Current Qbj ect.Cl assNane ="Association-C ass |ink" then exit sub
" out put "Found "+Current Obj ect. d assNane
out put "Found "+Current Obj ect. d assNane+" """+Current Obj ect. Nane
+""", Created by "+Current Cbject.Creator+" On
"+Cstr(Current Qbj ect. CreationDat e)
End Sub

Model Creation Sample

The following example illustrates a script that creates a new OOM model:
Option Explicit

" Initialization

' Set interactive node to Batch

InteractiveMbde = i m Batch

342 PowerDesigner

CHAPTER 7: Scripting PowerDesigner

" Main function
' Create an OOM nodel with a class di agram

Di m Model

Set nodel = CreateMdel (PdOOM cl s_Mdel, "|Di agram=Cl assDi agr ant)
nodel . Nanme = "Custoner Managenent"

nmodel . Code = " Cust oner Managenent "

Get the class di agram

Di m di agram

Set di agram = nodel . O assDi agrans. | t en{0)
' Create cl asses

Creat eCl asses nodel, di agram

' Create classes function

Function CreateC asses(nodel, diagram

' Create a class

Dimcls

Set cls = nodel . Creat ebj ect (PdOOM cl s_Cl ass)

cls. Name = "Custoner"

cls. Code = "Custoner"

cls. Comrent = "Custoner class”

cls. Stereotype = "Cl ass"

cls.Description = "The custoner class defines the attributes and

behavi ors of a custoner."

' Create attributes
CreateAttributes cls

' Create nethods
CreateQperations cls

' Create a synbol for the class
Di m sym

Set sym = di agram AttachObj ect(cl s)
Creat eCl asses = True

End Function

' Create attributes function
Function CreateAttributes(cls)

Dmattr

Set attr = cls.CreateObj ect(PAOOM cl s_Attri bute)
attr.Nane = "I D"

attr. Code = "I D"

attr.DataType = "int"

attr.Persistent = True

attr. PersistentCode = "ID'

attr. PersistentDataType = "I"
attr.Primaryldentifier = True

Set attr = cls.CreateObj ect(PAOOM cl s_Attri bute)
attr.Nane = "Nane"

attr.Code = "Nane"

attr.DataType = "String"

attr. Persistent = True

attr. Persistent Code = "NAME"

attr. PersistentDataType = "A30"

Set attr = cls.CreateObj ect (PdOOM cl s_Attri bute)
attr. Name = "Phone"

attr. Code = "Phone"

attr.DataType = "String"

attr. Persistent = True

attr. Persistent Code = " PHONE"

attr. Persistent DataType = "A20"

Customizing and Extending PowerDesigner 343

Set attr = cls.CreateOhj ect(PdOOM cls_Attri bute)
attr.Name = "Emai | "
attr. Code = "Email"
attr. DataType = "String"
attr.Persistent = True
attr. Persistent Code = "EMAIL"
attr. Persistent Dat aType = "A30"
CreateAttri butes = True
End Functi on
' Create operations function
Function CreateQperations(cls)
Di m oper
Set oper = cls.CreateOhject(PdOOM cl s_Operati on)
oper. Nane = "Get Nane"
oper. Code = "Get Nane"
oper. ReturnType = "String"
Di m body
body = "{" + vbCrLf
body = body + " return Name;" + vbCrLf
body = body + "}"
oper. Body = body
Set oper = cls.CreateObj ect(PdOOM cl s_Operati on)
oper. Nane = " Set Nanme"
oper. Code = " Set Nanme"
oper. ReturnType = "voi d"

Di m param
Set param = oper. Creat eCbj ect (PdOOM cl s_Par anet er)
param Nane = "newNane"

param Code = "newNange"
param Dat aType = "String"

body = "{" + vbCrLf
body = body + " Name = newNane;" + vbCrLf
body = body + "}"

oper. Body = body
Creat eQperations = True
End Function

The previous script gives the following result in the interface:

344

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Wiorkspace
EI%} Jstomer M anagement *

") ClagsDiagram_1

E@ Classes
E-B Customer
El@ Attributes Customer
= I < int
E Hame Mame : String
| Phone : String
S Ehmle Email : Sting —!
b mail
) GetMame () : String
El@ D perations SetName (String newhame) : woid =0 N
B GetMame
-8B SetMame
@8 Parameters
e B newMame
=8 Identifiers
e B Identifier_1
1] | +]
Local @ Flepositoryl
EI e
AlScript started on 29-10-01 at 16:23:13 j
Scripting terminated on 2971001 at 16:23:43. -
4| 4 ﬁ\Check tiodel }\Generatinn)\Reverse }\Ju Dl
Cuztarner Management dava 2

Basic Scripting Tasks

You can use scripts to create and open models, and to manipulate objects and symbols in
PowerDesigner.

Creating a Model by Script

You create amodel using the CreateModel (modelkind As Long, filename As String="", flags
As Long =omf_Default) As BaseObject global function together with the cls_Model constant
prefixed with the Module name to identify the type of model you want to create.

Note that additional arguments may be specified in the filename parameter depending on the
type of model (Language, DBMS, Copy, Diagram). The diagram argument uses the public
name, but the localized name (the one in the Target selection dialog box) is also accepted.
However, it is not recommended to use the localized name as your script will only work for the
localized version of PowerDesigner.

Customizing and Extending PowerDesigner 345

Example

Option Explicit

' Call the CreateMdel global function with the follow ng paraneters:
- The nmodel kind is an Object Oiented Mdel (PdOOM C s_Model)
- The Language is enforced to be Anal ysis
- The first diagramwi |l be a class diagram

' - The language definition (for Analysis) is copied inside the

nodel

- The first diagramw ||l not be opened in a w ndow

- The new created nodel will not appear in the workspace
Di m Newivbdel

set Newibdel = CreateMdel (PdOOM Cl s_Mdel, "Language=Anal ysi s|
Di agr am=Cl assDi agr an Copy", onf_Dont OpenVi ew O onf _H dden)
I f NewMbdel is Nothing then

nmsgbox "Fail to create UM Model ", vbOkOnly, "Error" ' Display an
error nmessage box

El se

out put "The UML nbdel has been successfully created" ' Display a

message in the application output w ndow
Initialize nodel name and code

NewMbdel . Nane = " Sanpl e Model "

NewMbdel . Code = " Sanpl e"
Save the new nodel in a file

Newibdel . Save "c:\tenmp\ MySanpl eMbdel . oont
Cl ose t he nodel

NewMbdel . C ose
Rel ease | ast reference to the nodel object to free nmenory

Set Newibdel = Not hi ng

End |f

Opening a Model by Script
You open a model using the OpenMaodel (filename As String, flags As Long =omf_Default)
As BaseObject global function.

Example

Option Explicit

Call the OpenMbdel global function with the follow ng paraneters:
- The nodel file nane

- The default diagramw || not be opened in a w ndow

- The opened nmodel will not appear in the workspace

Di m Exi sti nghModel , Fi |l eName

Fil eNane = "c:\tenp\ MySanpl eMbdel . oont'

On Error Resune Next ' Avoi d generic scripting error nessage |like
"Invalid File Nane

Set Exi stingMbdel = OpenModel (Fil eNane, onf_Dont OpenVi ew O

onf _Hi dden)

On Error Goto O ' Restore runtinme error detection

I f ExistingModdel is nothing then

nsgbox "Fail to open UML Model :" + vbCrLf + Fil eNanme, vbCkOnly,
"Error" ' Display an error nessage box

El se

346 PowerDesigner

CHAPTER 7: Scripting PowerDesigner

out put "The UML nbdel has been successfully opened" ' Display a
message in the application output w ndow
End If

Creating an Object by Script
It is recommended to create an object directly from the collection to which it belongs in order
to directly obtain a valid state for the object. When you do so, you only create the object but not
its graphical symbol.

You can also use the following method: CreateObject(ByVal Kind As Long, ByVal ParentCol
As String =", ByVal Pos As Long = -1, ByVal Init As Boolean = -1) As BaseObject

Creating an Object in a Model

I f not ExistingMbdel is Nothing Then

" Call the CreateNew() nethod on the collection that owns the object
Dim Myd ass
Set Myd ass = Exi stingMdel . Cl asses. Creat eNew()
If MyCass is nothing Then

msgbox "Fail to create a class", vbGkOnly, "Error” ' Display an
error nessage box

El se

out put "The cl ass objects has been successfully created” ' Display

a nessage in the application output w ndow
Initialize its nane and code using a specific nethod
' that ensures nam ng conventions (Uppercase or |owercase
constraints,
invalid characters...) are respected and that the nane and code
are uni que inside the nodel
Myd ass. Set NaneAndCode "Custoner", "cust"
Initialize other properties directly
MyCdl ass. Conment = "Created by script"”
MyCl ass. Stereotype = "M/St er eot ype"
Myd ass. Final = true
Create an attribute inside the class
Dim M/Attr
Set MyAttr = Myd ass. Attributes. Creat eNew()
If not MyAttr is nothing Then
output "The class attribute has been successfully created"
M/At t r. Set NameAndCode " Nane", "custName"
M/Attr. Dat aType = "String"
Set MyAttr = Nothing
End |f
Reset the variable in order to avoid nmenory | eaks
Set MyCl ass = Not hi ng
End |f
End |f

Creating an Object in a Package

I f not ExistingWbdel is Nothing Then
Create a package first
Di m MyPckg
Set MyPckg = Exi stingMbdel . Packages. Creat eNew()

Customizing and Extending PowerDesigner 347

If not MyPckg is Nothing then
out put "The package has been successfully created"

MyPckg. Set NameAndCode "All interfaces", "intf"
Create an interface object inside the package
Dim Myl nt f

Set MyIntf = MyPckg. I nterfaces. Creat eNew)
If not MylIntf is Nothing then
out put "The interface object has been successfully created inside
t he package"
M/l nt f. Set NamneAndCode "Custoner Interface", "custlintf"
Set MyIntf = Nothing
End |f
Set MyPckg = Not hi ng
End |f
End |f

Creating a Symbol by Script

You create the associated symbol of an object by attaching it to the active diagram using the
following method: AttachObject(ByVal Obj As BaseObject) As BaseObject.

Example
set symbol 1 = ActiveDi agram AttachObj ect(entityl)

Note: The AttachObject method can also be used to create a graphical synonym or a shortcut.
For more information, see sections on graphical synonym and shortcut creation.

Displaying an Object Symbol by Script

You can display objects symbol in a diagram using the following methods:

« AttachObject(ByVal Obj As BaseObject) As BaseObject to create a symbol for a non-link
object

« AttachLinkObject(ByVal Link As BaseObject, ByVal Sym1 As BaseObject = NULL,
ByVal Sym2 As BaseObject = NULL) As BaseObject to create a symbol for a link object

« AttachAllObjects() As Boolean to create a symbol for each object in package which can be
displayed in current diagram

Example

If not ExistingMddel |Is Nothing and not MyRealization Is Nothing Then
Synbol s are specific kind of objects that can be nani pul ated by
script
We are now going to display the class, interface and realization
in the
mai n di agram of the nodel and custom ze their presentation
Retrieve main di agram
Di m MyDi ag
Set MyDi ag = Exi sti ngMbdel . Def aul t Di agr am
If not MyDiag is Nothing and
M/Di ag. | sKi ndOF (PdOOM Cl s_Cl assDi agram Then
Di splay the class, interface shortcut and realization link in the
di agram

348

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

usi ng default positions and display preferences
Dim MyCd assSym M/IntfSym MR zsSym
Set MyCl assSym = MyDi ag. Att achObj ect (FoundCl ass)
Set Myl ntfSym M/Di ag. Att achQbj ect (I nt f Shet)
Set MyRl zsSym MyDi ag. At t achLi nkObj ect (MyReal i zat i on,

MyCd assSym Myl ntf Sym
If not MRl zsSymis Not hing Then

out put "Cbj ects have been successfully displayed in diagrant

End |If

' Another way to do the same is the use of AttachAl |l Objects()

nmet hod:
M/Di ag. Att achAl | Cbj ect s
Changes cl ass synbol format
If not My assSymis nothing Then

MyCl assSym BrushStyle = 1 ' Solid background (no gradient)
RGB(255, 126, 126) ' Red background col or
RGB(0, 0, 0) ' Black line color

MyCl assSym Fi | | Col or
MyCl assSym Li neCol or
MyCl assSym Li neW dt h
Di m Font s

2 ' Double line width

Fonts = "CO assStereotype " + CStr(RGB(50, 50, 126)) + "

Arial,8, 1"

Fonts = Fonts + vbCrLf + "DI SPNAME " + CStr(RGB(50, 50, 50)) + "

Arial, 12, B"

Fonts = Fonts + vbCrLf + "Cl assAttribute " + CStr(RGB(150, 0, 0)) +
" Arial, 8, N

MyC assSym Font Li st = Fonts ' Change font |i st

End |f

Changes interface synbol position
If not MyIntfSymis nothing Then
Di m I nt f Pos
Set IntfPos = MylntfSym Position
If not IntfPos is Nothing Then
IntfPos.x = IntfPos.x + 5000
IntfPos.y = IntfPos.y + 5000
M/l nt f Sym Posi tion = I ntfPos
Set IntfPos = Nothing
End |f
End |f
' Changes the |ink symbol corners
If not MRl zsSymis Not hing Then
Dim CornerList, Pointl, Point2
Set CornerlList = MyR zsSym Li st O Poi nt's
Set Pointl = CornerlList.lten{0)
Set Point2 = CornerList.lten(1)

CornerlList.lnsertPoint 1, Max(Pointl.x, Point2.x), Mn(Pointl.y,

Poi nt 2. y)
Set CornerList = Nothing

Max and M n are functions defined at end of this script

End |If
Rel ease the vari abl es

Set MyDi ag = Not hi ng

Set MyCl assSym = Not hi ng
Set Myl ntfSym = Not hi ng
Set MyRI zsSym = Not hi ng
End |f

End If

Customizing and Extending PowerDesigner

349

Positioning a Symbol next to Another by Script
You position a symbol next to another using the X and Y (respectively Abscissa and Ordinate)
points, together with a combination of method (Position As Apoint) and function
(NewPoint(X As Long =0, Y As Long = 0) As Apoint)).

Example
Di m di ag
Set diag = ActiveD agram
Di m synil, syn®
Set synml = di ag. Synbol s. |t en{0)
Set syn? = di ag. Synbol s. Iten(1)
X1 = syml. Position. X
Y1l = syml. Position.Y
Move synbols next to each other using a fixed arbitrary space
synR. Posi ti on = NewPoi nt (X1+5000, Y1)
Move synbols for themto be adjacent
syn2. Posi ti on = NewPoi nt (X1 + (synil. Si ze. X+syn2. Si ze. X)/ 2, Y1)

Deleting an Object by Script
You delete an object from a model using the Delete As Boolean method.

Example

I f not ExistingMbdel is Nothing Then
' Create another class first
Di m MyCl assToDel ete
Set Myd assToDel et e = Exi sti ngMdel . Packages. Cr eat eNew()
If not MyCl assToDel ete is Nothing then
out put "The second class has been successfully created"
Just call Delete method to del ete the object
This will renove the object fromthe collection of nodel classes
MyCl assToDel et e. Del ete

' The object is still alive but it has notified all other
objects of its deletion. It is no nore associated with other
obj ect s.

Its status is deleted
I f MyCl assToDel ete. | sDel eted() Then
out put "The second class has been successfully del eted”
End |f
The reset of the VbScript variable will release the | ast
' reference to this object abd provoke the physical destruction
and free the nenory
Set MyCl assToDel ete = Not hi ng
End |f
End |f

350 PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Retrieving an Object by Script
The following example illustrates how you can retrieve an object by its code in the model

Example

Call a function that is inplemented just after in the script
Di m Foundl ntf, Foundd ass
Set Foundintf = RetrieveByCode(Exi stingModel, PDOOM C s_Interface,
"custintf")
Set FoundC ass = Retri eveByCode(Exi sti ngMbdel , PDOOM Cl s_d ass,
"cust")
If (not Foundlntf is nothing) and (not FoundC ass is Nothing) Then
output "The class and interface objects have been successfully
retrieved by their code”
End |f
" Inmplenment a nmethod that retrieve an object by code
The first paraneter is the root fol der on which the research begins
The second paraneter is the kind of object we are | ooking for
The third paraneter is the code of the object we are | ooking for
Function RetrieveByCode(Root Obj ect, ObjectKi nd, CodeVal ue)
Test root paraneter
I f Root Gbj ect is nothing Then

Exit Function ' Root object is not defined
End |f

| f Root Object.IsShortcut() Then

Exit Function ' Root object is a shortcut
End If

I f not Root Object.|sKindO (O s_BaseFol der) Then
Exit Function ' Root object is not a folder
End |f

Loop on all objects in folder
Di m SubObj ect
For Each SubCbj ect in Root Qbject. Children
I f SubQbject.|sKindO (Obj ect Kind) and SubObj ect. Code = CodeVal ue
Then
Set RetrieveByCode = SubObj ect " Initialize return val ue
Set SubObj ect = Not hi ng
Exit Function
End I f
Next
Set SubObj ect = Not hi ng
Recursive call on sub-fol ders
Di m SubFol der
For Each SubFol der in Root Obj ect. ConpositeQhjects
I f not SubFol der.lsShortcut() Then
Di m Found
Set Found = RetrieveByCode(SubFol der, ObjectKind, CodeVal ue)
If not Found |Is Nothing Then
Set RetrieveByCode = Found " Initialize return paraneter
Set Found = Not hi ng
Set SubFol der = Not hi ng
Exit Function
End |f

Customizing and Extending PowerDesigner 351

End |f

Next

Set SubFol der = Not hi ng
End Function

Creating a Shortcut by Script

You create ashortcut ina model using the CreateShortcut(ByVal NewPackage As BaseObiject,
ByVal ParentCol As String = ") As BaseObject method.

Example

W want to reuse at the nodel |evel the interface defined in the
package
' To do that, we need to create a shortcut of the interface at the
nmodel | evel
Di m | nt f Shet
If not Foundlintf is Nothing and not ExistingMdel |Is Nothing Then
' Call the CreateShortcut() method and specify the nodel

for the package where we want to create the shortcut
Set IntfShct = Foundlntf.CreateShortcut (Exi stingMdel)
If not IntfShct is nothing then

output "The interface shortcut has been successfully created"
End |f
End |If

Creating a Link Object by Script

You create a link object using the CreateNew(kind As Long = 0) As BaseObject method, then
you have to declare its ends.

Example

Di m MyReal i zat i on
If (not ExistingWbdel I's Nothing) and (not FoundC ass |Is Not hing) and
(not IntfShct is Nothing) Then

' W are nowgoing to create a realization |ink between the class and
the interface

The link is an object like others with two mandatory attri butes:

hjectl and Object?2

' For oriented links, Objectl is the source and Cbject2 is the
destination

Set MyReal i zation = ExistingWbdel . Real i zati ons. Cr eat eNew()

If not MyRealization is Nothing then

out put "The realization |ink has been successfully created"

Initialize both extremties

Set MyReal i zati on. Cbj ect1l = Foundd ass

Set MyReal i zati on. Object2 = | ntf Shct

" Initialize Name and Code

M/Real i zat i on. Set NameAndCode "Realize Main interface", "Min"

End If
End |f

352 PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Browsing a Collection by Script

All collections can be iterated through the usual "For Each variable In collection™
construction.

This loop starts with "For each <variable> in <collection>" and ends with "Next".

The loop is iterated on each object of the collection. The object is available in <variable>.

Example

'"How to browse the collection of tables available on a nodel

Set MyModel = ActiveMbdel

"Assumi ng MyMbdel is a variable containing a PDM obj ect.

For each T in M/Model . Tabl es

"Variable T now contains a table from Tabl es coll ecti on of the nodel
Qut put T. nanme

Next

Manipulating Objects in a Collection by Script

In the following example, we are going to manipulate objects in collections by creating
business rule objects and attaching them to a class object. To do so, we :

« Create the business rule objects

« Initialize their attributes

« Retrieve the first object in the class attributes collection

« Add the created rules at the beginning and at the end of the attached rules collection
* Move arule at the end of the the attached rules collection

« Remove a rule from the attached rules collection

Example
If (not ExistingMddel |Is Nothing) and (not FoundC ass |s Not hing)
Then

We are going to create business rule objects and attached themto
the cl ass

Create first the business rule objects
D m Rul el, Rule2
Set Rul el = Exi stingMdel . Busi nessRul es. Creat eNew()
Set Rul e2 = Exi stingMWbdel . Busi nessRul es. Cr eat eNew()
If (not Rulel is Nothing) And (not Rule2 |Is Nothing) Then
out put "Busi ness Rul e objects have been successfully created"
Initialize rule attributes
Rul el. Set NameAndCode " Mandatory Nanme", "nmandatoryNane"
Rul el. Server Expression = "The Nane attribute cannot be enpty"
Rul e2. Set NameAndCode " Uni que Nane", "uni queNane"
Rul e2. Server Expressi on = "The Nane attri bute nust be uni que"
' Retrieve the first object in the class attributes collection
DmFirstAttr, AttrColl
Set AttrColl = Foundd ass. Attributes
If not AttrColl is Nothing Then
If not AttrColl.Count = 0 then

Customizing and Extending PowerDesigner 353

Set FirstAttr = AttrColl.ltem0)

End |f
End |f
Set AttrColl = Nothing

If not FirstAttr is Nothing Then
output "First class attribute successfully retrieved from
col |l ection"
' Add Rulel at end of attached rules collection
FirstAttr. AttachedRul es. Add Rul el
' Add Rule2 at the beginning of attached rules collection
FirstAttr. AttachedRul es. I nsert 0, Rul e2
' Move Rule2 at end of collection
FirstAttr. AttachedRul es. Move 1, 0
' Renove Rulel fromcollection
FirstAttr. Att achedRul es. RenbveAt 0
Set FirstAttr = Nothing
End |If
End |f
Set Rul el = Not hi ng
Set Rul e2 = Not hi ng
End If

Extending the Metamodel by Script

When you import a file using scripts, you can import as extended attributes or extended
collections some properties that may not correspond to standard attributes.

In the following example, we:

» Create a new extension file

 Initialize model extension attributes

» Define a new stereotype for the Class metaclass in the profile section
« Define an extended attribute for this stereotype

Example

I f not ExistingMbdel Is Nothing Then
' Creating a new extension
Di m Model Ext ensi on
Set Model Ext ensi on =
Exi sti ngMbdel . Ext endedModel Defi niti ons. Creat eNew()
If not Mddel Extension is Nothing Then
out put "Mbdel extension successfully created in nodel"
" Initialize nbdel extension attributes
Model Ext ensi on. Nane = "Extension for Inport of XXX files”
Model Ext ensi on. Code = "i npor t XXX"
Model Ext ensi on. Fami |y = "Il nport"
' Defines a new Stereotype for the Class netaclass in the profile
section
Dim MySttp
Set MySttp = Mddel Ext ensi on. AddMet aExt ensi on(PdOOM Cl s_d ass,
Cls_StereotypeTargetltem
If not MySttp Is Nothing Then
out put "Stereotype extension successfully created in extension"
MyStt p. Nane = "M/ St ereot ype"

354

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

MySttp. UseAsMet aCl ass = true ' The stereotype will behave as a new
net acl ass (specific list and category in browser)
Defines an extended attribute for this stereotype
D m WyExa
Set MyExa =
MyStt p. AddMet aExt ensi on(O s_Ext endedAttri buteTargetltem
If not MyExa is Nothing Then
out put "Extended Attribute successfully created in extension"
MyExa. Nane = "M/Attri bute"

MyExa. Conment = "custom attribute com ng frominport"
MyExa. Dat aType = 10 ' This corresponds to integer
MyExa. Value = "-1" ' This is the default val ue

Set MyExa = Not hi ng
End | f

Defines an extended collection for this stereotype
Di m MyExCol
Set MyExCol =

MyStt p. AddMet aExt ensi on(d s_Ext endedCol | ecti onTargetltem
If not MyExCol is Nothing Then
out put "Extended col | ection successfully created in extension”
MyExCol . Nane = "MCol | ecti on"
MyExCol . Conment = "custom col |l ection coning frominport"
M/ExCol . Dest i nati onCl assKind = PdOOM O s_class ' The coll ection
can store only cl asses
M/ExCol . Desti nati onstereotype = "MyStereotype"” ' The collection
can store only classes with stereotype "MStereotype"
Set MyExCol = Not hi ng

End |f

Set MySttp = Not hing

End |f

Set Mbdel Ext ensi on = Not hi ng
End |f
End |f

Manipulating Extended Properties by Script

You can dynamically get and set objects extended properties like attributes and collections
using scripts.

The syntax for identifying any object property is:

" <Tar get Code>. <Pr opert yNanme>"

For example, to get the extended attribute MyAttribute from the importXXX object, use:
Get Ext endedAttri bute("i nport XXX. MyAttri bute")

Note that if the script is inside a profile (for example, in a custom check script), you can use the
%CurrentTargetCode% variable instead of a hard-coded TargetCode, in order to improve the
portability of your script.

For example:
Get Ext endedAt t ri but e(" %Current Tar get Code% MyAttri bute")

In the following example we:

Customizing and Extending PowerDesigner 355

» Modify extended attribute on the class
« Modify extended collection on the class
« Add the class in its own extended collection to be used as a standard collection

Example
If (not ExistingMddel |Is Nothing) and (not FoundC ass |s Nothing)
Then
Modi fy extended attribute on the class
Di m ExaNane
ExaName = "inmport XXX. MyAttribute"” ' attribute name prefixed by

ext ensi on code
I f Foundd ass. HasExt endedAt tri but e(ExaName) Then
out put "Extended attribute can be accessed"
Foundd ass. Set Ext endedAttri but eText ExaNane, "1024"
Foundd ass. Set Ext endedAttri bute ExaNane, 2048
Di m val AsText, val Aslnt
val AsText = Foundd ass. Get Ext endedAt tri but eText (ExaNane)
val Asl nt = FoundCl ass. Get Ext endedAt tri but e(ExaNane)
End |f
Modi fy extended coll ection on the cl ass
Di m ExCol Nanme, ExCol
ExCol Nane = "i nmport XXX. MyCol | ection" ' collection nane prefixed by
ext ensi on code
Set ExCol = Foundd ass. Get Ext endedCol | ecti on(ExCol Nan®g)
If not ExCol is Nothing Then
out put "Extended col | ecti on can be accessed"
The extended coll ection can be used as a standard col |l ection
for exanple, we add the class in its own extended collection
ExCol . Add Foundd ass
Set ExCol = Not hi ng
End |f
End I f

Creating a Graphical Synonym by Script
You create a graphical synonym by attaching the same object twice to the same package.

Example

set diag = ActiveD agram
set pack = ActivePackage

set class = pack. cl asses. creat enew

set synbol 1 di ag. Att achQbj ect (cl ass)
set synbol 2 di ag. Att achQbj ect (cl ass)

Creating an Object Selection by Script

Obiject Selection is a model object that is very useful to select other model objects in order to
apply to them a specific treatment. You can for example add some objects to the Object

356 PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Selection to move them to another package in a unique operation instead of repeating the same
operation for each and every objects individually.

When dealing with a set of objects in the user interface, you use the Object Selection in
scripting.

» Create Object Selection

You create the Object Selection from a model using the CreateSelection method:
CreateSelection() As BaseObject.

Example
Set MySel = ActiveModel . CreateSel ection

e Add objects individually
You can add objects individually by adding the required object to the Objects collection.
You use the Object Selection following method: Add(obj As BaseObject)

Example
Adding of an object named Publisher:

MySel . Obj ect s. Add(Publ i sher)
« Add objects of a given type

You can add all objects of a given type by using the Object Selection following method:
AddObjects(ByVal RootPackage As BaseObject, ByVal ClassType As Long, ByVal
IncludeShortcuts As Boolean = 0, ByVal Recursive As Boolean = 0).

RootPackage is the package from which to add objects.
ClassType is the type of object to add.

IncludeShortcuts is the parameter to include shortcuts.
Recursive is the parameter to search in all the sub-packages.
Example

An adding of classes with no inclusion of shortcuts and no recursiveness into the sub-
packages:

MySel . AddObj ect s(f ol der, cl s_cl ass)

* Remove objects from the current selection

You can remove objects from the current selection using the Object Selection following
method: RemoveObjects(ByVal ClassType As Long, ByVal IncludeShortcuts As Boolean =
_1)

Example
Withdrawal of all classes and shortcuts from the Object Selection:

Customizing and Extending PowerDesigner 357

MySel . Renove(bj ect s(cl s_cl ass, -1)
« Move objects of the current selection to a destination package

You can move objects of the current selection to a destination package using the Object
Selection following method: MoveToPackage(ByVal TargetPackage As BaseObject)

Example
Move of objects of the selection to a destination package named Pack:

MySel . MoveToPackage Pack
» Copy objects of the current selection to a destination package

You can copy objects of the current selection to a destination package using the Object
Selection following method: CopyToPackage(ByVal TargetPackage As BaseObject)

Example
Copy of objects of the selection in a destination package named Pack:

MySel . CopyToPackage Pack
 Filter a selection list by stereotype

You can create an object selection and filter this selection using a stereotype. You have to use
the following method:

ShowObjectPicker(ByVal ClassNames As String ="', ByVal StereotypeFilter As String ="",
ByVal DialogCaption As String =", ByVal ShowEmpty As Boolean = True, ByVal InModel
As Boolean = True) As BaseObject

Example
Opens a selection dialog box for selecting a business transaction:

If Not Fldr is Nothing then
Create a sel ection object
Set Sel = Ml . CreateSel ection
If Not Sel is Nothing then
' Show t he obj ect picker dialog for selecting a BT
Set I npl = Sel.Show(bj ect Pi cker ("Process",
"Bi naryCol | aboration", "Select a Binary Col | aborati on Process")
Retrieve the selection
If not Inpl is Nothing Then
If Inpl.1sKindOf(PDBPM Cl s_Process) and | npl. Stereotype =
"Bi naryCol | abor ati on" then
Set Shct = I npl.CreateShortcut (Fldr)
I f not Shct is Nothing Then
obj . I npl enenter = Shct
Wnitialize%= True
End |f
End |f
End |f
End |f

358

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Creating an Extension by Script

Like any other PowerDesigner object, extensions can be read, created and modified using
scripting.

For detailed information about extensions, see Chapter 2, Extension Files on page 21.

The following script illustrates how you can accessan existing extension, browseit , createan
extended attribute within the definition and at last modify the extended attribute values. A
function is created to drill down the categories tree view that is displayed in the Extension
Properties dialog box.

Example

DmM

Set M = ActiveModel

'Retrieve first extension in the active nodel

Dim X

Set X = M Ext endedModel Definitions.|ten(0)

"Drill down the categories tree view using the searchObject function
(see below for details)

DimC

Set C = SearchObj ect (X Categories, "Settings")

Set C = SearchOnject (C. Categories, "Extended Attributes")
Set C = SearchOnj ect (C. Categories, "Cbjects")

Set C = SearchObj ect (C Categories, "Entity")

'Create extended attribute in the Entity category

Set A = C. Categories.CreateNew (cls_ExtendedAttributeTargetlten
"Define properties of the extended attribute

A. Dat aType = 10 'i nt eger

A Val ue = 10

A Nanme = "Z"

A. Code = "Z"

"Retrieve first entity in the active nodel
DimE

Set E = Mentities.|ltem0)
"Retrieve the values of the created extended attribute in a nessage
box
nsgbox E. Get Ext endedAttri bute("X Z")
' Changes the val ues of the extended attribute
E. Set Ext endedAttribute "X Z", 5
"Retrieve the nodified val ues of the extended attribute in a nessage
box
nsgbox E. Get Ext endedAttribute("X Z")
kkkkhkhkhkkhkkhkkhkhkhrkkkkhkhkhkkkk*k
"Detail SearchQbject function that allows you to browse a coll ection
fromits nane and the searched object
'* SUB Sear chObj ect
Functi on SearchObj ect (Coll, Name)
' For exanple Coll = Categories and Nane = Settings

Di m Found, Obj ect

For Each Qbject in Coll

If Object.Name = Nanme Then

Customizing and Extending PowerDesigner 359

Set Found = (bj ect

End |f
Next
Set SearchObj ect = Found
End Functi on

Mapping Objects by Script

You can use scripting to map objects from heterogeneous models.

You create or reuse a mapping for an object using the following method on the DataSource
object and on the ClassifierMap object: CreateMapping(ByVal Object As BaseObject) As
BaseObject.

Example

Given the following example where an OOM (oom1) contains a class (class_1) with two
attributes (attl and att2) and a PDM (pdm1) contains a table (table_1) with two columns (coll
and col2). To map the OOM class and attributes to the PDM table and columns, you have to do
the following:

» Create a data source in the OOM
set ds = oonll. dat asour ces. creat enew

* Add the PDM as source for the data source
ds. AddSour ce pdml

» Create a mapping for class_1 and set this mapping as the default for class_1 (current data
source being the default)

set mapl = ds. Creat eMappi ng(cl ass_1)

e Add table 1 as source for class_1

mapl. AddSource table_1

* Add a mapping for attl

set attmapl = mapl. Creat eMappi ng(attl)
» Set coll as source for attl

att mapl. AddSource col 1

* Add a mapping for att2
set attmap2 = mapl. Creat eMappi ng(att 2)
» Set col?2 as source for att2

att map. AddSour ce col 2

You can also get the mapping of an object using the following method on the DataSource
object and on the ClassifierMap object: GetMapping(ByVal Object As BaseObject) As
BaseObject.

360

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

» Get the mapping of class_1

Set mymap = ds. Get Mappi ng (cl ass_1)
« Get the mapping of attl

Set nymap = nmapl. Get Mappi ng (att1l)

For more information about objects mapping, see Core Features Guide > Linking and
Synchronizing Models > Object Mappings.

Manipulating Databases by Script

You can use scripts to manipulate databases in PowerDesigner.

Generating a Database by Script
When you need to generate a database using script, you may use the following methods:

« GenerateDatabase(ByVal ObjectSelection As BaseObject = Nothing)
» GenerateTestData(ByVal ObjectSelection As BaseObject = Nothing)

In the following example, you:

* Open an existing model.

» Generate a script for the model.

e Modify the model.

» Generate a modified database script.
» Generate a set of test data.

Opening an Existing Model

In the following example, we begin with opening an existing model (ASA 9) using the
following method: OpenModel (filename As String, flags As Long =omf_Default) As
BaseObiject.

Be sure to add a final backslash (\) to the generation directory.

Then we are going to generate a database script for the model, modify the model, generate a
modified data script, and generate a set of test data using respectively the following methods:

» GenerateDatabaseScripts pModel
* ModifyModel pModel

» GenerateAlterScripts pModel

» GenerateTestDataScript pModel

Example

Option Explicit
Const GenDir = "D:\tenp\test\"
Const Model file = "D:\tenp\phys. pdni

Customizing and Extending PowerDesigner 361

Dimfso : Set fso = Create(hject("Scripting. FileSystenhject")
Start
Sub Start ()
di m pMbdel : Set pMddel = OpenhMbdel (Model file)
If (pModel is Nothing) then
Qut put "Unabl e to open the nodel"
Exit Sub
End if
End Sub

Generating a Script for the Model
Then you generate a script for this model in the folder defined in the "GenDir" constant using
the following method: GenerateDatabase(ByVal ObjectSelection As BaseObject = Nothing).

As you would do in the generation database dialog box, you have to define the generation
directory and the sgl file name before starting the generation, see the following example.

Example

Sub CGener at eDat abaseScri pt s(pModel)
DimpOpts : Set pOpts = pMdel . Get PackageOpti ons()
Interacti veMbde = i mBatch ' Avoid displaying generate w ndow
set generation options using nodel package options
pOpt s. Gener at eODBC = Fal se ' Force sqgl script generation rather than
' ODBC
pOpt s. Gener ati onPat hName = GenDir ' Define generation directory
pOpts. GenerationScriptNane = "script.sql" ' Define sql file nane
pModel . Gener at eDat abase ' Launch the Generate Database feature
End Sub

Modifying the Model
After, you modify the model by adding a column to each table:

Example

Sub Mbdi f yModel (pModel)
di m pTabl e, pCaol
' Add a new columm in each table
For each pTabl e in pMdel . Tabl es
Set pCol = pTabl e. Col utms. Cr eat eNew()
pCol . Set NaneAndCode "az" & pTabl e. Nane, "AZ" & pTabl e. Code
pCol . Mandat ory = Fal se
Next
End Sub

Generating a Modified Database Script
Before generating the modified database script, you have to get package option and change
generation parameters, then you generate the modified database script accordingly.

For more information about the generation options, see section BasePhysicalPackageOptions
in the Metamodel Object Help file.

Example

362

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Sub CGenerateAlterScripts(pMdel)

DimpQOpts : Set pOpts = pMdel . Get PackageOpti ons()

InteractiveMbde = i mBatch ' Avoid displaying generate w ndow

set generation options using nodel package options

pOpt s. Gener at eODBC = Fal se ' Force sql script generation rather than
ODBC
pOpt s. Gener ati onPat hName = GenDir

pOpt s. Dat abaseSynchr oni zati onChoi ce = 0 ' force al ready saved apm as
source

pOpt s. Dat abaseSynchroni zati onArchive = GenDir & "nodel . apnt

pOpt s. Generati onScri pt Nane = "alter.sql"
pModel . Modi f yDat abase ' Launch the Mdify Dat abase feature
End Sub

Generating a Set of Test Data
Finally, you generate a set of test data:

Example

Sub Gener at eTest Dat aScri pt (pModel)

DimpOpts : Set pOpts = pMdel . Get PackageOpti ons()

Interacti veMbde = i mBatch ' Avoid displaying generate w ndow

set generation options using nodel package options

pOpt s. Test Dat aGener ati onByODBC = Fal se ' Force sqgl script generation
rat her than CDBC

pOpt s. Test Dat aGener at i onDel et ed dDat a = Fal se
pOpt s. Test Dat aGener at i onPat hName = GenDi r

pOpt s. Test Dat aGener ati onScri pt Nane = "Test.sql"
pModel . GenerateTest Data ' Launch the Generate Test Data feature
End Sub

Generating a Database Via a Live Connection by Script
You can generate a database via ODBC using script.

To do so, you first begin with connecting to the database using the ConnectToDatabase(ByVal
Dsn As String, ByVal User As String, ByVal Password As String) As Boolean method from
the model, then you set up the generation options and launch the generation feature.

For more information about the generation options, see section BasePhysicalPackageOptions
in the Metamodel Object Help file.
Example:

Const cnxDSN = "(ODBC: ASA 9.0 sanpl e"

Const cnxUSR = "dba"
Const cnxPWD = "sql "
Const GenDir = "C\temp\"

Const GenFile = "test.sql"
Const Model File = "C:\tenp\phys. pdni

set pMbdel = openModel (Mdel Fil e)

set pOpt s=pMbodel . Get PackageOpt i ons()

Customizing and Extending PowerDesigner 363

pModel . Connect ToDat abase cnxDSN, cnxUSR, cnhxPWD
pOpt s. Gener at eCDBC = true

pOpt s. Gener ati onPat hNane = GenDir
pOpt s. Gener ati onScri pt Nane = 'script.sqgl”
pMbdel . Gener at eDat abase

Generating a Database Using Setting and Selection

You can use settings and selections with scripting before starting the database generation
using respectively the following methods from the model: UseSettings(ByVal Function As
Long, ByVal Name As String = "") As Boolean and UseSelection(ByVal Function As Long,
ByVal Name As String = "") As Boolean.

Given the PDM sample (Project.PDM) in the PowerDesigner installation folder, which
contains two selections:

« "Organization" selection includes tables DIVISION, EMPLOYEE, MEMBER & TEAM.
« "Materials" selection includes tables COMPOSE, MATERIAL, PROJECT & USED.

The following example shows you how to

« Generate a first script of this model for the "Organization™ selection using first setting
(settingl)

» Generate a test data creation script for the tables contained in this selection.

« Generate a second script of this model for the "Materials" selection and a test data creation
script for the tables it contains using second setting (setting?2).

Example:

CGenerated sqgl scripts will be created in 'GenDir' directory
there nanes is the nane of the used selection with extension ".sqgl"
for DDL scripts
and extension "_td.sql" for DML scripts (for test data
generati ons).
Option Explicit

Const GenDir = "D:\tenmp\test\"
Const settingl "Tables & Views (w th perm ssions)"

Const setting2 "Triggers & Procedures (w th perm ssions)"
Start Eval uat eNanedPat h(" % EXAMPLES% pr oj ect . pdmi')

Sub Start (sModel Pat h)
on error resume next
di m pMbdel : Set pMddel = OpenMdel (shWbdel Pat h)
If (pMddel is Nothing) then
Qut put "Unable to open nodel " & sMbdel Path
Exit Sub
End if

Gener at eDat abaseScri pts pMdel, "Organization" settingl
Gener at eTest Dat aScri pt pMbdel, "Organi zation" settingl

364

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Gener at eDat abaseScri pts pMdel, "Material s" setting2
Gener at eTest Dat aScri pt pModel, "Material s" setting2
pMbdel . Cl ose
on error goto O

End Sub

Sub CGener at eDat abaseScri pt s(pMddel , sSel ecti onNane, sSetti ngNane)
DimpQOpts : Set pOpts = pMdel . Get PackageOpti ons()
Interacti veMode = imBatch ' Avoid displaying generate w ndow
set generation options using nodel package options
pOpt s. Gener at eODBC = Fal se ' Force sql script generation rather than
oDBC
pOpt s. Gener ati onPat hName = GenDir
pOpt s. Generati onScri pt Nane = sSel ecti onName & ".sql"
' Launch the Generate Database feature with sel ected objects
pModel . UseSel ecti on fct_Dat abaseGenerati on, sSel ecti onNane
pModel . UseSetting fct_Dat abaseCGenerati on, sSettingNane
pMbdel . Gener at eDat abase
End Sub

Sub Gener at eTest Dat aScri pt (pMdel , sSel ecti onNane)

DimpOpts : Set pOpts = pMdel . Get PackageOpti ons()

Interacti veMbde = i mBatch ' Avoid displaying generate w ndow

' set generation options using nodel package options

pOpt s. Test Dat aGener ati onByODBC = Fal se ' Force sqgl script generation
rat her than CDBC
pOpt s. Test Dat aGener at i onDel et ed dDat a = Fal se
pOpt s. Test Dat aGener at i onPat hNane = GenDi r
pOpt s. Test Dat aGener ati onScri pt Name = sSel ecti onNane & "_td.sql"
Launch the Generate Test Data feature for selected objects
pMbdel . UseSel ection fct_Test Dat aGener ati on, sSel ecti onNane
pModel . Gener at eTest Dat a
End Sub

Selection and Setting Creation
You can create a persistent selection that can be used in database generation by transforming a
selection into a persistent selection..

Example:

Option Explicit
Di m pActi veMbdel
Set pActiveModel = ActiveModel

Di m Sel ecti on, Prst Sel
Set Sel ection = pActiveMdel . createsel ection
Sel ecti on. AddActi veSel ecti onObj ect s

Set PrstSel = Sel ection. Creat ePersi stent Sel ecti onManager ("test")

Customizing and Extending PowerDesigner 365

Reverse Engineering a Database by Script

You reverse engineer a database using scripts using the ReverseDatabase(ByVal Diagram As
BaseObject = Nothing) method.

In the following example, the ODBC database is reversed into a new PDM.

The first lines of the script define the constants used:

e ¢cnxDSN is either the ODBC dsn string or the path to an ODBC file dsn.
e ¢cnxUSR is the ODBC connection user name.
e ¢cnxPWD is the ODBC connection password.

Example
option explicit

To use a user or system datasource, define constant with
" ODBC: <dat asour cenane>"
-> Const cnxDSN = "ODBC: ASA 9.0 sanpl e"
To use a datasource file, define constant with the full path to the
DSN file
' -> Const cnxDSN = "\\roneo\ publ i c\ DATABASES\ fil edsn
\ sybase_asa9_sanpl e. dsn"

use ODBC dat asource
Const cnxDSN = "ODBC:. ASA 9.0 sanpl e"

Const cnxUSR = "dba"
Const cnxPWD = "sqgl "
Const GenDir = "C:\temp\"

Const filenane = "D:\tenp\phys. pdnt

Call to main function with the newy created PDM
Thi s sanmpl e use an ASA9 dat abase
Start CreateMbdel (PdPDM cl s_Model , "| DBMS=Sybase AS Anywhere 9")

Sub Start (pModel)

If (pModel is Nothing) then

out put "Unable to create a physical nodel for sel ected DBVS'
Exit Sub

End If

Interacti veMode = i m Batch

Rever se dat abase phase
' First connect to the database wi th connection paraneters
pModel . Connect ToDat abase cnxDSN, cnxUSR, cnxPWD
' Get the reverse option of the nodel
Di m pOpt
Set pOpt = pMbodel . Get PackageOpti ons()

Force ODBC Reverse of all |isted objects
pOpt . Rever sedScri pt = Fal se
pOpt . Rever seAl | Tabl es = true

366

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

pOpt . ReverseAl | Views = true
pOpt . ReverseAl | Storage = true
pOpt . Rever seAl | Tabl espace = true
pOpt . Rever seAl | Domain = true
pOpt . ReverseAl | User = true
pOpt . Rever seAl | Procedures = true
pOpt . ReverseAl |l Tri ggers = true
pOpt . Rever seAl | Syst enfTabl es = true
pOpt . Rever seAl | Synonyns = true

' CGo !
pMbdel . Rever seDat abase
pModel . save(fil enamne)
cl ose nodel at the end
pModel . Cl ose fal se

End Sub

Manipulating the Repository By Script

PowerDesigner lets you access the Repository feature via scripting using the
RepositoryConnection as BaseObject global property.

Itallows you to retrieve the current repository connection, which is the object that manages the

connection to the repository server and provides access to documents and objects stored under
the repository.

The RepositoryConnection is equivalent to the root node in the Repository browser.

You can access the repository documents, but you cannot access the repository administration
objects, like users, groups, configurations, branches, and list of locks.

In addition, only the last version of a repository document is accessible using scripting.

Connecting to a Repository Database

Before you connect to the repository database using scripting, definitions of repositories must

exist on your workstation, as you cannot define a new repository definition via the scripting
feature.

To retrieve the current repository connection.

Use the following Description

RepositoryConnection As Base- | Global property which manages the connection to the repository
Object database

7o connect to a repository database.

Customizing and Extending PowerDesigner 367

Use the following Description

Open (ByVal RepDef As String =", ByVal User | Method on RepositoryConnection that allows
As String =", ByVal Pass As String ="", ByVal | you to perform a repository connection
DBUser As String ="", ByVal DBPass As String =
"") As Boolean

To disconnect from the repository:

Use the following Description

Close() Method on RepositoryConnection that allows you to disconnect from
the repository database

You can connect to the Repository database using the following method on
RepositoryConnection: Open(ByVal RepDef As String =", ByVal User As String =",
ByVal Pass As String =", ByVal DBUser As String =", ByVal DBPass As String = ") As

Boolean.

Example

DimC

Set C = RepositoryConnection
C. Open

You disconnect from the repository database using the following method: Close().

Example
C. d ose

Accessing a Repository Document
You can drill down to the repository documents located in the Repository root using the
ChildObjects collection (containing both documents and folders) and any subfolders.

To browse for a document:

Use the following Description

ChildObjects As ObjectCol Collection on StoredObject which manages the access to the
repository documents

To update a document version:

Use the following Description

Refresh() Method on RepositoryConnection which lets you visualize new docu-
ments, update versions of existing documents, or hide deleted ones

To find a document:

368 PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Use the following Description

FindInRepository() As Base- | Method on BaseModel that allows you to check if a model has
Object already been consolidated

The repository documents are the following:

Repository document Description

RepositoryModel Contains any type of PowerDesigner model

RepositoryReport Contains consolidated multi-model reports

RepositoryDocument Contains non-PowerDesigner files (text, Word, or Excel)

OtherRepositoryDocument Contains non-PowerDesigner models defined using the Java
Repository interface, which allows you to define your meta-
models

You can access a RepositoryModel document and the sub-objects of a RepositoryModel
document using the following collection: ChildObjects As ObjectCol.

Example

' Retrieve the deepest fol der under the connection
Di m Current Qbj ect, Last Fol der
set Last Fol der = Not hi ng
for each Currentject in C ChildObjects
if CurrentObject.|sKindO(cls_RepositoryFol der) then
set Last Fol der = Current Qbj ect
end if
next

The ChildObjects collection is not automatically updated when the Repository is modified
during a script execution. To refresh all the collections, you can use the following method:
Refresh().

Example
C. Refresh

You can test if a model has already been consolidated using the following method:
FindInRepository() As BaseObject.

Example

Set repnmodel = nodel . Fi ndl nReposi tory()
I f repnodel |s Nothing Then
' Model was not consolidated yet...
nodel . Consol i dat eNew
El se
Model was al ready consol i dated. . .
repnodel . Freeze

Customizing and Extending PowerDesigner 369

nodel . Consol i dat e
End | f

Extracting a Repository Document

There are two ways to extract a repository document using scripting:

« A generic way that is applicable to any repository document

« A specific way that is only applicable to RepositoryModel and RepositoryReport
documents

7o extract any document:

Use the following Description

ExtractToFile(ByVal FileName As String, ByVal Merge- Method on RepositoryModel that al-
Mode As Long = 2, ByVal OpenMode As Boolean = -1, lows you to extract any kind of docu-
ByRef Actions As String = NULL, ByRef Conflicts As ment

String = NULL) As BaseObject

To extract a PowerDesigner document:

Use the following Description

UpdateFromRepository(ByVal MergeMode As Integer = 2, | Method on BaseModel that allows you

ByRef actions As String = NULL, ByRef conflicts As String | to extract PowerDesigner documents
= NULL) As Boolean

Generic Way
To extract a repository document you must:

« Browse for a repository document using the ChildObjects collection

» Extract the document using the method ExtractToFile (ByVal FileName As String, ByVal
MergeMode As Long = 2, ByVal OpenMode As Boolean = -1, ByRef Actions As String =
NULL, ByRef Conflicts As String = NULL) As BaseObject

Example

set C = RepositoryConnection

C. Open

DmD, P

set P = Not hi ng

for each Din C. Childbjects

if D.IsKindO (cls_RepositoryMdel) then

D. Extract ToFile ("C: \tenp\ OO OOM')
end if

next

Specific Way
To extract a RepositoryModel document or a RepositoryReport document you must:

370

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

» Retrieve the document from the local model or multi-model report, (provided it has
already been consolidated) using the method UpdateFromRepository (ByVal MergeMode
As Integer = 2, ByRef actions As String = NULL, ByRef conflicts As String = NULL) As
Boolean

Example

set MyModel = QpenModel ("C:\tenp\O3. OOM')
MyModel . Updat eFr onReposi t ory

Consolidating a Repository Document
There are two ways to consolidate a repository document using scripting:

e A generic way that is applicable to any repository document

« A specific way that is only applicable to RepositoryModel and RepositoryReport
documents

To consolidate any document:

Use the following Description

ConsolidateDocument(ByVal FileName As String, ByVal
MergeMode As Long = 2, ByRef Actions As String =

Method on RepositoryFolder that al-
lows you to consolidate any kind of

NULL, ByRef Conflicts As String = NULL) As BaseObject | document
To consolidate a PowerDesigner document:
Use the following Description

ConsolidateNew(ByVal RepositoryFolder As BaseObject,
ByRef actions As String = NULL, ByRef conflicts As String
= NULL) As BaseObject

Method on BaseModel that allows you
to consolidate PowerDesigner docu-
ments

Consolidate(ByVal MergeMode As Integer = 2, ByRef ac-
tions As String=NULL, ByRef conflicts As String=NULL)
As BaseObject

Method on BaseModel that allows you
to consolidate additional repository
versions of a PowerDesigner docu-
ment

Generic Way
To consolidate any repository document you must:

» Specify a filename when using the following method ConsolidateDocument (ByVal

FileName As String, ByVal MergeMode As Long = 2, ByRef Actions As String = NULL,
ByRef Conflicts As String = NULL) As BaseObject)

Example:

Customizing and Extending PowerDesigner 371

set C = RepositoryConnection
C. open
C. Consol i dat eDocunment ("c:\tenp\test.txt")

Specific Way
To consolidate a RepositoryModel document or a RepositoryReport document you can use
one of the following methods:

» ConsolidateNew (ByVal RepositoryFolder As BaseObject, ByRef actions As String =
NULL, ByRef conflicts As String = NULL) As BaseObject, to consolidate the first
repository version of a document

» Consolidate (ByVal MergeMode As Integer = 2, ByRef actions As String = NULL, ByRef
conflicts As String = NULL) As BaseObject, to consolidate additional repository versions
of a document

Examples:

Set nodel = CreateMdel (PdOOM cl s_Mbdel, " | Di agran=Cl assDi agr ani')
set C = RepositoryConnection

C. Open

nodel . Consol i dat eNew ¢

set C = RepositoryConnection
C. Open
nodel . Consol i dat e

Understanding the Conflict Resolution Mode

If you update adocument that has already been modified since last extraction or consolidation,
a conflict can occur.

Consolidation Conflicts

You can resolve conflicts that arise when consolidating a repository document by specifying a
merge mode in the second parameter of the following method: ConsolidateDocument(ByVal
FileName As String, ByVal MergeMode As Long = 2, ByRef Actions As String = NULL,
ByRef Conflicts As String = NULL) As BaseObiject.

This parameter (ByVal MergeMode As Long = 2)can contain the following values:

Value Description

1 Replaces the document in the repository with the local document without
preserving any repository changes

2 (default value) Tries to automatically select the default merge actions by taking into account
the modification dates of objects and cancels the consolidation if a conflict
has been found (objects modified both locally and in the repository)

3 Selects the default merge actions but always favors local changes in case of
conflict instead of canceling the consolidation

372 PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Value Description
4 Selects the default merge actions and favors the repository changes in case of
conflict

Merge actions performed during consolidation and conflicts that may have occurred can be
retrieved in the strings specified in the third and fourth parameters: ByRef Actions As String =
NULL and ByRef Conflicts As String = NULL.

Extraction Conflicts

You can resolve conflicts that arise when extracting a repository document by specifying a
merge mode in the second parameter of the following method: ExtractToFile(ByVal
FileName As String, ByVal MergeMode As Long = 2, ByVal OpenMode As Boolean = -1,
ByRef Actions As String = NULL, ByRef Conflicts As String = NULL) As BaseObiject.

This parameter (ByVal MergeMode As Long = 2)can contain the following values:

Value Description

0 Extracts the document without merge, thus erases the existing local docu-
ment if any, and sets the extracted file as read-only

1 Extracts the document without merge, thus erases the existing local docu-
ment if any
2 (default value) Tries to automatically select the default merge actions by taking into account

the modification dates of objects and cancels the extraction if a conflict has
been found (objects modified both locally and the repository)

3 Selects the default merge actions but always favors local changes in case of
conflict instead of canceling the extraction

4 Selects default merge actions and favors the repository changes in case of
conflict

Merge actions performed during extraction and conflicts that may have occurred can be
retrieved in the strings specified in the fourth and fifth parameters: ByRef Actions As String =
NULL and ByRef Conflicts As String = NULL. The third parameter (ByVal OpenMode As
Boolean = -1) allows you to keep open the extracted model.

Customizing and Extending PowerDesigner 373

Managing Document Versions

You can manage document versions using scripts.

To freeze and unfreeze a document version:

Use the following

Description

") As Boolean

Freeze(ByVal Comment As String = | Method on RepositoryDocumentBase that allows you to cre-

ate an archived version of a document

Unfreeze() As Boolean

Method on RepositoryDocumentBase that allows you to mod-
ify the current version in the repository to reflect changes
performed on your local machine

Example:

MyDocunent . Freeze "Update required"

MyDocunent . Unfreeze

To lock and unlock a document version:

Use the following

Description

Lock(ByVal Comment As
String ="") As Boolean

Method on RepositoryDocumentBase that allows you to prevent
other users from updating the consolidated version

Unlock() As Boolean

Method on RepositoryDocumentBase that allows other users to up-
date the consolidated version

Example:

MyDocunent . Lock "Protection required"

MyDocunent . Unl ock

To delete a document version:

Use the following

Description

DeleteVersion() As Boolean

Method on RepositoryDocumentBase that allows you to delete a
document version

Example:
MyDocunent . Del et e

374

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Managing the Repository Browser
The repository browser lets you manipulate folders using scripts.

To create a folder:

Use the following Description
CreateFolder(ByVal FolderName As Method on RepositoryFolder that allows you to create a
String) As BaseObject new folder in the repository browser

Example:

Reposi t oryConnect i on. Cr eat eFol der (" VBTest ")

To delete an empty folder:

Use the following Description

DeleteEmptyFolder() As Boolean Method on RepositoryFolder that allows you to delete an
empty folder in the repository browser

For more information on documents, see Accessing a Repository Document on page 368.

Example:
DmC
Set C = RepositoryConnection
C. Open "MyRepDef"
' Retrieve the deepest folder under the connection
DmD, P

set P = Not hi ng

for each Din C. Chil dObjects

if D.IsKindO (cls_RepositoryFolder) then
D. Del et eEnpt yFol der

c.refresh
end if
next

Managing Reports by Script

You can generate HTML and RTF reports using scripting, but you cannot create reports.

Customizing and Extending PowerDesigner 375

Browsing a Model Report by Script

You can browse a model report using the following collection on BaseModelReport: Reports
As ObjectCol.

Example

set m = ActiveModel
For each Report in m Reports
Cut put Report. nane

Retrieving a Multimodel Report by Script

You can retrieve a multimodel report using the following function: OpenModel(filename As
String, flags As Long =omf_Default) As BaseObject

Example
OpenModel ("c:\temp\mmr 1. nmr")

Generating an HTML Report by Script

You can generate a model report or a multimodel report as HTML using the following method
on BaseModelReport: GenerateHTML(ByVal FileName As String) As Boolean.

Example

set m = ActiveMdel
For each Report in m Reports
Fil ename = Report.name & ". htnf
Report. Generat eHTM. (fil enane)
Next

Generating an RTF Report by Script

You can generate a model report or amultimodel report as RTF using the following method on
BaseModelReport: GenerateRTF(ByVal FileName As String) As Boolean

Example

set m = ActiveMdel
For each Report in m Reports
Fi |l ename = Report.name & ".rtf"
Report. Gener at eRTF (fil enane)
Next

376 PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Accessing Metadata by Script

You can access and manipulate PowerDesigner internal objects using Visual Basic Scripting.
The scripting lets you access and modify object properties, collections, and methods using the
public names of objects.

The PowerDesigner metamodel provides useful information about objects:

Information

Description

Example

Public name

The name and code of the met-
amodel objects are the public
names of PowerDesigner in-
ternal objects

AssociationLinkSymbol
ClassMapping

CubeDimensionAssociation

Object collections

You can identify the collec-
tions of a class by observing
the associations linked to this
class in the diagram. The role
of each association is the name
of the collection

In PdBPM, an association exists be-
tween classes MessageFormat and Mes-
sageFlow. The public name of this as-
sociation is Format. The role of this as-
sociation is Usedby which corresponds
to the collection of message flows of
class MessageFormat

Obiject attributes

You can view the attributes of a
class together with the attrib-
utes this class inherits from
other classes via generaliza-
tion links

In PdCommon, in the Common Instan-
tiable Objects diagram, you can view
objects BusinessRule, ExtendedDe-
pendency and FileObject with their
proper attributes, and the abstract
classes from which they inherit attrib-
utes via generalization links

Object operations

Operations in metamodel
classes correspond to object
methods used in VBS

BaseModel contains operation Com-
pare that can be used in VB scripting

<<notScriptable>> ster-
eotype

Objects that do not support VB
scripting have the <<not-
Scriptable>> stereotype

CheckModellnternalMessage
FileReportltem

PowerDesigner lets you access the MetaData via scripting using the MetaModel As
BaseObject global property. There is only one instance of the MetaModel and it can be
reached from anywhere through the global property Application.MetaModel.

This generic feature allows you to acccess the MetaModel on a generic way and implies a
neutral code that you can use for any type of model. For example, you can use it to search for
the last object modified in a given model.

Properties and collections are read-only for all MetaData objects.

Customizing and Extending PowerDesigner

377

Accessing Metadata Objects by Script

You can access the MetaData objects using scripts:

Use the following

Description

MetaModel As BaseOb-
ject

Global property. Entry point to access MetaData objects

Retrieving the Metamodel Version by Script

You can retrieve the MetaModel version using scripts:

Use the following

Description

Version As String

Property. Allows you to retrieve the MetaModel version

Retrieving the Available Types of Metaclass Libraries by Script

You can retrieve the available types of MetaClass libraries using scripts:

Use the following

Description

MetaLibrary

Collection. Allows you to retrieve the available MetaClass of libraries of
a given module

Accessing the Metaclass of an Object by Script

You can use script to access object metaclasses.

You can access the MetaClass of an object using scripts:

Use the following

Description

MetaClass As BaseObject

Property. Provides access to the Metaclass of each object

You can access the MetaClass of an object using its public name from the MetaModel using

scripts:

Use the following

Description

GetMetaClassByPublicName (ByVal | Method. Provides access to the MetaClass of an object using
name As String) As BaseObject its public name

You can access the MetaAttribute and MetaCollection of a MetaClass using its public name

(from the MetaClass):

378

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Use the following Description

GetMetaMemberByPublicName (By- | Method. Provides access to a MetaAttribute or a MetaCol-
Val name As String) As BaseObject lection using its public name

Retrieving the Children of a Metaclass by Script
You can retrieve the children of a MetaClass using scripts:

Use the following Description

Children As ObjectSet Collection. Lists the MetaClasses that inherit from the pa-
rent MetaClass

Managing the Workspace by Script

The Workspace object corresponds to the workspace root in the Browser. PowerDesigner lets
you access the current workspace using the ActiveWorkspace As BaseObject global property.

Loading, Saving and Closing a Workspace by Script
The following methods are available to load, save and close a workspace using scripts:

To load a workspace

Use the following Description

Load (ByVal filename As String ="") As Loads the workspace from the given location
Boolean

To save a workspace:

Use the following Description

Save (ByVal filename As String ="") As Saves the workspace at the given location
Boolean

To close a workspace:

Use the following Description

Close () Closes the active workspace

Customizing and Extending PowerDesigner 379

Manipulating the Content of a Workspace by Script

You can also manipulate the content of a workspace using the following items:

« The WorkspaceDocumentthat corresponds to the documents you can add to a workspace.
It contains the WorkspaceModel (models attached to a workspace) and the WorkspaceFile
(external files attached to the workspace)

» The Workspacefolderthat corresponds to the folders of the workspace. You can create,
delete and rename them. You can also add documents to folders.

You can use the AddDocument(ByVal filename As String, ByVal position As Long = -1) As
BaseObject method on the WorkspaceFolder to add documents to the workspace.

Example of a workspace manipulation;

Option Explicit
' O ose existing workspace and save it to Tenp
Di m wor kspace, curent Fol der
Set wor kspace = Acti veWr kspace
wor kspace. Load "% EXAMPLES% nywsp. sws"
Qut put "Saving current workspace to ""Exanple directory :
"+Eval uat eNanedPat h(" % EXAMPLES% t enp. sws")
wor kspace. Save "% EXAMPLES% Tenp. SW&"
wor kspace. Cl ose
wor kspace. Nane = "VBS WsP"
wor kspace. Fi | eName = " VBSWSP. SW&"
wor kspace. Load " % EXAMPLES% Tenp. SW&"
dimltem subitem
for each Itemin workspace. children
If item|sKindOF (PdWsp. cl s_Wor kspaceFol der) Then
ShowFol der (item

renaneFol der item "Fol der ToRenane", "RenanedFol der"
del et eFol der item "Fol der ToDel et e"
curent Fol der = item

ElsIf item|sKindOf (PdWsp. cl s_Wor kspaceMbdel) Then
ElsIf item|sKindOf (PdWp. cl s_WorkspaceFi |l e) Then
End if
next
Di m subf ol der
"insert folder in root
Set subfol der =
wor kspace. Chi | dren. Cr eat eNew PdWp. cl s_Wor kspaceFol der)
subf ol der. nane = " Newf ol der (VBS) "
"insert folder in root at pos 6
Set subfol der = workspace. Chi |l dren. Cr eat eNewAt (5,
PdWsp. cl s_Wor kspaceFol der)
subf ol der. nane = "Newf ol der (VBS) i nsert edAt Pos5""
add a new folder in this folder
Set subfol der =
subf ol der. Chi | dren. Creat eNew(PdWp. cl s_Wor kspaceFol der)
subf ol der. nane = " NewSubFol der (VBS) "
subf ol der . AddDocument Eval uat eNamedPat h(" % EXAMPLES% pdnrep. rtf™)
subf ol der . AddDocunent Eval uat eNanedPat h(" % EXAMPLES% cdnrep. rtf")
subf ol der. AddDocunent Eval uat eNanedPat h(" % EXAMPLES% pr oj ect . pdni')

380

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

subf ol der . AddDocunent Eval uat eNanedPat h(" % EXAMPLES% deno. oont')
di m | ast nodel
set | astnodel = subfol der. AddDocunent
(Eval uat eNamedPat h(" % EXAMPLES% Or di nat eurs. feni))
| ast nodel . open
| ast nodel . namre = " Conput ers”
| ast nodel . cl ose
" det achi ng nodel from workspace
| ast nodel . del et e
wor kspace. Save "% EXAMPLES% Fi nal . SW&"

Communicating With PowerDesigner Using OLE
Automation

OLE Automation (or Visual Basic for Applications) is a way to communicate with
PowerDesigner from another application using the COM architecture in the same application
or in other applications. You can write a program using any language that support COM, such
as Word and Excel macros, VB, C++, or PowerBuilder.

OLE Automation samples for different languages are provided in the OLE Automation
directory within your PowerDesigner installation directory.

Differences Between Scripting and OLE Automation
VBScript programs and OLE Automation programs are very similar. You can easily create VB
or VBA programs, if you know how to use VBScript. However, some differences remain. The
following example program highlights what differentiates OLE Automation from VVBScript.

VBScript Program

The following VBScript program allows you to count the number of classes defined in an
OOM and display that number in PowerDesigner Output window, then create a new OOM and
display its name in the same Output window.

To do so, the following steps are necessary:

» Get the current active model using the ActiveModel global function

» Check the existence of an active model and if the active model is an OOM

e Count the number of classes in the active OOM and display a message in the Output
window

e Create a new OOM and display its name in the Output window

"* Purpose: This script displays the nunber of cl asses defined in an
OOM i n the out put w ndow.

Option Explicit

" Main function

Get the current active nodel

Di m nodel

Set nodel = ActiveModel

I f nodel Is Nothing Then

MsgBox "There is no current nodel."

Customizing and Extending PowerDesigner 381

El sIf Not Mdel .| sKi ndOf(PdOOM cl s_Mddel) Then
MsgBox "The current nodel is not an OOM nodel ."
El se
Di spl ay the nunber of classes
Di m nbd ass
nbCl ass = nodel . O asses. Count
Qut put "The nodel '" + nbdel . Name + "' contains " + CStr(nbd ass) + "
cl asses. "
Create a new OOM
Di m nodel 2
set nodel 2 = Creat eMbdel (PdOOM cl s_Model)
If Not nodel 2 I's Nothing Then
Copy the author nane
nodel 2. aut hor = nodel . aut hor
Di spl ay a nessage in the output w ndow

Qut put "Successfully created the nodel '" + nodel 2. Name + "'
El se

MsgBox " Cannot create an OOM"

End |f
End |f

OLE Automation Program
To do the same with OLE Automation program, you should modify it as follows:

« Add the definition of the PowerDesigner application

» Call the CreateObject function to create an instance of the PowerDesigner Application
object

« Prefixall the global functions (ActiveModel, Output, CreateModel) by the PowerDesigner
Application object

* Release the PowerDesigner Application object
» Use specific types for the variables "model" and "model2"

'"* Purpose: This script displays the nunber of classes defined in an
OOM in the out put w ndow.
Option Explicit
' Main function
Sub VBTest ()

' Defined the PowerDesi gner Application object

Di m PD As PdConmon. Appl i cation

' Get the PowerDesigner Application object

Set PD = Creat ehj ect (" Power Desi gner. Appl i cation")
Get the current active nodel

Di m nodel As PdCommon. BaseModel
Set nodel = PD. Acti veModel

If nodel |s Nothing Then

MsgBox "There is no current nodel."

El sIf Not nodel .| sKi ndOf (PdOOM cl s_Mddel) Then
MsgBox "The current nodel is not an OOM nodel . "
El se

' Display the number of classes

Di m nbd ass

nbCl ass = Mddel . d asses. Count

PD. Qut put "The nodel '" + nodel.Nane + "' contains " +
CStr(nbC ass) + " classes.”

382

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Create a new OOM
Di m nodel 2 As PdOOM d ass
Set nodel 2 = PD. Cr eat eMbdel (PdOOM cl s_Model)
If Not nodel 2 I's Nothing Then
Copy the author name
nodel 2. Aut hor = Model . Aut hor
Di spl ay a nessage in the output w ndow

PD. Qut put "Successfully created the nodel '" + nopdel 2. Nane + "'
El se

MsgBox " Cannot create an OOM "

End |f
End |f

Rel ease the Power Desi gner Application object
Set PD = Not hi ng
End Sub

Preparing for OLE Automation
To use OLE Automation to communicate with PowerDesigner, you need to:

¢ Create an instance of the PowerDesigner Application object

» Prefix all global functions with the PowerDesigner Application object

» Release the PowerDesigner Application object before exiting the program
» Specify objects type whenever possible (Dim obj As <ObjectType>)

« Adapt the object class ID syntax to the language when you create object

« Add references to the object type libraries you need to use

Creating the PowerDesigner Application Object
PowerDesigner setup registers the PowerDesigner Application object by default.

You should check if the returned variable is empty.

When you create the PowerDesigner Application object, the current instance of
PowerDesigner will be used, otherwise PowerDesigner will be launched.

If PowerDesigner is launched when you create the PowerDesigner Application object, it will
be closed when you release the PowerDesigner Application object.

You create the PowerDesigner application object, using the following method in Visual Basic:
CreateObject(ByVal Kind As Long, ByVal ParentCol As String ="", ByVal Pos As Long =-1,
ByVal Init As Boolean = -1) As BaseObject

Example

Defi ned the Power Desi gner Application object
Di m PD As PdConmon. Appl i cation
' Get the PowerDesigner Application object
Set PD = Creat ehj ect (" Power Desi gner. Appl i cation")

PowerDesigner Version Number
If you want to make sure that the application works with a selected version of PowerDesigner,
you should type the version number in the PowerDesigner application object creation orders:

Customizing and Extending PowerDesigner 383

Defi ned the Power Desi gner Application object
Di m PD As PdCommon. Appl i cation
' Get the PowerDesigner Application object
Set PD = Creat e(bj ect (" Power Desi gner. Appl i cati on. x")
"X represents the version nunber

If you do not use a particular feature of PowerDesigner, your application can work with any
version of PowerDesigner and you do not need to specify a version number. In this case, the
last version installed is used.

Note: You must release the PowerDesigner Application object before you exit the application
in which you use it. To do so, you use the following syntax: Set Pd = Nothing.

Specifying the Object Type
When you create VB or VBA programs, it is strongly recommended to specify the object

type.
For example, you should use:
Dimcls As PdOOM C ass

Instead of:

Dimcls

If you do not specify object type, you may encounter problems when you execute your
program and debugging can be really difficult.

Shortcuts
If the model contains shortcuts, we recommend to use the following syntax: Dim obj as
PdCommon.ldentifiedObject.

If the target model is closed, you will get a runtime error.
Adapting the Object Class ID Syntax to the Language

When you create an object using VBScript, you indicate the class ID of the object to create in
the following way:

Dimcls
Set cls = nodel . Creat eCbj ect (PdOOM cl s_Cl ass)

This syntax works properly for VBScript, VBA and VB, but it does not work for other
languages, as class Ids constants are defined as an enumeration. Only languages that support
enumeration defined outside a class can support this syntax.

For C# and VB.NET, you can use the following syntax:

Dimcls As PdOOM C ass
Set cls = nodel . Creat eCbj ect (PAOOM PdOOM O asses. cl s_Cl ass)
"Where PdOOM Cl asses is the nanme of the enuneration.

384

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

For other languages such as JavaScript or PowerBuilder, you have to define constants that
represent the objects you want to create.

Foracomplete list of class ID constants, see file VBScriptConstants.vbs in the PowerDesigner
OLE Automation directory.

Adding References to Object Type Libraries

You must add references to the PowerDesigner type libraries you want to use, for example
Sybase PdCommon, Sybase PdAOOM, Sybase PdAPDM, etc. for programs like VB, VBA,
VB .NET and C#.

To Add References to Object Type Libraries in a VBA Editor:
Select Tools > References.

To Add References to Object Type Libraries in a Visual Basic Editor:
Select Project > References.

To Add References to Object Type Libraries in a C# and VB.NET Editor:
Right-click the project in the project explorer, and select Add References from the contextual
menu.

Example of a References Window for a VBA Program in Word:

References - TemplateProject E3

Available References: CF,

[]5etup Kernel 1.0 Type Library :l Cancel
[[]5etup UL 1.0 Tvpe Library
[I5hockeave Flash

Svbase PdEPM Ty y
Svbase PACDM Twpe Library
[15ybase PdCommon Type Library ﬂ
[[]5vbase PAFRM Tvpe Library

[[]5vbase PAMTM Type Library Priarity
[[I5vbase PAOOM Type Library

[1svbase PAPDM Type Library ﬂ
[[I5vbase PARMG Type Library

[] Tabular Daka Contral 1.1 Tvpe Library

[ThzRC

[1TIME it
4| | »

—Sybase PACDM Tvpe Library

pe Librar Browse. ..

Help

il

Location:

Language: Standard

Customizing and Extending PowerDesigner 385

Customizing PowerDesigner Menus Using Add-Ins

An add-in is a module that adds a specific feature or service to PowerDesigner standard
behavior. PowerDesigner add-ins allow you to customize PowerDesigner menus by adding
your own menu items. You can customize the following menus:

All contextual menus of objects that are accessible from the Browser or from a symbol in
the diagram

Main menus of each module from each diagram type (i.e. Import, Export, Reverse, Tools,
Help)

You can add the following menu items:

Commands that call a method script defined using scripting
Submenus that are cascading menus that appear under a menu item
Separators that are lines used to organize commands in menus

You can use the following types of add-ins to create menu items in PowerDesigner:

Customized commands - to call executable programs or VB scripts using the Customize
Commands dialog box from the Tools application menu. Commands you define can
appear as submenus only in the Execute Commands menu items and in the Import and
Export menu items of the File application menu, but not in objects contextual menu. You
can hide their display in the menu while keeping their definition. For more information,
see Creating customized commands in the Tools menu on page 387.

Resource files — for defining commands for a specific target. Methods and menus are
created in the resource file in the Profile category under the corresponding metaclass. You
can filter methods and menus using a stereotype or a criterion. However, the resource file
must always be attached to the model in order for the commands to be displayed. For more
information, see Menus (Profile) on page 100.

ActiveX —for when you require more complex interactions with PowerDesigner, such as
enabling and disabling menu items based on object selection, interaction with the windows
display environment or for plug-ins written in other languages, such as Visual Basic.NET
or C++. For more information, see Creating an ActiveX add-in on page 394.

XML file — for when you want to define several commands that will always be available
independently from the target you selected. This XML file contains a simple declarative
program with a language linked to an .EXE file or a VB script. Commands linked to the
same applications (for example, ASE, 1Q etc.) should be gathered into the same XML file.
For more information, see Creating an XML file add-in on page 396.

Note: The XML syntax of a menu defined in the Menu page of the resource editor is the same
for XML file and ActiveX add-ins. You can use the interface of the resource editor to visualize
in the XML page the syntax of a menu you created in the Menu page to help you construct the
same XML syntax in your ActiveX or XML file. For more information on XML files, Creating
An XML File Add-Inon page 396.

386

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Creating Customized Commands in the Tools Menu

You can create your own menu items in the PowerDesigner Tools menu to access
PowerDesigner objects using your own scripts.

From the Tools application menu, you can add your own submenu entries that will allow you
to execute the following commands:

» Executable programs
e VB scripts

You can also gather commands into submenus, modify existing commands, and apply to them
keyboard shortcut.

Defining a Customized Command
You can define commands in the Customize Commands dialog box. The number of
commands you can define is limited to 256.

When you define a command, the name you typed for the command is displayed as a submenu
entry of the Execute Commands menu item. Command names appear alphabetically sorted.

You can define a context for that command, so it becomes diagram dependent and displays as a
submenu only when it is relevant.

The following picture illustrates the result of commands definition performed in the
Customize Commands dialog box.

M Window Help
Complete Links Chrl+F5
Corwert to Packane...
Check Model... F4
Compare Models... E“H:E Submenu that gathers related commands Submenu
terge Model... Shift+FE Mame of the command

Standalone Generation...

ste Commands as Chil+bd aj+1

Generate Physical Data Model._ChiG Edit/Run Scrint... Cleghite, | oustomized packages CideMa-
Generate Object-Oriented Model. .. ChiteEhift+0 Customize Commands... |

Resounces ¥ \

Customize Toolbars...

. tenu ltem
Dizplay Preferences...
Model Options...

General Options. ..

To define a command, you have to specify the following in the Customize commands dialog
box:

Customizing and Extending PowerDesigner 387

Command definition Description

Name Name of the command that is displayed as a submenu in the Exe-
cute Commands menu item. Names are unique and can contain a
pick letter (&Generate Java will appear as Generate Java)

Submenu Name of the submenu that groups commands. It is displayed in the
Execute Commands menu item. You can select a default submenu
from the list (<None>, Check Model, Export, Generation, Import,
Reverse) or create your own submenu that will be added to the
listbox. If you select <None> or leave the box empty, the command
you defined will be directly added in the submenu of the Execute
Commands menu item

Context Optional information that allows the display of the command ac-
cording to the opened diagram. If you do not define a context for the
command, it will appear in the Execute Commands menu item

whatever the opened diagram, and even when no diagram is active

Type Type of the command that you select from the list. It can be an
executable or a VB script

Command Line Path of the command file. The Ellipsis button allows you to browse
for a file or any argument. If the command file is a VB script, you
can click the button in the toolbar to directly open the scripting
editor and preview or edit the script

Comment Descriptive label for the command. It is displayed in the status bar
when you select acommand name in the Execute Commands menu
item

Show in Menu Indicates whether the command name should be displayed in the

Execute Commands menu item or not. It allows you to disable a
command in the menu without deleting the command definition

Keyboard shortcut Allows you to apply a keyboard shortcut to the command. You can
select one from the list. The use of a keyboard shortcut must be
unique

Context Option

The Context option allows you to define a diagram dependent command that will appear only
when the parameters you declared in its definition match the current diagram.

When no matches are found, the command is unavailable.

When you click the Ellipsis button in the Context column of the Customize Commands dialog
box, you open the Context Definition dialog box in which you are asked to select the following
optional parameters:

388

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Parameter Description

Model Allows you to select a model type from the Model list

Diagram Allows you to select a diagram type for the selected model from the Diagram
list

Target resource Allows you to select or type a XEM file from the Target Resource list, which
contains all the XEM files defined for the selected model type. The path button
allows you to browse for another particular target resource (XOL, XPL, XSL or
XDB) in another folder

Here are some examples of context definitions as they display in the Context column of the
Customize Commands dialog box:

Context definition

Description

[[* Default value. The command is displayed in the Execute Com-
mands menu item whatever the opened diagram, and even when
no diagram is active

OOM/*[* The command is displayed in the Execute Commands menu

item whenever an OOM is opened, whatever the opened dia-
gram and the selected target resource

OOM/Class diagram/*

The command is displayed in the Execute Commands menu
item whenever an OOM is opened with a class diagram, what-
ever the selected target resource

OOM/Class diagram/Java

The command is displayed in the Execute Commands menu
item whenever an OOM is opened with a class diagram which
target resource is Java

Import/Export Submenus

When you select Import or Export in the Submenu list of the Customize Commands dialog
box, the command you defined is displayed not only as a submenu entry of the Execute
Commands menu item of the Tools menu but also as a submenu entry of the Import or Export

menu items of the File menu.

For example you defined the following command in the Customize Commands dialog box:

Customizing and Extending PowerDesigner 389

i Customize Commands

I [=] E3

OB & Ba @ X |
Hame Submeru Context Tope W Command Line Comim « |
1 B asic BPM iy Patterns BiPR Executable C:hdoc?<Moolswmake.exe Thiz program «
2 Cugztomized package My Patterns POk Adultidirension: WEB Script C:AProgram Filess5 pbagehPowe: This script imp
ey
| | v
ak I Cancel | Help |
The command is displayed as follows in the Tools menu:
B “Window Help = |E
Complete Links Chrl+F5
Conwert to Package...
Check Model... F4
LCompare Maodels.... Chrl+FE
Merge Model... Shift+FE

Import

by Patterns

Ertended Generation...

Edit/Bun Script...

Ctrl+5 hift+

Cugtomize Commands...

Generate Physical Data Model... Ctl+G
Generate Object-Onented Model... Chril+Shift+0

Besources

The command is displayed as follows in the File menu:

390

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

B3 cdt view Model Symbol Rer

Hew... Chrl+M
Open... Chrl+0
Save Chrl+5
Save Az

LClose Chrl+al+Fd

OpenwWorkspace... Shift+F2
Save Workspace Shift+F3
Save Workspace As..

Cloze Workspace Shift+F4

Save all Chrl+F3
Page Setup...
Brirt Prewiew [t b+
Print... Chrl+F
Frint Selection...
M Fe..
Export ¥ Rational Rose File...
Rewerze Engineer ¥ ERwin File [Physzical Data Model)...
Send... EFRwin File [Conceptual Data kaodel]...
. W& Spnchronized Models...
Recent Files »

Recent Workzpaces

Exit Alt+F4

Defining a Customized Command

You can define your own customized commands.

1

Select Tools > Execute Commands > Customize Commandsto display the Customize
Commands dialog box.

Click a blank line in the list.
or

Click the Add a row tool.

Type a name for the command in the Name column.

(Optional) Select a submenu from the list in the Submenu column.

(Optional) Define a context by clicking the Ellipsis button in the Context column.

Customizing and Extending PowerDesigner 391

Context Definition M= E3

IPDM;"MuItidimensinnal Driagram,/PowerB uilder

tadel: IF'DM j
Driagrarm: IMuItidimensinnal Diiagram j
Target resource; | eRA==IRlelo)) j @

QK. I Cancel | Help |

6. Select a type from the list in the Type column.
7. Browse to the directory that contains the command file or argument in the Command Line
column.
8. (Optional) Type a comment in the Comment column.
9. Select the Show in Menu check box to display the command name in the menu.
10. (Optional) Select a keyboard shortcut from the list in the Shortcut key column.
11.Click OK.
i Customize Commands == E3
B & BB X
Name Submenu Context Type = Command Ling Cornir = |
1 Bazic BFM My Pattems BP /= Executable C:hdoc 7xitoolswmake. exe This progranm
= | Customized package My Pattems PD M Multidimeris ~| /B Script C:4Program Files\5ybazesPowe: This script imp
q | o
[ok | cancel | Hew |

You can vizualise or modify the command you have just defined by selecting Tools >
Execute Commands.

Managing Customized Commands

Understanding how customized commands are stored in PowerDesigner will allow you to
easily plug your programs in PowerDesigner while installing them.

Storage
Customized Commands are saved in the Registry. You can define values for customized
commands in the CURRENT USER Registry or in the LOCAL MACHINE Registry.

392

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

If you define values in the LOCAL MACHINE Registry, customized commands are available
for any user of the machine. Thus, when you remove a customized command defined in that
Registry from the Customize Commands dialog box, you only remove the line from the list but
not the corresponding Registry entry. When you do so, the default value (the one defined in the
LOCAL MACHINE Registry) is restored when you open the dialog box again.

The location of customized commands definition can be:

« HKEY_CURRENT_USER\Software\Sybase\PowerDesigner <version>
\PlugInCommands

« HKEY_LOCAL_MACHINE\Software\Sybase\PowerDesigner <version>
\PlugInCommands

Each customized command is stored in a single Registry string value:

« The name of the customized command is a Registry entry, which has the same name as the
command

« The submenu of the customized command is a Registry key, which has the same name as
the submenu

« Other command properties are stored in the Value Data field of the Registry entry
(Registry entry value)

Bl PowerDesigner | | Mame | Data

D"g E_or;trolljs i Basic BPM "Key:Chil-Shift-1:C:AT oolswmake. exel T his progran creat...
Bl 18I00F TEIBIENGES Eb:] Customized packages "K.ew Chl-Shift-0:5 criph:D: \Program Files', MpPreferedProgr..
=-{_] DisplayPreferences
-1 Folderiptians \ /

General i
[],,g Lavout Reaistry entry Registry entry value
50 M;delﬂptions [Mame of the Command] [Defirition properties of the Command)

{1 MRU J
H-_0 Paths Fegisty key
I';'I{:l PIugInEommandsf_H__——f’”ﬂf[ﬂSJngenu of the Command)

id=5) My Programs =l

Definition Format
The syntax of the Registry entry is the following:

[Hide:][Key:<key specification>:][Script:]<commanad>[[comment]

Note that none of the above quoted prefix is localized.

Syntax Keyword Description

Hide: Defines the command as hidden

Customizing and Extending PowerDesigner 393

Syntax Keyword Description

Key:<key specification>: Allows the association of a keyboard shortcut to the command.
This is an optional field. The <key specification> element can
include the following optional prefixes in this order:

e Ctrl- for CONTROL flag
e Shift- for SHIFT flag

Immediately followed by a single character, included between
"0-9" (for example:Ctrl-Shift-0)

Script: Defines the command to be interpreted as an internal script

<Command> Defines the filename with optional arguments for the command.
The command is mandatory and is terminated by a '|' character. If
you want to insert a '|' character within a command, you must
double it

Comment Describes the command. This is an optional field

Note: The Customize Commands dialog box only supports "Ctrl-Shift-0" to "Ctrl-Shift-9"
keyboard shortcuts. If you define a keyboard shortcut outside that range, conflicts with some
other built-in keyboard shortcuts may occur and lead to unpredictable results. The reuse of the
same keyboard shortcut for two distinct commands may also lead to unpredictable results.

Creating an ActiveX Add-in

You can create your own menu items in PowerDesigner menus by creating an ActiveX add-
in.

Note: To use your add-in, save it to the Add-ins directory beneath your PowerDesigner
installation directory and enable it through the PowerDesigner General Options window (see
Core Features Guide > The PowerDesigner Interface > Customizing Your Modeling
Environment > General Options > Managing Add-Ins).

The ActiveX must implement a specific interface called IPDAddIn to become a
PowerDesigner add-in.

This interface defines the following methods:

e HRESULT Initialize([in] IDispatch * pApplication)

e HRESULT Uninitialize()

e BSTR ProvideMenultems([in] BSTR sMenu, [in] IDispatch *pObj)

» BOOL IsCommandSupported([in] BSTR sMenu, [in] IDispatch * pObject, [in] BSTR
sCommandName)

e HRESULT DoCommand(in BSTR sMenu, in IDispatch *pObj, in BSTR
sCommandName)

394

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Those methods are invoked by PowerDesigner in order to dialog with menus and execute the
commands defined by the ActiveX.

Initialize / Uninitialize Method

The Initialize method initializes the communication between PowerDesigner and the
ActiveX. PowerDesigner starts the communication by providing the ActiveX with a pointer to
its application object. The application object allows you to handle the PowerDesigner
environment (output window, active model etc.) and must be saved for later reference. The
application object type is defined into the PdCommon type library.

The Uninitialize method is used to clean references to PowerDesigner objects. It is called
when PowerDesigner is closed and must be used to release all global variables.

ProvideMenultems Method

The ProvideMenultems method returns an XML text that describes the menu items to add into
PowerDesigner menus. The method is invoked each time PowerDesigner needs to display a
menu.

When you right-click a symbol in a diagram, this method is called twice: once for the object
and once for the symbol. Thus, you can create a method that is only called on graphical
contextual menus.

The ProvideMenultems is called once at the initialization of PowerDesigner to fill the Import
and Reverse menus. No object is put in parameter in the method at this moment.

The XML text that describes a menu can use the following elements (DTD):

<! ELEMENT Menu (Conmand | Separator | Popup)*>
<! ELEMENT Conmand>
<! ATTLI ST Conmand
Nane CDATA #REQUI RED
Caption CDATA #REQUI RED
>
<! ELEMENT Separ at or >
<! ELEMENT PopUp (Command | Separator | Popup)*>
<! ATTLI ST PopUp
Caption CDATA #REQUI RED
>

Example:
Provi deMenul tens (" Cbhject", pModel)

The following text results:

<MENU>
<POPUP Capti on="&Perforce" >
<COMVAND Narme="Checkl n" Capti on="Check & n"/>
<SEPARATOR/ >
<COMVAND Nane="CheckQut" Caption="Check &ut"/>
</ POPUP>
</ MENU>

Customizing and Extending PowerDesigner 395

Note: This syntax is the same used in the creation of a menu using a resource file.

Note: You can use the interface of the resource editor to visualize in the XML page the syntax
of a menu you created in the Menu page that will help you construct the same XML syntax.

For more information on how to customize menus using a resource file, see Adding
Commands and Other Items to Your Menu on page 102.

IsCommandSupported Method
The IsCommandSupported method allows you to dynamically disable commands defined ina
menu. The method must return true to enable a command and false to disable it.

DoCommand Method
The DoCommand method implements the execution of a command designated by its name.

Example:
DoCommand (" hject", pMdel, "Checkln")

Creating an XML File Add-in

You can create your own menu items in PowerDesigner menus by using an XML file.

Note: To use your add-in, save it to the Add-ins directory beneath your PowerDesigner
installation directory and enable it through the PowerDesigner General Options window (see
Core Features Guide > The PowerDesigner Interface > Customizing Your Modeling
Environment > General Options > Managing Add-Ins).

The following illustration helps you understand the XML file structure:

396

PowerDesigner

CHAPTER 7: Scripting PowerDesigner

Command : 1
0.7 Name
Caption
0.1 | henus: 1 0.7 | Menu:2 o Separater: 1
Location =
Command : 2
. MName
0.1 Sharad | Fopup : 2 = | Caption
—= GlobalSeript o.F -
Caption Separator: 2
Method : 1 0.7
0.1 [Methods:2 | 5 =
S, '; Hame
Frofile Data
Command : 3
Criteria 0.7
Mame
Caption
o= Menus: 2 o.x | Menu:i Separater: 2
= Lacation 0.s
o.r
Mataciaes Command : 4
L= o= Fopup :1 Hame
0. Name - Caption
- Caption
Separater: 4
Method : 2
Methods: 1 | 0.~ 0.
=l Hame
o Data
- Criteria

The Profile is the root element of the XML file add-in descriptor. It contains the following
parts:

» Shared for which menus and commands are defined
» Metaclass which defines commands and menus for a specific metaclass

<IELEMENT Profile ((Shared)?, (Metaclass)*)>.

Shared
The Shared element defines the menus that are always available and their associated methods
(Menus, and Methods elements) and the shared methods (GlobalScript attribute).

The GlobalScript attribute is used to specify an optional global script (VBS) that can contain
shared functions.

The Menus element contains menus that are always available for the application. A Location
can be specified to define the menu location. It can take the following values:

e Filelmport
* File reverse
e Tools
e Help

You can only define one menu per location.

Customizing and Extending PowerDesigner 397

The Methods defines the methods used in the menus described in the Menus element and that
are available for the application.

Metaclass
The Metaclass element is used to specify menus that are available for a specific
PowerDesigner metaclass. A metaclass is identified by a name. You must use the public name.

The Menus element contains menus available for a metaclass.

The Menu element describes a menu available for a metaclass. It contains a series of
commands, separators or popups. A location can be specified to define the menu location. It
can take the following values:

* FileExport
* Tools

e Help

e Object

Obiject is the default value for the Location attribute.
The Methods element contains a series of method available for a metaclass.
The Method element defines a method. A method is identified by a name and a VB script.

The Command element defines a command menu item. Its name must be equal to the name of
a Method in order to be implemented.

The Popup element defines a sub-menu item that may contain commands, separators or
popups.
The Caption is the displayed value in the menu.

A separator indicates that you want to insert a line in the menu.

Example:
<?xm version="1.0" encodi ng="UTF- 8" ?>
<Profil e>
<Met acl ass Nane="PdOOM Model " >
<Menus>

<Menu Locati on="Tool s">
<Popup Capti on="Perforce">
<Comrand Name="Checkl n" Capti on="Check |In"/>
<Separ at or/ >
<Command Nane="CheckQut" Caption="Check Qut"/>
</ Popup>
</ Menu>
</ Menus>
<Met hods>
<Met hod Nanme="Checkl n">
Sub %kt hod% obj)
execut e_command(p4, submit %-il ename% cnd_Pi peCut put)
End Sub
</ Met hod>

398 PowerDesigner

CHAPTER 7: Scripting PowerDesigner

<Met hod Name="CheckQut" >
Sub %kt hod% obj)
execute_command(p4, edit %l ename% cnd_Pi peQutput)
End Sub
</ Met hod>
</ Met hods>
</ Met acl ass>
</Profile>

A method defined under a metaclass is supposed to have the current object as parameter; its
name is calculated from the attribute name of the method tag.

Example:

<Met hod Nanme="Tolnt" >
Sub %kt hod% obj)
Print obj
Execut eCommand(" ; YMORPHEUS% Tol nt . vbs" ;, " ; " ; ,
cnd_I nternal Scri pt)
End Sub

Each metaclass name must be prefixed by its Type Library public name like PAOOM.Class.

Inheritance is taken into account: a menu defined on the metaclass PdCommon.NamedObject
will be available for a PAOOM.Class.

You can only define one menu for a given location. If you define several locations only the last
one will be preserved.

Menus defined in the Shared section can refer to "Filelmport™ "Reverse™ and "Help™ locations.

These menus can only refer to method defined under Shared and no object is put in parameter
in the methods defined under Shared.

Example:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Profil e>

<Shar ed>

<d obal Scri pt >
Option Explicit
Function Print (obj)
Qut put obj.cl assnane &anp; " " &anp; obj.name
End Functi on

/ d obal Scri pt >

</ Shar ed>

<Met acl ass Name="PdOOM C ass" >

<Menus>

<Menu>

<Popup Capti on="Transformation">
<Command Nanme="Tol nt" Caption="Convert to interface"/>
<Separat or/ >
</ Popup>

</ Menu>

</ Menus>

<Met hods>

Customizing and Extending PowerDesigner 399

<Met hod Nanme="Tolnt" >
Sub %kt hod% obj)
Print obj
Execut eCommand(" ; Y¥MORPHEUS% Tol nt . vbs" ;, " ; " ; ,
cnd_I nternal Scri pt)
End Sub
</ Met hod>
</ Met hods>
</ Met acl ass>
</Profile>

You can find the DTD in the Add-ins folder of the PowerDesigner directory.

Note: You can retrieve in this example the same syntax used in the creation of a menu using a
resource file.

Note: You can use the interface of the resource editor to visualize in the XML page the syntax
of a menu you created in the Menu page that will help you construct the same XML syntax.

400

PowerDesigner

Index

! operator 272
? operator 272
.0 formatting syntax 227
.Z formatting syntax 227
* operator 272
+ operator 272

A

abort_command macro 287
Abstract Data Type 186
Abstract Data Type Attribute 188
ActiveX
add-in 394
DoCommand 394
Initialize 394
IsCommandSupported 394
method 394
ProvideMenultems 394
Uninitialize 394
Add 156
add-in 323
ActiveX 394
customizable menu 386
type of menu items 386
XML file 396
AddCollndex 172
AddColnChck 164
AddColnCheck 164
AdditionalDataTypes 120
AddJoin 197
AddTableCheck 160
ADTComment 186
AfterCreate 156, 201
AfterDatabaseGenerate 145
AfterDatabaseReverseEngineer 145
AfterDrop 156
AfterModify 156
AKCOLN 251
AKeyComment 177
All Attributes and Collections tab 321
All Classes tab 320
All Report Titles tab 321
ALLCOL 251
AllowedADT 160, 186, 188

AllowNullableColn 177
AltEnableAddColnChk 164
Alter 156

AlterDBIgnored 156
AlterStatementList 156
AlterTableFooter 160
AlterTableHeader 160
arithmetical operator 272
attribute value icon 64
autofix 87, 89

B

BasicDataTypes 120
BeforeCreate 156
BeforeCreateDatabase 184
BeforeDatabaseGenerate 145
BeforeDatabaseReverseEngineer 145
BeforeDrop 156
BeforeModify 156

Bind 164, 185, 199, 200
BinDefault 185

block 266

block (macro) 287

bool macro 288

break macro 288

browse tool 105

C

calculated collection 68
properties 70
script 70
target stereotype 70
target type 70
CanCreate 93
CanLinkKind 93
change_dir macro 288
CharFunc 152
check script 87
CheckNull 164
CheckOnCommit 178
choreography category
process language 119
CLIENTEXPRESSION 259

Index

Customizing and Extending PowerDesigner

401

Index

CloseDatabase 184
Cluster 172
collection
browse in scripting 353
composition 325
define using scripts 325
manipulate objects in scripting 353
member 266, 269
ordered 325
read-only 325
scope 273
unordered 325
collection macro 289
ColnDefaultName 189
ColnRuleName 189
column
variable 253
Column 164
ColumnComment 164
comment & // macro 289
Commit 152
compare
resource file 6
ConceptualDataTypes 120
conditional block 269
consolidation conflicts using scripts 372
Constants category (object language) 120
ConstName 160, 164, 175, 177, 178
convert_code macro 289
convert_name macro 289
ConvertFunc 152
copying resource files 6
Count 269
Create 156
create_path macro 290
CreateBeforeKey 172
CreateBody 201
CreateDefault 185
CreateFunc 192
criteria 52
properties 53
custom check 87
define autofix 89
define global script 91
define script 88
properties 87
run 92
troubleshooting 92

custom symbol
example 30
custom symbol (profile) 86
custom tool
stereotype 52
CustomFunc 192
customized command
define 387
definition format 392
manage 387, 392
modify 387
storage 392
using scripts 387
CustomProc 192

D

data type
extended attribute 63
Data Type 209
data types 122
database
estimate size 214, 217
generate using scripts 361
generate via ODBC using scripts 363
generation 135
redefining generation order 154
reverse engineer using scripts 366
Database 184
database package templates 129
datahandling category
process language 119
DataType category (DBMS) 128
date format 149
DateFunc 152
DB Package 201
DB Package Cursor 202
DB Package Exception 202
DB Package Pragma 202
DB Package Type 202
DB Package Variable 202
DBMS
categories 128
extended attributes 212
family 129
File category 150
file name 129
Format category 148
general category 146
generation 129

402

PowerDesigner

Keywords category 152
object category 154
Objects category 156, 160, 164, 172, 175, 177,
178, 181, 184-186, 189, 193,
196-204, 206, 209
overview 127
profile category 212
properties 129
query 129
reverse engineering 129
Script category 130
SQL category 147
statement 129
Syntax category 147
DBMS Trigger 196
DclDellntegrity 178
DclUpdIntegrity 178
default 205
default variable 156
DefaultDataType 120
DefaultTriggerName 193
DeflndexColumn 172
DeflndexType 172
DEFINE 252
DefineColnCheck 164
DEFINEIF 253
DefineJoin 178
DefineTableCheck 160
DefOptions 156
delete macro 291
dependency matrix 55, 57
create 55
dependency path 57
dereferencing operator 272
dimension 208
document management using scripts 374
Domain 185
Drop 156
DropColnChck 164
DropColnComp 164
DropFunc 192
DropTableCheck 160

E

Edit/Run script editor 337
embedded resource 5
Enable 156
EnableAdtOnColn 186
EnableAdtOnDomn 186

Index

EnableAlias 199
EnableAscDesc 172
EnableBindRule 164, 185
EnableChangeJoinOrder 178
EnableCheck 185
EnableCluster 172, 175, 177, 178
EnableComputedColn 164
EnableDefault 164, 185
EnablefKeyName 178
EnableFunc 192
EnableFunction 172
Enableldentity 164
EnableJidxColn 197
EnableManyDatabases 184
EnableMultiTrigger 193
EnableNotNullWithDflt 164
EnableOption 154
EnableOwner 172, 185, 192, 193, 198
encoding 107
ERROR 253
error macro 291
error message 253, 284
syntax 284
translation error 285
escape sequence 277
Event 193
event handler 93
GetEstimatedSize 214, 217
EventDelimiter 193
Events category (object language) 120
example
creating a property tab 77
including a form in a form 80
opening a dialog box from a form 83
opening a dialog from a menu 102
execute_command macro 292
execute_vbscript macro 293
export
extension 25
extend metamodel using scripting 354
extended attribute 58, 212
attribute value icon 64
create 59
create using scripts 359
data type 63
form 70
generation 58
list of values 63
object definition extension 58

Customizing and Extending PowerDesigner

403

Index

profile 70
properties 59
specific tab 70
type 63
extended attributes
physical option 218
extended collection 65
create 66
properties 67
extended composition 65
create 66
properties 67
extended generation 44
specific menu command 44
extended link
add to profile 54
extended object 209
add to profile 54
extended objects
generation 144
reverse engineering 144
extended properties created using scripts 355
extended queries 138
extended sub-object
add to profile 54
extension 131, 138
attach to model 24
complement main generation 21
create 23
create using scripts 359
embedded 23
example 26, 27
export 25
extended generation 44
generate for separate target 44
generation category 25
properties 25
shared 23
transformation profile category 25
extension file 21
creating 28
external shortcut
set_interactive_mode 301
extraction conflict using scripts 372

F

F12 105
family 129
File category (DBMS) 128, 150

file format
bin 15
case study 17
DTD 15
metamodel 15
XML 15
XML editor 15
find regular expression 337
First 269
FKAutolndex 178
FKCOLN 253
FKeyComment 178
Footer 172
FOREACH_CHILD 254
FOREACH_COLUMN 255
foreach_item macro 293
foreach_line macro 295
FOREACH_PARENT 256
foreach_part macro 295
foreign key
variable 257
form
control properties 74
create 71
dialog box 70
example 77, 80, 83
extended attributes 70
physical option 218
physical options 76
profile 70
properties 72
property tab 70
replace tabs 70
Format category
DBMS 148
Format category (DBMS) 128
format variables 271
function based index 141
FunctionComment 192

G

general category (DBMS) 146
General category (DBMS) 128
generate 129
post-generation 114
pre-generation 114
generated file 104, 263
create 106
generated files category 107

404

PowerDesigner

generation
extended objects 144
redefining order 154
script after 145
script before 145
selection using scripts 364
settings using scripts 364
generation category 25, 122
generation commands 122
generation options 122
generation tasks 122
GenerationOrder 154
GetEstimatedSize 214, 217
global script 70, 87, 91
global variable 91
go to super-definition 4
GrantOption 203, 204
graphical synonym
created using scripts 356
Group 199
GroupFunc 152
GTL 122,131
accessing the metamodel 13
calculated attributes 13
calculated collections 13
conditional block 269
define 263
error message 284
escape sequences 277
head string 279
inheritance 263, 275
macros 285
metadata documentation 263
Metamodel Objects Help 263
parameter passing 282
polymorphism 263, 275
recursive templates 278
share templates 278
shortcut translation 277
tail string 279
template 263
template overloading 275
template overriding 275
translation scope 273
variables 266

H

head string 279
Header 172

Index

help
Metamodel Objects Help 48
HTML help
content 336
examples 336
reference guide 336
structure 336
HTML report generated using scripts 376

icon for stereotype 52

if macro 297

implementation category
process language 119

INCOLN 257

Index 172

IndexComment 172

IndexType 172

inheritance 263, 275

Initialize 93

Install 186

interactive mode in scripting 330

internal transformation object 110

ISEmpty 269

J

JOIN 257
Join Index 197
JoinindexComment 197

K

Key 177
Keywords category (DBMS) 128, 152

L

Linguistic Variables category 317

ListOperators 152

live database
extend reverse engineering query 138
reverse engineering 135
reverse engineering function-based index 141
reverse engineering physical options 140
reverse engineering qualifiers 143

local variables 270

log macro 298

Customizing and Extending PowerDesigner

405

Index

lookup 4
lowercase macro 299

M

macro 285
abort_command 287
block 285, 287
bool 283
break 288
change_dir 288
CLIENTEXPRESSION 259
collection 289
comment & // 289
convert_code 289
convert_name 289
create_path 290
delete 291
error 291
execute_command 292
execute_vbscript 293
foreach_item 293
foreach_line 295
foreach_part 295
if 297
log 298
loop 285
lowercase 299
object 299
replace 300
SERVEREXPRESSION 259
set_interactive_mode 301
set_object 301
simple 285
SQLXML 260
unique 302
unset 303
uppercase 299
vbscript 303
warning 291
MandIndexType 172
MaxColindex 172
MaxConstLen 154, 160, 164, 177, 178
MaxDefaultLen 189
MaxFuncLen 192
Maxlen 156
MDA 110
menu 100
add command tool 102
add separator tool 102

add submenu tool 102

create command tool 102

example 102

location 101

menu tab 101

properties 101

xml tab 101
menu for extended generation 44
merge

resource file 7
MergeMode in Repository using scripts 372
MetaAttribute using scripts 378
metaclass 46

help 48

properties 48

use stereotype as metaclass 51
MetaClass

retrieving children using scripts 379
MetaClass librairies using scripts 378
MetaClass object

public name 378

using scripts 378
MetaCollection using scripts 378
MetaData using scripts 377, 378
metamodel 9

accessing with GTL 13

calculated attributes 13

calculated collections 13

features 8

navigate 11

objects 8

packages 8

PdCommon 8

PowerDesigner 8

symbols 8

use with VBS 12

XML markups 15
MetaModel object 323
Metamodel Objects Help 48, 263, 336
MetaModel using scripts 378
method 97

global variable 99

properties 99

script 99

type 99
model

created using scripts 345

open using scripts 346
ModifiableAttributes 156

406

PowerDesigner

ModifyColnComp 164

ModifyColnDflt 164

ModifyColnNull 164

ModifyColumn 164

multimodel report (retrieved using scripts) 376

N

Namings category (object language) 120
NMFCOL 258

not certified 2

NullRequired 164, 171

NumberFunc 152

O

object
access using scripts 323
create in model using scripts 347
create in package using scripts 347
create link using scripts 352
create shortcut using scripts 352
define using scripts 324
delete from model using scripts 350
member 266, 268
retrieve in model using scripts 351
scope 266, 273
Object Attributes category 316
object category (DBMS)
default 205
dimension 208
extended object 209
result column 207
storage 183
tablespace 183
user 189
web parameter 207
object language 117
generated files category 107
generation category 122
modify 117
ObjectContainer 126
profile category 126
object macro 299
object mapping
create using scripts 360
Object Selection
in scripting 356
ObjectContainer 126

Index

Objects (catégorie de SGBD) 188, 192
Objects category (DBMS) 128, 156, 160, 164, 172,
175,177,178, 181, 184-186, 189, 193,
196-204, 206, 209

ODBC category (DBMS) 128

OLE Automation 323, 381
adapt object class ID syntax to language 384
add reference to object type libraries 385
create PowerDesigner Application object 383
PowerDesigner Application version 383
release PowerDesigner Application object

383

specify object type 384
use a PowerDesigner version 383

open
resource file 2

OpenDatabase 184

operator 227, 268-270
1272
?272
*272
+272
arithmetical 272

OtherFunc 152

overload 275

override 275

P

Parameter 203
parameter passing 282
PdCommon 8
Permission 160, 164, 192, 204
physical option 218
adding to form 76
composite 223
default value 222
extended attributes 218
form 76, 218
list of values 222
profile 76
repeat 225
specified by a value 221
storage 223
tablespace 223
variable 221
without name 222
Physical Options (Common) tab 218
Physical Options tab 218
PkAutolndex 175

Customizing and Extending PowerDesigner

407

Index

PKCOLN 259
PKeyComment 175
platform-independent model 110
platform-specific model 110
polymorphism 263, 275
post-transformation 114
power evaluation operator 272
pre-transformation 114
primary key
variable 257
Privilege 203
Procedure 192
procedure templates 129
ProcedureComment 192
process language
choreography category 119
datahandling category 119
generated files category 107
generation category 122
implementation category 119
profile category 126
settings category 119
profile 21
add a metaclass 46
add transformation 114
calculated collection 68
create generated file 106
create template 105
criteria 52
custom check 87
custom symbol 86
dependency matrix 55
event handler 93
example 26, 27, 77, 80, 83, 102
extended attribute 58, 59
extended collection 65, 66
extended composition 65, 66
form 70-72
form controls 74
generated file 104
menu 100
method 97
physical options 76
properties 114
stereotype 49
template 104
transformation 110, 114
profile category 126
profile category (DBMS) 212

property
defined using scripts 324
public name 9

Q

qualifier 143
Qualifier 197

R

Reference 178
regular expression for text search 337
Remove 186
Rename 160, 164
replace macro 300
report
browse using scripts 376
manipulate using scripts 375
translate into other languages 307
translate object property value 310
Report Item Templates category 319
report language
define 305
example of translation 314
open file 306
properties 309
Report Language Editor
define 305
Report Titles category 313
repository
access documents using scripts 368
connect to database using scripts 367
consolidate documents using scripts 371
extract documents using scripts 370
manage browser using scripts 375
manipulate using scripts 367
ReservedDefault 152
ReservedWord 152
resource editor 2
copy 6
embedded resource 5
go to super-definition 4
modify 5
search 4
shared resource 5
resource file 1
compare 6
copy 6

408

PowerDesigner

edit5
merge 7
not certified 2
open 2
search 4
resource file for report language 305
result column 207
reuse list of values 63
reverse engineering 129
extended objects 144
function based index 141
physical options 140
qualifiers 143
script after 145
script before 145
ReversedStatements 134, 156
RevokeOption 203, 204
Role 200
RTF report generated using scripts 376
Rule 189
RuleComment 189
run script file 341

S

sample script 341
save
scripting file 340
scope 273
Script category (DBMS) 128, 130
script editor 337
script error (VB) 92
script file
create 339
modify 340
save 340
script reverse engineering 134
scripting
access objects 323
access repository documents 368
browse collections 353
browse report 376
collection 325
command in the GTL 323
conflict resolution 372
connect to repository 367
consolidate repository documents 371
create extension 359
create graphical synonym 356
create link object 352

Index

create model 345

create object in model 347

create object in package 347

create object mapping 360

create Object Selection 356

create scripting file 339

create shortcut 352

create symbol 348

custom check 323

custom command 323

custom menu 323

customized command 323, 387
delete object from model 350
display objects symbols in diagram 348
Edit/Run Script editor 337

event handler 323

extend metamodel 354

extract repository documents 370
generate database 361

generate database via ODBC 363
generate HTML report 376
generate RTF report 376

generation selection 364

generation setting 364

global constants 333

global functions 331

global properties 328

HTML help 336

interactive mode 330

libraries 335

manage document versions 374
manage repository browser 375
manipulate object extended properties 355
manipulate objects in collections 353
MetaAttribute 378

MetaClass children 379

MetaClass libraries 378

MetaClass object 378

MetaClass object by public name 378
MetaCollection 378

Metadata 377, 378

MetaModel 378

modify scripting file 340

object 324

OLE Automation 381

open model 346

option explicit 331

position symbol next to another 350
property 324

Customizing and Extending PowerDesigner

409

Index

reports 375
repository 367
retrieve multimodel report 376
retrieve object in model 351
reverse engineer database 366
run scripting file 341
save scripting file 340
script samples 341
transformation 323
validation mode 330
workspace 379
workspace content 380
search 4
Sequence 198
SequenceComment 198
SERVEREXPRESSION 259
set_interactive_mode 301
external shortcut 301
set_object macro 301
settings category
process language 119
XML language 122
SGBD
catégorie Objects 188, 192
share template 278
shared resource 5
shortcut
open target model 301
set_interactive_mode 301
shortcut translation in GTL 277
SQL category 147
SQL category (DBMS) 128
SQL statement
variable format 229
variables 227
SqlAkeyIndex 177
SqlAttrQuery 156
SqlChckQuery 160, 164
SqlListChildrenQuery 178, 199, 200
SqlListDefaultQuery 185
SqlListQuery 156
SqlListRefrTables 160
SqlListSchema 160, 181
SqlOptsQuery 156
SqlPermQuery 160, 164, 181, 189, 192, 199, 200
SqlStatistics 164
SqlSysIndexQuery 172
SQLXML macro 260
SqlXMLTable 160

SqIXMLView 181
stereotype 49
attach icon 52
attach tool 52
example 29
properties 50
use as metaclass 51
storage 183
physical option 223
StorageComment 183
symbol
create using scripts 348
display in diagram using scripts 348
position next to another using scripts 350
synonym
graphical synonym using scripts 356
Synonym 199
Syntax category
DBMS 147
Syntax category (DBMS) 128
System 203

T

Table 160
TableComment 160
tablespace 183
tablespace physical option 223
TablespaceComment 183
tail string 279
target type 70
template 104, 263
browse tool 105
create 105
overload 275
overriding 275
recursive 278
share 278
sharing conditions 278
translate shortcut 277
translation scope 273
Time 193
time format 149
transformation 110
add to profile 114
dependencies 111
internal transformation object 110
MDA 110
post-generation 114
pre-generation 114

410

PowerDesigner

profile 114
profile properties 114
properties 111
script 110, 111
transformation profile category 25
TransformationProfiles category (DBMS) 128
translation scope 273
Trigger 193
trigger template items 129
trigger templates 129
TriggerComment 193
TypeList 160, 181

U

UddtComment 185
UddtDefaultName 189
UddtRuleName 189
UML profile 21

Unbind 164, 185, 199, 200, 205
UnigConstAutolndex 177
UnigConstraintName 160
UniginTable 177
UnigName 172

unique macro 302

unset macro 303
uppercase macro 299
UseErrorMsgTable 193
UseErrorMsgText 193
user 189

UserTypeName 185
UseSpFornKey 178
UseSpPrimKey 175

Vv

Validate 93
validation mode in scripting 330
Values Mapping category 310
variable 226, 227

column 253

foreign key 257

primary key 257
variable (DBMS)

abstract data type 240

ASE & SQL Server 243

column 233

constraint 233

database package 244

Index

database security 246
database synchronization 243
default 247
dimension 248
domain 233
extended object 249
format 229
generation 250
index 235
index column 235
join index 242
key 235
metadata 249
physical options 221
procedure 238, 250
reference 236
reference column 236
reverse engineering 250
rules 239
sequence 239, 247
synonym 240
table 231
trigger 250
triggers 238
views 231
variable (GTL) 266
block 266
collection member 266, 269
collection scope 273
format 271
global 266, 269
local 266, 270
object member 266, 268
object scope 266, 273
outer scope 273
VBS 12
vbscript macro 303
View 181
ViewCheck 181
ViewComment 181
ViewStyle 181
volatile attribute 270

w

warning macro 291
Web Operation 206
web parameter 207
Web service 206

Customizing and Extending PowerDesigner

411

Index

workspace structure 396
close using scripts 379 XML language
content closed using scripts 380 data types 122
load using scripts 379 generated files category 107
manipulate using script 379 generation category 122
save using scripts 379 profile category 126

X settings category 122

XML file
add-in 396

412 PowerDesigner

	Customizing and Extending PowerDesigner
	Contents
	CHAPTER 1: Working with PowerDesigner Resource Files
	Opening Resource Files in the Editor
	Navigating and Searching in Resource Files
	Editing Resource Files
	Saving Changes
	Sharing and Embedding Resource Files
	Creating and Copying Resource Files
	Comparing Resource Files
	Merging Resource Files
	The PowerDesigner Public Metamodel
	Metamodel Concepts
	Navigating in the Metamodel
	Accessing the Metamodel with VB Script
	Accessing the Metamodel with GTL
	Model Files and the PowerDesigner Metamodel
	Example: Simple OOM XML File

	CHAPTER 2: Extension Files
	Creating, Attaching, and Embedding Extension Files
	Creating an Extension File
	Attaching Extensions to a Model
	Exporting an Embedded Extension File for Sharing
	Extension Properties

	Example: Adding a New Attribute from a Property Sheet
	Example: Creating Robustness Diagram Extensions
	Creating a New Extension File in your Model
	Creating New Objects with Stereotypes
	Specifying Custom Symbols for Robustness Objects
	Creating Custom Checks on Instance Links
	Defining Templates to Extract Message Descriptions
	Creating a Generated File for the Message Information
	Testing the Robustness Extensions

	Extending Generation and Creating Separate Generation Targets
	Metaclasses (Profile)
	Adding a Metaclass to a Profile
	Metaclass Properties

	Stereotypes (Profile)
	Creating a Stereotype
	Stereotype Properties
	Promoting a Stereotype to Metaclass Status
	Specifying an Icon and Custom Tool for a Stereotype

	Criteria (Profile)
	Creating a Criterion
	Criterion Properties

	Extended Objects, Sub-Objects, and Links (Profile)
	Adding Extended Objects, Sub-Objects, and Links to a Profile

	Dependency Matrices (Profile)
	Creating a Dependency Matrix
	Specifying Advanced Dependencies

	Dependency Matrix Properties

	Extended Attributes (Profile)
	Creating an Extended Attribute
	Extended Attribute Properties
	Creating an Extended Attribute Type
	Specifying Icons for Attribute Values
	Linking Objects Through Extended Attributes

	Extended Collections and Compositions (Profile)
	Creating Extended Collections and Compositions
	Extended Collection/Composition Properties

	Calculated Collections (Profile)
	Creating a Calculated Collection
	Calculated Collection Properties

	Forms (Profile)
	Creating a Form
	Form Properties
	Adding Extended Attributes and Other Controls to Your Form
	Form Control Properties
	Adding DBMS Physical Options to Your Forms

	Example: Creating a Property Sheet Tab
	Example: Including a Form in a Form
	Example: Opening a Dialog from a Property Sheet

	Custom Symbols (Profile)
	Custom Checks (Profile)
	Custom Check Properties
	Defining the Script of a Custom Check
	Defining the Script of an Autofix
	Using the Global Script
	Running Custom Checks and Troubleshooting Scripts

	Event Handlers (Profile)
	Adding an Event Handler to a Metaclass or a Stereotype
	Event Handler Properties

	Methods (Profile)
	Creating a Method
	Method Properties

	Menus (Profile)
	Menu Properties
	Adding Commands and Other Items to Your Menu
	Example: Opening a Dialog Box from a Menu

	Templates and Generated Files (Profile)
	Creating a Template
	Creating a Generated File
	Generated File Examples

	Transformations and Transformation Profiles (Profile)
	Transformation Properties
	Creating a Transformation Profile
	Transformation Profile Properties

	CHAPTER 3: Object, Process, and XML Language Definition Files
	Settings Category: Process Language
	Settings Category: Object Language
	Settings Category: XML Language
	Generation Category
	Example: Adding a Generation Command and Task
	Example 2: Adding a Generation Option

	Profile Category (Definition Files)

	CHAPTER 4: DBMS Definition Files
	Opening your Target DBMS Definition File in the Target Editor
	DBMS Definition File Structure
	DBMS Property Page
	Triggers Templates, Trigger Template Items, and Procedure Templates

	Managing Generation and Reverse Engineering
	Script Category
	ODBC Category
	Script Generation
	Script Reverse Engineering
	Live Database Generation
	Live Database Reverse Engineering
	Query Structure
	Extension Mechanism for Live Database Reverse Engineering Queries
	Live Database Reverse Engineering Physical Options
	Live Database Reverse Engineering Function-based Index
	Live Database Reverse Engineering Qualifiers

	Generating and Reverse Engineering Extended Objects
	Creating an Extended Object
	Defining Generation and Reverse Engineering Scripts for an Extended Object

	Adding Scripts Before or After Generation and Reverse Engineering

	General Category
	Script/Sql Category
	Syntax Category
	Format Category
	Date and Time Format

	File Category
	Keywords Category

	Script/Objects Category
	Commands for All Objects
	MaxConstLen – Defining a Maximum Constraint Name Length
	EnableOption – Enabling Physical Options
	GenerationOrder – Customizing the Order in Which Objects Are Generated

	Common Object Items
	Table
	Column
	Working with Null Values

	Index
	Pkey
	Key
	Reference
	View
	Tablespace
	Storage
	Database
	Domain
	Abstract Data Type
	Abstract Data Type Attribute
	User
	Rule
	Procedure
	Trigger
	DBMS Trigger
	Join Index
	Qualifier
	Sequence
	Synonym
	Group
	Role
	DB Package
	DB Package Sub-objects
	Parameter
	Privilege
	Permission
	Default
	Web Service and Web Operation
	Web Parameter
	Result Column
	Dimension
	Extended Object

	Script/Data Type Category
	Profile Category (DBMS)
	Using Extended Attributes During Generation
	Modifying the Estimate Database Size Mechanism
	Calling the GetEstimatedSize Event Handler on Another Metaclass
	Formatting the Database Size Estimation Output

	Physical Options
	Physical Option Syntax
	Defining Physical Options Specified by a Value
	Physical Options Without Names
	Defining a Default Value for a Physical Option
	Defining a List of Values for a Physical Option
	Defining a Physical Option for a Tablespace or a Storage
	Composite Physical Option Syntax
	Repeating Options Several Times

	PDM Variables and Macros
	Testing Variable Values with the [] Operators
	Formatting Variable Values
	Common Variables for Objects
	Variables for Tables and Views
	Variables for Columns, Domains, and Constraints
	Variables for Keys
	Variables for Indexes and Index Columns
	Variables for References and Reference Columns
	Variables for Triggers and Procedures
	Variables for Rules
	Variables for Sequences
	Variables for Synonyms
	Variables for Tablespaces and Storages
	Variables for Abstract Data Types
	Variables for Join Indexes (IQ)
	Variables for ASE & SQL Server
	Variables for Database Synchronization
	Variables for Database Packages and Their Child Objects
	Variables for Database Security
	Variables for Defaults
	Variables for Web Services
	Variables for Dimensions
	Variables for Extended Objects
	Variables for Metadata
	Variables for Reverse Engineering
	Variables for Database, Triggers, and Procedures Generation
	.AKCOLN Macro
	.ALLCOL Macro
	.DEFINE Macro
	.DEFINEIF Macro
	.ERROR Macro
	.FKCOLN Macro
	.FOREACH_CHILD Macro
	.FOREACH_COLUMN Macro
	.FOREACH_PARENT Macro
	.INCOLN Macro
	.JOIN Macro
	.NMFCOL Macro
	.PKCOLN Macro
	.CLIENTEXPRESSION and .SERVEREXPRESSION Macros
	.SQLXML Macro

	CHAPTER 5: Customizing Generation with GTL
	Creating a Template and a Generated File
	Accessing Object Properties
	Formatting Output
	Using Conditional Blocks
	Accessing Collections of Sub-objects
	Accessing Global Variables
	GTL Variable Reference
	Object Members
	Collection Members
	Conditional Blocks
	Global Variables
	Local Variables
	Formatting Options
	GTL Operators
	Translation Scope
	Inheritance and Polymorphism
	Shortcut Translation
	Escape Sequences
	Sharing Templates
	Sharing Conditions
	Using Recursive Templates

	Using New Lines in Head and Tail String
	Using Parameter Passing
	Error Messages
	Syntax Errors
	Translation Errors

	GTL Macro Reference
	.abort_command Macro
	.block Macro
	.bool Macro
	.break Macro
	.change_dir Macro
	.collection Macro
	.comment and .// Macro
	.convert_name and .convert_code Macros
	.create_path Macro
	.delete Macro
	.error and .warning Macros
	.execute_command Macro
	.execute_vbscript Macro
	.foreach_item Macro
	.foreach_line Macro
	.foreach_part Macro
	.if Macro
	.log Macro
	.lowercase and .uppercase Macros
	.object Macro
	.replace Macro
	.set_interactive_mode Macro
	.set_object and .set_value Macros
	.unique Macro
	.unset Macro
	.vbscript Macro

	CHAPTER 6: Translating Reports with Report Language Resource Files
	Opening a Report Language Resource File
	Creating a Report Language Resource File for a New Language
	Report Language Resource Files Properties
	Values Mapping Category
	Example: Creating a Mapping Table, and Attaching It to a Specific Model Object

	Report Titles Category
	Example: Translating the HTML Report Previous Button

	Object Attributes Category
	Profile/Linguistic Variables Category
	Profile/Report Item Templates Category
	All Classes Tab
	All Attributes and Collections Tab
	All Report Titles Tab

	CHAPTER 7: Scripting PowerDesigner
	Accessing PowerDesigner Metamodel Objects
	Objects
	Properties
	Collections
	Global Properties
	Global Functions
	Global Constants
	Libraries

	Using the Metamodel Objects Help File
	Using the Edit/Run Script Editor
	Creating a VBScript File
	Modifying a VBScript File
	Saving a VBScript File
	Running a VBScript File
	Using VBScript File Samples

	Basic Scripting Tasks
	Creating a Model by Script
	Opening a Model by Script
	Creating an Object by Script
	Creating a Symbol by Script
	Displaying an Object Symbol by Script
	Positioning a Symbol next to Another by Script
	Deleting an Object by Script
	Retrieving an Object by Script
	Creating a Shortcut by Script
	Creating a Link Object by Script
	Browsing a Collection by Script
	Manipulating Objects in a Collection by Script
	Extending the Metamodel by Script
	Manipulating Extended Properties by Script
	Creating a Graphical Synonym by Script
	Creating an Object Selection by Script
	Creating an Extension by Script
	Mapping Objects by Script

	Manipulating Databases by Script
	Generating a Database by Script
	Generating a Database Via a Live Connection by Script
	Generating a Database Using Setting and Selection
	Reverse Engineering a Database by Script

	Manipulating the Repository By Script
	Connecting to a Repository Database
	Accessing a Repository Document
	Extracting a Repository Document
	Consolidating a Repository Document
	Understanding the Conflict Resolution Mode
	Managing Document Versions
	Managing the Repository Browser

	Managing Reports by Script
	Browsing a Model Report by Script
	Retrieving a Multimodel Report by Script
	Generating an HTML Report by Script
	Generating an RTF Report by Script

	Accessing Metadata by Script
	Accessing Metadata Objects by Script
	Retrieving the Metamodel Version by Script
	Retrieving the Available Types of Metaclass Libraries by Script
	Accessing the Metaclass of an Object by Script
	Retrieving the Children of a Metaclass by Script

	Managing the Workspace by Script
	Loading, Saving and Closing a Workspace by Script
	Manipulating the Content of a Workspace by Script

	Communicating With PowerDesigner Using OLE Automation
	Differences Between Scripting and OLE Automation
	Preparing for OLE Automation
	Creating the PowerDesigner Application Object
	Specifying the Object Type
	Adapting the Object Class ID Syntax to the Language
	Adding References to Object Type Libraries

	Customizing PowerDesigner Menus Using Add-Ins
	Creating Customized Commands in the Tools Menu
	Defining a Customized Command
	Defining a Customized Command

	Managing Customized Commands

	Creating an ActiveX Add-in
	Creating an XML File Add-in

	Index

